dc.description.abstract | Conventional magnetic resonance imaging (MRI) modality is based on the magnetization
that is formed by the influence of a strong polarizing magnetic field on the spin of protons,
typically those of water molecules within the body. In Hyperpolarized (HP) gas MRI, a dramatic increase in spin polarization is achieved using spin-exchange optical pumping (SEOP), which allows images to be obtained with a high signal-to-noise ratio (SNR). Batch-mode custom-built polarizers can serve to produce the HP gas, however, such custom-built systems require optimization in terms of pressure and temperature parameters. This study is comprised of three objectives: i) Gaining understanding regarding the physics of the nuclear polarization process of 129Xe; ii) Examining experimentally the pressure and temperature dependences of the polarization, similarly to the way it was done in previous studies; iii) Exploiting this knowledge for the benefit of the optimization of the custom-built polarizer in our lab. | en_US |