Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Assessing and characterizing the inductive effect through silicon containing backbones and on silicon reactivity

    Thumbnail
    View/Open
    SmithA2012m-1b.pdf (6.628Mb)
    Date
    2014-01-22
    Author
    Smith, Ashlyn Patricia
    Metadata
    Show full item record
    Abstract
    This thesis describes a study of the inductive effect in derivatives of bicyclo[1.1.1.]pentane; chosen because it eliminates any possibility of conjugation between the substituent and probe, and keeps the steric effect constant by providing a rigid backbone. The substituent effects, both upon a silicon center and transmitting through silicon atoms, in these systems were studied using Density Functional Theory and the isodesmic reaction approach to Hammett's methods. The elctron density distribution was analyzed using the Quantum Theory of Atoms in Molecules. Although less sensitive to substitution, it was discovered that the effect as measured on a Si‐probe (–Si(OH)3) is the same as that measured using a C‐probe (–COOH). In both cases, the transmission of the “so‐called” inductive effect appears to operate in the same fashion: through the molecule using the atomic dipole moment. The x‐component (axis connecting the substituent and probe) of the substituent dipole was determined to be the controlling property. Despite minor differences in structure, replacing the backbone atoms with silicon appears to have little effect upon the mechanism of transmission, but a general decrease in sensitivity, to the effect of substitution, is apparent. As the atomic dipole moment conforms to the principle of atomic transferability, it is possible to describe the inductive effect in terms of the substituent‐only dipole (μx(RH); determined for the RH system). In fact, we were able to replace the substituent constant, an empirically derived parameter, with μx(RH), a quantum mechanically derived parameter. Linear free energy relationships to describe the inductive effect with μx(RH), as well as an electronegativity term and steric terms to describe the backbone and probe, were developed that essentially recreate the entire substituent effect.
    URI
    http://knowledgecommons.lakeheadu.ca/handle/2453/542
    Collections
    • Electronic Theses and Dissertations from 2009 [1632]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback