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I. ABSTRACT

Deviations from constancy of the Clausius-Mossotti
function, CM with changes in density and temperature are
considered on the basis of a one-dimensional oscillator
model of the atom in which the valence electrons are assumed

restricted by infinite potentials, but interact with all

others in the medium through dipolar forces.

The density-dependence of CM is qualitatively in
agreement with experiment, but the temperature-dependence
is negligible as the excited states of an oscillator do not
represent those of real atoms. In addition, the model does

not permit the existence of the ionized state of the atom.

The analysis here suggest a more promising, three-
dimensional model which admits of realistic atomic potentials,
dipolar interaction based on continuous dielectric surround-
ings and repulsive potentials which ensure the existence of
delocalized electronic states with consequent screening of

the dipolar forces.



ITI. INTRODUCTION, BACKGROUND AND SUMMARY

It is well known for nonpolar materials that
the static permittivity € obeys fairly well the Clausius-

Mossotti formula:

= — N o (II:l)

where NO is the particle number density and @ is the polariz-
ability of the isolated atom or molecule being considered.
Since N, = pA/W where p is the mass density, W the molecular
weight and A = 6.02x1023 is Avogadro's number, (II:1) indicates
for a given nonpolar material that the Clausius-Mossotti

function:+

C =

w
M P

e =1

A

€S+2} = [é%_JaO (II:2)
S

should be a constant independent of density and temperature.
CM should also be independent of frequency up to the point
where appreciable optical absorption by the material begins

to occur, usually in the infrared region.

e ~1 ;
+In the literature C,, is sometimes defined by C,, = 1 = =
M v M 0 es+2

g%A o but (II:2) is the more common definition. Density p

is most frequently quoted in amagat units, but often in moles/f.

Note that 1 mole/f = 22.39 amagats. One amagat is defined as
the number of molecules per unit volume in a perfect gas at

N.T.P., viz: 2.689x10!°% cm™3.



At optical frequencies (II:1) is to be replaced

by the Lorentz-Lorenz formula:

n? (g)-1 _ 4n

N o(w) (II:3)
n2 (@) +2 3 ©

where n(w) is the refractive index at the frequency and a (w)
is the polarizability of the isolated particle at that fre-
quency. From (II:3) it then follows that at a given frequency,

w, the Lorentz-Lorenz function:

n?-1} _
n2+2

should also be a constant independent of density and temperature.

d7A
3

L(w) =

W a (w) (II:4)
p

(a) Experimental Background

Experiments to test the constancy of C, given by

M

(II:2) for simple nonpolar gases such as Ar, Kr, He, Ne, Nj,
H,, CO, and CH, have been carried out since the early 1930's -
see, for example: Michels and Michels [1]; Michels, Jaspers
and Saunders [2]; Michels, Saunders and Schipper [3]; Michels
and Kleerekoper [4]; Michels, Ten Seldam and Overdijk [5];
Johnston, Outermans and Cole [6]; Johnston and Cole [7];

Orcutt and Cole [8], [9]. Most of the American work referred



to here was painstakingly accurate but carried out only at
low or modest densities (0 ~ 200 amagats, say), but the

Dutch work quoted used densities as high as 600 ~ 800 amagats.

The results show that for most nonpolar gases CM
is not quite a constant, but rises as density is increased
to a weak, broad maximum for densities in the range 200 ~ 300
amagats, after which it decreases slowly as density is further
increased. Generally, it is also observed that CM shows a

weak temperature dependence at all densities.

Experimental data for argon taken from Michels,
Ten Seldam and Overdijk [5] are shown in Fig. l:a at tempera-
tures of 25°c and 100°cC. Naturally, the experimental error

is largest at the lower densities since here e - 1 is very

small. It may be noticed that over the whole range of density

-1
C;Ffﬂ%; ,
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cm © 25°% Michels-ten Seldam
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FIG. 1. Clausius-Mosotti function of argon (Ref. [5]).



the variation of CM is less than 1.6% in argon. Fig. 2
shows experimental results for CO, taken from Michels and
Kleerekoper [4], at temperatures of 50°c and 100°C. Here
CM varies by about 2.8% over the density range shown. The
temperature dependence of CM is also more pronounced than
for argon. Again, of course, the measurement errors are

largest at the lower densities.
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FIG. 2. Clausius-Mosotti function for carbon
dioxide (Ref. [4]).

The results depicted for Ar and CO, are fairly
typical of those obtained for simple nonpolar atomic and
molecular gases, respectively, but it may be mentioned

that for the light atomic gases, He and Ne, the recent



measurements by Vidal and Lallemand [10] indicate that CM
does not exhibit a maximum in the density range of approxi-
mately 106'~—900 amagats. In fact, in this range CM is
observed to decrease almost linearly with increasing density
and the maximum, if it exists, must occur at well below 100
amagats. For both these gases the overall change in CM is
very small - less than 1%. Similarly for molecular hydrogen,
Michels, Sanders and Schipper [3] found that within experi-

mental error no change at all could be observed in CM in

the density range 10-1000 amagats.

Measurements of CM are usually carried out at audio

or radio fregquencies and no frequency dependence of CM has

been reported at these very long wavelengths. However, at

optical frequencies where L(w), given by (II:4), should be

FIG. 3. Lorentz-Lorenz functions of argon at 25° for

various wavelengths (Ref. [11]).



independent of o and T, there also appears to be a paucity

of experimental data. Fig. 3 shows the results for Ar given
by Michels and Botzen [11] at various wavelengths in the
range 447l°A—6678°A, all at 25°C. It may be observed that
for a given wavelength the L vs. p curve has the same general

shape as the CM vsS. p shown in Fig. 1.

Measurements of L(w) vs. p for other géses, notably
CO,, N, and CH, were carried out by Michels and Hamers [12],
Michels, Lebesque and de Groot [13], and Michels, Botzen and
de Groot [14], with essentially the same general results as
for Ar; viz. an increase in L(w) to a maximum followed by a

decrease in L(w) as density is further increased.

(b) Theoretical Background

The fact that CM and L(w) are nearly constant with
changes in p and T indicates that use of the Lorentz local
field to calculate the moment induced into a given nonpolar
molecule is indeed a very good approximation. It will be
recalled from elementary dielectric theory, Frohlich [15],
that the Lorentz field is calculated as that existing inside
a spherical specimen of radius so large that it has the
macroscopic dielectric properties of the medium. This field

arises from sources inside and outside the sphere and for a



cubic lattice or a homogeneous, isotropic medium the former
vanishes. However, the latter is given by the combined con-
tributions of the macroscopic field, E less the self-field,
E, = - ggng,of the homogeneously polarized sphere. The

Lorentz local field is thus:

F =F + am (ITI:5)
~ ~ 3

P
Lo G
independent of the radius of the spherical specimen.

Equation (II:5) leads at once to the macroscopic,
Clausius-Mossotti formula (II:1) but as pointed out by
Frahlich,‘[ls], (App. 3), (II:1) may also be regarded as a
molecular formula provided short-range (non-dipolar) forces
are neglected and the molecular volume is chosen equal to

the volume available per molecule, viz:

4 _3

_3.._ a = (II:G)

1
NO

In this case (II:1) becomes the Clausius-Mossotti formula for

a single molecule, viz:

a
= _gg_ (IXI:7)

Here a is the "dielectric" molecular radius. When (II:7) holds



it follows that ao/a3 is proportional to the density which

may be varied by changing the external pressure.

Kirkwood [16] was the first to realize that

Lorentz's calculation of the local field, while probably
valid in a solid cubic lattice, is suspect for a gas or
liquid since it takes no account of the comparatively large
density fluctuations that occur in fluids. This means in

a fluid that considering the medium surrounding the sphere
(in Lorentz's theory) to be a homogeneous, isotropic con-
tinuum may be too strong an approximation and an approach
based on a medium with particulate structure would be more

satisfactory.

Kifkwood assumed only dipolar interparticle forces
need be considered and that the particle polarizability, a
was independent of density. Since his model was based entirely
on a particle picture there was no need to introduce the in-
geneous device of the "Lorentz sphere" at the outset. The

moment induced into the ith nonpolar molecule is then:

L T O‘G\Fﬂ' = 0‘0(,-\_,— ; fElJ;.E,J) (IT1:8)

J#1
where F. is the local field and T.. = r,.=3(I - r,., r,./r.?)
4 ij ij ~1])~1] 1)

is the dipole-dipole interaction tensor. The problem remaining
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is to find the average value p. of p. using standard tech-
niques of statistical physics. In this connection it may
be noted, as shown by Kirkwood, that the calculation of
Tij'introduces in a natural way a small sphere of indefinite
radius surrounding the ith molecule. This is equivalent to

the Lorentz sphere introduced in the earlier theory.

At very low densities, where correlation between

Py and Tij is negligible, the results show that the Clausius-
Mossotti formula is recovered, but as the density increases,
and correlation becomes more important, CM rises to a very
weak maximum usually at higher densities than observed experi-
mentally. CMkthen falls more slowly with increasing density
than found experimentally. Kirkwood's [16] results for argon
compared to the experimental results of Michels et al. [5] are

shown in Fig. 4.

Jecl W

Kirkwood [16]

mote 16k ]

Michels et al [5]=

4008 i & 1 1 1 1
200 400 600 800 1000 o (Am)

FIG. 4. Kirkwood's theory [16] for argon compared to
experimental results of Michels et al. [5].
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The fact that CM calculated by Kirkwood rises
more slowly with increasing density than indicated by
experiment at low densities, and falls less rapidly at
high density prompted other workers to examine the fluctu-
ation theory more carefully. Thus Mandel and Mazur [17]
took steps to remove the shape dependence of the dielectric
sample in Kirkwood's theory. Earlier, de Boer, Vander Maesen
and Ten Seldam [18], had introduced the effect of short-
range repulsive forces between particles by means of the
Lennard-Jones and the Hertzfeld potentials. As expected
their results show a more rapid decrease of C, vs. p at high

densities, but too slow an increase of C,, with increasing op

M

at low densities.

Jansen and Mazur [19], [20] were the first to treat
the particulate theory using quantum mechanics. They limited
themselves to spherical molecules undergoing dipolar inter-
action only and found for H and He that the initial increase

of C,, with increasing density was of the same order of magni-

M
tude as predicted by Kirkwood's theory. It should be stressed
that unlike Kirkwood's theory, Jansen and Mazur took account
of the fact that the polarizability of the particle was dehsity
dependent, but as in Kirkwood's theory short-range repulsive

forces were ignored. Later, Jansen and Salem [21] extended

the above theory to include the first few low-order multipole



-12-

moments for the rare gases and simple diatomic molcules,
but finally Jansen [22] concluded that within the range of
experimental error in the measurements this theory does not

account for the observed results.

A somewhat different approach to the problem was
taken by Michels, de Boer and Bijk ([23]; de Groot and
Ten Seldam [24], [25]; and Ten Seldam and de Groot [26],
[27]. These authors concerned themselves with the change
in energies and wave functions of atoms when the electrons
are localized to a finite region of space surrounding the
atom. This step essentially confines the electrons to a
suitably shaped box at whose sides the potential becomes

infinite and at which the wave function must vanish. Thus

|

0.8 1.1 1 l] 1_4[ 1 i [ 1 lll
O 12 5 102 § 102 § W2 S 10°2 S 10%tm

FIG. 5. Polarizability of helium as a function of pressure:
Ten Seldam and de Groot (Ref. [27]).
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Ten Seldam and de Groot [27] considered an He atom confined
to a sphere of radius r, and used the change in energies and
wave functions to find the change in polarizability of the
confined He atom. As expected, a/ao decreases\smoothly with
increasing density without sign of a maximum. The result is

shown in Fig. 5.

It may be noted that, in a sense, this model rep-
resents a return to the Lorentz "continuum”" model except
that dipolar interaction between the caged atomic electrons
and all others in the medium surrounding the sphere has been
ignored. However, the repulsive forces, which tend to con-
fine the electron to the sphere surrounding the nucleus,
have been taken into account. Of course, density fluctua-
tions in the dipolar interaction between the molecule and the
surrounding medium are not considered in the Ten Seldam and

de Groot model.

At this point it may be mentioned that in the area

of a continuum theory for C,, Bottcher [28], some years ago,

MI
proposed interpreting the Onsager formula for nonpolar materials
in a certain way to try and explain the observed deviations from

the Clausius-Mossotti formula.

It will be recalled for a nonpolar medium that

Onsager's formula gives the permittivity from:
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(e _-1) (2e _+1) N o
2 S = 2.9 (II:9)

lZﬂeS lfaog

where NO is the number density of particles of polarizability

o .and
o)

2(e -1)
g=—s_ .1 (II:10)
2€S+l as

is the reaction field factor for molecules of radius a. It
is usual in the Onsager theory to reduce (II:9) to the
Clausius-Mossotti formula (II:1) by insisting that the par-
ticle volume equals the volume available to it according to
(IL:6), but Bottcher declined taking this step and instead
treated u=a_ a3 as a constant independent of density for
each particular substance. In this way he finds a modified

CM function:

_ ~(0) 217 -
CM = CM f(es) (IT:11:a)
where Céo) = 4nAaO/3 is the CM function at zero density and
/
e II:11:b)
£(e ) = = . (ET:lie

S (e +2) [(2e _+1)-2(e _~1)u]
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C(o)

M’ but for other

For eg = 1l it is readily seen that CM =
values of the permittivity f(es) will at first increase to a
maximum and then decrease as €g (and thus the density) is
further increased. 1In this way, with appropriate choices

for u, Bottcher obtains CM VS. p curves which fit the experi-

mental data remarkably well for gases such as CO,.

However, there is a fundamental difficulty in
Battcher's argument that ao/a3 is a constant independent of
density for from (II:9) and (II:10) we may readily compute

the quantity X = %; Noa3 to be:

es—l -1
X = €S+2 I:uf (es)] . (II1:12)

In Onsager's theory X = 1 at all densities, but for BSttcher's
idea we may always plot X vs. p using experimental results of
€5 VS. o For CO,, for example, it may be shown that X
decreases very slowly and almost linearly with increasing
density. Extrapolating this result to p = 0 leads to a non-
vanishing value X = Xo at zero density (X0 = 1.55 for COZ),
and hence when N, = 0, a3 — ». It follows that at =zero
density g must also be infinite, a result in conflict with
the observations that the polarizability of an isolated atom

or molecule is a finite quantity.
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(c) The Present Theory

It is apparent from the above review that there
have been two main approaches to a theory of the Clausius-
Mossotti function, CM(p,T) in dense gases. The first of
these is the "density-fluctuation” theory initiated by
Kirkwood (loc. cit.) and the second the "continuum" theory
initiated by de Groot and Ten Seldam (loc. cit.). To date
there appears to be no theory which unifies both approaches
simultaneously. However, the continuum theory has the advan-
tage of predicting results at high densities which are beyond
the accessible range of calculation of fluctuation theories -
because of the need to take account of higher and higher

orders of multipole interactions as the density rises. For

this reason the present work favours the continuum approach.

It is clear that a major improvement to the de Groot
and Ten Seldam theory would be to include the effectiof long-
range dipolar interaétion between the caged nonpolar particle
and the surrounding medium. The effect of this interaction
would be to attract the electron away from the core and thus
lower the effective oscillator frequency of the caged electron
and hence increase the polarizability. This would be the
predominant effect at low densities. On the other hand, at
high densities, where each electronic oscillator finds itself

increasingly restricted by a §-like potential at the surface
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of the cage as density is raised, the energy would tend to
increase and result in a reduction of polarizability. Quali-
tatively, therefore, as density is increased the polarizability
would at first increase, pass through a maximum and then
decrease at higher densities in agreement with experimental

observation.

For long wavelength, dipole oscillations, where the
fields are essentially electrostatic, it is not difficult to
formulate the above idea quantitatively since the general
technique for finding the potentials associated with an
extended, eccentric dipole in a spherical cavity were given
some time ago by Frood and Dekker [29]. For example, in the
present problem a straightforward calculation (Frood [30]) of
the reaction field of an extended, electronic dipole in a

"a" with a fixed, centralized core charge,

sphere of radius
+e leads to the self-energy of the dipole in its own reaction

field, viz:

_ e? [e-1 r)? r)2n
Vse1f = T & { H“] B, (e) {—} (II:13)

where:

(n+2) (2e+1)
2[(n+2) e+ (n+1)]

Bn(E)
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and where r < a is the position of the electron. The total
potential in which the eiectron moves is then the sum of
(II:13) and the atomic potential (-e?/r for hydrogen) which
must then be inserted in the Schrédinger equation and the

latter solved under the condition y(r = a) = 0.

Leaving aside for the moment the formidable mathe-
matical difficulties consequent upon this step, it will be
noticed that (II:13) depends explicitly on the quantity, e
which we desire to calculate. Thus, as used in the calcu-
lation of, say, a polarizability, (II:13) requires that the
permittivity be calculated self—cohsistently with the result!
A further difficulty inherent in (II:13) 1is that it diverges
at r = a. For these reasons we do not pursue'here a calcu-
1étion for 3-dimensional atoms, but instead go directly to
the more tractable case of a l-dimensional model. As will
be seen in Sec. IIT the self-energy of the l-dimensional
dipole in its own local field is then not explictly dependent
on e except through the polarization,’zj which is the quantity
we wish to calculate. 1In addition, there is no divergence

in this l-dimensional self-energy.

In Sec. III:a we review the well known calculation
of the Clausius-Mossotti formula from the Onsager point of

view, and in Sec. III:b: (i) we introduce the l1-dimensional
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model and the corresponding l-dimensional Clausius-Mossotti
formula for an unrestricted oscillator experiencing dipolar
interaction with its neighbors. 1In Sec. III:(b):(ii) we

then restrict this oscillator by assuming short-range forces
introduce a §-function potential which confines the oscillator
to a finite slab of thickness 2xo. We treat this problem
quantum mechanically and require the wave function to vanish
at x = ixo. Here the computer is a natural tool since the
range of the independent variable is finite for a restricted
oscillator, and it is easy to discretize the interval

-X < X < X .
o — — O

In Sec. IV we compute the energies and wave func-
tions of the restricted S.H.O. without dipolar interaction.
The wave functions and energies so calculated are then used
in perturbation theory to give the ground state polarizability
as a function of density. As expected, the polarizability
decreases smoothly as density increases in this model. 1In
Sec. V we consider the same problem as in Sec. IV, but with
dipolar interaction present and again compute the ground state
polarizability. As expected, for this more realistic model
there is a definite maximum in o vs. p which occurs in the

density range 200 ~ 300 am for Ar, Kr, CO, and N;.

In Sec. VI we calculate the polarizabilities of the

excited states of a restricted l1-dimensional S.H.O. experiencing
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dipolar interaction with a view to investigating the tem-
perature dependence of the CM function. As may be expected,
our model shows this effect to be negligible in view of the
rather large energy gaps between the different states. However,
here a surprising result occurs, namely, that at sufficiently
high densities the polarizability of any excited state can
become negative. This suggests that these states are those

of free electrons rather than bound oscillators and provides,
qualitatively, a suggestion for a completely different model
in which a particle oscillator should, at the outset, be
characterized as having a finite, density-dependent activation
energy. Furthermore its interaction with other oscillators in
the surrounded medium should occur through screened dipolar
forces as suggested some time ago by Frood [31] for a closely
related model. Discussion of this idea is considered in

Sec. VIII, but in Sec. VII we compare our results for the
dielectric constants of Ar, Kr, CO, and N, with experimental
values and as will be seen there is fair agreement for com-
parison of experimental and theoretical ¢ vs. p, but only

gualitative agreement for the same comparison of CM functions.

The hard copy of the computer programmes which form
Appendices A, B, C and D are printed as a separate document

accompanying this thesis.
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ITIT. THE MODEL

(a) 3-Dimensional, Unrestricted Simple Harmonic Oscillator

with Dipolar Interaction.

Consider a point dipole m at the centre of a sphere
of radius a and dielectric constant €y - This sphere is sur-
rounded by a medium of dielectric constant €. The whole is
'in an electric field E which is uniform at infinity and par-
allel to the dipole m. The potential v, outside the sphere
satisfies Laplace's equation VZVO = 0, since there are no
free charges except those at great distance required to main-
tain the macroscopic electric field E. The potential v, inside
the sphere consists of the potentiai of the source dipole m
and the potential @i which satisfies Laplace's equation

V2. = 0.
ER

Let us set up a spherical coordinate system so that

the Z-axis is parallel to E (and m) with origin at the centre
- -

N\

of the sphere (Fig. 6).
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A general solution of Laplace's equation in

spherical coordinates r, 6 and ¢ is:
n qu m imé¢
vV = A r + —=|P_(cos8)e (II1:1)
mn rn+1 n
n=0 n=0

Since the system is spherically symmetrical, the
potential both inside and outside are independent of the
azimuthal angle. Thus the potential VO outside the sphere

is equal to:

Vo(r,e) =Z

n=0

n Bn

A r +
+
n rn 1

Pn(cose) (ITII:2)

Because the potential must not have a singularity at the
centre of the sphere (r=0), we require:
= n .
@i E Cnr Pn(cose) (III:3)
n=0
and hence the potential Vi inside is:
‘oo
V.(r,8) = ¢, + V = Cc_ rP (coss) + —2 . cose (III:4)
ity i dipole n n e.rZ :

1
n=0
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The boundary conditions are:

At Z — « the potential outside must reduce to:

Vo(r,e) = -EZ = -Ercos®6 (ITII:5)

and

H

Vi(a,B) Vo(a,e) (III:6)

since the potential is continuous across the boundary. Also:
oV, ) [av |
0

4

or
l

(ITI:7)

because the normal component of D must be continuous at the

boundary.

av

Since the field at Z —> o is 75? = -E then all the

coefficients An are zero except Aj;, which has the value

A; = -E, and the potential Vo outside the sphere is therefore:
Bn
Vo(r,e) = —-Ercos6 + rn+l Pn(cose) (ITII:8)
=0

Applying the second and third boundary conditions to (III:4)

and (IIT:8), and recalling the orthogonality properties of
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Legendre's polynomials we easily obtain:

B
n m n
+ = - + :

Cna E;ET 6n,l Eaén,l an+1 (I11:9)

and:
)B
n-1 2m _ e (n+1) n
For n # 1, these two equations become:
n Bn
Cna = 531 (ITI:11)
a
and
1)B
n-1 _ _ e (n+ n
neiCna = ——H‘T'Z— (III .12)
a

From these last two equations it follows that Bn = 0 and
Cn = 0 for all values of n except n = 1. When n = 1, we have:

C, + m = -F + Bl_ (IT1:13)

1 €.as asd
and:
2m 2¢B
e;C1 = Z3 = —¢E =t (ITI:14)
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and solving (III:13) and (III:14) for B; and C;, there

results:

(el—e)a3 3m
Pr = Gy F (2e+e.) (III:15)
1 i’
2(e,-¢)
- - 3 1 m .
C1 =" ety B ey a0 (IIT:16)
(1) Cavity Field
Suppose m = 0, then we have a dielectric ¢; imbedded
in a dielectric €0t For this case:
(8i-e)a3
Bl = TZevey F (ITI:17)
i
C1 = giger E (II1:18)
1 2€+ei :

The field inside the sphere is thus homogeneous and in the same

direction as E, and is given by:

aVi 3e
e Sete. E (I1I:19)
i
If in particular e; = 1, we have what is referred to as the

"cavity field"

=2 35 >
= — I1I:20
E Serl E ( )
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(ii) Reaction Field

Consider now B = 0 so that we have a point dipole
at the centre of a sphere of dielectric constant €4 embedded
in the medium of dielectric constant e¢. For this case the

field inside the sphere is given by:

BVi 2(e—ei) o m
T %2 T . (2e+e.) a3 ~ 3 (1-3cos?8) (T11:21)
i i

The second term of (III:21) is the Z-field of the point dipole

E. The first term of (III:21) is:

2(e-ei) =
= — e = (III:22)
ei(2e+ei) a
This is clearly the field inside the sphere due to the polar-
ized charges on both the inside and outside surfaces of the
sphere. These polarized charges arise, of course, from the

"source" dipole m. For ey = 1, we have what is called the

"reaction field":

A4
N
——~
™

|
=
Nsr?

(IIT:23)

This field has the direction of m and is due to the polarized
charges on the outside surface of the sphere which are con-

sidered fixed before the dipole and the dielectric sphere are
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removed. Note also for a central, point dipole that the
reaction field is homogeneous. However, as discussed in
Sec. III:(c), for an extended dipole or for a point dipole
Which is not located at the centre of the cavity, the re-

action field is not homogeneous.

(iii) Local Field (Onsager Theory)

Suppose now we fix the state of polarization in
the medium outside the sphere and remove the sphere and its
polarization from the dielectric, what is the total field
inside the cavity? Clearly the field is given by Onsager's
expression F = (Cavity field) + (Reaction field of point

dipole), that is:

F=% +R
C
3¢ = 2(e-1) m
RIS S Fes et (T1L:24)

But for a homogeneously polarized sphere:

m = %1 a3p (IIT:25)
where:
=Lz (TII:26)
4 :

is the polarization of the medium. Substituting (III:26) into
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(ITI:25) we get:

->
m _ e-1 .
5 = 53 % (IT11:27)

and employing (III:27) in (III:24) there results:

an 3 _ e*2 3 (IIT:28)

¢
I
4
+
|

Eq. (III:28) is the well known Lorentz local field given

earlier in (II:5). This field is independent of "a" the
radius of the sphere.
The dipole moment can also be written as:
m =g F (ITI:29)

where ag is the polarizability of the isolated molecule and

¥ is the local field.

Since the total moment per unit volume is:

E (ITI:30)

= 4ﬁNoao (ITI:31)
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and (III:31) is just the Clausius-Mossotti formula for an

assembly of nonpolar, spherical molecules as shown in Sec. I.

(b) l1-Dimensional, Unrestricted and Restricted Simple

Harmonic Oscillators with Dipolar Interaction.

(i) Unrestricted Oscillator

Consider a dipole with the positive charge +gq at
the origin and the negative charge -g free to oscillate.
along the x—-axis. The dipole is confined to a plane slab
of thickness 2x0 of dielectric constant unity which is sand-
wiched between two, plane semi-infinite media of permittivity
e. These represent the "surrounding medium." ‘The whole is
in an electric field, E, which is uniform at infinity and

parallel to the dipole (Fig. 7).

Y
F A N
/| N BN : ~ B
/ i
A
€ f’/ \ €
/ x
y, >
/ m
A S »
X, +q -q | X5
/
/ ’
f———r 2| —
/‘l

x=0
FIG. 7. Induced line dipolar in slab cavity.
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To obtain the local field in this case by the
Onsager method used in Sec. III:(a) is very difficult and
tedious. The reaction field can be obtained using the
method of images and results in a non-summable series of
terms. The cavity field is equally difficﬁlt to compute,
but bearing in mind that it is only the local field which is
of interest, we may proceed in a straightforward manner

as follows:

Because of the continuity of the normal displace-
ment at the boundary, the local field, F inside the cavity-

must be:
F=cBE==%8+ 4nP (III:32)

where E is the macroscopic field and P is the moment per unit

volume which is also equal to:

P = -gN_x (IT1:33)

Here NO is £he number density of molecules in the medium and
X is the displacement of the charge -g. It should be noted
that the local field (III:32) is homogeneous and independent
of the length of the dipole. Making use of (III:32) and
(III:33), the energy required to6 polarize the dipole is

clearly:
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X
W =¢qg { Fdx
o

. 2 X2\
= -gEx + 47N _q TJ (II1:34)
= —-gEx + 1 m_w?x? (III:35)
2 op
where:
47N _qg? g
-

(IITI:36)

w_ =

p

Mo

is the plasma frequency of the bound electrons in the medium.
Thus, taking account of the back-reaction of the medium, the
total potential energy of the system is:

2

1 22+ .
mowpx qgEx (III:37)

where g is the frequency of the isolated oscillator. The

Lagrangian of the system is therefore:

2

- eV = 1 m %2 - L& 242 4 L 2,2
L T-V = > mox 5 Meox + 5 mowpx gEx
—imx2 - L2 x2 - qEx (III:38)
20 2 o eff

L
where w_ = (,wz--.mé)2 is the density-dependent, effective
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frequency of the oscillator in interaction with its surround-
ings. The first two terms of (III:38) represent the Lagrangian
of a dipolar simple harmonic oscillator, and the last term in
(ITI:38) is the negative of the interaction energy between the

macroscopic field, E and this dipole of moment m = -gx.

From classical mechanics the equation of motion of

this oscillator is found from:

3 [3L AL _ )

ST [_rax} — 0 (II1:39)
leading to:

iy 2 = - 9 .

x + wogf X m_ E (ITII:40)

For an oscilllating field of the form:

B(t) = Eoel“’t (III:41)

an immediate particular solution of (III:40) is:
> - - 949 _© .
x(t) = el 2 (II1:42)

Next using (ITI:;42) in (III:33) the polarization becomes:
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qzno Eoel(ﬂt
P(t)w= = Y (III:43)
X o eff

2 lwt
e—1 = g“N ﬁoe

S (ITI:44)
o Yefs ¥

and using (III:41) in (III:44) the frequency dependent dielec-

tric constant is thus:

02
P
e(w) = 1 + —5—my (III:45)
(wo,wp) w
Hence:
() =1 :
e(w)=1 _ .
ST = ore (III:46)
o
For static fields (w=0), (III:46) becomes:
e -1 w? 47N
s - P _ o .
3e 352 3 ao (III:47)
S o

where @ = é%y is the polarizability of the isolated simple
o

harmonic oscillator.
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Eg. (III:47) is just the Clausius-Mossotti formula
for a l-dimensional unrestricted simple harmonic oscillator
interacting with dipolar forces with its neighbours. The
factor 1/3 is introduced on both sides of (II1:47) so that
the right hand side corresponds with that for the 3-dimensional

Clausius-Mossotti formula given by (I:1) and (III:31).

(ii) Restricted Oscillator

Consider the system which is described in (III:b:i),
but now the dipole is restricted by infinite potential barriers
at x = txo. In other words, the dipole oscillates only in the
region between ~Xq and b This potential barrier represents
the effect of the repulsive forces between the charge -g and
the "whole surrounding medium." The 1atter-is considered to
be a homogeneous, isotropic medium with dielectric constant ¢
(Fig. 7). Since the normal component of D must be continuous
at the boundary, the local field, F, inside the cavity must

still be given by (III:32), viz:
F =¢B=E%8 + 4P (III:48)

where E is the macroscopic field and P is the moment per unit
volume. _E_is also homogeneous and independent of the length
of the dipole, provided this length is less than X Compar-

ing (I1I:32) with (III:48), we concluded that the local field,
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F, for both unrestricted and restricted oscillators are the
same. Thus, the energy required to polarize the dipole is
given by (III:35). The classical Hamiltonian of the system

is therefore:

H = 2%—- + %mowéffx2+ gEx (ITII:49)
where p = mok is the momentum of the charge -g and “éff =
(wé—w;) is the density-dependent, effective frequency of the
oscillator in interaction with its surroundings. The first
two terms of (III:4§) represent the Hamiltonian of a simple
harmonic (dipole) oscillator, and the last term is the inter-
action energy between the dipole of moment m = -gx and the
macroscopic field, E. Since the charge -g is restricted by
infinite potential barriers, its wave function must wvanish
for Ix]ixo. When we consider the quantum nature of this
system, the Hamiltonian of interest is:

. _h'z 42 1 2 2
— - —— —_ :
H 5 Gz t 5 mouipex® + gEx (III:50)

where m is the mass of the charge -q and & is Planck's

constant. The Schrodinger equation of the system is thus:

112 d2y 1 2 2
L + = + = III:51
> Ix7 5 m w ffx Y qExV Wy ( 51)
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and the wave function ¥ (x) is required to vanish at

X = +tx , i.e.

I
o

(IIT:52)

e
0
X
o)
I

¥ ('go)

It is usual to solve (III:51) by an exact method, that is, by

introducing a new coordinate

x' = x+ I (III:53)

then the wave equation becomes

T2 a2y (x') 1 5

2
4 [ ] =
> =7 + m_w x' v(x')
o dx

252
> mowles W+ g3—%——-}‘1’&')

MyWeff

(III:54)

but here the boundary conditions for the wave functions are:

gk j qE =
Yl=x_ + —2=5—| = ¥lx + —5—| =0 (III:55)
[ © moweff] { © momeff]

Since the wave functions depend upon a new coordinate, x',

which is itself dependent on the macroscopic field, E, the
2q2E?

MoYeff

dependent on E in a more complicated way than for the unre-

new energy W' = W + and the wave function Y (x') are

stricted oscillator. We could in principle solve the
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Schrodinger equation numerically for a range of fields, E,
and extrapolate our results to zero field, but this is
clearly a complicated procedure and we elect instead to

use a perturbation method described below:

Let us assume that the macroscopic field is so
small that gEx can be treated as a perturbation, then the

Schrcdinger equation can be written:

(Ho + H")Y = WY (II1I:56)
where
H=- N2 Sf; + Lm w2 x2 (IIT:57)
2m ax 2 "o eff ‘

is the unperturbed Hamiltonian and

H' = gEx (II1:58)

is the perturbation potential energy.

The solution of the Schrcdinger eqguation in the

absence of both dipolar interaction (mp = 0) and a macroscopic

field, E, but with a wave function which vanishes at lx| =

will be discussed in Sec. IV. Later, in Sec. V, the solution

of the Schrodinger equation in the absence of a macroscopic

field, E, but with dipolar interaction present and again with

a wave function which vanishes at |[x| = x_ will be discussed.
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IV. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZ-

ABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR

WITHOUT DIPOLAR INTERACTICN

Consider a simple harmonic oscillator which is
restricted at x = X, by infinite potential barriers. This
" implies that the wave functions vanish for |x| > x,. The

Schrédinger equation of this system is then:

2 2
- o L5+ 1w w2x?y = Wy (IV:1)
(@)

where m, is the mass of the oscillating particle and W is
the angular frequency of the isolated oscillator. The wave
function ¥ (x) in (IV:1) is subjected to boundary conditions:

?(-Xo) = ¥(x_ ) =0 (IV:2)

To solve (IV:1), subject to condition (IV§2), we first trans-

form the equation into a dimensionless form. Thus by 1etting:Jr

y = > O (IV:3)

TNote that the inverse scale length given by (IV:3) is ¥2 times

larger than usually defined in text books dealing with the
S.H.O.
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and
w o= W/Hwo
(IV:1) becomes
2
- STt VY = wy

where:

Viy) = [32’—]

(IV:4)

(IV:5)

(IV:6)

To solve (IV:5) numerically, the difference-quotient approxi-

2
mation is to be used for approximating g§; or

¥y"(y). To

accomplish this, we select an integer N > 0 and divide the

interval [—YO,YO] into N+1 equal subintervals whose end points

are the meshpoints. Defining

_ 0
¥ = n %o
we let:
y. = =Y + ih, for i=0 to N+1
i o
where
Y -(-Y ) 2Y
o) o o)

(IV:7)

(IV:8)

(IV:9)
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At the interior meshpoints, Y 1=1,2,....,N, the differ-

ential equation to be approximated is
=¥y ) HV(y )Y (yy) = we(y.) (Iv:10)

Now, expanding the wave function ¥(y) up to cubic terms in - a
Taylor polynomial about the point Yy evaluated at Yirl and

Yi_qr We have:

(&)

¥ (Y. ) =¥ (y.+h) =¥ (y.)+h¥ (y. )+ Py v+ By g+ By (v )
Yiq Yy Y; YilT 3 Yil*™ % Yi'* 232 Yy

(IV:11)

. + +
for some point &., y, < &; < ¥,,;, and

2 3 L
w(yi_l)=w(yi—h)=w(yi)—hw(yi)+-%rw"(yi)—;%—w3(yi)+'%zw”(yi)

(IV:12)

for some point 5;’ Yi_1 ¢ E. < Yy-

If these two equations are added together, there results:

Yy, )=2¥(y.)%¥(y., ) 2 -
" = i-1 i itl” BT () gy (W) }
v (yy) " 52 EP (E;)+Y (gi)'

(IV:13)



_4 1_

Making use of Intermediate Value Theorem, the equation

(IV:13) becomes

Y(y, )=2¥(y.)+¥(y., ) 5
" _ i-1 i i+l _ he L (u) .
vh(y;) = » 15 ¥ (€,) (IV:14)

for some point Ei’ Yi—l < Ei < Yiiqe

Equation (IV:14) is called the Central Difference Formula
for W"(yi). Assuming that h is a small number such that the
last term in Eg. (IV:14) can be neglected, and bearing in
mind that the truncation error is of O0(h?), we thus have:

Y(Yi) = (IV:15)
h2

Replacing W“(yi) in (IV:10) by (IV:15) the differential equation

is approximated by the difference equation:

Py )2 YY)

" + V(yi)w(yi) = w¥(y,) (IV:16)

for each i = 1,2,3,...,N, and subject to boundary conditions:

W(YO) = w(Yo) = 0 or w(yo) = W(yn+l) =0 (IV:17)
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Equation (IV:16) can be rewritten as

¥ (v ) H{ B (v} ¥ (v ) R (v2) = w¥ (y;)
-B-lz-‘i‘ (y1)+{sz+V(Y2)} W(Yz)-Hlé“i‘ (v3) = w¥(y2)

~pr ¥y )V ¥ () R (Tgyg) = WY ()

(IV:18)

Substituting (IV:17) into the first and the last equations of

(IV:18) we get:

{E%+V(_y1)}W(yl)—le\P (yo) = w¥(yy)
1 2 1 _ )
"ﬁ-z"l’ (Y1)+{KQ**V(Y2)}‘P(Y2)"E'2"F (v3) = w¥(y,
¥y HEY () | ¥y = weyy)

(IV:19)

Equation (IV:18) can be expressed in the tridiagonal N x N~

matrix form shown in Eg. (IV:20):



_43_

— — F - ™ ey
V4 +V(y1) v Q-=—=—=—=-====--- (|) ¥(y1) ¥(y1)
N "
l 2 l \\\ : \y \y( )
-5z pztVW2)- 57 N | (y2) b4
N N AN .
AN N N |
N\ \ \ ]
10\ N R ! : :
- \ . .
p\ E‘Z’ \\\ \\\ \\\ : : :
: \\\ N N N \\\ : . EBwl oo
| S N\ \\ \\ \O . -
| AN N LN N . .
: \\ \\ \ \\ = . ( IV:20 )
[ \ \ N N - .
| N M AN \ : -
: 8 \‘\ My o= : :
: \\ \\ \\\ ET
i N 1 2
O O - % gz tViyy Yy ¥ ()

or Wy = w¥ where the matrix A, shown in Eq. (IV:20) is also a

a symmetrical. From mathematics, we know that it is possible
to diagonalize the above matrix without changing its eigen-
values. The matrix which transforms A to diacgonal form is
called a similarity transformation. Here the process of diag-
onalization is done by computer. The computer program for this
process is given in A4ppendix A. The well known QR algorithm
for calculating the eigenvalues of the tridiégonal aﬁd symmetry
matrix is used in this computation (see Burden et al. [32]).
The diagonal matrix obtained above represents the eigenvalues

(eigen-energies) of the matrix A, since AY = wY or
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[~ T r© T =
A], 0o O m——mrmmmmeee (') ‘1’1 \yl
|
S l . .
? 0 Aj \\\\ : . .
| N \\\ : : =w :
: (0] O\\ \\\\ _ S : » : (IV:21)
: oo . Yo : :
i U : :
O —————————————— :\ O \\ \y \y
AN N N

It should be noted that the size of the matrix is determined

by the integer N, and N is selected so that the distance

2Y 4
h = NF1 between y, and yi+1 is very small. Of course, this
distance can be made as small as we wish. In other words, N

can be chosen as large as we want. When N is large, the size
of the matrix is also large, meaning more computation time is
required to compute the eigenvalues of the matrix. In order

to speed up the computation time, one has to choose N so that
2Y,
N+1
error is also small. Of course, the larger the interval

the distance h = is reasonably small and the truncation

[—YO,YO], the bigger the value of N to be chosen.

Now, we use the eigenvalue which is obtained

by the QR algorithm to compute its corresponding eigenvector
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(wave function), of course, the wave function which is
obtained above is not entirely accurate since its corres-
ponding eigenvalue carries a rounding error which is due

to iteration in the QR algorithm. To find the nearly exact
eigenvalue and eigen-vector, we write a computer program

in which we can calculate this nearly exact eigen-energy
and wave function*simultaneously. This program is given

in Appendix B.

The computed energies and wave functions are
shown in Figs. 8 to 14 for Yo in the range 2 ~.5. In argon
this corresponds to the density range 802 am (YO=2) to
51.3 am (yo=5), with-a similar density range for most other
gases. Note here that energies are quoted in units of
‘Hwo and that the energy and wave functions of the isolated

oscillator are shown as dashed lines.

As mentioned in Sec. III:b:ii, we are not able
to solve the Schradinger equation given by (III:51) in an
exact manner. Instead we introduce perturbation theory,
that is, we assume the macroscopic field, E, so small that
gEx can be treated as a perturbation. Now, let us consider
that the unperturbed system is a restricted simple harmonic
oscillator withou£ dipolar interaction with a wave equation

given by. (IV:1) and subject to boundary conditions. The

*Appendix D gives a programme for checking the accuracy of the
wave function and energy. The former is seen to be correct to

within 1 part in 108,



46—

10.111

—-—--=-4--- - - -
]
\ N !
_____ U S
‘ |
r"""“ ‘‘‘‘‘ — — — —
)
\
{
e it - ==
!
\k 5838 !
RPN [ Rl
\ ,
/
e —— 4 —

-
\

e e
/

N I
\ /

il
N
~
W

FIG. 8a: Energy levels of restricted S.H.O. for Yo



-47 -

8.721

FIG. 8b: Energy levels of restricted S.H.O. for

Y = 3.5 and 4.
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FIG. 9a: Wave functions of restricted S.H.O. for Y, = 2.
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FIG. 9b: Wave functions of restricted S.H.O. for YO = 2.
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FIG. 10a: Wave functions of restricted S.H.O. for Yo = 3.
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FIG. 10b : Wave functions of restricted S.H.O. for Yo = 3.
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FIG. 13b: Wave function cf restricted S.H.O. for Yo = 4.5,
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Hamiltonian of this system will be:

- n? 4?2 1 2 L2 -

According to the perturbation theory, the change in energy

is given by::

|<wnlxlw > 2
W = Wo+qE<WO|x|WO> + a—— o q?E? (IV:23)
o n
n#0

where Wn and Wn(x) are the energy and the wave function of the
unperturbed state of the restricted oscillator without dipolar
interaction. The matrix element <Wolxlwo> is equal to zero
since Wo(x) has even or odd parity. Therefore (IV:23) can be

simplified. It becomes:

©o

f<\1/n(x)|x|‘lfo(x)>|2
W=W_ - 2{: e g?E? (IV:23)
n o

n#0

The static polarizability of the restricted oscillator without

dipolar interaction is given by:

(o]

2
8w L, |<v) x) x|y () | .
@ = " gpz T 2 E W (1v:23)
n#0

The wave functions, which are calculated by computer, are func-

tions of y, where y is defined by (IV:3) The normalization of
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wave function ¥ (y) is done by computer (see Appendix B)
and given by:
Y
o
[ ¥(y)v(y)dy = 1 (IV:26)
-Y

O

However, the normalization of wave function V¥ (x) is

X
(o]

¥ (x)¥(x)dx = 1 (IV:27)

-X
O

Using (IV:3), (IV:27) becomes

Y

o
hol Y (x)V¥Y (x)dy
2m w

1 (IV:28)

-y
o]

Comparing (IV:26) with (IV:28) yields:

Y
2m w
y(x) = [ ‘30},w(y) (IV:29)

Using (IV:29), (IV:3) and (IV:4) in (IV:25) the polarizability
of a restricted oscillator without dipolar interaction then

becomes:
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<y _(¥) IYI\” (y)>]?
- (IV:30)
O

Defining a _ = qz/mowo2 (IV:30) gives the relative polariz-

ability:

<v (y)lyly (y)>]?
ai= Z | = | = (IV:31)

W W
o] n O

n=1

Because the excited state wave functions have more nodes, the
value of the matrix dipole element <Wn|y|wo> is very small
for n>1. Thus, the relative polarizability can be approximated

and is_given here for the first 8 terms only, viz:

8
o Z |<¥ (Y)|Yl‘i’ (y)>|2
— = (IV:32)
a

-W
o

We compute (IV:32) using the energies w_ and wave functions

(y) computed above. The program for this calculation is

given in Appendix (. The relative polarizability of a res-
tricted simple harmonic oscillator without dipolar interaction
vs. density is shown in Fig. 15. Here the density is calculated

assuming N_ = (2xo)‘3.
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FIG. 15: Ground state polararization of restricted S.H.O.
as a function of density.
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V. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZ-

ABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR

WITH DIPOLAR INTERACTION

The Hamiltonian of the restricted simple harmonic
oscillator in the absence of macroscopic field, E, but with
dipolar interaction present is given by:

n? g2 1

= e - 2 2
H om_ ax7 Ty MeaeeX

and the Schrodinger equation of this system is thus:

HY = WY
or
- -hz d2y 1 2 2 _ .
d]no a—}zz— + E momeffx Yy = WY (V.l)
or
2 3%y 1 wy?
- a7 d° 4 2,2 - - Vs
2m_ dx? Ty mowoxt |t 557 vo=w (v:2)

Subjected to boundary condition:

Il
o

W(—xo) = W(xo) (V:3)

Since we have basically the same problem as in Sec. IV, but

with a different effective frequency in the potential, we
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use the same method of solution subject to boundary conditions
(V:3). Now, let us introduce the dimensionless y and w given

by (IV:3) and (IV:4), viz:

2mowO
y = - X (V:4)
and
w o= W/Hmo (V:5)
(V:2) becomes
d?2y
- + = 7 .
a;z- V(y)‘P wy (V:6)

where now:

V(y) = [—%—}2 [ - %Ei} (V:7)

O

and the wave function ¥ (y) is still subject to the boundary

- conditions:

‘Y(-Yob) = ¥(Y_ ) =0 (V:8)

where

Y = X (V:9)
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2
Now, let us discretize (V:6) and replace §§§ by (IV:14)

and also bearing in mind that the truncation error is of

O(h2). We thus have:

Y. -2Y.+V¥,
i-1 i Ti+l _ .
n7 ] + V(yi)‘{’i = wy, (V:10)
where:
2Y
h = —2
N+1 (V:11)

and N is the number of interior points. Also:

Y3 = Y +ixh for i=1,2,3,...N. (V:12)

By imposing boundary conditions (V:8), (V:10) is written in

the compact form shown in Eq. (V:13) below:

[ - - B r' -
1
Rz Y (v1) Y4 O T o) ¥ ¥y
\\ ]
N |
1 2 1L N '
- jz pzVY2)- g7 . i Y2 £2
!
\\ \\ \.\ t
\\ \\ \\ :
v I SN N N | .
2 RN ON N Dl
\ N . .
BN " N N N | . . (V:13)
| \\ \\ \\ \\ \O : .
1 N S b by " .
A \ \ . .
: \\0 \\ \\ \\ -
! N L N \ . .
; \\\ \\\ ~ _ 1 3
1 Ny Ny AN h2
: N A \\\
o o - L 2 4V (y.) v v
“““““““““““ h? h? YN N N
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To diagonalize the above matrix using the well known QR
algorithm, one has to know the value of V(yi),,for i=1,2,3..
.«,N. According to (V:7), V(yi) depends on vy and W From

(IIT:36) we have:

4n1g?N
w2 = |— 9 (ITI:36)

N

m
O

Now assume that the number density, N_. is egual to:

O
N = 1 (V:14)
o) (2xo) :

where the charge g is equal to e and the mass m is equal to

electron rest mass me. Then (III:36) becomes

dre?

2

we = ——Fs—3 (V:15)
P me(2xo)

. » w . .
Using (V:9) the gquantity P is then given by:

2
2
w 2 :
Te m
m ol S Mo (v:16)
(@] (o) (o]

By assigning values to YO and using values of g which are

obtained by extrapolating the experimental Clausius-Mossotti

: e=1 w _ 4= _ 4m e? ,
functions e¥2 o 3 Bag 3 A E;E;T to zero density, one
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can evaluate V(yi) for i=1,2,...,N. Using this procedure
we find the frequencies of the electron in the isolated
atoms to be for Argon w_ = 1.243x10'°% sec™!; for Helium
w, = 3.5115x10!6 sec”!; for Krypton w_ = 1.009x10'6 sec”!,

while for CO, w_ = 0.9245x10!'% sec™!.

Since we now know the value of V(yi) the diagonal-
ization of (V:13) can be performed. This process is, of
course, done by computer. The program for assigning a value
to Y and © and calculating the quantity V(yi), and also
diagonalizing the matrix which is given by (V:13) is given
in 4dppendix A. As mentioned in Sec. IV, the eigen-energies
computed above are not entirely accurate. This may be caused
by the iteration procéss'used in the calculating of the
eigenvalues. To find the nearly exact eigenvalues and eigen-
vectors, we write a program which can compute the nearly exact
eigenvalues and eigenvectors simulaneously. This program is

listed in Appendix B.

The computed eigen-energies and wave functions of
Ar gas are shown in Figs. 16 to 20. MNote that the energies
and wave functions of the isolated oscillator are shown as
dashed lines in all figures. It should also be noted that
we may not use the above method of calculation at very high
densities, such that m; ~ mé , for then the particle is essen-

tially free but localized to a thin slab.
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Energy levels in the unit of'ﬁmo of restricted

oscillator with dipolar interaction for Yo

for argon.
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FIG. 16b: Energy levels of restricted oscillator with
dipolar interaction for Yo = 4 and 4.5 for

argon.
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FIG. lé6c: Energy levels in the unit of‘hwo of restricted

oscillator with dipolar interaction for YO =5
and for argon.
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FIG. 17b: Second and third excited states of restricted

oscillator with dipolar interaction for Y, =3

and for argon.
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FIG. 18a: Ground state and first excited state wave function

of restricted oscillator with dipolar interaction

for YO = 3.5 for ‘argon.
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FIG. 18b: Second and third excited state of restricted
oscillator with dipolar interaction for Yo = 3.5

for argon.
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FIG. 19a: Ground state and first excited state wave functions
of restricted oscillator with dipolar interaction

for Yo = 4 for argon.
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FIG.

_0.6.1-

19b: Second and third excited state wave functions of
restricted oscillator with dipolar interaction for

Yo = 4 for argon.
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FIG. 19c: Ground state and first excited state wave functions

of restricted oscillator with dipolar interaction

for Yo = 4.5 for argon.
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FIG. 20c: Second and third excited state wave function of

restricted oscillator with dipolar interaction
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We mentioned in Sec. IV that it is difficult to
solve exactly the Schrédinger equation given by (III:53).
However, we suggested earlier that it might be easier to
solve (III:53) by means of perturbation theory assuming that
the macroscopic field E is so small that gEx can be treated
as a perturbation. According to perturbation thedry, the

energy of the system is given by:

|<v_[x|¥_>|?q”E?
w=w_+ gE<¥ |x|v > + n S (V:16)
o o] o WO"Wn

n=0

where, because of parity, the first order change on the right
of (IV:16) vanishes. Thus the ground state polarizability of

the restricted oscillator with dipolar interaction is equal to:

o]

2
ngr 5 La 00 x50
Wn—WO (V:17)

n=_

where Wn(x) and Wn are the wave function and the energy of the
restricted oscillator with dipolar interaction. Both computed
energies and wave functions are dimensionless quantities, and
the relationships between dimensional and dimensionless quan-
tities are given by (IV:3) and (IV:29), respectively. Using

these in (V:17), the polarizability of the system becomes

e ]

<y Y >2
Lo e [<¥ ) |yl () Vi 18)
m w 2 VI_~W
e O n (@]

=1
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The relative polarizability of the restricted simple harmonic

oscillator with dipolar interaction is thus:

<y (y)]yly (v)>]2
ii = ZE: n o | (V:19)

w_-w
n o
where a, = ez/mewé is the polarizability of the isolated

molecule. Using the energies and wave functions calculated
above, we compute the relative ground state polarizabilities

*
of A, Kr, N, and CO, and the results are shown in Fig. 21.

It is to be noted that a/ao in Fig. 21 shows
maxima for the restricted S.H.O. with dipolar interaction.
These maxima occur in the range of a few hundred amagats in
qualitative agreement with experiment. Here, of course, the
one-dimensional C,, function is proportional to a/mo and given

M
by:

CM = C&O)(a/uo) (V:20)

where Cﬁ = ——-Aao is the CM function at zero density.

However, our results for CM rise more rapidly with
increasing density at low densities and fall off more rapidly
with increasing density at high densities than do the experi-
mental values. Possible reasons for this will be discussed

in Secs. VII and VIII.

*wo for N, is found from the CM function given by Ely and
Staty [33].
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FIG. 21. The ground state polarizability of restricted
oscillator with dipolar interaction as a function

of density for various gases.
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vi. POLARIZABILITIES OF EXCITED STATES AND TEMPERATURE

DEPENDENCE OF THE CM FUNCTION.

In Sections IV and V we derived the ground state
polarizability of the restricted, simple harmonic oscillator
both with and without dipolar interaction. At T = 0°K this
information is all we require to find the corresponding Cy
function,; but for T > °K some oscillators will be in excited
levels and to examine the temperature dependence of the per-
mittivity we should take account of their contribution to
the total polarization. Thus in principle both € and Cym will
exhibit temperature as well as density dependence. To discuss
the former we first extend the computer calculation to find
the polarizabilities of the excited states of the restricted

simple harmonic oscillator experiencing dipolar interaction

with its neighbours.

If a = ez/mowo2 is the polarizability of the isolated

oscillator, the relative polarizability, a(n) of the nth level
is:
‘ <y Jyly >|2
a(n)/a = E m n (VI:1)
o w_-w
m n

n#n

and in Appendix B we calculate (VI:1) directly from knowledge

of wn and wn for the first 8 states. The results for Ar, Kr
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CO, and N, are given in Tables I, II, III and IV, respec-
tively. Plots of a(n) vs. p for these gases are also given

in Figs. 22, 23, 24 and 25.

It is interesting to note from these results that
at sufficiently high densities the polarizabilities of the
excited levels can become negative, and in this connection
it should be recalled that the polarizability of the <solated
simple harmonic oscillator is the same in all states. Now
in simple dielectric theory it is usual to associate negative
polarizabilities with free or unbounded states of the electron
and if we adopt this interpretation here we would conclude

(n)

that oscillator states n having a < 0 do not exist!

Further, consequences of this idea will be discussed
in Sec. VIII, but for the present we assume simply that at any
given density there are a finite number, N of discrete levels
possible where N is the largest quantum number possible for

™ |,

which « . Clearly N decreases as the density increases.

We also adopt a Clausius-Mossotti approach to the
calculation of the permittivity. For T:>0°K, the medium is

now essentially like a mixture of nonpolar, one-dimensional

(n)

atoms of polarizabilities o and number densities:

N -BW
y () =”E;9 e D (VI:2)
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where:

N
-BW
c = e N (VI:3)

n=0

is the partition function of the oscillator with N discrete

levels. Here B = (kT)~ 1.

Since the local field,~E‘is still given by (III:32)
for all states, the polarization contributed by particles in

the level n is:

P = a(n)N(n)[(Eanﬂ (VI:5)

Summing (VI:5) over allowed n values and solving for P leads

to the dielectric constant:
N

4 E: a(n)N(n)
e-1 = ON (VI:6)
(n) . (n)
1-4dq Z o N
(o]

and (VI:6) gives at once the Clausius-Mossotti function:

Cc. = E_-.—...J.; (_VL] = -4“A <a (T) > (VI:7)

where, after use of (VI:2), the average polarizability at the

temperature T is:
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(n) —B(WD—WO)
e

ol
<a (T)> =

- = (VI:8)
B(Wn Wo)

e

OFV3ZOPV12

Apart from noting that <a>, and hence CM' have
(vanishingly weak) negative, temperature coefficients, we
make no attempt to calculate (IV:8) since clearly in the one-
dimensional model the spacing of the energy levels is so great
compared to kT that the exponential factors in (IV:8) are
negligibly small for all n>1l. Thus, here, <a> reduces essen-

(o)

tially to the polarizability, o of the ground state.

In fact, however, we should not use this simple
method for estimating effects associated with excited states
for although real atoms in any state of excitation can be
looked upon as oscillators, the fundamental frequencies
associated with their excited levels decrease as the quantum
numbers of the levels increase.* Thus the extreme concavity
of the restricted harmonic oscillator potential compared with

the convexity of the potential in real atoms precludes use of

%*
For example, in hydrogen, the polarizability of the nth level

is u0n=(n+l)6a(°)(large n>0) where a(O)EeZ/momg is the ground

state polarizability. Letting a(n)z

frequency W, of the nth level compared to that of the ground

ez/mow;, the fundamental

state is seen to be:

wo = wo/(n+l)'3 (VI:9)
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the former to predict any significant results associated

with the excited states of real atoms. For this reason we
cannot estimate the oscillatory contribution to the specific
heat of the gas. However, it is possible to compute a density-
dependent contribution to the equation of state arising from
the internal, oscillatory motions in the atoms. At T = 0%k

the latter contribution arises purely from the density-
dependence of the ground state energy of the restricted
harmonic oscillator, either with or without dipolar inter-—
action with its neighbours. Of course, for the isolated atom

this contribution to the pressure is entirely absent.
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TABILE 2

KRYPTON

HIGHER STATE

DENSITY POLARIZABILTITTIES
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TABLE 3

-NITROGEN

HIGHER STATE

DENSITY POLARIZABILITTIES
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TABLE 4

CARBON DIOXTIDE

HIGHER STATE

DENSITY POLARIZABILITTIES
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FIG. 22. Polarizabilities of excited states of restricted
oscillator with dipolar interaction for Argon.
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FIG. 23. Polarizabilities of excited states of restricted
oscillator with dipolar interaction for Krypton.
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FIG. 24. Polarizabilities of excited states of restricted
oscillator with dipolar interaction for CO,.
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FIG. 25. Polarizabilities of excited states of restricted
oscillator with dipolar interaction for Nitrogen.
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VII. RESULTS

There are two ways of comparing the present theory
with experiment.

(a) Comparison of Permittivities

In the first, we recognize that €g refers to a
common property in both the one—-dimensional theory developed
here and the three-dimensional experimental results. However,
as seen by (III:31) and (III:47), the Clausius-Mossotti form-
ulae differ for the two cases. If we now replace @ in (III:31)

and (III:47) by a = ao(a/uo), the three-dimensional and one-

dimensional C,, functions (herein called C(3) and C(l), respec-
M : M M
tively) become:
-1 471Ao
(3) _ Ss — (W) _ o .
o - i (1) - e [
s o
e -1 47Ao
(b o s [_w_] - e [i} (VII:2)
€s © %o

and from (VII:1) and (VII:2) the experimental and theoretical

static dielectric constants are:

1+2(2)c (3
Expt. : ey = (?) 1‘?3) (VII:3)
1-2(55) Cy
Theory: e = 1 BB (VII:4)
S 1-3($) ¢
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(3)
M

, found using (V:19) and

Next, using experimental results for C and

the calculated values of Cél)
(V:20), we may plot eg VS. for both cases. The results
for A, Kr, CO; and N, are shown in Figs. 26, 27, 28 and

29, respectively.

It may be noted that over most of the density range
the theoretical results are slightly higher than the experi-
mental ones by as much as 4%.~5% in the mid-range of densities,

but lower than the experimental values at high densities.

These results may be considered reasonably satis-

factory, but they are, in fact, quite misleading in that we

(3)

should really be comparing CM

from experiment witth&l)

from theory.

(b) Comparison of CM Functions

When this step is taken the results are far from

satisfactory as indicated by Figs. 30 and 31 which compare

(3)
M

Mossotti functions for argon and krypton, respectively.

the experimental (C ) and theoretical (Cél)) Clausius-
Similarly unsatisfactory results hold for other gases exam-

ined.

In all cases the theoretical Cél) function achieves

a maximum at roughly the same density as found for CéB)
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FIG. 26. Static Permittivity of Argon vs. density.
Present theory
Experiment (Ref. [5])
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FIG. 27. Static permittivity of Krypton vs. density.

——— Present theory
Experiment (Ref. [10])
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FIG. 28. Static permittivity of Carbon Dioxide vs. density.
Present theory

Experiment (Ref. [4])



-104-

(€5 1)X100 DENSITY, Amagat
A 224 448 672
40 T !
-
0 L :
0 10 20 30

DENSITY, mol/|

FIG. 29. Static permittivity of Nitrogen vs. density.

Present theory

—~esese Experiment (Ref. [33])
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Fig. 30. Comparison of Clausius-Mossotti functions for

Argon.
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él) rises too rapidly with increas-

experimentally, But C
ing density at 16w densities and falls off too rapidly

with density at high densities. It thus appears that the
dipolar forces between a given molecule and all others in
the medium are too strong at low densities and the repulsive

forces (arising from the §-like potential at the "dielectric

radius", xo) are too strong at high densities.

In Sec. VIII we discuss the present model and are
led to suggest a new model which, we feel, should lead to

a better "continuum-type" theory for the CM function.
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VIII. DISCUSSION AND FUTURE PROPOSALS

Starting from a knowledge of the properties of an
isolated, nonpolar atom (treated here as a simple harmonic
oscillator), we have attempted in this thesis to discuss in
a general way the forces acting on the valence .electron(s)
when the atom is surrounded by like particles at nonvanish-

ing concentrations, as in a dense gas or fluid.

Our model is based on a "continuum" point of view
in that the medium surrounding a given atom has been treated
as a homogeneous, isotropic substance characterized by a
certain dielectric constant, €. We have recognized that the
reaction potential of the instantaneous atomic dipole tends
to attract the valence electrons away from the core while the
repulsive potential, which is operative when these electrons
are close to a nearest neighbour atom, tends to repel them

back toward the core.

_We argued that these two forces could account in
a qualitative way for the density dependence of the Clausius-
Mossotti function CM. However, on closer inspection, it was
found difficult to formulate this approach quantitatively in
three~-dimensions (Sec. II) because of the explicit appearance
in the self-energy of the dielectric constant, which is the

very quantity we desire to calculate. A further difficulty

was the divergence of the self-energy at the dielectric radius,
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a, of the sphere containing the atom.

(a) The Present Model

These difficulties disappeared, however, when we
considered the equivalent one-dimensional problem (Sec. III),
for although the permittivity appeared in the back-reaction
of the medium, it did so only implicitly through the polar-.
ization, P, the calculation of which is the main object of

this thesis.

With the aid of a computer it was then possible to
find the wave functions and energies of a one-dimensional,
simple harmonic oscillator restricted by a §-like repulsive
potential at its boundaries (Sec. IV). These same quantities
were also calculated for the restricted, one-dimensional
oscillator experiencing dipolar interaction with all others
in the surrounding medium (Sec. V). The computer is a natural
tool for both these cases since we are concerned with the
motion of an electron confined to a finite region in space

and it is easy to discretize the interval concerned.

Our main result has been the calculation of the
ground state polarizability of the one-dimensional, restricted,
simple harmonic oscillator interacting through dipolar forces
with the surrounding medium (Sec. V), and here we achieved

qualitative agreement with experiment in that the CM—function
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at first increased with increasing density at low densities,
went through a maximum, and then decreased with further

increase of density.

When we extended our calculation to try to predict

the temperature dependence of the C,—-function (Sec. VI),

M
difficulties occurred in the oscillator model since the
spacing of the energy levels at any density is so large
compared to kT that dCM/dT was entirely negligible. The
oscillator model thus precludes useful calculations of
properties relating to excited states, such as, for example,

CM(T) or the oscillatory contribution to the specific heat

of the medium.

The basic difficulty here is that oscillator-like
potentials are too concave compared with the potentials of
real atoms, which are convex for valence electrons in excited
levels. For this reason not too much significance is to be
attached to the calculations of the excited state polariz-
abilities, a(n) discussed in Sec. VI. However, relative
errors in employing the oscillator model for the ground state

(o) .

must be small and should lead to reasonable values for o

An'interesting feature of the computer calculation
of a(n) has been the possibility of negative polarizabilities

of excited levels at sufficiently high densities. This result
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is a direct consequence of the oscillator model which, as
explained above, is not to be taken too seriously for the

(n) does

excited states. However, a negatiVe value of o
"remind us of an important omission in this model, as well

as in all others discussed in Sec. II. This omission con-
cerns the lack of a continuum state for the electron and

is a direct result of assuming an infinite potential barrier
at the dielectric radius. Such a feature precludes the
existence of fully delocalized electroniC»stateé in the

medium and may be a serious oversight, particularly at high

densities.

For any model there should be a finite potential
barrier for the valence electron(s) and as density is
increased we should expect the overlap of potentials of
neighbouring atoms to decrease the barrier height. With a’
finite barrier in the one-dimensional, oscillator model, for
example, the wave functions and energies would be different
from those calculated here and consequently the polarizabilities
would also differ from those found in Sec. VI. There would,
in addition, be a finite number, N of excited states possible
and one could argue that N and the barrier height should be
chosen consistently with the non-appearance of negative a(n)

for all 1 < n < N. An additional effect in such a model would

be that the dipolar forces between atoms are screened by the
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existence of a finite density of free electrons at any
given'temperature and particle density. Such screening
would tend to decrease the dipolar interaction between
atoms and could result in a slower increase of C

M with

increasing density than found with the present model.

(b) Future Proposals

From what has been said above, it is clear that

the model discussed here is unsatisfactory in that:

(i) an oscillator-like potential is unsuitable
for calculating properties associated with
excited states,

(ii) the model lacks a finite activation energy
for the valence electron(s) (even at zero
density), and thus does not permit the

existence of the ionized state of the atom.

In a better model it is also desirable to work in
three-dimensions and to this end we return to (II:13) and
note firstly that the coefficients BN(e) in the self-energy
of the valence electron in its own reaction field are very

insensitive to the permittivity. Inspection shows that:
0.75 <B_(e) <1
-—n ——

for all 0 <n< «» and all 1< ¢ < «. For this reason we may,
as a reasonable approximation, select Bn(e) 1 in which case

(IT:13) sums to give:



2
v =—e_
a

self
To (VIII:1l) we must now
the valence electron in
potential when the atom
centration. The result

for say V_(r) = e2/r (=

maximun in this potential given by V_
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e=1 ), _(x/a)? -
[2s+1] I=(r/a)>2 (VIII:1)

add the atomic potential, va(r) of

the isolated atom to give an effective
is surrounded by others at finite con-
is shown by the dashed curve of Fig. 32

coulomb potential). There is clearly a

at r = r___.
1t max

max

FIG. 32
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The difficulty of the negative infinity at r= a
could now be overcome by assuming the existence of a repul-

sive potential:

Vre (r) = (VIII:2)

- vself(r)_vmax ’ r fr< @

and the final total potential of a valence electron would be:

Va(r)+vse1f(r) ’ ST 2 Thax

V(r) (VIII:3)

max

V(r) is indicated in Fig. 32 by the hatched line.

Fig. 32 may be taken to depict the situation at some
intermediate density and to actually calculate the shape of
V(r), given Va(r), we could employ as a first approximation a
value for (e—l)/(2€+l), occurring in (VIII:1), given by the
unrefined Clausius-Mossotti formula (II:7) for a single molecule.
In this way it may easily be seen that:
e—=1 ao/a3

5o+l ~ l+ao/a5 (VIII:4)
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At low densities V will be small and r (<a)
max max —

will be large and there will be negligible error in assum-
ing the activation energy, A to be that of the isolated
atom. In this cése there will be a large number of excited
states and the polarizability of the atom will be only
slightly higher than that of the isolated atom. Screening
for this case would also be negligible as the activation

energy is so large compared with kT that very few free

electrons would exist at ordinary temperatures.

However, as the density increases Vmax would increase

and A and roax would decrease and the energy levels would
bégin to ri;;—above their values of the atom in isolation.
There would thus be a general increase of the polarizability
of the atom as density increases at low densities. For suf-
ficiently low densities screening would still be unimportant,
but as density is increased, and A continues to decrease,
there will come a point (probably rather suddenly) at which
sufficient free electrons will be present at ordinary tempera-
tures that screening of the dipolar forces between atoms will
become important. We might expect this point to be reached
when the screening radius rs = (k'I‘/41rnee2)_;i is of the same

order as the dielectric radius a. Here ne(p,T) is the number

density of free electrons.
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When screening is important the self-energy
(VIII:1l) would have to be modified as shown by Frood [31]
and in this situation it might be expected that the number
of excited states, N(p,T) will be rather small. The polariz-
ability of the particle would then be smaller than its value
for the isolated atom and would continue to decrease as

density is further increased.

The above remarks outline qualitatively how a(p,T)
could change with density in a manner comparable to what is
observed experimentally. A calculation based on the above
ideas in which at every density quantities such as the acti-
vation enerqgy, A(p,T), the number of excited states, N(p,T),
the free electron density, ne(p,T) and the permittivity,
e(p,T) are all mutually self-consistent would be interesting

to perform with the aid of a computer.

It may be noted here that the reduction in polariz-
ability envisioned at high densities in this proposed model
is directly connected with a reduction in the number of excited
states possible as density increases - rather than through
increasing confinement of the electron to a "cage" as assumed

in the present theory, or those of Ten Seldam et al (loc. cit.).

A complicatioh which must be taken into account is

(n,2)

that the polarizability a of an electron (with principal
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and orbital quantum numbers n and £) together with the

N(n,ﬂ)

number density, of atoms in that level must be

non-catastrophic, i.e.

1 - o @B ), (VIII:5)

where

(n,2) _ 4r 2(c-1) | (n,&)
g = 3 2e+1 N

is the reaction field factor for the level (n,2). As shown

by Frood (loc. cit.) in connection with impurity conduction,
(VIII:5) is the condition which determines the maximum guantum
numbers N(p,T) and L(p,T) which can exist at a given density

and temperature.

The foregoing remarks are closely related with the
possible appearance of the metallic state in a sufficiently
dense medium. Experimentally, it may thus be of interest
to examine dielectric and/or conduction losses in very dense
nonpolar gases as well as the static or low frequency behaviour

of the Clausius-Mossotti function CM(p,T).
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APPENDIX A

1GO0 REM THIS PROGRAM IS WRITTEN IN MICROSOFT RASIC FOR NORTH STAR
HORIZON COMPUTER, THIS PROGRAM RUN IN COMFILED BASIC.
LOBO REM
1100 REM FURFOSE @ TO CALCULATE EIGEN-ENERGIES (OF & BOUND STATE OF ONE
‘ DIMENSIONAL SCHRODINGER EQUATION, WITH THE CONDITION
THAT THE WAVE FUNCTION VANISHES AT RBOUNDARY FOINTS.

1150 REM

1200 REM THE BOUNDARY FOINTS WILL BE Y1 AND YZ2.
250 REM
1200 REM NOTE: THE POTENTIAL ENERGY FUNCTION MUST BE A
' CONTINUOUS FUNCTION (ROUND STATE).
1350 REM THE DISCRETE EIGENVALUE CAN BE OBRTAINED, IF

IT IS A BOUND STATE SYSTEM.
1400 REM

1450 REM THE SCHRODINGER EGUATION OF ONE DIMENSIONAL CASE IS GIVEN BY:
LEOO  REM

1550 REM @ 2

1600 REM ~(h=2/2M) %d Z(X) 7dX +V(X)*Z (X)) =e*Z (X)

1650 REM

1700 REM Z(X) IS WAVE FUNCTION

1750 REM V(X)) IS5 FOTENTIAL ENERGY

1800 REM e IS5 EIGEN-ENERGY

1850 REM

1900 REM TO SOLVE THIS EQUATION WITH THE COMFUTER, WE HAVE TO TRANSFORM

THE ARBQOVE EGUATION INTO DEMENSIONLESS DIFERENTIAL ECUATION,.
1950 REM
2OO0 REM NOW, CONSIDER A SYSTEM WHICH THE FOTENTIAL ENERGY IS GIVEN EY,
VIX)=0, SkMEw 2% "2 ( & RESTRICTED OSCILLATOR)
OR VIX)=0.5%kMEw 280" 2% L1 —(wp/w) ™21 ( A RESTRICTED OSCILLATOR WITH
2050 REM DIPOLAR INTERACTION )
2100 REM
21850 REM TO MAKE THE AROVE ERUATION BECOMES DEMENSIONLESS DIFFERENTIAL
2200 REM EQUATION . WE LET,
R2E0 REM Y=X/ (h/72Mw) 0.5
PEOD REM
FEED REM E=@/hw
2400 REM
2450 REM THEN THE DIFFERENTIAL EMIATION BECOMES,
PEOO REM ‘
REEOD REM 2 2
2&HO0 REM - Z/dY +NVIY)*I=E#Z
ZEEO REM .
2700 REM WHERE S VY)=(Y/2) "2 FOR A RESTRICTED OSCILLATAOR,
AND VLY =(Y/2) 2% 1-(wp/w) ™21 FOR & RESTRICTED OSCILLATOR WITHE
DIFOLAR INTERACTION.
- R7E0REM '
NOTE & IF V(Y)=(Y/,2)"2 THEN THE STATEMENT # 4900 SHOULD BE
ACTIVATED 1! ELSE THE STATEMENT # {4R5F0 SHOULD EBE

ACTIVATED.
2800 REM TO SOLVE THIS EQUATION BY COMPUTER, WE FIRST DISCRETIZE THE
2830 REM DIFFERENTIAL EQUATION, THEN USE ROUNDARY CONDITION, THAT ARE

Z=0 AT THE END FOINTS(Y=Y1,LEFT END FOINT,Y=YZ,RIGHT END FOINT).

EF0O0 REM ’
2950 REM SINCE (wp/w) "2=9, 03I550LE08/LY2"T®w"0.5]

Al



OO0
BOEO

100

IBOO

JEBO

HEHQO

EZEHG0
ETOO0
TTEO
8O0
EBEO0
900
AR50
OO0
4050
4100
4150

4200
C4RS0
A3 ) 9]
4EEO
G400
4450
£ ,,,;("} )

4 7 (,_) (_)
AT
4800
48350
400
4930
HOOO0
BOBO0
T100

5150
SHE00

5’:3»..!( )

EER0O0

THEREFORE, WE LET V{(Y)=(Y/2) 2% (1-90335T0&LHOH/ (Y2 3) %W ™. 5))))
REM
REM NOTE « THE ABOVE FOTENTIAL I8 FOR A RESTRICTED OSCILLATOR WITH
DIFOLAR INTERACTION.

REM
REM THEN .
REM —LLAZi=1) = (FRZi) +(Zi+1) 3 /HRI+V(Yi) *Zi=E*Zi
REM
REM AND Hem (Y2=Y 1) / (N+1)
REM :
REM WHERE, N IS THE NUMBER OF FOINT BETWEEN TWO END FOINTS.
REM
REM BY SETTING Z{() =Z (N+1)=0 . WE OBTAIN,
REM AT Z=E® 125
REM
WHERE (Z> IS A EIGENVECTOR WITH ENTRIES Zi (i=0 to N)
REM ‘
FEM AfLi=D/H 2+V(Yi) . i=1 to N
REM
REM AL+],i=Ai,i+l=—1/H"2 , i=1 to N-1
REM
REM AND OTHERS ARE ZEROS.
REM -
DEFDEL A, B, CaS R,y ly ZyMy TuV H, Y, X, D,E,F,W 2° DECLARE DOUBLE FRECISION.
DEFINT 1,J,K,N *REM DECLARE INTEGER.

PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER"
INFUT "THE NUMBER OF POINT IS"3 sREM N IS THE NUMEBER OF FOINT
BETWEEN THE BOUNDARY FOINTS
INFUT "THE VALUE OF Y1"svyl ‘
INFUT "THE VALUE OF Y”"”Y“
FRINT " IF THE SYSTEM I8 RESTRICTED OSCILLATOR ONLY THEN THE SYSTEM "
FRINT " IS INDEFENDENT OF ANGULAR FREGUENCY"
INFUT "THE ANGULAR FREGUENCY" ;WO REM w=WO
FRIMT
FRINT Y"THE NUMBER OF FOINT BETWEEN BOUNDARY FOINTS IS" N
FRINT
FRINT "THE LEFT HAND SIDE LIMIT I8 =" Y1
FRINT
FRINT "THE RIGHT HAND SIDE LIMIT I8 =" Y2
FRINT
FRINT "THE ANGULAR FREGUENCY IS"iWO
FRINT
REM DEF FNVWIY)=(Y/2)"2
DEF FNV(Y)=(,5%#Y) “2% (1~ (QOITGH060#/ ((YZ2™IZ) * (WO™.5))))
NZ =N :
H=(Ya-1%#Y1) 7/ (N+1) sREM H IS LENGTH BETWEEN Yi AND Yi+1,
REM

MATRIX [A1 IS A TRIDIAGONAL MATRIX, THEN WE CAN USE 3 VECTORS FOR

REFRESENTING MATRIX [Al.

DIM ABO),RB80) ,2{80) : ,

FOR I=1 T0O N tREM THIS LOOF 15 USED TO FIND
Y=Y1+I%H tREM THE VALUES OF Yi AND THE
VY=FNV{Y) fREM  ENTRIES OF Aii.

A2



HEEO
S4.00
450
SFEOO
EEEO
FHE00
S50
JB7O0
B7E0
=800
S5850
B0
Q0
HO (:) Oy
HOFO
H1O0
&H15H0
HROO
H2E0
EEQ0
EESH0

HA4ODOD

LAS0
HEFH00
HIEH0
&m0
&HE50
ST 00
EHTEHO
SO0
LHEEO
CEFO0D
HPHO
FOO0
FOEO
700
7150

7400
7450
TEDOD
7EDO
T &HO0G
7EH0
A AeTH’
TS0
700
7850
TIO0
7950

AT =27 (H2) +0VY
NEXT I
B{1)=0

(N =0
FOR I=2 TO N

BOL) ==1/ (H"2)
QCI=1)=~1/ (H™2)

NEXT I

REM

BZ=E (2)

REM

FOR I=i TO N

FRINT B(I),A(I),@(1)

" REM
P REM
: REM

THE (@R PROGRAM THAT WE WROTE IS

TREM  Bi IS THE SUBDIAGONAL OF LCAI.
sREM Qi I8 THE SUPERDIAGOMAL. OF [AT.
0

FROM STATEMENT #&61350-#10450

AND THEIR SUB-FROGRAMS (GOSUR)

I8 A FPROGRAM TO DIAGONALIZE MATRIX
LAl USING QR ALGORITHM (REF:FPAGE
A25-427 OF NUMERICAL. ANALYSIS RY
BURDEN ET-AL) .

A 8LIGHT

MODIFICATION OF R ALGORITHM(REFERENCE EBOOE) ,

THIS IS5 DUE TO

NEXT 1

REM

REM

DIM C(BO0)

DIM S5(80)

DIM RGO

REM

REM

REM

IF N=3Z GOTO 10350

REM
GOSUR 11400

Gasug

FOR Is=1 TO N tREM  FROM S
ALY =Aa(I)~LMD

L1y =0

B{I)=0

FAOI) =0

G{I)=0

NEXT I

FI=MA(1) TREM O INITIA
FRO=F(2) sREM  INITIA
N tREM  REFER
FEM F
ACT=1)= (PI-2+R(I)2) .5 tREM S
CN=FI/A{I-1)

SJ) =BT /A(T~1)
B(I-1)=0(J) #RO+S (J) *A (I

Folm—1 %8 (J) #RO+C (T #A ()

IF J=N GOTO 7650 tREM
RA{J~1)=5(J) ®*K{J+1) s REM
RO=C(J) *RB{J+1) : REM
J=J+1 tREM
IF J<=N GOTO 7150 s REM
AN =T tREM
DIM L(2,2) M2, 2) ML(2,2),2(2,2),T
J=2 s REM
IF J=2 GOTO 84650 : REM
oL, 1) =R (J-2) tREM
{1 2)=R(J-2) tREM
L2y 1) =0 s REM

. A3

THE NATURE OF OUR FROBLEM.

11400 TO 11800 IS REFERRED TO STEF: 3.

TATEMENT #6600-#6900 I8 STEF: 4

LIZATION

LIZATION

TO STEF:S.

ROM STATEMENT #71350-7350 REFERRED TO
TEFI&.

REFER TO STEF:7.
#7450~-7500 REFER TO STEP:S8

STEF:9 AND STEF:10 ARE INSIDE STEF:é.
REFER TO STEF:I11.

REFER TO STEF:I12.

THE LAST ENTRY OF VECTOR A

(2,2

FROM #7750-#9600 1S STEF: 13

THE MATRIX FORM UFP TO STEF:12 IS
UFFER TRIANGULAR MATRIX WITH VECTOR
A, QR AS ITS ENTRIES. SINCE THE
MATRIX 1S REDUCED INTO DIAGONAL



8000
SO5H0
8100
8150
800
gaREo
8500
BEEO0
8400
8450
8500
HBESO
H&00
84650
BFO0
8750
8800
8850
8900
- 89E0,
QOO0
GOS0
QL0
G150
G200

BEQ
GED0
QEEBO
QA0
P40
QIO
QEREO
D&HEOD
GEHEHD
PTOO
QT EHO
800
GES0
P00
Y50
10000
1 0OO0OEO
10100

10150

10350
10400
10450
1 OBOO
LOSHO

10650

L2, @) m)
FOR T=1 TO 2
FOR k=1 TO 2
ML (T K=l (1, k)
NEXT K

NEXT 1

241, 1)y=0C4d)
202, Ly=8(I)
201, 2)=1%5(])
702, 2)=0C(0)
GOSLIE 10850
E{I-2)=TC(1, 1)
ROI-2)=T4(1,2)
M1, 1)=A(I-1)
MO, By =0{J-1)
M2, 1)=0
MO, 2 =AT)
FOR I=1 TO 2
FOR k=1 T0 2
ML (T 4 8 =M (I, k)
MEXT K '
NEXT 1

241, 1y=0(3)
T2, D=5
Z(1,2)=—1%GCJ)
22, 2)=0C I
GOSUER 108350
AlT~-1)=T{1,1)
B{J)=T (2, 1)
BI—-1r=T{1,2)
ALT)=T(2,2)
NENE S ]

IF Jo=N GOTO 7850

FOR I=1 TO WM
ALDY=/01)+LMD
NEXT I
REM
REM
FREM
REM
REM

REM CHEDE B (N)

REM
EBN1=E(N-1)
EtN=E (N

FOR I=1 TO NZ

VREM O MATRIX RY ORTHOGONAL TRANSFORMATION,
PREM O S0 BY TARING ADVANTAGE OF TAE FROFPERTY
vREM  OF ORTHOGONAL. MATRICES WHICH ARE

sREM  DISCRIBED BY STEF:9(TEXT-EROQK) ,WE

sREM  CAN BREAE THESE ORTHOGONAL MATRICES
TREM O INTO PARTITION MATRICES AND THEN,

vREM MULTIFLY THESE ORTHOGONAL MATRICES

s REM  ONE BY ONE.

s REM
: REM
: REM
: REM
 REM
: REM
t REM
: REM
s REM
:REM

: REM

tREM

THAN

IF ARS(BN) <=1E-10 THEM N=i-1
IF ABS (BN1)Y <=1E~-10

WHY DO WE USE Z BY Z MATRICES IN

THESE MULTIPLICATION 7

TO ANSWER THIS QUESTION,WE HAVE T0O

REFER TO DEFINITION OF ORTHOGONAL

MATRIX WHICH IS DEFINED IN STEF: 9,

FROM STEF:(TEXT),WE CONCLUDE THAT

THE MATRIX NEEDED FOR THE MULTIFLICATION
I8 2 BY 2 MATRICES(SINCE [QI*[I1=L[Q17,
WHERE, E&1 IS ANY KIND OF MATRIX AND [I]
IS IDENTITY MATRIX.

FROM #2650-#9750 I8 STEF: 14

FROM #2800-#10300 I8 STEF: L
THIS STEF IS NOT EXACTLY THE SAME AS
STEF:Z2 IN THE TEXT RUT IT I8 A SLIGHT

DIFFERENT FROM TEXTEROOK, THIS DUES TO THE

NATURE OF OUR FROBLEM.

loE~10

tBOTO &400
THEN GOSUBR 11400 AN =XL1I tAN-1)=XL2Z

1GOTO 6400 ELSE GOTO &400

FRINT "THE VALUE OF DIAGONAL.

MEXT 1
REM

OFEN "O",#1, "ETGENERG"
FOR I=1 TO NZ

FRINTH#1,A(D)

MATRIX IS =4"I™)" AL

sREM  THE RESULT OF QR FROGRAM IS
sREM STORED IN THE DISC WITH THE
+REM  SEQUENTIAL FILE.



LO700
1O7E0
10800
1O8E0
1 OO0
1OPTO
11000
11050
11100
11180
11200
11250
11300
11350

11400
11450

11500

11850

1 1600

11650
11700
117506
11800

MNEXT I

CLOSE#1

END

FOR I=1 TO 2 PREM  #10850-#11300 IS A SUBFROGRAM.
FOR Ji=1 TO 2 “REM OF 2 BY 2 MATRIX MULTIPLICATION
HUMss) TREM OF MATRIX ML AND MATRIX Z.

FOR k=1 TO 2
SUM=GUM+ML (T, k) %Z (K, J1)
NEXT K
TCL,J1) =8UM

CNEXT Ji

NEXT I
RETURN
REM  FROM #11400 TO #11800 IS A SUBRPROGRAM TO CALCULATE THE

EIGENVALUES OF THE LAST 2 BY 2 MATRIX OF MATRIX [Al.
50 THE EIGENVALUES WILL RBE THE ROOTS OF QUADRATIC EGN. -

AN=A (N) +A (N—1) sREM AN AND ABN IS THE COEFFICIENT OF THE
AERN=0 (N) #A (N-1) B (N) %G {N—-1) TREM  QUADRATIC EGN SUCH THAT

X 2—AN*X+AEBN=0,
RiN=AN"Z—4#ABN SREM THEORITICALLY,RN>=0,AND COMFUTER

DO AFFROXIMATION,SO WE EXFECT
RN<O,AND IT NEGLIGIBLE COMFARE TO
REM THE ROOTS.
IF RNCO THEN PRINT "THE D IS =" RN, "THE ROOT ="AN/Z
SFRINT "ROUN")=" BN), "B{("M=-1")=" R(N-1)
O IF ABRS (RN) <. 09 THEN LMD=AN/Z 1GOTO 11800

XLod= AN+ (RN™. 5) ) /2 cREM O XL1 AND X2 IE THE ROOTS
XL 2= (AN—-{(RN™.5)) /72 sREM LMD I8 THE NEW EIGENVALUE.

IF ABES (A M) ~XL1)<=ABS (A (M) ~XL2) THEM LMD=XL1 ELSE LMD=XLZ
RETURN

A5



AN eleiv]
1050
1100
1150

LEGa 7

18350
1300
1550
1400
1450
13500
1S50
1600
1650
1700
1750
1800
1850
LHO0
195H0
Relelaly

2GE0

2H0O0

2EE0
peraeie
BEE0
2TO0
BTEHD
2800
2850
2F00
2RE0
ZO00

HOEO

EZH00
T
HEOO

TS0

APPENDIX B

"HEFEIPISEBEBPIIEPDEBEPEPE PP EIIFFFPFPSFEHSHBHSIPEFITFFEBEBEFBEDIS
THIS PROGRAM T8 WRITTEN IN MICROSOFT BASIC FOR NORTH STAR
HORTZON. COMPUTER. THIS FPROGRAM RUN IN COMPILED BASIC.

THEPESEIPEFPIPSEFETHEPEBHSFHEFEHFPPFEEBIESEFIHSSSSISTFPEEPHEEEBEDE

‘ THIS FROGRAM CALCULATES AND STORES THE FIRST EIGHT EIGEN-
i} ENERGIES AND EIGEN-VECTORS OF THE RESTRICTED DSCILLATOR
! WITH DR WITHOUT DIFOLAR INTERACTION.

; ACTUALLY, FOR A GIVEN EIGEN-ENERGY, WE CaN CALCULATE THE
7 CORRESFONDING EIGEN-VECTOR. HOWEVER, THE CALCULATED EIGEN-

! ENERGIES FROM FROGRAM WHICH IS LISTEDR IN AFFENDIX A ARE NOT

? ACCURATE, AND THE EXACT EIGEN-ENERGY WILL BE SOMEWHERE IN

: THE NEIGEROURHOOD OF THE CALCULATED EIGEN-ENERGY.

! THUS, RBY SHIFTING CALCULATED EIGEN-ENERGY TO LEFT AND RIGHT,

’ ONE. CAN OETAIN THE NEARLY EXACT EIGEN-ENERGY AND ITS

! CORRESFOND EIGEN-VECTOR.

! HERE, WE USE THE SAME MATRIX [AT A5 USED IN THE FPROGRAM WHICH
) I8 LISTED IN APPENDIX A AND ALSO USE THE CALCULATED EIGEN-

! ENERGY TO GET A BETTER APFPROXIMATION OF EIGEN-ENERGY.

g NOTE: THIS FROGRAM IS INSEFERABLE FROM PROGRAM WHICH I8
) LISTED IN AFFENDIX A. THAT IS, AFTER WE GET THE

! CALCULATED EIGEN-ENERGY FROM FROGRAM (AFFENDIX A),
! WE USE THIS RESULT AS OUR INFUT IM THIS FPROGRAM.

REM

DEFDEL A, B, C,E, B, Ry Y W, D,V X, H M, S, 7

DEFINT I,J,E,N | *REM DECLARE INTEGER.

PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER"

INFUT "THE NUMEER OF FOINT IS"; *REM N IS THE NUMBER OF FOINT
BETWEEN THE BOUNDARY FOINTS

INFUT "THE VALUE OF Y1"svyi '

INFUT "THE VALUE OF Y2"ivY2

PFRINT "IF THE SYSTEM IS RESTRICTED OSCILLATOR WITHOUT DIFQOLAR"

FRINT "INTERACTION THEN THE STATEMENT #3450 SHOULD BE "

FRINT "ACTIVATED AND #3500 SHOULD BE DEACTIVATED!

FRINT "ALS0, THE DIMENSIONLESS FOTENTIAL ENERGY INDEFENDENT"

FRINT "OF FREQUENCY WO, SO WE CAN WRITE WO=S0ME VALUE"

INFUT "THE ANBULAR FREQUENCY IS"iW0 IREM ws=WO

FRINT

FRINT "THE NUMBER OF FOINT BETWEEN BOUNDARY FOINTS IS" N

FRINT

FRINT "THE LEFT HAND SIDE LIMIT IS =" Y1

FRINT

FRINT "THE RIGHT HMAND SIDE LIMIT IS =" Y3

FRINT

FRINT "THE ANGULAR FREBUENCY IS"jiWO

FRINT

FRINT

REM DEF FNV(Y)=(Y/2)"2

DEF FNV(Y)=(, 5%Y) 2% (1~ (QOTIHHOH0H#/ ( (Y2T) % (WO, 5)) ))

NZ = ' *REM  NZ WILL BE USED LATER.

H= (¥Y2—1#Y 1)/ (N+1) vREM H IS LENGTH BETWEEN Yi AND

REM

A6
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mEOO0

BTG
FE00
ZgS0
HRODO
EGEHO
00
L4050
4100
4150
400
4250
4R00
4350
4400
4450
4500
45HEH0
A4 EH00
{4 &4HF/0
4700
4TE0
400
4850
400
LG50
00
SHOEO
BL00
S5LE0

maO0

EREO
BEOO
ERE0
FA00
S50
BEOO
EEEO
HEHOO0
S EH0
700
57 EO
B0
SERSO
FH00
BP0
&HOOO
&HOEHO
&H100
& 150
b0
&EHEO
HEO0

&R0

REM MATRIX AT 16 & TRIDIAGONAL MATRIX, THEN WE CAN USE I VECTORS FO

REFRESENTING MATRIX [A1,
REM
DIM AE BEO) ,G80E80),A1(80),A2(80) ,WF{80) ,WE{80) ,EG(1O)
DIM WNBO) ,DZB80) ,DP(E0) , XZ (80 ,YZ(80) ,ZJ(10)

FOR I=1 TO N sREM  THIS LOOF IS USED TO FIND
Y=Y 1+1#H tREM THE VALUES OF Yi ANMD THE
VY =FNV (Y) TREM  ENTRIES OF Aili.

SOy =27 (H"2Y +VY

NEXT I

B(1) =0

GHN) =0
FOR I=2 TOQ N

BOI) =1/ {H™2) - TREM  Ri IS5 THE SURBDIAGONAL OF [AD.
I~ 1)=—1/{H"2) tREM @i IS THE SUFERDIAGONAL OF [AJ1.
NEXT I

REM

FOR I=1 TO NZ TREM O THIS AldI) IS NEEDED LATER. IE,
LTy =0 (1) SREM FOR CALCULATE THE WAVE FUNCTION
NEXT I sREM  AFTER THE EIGENVALUE ARE OBTAINED.
HZ ==k ‘

BI=F{2)

REM

FOR I=1 TO M

FRINT B(I),A(D) ,0(I)
NEXT I

OFEN "IV, #1, "EIGENERG" tREM  ACCESS TO THE FILE WHICH CONTAING
FOR I=1 TO N : EIGEN-ENERGY. THIS EIGEN-ENERGY
IMFUTHL, AD) . WAL CALCULATED BY THE COMFUTER
MEXT I H (GEE AFFENDIX &)

LD

GHOSUR 11850

IF IFLAG=1 GAOTO 3400

IF InD=0 THEN GOSUER 14350 ELSE GOBUR 17400

I'F IFLAG=0 THEN PRINT "NO RESULTY (S5TOF

FOR J=0 TO NZ+1

WEF (T =N CT)

NEXT J

AT =ERG 27 8STORE NEARLY EXACT EIGENVALUE IN ACD
FRINT "THE VALUE OF I IS="I

THEESERHREESRBEEHPEEIEIHEE S PSP SIS FSE PP S SEFSPPFIEEBEEDHIEETPHSEDES
THIS SECTION STORES THE NEARLY EXACUT GROUND STATE WAVE

? FUNCTION.
OFEN 0", #2, "WAVEFCNLY
FOR J=0 TOQ NI+l

FRINT #2Z.WF{3)
NEXT J
CLOSE #2

’$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$§$$$$$$$$$$$$$

FOR I=2 T0 NZ
ITSI=1/2

A7



HA00
5430 1 =

HG00 IF IFLAG=1 GOT 6630

A550 IF IND=0 THEN GOSUE 14350 ELSE GOSUR 17400

b&HOGO ITF IFLAG=0 THEN PRINT "NG RESULT? 18TOF

HHI0 FOR J=0 TO NZ+1

HT00 WE I =WN ()

H7TO NEXT J

6800 A1) =ERG vTOSTORE EIGEN-EMERGY IN VECTOR A1)
HE8E0 FPRINT "THE VALLUE OF I I8="]

SHF00 IF I=2 THEN GOSUR 21000
650 IF I=3 THEN GHOSUBR 21300
TOOO IF I=4 THEN GOSUR 21600
7050 IF I=3 THEN GOSUR 21900
7i00 IF I=& THEN GOSUR 22200
7150 IF I=7 THEN GOSUR 22450
7200 IF I=8 THEN GOSUR 22730
FREQ IF I=8 6070 7IE0

TEQO NEXT

7EE0 GOSUR 24EZ00

7400 END

FAT et 2309636 36 3 3 300 B 26 T 36 M 20 IE I HE I NI 3 N 36 DI I 36 B KNI I WK RN

TEHOO 2 THIS SECTION CALCULATE THE UN-NORMALIZED EIGEN-VECTOR

FEHO T BY ASSIGNING THE FIRST ENTRY OF EIGEN-VECTOR WN{1)=1 OR —-1.
TE0O0 7 NOTE: WN(1)=1 WHEN THE WAVE FUNCTION HAS EVEN FARITY AND
FTEEO T WM (L)y=~1 WHEN THE WAVE FUNCTIONM HAS ODD FARITY.

TFOOD 7

77E0 REM

7RO0 FOR k=1 TO NZ

7850 AR () =A1 (K) ~ERG

7900 NEXT K

7950 ITS1=1/2 :I1TS2=2%IT61
8OO0 IF ITS2=1 THEN Si=-1 :
OS50 Gl=1

K2=0201) /BRI 1GOTO 8130

Blo0 S3=-1%(A21) /BRI
150 WNOD) =81 WN(2)=52
' [
GERm—1w (BZ%G 1 +A2 K #82) /BZ

WN (1) =03

am G

i

8400 -G
B450 a1
BEO0 IF Kd=(NZ-1) GOTO 8250

GES50 WN{OY)=0 TWN{MZI+1)=0
B&HOO0 RETURN

BEESO T

EITOCN T W20 B0 P 3 0 6 O 36 I I I I T I I 3636 I I B I I B2 KN W N NI R X
8750 -’

HH00 "$64EEFEEESSSHESSSSSPBFISPEEFFTEEEHHSFIEBFFEBSFEERPSHSPHSSLFSPBHES
8850 - THIS SECTION CALCULATE THE INTEGRAL USING SIMPSON'S RULE.
8200 °

S50 k=1

FOO0O AR=DZ (D) +DZ (NZ+1) +458DZ (F)

GOS0 NN=(NZ-+1) /2

FI00 FOR k=2 TO NN

A8



PLHO K=k
9200 ARH=4%DZ (KZ~1) +2#DZ (KZ~2)

FRED AR=AR+ARH

FIO0 NEXT K

PIHO ARE= (HZ/7) *AR

9400 RETURN

450 7

FEHOID T HEEIEESEESPSFIIB P E SIS SR IEISIFIHEHSFPEF TGP SEESHHD
FEE0 REM

(?{‘:)f_)l,.’ L T T S T R N N A O O A O O U U T U R O U A A I N R U U N T TN U N N TN N A R NN NN N NN R N N S N N NS N N A N I R A

FLEH0 THIS SECTION CALCULATE THE FROBABILITY DENSITY.
P7O0 REM
97HO FOR J=0 TO NZ+i
FHOO DZ (J) =WN (J) *WN (J)
FEE0 NEXT J
9900 RETURN
FYEO
LOOOO ® 1L L e
10050
DO L0 7 B R R R R IR R b b B b B BB SR A S S S S R
LO150 THIS SECTION CALCULATE THE NORMALIZED WAVE FUNCTION.
JOEO0 7?7
10250 ARA=ARE
D CN=ARA™ -, 5 tREM CN IS NORMALIZED CONSTANT
FOR J=0 T NZ+i

1U4UH W (T =CN*RWN CT)

10450 YIGT) =WN (I

TOHO0 NEXT J

10550 RETURN

10600 7

10650 P e e R R R R R SRR RS R
10700 7

1750 ouwouwowomouon S R - A R R -
10800 ~aatoinssragtroncssoaanessridnstannnsnanssantanaesesvveas
Gy F THIS SECTION DETERMINE WHEATHER THE NEARLY EXACT EIGEN-
’ 7 EMERGY I8 ON THE LEFT/RIGHT HAND SIDE OF THE CALCULATED
1050 ° ETGEN-ENERGY WHICH IS COMPUTED BY FREVIOUS PROGRAM
11000 ° CAFFENDIX M) . '
L1LOEG ! HERE, WE ASSUME THAT THE WAVE FLMITION HAS SYMMETRY
lilﬁﬁ : AROUT THE ORIGIN. FOR EVEN FUNCTION, CF I8 THE DIFFERENT
? OF THE WAVE FUNCTION WHICH ARE EVALUATED AT FOINTS
) vi AND yN. FOR ODD FUNCTION, CFP IS THE WAVE FUNCTION WHICH
! I8 EVALUATED AT THE ORIGIN.
: IFLAG AND IND ARE INDICATORS.
LIWIE I WHEN IFLAG=1 INDICATES THAT THE MEARLY EXAUT EIGEN-ENMERGY
1I40n ¥ AND ITE WAVE FUNCTION HAVE BEENM OBTAINED.
11450 * WHEN IND=0 INDICATES THE EXALT EIGEN-ENERGY LIES ON THE
11500 ° LEFT HAND SIDE OF THE CALCULATED EIGEN-ENERGY (AFFENDIX A).
11850 ° WHEN TND=1 INDICATES THE EXACT EIGENVALUE LIES ON THE RIGHT
11400 7 HAND SIDE OF THE CALCULATEDR EIGEN-ENERGY (AFFENDIX A).

11650 °

11700 7 kR e A R R SRS RS R
11750 ° THIS SUBSECTION FOR THE WAVE FUNCTION HAS EVEN FARITY.
11800 °

11850 IFLAG=O

A9



119200
11950
132000
12050
12100
12150
12200

122350
12400
12450
12500
12550
12600
12650
12700
12750
12800
12850
12900
L2950
1 :3 (:) \':) i:!
1 B0
13100
LELS0
13200

13550
L5600
13650

LETO0
1PE78E0
173800
138350
LEFO0
LAE9E0
14000
14050
14100
14150
14200
14250
14300
147550
14400
14450
14500
14550
14600

ERG=A 1)

GOSUR 7800 1GOSUB 2730 1 GOSUR 8950 1GOSUR 10250
CP=ARS (WN{1) ~WN(N))

IF CP<=1E-08 THEN IFLAG=1 :GOTD 12400

CR1=CF

ERG=ERGH .. QOOOO8

GOBUR 7800 1GEOSUR 9750 1GOSUER 8930 GOSUER 10250
CF=ARS (WN (1) ~WMINDY )

IF CPo=1E--08 THEN IFLAG=1 16G60OTO 132400

IF CRCF1I THEN IND=0O ELSE IND=1

RETURN

o

S R e R B B LR S L SR B L B R e R e R R R

by

n

.........

THIG SURSECTION FOR THE WAVE FUNCTION HAS ODD PARITY.

IFL.AG=O
ERG=MACT)

GOSUER 7800 1GOSUR 9750 @ GOSUR 8950 :G60SUR 10250

Ni=(N+1) /2
CF=WN (N1

IF ABS(CF) <=1E-08 THEN IFLAG=1 :G0OTO 13500

CE =R

ERG=ERG+. Q00005

GOSUR 7800 @GOSUE 9750 :GOSUER 8950 :G0SUER 10250
CF=WN (N1)

TF (CRCO) XOR (CPL<0) THEN IND=1 :G0TO 13500

IF CR<O BOTO 13450

IF CF <CFL THEN IND=1 ELSE IND=0

BOTE 13500 :

IF ABS(CP) < ARS(CF1) THEN IND=1 ELSE IND=O

RE TURN

i A R T T
7 MOST OF THE CALCULATION OF FINDING THE NEARLY EXACT EIGEN-

: VALUE AND ITS EIGEN-VECTOR ARE IN THIS SECTION.

! HERE, WE ASSUME THAT FOR A RANGE OF ENERGIES WHICH ARE IN

: THE NEGHBOURHOOD OF CALCULATED EIGENVALUE, THE CC*S OR CF'S
? VALUES FORM A CONMCAVE CURVE.

Kl
R

»

a

e e L At B T T T e e e O e e B e e  ala ke e ot sh B T P P I

FOR  ITMD=0O

IFLAG=O
INC=0

T

RER A W

ITE2=2%ITH1

N1

I [IZ

=(N+1) /2
T Y2 3.6 BOTO 14850

Al0



L4&T0
14700
14750
14800
148350
14900
14950
1TEHGOO
15050
LE100
TELE0

1E200
15250

15450
SO0
LSS50
154600
15650
15700
15750
15800
1 =850
1EO00
1 B )

1 HOO0

16050
1&100
16150
1&200
1 &250
1EBO0
1AZE0
1 &40
L&H4A5E0
16500
1&BS0
16600

L&A

i ABOC
1 &850
1600
1 &S50
17000
17050
17100
L7150
L7200

173230

TTe=. 01
IF I=3 THEN TT=,0001
IF Tle=4 THEN TT=.0Q000001 a7

X

DE / INCREMENT .
EIGEN-ENERGY

T
SINCE

IS8 A
THE

GOTO 15250 7 WHIOH CALCULATED BY

IF Y2 SO6E0TO 15100 2T PREVIOUS FROGRAM HAD

TT=, 001 ST BETTER ACCURALY A8 1

IF I=3 THEN TT=,Q0001 H INCREABES. THEREFORE, TT

IF Ix=4 THEN TT=.,Q00001 =7 BECOMES SMALLER AS T INCREASES.

GOTO 15250

T, OOO0L

IF I=3 THEM TT=.000001
IF Iz=4 THEN TT=., 0000001
EL=A(I)~TT '

EH=A{I)
ERG=EL

IF INCH1000
HE= (EH-EL) /10
FOR J8=0 TO 10
ERG=ERG+IB*HE

EG(JI8) =ERG

GOSUR 7800 GOSUR 9750
IF I=ITS2 THEN GOSUR 23550
CP=AKHS (WN (1) —WN{N))

IF OPs=1E~08 THEN IFLAG=1
ZJ{J8) =0 .

FRINT "CP'JI8")="ZJ3(J8)
GOTO 14200 '
CO=WN(N1) ,
IF ARS(CEY+ 1E-08 THEN IFLAG=1 160TO 17000
ZJ (I8 =ARS (00)
FRINT "CC("Jg”
NEXT J8
CHMIN=ZJ ()
Jl=0

FOR k=1 TQ
IF ZJ kD
NEXT I
FRINT
TN
[ARE g R |

TR ]

IF Ji=0 THEN EH=EL EL=EL-TT INC=INC+1 :60T0 15350

EL=EG (k) '

EH=EG (R

IF (EH~EL)<1E—-1% THEN FRINT “"THE ASSUMFTION IS WRONG" :STOF
ERG=EL '

GOTO 15450

FETURN

THEN FRINT "EXIT THE LIMITY JSTOF

s EOSUE 8950 L EOSUR
S BOTO 16000

LORE0

2 B0TA 17000

="Z7J (I8

10

CMIN THEN CGMIN=ZJ(E) 5J1=k

TING IS5="1ING

e e S T T e o e S I e S  a ala T S T T S O o S o o oL o

™ TS (0 (R T 88 B B R B (3 R3S (28R 3 @R (B AR5 @ R @ aE eee e e @aEsEeEe

? FOR INDs=1

-

All



17400
17450
L7500
17550
17600
17650

177007

17750
17800
17850
175900
L7980
L8OO0
1 8OO
L8100
16150
18200
183250

1EE00

18350
18400
18450
1EEH00
18550
18600
18650
18700
18750
18800
18850
1HEIGO
18950
19000
19050
19100

.....

19250
19300
19350
19400
19450
19500
19550
1HE00
194650
19700
19750
19800
19850
19900
19950
200 (818}
ROOS0

20100

TNC =0
IFLAG=0

ITS 1=1/2

ITS2=2%T TS

Nz (N+1) /2

IF Y2 o 3.4 GOTO 17900

TTe=, 01

IF T3 THEN TTe., 0001

IF Ix=4 THEN TT=.,000001

GOTO 18300 :

IF Y2 » % GOTO 18150

TTe=a OOL

IF I=3 THEN TT=.00001

TF Ix=4 THEN TTs=, 000001

GOTO 18300

T, OO0

IF I=3 THEN TT=.000001

IF T em=d THEN TTs, QOOQOOQ0]

EL=A(I)

EH=08(I)+TT

ERG=EL

IF ING » 1000 THEN PRINT "EXIT THE LIMIT " :STOP
HE= (EH~EL) /10

FOR J7=0 TO 10

ERG=ERG+J 7 *HE

EG(J7)=ERE .
GOSWUR 7800 :GOSUR 9750 @ GOSUR 8950 @ G0SUR 10250
IF I=IT82 THEN GOSUB 23550 :GOTO 19050
CF=ABS (WN (1) —~WN (NY Y

IF CPo=1E-08 THEN IFLAG=1 :GOTO 20050

ZJCI7)y =0 _

FRINT "CR("J7")="7J(J7)

GOTO 19250

Co=WN (N1 , ,

IF ABRSCC) < 1E-08 THEN IFLAG=1 :60TO 20050
ZJ(I7) =AES (L)

FRINT "COCNI7")="Z23(J7)

NEXT J7

CMIN=ZJ{0)

FOR k=1 TO 10

TF ZJICE) < CMIN THEN CMIN=Z2J(E) :Jdi=k

NEXT K

FRINT "INC IS="ING

ATy |

BiEe=g 141

IF Ji=10 THEN EL=EH {EH=EH+TT INC=INC+1 :GOTO 18400

L=EG (A
EH=EG (KE) _

IF (EM-EL)<1E-15 THEN FRINT "NEED SMALLER TOLERANCE":
ERG=EL i

GOTEO 18500

RETURN

Al2
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DOATO T

ﬂUuUU : THIS SECTION STORES THE NEARLY EXACT WAVE FUNCTIONS

20EE0 "

BOHOO THE 1°8T EXCITED STATE EIGENVECTOR STORED IN WAVEFCNZ FILE™S
EOLHEH0 T THE 2*ND EXCITED STATE EIGENVECTOR STORED IN WAVEFCNI FILE'S
2OTO0 T THE Z°"TH EXCITED STATE EIGENVECTOR STORED IN WAVEFCNG FILE™S
FOTHO C THE 4°TH EXCITED STATE EIGENVECTOR STORED IN WAVEFCNS FILE®S
POKOG * THE 5°TH EXCITED STATE EIGENVECTOR STORED IN WAVEFCNS FILE®S
20850 7 THE &°TH EXCITED STATE EIGENVECTOR STORED IN WAVEFCN7 FILE®™S
DOQ00 ° THE 7°TH EXCITED STATE EIGENVECTOR STORED IN WAVEFCNS FILE®S
BO9500 7

21000 OFEN "0V, #2, "WAVEFCNZ2Y

PLOS0 FOR E=0 TO NZ+1

21100 PRINT #35, WG (K)

2110 NEXT K

21200 CLOSE #3
21250 RETURN

21300 OFEN "0, #4, "TWAVEFONED

RIBASO FOR k=0 TO NZ+i

21400 PR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>