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Abstract

This thesis presents the theories and numerical simulations in regard to the behaviour of a
single-axle railway wheelset commonly used in cargo rail cars. Specifically, creep forces,

dynamic models, real wheel-rail profiles, and multiple point contact will be investigated.

One of the most important aspects of wheel-rail interactions is the creep force. Creep
force results from the relative motion between the wheel and rail. The extent of such
relative motion is measured by creepage, which is defined as the difference between
ideal, or pure rolling, where the velocities of the wheel and rail relative to one another are
equal, and the deviation of such. Creep force is an important design factor in relation to

rail transport safety and efficiency as well as wheel and rail longevity.

Calculation of the dynamic creep forces will be completed with a nine-step process and
benchmarked against Polach and Kalker. The Polach benchmarking tests three sets of
creepage combinations proposed by Polach. In this test, a total of fifteen cases are tested.
The relative accuracy and computational efficiency amongst the theories is determined.
The creep forces are then plotted with respect to specific track cases and compared with

multiple theories including Kalker’s FASTSIM results.

Three dynamic models will then be presented, and compared. These models will be
tested under specific track conditions from the Manchester Benchmarks’ Track Case 2
(TC2). These models will be compared in the response, the time to calculate and the

flexibility of the model to withstand parameter deviations.



Real wheel and rail profiles will then be introduced to replace the coned wheels and
knife-edge rail assumption in one final model. This model makes neither small angle
assumptions nor normal force assumptions. Contact conditions will include one-point
contact, at either the tread or the flange, as well as two-point tread-flange contact. This
model will be tested again with TC2. Hunting, a side-to-side movement at specific

velocities, will be investigated.

Mechanical passive control will then be examined. The Modified-Garg model and Model
I will both make use of two springs; a yaw spring, and a lateral spring. The yaw spring
will be tested over a wide range of values and the distance for the system to settle to 5%

of the original displacement will be investigated.

The thesis concludes with some recommendations for future work.
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Chapter 1 — Intreduction

1.1 Introduction

The history of rail going vehicles dates back to 18" century Europe with wooden wagon-
ways with horse-drawn carts. These evolved into steel railed wagon-ways, then tram-
ways, and on to steam power, and the steam locomotive. The growth of the rail and

transportation networks facilitated the industrial revolution.

Rail transport today is a very important part of the transportation network. All over the
world it is used to move both goods, specifically heavy goods, as well as people across

the continents.

Railway dynamics have been of interest for practical application for many decades.
Dynamic stability was being researched as early as the 1960°s [1.1, 1.2], and research

into practical wheel-rail contact blossomed in the 1970’s [1.3].
At the core of railway dynamics is the wheel-rail contact. Many theories attempt to

define and calculate this contact point or area. This thesis investigates this contact area

and its effect.
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1.2 Objective

The author will propose a wheelset dynamic model consisting of a rigid axle with two
profiled wheels operating on canted rails. The model will be able to address track
changes and disturbances, side-to-side movement or hunting, and natural damping in
order to increase safety and efficiency. The model will be flexible in order to provide an

excellent base for tests and experiments.

1.3 Organization

This thesis contains 6 chapters.

Chapter 1 provides the introduction. Chapter 2 presents a literature review into railway
dynamics. Chapter 3 presents several wheel-rail interaction theories that determine
creepages and the forces that they provide. These creep theories include; Johnson and

Vemeulen’s nonlinear, Kalker’s linear, Heuristic nonlinear, and Polach nonlinear.

Chapter 4 is concerned with the benchmarking of the creep forces. Two static
benchmarking cases will be presented. The first, the Polach benchmarking, is performed
to ensure a correct interpretation of the Polach theory. The second, the Five Theories
Benchmarking, compares the Johnson and Vermeulen, Kalker linear, FASTIM, Polach
and Heuristic theories against one another in both output and computation time. The

second part of the chapter is devoted to dynamic benchmarking. Three models will be
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presented and tested with specific parameters and a predetermined track case. The

responses of these three models will be compared.

Chapter 5 derives a final model. This Modified-Garg model incorporates the use of
profiled wheels and rails, makes neither small angle assumptions nor normal force
assumptions. It uses track-dependant creep forces, calculates normal forces, and positions
of contact points at ever step. Contact conditions will include one-point on the tread or on
the flange, and two-point (flange and tread). This model will be compared to Model I
from Chapter 4, in both a track disturbance test as well as a test to find a critical speed.

Lastly, this model will be used for an investigation into mechanical passive control.

Chapter 6 provides a conclusion and recommendations for future work.

13



Chapter 2 — Literature Review

2.1 Railway Dynamics

Railway vehicles were first used in the 18™ century, but it was not until the 20® century

that engineers began to understand their dynamics [2.1].

In 2001, Shabana and Sany published a comprehensive survey on rail vehicle simulations
[2.2]. Reference [2.2] devoted an entire section to the issue of wheel-rail contact, also
known as wheel-rail interaction. This clearly showed the importance of such an
interaction. The accurate calculation of the interaction forces is involved with, but not
limited to, a few aspects such as proper definition of creepages, rigid versus elastic
contact, and contact theories. A brief review of these aspects will be given in the next
section. It is worth mentioning that the wheel-rail interaction [2.2] “has a significant
effect on the vehicle dynamics and stability.” Here, the stability included hunting, twist
and roll, pitch and bounce, and so on. This thesis focuses on lateral dynamics and lateral

instability, or hunting. A review on hunting will be given in Section 2.3.

2.2 Wheel-Rail Interaction

In the case of railway dynamics, the wheel and rail are considered two rigid bodies that
are in contact at a point. If either of these bodies rotate or translate relative to the other,
the contact point will also shift. The resulting velocities of each body at the contact point

may not be equal.

14



When the velocities are equal, the bodies are said to be undergoing ‘pure rolling’. When
the velocities are not equal there is said to be creepage. Creepage is a term defining the
deviation of the actual rolling condition between two rigid bodies from pure rolling.
Creepage can be defined in both the lateral and longitudinal directions as well as about

the common normal.

The relationship between creepage and creep forces was first offered by Carter in 1926.
Carter proposed an exact closed-form solution for the relationship between longitudinal
and tangential force [2.3]. Carter’s analysis was based on a cylinder rolling on a plane,
which only considers force in the rolling direction. This alone is not sufficient for the

calculation of railway dynamics [2.4].

In 1964, Johnson and Vermeulen extended Carter’s work of arbitrary smooth half-spaces
to pure creepage without spin. Johnson and Vermeulen used Hertz theory to calculate
shape and size of the wheel-rail contact area. They included an elliptical contact area as
well as stated that the ratio of the semi-axes of the ellipse is a function of the curvature of

the wheel and the railhead [2.3].

Kalker developed his linear theory [2.5] suggesting that for very small creepages, the area

of slip is very small and its effect can be neglected. Therefore the adhesion area is

assumed to be equal to the contact area. As a result a linear relation is used between the

15



creepages and the creep forces and moment. Kalker proceeded to write his exact theory

[2.6] which was not limited to very small creepages.

In 1979, Kalker wrote a program called DUVOROL. DUVOROL calculated the contact
forces between two rolling bodies with identical elastic constants that have contact
according to the Hertz theory. DUVOROL was used by British Rail to construct a book

of tables in support of vehicle simulation [2.4].

Kalker continued to write CONTACT (1982, [2.7]), a program that allowed for the
calculation of creep forces using Kalker’s exact theory. Kalker, comparing with Johnson

and Vermeulen’s experimental data, found an error of less then five to ten percent [2.8,

2.9].

Both DUVOROL and CONTACT are based on Kalker’s exact theory, and therefore
require considerable computation time. They are not well-suited to real-time calculations.
Kalker then introduced his simplified theory in 1973 [2.10] which he used to write

FASTSIM [2.11]. FASTSIM was found to be 400 times faster then CONTACT [2.2].

Shen et. al. improved the Johnson and Vermeulen theory by incorporating Kalker’s exact
linear theory’s calculation of spin. This model became known as the Heuristic model or

Shen-Hedrick-Elkins theory [2.9]

16



Lastly, Polach’s model [2.12] is claimed to performed better under high creepage than
Kalker, although it is based on his work with simplification of the distribution of normal
and tangential stresses in the wheel-rail contact patch. This theory can calculate the creep
forces efficiently and effectively with reduced computational effort [2.6]. Polach also
extended his creep force model for large creep applications by introducing reduction

factors for the Kalker coefficients to differentiate the areas of adhesion and slip [2.4].

More recent research in regard to wheel-rail interactions considers wheel and rail elastic
and dissipating energy [2.13 — 2.15]. For example, the Hertz contact force model
proposed in [2.14-2.15] accounts for indentation (penetration) and energy dissipation

(hysteresis damping).

2.3 Hunting

Hunting refers to the self-excited lateral-yaw oscillation of the wheelset, see Figure 2.1
[2.1]. It 1s self-excited, because it takes place when the vehicle speed reaches and
surpasses a certain speed, known as the critical speed. Once the oscillation is self-excited,
the wheelset sways from side to side. This sway causes the wheelset to rotate about the

vertical axis as depicted in Figure 2.1.
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Figure 2.1 — Hunting

Hunting phenomenon is believed to be first observed as early as 1821 [2.1], although it
was not well understood until a number of decades later. A brief review in [2.16]
suggests that advanced study of the hunting problem started in the 1960°s [2.17-2.18]. By
the 1990°s hunting was examined in the light of bifurcation of nonlinear systems [2.19-

2.21].

The practical importance of hunting lies in the fact [2.16] that it can cause wear to the

wheels and rails. It can cause bogie hunting, which can lead to rail car body hunting. The

large lateral force occurring during hunting can lead to derailment.

18



Chapter 3 - Determination of Creep Forces

3.1 Introduction to Creep

When two rigid bodies move relative to one another as in the wheel-rail interaction the
contact point will continually shift from the original position. The resulting velocities of
the two bodies at the contact point may or may not equal. This interaction includes two
forces; the normal force and the creep force. The creep force is the difference between
pure rolling, where these two velocities are equal, and the actual condition. The creep
force is also known as the dry frictional force while creepage is the relative motion.
Creepage in the wheel-rail interaction is defined laterally, longitudinally and about the
common normal to the contact point, or the spin creepage. Note that creep forces can be

both positive and negative.

3.2 Overview of Various Creep Theories

There are a number of theories to calculate creepage and creep. In this thesis, five

theories will be considered; Johnson and Vermeulen’s nonlinear, Kalker’s linear and

nonlinear, Heuristic nonlinear and Polach nonlinear.

Several preliminary calculations must be completed prior to the calculation of creep using

the above theories.
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The first part of the preliminary calculations involves factors K;, K, K3, and K. Factors

K, and K both depend on the material properties of the wheel and rail [3.1].

1-02

K=—r 3.1
1-0?

K, = ZE (3.2)

where E is the modulus of elasticity, and v is the Poisson’s ratio. The subscripts w and

mean the wheel and rail respectively. Factors K3 and K, [3.1] depend on the geometrical

properties of the wheel and rail.

1{ 1 1 1 1
Ki=—| —+—+—+— 33
2Rl R, R’ R, (3.3)

11 1Y (1 1Y 1 1)1 1 :
Ko=—|| —+— | +| —+ +2| ——— —— |cos 2y (3.4)
2\R* Ry R R R RN\R R :

- . e - . -

- -
- -
T

Y e o o e o o S s o

Ry

-

Figure 3.1 — Principal Radii of Wheel and Rail [3.1]
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For the case of conical wheels (see Figure 3.1) R" is the wheel radius, R;” = co for the

radius of wheel cone, R/ = oo for the longitudinal radius of the track and R’ is the rail

profile radius. Angle i describes the yaw angle of the wheelset (which is the rotation

about the vertical axis).

Once the K; (i=1,...,4) factors are determined, Hertz coefficients m and » will be

interpolated for in computer calculation as follows [3.1]:

z. B,
mzAmtan(9—5)+—55;+Dm (35)
1 c .
n= +B,0 +D,sin0
A tan(6 - %) +1 (3.6)
where 0 is:
- 1| Ky
@ =cos (Z 3.7

and coefficients 4y, By, Ci, and Dy (k= m, n) are given in Table 3.1 [3.1]. The values in
Table 3.1 are carried to twelve significant digits due to the consideration that they greatly
affect the preliminary calculations.

Table 3.1 — Values of 4, By, Ci, and Dy

An -1.086419052477 An -0.773444080706
Bn -0.106496432832 B, 0.256695354565
Cn 1.350000000000 Ca 0.200000000000
Dm 1.057885958251 Dn -0.280958376499
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-The semi-axes of the contact ellipse are then determined by:

1
3
azm{BﬂN(Kl +K2)}

4K, (3.8)

1

| 37zN(K, +K,) P
b_n[ 4&3 2 } (3.9)

with N being the normal force acting on the contact ellipse.

The second part of the preliminary calculations evaluates creepages, defined as [3.1]:

7 (3.10)

= (3.11)

(o)

o= (3.12)

where i’;’ is the velocity vector of the wheel at the contact point with respect to the global

coordinate system, ¥ is the forward speed and ¢/, #,, and #" are the base unit vectors

(Figure 3.2), " is the angular velocity vector of the wheel with respect to the global
coordinate system (@” = A"@", with @" defined by (3.15) and 4" by (3.17), see

discussions below). The velocity vector i’;’ is determined by,

r, =R"+A"(@" xU) 3.13)
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Figure 3.2 — Contact Frame [3.1]

where R" is the global position vector of the origin of the wheelset coordinate system:

R/
R"=|R"

(3.14)
RY

The @" in (3.13) is the angular velocity vector of the wheel with respect to the wheelset

coordinate system:

S
Il
E

(3.15)
@;
and E:: is the local position vector of the wheel contact point with respect to the
wheelset coordinate system:
0
Up=|%g,/2
P~ *E&a (3.16)
_ro
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where 7, is the wheel rolling radius and g, is the track gauge. The upper negative signs

are used with the right wheel, while the lower positive signs are used with the left wheel.

The 4”matrix in (3.13) defines the orientation of the wheelset with respect to the global

coordinate system. The rotations are as follows: " is a rotation about the Z" axis or the

yaw, ¢"”is a rotation about the X" axis or the roll and 8" is a rotation about the ¥* axis or

the pitch.

cosy” cos§” —siny " sing”sind”  —siny” cosg” cosysind” +siny”sing” cos§”
A" =] siny” cos@” +cosy”sing”sin@”  cosy” cosg” siny*sin@” —cosy” sing” cos §”

—cosg” sing" sing” cos " c0s 0" (3.17)
The base unit vectors in (3.10) — (3.12) are:
1 0 0
[tlr 4 nr] =A4"|0 cosd, £sind, G18)

0 Fsino, cosd,
where J, is the contact angle between the lateral tangent and the wheelset (see Figure

3.3). Again, where there are = or F signs, the upper sign is to be used for the right

wheel, while the lower is to be used with the left.

Figure 3.3 — Wheelset Frame [3.1]
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Once the creepages ¢, and & , are determined, they are then used to find normalized

creepages ¢ and 77, and the normalized resultant creepagez [3.1].

= rabG gi
uN ¢ (3.19)

B ﬂabGé
UN y, (3.20)

r=v¢" 0’ (3.21)
where G is the combined modulus of elasticity, u is the coefficient of friction, and N is

the normal force. The parameters ¢ and y, are,

¢ = @[De -v(D,-C,)]

b a (3.222)
=|—||D,-vC
l//l (a][ e e]
or,
¢ =B,-v(D,-C,) 2
2 fora<h, e=|1-| 2
B e T

In the above equation v is the Poisson’s ratio, and B,, C,, and D,, are in terms of

elliptical integrals of argument e.

B, =K(e) +£(_e)_—2_1<(Q (3.23)
K(e) - E(e)
C= 2 (3.24)

e
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1
5 2| K@+EE  KOFE@
“3 e! e’ (3.25)

with K(e) being the complete elliptical integral of the first kind, and F(e) the complete

elliptical integral of the second kind.

3.3 Johnson and Vermeulen’s Nonlinear Theory

A brief summary of early work on contact and creep forces is first given. In 1882, the
Hertz contact theory was proposed. In this theory, the area of contact was assumed
elliptical. The theory accounts for the shape of the surfaces in the region of the contact

area.

Carter in 1926 introduced the first two-dimensional creep theory. The theory recognized
that creepage is due to a combination of friction and elastic deformation. In 1958,
Johnson extended Carter’s work to three-dimensional space with two spheres neglecting
spin. Six years later, Johnson and Vermeulen further extended the method to smooth half-
spaces without spin. “In this theory, the contact surface between the two rolling bodies
transmitting a tangential force is asymmetrically divided into two regions: the slip region
and the stick or no-slip region. The adhesion area was assumed to be elliptical. The area
of adhesion is assumed to touch the leading edge of the contact ellipse” [3.1], see Figure

3.4.
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Rolling direction

L b >l Adhesion area

Figure 3.4 — Contact Ellipse, Adhesion and Slip Areas [3.1]

The vector creep force is,

2
T . .
. uN {1—(1——3—) }(§l+77‘]), 7| <3
B T (3.26)
(Ci+7nj), |7|>3
where £, 77 and 7 have been defined in (3.19) — ( 3.21). The unit vectors iand j

represent the directions of the longitudinal and lateral creep.

Although the Johnson and Vermeulen theory does not calculate for spin, it adopts the
saturation law. It is therefore appropriate for cases of large longitudinal or lateral
creepage without spin. The application of this theory is somewhat limited due to the
longer computation time required by the elliptical integrals, and due to the exclusion of

spin effect.
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3.4 Kalker’s Theories

Kalker suggested that for very small creepages, the area of slip is very small and its effect
can be neglected. Therefore, the adhesion area can be assumed to be equal to the contact

area. As a result, the linear relation between creepages and creep forces including the

moment is,
F, iy 0 0 -
Fy =-Gab| 0 Cy ‘/213023 gy (3.27
M 0 —\/215023 abc,, ¢

where G is the combined modulus of rigidity, and c; are the creepage and spin

coefficients (also known as Kalker’s linear coefficients) and depend only on Poisson’s
ratio and the ratio of the semi-axes of the contact ellipse (a and b). The coefficients are
given in Table 3.2. These coefficients were calculated by Kalker, assuming small slip and
a contact area that was not necessarily elliptical. With regard to the validity of the
coefficients given in Table 3.2, Kalker conducted an extensive calculation. It was

determined that these coefficients had an error of less than five percent [3.1].

In addition to the linear theory, Kalker made significant contributions to the field of
wheel-rail contact. For example, based on his three-dimensional rolling contact theory, he
authored the now well known computer program CONTACT [3.2]. Since CONTACT did
not compute quickly enough to meet the demand of railway dynamic simulations, a series
of tables (known as USETAB) were pre-calculated and made available for interpolation

in railway vehicle dynamic simulation [3.3]. Kalker continued to develop a simplified
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theory in which the tangential traction-displacement relation takes a simple linear form
[3.4]. By 1982, Kalker authored another well known computer program called FASTSIM
based on his simplified theory [3.5]. Kalker’s linear theory and the FASTSIM program
are widely used in railroad vehicle dynamics, but the linear theory is limited to cases of
small creepages [3.1]. His exact theory (3D and nonlinear) in the form of lookup tables 1s
also used in some railway system dynamic simulation packages such as DYNARAIL (by
Center for Automated Mechanics, U.S. DOT), NUCARS (by Transportation Technology
Center Inc, a subsidiary of the Association of American Railroads), and VAMPIRE (by

DeltaRail Group, Ltd., U.K.)

Table 3.2 — Coefficients Used in Kalker Theory

Kalker’s Creepage and Spin Coefficients

€ € €= Cn o

I3 v=0 025 05 v=0 025 05 v=0 025 05 v=0 027 05

{etfhs}
1 231 33F 4B A5E 252 253 03M 0473 073 642 B8 11T
G2 259 337 481 259 263 266 0483 0003 0K09 a6 437 Sk
@3 268 144 4R 268 TR 2B 0607 O7IS 0889 249 Zun AN
04 278 353 482 TR 2R 20% 0T 0B 9977 202 232 AM
5 288 362 433 21EE 01 114 OK27 0929 10T LY 193 A3
06 298 672 490 298 34 331 0930 103 108 156 16 1dn
07 300 AE1 497 309 328 A48 103 L4 1Y 143 180 Lo

08 M1 39 505 1Y 341 365 LI30 125 140 L3 13 a2
0% 32 4200 512 ORI O3S 33X 123 136 15 127 12 LW

(MY
1.0 34 412 52 EX TR S | S DX .47 1.63 |13 1.19 kit
e 350 422 sa4 151 IR A6 144 1.57 1.77 1.16 1.1} L.O&
08 365 4306 542 365 399 4% ISR 1.75 1.94 1,10 1.04 0954
o7 A2 451 558 IR 411 46T L0 195 218 105 09865 0ERS2
06 406 478 S8 406 350 S04 208 223 S0 Lar 089 0.751
s 437 S0 60 437 490 556 235 262 296 Q4958 0819 0650
04 484 557 BS57T  4RL 5348 631 28K AM 3N 0912 047 0549
0.3 5587 &M T3 S5 64D TS5 1M 432 SOV OB&E 0674 0446
02 696 T RAB2 696 K4 279 S 663 780 ORIR 0601 03I
LR 10,7 112 129 107 128 160 122 ) 14.6 180 0795 0526 0228

Newe: g = 00y = #HUL - Ve 8 8 0y = -0y = x,f; {L+ WD3A +1Ind - A3 - v A=
Ind16dp*y, and ¢, = A¥1BE ~ Vg

Sanrce: Kalker, 31, Three-Dimensional Elastic Budies in Retling Conloct, Kluwer, Dordrecin, Nether-
lands, 1990, With pesmission.
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While commercial packages typically interpolate the tabulated results, the present study
employs curve-fitted results in order to reduce calculation time. For a Poisson’s ratio of
v = 0.28 the creepage and spin coefficients can be curve fitted by the Datafit [3.6]

software as follows,

0.69827 0.21286 7.4786x10” 1.0671x10™ 5.1743x10”*
2 3 4 5
D@ e
a a a a a

1.2885 8.0730x10 5.1449x10” 8.4577x10° 43277x10™*

¢, =3.3914+

¢y, =2.3753+ + > 3 7 5
b
(—) (2) (éj [2) (2) (3.29)
a a a a a
-3 ) -3 4
¢,y = 040890+ 1‘0552 3 4.6576 leO 2.5407 ><310 3 4.3437 ><410 2.2442 x510
(—j (2) (2) (éj (2) (3.30)
a a a a a

0.74933 1.3928x10”  6.1529x10™
2 3
(9) (2) (2) (3.31)
a a a

Finally, it is to be noted that, in this thesis, both the Kalker linear theory and FASTSIM

¢y3 =0.41960 +

will be used. FASTSIM incorporates the saturation law, and is therefore applicable to the

case of large creepage and spin.
3.5 Heuristic Nonlinear Theory
The Heuristic theory [3.1] begins with the calculation of the longitudinal and lateral creep

forces F¥ and Fyk using Kalker’s linear theory.
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F xk Gab ¢, O 0 ?
=~Ga
F* 0 ¢, “abc,, ¢y (3.32)

Fy = \/ (ka )2 + (Fyk )2 (3.33)

and the saturation law applied:

—_— — \2 — \3
N [QJ_ELEL] +_L[f_a]  FisaunN
F, = UN ) 3\ uN 27{ uN

(3.34)
UN, F1>3 UN
The creep—force reduction coefficient is defined:
F
==L
F. (3.35)

The nonlinear creep-forces are determined as:

F|l _|Ef
F, - Fy’c (3.36)

The heuristic theory produces more realistic values for creep forces outside the linear
range than Kalker’s linear and simplified theories. However in the case of high values of

spin, the heuristic theory may lead to unsatisfactory results [3.1].
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3.6 Polach Nonlinear Theory

The Polach theory [3.1] is based on the assumption that the contact area is elliptical in
shape. Polach defines the maximum tangential stress at any arbitrary point using the

Hertz contact theory as:

T . = MO
max ~ H (3.37)
where u is the coefficient of friction, and is assumed to be constant across the entire

contact area. The creep force due to creepage in both the lateral and longitudinal

directions is given by:

F =——2’UN( d +tan'15j

d r \1+é&° (3.38)

where ¢ is the gradient of the tangential stress in the area of adhesion. It is given as,

o 1 GmabC,
4 uN ° (339
In (3.39),
v, =\[¢r +C (3.40)
e leredsk)
ye Cy + pa, |é,y +¢a| S Ié’yl (3.41)

The parameter Cj, is defined as:

2 2,y
G, = \/(Cn %) + (sz ‘v‘j (3.42)

32



with

Ve g

The creep force that accounts for the spin effect is given by [3.1],

s

__2 _ gt
F, ==—auhK, | 1+63(1-¢ )]

The quantity K , is,

withe and &, being

. _§Gb\/213 236 e
¥ 3 uN 1+6.3(1—e‘(“/b))

Finally, the creep forces are given as follows,

g
F 22X
{F{l Py,
F, | 4 )
y
Fp_v_y+Fps—v—

Polach theory is known to yield accurate predictions of the creep forces [3.1].
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3.7 Concluding Remarks

In this chapter, the preliminary calculations and several creep force theories have been
presented. Before the theories can be applied to the dynamic wheelset models (see
Chapter 5), they are to be benchmarked in the next chapter. Three kinds of benchmarking
will be considered, static benchmarking in which fixed values of creep are used,

benchmarking of track position-dependant creep and dynamic benchmarking.
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Chapter 4 — Benchmarking of Creep Forces
4.1 Static Benchmarking of Creep

Two static benchmarking tests will be conducted; the Polach benchmarking, and the five-

theories benchmarking. Here, static benchmarking refers to fixed values of creep.
4.1.1 Polach Benchmarking

This benchmarking is performed to ensure a correct interpretation of the Polach theory. In
1999, Polach published Fast Wheel-Rail Forces Calculation Computer Code [4.1]

whereby the Polach theory and its Fortran implementation were presented. In the paper,

K ~l£| é;—§é+l —l (1-52)3 which is the negative of the K of equation
L A v) s p 054

(3.45), was given to be used in the place of K > however K | was used in the included

Fortran program. In this thesis, through Polach benchmarking and other benchmarking

cases, it is found that K , should be used as in equation (3.45).

In [4.1], Polach presented three sets of input and computed data, the first with nine cases,

and the second and third with three cases each, see Figure 4.1.

Using the ¢;;, ¢22, ¢z3 values from the Polach paper (see values in Figure 4.1), two

different sets of values were compared: the values from Figure 4.1, and the values
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determined by Matlab [4.2] implementation of the Polach theory as given in Section 3.6.
Results are shown in Figures 4.2 through 4.4. Excellent agreements are seen in all

individual cases. It should be noted that Cases 2 and 3 of Set A, and Case 2 of Sets B and
C have a zero Fy; likewise, Cases 1 and 3 of Set A, and Case 3 of Sets B and C have zero

or very small F;,.

Examples of results :

NY =025, G=84x10"" Nm? PI=314159,Q=1x10°N,F=03

A=6x10"m B=6x10"m,C1=412.C2=3.67.C3=147:

SX =0.004 SX =0 SX =0
SY =0 SY =0.004 SY =0
OM=0 m’ OM=0 m" OM = 0.004 m™!
FX =-26 732N FX =0 N FX =0 N

FY =0 N FY =-25872N FY =-107N
SX = 0.002 SX = 0.004 SX = 0.00005
SY = 0.002 SY = 0.006 SY =0.004
OM=0.002 m” OM=0m"’ OM=0.008 m’
FX=-16362N FX=-16098 N FX=-321N
FY=-16398 N FY=-24 147N FY =-25 834 N
SX = -0.00005 SX = -0.00005 SX = 0.00005
SY =0.004 SY =-0.004 SY = -0.004
OM = 0.008 m™ OM=08m" OM = -0.008 m™
FX=321N FX=323N FX=-321N
FY=-25834N FY=8259N FY =25834N
A=75%x10"m, B=15%10"m C1=778,C2=814, C3=6.63 :

SX = 0.002 SX=0 SX = 0.002

SY = 0.002 SY =0.002 SY =0
OM=0m’ OM =0.002 m” OM = 0.002 m"
FX=-12 606 N FX=0 N FX=-13421N
FY =-12 606 N FY=-13954N FY=-03N

A=15x10"m, B=75x10"m, C1 =337, C2=2.63, C3=0.603

SX = 0.002 SX=0 SX = 0.002
SY = 0.002 SY = 0.002 SY=0
oM=0m"' OM =0.002 m" OM = 0.002 m"
FX=-5549N FX=0 N FX=-6254N
FY =-5549 N FY=-4919N FY=0N

Figure 4.1 — Polach Test Cases [4.1]

(A, B = semi-axes of contact ellipse; C1, C2, C3 = Kalker’s constants c;;, ¢z2, €23;
FX, FY = longitudinal and lateral forces; SX, SY = longitudinal and lateral creepages;
OM = spin; Q = wheel load; F = coefficient of friction)
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Force in Wheel-Rail Contact [N]

x 10* Test Set A - Fx Fy Comparison

3 - 1 T T T 13 T T T T
I Fx Polach Paper
I Fx Polach Algorithm

2F| iz | Fy Polach Paper
B Fy Polach Algorithm

1 L

0 -

_3 | t | [ [ | | | {

Case Number

Figure 4.2 — Polach Benchmark Test Set A
(Polach Paper = values from Figure 4.1;

Polach Algorithm = values determined by Matlab implementation)
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Force in Wheel-Rail Contact [N]

Test Set B - Fx Fy Comparison

oy T T
I -x Polach Paper
B Fx Polach Algorithm
Fy Polach Paper i
I v Polach Algorithm
|
3

-6000 -

-8000 -

-10000 -

-12000 -

-14000 '
1 2
Case Number
Figure 4.3 — Polach Benchmark Test Set B
(Polach Paper = values from Figure 4.1;

Polach Algorithm = values determined by Matlab implementation)
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Test Set C - Fx Fy Comparison

O =T — : S
| x Polach Paper :
' M Fx Polach Pap
10000 B Fx Polach Algorithm
’ | Fy Polach Paper
I Fy Polach Algorithm
2000
-3000 |
-4000 - |
-5000 - |
-6000 -

-7000 ' :
1 2 3

Case Number

.

!

Force in Wheel-Rail Contact {N]

1

Figure 4.4 — Polach Benchmark Test Set C
(Polach Paper = values from Figure 4.1;

Polach Algorithm = values determined by Matlab implementation)

4.1.2 Five Theories Benchmarking

The five different creep theories (Johnson and Vermeulen, Kalker Linear, FASTSIM,
Polach, and Heuristic) are contrasted with one another. This test is performed with the
conditions given in Table 4.1. The test determines the creep forces in both the
longitudinal (FY) and lateral (F),) directions as well as the time to complete the
calculations. Results are shown in Table 4.2, and Figures 4.7 and 4.8. It is noted that the

Kalker Linear theory is hence forth simply referred to as the Kalker theory.
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It can be seen from Table 4.2 that the J ohnsoﬂ and Vermeulen, FASTSIM, Heuristic, and
Polach theories all produced very similar results. The Kalker theory produced a distinctly
large result. This is due to not applying the saturation law to which the other four theories
are subject. A comparison of creep forces with and without the saturation law is shown in

Figure 4.5. The saturation law caps the maximum value of creep force.

Table 4.1 — Parametric Values for Static Benchmarking

Ny 133,300 N
E 2.1x10" N/m?
G 8x10% N/m”
H 0.15

v 0.28
R’ 0.457 m
R; 0.254 m

V 20 m/s
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Table 4.2 — Creep Forces by Various Theories

Fx [N] Fy [N]
Johnson and Vermeulen 1.9995x10* 1.9064x107™*
Kalker 2.8238x10° 8.9816x10°
FASTSIM 2.0125x10" 1.6439
Polach 1.9994 x10* 73.8518
Heuristic 1.9995x10* 63.5967
Q x 10* Longitudinal Creep Forces . x 10° Lateral Creep Forces
£ / g
g_? 2 L2
5
215 ?_v 1.5
2 8
2 1 Jav 8 1 Y
s v /s | Kalker ® | i/ i/ — Kalker
B 05 Polach £ 05 Polach
3 ~——— FASTSIM £ ——— FASTSIM
E 0 1 ' zZ 0 L s n n
S 0 50 100 150 0 10 20 30 40 50
Normalized Longitudinai Creepage Normalized Lateral Creepage
% 10" Resultant Creep Forces
8 4 T / T T
o
A /
8 o :
&) I—
s 2r '.,.' 4
§ j / Johnson and Vermeulen
8 1L A . — Kalker |
N i f Polach
g f/ —— FASTSIM
S 0 ! T
=z 0 50 100 150

Normalized Resultant Creepage

Figure 4.5 — Saturation Law (creep forces are shown in Newtons)
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Table 4.2 is then reproduced as a figure with the Kalker theory removed. Figure 4.6
shows that all four theories are very close in F;. For F), it may seem that Heuristic and
Polach are close while Johnson and Vermeulen, and FASTSIM are much less. However,

considering the very different scales in Fy and F), it is concluded that the four theories are

very close.

x 10% Creep Force
3 T T T T

1 2 3 4
Case Number

100 T T T T

50

Fy [N]

1 2 3 4
Case Number

Figure 4.6 — Creep Forces by the Four Theories

(1 - Johnson and Vermeulen, 2 - Heuristic, 3 - Polach, 4 - FASTSIM)
Computation times are depicted in Figure 4.7. The Johnson and Vermeulen theory

requires much longer to calculate due to the elliptical integrals used in the calculation.

The Kalker, Heuristic, and Polach theories require similar time for calculation. FASTSIM
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is included solely for reference, but surprisingly is not as fast as Heuristic or Polach, all

being nonlinear.

Computation Time
0.035 r . . . .

0.03

0.025

0.02

Time [s]

0.015

0.01

0.005

1 2 3 4 5
Case Number

Figure 4.7 — Computation Times by the Five Theories

(1 - Jobnson and Vermeulen, 2 - Kalker, 3 - Heuristic, 4 — Polach, 5 — FASTSIM)

4.2 Benchmarking of Track Position-Dependant Creep

4.2.1 Manchester Benchmarks

The Manchester Benchmarks for rail vehicle simulation, established in the late 1990s

b

was an effort to benchmark existing software packages for rail vehicle simulation for
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designers and researchers looking at dynamic vehicle behavior. The Manchester
Benchmarks feature a passenger train and a cargo train on several different track cases
[4.3]. One of these track cases will be used in this thesis. In this chapter, the track

position-dependant creep was tested with the use of Track Case 2 (TC2).

TC2 1s described as [4.3] “the track input comprises a 50 m straight section of track
followed by a 5 mm lateral shift in the centerline taking place over a distance of 0.1 m in
the direction of travel. The gauge remains constant throughout and the track is perfectly
level.” Figure 4.8 depicts TC2 from the perspective of yaw (rotation about the vertical),
pitch (rotation about the lateral), and roll (rotation about the longitudinal) angles relative

to the longitudinal distance. Pitch and roll remain zero.

4.2.2 Benchmarking of Track Position-Dependant Creep

The track position-dependant benchmarking is preformed with the forward speed ¥ taken
to be constant, hence zero acceleration in the longitudinal direction. Results of the

benchmarking can be seen in Figures 4.9 and 4.10.

From Figure 4.9, it is seen that the Heuristic and Polach theories give almost identical
results. The Kalker theory leads to a constant F, whose value is comparable to that of
Heuristic or Polach. However, the lateral creep force over the shift by the Kalker theory
is twice as large as that by Heuristic or Polach. The results by the Johnson and

Vermeulen theory do not bear much resemblance to the other results.
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0.06 T T T T T
Yaw [rad]
0.04 | — XY Track [m] |
0.02} i
0 R ——
1 1 1 L [
49.9 49.95 50 50.05 50.1 50.15 50.2
Longitudinal Distance [m]
Pitch
0-06 T T T T T
Pitch [rad]
0.04L X-Z Track [m] i
0.02F -
0
L | | 1 |
49.9 49.95 50 50.05 50.1 50.15 50.2
Longitudinal Distance [m]
Roll
0.06 . I T . .
Roll [rad]
0.04 L| —— XZ Track [m] |
0.02} i
0
| i L | I
49.9 49.95 50 50.05 50.1 50.15 50.2

Longitudinal Distance [m]

Figure 4.8 — Manchester Benchmarks Track Case 2
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x 10* JV Creep x 10°  Kalker Creep

Fx

Fx
Fy

[N]
o
[N]
o

-4 - -4 .
49.9 50 50.1 50.2 49.9 50 50.1 50.2
Longitudinal Distance [m] Longitudinal Distance {m]
x 10°  Heuristic Creep x 10*  Polach Creep
4 4
Fx Fx
2 Fy : 2i| —Fy
z 0 / Zz o IR |
\ / L//
-2 —— -2
4 4
49.9 50 50.1 50.2 49.9 50 50.1 50.2
Longitudinal Distance [m] Longitudinal Distance [m]

Figure 4.9 — Creep Forces of Track Case 2

Figure 4.10 contrasts the Polach theory with FASTSIM. The creep forces are very close
but the computation time by FASTSIM is 30% longer than that of Polach. Overall, with
accuracy and computation time considered, the Polach theory will be the preferred choice

for the remainder of this thesis.
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x 4 FASTSIM and Polach
’l') T ¥ ¥ T T

1+| — FASTSIM Fx T
- FASTSIM Fy
Polach Fx
0. r| ——— Polach Fy ]
5
ol i

‘a\

|
\

1.5F \ / _
2| \ |

f 1 1 1 1
49.9 49.95 50 50.05 50.1 50.15 50.2
Longitudinal Distance [m]

Figure 4.10 — Creep Forces of Track Case 2 with Polach and FASTSIM

(forces are shown in Newtons)

4.3 Dynamic Benchmarking of Creep

For the dynamic benchmarking, three models will be used. Model I is developed on the
basis of the model used in Influence of Yaw Stiffness on the Nonlinear Dynamics of a
Railway Wheelset [4.4], while Model II is taken directly from [4.4]. Model I utilizes
dynamic creep forces developed in Chapter 3. It also includes additional penetrations at
wheel-rail contact points and the corresponding dynamic normal forces. Model II, on the

other hand, utilizes static creep forces which are calculated by the Johnson and
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Vermeulen theory. Model 111 is taken from Dynamics of Railway Vehicle Systems [4.5]

and uses pre-calculated creep force coefficients.
4.3.1 Model 1

Model I is based on that from Influence of Yaw Stiffness on the Nonlinear Dynamics of a

Railway Wheelset [4.4]. A schematic of the wheelset model is shown in Figure 4.11.
-1 Y W
\4
*
/
)
N L~
dy !

Py
L

Viewed from z

4

Viewed from x

Car Body
Frame
i
Right YWheel Left Wheel
q zh N

_.N\..E 1—. ) . .
y

-

Yo
\ y J
90 y

Figure 4.11 — Geometry of Wheelset and Coordinate System

48



It has two wheels rigidly connected with an axle rolling on a rail that is assumed “knife-

edged”. The wheels are conical with slope A and rolling radius . The restoring force

from the flanges on the wheels is approximated by a strong linear spring with a dead band
and no damping. The lateral motion is restricted by linear springs with no damping. The
wheels and the axle are assumed to be rigid bodies. The wheelset is considered to have
two degrees of freedom. The first is the lateral displacement y and the second is the yaw

motion . The two equations of motion of the wheelset are coupled through the

nonlinear creep forces. They are,

m,y+2ky+2F, (3, y,w,y) + Fp(»)=0 (4.12)

I +2k,dly + g, Fy (3, 9,w,47) =0 (4.1b)

where m,, is the mass of the wheelset, /,, is the mass moment of inertia of the wheelset
about the z-axis, k; is the lateral spring constant, k; is the yaw spring constant, Fy is the
longitudinal creep force, Fy is the lateral creep force, Fris the flange force, d; is the
distance from the centre of gravity to the yaw spring, and g, is the half-track gauge. In
equation (4.1), a single over-dot indicates a first-order time derivative, while a double
over-dot denotes a second-order time derivative. Fy and Fy are functions of y, y,w,y .
They need to be updated at every time step. The process of determining Fy and Fy will be

detailed below.

1. First, the static normal force N, is determined.
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2. The factors K, K3, K3, and K, of equations (3.1-3.4) are calculated, followed by m, n

and @ of equations (3.5-3.7). Then, semi-axes a and b are calculated,

1
| 3N K T
4K,

1
b MK +K) T
4K,

3. Static penetration is determined by

82
P = —K3b2 (1 + —2—61_7)(1 —CoS «9)]

With

e =1-(a/b)* fora<b
e =1-(b/a)* fora=b

4. Kalker coefficients ¢, ¢z, €23, and ¢33 of equations (3.28-3.31) are calculated.

(4.2)

(4.3)

(4.4)

(4.5a-b)

5. Next, roll and yaw of the wheelset are updated. Wheelset pitch is not updated as pitch

is in the direction of rolling which is not accounted for by the equations of motion (4.1).

w 24

¢ ==
&aq

v =y

6. A” of equation (3.17) is recalculated with the ¢" and " determined above.
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7. The wheelset’s global position coordinates and velocity vectors are updated as,

X V
RE=ly | RO=y (4.8-4.9)
Fy + Ay Ay

where V' is the velocity in the x direction. Similarly, the rail’s global position coordinates

and velocity vectors are,

0 0
R =|0|,R" =0 (4.10-
0 0 4.11)

Values for R”and R’ are zero due to the fixed condition of the rail. The local angular

velocities of the wheelset and rail are,

24y ]
8a 0
V
"= — |0 =0 (4.12-
7o 0 4.13)
14

8. Creep force of the right wheel will be calculated for first, followed by the left.

8.1 The local coordinates of the contact points on the wheel and rail are respectively,

0 0
rrw g rrr g
7" =| | 8a, LU =| -&a 4.14-
g ( 2 ij g 2 (4.15)
__(”o_ﬂ)’R)_ L 7
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where y, is the lateral displacement of the right wheel. Due to the conical wheel

assumption, y, = y.

8.2 The base unit vectors are,

L =44 (4.16)

where A° is a transformation matrix that takes into account track conditions and contact

angles. For TC2 (see description in Section 4.2.1), A*is

1 0 0
A°=A4°10 cos(S,) sin(Sy) (4.17a)
0 —sin(5,) cos(5y)
With
cos(a) —sin(a) O
tc M
A° =|sin(a) cos(a) O (4.17b)

0 0 1

where a is the slope of the track profile, expressed as a function of longitudinal
coordinate x, with respect to the longitudinal coordinate x. That is, « = %11—7—7— with 7 = n(x)
X

being the track profile. Angle J, is the contact angle for the right wheel, see Figure 4.12.

8.3 Additional penetration and dynamic normal force are given by [4.6],

Py )P
N=N0 1+*]—;— (4.18)

0
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where P,; is the third element of the following vector and represents additional

penetration,

P,
fa=| B =40, 20D (4.19)
P,

Left w hwl/. (\\\Right wheel

Figure 4.12 — Contact Angles

8.4 The creepages in terms of generalized coordinates and velocities are defined as,

(5 =7)4

é’x = thlr (4.20)
(7 -#)-14

&y = p—Rer_z (4.21)
o” - )-n

= ( ) (4.22)

Rt
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where i';' (equation 3.13) and f; are the velocity vectors of the wheel and rail contact

points respectively. i”; equals zero due to the fixed nature of the rail.

8.5 Creep forces then need to be calculated. One of the three theories will be used; Kalker

(Section 3.4), Heuristic (Section 3.5) or Polach (Section 3.6).

9. Similarly, the left wheel creep forces are calculated as follows. The local coordinates

of the contact points on both the wheel and rail are,

0 0
rrw _ ga rrr ga
U, = S LU, = By (4.23-
4.24)
—(ry +4y,) —7,
with y, =y . The base unit vectors are,
y
b |=4"4 (4.25)
nr
Where
cos(ax) —sin(ex) O 1 0 0
4 =|sm(a) cos(a) 0[O0 cos(—o,) sin(-9;) 4.26)
0 0 1{{0 -sin(~o;) cos(=5;)

Here it has been assumed that, magnitude-wise, 5, = §,, with J, being the contact angle

on the left wheel (Figure 4.12). Steps 8.3 through 8.5 are then repeated so that the left

wheel creep forces are determined.
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Finally, the flange contact force in equation (4.1a) is,

kr(y—5) y>0
+(v)= 0 -0<y<d

427
k (y+96) y<—06 27

where k, is the flange spring constant and & is flange clearance.

4.3.2 Model 11

Model II has a similar foundation as Model I, but creep forces are calculated with the

Johnson and Vermeulen theory [4.4].

m,y +2ky+2F,(y, 3w, 0)+ F,(y)=0

(4.28a)
Iwzl/;+2k2d121//+gaFX(yay9y/Dl/./) :O (428b)
where F.(y) 1s by equation (4.27). The creep forces Fxand Fy are given as,
FX:§XFR,FY:§YFR (4.29-
$Cx ¥iCx 4.30)

with @, and y, being the coefficients defined by equation (3.22). The resulting creep

force Fj is,

1, 1 4
T——7"+—7 7<3
Fp=pulNoy 3 27 (431)
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where

uN, S (4.32)
The creepages are,
Ay &Y
= — 4 =
S v 2V (4.33)
=2 _
Sr=yv (4.34)

5]

4.3.3 Model I11

Model I is taken from Dynamics of Railway Vehicle Systems [4.5]. Model I1I uses static

predetermined creep forces.

.. 2 : 2 .
mwy+2k1y+—§‘—(y+ro—y—VW)+FT(y):0 4.36)

I v +2kd*y +g f, 28|20

sz 2 IW ga 33 roy ZVW - (437)

where f}; is the lateral creep force coefficient, f3; is the longitudinal creep force

coefficient. A comparison of the key features of the three models is listed in Table 4.3.
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Table 4.3 — Model Contrasts

Model I Model II Model 111
Updated, Updated, Updated,
Creepages
Large roll and yaw Small yaw Small roll and yaw
Normal Force Static or Dynamic Static Static
Johnson and
Vermeulen, Kalker,
Creep Theory any constant values of constant v;ilues of
4 and y, Jur and s
DOF Included 2(yv) 2(yy) 2(ny)

4.3.4 Dynamic Benchmarking

The three models are compared using the parametric values in Table 4.4. Track condition

1s the Manchester Benchmark’s Track Case 2 (see Figure 4.8). This track involves 50 m

of straight track followed by a 5 mm lateral shift over 100 mm in the longitudinal

direction. The Polach nonlinear theory is used with Model 1. The initial condition is a 5

mm lateral displacement, while lateral velocity, yaw, and yaw rate are zero. Forward

speed is constant at 8 m/s.
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Table 4.4 — Parametric Values for Dynamic Benchmarking

Constant Value Description
My 1022 kg mass of wheelset
Ly, 678 kg-m* moment of inertia
2a 0.716 m half of the track gauge
A 0.05 slope of conical wheel
0 9.1 mm dead band
d 0.620 m distance from center of gravity to &,
kr 14.60 MN/m spring constant (flange)
ky 18.23 kN/m spring constant (lateral)
ky 180 N/m spring constant (yaw)
¥o 0.4572 m centered wheel rolling radius
Ji1 90.712 kN lateral creep force coefficient
f33 103.228 kN longitudinal creep force coefficient
G 808 MN/m’ shear modulus
¥ 0.54192 constant
D, 0.60252 constant
ae 6.578 mm major semi-axis of contact ellipse
be 3.934 mm minor semi-axis of contact ellipse
7 0.15 coefficient of friction
LN, 10 kN adhesive force

) Nj 1s the static vertical force between wheel and rail.
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Figures 4.13 and 4.14 contrast Models I, I1, and III over the TC2 track case. From the
plots it can be seen that Models I and II follow a similar but slightly out-of-sync response
in lateral displacement, lateral velocity, yaw angle, and yaw rate. Model I1I yields
dynamic responses of a similar frequency, but substantially smaller amplitude. These

responses also demonstrate high damping characteristics.
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Figure 4.13 — Model Response in the Lateral Direction (TC2)
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Figure 4.14 — Model Response for the Yaw (TC2)

The following comments can be made.

o The closeness of responses from Models I and II verifies the 9-step process of
determining dynamic creep forces and moment as given in Section 4.3.1.

e Polach theory, which is used with Model I due to its accuracy and computational
efficiency, enables the model to satisfactorily capture and represent the dynamic
responses of the wheelset.

e The different response characteristics from Model III are due to the use of Kalker
theory which typically predicts much higher values of creep forces, leading to

smaller responses.
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e Model II is limited to small roll and yaw. Conversely, Model I is not subject to
such restriction. As will be seen in Chapter 5, Model I will be used with realistic

wheel and rail profiles which can lead to large roll and yaw responses.

4.4 Concluding Remarks

Benchmarking conducted in this chapter shows that the Polach nonlinear theory of creep
1s accurate and computationally efficient. This theory will be used in the next chapter for
the investigation of wheelset responses where realistic wheel and rail profiles are
considered. This chapter also verified the nine-step process of updating dynamic creep

forces and moment. This process will also be utilized in Chapter 5.
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Chapter 5 — Dynamic Responses of a Single-Axle Wheelset
Incorporating Profiled Wheels and Rails

Chapter 4 has shown that Model I, together with the Polach theory, is capable of
satisfactorily capturing and representing the dynamic behaviour of a single-axle wheelset
and is computationally efficient. However, Model I was based on the assumption of
conical wheels and knife-edged rails. Such assumptions are not realistic. Therefore,

realistic or profiled wheels and rails will be investigated in this chapter.

5.1 Wheel and Rail Profiles

The profiled wheel examined in this thesis is the AAR (Association of American
Railroads) 1:20 wheel as shown in Figure 5.1. This wheel profiles a 7° tread angle,
followed by a 70° flange, followed by a 58° flange tread. The rail profile is depicted in

Figure 5.2.

GAGING POINT
TAPER 1" IN 207

[
ol < BASE LINE
1\

AY

TAPING LNE—" | VERTICAL el

REFERENCE
LINE

Figure 5.1 ~-Wheel Profile [5.1]
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Under normal conditions, the wheels will operate on the 7° treads, where there is only one
point of contact per wheel-rail combination. Larger lateral movements will cause a two-
point contact, at the tread and the flange, between the right wheel and rail, for example,
while the left wheel and rail remain in one-point tread contact condition. Larger lateral
movements still can cause the wheel to ride on the top of the flange. Although this is a
one-point contact, it creates a large roll angle and a large left and right wheel radii

inequality. Physically, it represents a dangerous situation to the rail vehicle.

49 92

Figure 5.2 — Rail Profile [5.1]

With the use of a profiled wheel and rail, the dependence of rolling radius R or R}, and

contact angle Jx or dz, on lateral displacement y becomes complex and is usually pre-
determined. Figure 5.3 and 5.4 show rolling radius of wheel (left or right) and contact

angle of wheel (again left or right) as functions of lateral displacement y [5.2].
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Rolling Radius Vs. Wheelset Excursion
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Figure 5.3 — Rolling Radius versus Lateral Displacement [5.2]

The following define the radii; 7, the left tread, v, the left flange, 7, the right tread, and

> Ty

v the right flange. These radii form the plot in Figure 5.3.

r,=r+0.125y  |y/<0.008

(5.1)
. 103566+13700(y ~0.008)>  0.008 >y >0.009
7103703 +2.5833(y - 0.009) > 0.009 (52
v, =1,—0.125y (5.3)
0.3703 +2.5833(=y—0.009) y <—0.009
14 =
77003566 +13700(—y —0.008)>  —0.009 > y > —0.008 (54
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Contact Angle Vs. Wheelset Excursion
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Figure 5.4 — Contact Angle versus Lateral Displacement [5.2]

The following define the contact angles; ¢, the left tread, c , the left flange, c, the right

tread, and ¢ ; the right flange. These contact angles form the plot in Figure 5.4.

¢, =tan™'(0.125) || <0.008

(5.5)
. Jtan[0.125+2648(y~0.008)] 0.008> y >0.009
7 tan™'(2.748) y>0.009 (5.6)
_ -1

c, =tan" (0.125) 5.7)

tan~' (2.748) y < -0.009
€ T san! v _ _ (5.8
tan™' [0.125 +2648(~y —0.008)] —0.009 > y > —0.008 )
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In the next two sections, a new wheelset dynamic model will be introduced. This model
(for easily reference, will be called the Modified-Garg model) is more realistic. It
calculates for normal forces at every time step and can accept both small and large
angles. It uses track-dependant creep forces (Section 4.2.2), and profiled wheels and rail.

Contact conditions include both one-point at tread and at flange, and two-point.

5.2 Single Point Contact

Single point contact occurs in two situations. The first, the normal operating condition, is
when both wheels are running on the 7° wheel treads. This corresponds to the conical
wheel condition, if the wheels are not worn. The second is when one wheel is running on
top of the flange while the opposite wheel is on the wheel tread. Mathematically, the two
situations can be treated the same. In the following sub-sections, the point of contact is

not identified, as it can be a tread contact point or a flange contact point.

5.2.1 Degrees of Freedom

A rigid body has six degrees of freedom; displacements x, y, z, and rotations roll, pitch

and yaw, see Figure 5.5. With reference to the free body diagram in Figure 5.6, the six

corresponding governing equations of motion are [5.3],
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Longitudinal Equation:

mw'jé:FLx+FR,v+NRx+NLx+F;x

(5.9)
Lateral Equation:
my=F, +F,+Ny+N +F (5.10)
Vertical Equation:
mzi=F,+F, +N,+N, +F_ -W, .11)
Roll Equation:
. V.
wa¢ =Iwy - W+RRy(FRz +NRz)_‘RRz(FRy +NRy)
% (5.12)
+R,,(F, +NLZ)—RLZ(FLy +N ) +M, + M + M,
Pitch Equation:
IWyB = Ry, Fie _RRX(FRZ +NRZ)+RLZFLX
—F (F,+ N )+M, +My, +M (5.13)
Yaw Equation:
.. V.
Ly=-I, (—jqﬁ + Ry, (Fy, + Np, ) — Ry Fr,
0 (5.14)

+RLX(FLy +NLy)—RLyFLx +M, +M, + M,

where N means a normal force, F' means a creep force, M means a creep moment, and F
and M; denotes suspension forces and moments. For N, F and M, the first subscript
indicates L(eft) or R(ight) contact point; the second subscript indicates components in the

x, y and z directions. The subscript (x or y or z) associated with F,and M denotes the

direction of the force and moment component. Finally, R is the position vector draw from

the centre of gravity of the wheelset to a contact point. The subscripts of R follow the
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convention used with N or F or M. It should be mentioned that the spin  in equation
(5.13) is defined as the deviation of the time-dependent pitch over the nominal pitch V/#,.
Symbols my, Ly, I, and I,, denote the mass of wheelset, and the mass moments of inertia

of the wheelset about the x, y and z axes, respectively. Lastly, W, is the pay load on the

wheelset.
Lateral § Vertical
Pitch \ | Yaw
‘\ ! Longitudinal
Ralt
Figure 5.5 — Six Degrees of Freedom
RIGHT
r
_— AU s
w;‘lén ' T -
T 3 F?z
/N FRy
Ng

Figure 5.6 — Free Body Diagram of the Wheelset [5.3]

Since this thesis focuses on only the lateral dynamics and with the use of constant
forward velocity 7, the degrees of freedom in the x and pitch directions need not be

considered. As a result, the pair of equations (5.9) and (5.13) are omitted. In addition, due
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to the geometrical constraints imposed by the contact of wheel to rail, the degrees of
freedom in the z and roll directions are now dependant on the lateral movement of the
wheelset. However, equations (5.11) and (5.12) can not be simply omitted. Instead they
will be used to determine normal forces developed in the contact points, as will be shown

the sub-section below.

5.2.2 Normal Forces — Single Point Contact

As mentioned earlier, equations (5.11) and (5.12) will be used to determine the normal
forces. Equation (5.11) is rewritten as,

N, +Ny =mz+W,-F,, - F, —F_
=F, (5.15)

with the right-hand side denoted as F, for simplicity. Similarly from (5.12),

RLyNLz + RR_VNRz - RLZNLy - RRz NRy = [wx& - Iwy [}’Kj l// - RL,VFLz + RLzl;'Lv - MLx - MRx
0
M, — Ry Fy, + Ry Fy, (5.16)
= Md
Since
Ng=N.n,, N, =N,n, (5.17-
5.18)
or
NRx n; NLx n)lc
r I
Ne, 0 =Ngan, o, N, r=N n (5.19-
N, n, Ny, né >-20)
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Equations (5.15) and (5.16) become, in matrix form

ni n, N, _ F,
R n—R.n Ry n —-R.n ||N,| |M, (5.21)

Ly"*z Lz"y Ry" "z L™y

By using respective velocity and acceleration values at the previous step (which are
known), instead of the unknown values at the current step, Ny, and Nk can be solved from

equation (5.21).

These normal forces are then used to determine creep forces and moment (see the 9-step
process in Section 4.3.1 with Ny = Ny or Ny = Ng). Meanwhile, the lateral components of

these forces are evaluated by

y (5.22)
Ny, =N, (5.23)

Such forces and moment are to be used in the equations of motion.
5.2.3 Equations of Motion — Single Point Contact

The equations of motion used to describe single point contact are as follows:

m,y = FLy + FRy + NR}, + NLy + Fsy (5.24)

. Vi,
Ly=-1, (—J¢+Rﬂx (Fy + Np,) = Ry I,
0

+RLx(FLy +‘]VvLy)_IzLyFVLx +MLz +MRz +Msz

(5.25)
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Once equations (5.24) and (5.25) are solved, vertical displacement, velocity and

acceleration, and roll angle, velocity and acceleration are determined, on the basis of

dependence of such terms on the lateral displacement, velocity and acceleration. That is,

for single point contact, if 7, and # are the rolling radii:

r, y>-0.008 r, y<0.008
¥, =4 0r s, h=40r
re ¥ <-0.009 rs  »¥20.009

Vertical displacement at the centre of gravity, z, is then given as:

1
ZZE(V[ +rr)—r0

Vertical velocity and acceleration are:

Z-:_y'_[drz(y)+drr(y)}

2 dy dy

; :X|:d’”1(J’) . drr(y)}y;{d%(y) s dzrr(Y)}

2 dy dy
The roll angle of the wheelset is given as:

_n(y)-r(»)
= yzga Yy

Lastly, roll velocity and acceleration are given as:

j=2 [drz(y)_drr(y)}
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5.3 Two-Point Contact

In the following, it is assumed that the two-point contact occurs between the right wheel
and rail. The case of two-point contact between the left wheel and rail can be derived in a
similar manner. The six equations of motion governing longitudinal, lateral, vertical, roll,

pitch, and yaw are now,

Longitudinal Equation:
mi=F, +Fy +Fp +Np +Np, + N +F, (533)
Lateral Equation:
my=F, +F, +F, +Ny+Np +N +F (5.34)
Vertical Equation:
mZi=F, +Fp +F +Np + Ny, + N, +E, W, (5.35)

Roll Equation:

» V.
1.9 =Iwy [F_J‘//"'RRy(FRz +NRZ)+RRyf(Fsz +Nsz)

0

=Ry (Fp + Np) = Ry (Fpp + Ny, ) (5.36)

+RLy(FLz +NLZ)—RLZ(FLy +NLy)+MLX +M,, +MRxf + M
Pitch Equation:

I,,B=RpFo + Ry Fo =Ry (Fo + Np )= Ry (Fop + Ny

+R,F, —F, (F,+N ) +M_ +M, +M, + M, (5:37)
Yaw Equation:
.. V.
wal// = _Iwy _}:— ¢+RRX(FRy +NRy)+RR)gf(FRyf +NRyf)_RRyFRx
)
(5.38)

~Ry Foys+ R (F,+ N )-R F +M, +M, +M

Rzf +Msz

Ryf
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where N, Fp., Ry and M, (i =x,y,z) denote the right side tread normal force, creep

force, position vector of contact point to wheelset centre, and creep moment, respectively.

Aswell, N, Fpr, Rpe and My, (i =x,y,z) denote the right side flange contact normal

force, creep force, position vector of contact point to wheelset centre, and creep moment,
respectively. Other symbols have the same meanings as in single point contact; see the

paragraph following equation (5.14).
5.3.1 Normal Forces — Two-Point Contact

Rewriting (5.34) — (5.36)

Npy+ Ny, + N, =mZ+W, - F, —Fp, —Fp - F

Z

=F, (5.39)

Ny, +Np + N, =my—F, —F —F, ~F,

LSy

=F, (5.40)

. (V).
Ryyy Ny + Rp, Ny, — Ry Ny _ I.¢-1 wy (_]'// — Ry Fry — Ry I, + ResFry

= ¥
—RRz NRy + Rl.yNLz - RLZNLy ’

+RR2FRy -.RLyFLz +RLzFLy —MLX _MRx _MRxf —MSX (541)
Since,
Np=Ngn,  Np=Ngn, N, =N,n,
r r I
. my " (5.42
_ ) _ P _ ! Ho-
=Neym, =Ny 11y =Npan, 5.44)
n, n’ n
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Equations (5.39)-(5.41) become,

¥

n, n, ni Ny, F,
¥ r i _
6% n, [ny N =150 (5.45)
r » r r !
(RRyfnzf —Rsznyf) (RRynz —RRzny) (RLynz —RLGy) N, M,

Again, the respective velocity and accelerations values at the previous time step are used

to evaluate the right-hand side of (5.45) so that N, , N and N, can be readily solved.

Lastly, the lateral components of such forces are,

- !
Ny =N.n, (5.46)
Nay = N, (5.47)
Ny = Nyty (5.48)
5.3.2 Equations of Motion — Two Point Contact
The model used to describe right-side two point contact is as follows:
my="F, +F, +Fy +N, ,+Np+Np +F, (5.49)
.. V.
1, v=-I, [—]¢+MLZ + My, + My, + M,
Yo
+ Rp (Fy, + Np, ) — Ry Fy, (5.50)

+ Ry (Fpyp + Ny ) = R Py
+ RLx (E,y + NLy) - RLyFLx
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For such a two point contact, the rolling radii are7, and #,.

r.=

=r, y<0.008 (5.51a-

{rtr y>-0.008
— , =
75 —0.009<y<-0.008" " 5.51b)

with vertical displacement, velocity and acceleration, as well as roll angle, rate and

acceleration given by (5.27) — (5.32).
5.4 Case Studies
5.4.1 Response I

Response I is calculated on TC2 (Section 4.2.1) with the same initial disturbance of 5 mm
as Section 4.3.4. Initial lateral velocity, yaw angle and yaw rate are all set to zero.
Forward velocity is = 8 m/s. Figures 5.7 through 5.10 plot the movement of the
wheelset in the lateral, yaw, vertical, and roll directions. The lateral and yaw responses
are solved from equations (5.24)-(5 .25), since the initial disturbance and TC2 will only
cause single point contact. The vertical and roll plots are calculated as per equations

(5.27)-(5.32).
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Figure 5.8 — Response I, Yaw Angle and Rate
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Figure 5.10 — Response I, Roll Angle and Rate
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Figures 5.7 thought 5.10 depict Response 1. From Figure 5.6 the lateral shift of 5 mm at
50 m is reflected in the change of the equilibrium position from 0 mm to -5 mm. Lateral
velocity in Figure 5.8, yaw angle and yaw rate in Figure 5.9, all show discontinuity at 50
m. Figure 5.10, at 50 m, shows immediate increase or decrease in z displacement on both
the left and right wheels as the track shifted. Due to this immediate disruption, a spike in

vertical velocity occurs, as shown in the lower plot of Figure 5.9

5.4.2 Response 11

Response II 1s conducted on a straight, perfectly level track. The wheelset travels at a
constant velocity of 8 m/s. An initial condition of 12 mm lateral displacement is used to
demonstrate the situation of a large, on the flange tread rolling condition. Initial lateral
velocity, yaw and yaw rate are set to zero. Figures 5.11 through 5.15 depict the responses

of the system.
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The larger difference in responses between Model I and the Modified-Garg model, so far
depicted, seem caused by the difference in modeling flange contact and force. The initial
conditions place the wheelset in a position where the left wheel is on the top of the
flange. This position has a large left-right wheel radius difference, and therefore a large

roll angle (0.015 rad in Figure 5.14 compared with 0.0009 rad in Figure 5.9).

Model I calculates the flange force, [ by equation (4.27), in which the spring constant
k, is for a different but unspecified rail-wheel combination. The Modified-Garg model

calculated the flange forces by considering multiple point contact.

As can be seen in Figure 5.11, the addition of the flange contact in the Modified-Garg
model greatly effects the period of oscillation. Once the wheelset begins operating solely

on the 7° treads (—0.008 > y > 0.008) the period of oscillation matches that of Model L.

Shape distortions and spikes in the lateral velocity (Figure 5.11), the yaw rate (Figure
5.12) are due to impact with the flange against the rail. Spikes in the vertical
displacement and velocity (Figure 5.13), and roll angle and rate (Figure 5.14) are all due
to the large increase in rolling radii and the subsequent roll angle change from operating

on the flange (¥ = 0.008 or y <-0.008).
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5.5 Hunting

In 1821 George Stephenson observed and described a kinematic oscillation that would
later be recognized as a wheelset hunting motion (see Figure 2.1) [5.4]. This hunting
motion causes wear, inefficiency and safety concerns. It is of theoretical and practical
importance to determine the velocity at which the oscillation will begin, otherwise known

as the critical speed.

The critical speed can be determined by examining the wheelset’s motion, since below
the critical speed the motion will be damped out over time; beyond the critical speed, the
motion will become unstable as depicted in Figure 5.16. This approach while not elegant

provides an estimated critical speed.

Figure 5.15 and 5.16 illustrate the lateral displacement responses of Model I and the
Modified-Garg model at forward velocities of V= 11 m/s through V=20 m/s. It is seen
that, at 15 m/s, Model I holds steady, and the Modified-Garg model starts to increase in
oscillation amplitude. At 17 m/s, Model I also starts to increase in amplitude. The critical
speed is reached 2 m/s slower with the Modified-Garg model which employs realistic
wheel and rail profiles, and considers multiple point contact. Similarly, Models II and III
have been represented in Figure 5.17 and 5.18. Model II shows a small increase in
amplitude beginning at 17 m/s, while Model III begins to increase at around 21 m/s, a
difference of 4 m/s. With critical speeds for the four models showing 15 (Modified-

Garg), 17 (Models I and II), and 21 m/s (Model III), there is a large discrepancy among
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the different approaches. It seems that the less restricted hence more accurate a model is,

the lower the critical speed is predicted.

It should also be mentioned that this section is simply to demonstrate that the Modified-
Garg model is able to capture the characteristics of the wheelset’s motion below, at and
beyond the critical speed. Critical speed can be more accurately and effectively

determined by methods such as bifurcation [5.5] and limit cycle [5.6], for instance.
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5.6 Control

In terms of control, this thesis focuses on mechanical passive control. The Modified-Garg

model and Model I both make use of two springs; a yaw spring (ky, ) and a lateral spring
(ky ). It 1s found that kw yields greater effect on the system. Figure 5.19 depicts the

lateral displacements over a wide range of ky, . Initial conditions include a 5 mm lateral

shift, while lateral velocity, yaw angle, and yaw rate are set to zero. Longitudinal velocity

1s 8 m/s and constant. It is seen that, with small ky, (< 150000 Nm™, say), the response

does not dampen down, or dampens down very slowly. Damped response, however, is

achievable with the use of higher k./, . The distance for the system to settle to 5% of the
original displacement is found to be, 35.18 m, 17.42 m, and 9.27 m with the yaw spring
taking values of k, =15x10°Nm™', k, =30x10°Nm™' and k, =45x10°Nm™'

respectively. It should be noted that, in the above calculations, the system is assumed
operating without viscous dampers, but does make use of creep forces which apply a

damping effect.
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5.7 Conclusion

The Modified-Garg model incorporated realistic wheel and rail profiles. It calculated for
normal forces at every time step and accepted both small and large angles. It used track-
dependant creep forces (Section 4.2.2), calculated normal forces, and positions of contact
points at every step. Contact conditions included one-point on the tread or on the flange,
and two-point (flange and tread). Under normal operating conditions with single point
contact taking place on the tread, the Modified-Garg model performed as well as Model 1.
The Modified-Garg model was able to capture behaviors such as wheel flange impacting
upon rail, which Model I failed to do. The Modified-Garg model also calculated a lower

critical speed than the three models presented in Chapter 4.
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Chapter 6 — Conclusions and Recommendations for Future Work

This thesis presented the theories and numerical simulations in regard to the behaviour of
a single-axle railway wheelset commonly used in cargo rail cars. Specifically, creep
forces, dynamic models, real wheel-rail profiles, and multiple point contact were

investigated.

One of the most important aspects of wheel-rail interactions is the creep force. Creep
force results from the relative motion between the wheel and rail. The extent of such
relative motion is measured by creepage, which is defined as the difference between
ideal, or pure rolling, where the velocities of the wheel and rail relate to one another are
equal, and the deviation of such. Creep is an important design factor in relation to rail

transport safety and efficiency as well as wheel and rail longevity.

Calculation of the dynamic creep forces was completed with a nine-step process and
benchmarked against Polach and Kalker. The Polach benchmarking tested three sets of
creepage combinations proposed by Polach. In this test, a total of fifteen cases were
tested. The creep forces were then plotted with respect to specific track cases and
compared with multiple theories including Kalker’s FASTSIM results. The relative
accuracy and computational efficiency amongst the theories were determined. The Polach
theory was found to satisfactorily capture and represent the dynamic responses of the

wheelset.
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Three dynamic models were presented and compared. Model I utilized dynamic creep
forces, additional penetrations at wheel-rail contact points and the corresponding
dynamic normal forces. Model II used static creep forces which are calculated by the
Johnson and Vermeulen theory, while Model I1I used pre-calculated creep force
coefficients. These models were tested under specific track conditions from the
Manchester Benchmarks’ Track Case 2 (TC2). These models were compared in the
response, the time to calculate and the flexibility of the model to withstand parameter
variations. The responses from Models I and II verified the nine-step process of
determining dynamic creep forces and moment. Model Il was limited to small roll and
yaw, and Model III was limited to small angle situations due to the use of the Kalker
theory. On the other hand, Model I was not subject to such limitations. It did assume the

theoretically possible conical wheel and knife-edged rail.

In Chapter 5, real wheel and rail profiles were then introduced to replace the coned wheel
and knife-edge rail assumption. This model made neither small angle assumptions nor
normal force assumptions. Contact conditions included one-point contact, at either the
tread or the flange, as well as two-point tread-flange contact. This model was again tested
with TC2 and a large lateral disturbance. Under normal operating conditions with single
point contact taking place on the tread, the Modified-Garg model performed as well as
Model I. The Modified-Garg model also captured behaviors such as the wheel flange
impacting upon rail, which Model I failed to do. The Modified-Garg model proved to be
the most accurate model over the varying conditions. In particular, flange contact is a

very important characteristic in railway dynamics as it causes wear, unbalanced
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movement, and possible derailment. The ability of a model to capture flange contact is

therefore very desirable.

Hunting, a side-to-side movement at specific velocities, was investigated by examining
responses at the velocities. The Modified-Garg model predicted a critical speed lower

than the other three models (15 m/s versus 17 or 21 m/s).

Finally, in terms of control, this thesis focused on mechanical passive control. It was

found that kvx yielded the greatest effect on the system. Damped response, however, was
achievable with the use of higher ky, . The distance for the system to settle to 5% of the

original displacement was found to be, 35.18m, 17.42m, and 9.27m with the yaw spring
taking values of k, = 15x10°Nm ™", k, = 30x10°Nm™" and k, = 45x10°Nm™

respectively. It should be noted that the system is assumed operated without viscous

dampers, but did make use of creep forces which apply a damping effect.

Recommendations for future work include:

(1) to extend the research to two-axle wheelsets, and subsequently to the assembly of
wheelsets, trucks, and car bodies.

(2) to investigate additional mechanical damping in order to provide greater mechanical
control.

(3) to investigate wheel and rail wear, and the effect on the dynamics from such.

93



Appendix A — Track Transformation Matrix

The following details the derivation of the transformation matrix for TC2, or 4 in
equation (4.17b). First, the track is treated as a curve with time ¢ as the parameter.

Coordinates of the curve at any given time ¢ are,

x=Vt
0 x <50
y=1p(x-50) 50<x<50.1
0.1p x>50.1
z=0
where p is,
_0.005
0.1
The velocities are given as,
x=V
0 x<50
y=9p¥V 50<x<£50.1
0 x>50.1
z=0
Lastly, the accelerations are given,
X= y =z=0

In vector form, position, velocity, and acceleration vectors at 7 are,

r=xi+ yj+zk
r=xi+ yj+zk
rF=XxXi+yj+7zk
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The tangent vector is then,

_ [t 0 o] x <50, x>50.1
r
T=—= 1

lE] Nvrg [l p 0]  otherwise

The binormal vector 1s,
B=[0 0 1]
And the normal vector is,

[0 1 o] x <50, x >50.1
N=BxT={ |

T .
T [-p 1 0] otherwise

Therefore the transformation matrix is,

1 0 0
010 x <50, x>50.1
0 01
- L, 0_
Atc =[T N B] =J \/1 +p2 \/1+p2
0 otherwise

)4 1
\/1+p2 \/l+p2
0 0 1

: : . : d
The above expression can be written in a compact form by defininga = Ey , such that,

cosag -sinag O
A€ =|sina cosa O
0 0 1
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