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ABSTRACT 

This thesis is an attempt to establish an abstract model 

for Lebesgue measure and Baire categorjr. 

In the introduction we list several similarities between 

Lebesgue measurable sets and sets having the property of Baire. 

Then we abstract these similarities and use them as axioms. 

In Chapter I, we introduce a generalized model and prove 

some results that are well-known both in measure and category. 

In Chapter II, we define kernels and covers. After prov- 

ing their existence for any set, we proceed to find some interest- 

ing results. 

It is very natural to consider the quotient algebra if 

we have an algebra containing a proper ideal. Hence Chapter III 

inevitably comes into the scene. 

In Chapter IV we introduce analytic sets through A-opera- 

tions. This approach enables us to prove that every analytic set 

belongs to our model. 

In Chapter V we consider the local properties of sets 

and prove some interesting results. 

Chapter VI is taken from the work of J. C. Morgan II. 

We include his work here for the completeness of the thesis. Al- 

so, as we will see, it gives us a new insight into "negligible sets". 

We conclude the thesis by setting up a list of questions 

which, we think, are rather challenging. 
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NOTATION 

IR denotes the real line. 

IB denotes the family of all Borel subsets of IR. 

IN denotes the set of positive integers. 

NQ denotes Mo. 
N denotes H- 
(|) denotes the empty set. 

|A| denotes the cardinality of A. 

c denotes the cardinality of continuum. 

IP(A) denotes the power set of A. 

A denotes the closure of A. 

A* denotes the complement of A, i.e. IR-A. 

A denotes the kernel of A in Propositions 44 to 52. 

A denotes the cover of A in Propositions 44 to 52. 

AB denotes A^^B. 

AAB denotes the symmetric difference of A and B. 

UF denotes ^ F. 
Fe^’ 

A class of sets that contains countable unions and arbitrary subsets 

of its members is called a a-ideal. 

A non-empty class S of subsets of |R is called a a-ring if it is 

closed under the operations of countable union and complementation. 

It is called a a-algebra if |R itself is a member of S, 

A subset of IR is said to have the property of Baire if it can be 

represented in the form GAF where G is open and F is of first 

category. 

Ill 



Throughout this thesis, we assume r as a a-ideal that 

satisfies the following axioms: 

(i) r does not contain any non-empty open set. 

(ii) All singleton sets belong to T. 

(iii) For each A e F, there is a K e IBAF such that A s K. 

(iv) Every non-empty perfect set has a non-empty perfect subset 

in r. 

(v) There are at most NQ disjoint Borel sets none of which is 

in r. 

IV 
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INTRODUCTION 

The purpose of this thesis is to put into an abstract 

setting results concerning Lebesgue measurable sets and sets hav- 

ing the property of Baire. Results of this paper are, of course, 

satisfied in both of the above cases. For the sake of simplicity, 

we restrict ourselves to the subsets of the real line |R. The 

continuum hypothesis "c = N^" is assumed and used without fur- 

ther mention. 

It is well known that any set can be represented as a 

disjoint union of a null set (set of measure zero] and a 

set of first category [12] . If a non-measurable set is given, we 

obtain a non-measurable set of first category. On the other hand, 

from a measurable set, we have a measurable set of first category. 

Hence, a set possessing the property of Baire can he measurable or 

non-measurable. Similarly, a measurable set may or may not have 

the property of Baire. Thus, it seems that measurable sets and 

sets having the property of Baire are totally different, but this 

is not the case; there are many similarities, some of which will 

be shown here. For example, a famous theorem proved by Sierpinski 

and refined by Erdos is as follows: 'assuming the continuum hypo- 

thesis, there exists a bijection f of the line to itself such 

that f = f ^ and such that ffh] is a null set if and only if 

E is of first category*. This theorem justifies the following 

principle of duality. Let P be any proposition involving solely 

the notion of null set and notions of pure set theory (for example. 

1 



2 

cardinality, disjointness, or any property invariant under arbi- 

trary one-to-one transformation]. Let P* be tke proposition ob- 

tained from P by replacing "null set" by "set of first category" 

throughout. Then each of the propositions P and P* implies 

the other, assuming the continuum hypothesis. 

Some basic properties which are true in both models will 

be considered here. To begin with, a subset of a set of first 

category is again first category, and the countable union of sets 

of first category is also first category. A family of sets which 

is closed under countable union and hereditary is said to form a 

a-ideal. Therefore sets of first category form a a-ideal. Null 

sets also have the above properties and hence they too form a a- 

ideal. Baire proved that an open interval is of second category 

and thus "every non-empty open set is not of first category." Al- 

so "every non-empty open set is not of measure zero." Singleton 

sets are nowhere dense, and so "all singleton sets are of first 

category." In measure, "all singleton sets are of mea- 

sure zero." If a set A is of first category, then it is a count- 

able union of nowhere dense sets. But the closure of a nowhere 

dense set is also nowhere dense. This implies that A is con- 

tained in a set of first category, and sets are Borel 

seta, therefore, "any set of first category is contained in a Borel 

set which is of first category." In measure, every null set is 

contained in a set of measure zero; and seta are Borel 

sets. Hence "any null set is contained in a Borel set which is of 
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measure zero." It is well known [18, p. 23] that any uncountable set 

contains an uncountable nowhere dense closed null set. From 

P. S. Alexandrov's result that every uncountable Borel set contains 

a non-empty perfect subset, it follows that "every non-empty per- 

fect set contains a non-empty perfect subset of first category" 

and "every non-empty perfect set contains a non-empty.perfect sub- 

set of measure zero." Kuratowski [10, p. 256] proved that every family of 

disjoint sets each with the property of Baire and none of which is 

of first category, is countable. This together with the fact that 

every Borel set has the property of Baire gives the following: "a^ 

family of disjoint Borel sets none of which is of first category, 

is countable." Due to the cr-finiteness of !R for measure and 

the countable additivity of measure, we Can easily prove that 

every family of disjoint measurable sets, none of which is of mea- 

sure zero, is countable. This, together with the fact that every 

Borel set is measurable, implies that "a family of disjoint Borel 

sets, none of which is of measure zero is countable." The proper- 

ties that are underlined do not exhaust all the similarities be- 

tween Lebesgue measurable sets and sets having the property of 

Baire. In this thesis, the above properties are taken as axioms 

and other similarities are derived from these. So our model will 

be a common generalization of Lebesgue measurable sets and sets 

with tire property of Baire. For similar work, see [9] and [13J. 

Although, our results are proved in IR, many of them 

hold good if IR is replaced by a complete separable metric 
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space of power N i. 



CHAPTER I 

In this chapter we establish a model which is a general- 

ization of the family of Lehesgue measurable sets and the family of 

sets with the property of Baire. Then we derive some well-known 

results including one of Sierpinski's and another concerning the 

Lusin set. 

Proposition 1, Alt aouritabte sets belong to r. 

Proposition 2. |F| = 2^» 

Proof, r contains a non-empty perfect set C^^ciom iv) , and F is 

a a-ideal, so |F| > 2^. On the other hand, F is a subset of 

PCIR), so |F| < I P(IR)| = 2^. Hence |F| = 2^. 

Proposition 5. | B\ = o. 

This result is well-known, for a proof, see [6, p. 26J . 

Proposition 4. \V- IB\ = 2^, 

Proof. Since |F| = 2^ and | IB| = C, therefore |F- (B| = 2^. 

Proposition 5. | ^5nr| = 

Proof. I lBnF| s | IB| = c, and Axiom ii implies that | IBnF| ^ c. 

Definition 6. 9 = {A : A = BAM for some B e B and M e F}. 

Note that 9 is a generalization of the family of Lehesgue measur- 

able sets and the family of sets with the property of Baire. 

5 
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Proposition 7. A ^ B if and only if theve is a Boret set B such 

that Al^ e V, 

Proof. A e 9 implies A = BiAMi for some e (B, and Mj. e r. 

The symmetric property of "A” gives AAB2 = BiACBiAMi) = M^; let 

B = Bi. Now suppose that there is a Borel set B such that 

AAB e r. Since A = (AAB)AB, we have A e 9. 

Theorem 8. 9 is the a-atgebra generated by IB and sets in F. 

Proof. A e 9 implies A = BAM for some B e IB and M e F. This 

gives A’ = B’AM. But B’ e |B, therefore A’ e 9. If A. = B.AM. 
^ 111 

00 00 00 

for B^ e IB and e F; let A = (J A. , B = (^ B. , M = (J, M. . 
i=l i=l i=i ^ 

Clearly B~M £ A £ BuM which in turn gives B-A £ M and A-B £ M. 

Therefore AAB e F. Hence A e 9 (Proposition 7). 

Proposition 9. |9-F| = 2^, 

Proof. Let I = [0,1]. There exist 2^ F-sets (i.e. sets belong- 

ing to F) outside I. If A is a F-set outside I, then 

Aul e 9-F, so |3-F| ^2^. Since 9-F £ IP( IR), the result fol- 

lows . 

Proposition 10. If A ^ then there exist B e /B-F and 

M e T suoh that Bc\M = (p and A = BuM^, 

Proof. A e 9 means A = BiAMj. for some B2 e IB and Mj. e F. 

Axiom iii implies that there is a set K £ M2 with K e iBnF. 

Since 



7 

A = BJAMI 

= ICBi-iC)uCBinK}JA.(MinK} 

« [CBi-K)ACBinK]]ACMinK) 

- CBi-K)AlCBiAMi)nK] 

^ CBi-K}u[CBiAMi)nKj . 

Let B = Bi“K, and M = (BiAMi)nK. Then the result follows. 

Proposition 11. If A e d-T then A eontains a non-empty per- 

fect subset betonging to r. 

Proof. A e 8-r implies, by Proposition 10, that there exists 

B £ A with B e IB-P. P. S. Alexandrov proved that every uncount- 

able Borel set contains a non-empty perfect subset [17]; this, to- 

gether with Axiom iv implies the result. 

Theorem 12. If A z 3-Tj then A contains c perfect sets. 

Proof. A e implies, by Proposition 11, that it contains a 

non-empty perfect set in r. Let F be the family of all those 

perfect subsets of A which are in T. Now if |i^| ^ NQ, then 

UF e r. But A-UF e 3-F implies that it contains a non-empty 

perfect subset P in r. Therefore P e F, a contradiction. 

Hence |F| > c, and |i^| < ||B| = C, SO |F| = C. 

Now if A e 9-r, then there exists an H c A such that 

H and A-R intersect every non-empty perfect subset of A. This 

can be proved as follows: let F be the family of all non-empty 
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perfect subsets of A. Well order F, i.e. F = {p : ot < oa } 

where is the first ordinal having c predecessors. Also, 

well-order each member in F, Let Pi,qi be the first two ele- 

ments in Fi, let P2>^2 t>e the first two elements in F2 that 

are different from Pi,qi. If 1 < a < w and if p and q_ 
c p P 

have been defined for all 8 < a, let p be the first two 

elements in F , - {p„ ,q }; this can be done because 
ot p p 

IF I = c and Un {Pn^q^} is countable. Now let 
' a' 3<a p 3 

H = {p^ : a < 0)^}. H intersects every perfect subset in A, and 

since A-H contains all q^, A-H intersects each perfect subset 

in A. 

H, constructed above, is a totally imperfect set, i.e. 

a set which contains no non-empty perfect subset. 

Proposition 15. If H is totally 'imperfect^ then K c H and 

iC e 9 'imply K z V, 

Proof. Suppose K e 9-F; then K contains a non-empty perfect 

subset belonging to F (proposition 11), which is a contradiction. 

Theorem 14. If both H and are totally 'imperfect^ then 

H ^ 9. 

Proof. Suppose H e 9; then H e F ^Proposition 13). This im- 

plies that R' e 9, and so K' e F. Hence IR = HuH' c F, 

which is a contradiction. 

The results of Proposition 13 and Theorem 14 still hold 
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if H and A-H are totally imperfect provided A e 3-F and 

H c. A. 

theorem 15. If A ^ then A contains a subset not in 9. 

Proof. Suppose H and E* are totally imperfect, consider AnE 

and AnE'. If they are both in 9, then they are both in r 

(Proposition 13). Also A = (AnE) u (AnE') implies that A c F, 

which is a contradiction. 

Corollary 16. If fPCA) £ 9j then A z V, 

Corollary 17. If A V then either A ^ d or A == u 

with Hi n H2 = (l> and Ri^E2 / 9.   

The following is a generalization of Sierpinski's result. 

For similar proofs, see [18, p. 76] and [22, p. 77]. 

Theorem 18. If F^F^ ore two c-ideals satisfying the Axioms^ 

then there exists a hifection f of IR to itself such that 

fCA) £ F'^ if and only if ^4 e F. 

Proof. By Proposition 5, | BnF| = c. Well-order IBnF by 

: t < where 0, is the first uncountable ordinal. Next 

define by transfinite induction a sequence {A^ : t < of dis- 

joint sets in F such that |A^| = c for all t and for each 
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A 0 r there exists t' < such that A 9 U A . 

t<t ’ ^ 
This is done hy^ first choosing AQ to he an)^ uncountable set in 

r. If sets A-, k < t < n are chosen, then since LI A e F and 
^ k<t ^ 

CU \y e a-r it follows from Proposition 11 that A }' 
k<t k<t ^ 
contains a non-empty perfect subset in r. Now define 

A = P u A,0 • Similarly, define a transfinite family 
^ k<t ^ 

{A* : t < associated with F*. Since A^ = A* = c, there 
t ‘ ' t' ^ 

is a one to one function f that maps A^ onto A* and since the 

A *s are disjoint and IR = O A , it follows that f : IR IR 
^ t<^ ^ 

is one to one and onto. Now A E F if and only if A £ LI A 

t<t' ^ 
for t' < if and only if f(A) £ f(U A ), if and only if 

t<t’ ^ 

fCA) S U A* if and only if f(A) e F*. 
t<t» 

If F is the family of sets of first category and F* 

is the family of nullsets, then we obtain Sierpinski^s re- 

sult. Suppose further that there is a set M e F whose comple- 

ment M' e F*. Then there exists a bisection f of IR to it- 

self such that f = f”^ and such that f(E) e F* if and only if 

E e F. This is the generalization of Erdos refinement for Sierpinski's 

result. For a proof, see [18, p. 77]. 

The following CCorollary 19 to Theorem 23) are interest- 

ing results that are similar to those which Sierpinski collected 

in his masterpiece ”Eypotb6se Du Continu". 

Corollary 19. If E ^ then E vntevsects uncountahly many 

elements in {A. : t < t 
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Proof. Let F be th.e family' of sets in {A^ : t < which E 

intersects. If |F| < NQ, then UF e T and K = E-OF ^ V. 

Now = cp for all t < implies that Kn IR = ^, a contra- 

diction. 

Definition 20. An^ unGountabte set such that no uncountable 

subset of E belongs to Vj ts called a Lusin set. 

Theorem 21. E ^ T tf and only tf it contains a Lusin set. 

Proof. If E contains a Lusin set, then obviously E ^ r. Sup- 

pose now E ^ r. Corollary 19 implies that EnA^ ^ (p for uncount- 

ably many t. Let A be formed by choosing one point from each of 

these. Then |A| = c. If K £ A is uncountable, then K is not 

covered by countably many A^'s and so K ^ r. 

Corollary 22. There exists a one to one mapping f of !R onto 

a subset of itself such that f(E) ^ T whenever E is uncountable. 

Proof. Since a Lusin set L has cardinality c, there is a one to 

one function f from R onto L. If |E| = C, then fCE) ^ P. 

Theorem 25. If 4 ^ then we can decompose A into c dis- 

joint sets none of which belongs to F. 

Proof. Two methods of proof are exhibited, the first one is much 

shorter, the second one, though longer, has its own importance. 

Method 1. A ^ F implies it contains a Lusin set L CTheorem 21}. 
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Since | IR| - |L| = C, there is a one to one function which maps 

(R onto L. Also since there are c disjoint uncountable sets 

in IR there are c disjoint subsets of A, and each one is not 

in t. Adjoin A minus their union to any one of them. 

Method 2. This method is due to Ulam [18, p. 25] and the proof is as 

follows: A k; r implies |A| = c. Well-order A such that for 

each y e A, the set {x : x < y} is countable. Let fCx,y) 

be a one-to-one mapping of this set onto a subset of positive in- 

tegers. Then f is an integer-valued function defined for all 

pairs Cx,y) of elements of A for which x < y. Since f is 

one-to-one, if x < x' < y, then f(x,y) ^ f(x',y). For each 

X e A and each positive integer n, define = {y : x < y, 

fC^>y) = ri} and establish an array as follows: 

Xl X2 X3 

Xl X2 X3 

Note that there are only countable rows but c columns. We claim: 

Cij the sets in any row are mutually disjoint, (ii) the union of 

the sets in each column is cocountable. The proof of Ci) is tri- 

vial: suppose y e F^ n F^, for some n, y,x and x’ with 

X < X*. And if x* < y then x < x' < y and fCx,y) ^ fCx',y)> 

which contradicts the definition of F^. To prove Cii) observe 

that X < y implies that y belongs to one of the sets F^, 

to the one for which n = fCx,y}. Hence the union of the sets 

i.e. 
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= 1,2,...] differs from A hy the countable set {y : y < jc>. 

Since tbere are c columns and NQ rows, there must be a row such 

that there are c elements not in T. If not, then all rows have 

only countably many elements not in F, which implies that there 

are NQ elements not in F in the whole array. Then there is a 

whole column such that each of its elements belongs to F. Hence 

A e F, which contradicts the fact A ^ F. Therefore there are c 

disjoint elements none of which belong to F. In case the union of 

these sets so obtained is not equal to A, adjoin the complement 

of that union to any one of them. 

Proposition 24. There ex'tst at most NQ dtsootrit sets tn 9-F. 

Proof. The result follows easily from Proposition 10 and Axiom v. 

Corollary 25. There ex'tst NQ dts^oint sets tn 3-F. 

Proof. Proposition 24 and Axiom i imply the result. 

Proposition 26. X/ i4 ^ Fj then A can he decomposed into o 

disjoint sets none of which core in 9. 

Proof. Theorem 23 and Proposition 24 imply that there are c dis- 

joint sets none of which are in 9. Adjoin A minus their union 

to any one of them. 

Proposition 27. If A z V’- then A can he decomposed into 

c disjoint sets each of which hetongs to T- IB, 
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Proof. By' Ulam's metkod as in tfie proof of Theorem 23. 

From Axiom i, we get the following result. 

Proposition 28. If A e V then A' is dense in (R, 

Proposition 29. There is no set A in V which intersects each 

uncountabte set in r. 

Proof. Suppose there is such a set A. Since A e r. A’ e 3-P, 

and so A* contains a non-empty perfect set P in r fP^oposi- 

tion 11)* But |p| = c which means AnP ^ <j), a contradiction. 

Proposition 50. If A^B e 9j then either Av^B e T or A r\ B 

contains a set K with K e JB-T, 

Proof. Suppose AnB ^ F, then AnB e 3-F. The result therefore 

follows from Proposition 10. 

Proposition 31. If fe; F and B' e then AnB ^ F. 

Proof. AnB e F and AnB’ S B’ implies A e F, a contradiction. 

Proposition 32. If E e T and it is then E is of first 

category. 

GQ 

Proof. If E is F , then E = O E. where the E.'s are closed. 
  a . T 1. 1 

1=1 
By Axiom 1, each E^ is nowhere dense. Hence E is of first 

category. 

Proposition 53. If A e 9-F and K e then A contains a 
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subset E e B-V such that BnK e T or BnK^ e r. 

Proof. Suppose AnK e T, Since A e 9-r, A contains a subset 

B e JB-r CP^oposition 10} . Hence BnK e V, Next if AnK ^ r, 

then AnK e 9-r. This implies by Proposition 10, that AnK £ B 

with B e IB-r. Therefore BnK' - e r. 



CHAPTER II 

Measurable kernels and covers pia>^ an important role in 

the investigation of inner and outer measure. For references, see 

[4], [6J and [15]. 

Some problems concerning the property of Baire can be 

solved by means of the Baire kernels and hulls, see [25] and [26]. 

In this chapter, we establish definitions of kernels and 

covers similar to those pertaining to measure and category. Then 

we prove their existence for any set, and then derive some inter- 

esting results. 

Definition 54. The kernet K of a set A ts a maxtmat subset of 

A in 9, in the sense that K ^ A^ K e d and if L ^ Aj L E 9^ 

then L-K e T. 

Definition 55. The cover C of a set A is a minimal set in 

9 which contains A; i,e, if A ^ L and L e 9^, then C-L e r. 

Theorem 56. For any set A^ there exists a hemel K ^ A. 

Proof. Zorn's Lemma implies the existence of a maximal set F of 

disjoint elements in IPfA^) n C9-I) • Proposition 24 implies that 

|vF| < NQ. Let K = Up. Obviously K e 9 and K c A. Suppose 

L e 9 and L o A; then L-K e 9. Since L-K does not intersect 

any element in F, and F is maximal, it follows that L-K e V. 

Corollary 57. For any set A^ there exists a cover C £ A. 

16 
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Proposition 58. Every set has a hemet which is a Eoret set. 

Proof. Let K. he a kernel of A. By Proposition 10, K = BuM 

where B e IB and M e F. Consequently, the Borel set B Is 

also a kernel of A. 

Similarly, every set has a cover which Is a Borel set. 

Proposition 59. If both K\ and K2 ar*e kernels of Ay then 

K1AK2 G r. 

Proof. The result follows easily from the definition. 

Proposition 40. If both Ci and C2 ore covers of Ay then 

C1AC2 G r. 

Proof. The result follows easily from the definition. 

Proposition 41. Let be a sequence of sets and {K.} be the 
00 

corresponding sequence of kernels. Then O K. is a kernel of 
00 '1=2 ^ 

Proof. Let L S O A., and L e 3. Then L - (O K.) = O (L-K.) 
i=l ^ i=l ^ i=l ^ 

and the result follows easily from the definition. 

Proposition 42. Let {Aj} be a sequence of sets and {C.} be 
00 

the corresponding sequence of covers. Th^n (J C. is a cover of 
• -1 ^ ca '1^=2 

Proof. Let E e 3 and E => U A.. Then U C.-E = O CC.-El e F. 
—  “.TX .,1. 

1-=1 i.= l x=l 
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OQ GCL 

Thus U C. is a cover of U A. . 
x=l r=l 

If H and E' are both totally imperfect, then by Propo 

sition 15, their kernels ate both in r. But HuE' ^ IR. Hence 

the following is proved. 

Proposition 45. If KIJK2 are kernels of Ai^A2 respectively; 

it is not necessarily true that K\\iK2 is a kernel of AiuA2» 

In the Propositions 44-52, we denote by A a cover of 

A and by A a kernel of A. 

Proposition 44. If A £ then z T, 

c 
Proof, Since A £ B £ B , the result follows easily from the de- 

finition. 

Similarly, the following is proved. 

Proposition 45. If A £ B^ then A^-B^ e r. 

Proposition 46. If an increasing sequence of setSy then 

there exists an increasing sequence covers corresponding 

to {il } such that Clim A^)hClim A z V, n n n 

Proof. Let {C } be a sequence of associated covers of {A }. De 
  n ^ n 

fine A? = C,, and A^ = CA^ i-C ) u C for n > 2. Obviously 11* n ^ n-1 n n ^ 
c 

{A^} is an increasing sequence of covers corresponding to 

c c 
Since A => A ^ A for n > m, it follows that lim A => A . n - n ~ m n ~ m 

c c Also m is arbitrary implies lim A lim A . But lim A e 9 
^ n “ n n 
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c c 
implies that (lim A } - lim A e V. Moreover, from lim A 2 A_, ^ ^ n n n m 

c c 
Proposition 44 implies that A^ - Qini A^] e T. Since m is 

arbitrar>^, lim A^ - Cli® Hence Qin* A^]AClini e r. 

Similarly, the following can be proved. 

Proposition 47. If ia a deareasing sequence of sets^ then 

?c there exists a decreasing sequence of kernels corresponding 

k k 
to {A } such that (tim A )L(tIm A ) s V, n n n 

Proposition 48. If M e 9j then for any set A^ 

Mti[(MA)^ u (M-Af] e T. 

Proof. Since M-A c M and M e 9, implies that (M-A)^ - M e r. 

k This together with the fact that CMA) £ M implies 

[CMA)^ u CM-A)^] - M e r. Conversely, M-CM-A)^ c M-(M-A), 

c c implies M-(M-A) c MA. But since M-CM-A) e 9, it follows from the 

definition that [M-(M-A)^] - (MA)^ e T. Therefore 

M-[CMA)^ u (M-A)^] e F. Hence MA[(MA)^ u (M-A)^] e T. 

One can compare this result with the following result 

in Measure Theory: If M is measurable, then for any set A, 

uCM) = y*CMA) + y*CM-A} where and y* denote the inner and 

outer measure respectively. 

Proposition 49. If M e 9^ then for any set A^ CA^M)t,.CAM)^ e r. 

Proof. Let L = A*^-I CA‘^M}-CAM]‘^J = U IASCAMJ'^J 

= CA*"-M] u |A^n(AM}*^J. Obviously L E 3. Since A-M c A^'-M 
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and AM £ n CAM}^, tiien L £ CA-M] u (AM] = A. It follows 

from tfie definition that A^-L e F, i.e. ’ A^ n [ CA^M]-C^M)^] e !. 

Therefore CA^M]-CAM]^ e V. Conversely, AM c A^M, and A^M e 9. 

Then CAM]^-CA^M] e V. Hence (A^MJACAM]^ e T, 

k k 
Proposition 50. If Af e 9j then for any set (A M)L(AM) z r, 

Proof. Since (AM)^ e 9 and CAM) ^ £ A, then CAM]^-A^ z T. 

Therefore (AM)^-CA^M) e F. Moreover, A^ £ AM and A^M z 9. 

Then A^M-(AM)^ e F. Hence (A^M)ACAM)^ e F. 

Proposition 51. If {M } is a sequence of sets and ■ A is any 
. 00^00 

sets then (U A M L O (A M z F. 
1 n 1 r, n~l n=l 

c 
Proof. Since CAM ) is a cover of AM , Proposition 42 implies 

OO 00 oo 

that O CAM )^ is a cover of k U . But CO A M is 
n=l ^ » n=l ^ n=l ^ 

also a cover of (J A M . Result then follows by Proposition 40. 
n=l 

Proposition 52. If {M } is a sequence of sets in 9 and A is 

any set^ then C(j AAfJ^A(J (A M z Y, 
^ n T n n=l n=l 

Proof. Let M = (j M and B be a kernel of AM. Define E = BM 
  n 

n=l 
and E = E M . It is obvious that E is a kernel of AM and 

n n 
OO 

E is a kernel of AM. Since EM = E, we have E = U E . 
n n ' 1 n oo n=l 
Observe that U AM = AM; this together with Proposition 39 

implies EACO A M ]^ e F. But EA O CA M ]^ = ( (J E ]AU CA M ) 
n=l n=l ^ n=l ^ n^l ^ 

k 
and E is a kernel of AM. Therefore EA (J CA M ) E F. 

n n , n 
oo V V 

Hence CU k M ) A(J (A M )^ e F. 
n=l n=l 



CHAPTER rrr 

In this chapter we define an equivalence relation on 

9 which enahles us to obtain a quotient algebra. We prove that 

the quotient algebra is complete. 

Theorem 55. If C £ then there exists a oountahte subset K 

of C such that for each C e C-UK e r. 

Proof. If L is a a-ring generated by C, then obviously 

C £ L £ 9. Let N be the family of sets each of which can be 

covered by a countable union of elements of C. Clearly N.„ Is. a 

a-ring containing C, and therefore C £ L £ N. Zorn's lemmma 

implies that there exists a maximal family F of disjoint elements 

of L-T, Since F £ L-T £ 9-P, it follows from Proposition 24 

that |F| < NQ which, in turn, implies that e L, for L is 

a a-ring. This means that e N and hence there exists a 

countable subset K of C such that (JF £ UK. The fact that 

F is maximal implies L-UF e V for each Lei. Now C e C, 

implies C e L. This means that C-OK C C-UF E r. Hence 

C-UK e r. 

Definition 54. A'^B if and onty if AhB c P. 

Proposition 55. is an equivalence relation. 

Proof. since e V. Due to the symmetric property of "A", 

A'vB implies B'vA. Now suppose A'vB and B^; then A-C c CA-Bj u 

CB-C) and C-A c (C-,B) u C^-A) and so A-C and C-A are both 

21 
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in r. Tkerefore A'^C. 

Since is an equivalence relation, it decomposes 

3 into disjoint classes, i.e. tke equivalence classes of the re- 

lation Ai ,A2 are in the same class if and only if A2'V'A2. 

The class containing an element A e 3 will be denoted by [A]. 

By definition, the following conditions are equivalent: A^B, 

A e [B], [A] = [BJ . 

Let 3/r denote the set of all equivalence classes 

[A], fA e 3). 3/r is an algebra and it is called the quotient 

algebra of 3 modulo r. 

Theorem 56 . | 3/r | = e; 

Proof. Suppose A e 3; then A contains a Borel set B such 

that A'vB and so |9/r| ^ | B| = C. NOW suppose A,B are two 

open intervals, and suppose A ^ B. Then there exists x e A-B 

and an open neighbourhood N of x such that N c A-B. Hence 

A-B ^ r, and so [A] ^ [B]. Since there are c distinct open 

intervals, there are at least c distinct equivalence classes. 

Hence |3/r| = c. 

R. Sikorski proved in [22, p. 74] that 3/r is a a-algebra and, 

for every NQ-indexed set A e 3 ft e T), V ,^[A ] = [U A J and 
t tel t t 

= lO A^J where "A” denote the join and the 
^ ^ tcT 

meet respectively. Sikorski also established the following: an 

element [A] fA e 3} is the join of an indexed set of elements 

[A^J Ct e T) in 3/r if and only if fi) ^^“A e r for every 
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t e T, CiiJ If ^ ^ ^ for every' t e T, then 

A-AQ e r. 

Definition 57. An alg&hra U is said to he oomptete if and onty 

if both the yoin and the meet exist for att subsets of U, 

There is a theorem in algebra [5, p. 26] which states that if 

every subset of an algebra has a join, then that algebra is com- 

plete. Hence there is no need to check the existence of the meet. 

Theorem 58. 9/r is a oomptete algebra. 

Proof. Let {[A^]}^^^ be a subset of 9/r, and C - 

Since 6* ^ 3, by Theorem 53 there exists a countable subset 

K = {A^ ^ of C, such that A^-OK e r for every t e T. 

Suppose A^-AQ e r (AQ e 3) for every t e T, then 

OK-AQ = ^ (AQ^ “AQ)- But A^ -AQ e T for every e IN, 

implies O K-AQ e r. Hence [Ok] is the join of ^[^t^^teT* 



CHAPTER IV 

There are many approaches to analytic sets C^ee I8J}. 

We define analytic sets through the A-operations. This approach 

has advantages over the others as we will see in this chapter. 

Let JP be a class of sets. Assign to each finite col- 

lection Chof natural numbers, a definite set 

in F, The set 
n 

F = u n ^ , 
k,...k ... n=l 1 *■■ n 

1 n 

where the union is over all infinite sequences of natural numbers, 

is called the result of A-operations on the sets of the class F. 

If F is a class of closed sets, then F is called an analytic 

set, briefly A-set. Let A(F) denote the family of all sets which 

are the results of the A-operations on the sets of F, Also, 

let and 1(F) be the families of all sets which are the 

unions and intersections, respectively, of a countable aggregate 

of sets which belong to F, The following results are proved in 

[20, p. 212J. 

Ci) ACF) = A(A(F)). 

Cii) SCf) SACF). 

(iii) lOT SACF). 

In particular, F s ACF) . Now if C denotes the family of all 

closed seta, then ACC) is the family of all analytic sets. Since 

ACACC)) = ACC), it follows that SfAfC)) £ ACACC))= A(.C) and 

24 
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ICACT) £ A.(CJ; hence analytic sets are closed under countable 

unions and countable intersections. Also C s ACC), i.e. ever)^ 

closed set is analytic. From these observations, it can be seen 

easily that every Borel set is an A-set. The fact that analytic 

sets form a strictly larger class than the class of Borel sets was 

proved by Kuratowski in [lO], §38, VI. 

9 is closed under countable unions and complementation. 

Proposition 24 implies that each class of disjoint sets in 9-T 

is at most countable. These conditions coincide with conditions 

1°,2° and 3' in E. Szpilrajn's paper [23], therefore 9 is in- 

variant under A-operations. 

Proposition 59. 9 =AC3J, 

Proof. 9 is invariant under the A-operation, so that ACS) «^9. This 

together with 9 £ A(9) implies that 8 = A(9). 

Theorem 60. All analytic sets belong to 9. 

Proof. Let C be the family of all closed sets. It is obvious 

that ACC*) £ A(9) for C £ 9. Therefore A^C*) £ 9 by Proposition 

59. 

Sierpinski [20, p. 224J proved that every uncountable analytic 

set contains a non-empty perfect subset. Now suppose both H and 

E’ are totally imperfect. If A is any uncountable set in F, 

then either AnE or AnE' is. an uncountable set in 9 which 

contains no non-empty perfect subset. Eence the following result 
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is proved. 

Proposition 61. Every uncountahte set in T Qonta-ins a non-ana-- 

tytto subset, 

Kuratowski in [lOj defined the projective sets of class 

0 as the Borel sets. The projective sets of class 2n+l are con- 

tinuous images of the projective sets of class 2n (lying in the 

same space); the projective sets of class 2n are the complements 

of the projective sets of class 2n-l. In particular, the pro- 

jective sets of class 1, i.e. the continuous images of Borel sets, 

are called analytic sets; their complements, i.e. the projective 

sets of class 2 are called analytic complements. Kuratowski 

also proved that the definition he used for analytic sets and the 

definition of analytic sets as given here are equivalent. If 

denotes the projective sets of class n, then LQ, LI, L2 belong 

to 9. K. Gddel [3] proved that the hypothesis of existence of 

non-measurable sets of L3 does not contradict the axioms of set 

theory. However no actual example of a non-measurable set of L3 

is known (see [24]). Thus it is impossible to prove that L3 c 3 

by the usual system of axioms of set theory. 



CHAPTER V 

This chapter is devoted to the discussion of the local 

properties of sets. We use the definitions introduced by 

Kuratowski in £10J. Then we prove some interesting results. 

Definition 62. A i^s sa'id to he of F at the poi-nt p tf there 

extsta a neighbourhood E of p such that CAnE) e F. Let A* 

denote the set of points at which A is not of F. 

Note that the neighbourhood E of p in the above de- 

finition may be required to be open since each neighbourhood E 

of p contains an open neighbourhood G of p. The following 

properties are given by Kuratowski in [10], §7, IV. 

Proposition 65. 

Theorem 64. A 

Ci) A^ is closed, 

(ii) A s B implies A’^ £ 

(Hi) A** c. A* = A* SL A, 

(iv) If G is openy then G pi A’^ = G n (GcA)’^. 

Cv) (O A )* cz C) and U c £M A )^y 
azT aeT aeT azT 

where T is any set of indices, 

Cvi) (A^B)^ ^ A^ B*, 

Cvii) A>^-B* c CA-BJ*, 

e F if and only if A is of F at each of its 

points. 

Proof. If A e F, it is trivial that A is of F at each of 

its points. Now suppose A is of F at each of its points, IR 

27 
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has a countable open base R2,R2>*.* • For p 

be any* basic open neighbourhood of p. Since 

implies that U CAOR (-^0 == A e r. 
peA 

Proposition 65. The fo'itoW'Cng are equivatent: 

Ci) A e V, 

e A, let 

CAnR . . ] 
n(p)^ 

n(p) 

e r, this 

C'ti) Ar\A^^ = (f), 

= (f>. 

Proof. Result follows easily from Theorem 64. 

Proposition 66. CA-A’^)’^ ~ cf). 

Proof. Proposition 63 Cii] implies CA-A*)* £ A*. Since 

CA-A*) n (A-A*)* £ (A-A*) n A* = cj), then by Proposition 65, 

CA-A*)* = (I), 

Proposition 67. A^-A^^ = <t>. 

Proof. By Proposition 63 (vii), A*-A** £ (A-A*)* and the re- 

sult follows from Proposition 66. 

Proposition 68. A^ = A^^, 

Proof. Proposition 63 Ciii) and Proposition 67 implies the result. 

Proposition 69. CAnA^J^ = A^, 

Proof. Since A = CA-A*} u CAnA*}, by Proposition 63 Cvi}, 

A* = CA-A*}* u (AnA*}*. Therefore A* = CAnA*}*. 
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Proposition 70. If A £ Bj then A contains, a Eorel set R 

such, that A* ^ R^ £- S. 

Proof. If A e r, then B = • Now suppose A e 9-r. Proposi- 

tion 10 implies that A = BuM for some B e IB-T and M e F. 

This gives A* - CBuM)* = B*uM*. But M* = hence A* = B* £ B. 

Proposition 71. If Ai = {x e A : A is of T at x}^ then ^4^ e F. 

Proof. Obviously A^ = A-A*, the result follows from Proposition 

65 and Proposition 66. 

Proposition 72. If A*-A ^ Fj then A contains a set K such 

that K*=K=-A^, 

Proof. A*-A F implies that A ^ F. Let K = AnA*, obviously 

K ^ (j) and A-K e F. Also K c A* = A* because A* is closed. 

A = KuCA-K) implies A* = K*u(A-K)* = K*. But K* c K implies 

that A* £ K, hence A* = K* = K. 

Proposition 75. For any set Aj there exists a Roret set R con- 

taining A such that for aVi C ^ A with C*-C e F^ then R-C e F. 

Proof. Since A-A* e F CP^oposition 71), Axiom iii implies that 

there is a set K containing A-A* with K e IBnF. Let 

B = KuA*, then B e IB and B £ A. Suppose C 3 A and 

C*-C e F. Then B-C = CKjjA*)-C = CK--C}uCA*-C) . But K-C s K: e T. 

Proposition 63 Cii) implies that A* s C*. Then A*-C £ C*-C e F. 

Therefore B-C £ (K^-C)u CC*-C) which means that B-C e F. 



CHAPTER VI 

We have seen in Chapter II Eow elements in r behave as 

’’negligible sets”. In the present chapter we will exhibit the 

’’negligibility” of sets in V from another approach. The work is 

taken from [14], a masterpiece written by J. C. Morgan II, who has 

generalized in that paper, the Banach-Mazur game. We enter his 

work here for completeness of the thesis. 

Definition 74. A fam'tty C of subsets of a non-empty set X ts 

edited an family if C satisfies the following axioms: 

1. The intersection of any descending sequence of C-sets is non- 

empty. 

2. Suppose X is a point in X. Then (a) there is a C-set con- 

taining Xj i.e. X = U Cj and (b) for each C-set there is 

a C-set B s. A such that x ^ B. 

3. Let A be a C-set and let D be a non-empty family of dis- 

joint C-sets which has power less than the power of C. Cal If 

Av\(^B) contains a C-set^ then there is a I)-set D such that 

i4nD contains a C-set. Cb) If Av\({JB) contains no C-set^ then 

there is a C-set B s. A which is disjoint from all sets in D. 

Definition 75. Let C be a family of subsets of X. A subset 

B of X is singular with respect to C, or more briefly^ C- 

singular^ if each C-set A contains a C^et B disjoint from S. 

A countable union of C-singular sets is called a C^-set. 

30 
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Game-tkeoretlcal definitions 76. 0 uvlt denote the emptij s.equenee, 

A play is a desaending sequence <A c>f C^etSj and the re- 
CO 

suit of the play -is the set 0^4. A strategy for player I 'Is a 
n=l 

function a def'tned for all f'inlte sequences of even length In C 

and the empty sequence such that aCQ) 'is a Cset andj for n ^ 

aCA^j ,,. JA2^) is a C-set conta'ined 'in ^2n* ^ strategy for player 

II Is a funct'ion T defined for all finite sequences of odd length 

in C such that^ for each n ^ Ij 'iCA^^ »,, is a C-set 

contained in A^^ To each strategy a for player I and each 

strategy T for player II there is associated a play <a^x> de- 

fined inductively as follows: Ai = aCQj^ and A^^ = zCA^^.,,A^^ 

and ^2n-hl ~ " '^2n^ each n > 1. If a and x are 

strategies for players I and II^ respectively^ then a play 

is consistent with o if Ai - o(Q) and l^2n+l ~ ' "^2n^ 

for n > 1; consistent with T if A^^ = x(A^^, , ,A^_^ for 

n > 1; and consistent with a and T if it is consistent with 

both a and T. Let S be a subset of X. A strategy a for 

player I is winning for player I in the game yiS^C) if^ for 

every strategy x of player Ily the result of the play <a^x> in- 

tersects S, A strategy x for player II is winning for player 

II in the game yCS^C) ifj for every strategy a of player 

the result of the play <OjX > does not intersect S, The game 

yCSjCJ is determined if either player I or player II has a winning 

strategy. 

Morgan proved tlie following theorem. 
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Theorem 77. Let C he an W-famityi of suhaets of X and let S. 

he a suh&,et of X. Player II has a winning strategy in the game 

xCSiCl if and only if S is a Ci^set. 

Proposition 78. The family C = {A : s V} is an \^^family• 

Proof. Cl) If 2 A£ £ ... is a descending sequence of C-sets, 
00 00 oo 

then CO A.)' = (J A.’ belongs to V. Therefore O A. ^ (|>. 
i=l ^ i=l ^ i=l ^ 

C2) C3^) Since e F implies IR e C, 1R ?=UC trivially, 

(b) Suppose X e IR and A e C, then A-{x} e C. 

(3) It is sufficient to prove that if A and D are C- 

sets, then AnD is also a 6'-set. This is because (AnD) ’ = A^uD^ 

which belongs to F. Hence (AnD) e C. 

Proposition 79. S is C-singular if and only if S e T, 

Proof. Suppose S e F and A e C, then CA-S)’ = A’uS which 

belongs to F. Therefore A-S e C, Now suppose S is C-singular 

then there exists a C-set A such that SnA = <^. This implies 

CSnA)’ = S'uA' = IR which means that IR-S^ £ A'. But A' e F, 

hence IR-S' = S belongs to F. 

Corollary 80» S is. C-^ if and only if S z V* 

By Theorem 77 the following is true. 

Theorem 81. Let C = {A : A' e T} and let S he a subset of IR. 

Player II has a winning strategy in the game yCS^C) if and only 

if S e V. 
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Corollary^ 82. 5 4 ^ only if theve exists a Cset A such 

that for every Cset B s Sr^B ^ r. 

Proof. Since there ejcists a set B such that SoB ^ T, obviously 

S ^ r. Suppose for every C-set A, there is a C-set B £ A such 

that SnB e T. Then player II has a winning strategy in the game 

Y(S,C') and consequently S e F. 

Corollary 83. If S e then the game yCSjC) is determined. 

Proof. Suppose player II has no winning strategy, then S k F. 

Let S = CuM where C e C and M e F. Since S' = C'nM' e F, 

then for any C-set A, player I has a winning strategy by choos- 

ing the C-set A-(AnS'). 

Remark. Due to Theorem 81, F may be defined as the family of 

"negligible sets". 



CONCLUSIONS 

With alight modifications, this thesis can he general- 

ized to the setting of a complete separable metric space with power 

N2. Here certain questions are listed. 

1. The family of nullsets and the family of all sets of first 

category satisfy the Axioms. But does there exist another non- 

trivial a-ideal which satisfies the Axioms also? 

2. Can Axiom v be derived from Axioms i to iv? 

3. In Theorem 18, there is a bijection f of |R to itself such 

that f(A) e r* if and only if A e F. Now under what conditions 

is it true that there exists a bijection g of IR to itself 

such that g(A) e 3* if and only if A e 8, where 

9* = {A £ IR : A = BAM* for some B e IB and M* e F*}, and 

9 is defined as before? 

4. Can the hypothesis "If B e IBAF, then x+B = {x+b : b e B} 

belongs to F" be proved without adding more axioms? 

5. A Vitali set Cfo^ definition, see [18J) is non-measurable and it 

does not possess the property of Baire. Is it possible also to 

prove that it does not belong to 9, even if we assume the hypo- 

thesis "If B e IBOF, then x+B = {x+b : b e B1 belongs to T”? 

34 
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