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ABSTRACT

This thesis is an attempt to establish an abstract model
for Lebesgue measure and Baire category.

In the introduction we list several similarities between
Lebesgue measurable sets and sets having the property éf Baire.
Then we abstract these similarities and use them as axioms.

'In Chapter I, we introduce a generalized model and prove
some results'that are well-known both in measure and category.

In Chapter II, we define kernels and covers. After prov-
ing their existence for any set, we proceed to find some interest-
ihg results.

It is very natural to consider the quotient algebra if
we have an algebra containing a proper ideal. Hence Chapter III
inevitably comes into the scene. |

In Chapter IV we introduce analytic sets through A-opera-
tions. This_approach enables us to prove that every analytic set
belongs to our model.

In Chapter V we consider the local properties of sets
and prove some interesting results.

Chapter VI is taken from the work of J. C. Morgan II.

We include his work here for the completeness of the thesis. Al-
SO, as we will see, it gives us a new insight into '"'megligible sets'.

We conclude the thesis by setting up a list of questions

‘which, we think, are rather challenging.



NOTATION

IR denotes the real line.
IB denotes the family of all Borel subsets of IR.
IN denotes the set of positive integers.

N.o. denotes j\[o.
N denotes jiJ;.

¢ denotes the empty set.

|A| denotes the cardinality of A.

c denotes the cardinality of continuum.

IP(A) denotes the power set of A.

A denotes the closure of A.

A' denotes the complement of A, i.e. IR-A.

denotés the kernel of A in Propositions 44 to 52.
denotes the cover of A  in Propositions 44 to 52.
AB denotes ANB.

AAB denotes the symmetric difference of A and B.

UF denotes U F.
FeF

A class of sets that contains countable unions and arbitrary subsets
of its members is called a o-ideal.

A non-empty class S of subsets of |R 1is called a o—fing if it is
closed under the operations of countable union and complementation.

It is called a o-algebra if IR itself is a member of S.

A subset of R 1is said to have the property of Baire if it can be

represented in the form GAF where G 1is open and F 1is of first

category.
iii



Throughout this thesis, we assume T as a o-ideal that
satisfies the following axioms:
(i) T does not contain any non-empty open set.
(ii) A1ll singleton sets belong to T.
(iii) For each A € ', there is a K e BAT such that A e K.
(iv) Every non-empty perfect set has a non-empty perfect subset
in T,
(v) There are at most N, disjoint Borel sets none of which is

in T.

iv
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"INTRODUCTION:

The purpose of this thesis is to put into an abstract
setting results concerning Lebesgue measurable sets and sets hav-
ing the property of Baire. Results of this paper are, of course,
satisfied in both of the above cases. For the sake of simplicity,
we Testrict ourselves to the subsets of the realline |[R. The
continuum hypothesis ''¢ = N;'" 1is assumed and used without fur-
ther mention.

It is well known that any set can be represented as a
disjoint union of a null set (set of measure zero) and a
set of first category [12]. If a non-measurable set is given; we
obtain a non-measurable set of first cétegory. On the other hand,
from a measurable set, we have a measurable set of first category.
Hence, a set possessing the property of Baire can be measurable or
non-measurable. Similarly, a measurable set may or may'not.have
the property of Baire. Thus, it seems that measurable sets and
sets having the property of Baire are totally different, but this
is not the case; there are many similarities, some of which will
be shown here. For example, a famous theorem proved by Sierpinski
and refined by Erdos is as follows: ‘'assuming the continuum hypo-
thesis, there exists a bijection f of the line to itself such
that £ = £ 1 and such that £(E) is a null set if and only if
E 1is of first category'. This theorem justifies the following
principle of duality. Let P be any proposition involving solely

the notion of null set and notions of pure set theory (for example,



cardinality, disjointness, or any property invariant under arbi-
trary one-to-one transformation). Let P*  be the proposition ob-
tained from P by replacing '"null set" by "set of first category"
throughout. Then each of the propositions P and P* implies
the other, assuming the continuum hYpothesis.

Some basic properties which are true in both models will
be considered here. To begin with, a subset of a set of first
category is again first category, and the countable union of sets
of first category is also first category. A family of sets which
is closed under countable union and hereditary is said to form a
o-ideal. Therefore sets of first category form a o-ideal. Nﬁll
sets also have the above properties and hence they too form a o-
ideal. Baire proved that an open interval is of second category

and thus "every non-empty open set is not of first category." Al-

so "every non-empty open set is not of measure zero.'" Singleton

sets are nowhere dense, and so "all singleton sets are of first

category.'" In measure, "all singleton sets are of mea-
sure zero." If a set A is of first category, then it is a count-

able union of nowhere dense sets. But the closure of a nowhere
dense set is also nowhere dense. This implies that A is con-
tained in a F0 set of first category, and F0 sets are Borel

sets, therefore, 'any set of first category is contained in a Borel

set which is of first category." In measure, every null set is

contained in a G set of measure zero; and G sets are Borel

§ s

sets. Hence "any null set is contained in a Borel set which is of




measure zero.'" It is well known [18, p. 23] that any uncountable G6 set

contains an uncountable nowhere dense closed null set. From
P. S. Alexandrov's result that every uncountable Borel set contains

a non-empty perfect subset, it follows that "every non-empty per-

fect set contains a non-empty perfect subset of first category"

and "every non-empty perfect set contains a non-empty.perfect sub-

set of measure zero.'" Kuratowski [10, p. 256] proved that every family of

disjoint sets each with the property of Baire and none of which is
of first category, is countable. This together with the fact that
every Borel set has the property of Baire gives the following: 'a

family of disjoiht Borel sets none of which is of first category,

is countable." Due to the e¢-finiteness of iR for measure and

the countable additivity of measure, we c¢an easily prove that
every family of disjoint measurable sets, none of which is of mea-
sure zero, is countable. This, together with the fact that every

Borel set is measurable, implies that '"a family of disjoint'Borel

sets, none of which is of measure zero is countable." The proper-

fies that are underlined do not exhaust all the similarities be-
tween Lebesgue measurable sets and sets having the property of
Baire. In this thesis, the above properties are taken as axioms
and other similarities are derived from these. So our model will
be a common generalization of Lebesgue measurable sets and sets
with the property of Baire. For similar work, see [9] and [13].
Although our results are proved in IR, many of them

hold good if IR is replaced by a complete separable metric



space of power Nj.



CHAPTER I

In this chapter we estahlish a model which is a general-
ization of the family of Lebesgue measurahle sets and the family of
sets with the property of Baire. Then we derive some well-known
results including one of Sierpinski's and another concerning the

Lusin set.

Proposition 1. ALl countable sets belong to T.

Proposition 2. |r| = 2°.

Proof. T contains a non-empty perfect set (Axiom iv), and I is
a o-ideal, so |T| > 2. On the other hand, T is a subset of

P(R), so || < | P(R)| = 2% Hence |r| = 2°.

Proposition 3. | B| = c.

This result is well-known, for a proof, see [6, p. 26].

Proposition 4. |- B| = 2°.

Proof. Since |I| = 2° and | B| = ¢, therefore |r- B| = 2°.
Proposition 5. | BnT| = c.
Proof. | BnT| <| B| = ¢, and Axiom ii implies that | BnT| = c.

Definition 6. 8 = {A : A = BAM for some Be B and M e T'}.

Note that 9 is a generalization of the family of Lebesgue measur-

able sets and the family of sets with the property of Baire.



Proposition 7. A4 € 9 <f and only if there is a Borel set B such

that ALB e T,

Proof. A e d implies A = BjAM; for some B; ¢ B and M; e T.

The symmetric property of "A' gives AAB; = B;A(BjAM;) = M;; let
B = B;. Now suppose that there is a Borel set B such that

AAB ¢ T. Since A = (AAB)AB, we have A e 3.
Theorem 8. 3 <s the o-algebra generated by B and sets in T.

Proof. A e 3 implies A = BAM for some B e B and M e I'. This

i
~
>
=

gives A' = B'AM. But B' & [B, therefore A' e 3. If Ai ;1AM

for Bi € IB and Mi eT; let A= U Ai’ B = v Bi’ M= U Mi’
i=1 i=1 1

Clearly B-M £ A ¢ BuM which in turn gives B-A c M and A-B ¢

Therefore AAB e T'. Hence A ¢ 3 (Proposition 7).

Proposition 9. [8-T| = 2°,

Proof. Let I = {0,1]. There exist 2¢ r-sets (i.e. sets belong-
ing to T) outside I. If A is a  T-set outside I, then
Aul € 3-T, so |[8-r| 2 2°. Since 3-T ¢ PP(R), the result fol-

lows.

Proposition 10. If A € 8-T, then there exist B € I[B-T and

M el guch that BnM =¢ and A = BUM,

Proof. A € 3 means A = B;AM; for some B; € B and M; ¢ T.
Axiom iii implies that there is a set K2 M, with K e [BnTl.

Since



A = B1&M;
= [(B1-K)u (B1nK)]AM1nK)
= [(B1-K)A(B1nK)]AM1nK)
= (B1-K)AL (B14M1)nK]

= (B1-K)u[ (B1AM;)nK].

Let B = B;-K, and M (ByaM;)nK. Then the result follows.

Proposition 11. If A e 3-T then A contains a non-empty per-

fect subset belonging to T.

Proof. A e 9-T implies, by Proposition 10, that there exists
BecA with B e I[B-T. P. S. Alexandrov proved that every uncount-
able Borel set contains a non-empty perfect subset [17]; this, to-

gether with Axiom iv implies the result.
Theorem 12. If A e 3-T, then A contains ¢ perfect sets.

Proof. A € 3-T implies, by Proposition 11, that it contains a
non-empty perfect set in TI. Let F be the family of all those
perfect subsets of A which are in TI. Now if [F| < Ng, then
UF e r'. But A-UF ¢ 3-T . implies that it contains a non-empty
perfect subset P in T. Therefore P ¢ F, a contradiction.

Hence |F| 2c, and |F| < |B] =¢c, so |F| =c.

Now if A ¢ 9-T', then there eiists an H < A such that
H and A-H intersect every non-empty perfect subset of A. This

can be proved as follows: 1let F be the family of all non-empty
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perfect subsets of A. Well order F, i.e. F ='{Fu o< mc}
where W, is the first ordinal having c¢ predecessors. Also,
well-order each member in F. Let p;,q; be the first two ele-
ments in F;, let P2,92 be the first two elements in Fa that
are different from‘ P1,91- If 1 <a < w, and if Pg and g

have been defined for all B8 < a, let P29, be the first two

elements in Fa -V

B<o, {pB,qB}; this can be done because

[F | =¢c and Q

o B<a. {pB,qB} is countable. Now let

H = {pa T a < wc}. H intersects every perfect subset in A, and
since A-H contains all Q> A-H intersects each perfect subset
in A.

H, constructed above, is a totally imperfect set, i.e.

a set which contains no non-empty perfect subset.

Proposition 13. If H <s totally imperfect, then K c H and

Ked imply K e T.

Proof. Suppose K e 93-I'; then K contains a non-empty perfect

subset belonging to T (proposition 11), which is a contradiction.

Theorem 14. If both H and H' are totally imperfect, then

H§ 3.

Proof. Suppose H € 9; then H e I (Proposition 13). This im-
plies that H' € 9, and so H' e T. Hence R = HuH' e T,

which is a contradiction.

The results of Proposition 13 and Theorem 14 still hold



if H and A-H are totally imperfect provided A e 9-I' and

H < A,
Theorem 15. If A & T, then A contains a subset not in 3.

Proof. Suppose H and H' are totally imperfect, consider AnH
and AnH'. If they are both in 93, then they are both in T
(Proposition 13). Also A = (AnH) v (AnH') implies that A e T,

which is a contradiction.

Corollary 16. If [P(A) ¢ 3, then A e T.

Corollary 17. If A £ T then either A £ 8 or A =H, v Hy,

with Hy n Hy = ¢ and Hy,Hp ;f~3.

The following is a generalization of Sierpinski's result.

For similar proofs, see [18, p. 76] and [22, p. 77].

Theorem 18. If T,T* are two og-ideals satisfying the Axioms,
then there exists a bijection f of R to itself such that

f(A) e T* if and only if A e T.

Proof. By Proposition 5, | Bﬁrl = ¢c. Well-order BnI' by
{Bt Tt < Q}, where @ 1is the first uncountahle ordinal. Nekt
define by transfinite induction a sequence ‘{At :t <@} of dis-

joint sets in T such that IAtI = ¢ for all t and for each
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A e T there exists t' < Q such that A ¢ U A .

t<t!
This is done hy first choosing A, to be any uncountable set in

T. If sets Ak’ k <t < Q are chosen, then since J A eT and
' k<t k
€@, Ak)' e 3-T it follows from Proposition 11 that ((J A )'
k<t : k<t k
contains a non-empty perfect subset Pt in T. Now define

A_ =P _u B -U A). Similarly, define a transfinite family
t t t k<t
{A¥ : t < Q} associated with T*. Since lAtl = |A:| = ¢, there

is a one to one function f that maps At onto A; and since the

A_'s are disjoint and R = A, it follows that £ : R > R

t
t<Q
is one to one and onto. Now A e I' if and only if A ¢ O At
, t<t!
for t' < Q, if and only if f(A) < f(U At)’ if and only if
t<t!
f(A) ¢ O A*, if and only if f(A) € T'*,

t<t! v

If T 1is the family of sets of first category and T*
is the family of nullsets, then we obtain Sierpinski's re-
sult. Suppose further that there is a set M € I' whose comple-
ment M' e T*, Then there exists a bijection f of R to it-
self such that f = f ' and such that f(E) e I'* if and only if
E € T. This is the generalization of Erdos refinement for Sierpinski's
result. For a proof, see [18, p. 77].
The following (Corollary 19 to Theorem 23) are interest-
ing results that are similar to those which Sierpinski collected

in his masterpiece "Hypothése Du Continu".

Corollary 19. If E & T, then E intersects uncountably many

elements in {At :t < Q.
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Proof. Let F be the family of sets :‘Ln.'{At : t < Q} which E
intersects. If |F| < Ng, then UF e T and K = E-UF ¢ T.
Now KnAt = ¢ for all t < Q implies that KnIR = ¢, a contra-

diction.

Definition 20. Any uncountable set E, such that no uncountable

subset of E belongs to T, <s ecalled a Lusin set.
Theorem 21. E & T <if and only if it contains a Lusin set.

Proof. If E contains a Lusin set, then obviously E ¥ I'. Sup-
pose now E § T. Corollary 19 implies that EnA, % ¢ for uncount-
ably many t. Let A be formed by choosing one point from each of
these. Then |[A| = c. If K < A is uncountable, then K is not

covered by countably many At's and so K § T.

Corollary 22. There exists a one to one mapping f of IR onto

a subsetbof itself such that [f(E) § T whenever E <8 uncountable.

Proof. Since a Lusin set L has cardinality c, there is a one to

one function f from R onto L. If |E| =c, then £(E) & T.

Theorem 23. If A & T, then we can decompose A <into c¢ dis-

Jjoint sets none of which belongs to T.

Proof. Two methods of proof are exhibited, the first one is much

shorter, the second one, though longer, has its own importance.

Method 1. A 5§ I implies it contains a Lusin set L (Theorem 21).
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Since | R| = |L| = ¢, there is a one to one function which maps
IR onto L. Also since there are c disjoint uncountable sets
in IR there are ¢ disjoint subsets of A, and each one is not

in T. Adjoin A minus their union to any one of them.

Method 2. This method is due to Ulam [18, p. 25] and the proof is as

follows: A & I' implies |A] c. Well-order A such that for
each y € A, the set {x : k < y} is countable. Let f(x,y)

be a one-to-one mapping of this set onto a subset of positive in-
tegers. Then f is an integer-valued function defined for all
pairs (x;y) of elements of A for which x < y. Since f  is
one-to-one, if x < x' <y, then f(x,y) % f(x',y). For each

x € A and each positive integer n, define F2,='{y X<y,

f(x,y) = n} and establish an array as follows:

rl i P .
X1 X2 X3
F2 F2 F2 ...
X3 X2 X3
F3 F3 F3 ..
X1 X2 X3

Note that there are only countable rows but ¢ columns. We claim:
(i) the sets in any row are mutually disjoint, (ii) the union of
the sets in each column is cocountable. The proof of (i) is tri-
vial: suppose y € Fz n Fg, for some n, y,x and x' with

x <x'. And if x' <y then x < x' <y and f(x,y) X f(i',y),
which contradicts the definition of Fz.. To prove (ii) ohserve

that x <y implies that y helongs to one of the sets FE, i.e.

to the one for which n = ka,y]. .Hence the union of the sets
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Fz(p =1,2,...) differs from A by the countable set {y : y < x}.
Since there are c¢ columns and Nq rows, there must be a row such
that there are c¢ elements not in T. If not, then all rows have
only countably many elements not in I, which implies that there
are Ny elements not in T in the whole array. Then there is a
whole column such that each of its elements belongs to T. Hence

A ¢ T', which contradicts the fact A § T. Therefqre there are c¢
disjoint elements none of which.belong to I'. In case the union of
these sets so obtained is not equal to A, adjoin the complement

of that union to any one of them.

Proposition 24. There exist at most Nqg disjoint sets in = 3-T.

Proof. The result follows easily from Proposition 10 and Axiom v.

Corollary 25. There exist No disjoint sets in 23-T.

Proof. Proposition 24 and Axiom i imply the result.

Proposition 26. If A ¥ I, them A can be decomposed into e

disjoint sets none of which are in 3.

Proof. Theorem 23 and Proposition 24 imply that there are c¢ dis-
joint‘Sets none of which are in 3. Adjoin A minus their union

to any one of them.

Proposition 27. If A e I'-/B, then A can be decomposed into

e disjoint sets each of which belongs to T'- B.
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Proof. By Ulam's method as in the proof of Theorem 23.
From Axiom i, we get the following result.:

Proposition 28. If A e T then A' s dense in IR.

Proposition 29. There is no set A in T which intersects each

uncountable set in T.

Proof. Suppose there is such a set A. Since A eI, A' ¢ 3-T,
and so A' contains a non-empty perfect set P in T (Proposi-

tion 11). But |P| = ¢ which means AnP ¥ ¢, a contradiction.

Proposition 30. If A,B € 3, then either AnB e T or A nB

contains a set K with XK e B-T.

Proof. Suppose AnB § I', then AnB ¢ 3-T. The result therefore .

follows from Proposition 10.

Proposition 31. If A XT and B' ¢ T, then AnB § T.

Proof. AnB e I' and AnB' ¢ B' implies A ¢ I', a contradiction.

Proposition 32. If E €T and it is Fo’ then E is of first

category.

"Proof. If E is Fa’ then E = O Ei where the Ei‘s.are closed.
‘ i=1 &
By Axiom i, each Ei is nowhere dense. Hence E 1is of first

category.

Proposition 33. If A € 3-T and K e 9, then A contains a
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subset B € B-I such that BnK € T or BnK' e T.

Proof. Suppose AnK € I'. Since A € 9-T, A contains a subset
B € IB-I' (Proposition 10). Hence BnK € I'. Next if AnK 5§ T,
then AnK e 3-I'. This implies hy Proposition 10, that AnK 2 B

with. B € IB-I'. Therefore BnK' = ¢ € T.



CHAPTER II

Measurahble kernels and covers play an important.role in
the investigation of inner and outer measure. For references, see
{41, [6] and [15].

Some problems concerning the property of Baire can be
solved by means of the Baire kernels and hulls, see [25] and [26].

In this chapter, we establish definitions of kernels and
covers similar to those pertaining to measure and category. Then
we prove their existence for any set, and then derive some inter-

esting results.

Definition 34. The kernel K of a set A is a maximal subset of

A in 3; 1in the sense that K c A, Ke d and if L c 4, L € 3,

then L-K € T.

Definition 35. The cover C of a set A <8 a minimal set in

9 which contains A; i.e. 1f A <L and L € 3, then C-L € T.
Theorem 36. For any set A, there exists a kernel K c A.

Proof. Zorn's Lemma implies the existence of a maximal set F of
disjoint elements in IP(A) n (3-T). Proposition 24 implies that
|F| < Ng. Let K=UF., Obviously Ke 8 and K c A. Suppose
Led and L cA; then L-K e 3. Since L-K does not intersect

any element in F, and F is maximal, it follows that L-K e T.

Corollary 37. PFor any set A, there exists a cover C > A.

16
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Proposition 38. Every set has a kernel which is a Borel set.

Proof. Let K be a kernel of A. By Proposition 10, K = BuM
where B e B and M e I'. Consequently, the Borel set B is

also a kernel of A.
Similarly, every set has a cover which is a Borel set.

Proposition 39. If both K; and K, are kernels of A, then

KlAKz e T,
Proof. The result follows easily from the definition.

Proposition 40. If both C; and C, are covers of A, then

CIACZ e T.
Proof. The result follows easily from the definition.

Proposition 41. Let {Ai} be a'sequence of sets and ’{Ki} be the

corresponding sequence of kernels. Then () K. 18 a kernel of

oo i=1

O 4..

i=1 *

Proof. Let L= O A, and Led. Then L - (0 K.) =
i=1 : i=1 i

and the result follows easily from the definition.

C s

1 (L_Ki)

Proposition 42. Let {Ai} be a sequence of sets and {Ci} be

the corresponding sequence of covers. Then () C; i8 a cover of

O =
4..
i=1 ¢

. ) ® ©
Proof. Let E e 3 and E > U Ai' Then O Ci—E = QU (Ci—E) e T.
—_— R is1

i=1 i=1
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Thus U C. is a cover of U A..
j=1 1 o1 1

If H and H' are hoth totally imperfect, then by Propo-
sition 13, their kernels dre both in T. But HuH' = IR. Hence

the following is proved.

Proposition 43. If K;,K, are kernels of Ay,A, respectively;

it 18 not necessarily true that KjuK, <is a kernel of Ajud,.

In the Propositions 44-52, we denote by A® a cover of

A and by Ak a kernel of A.

Proposition 44. If A < B, then A°-8° e T.

Proof. Since A < B c B®, the result follows easily from the de-
finition.
Similarly, the following is proved.

Proposition 45. If A < B, then ‘Ak;Bk e T.

Proposition 46. If {An} 18 an increasing sequence of sets, then
there exists an increasing sequence '{AZ} of covers corresponding

: . e . o]
to {An} such that (lim An)A(sz An) e T.

Proof. Let '{Cn} be a sequence of associated covers of '{An}. De-
. c c c .
fine Ay = C;, and An = QAn_l-Cn) u Cn for n = 2, Obviously
{Aﬁ} is an increasing sequence of covers corresponding to {A_}.
- C - 4 c
Since An 2 An 2 Am for n 2m, it follows that 1im An 2 Am.

Also m 1is arbitrary implies 1im Aﬁ 2 lim An. But 1im Aﬁ € D
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implies that (lim An)c - 1im Aﬁ e I. Moreover, from 1lim A 2 A,
Proposition.44 implies that A; - . (1im An]c e I'. Since m is
arbitrary, lim Aﬁ - (1im An)C e I. Hence (lim Aﬁ)A(lim An)C e T.

Similarly, the following can be proved.

Proposition 47. If '{An} 18 a decreasing sequence of sets, then

there exists a decreasing sequence {AS} of kermels corresponding

to {An} such that (lim Aﬁ)A(Zim An)k e I.

Proposition 48. If M e 3, then for any set A,
k

MA[(A)® v (M-4)°] € T.

Proof. Since M-A ¢ M and M e 3, implies that (M-A)C - M ¢ T.
This together with the fact that (_MA)k c M implies

[MA)E U (M-A)S] - M e T. Conversely, M-(M-A)S < M-(M-A),

implies M—(MFA)C c MA. But since M-(_M--A)C € 9, it follows from the
definition that [M-(M-A)S] - MA)X e . Therefore

M-[MAYK U M-A)€] € T. Hence MA[(MA)K u (M-A)€] € T.

One can compare this result with the following result
in Measure Theory: If M 1is measurable, then for any set A,
uM) = u, (MA) + pu*(M-A) where u, and u* denote the inner and

outer measure respectively.

Proposition 49. If M € 3, then for any set A, (A°M)r(am)€ e T.

Proof. Let L = AS-[(AM)-(aM)€] = JAS-(A"M)T u [ASn(aM) €]

= (A°-M) v [ASn(AM)©]. Ohviously L e 3. Since A-M < AS-M
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and AM c AS n (AM)®, then L 2 (A-M) U (AM) = A. It follows
from the definition that AS-L e I, i.e.” A n [(A*M)-(aM)®] ¢ T.
Therefore (ACM)-(AM)C e I'. Conversely, AM c ACM, and A“M ¢ 3.

Then (AM)®-(AM) ¢ I'. Hence (AM)AAM)® € T.

Proposition 50. If M e 9, then for any set A, -(AkM)A(AM)k e T.

Proof. Since (AMX ¢ 3 and (AKX c A, then AM)*-AF ¢ T.

Therefore (AM)k-(AkM) € I'. Moreover, AkM < AM and AkM € 0.

Then AkM--(AM)k e T'. Hence (AkM)A.(AM)k e T.

Proposition 51. If {Mn} i8 a sequence of sets and - A 1is any

oo

set, thenm (U AM J°AQ (4 Mn)" e T.
n=1 n n=1

Proof. Since (AMn)C is a cover of AM_, Proposition 42 implies
that (O (AM )c is a cover of () AM . But (O AM )c is
. n , n n
, n=1 o n=1 ‘ n=1 .
also a cover of () A Mn. Result then follows by Proposition 40.
n=1

Proposition 52. If {Mn} 18 a sequence of sets in & and A is
any set, then ((U A M )kA(_) (A M )k e I.
n n
n=1 n=1

Proof. Let M= () Mn and B be a kernel of AM. Define E = BM
n=1 '
and En = E Mn' It is obvious that E is a kernel of AM and

En is a kernel of A Mn' Since EM = E, we have E = U En.
' n=1
AM; this together with Proposition 39

n

Observe that U A Mn

mn:]_ @ ca «
implies EAC() AM)“er. But EAU (AM)*= (0 EJaU @ MK
n=1 n=1 - n=1 n=1
and E  is a kernel of AM_ . Therefore EAQU (A Mﬁ)k e T.

«© k oo k n=1
Hence (U A Mn) AQ (A Mn) e T.
n=1 n=1



CHAPTER III

In this chapter we define an equivalence relation on
9 which enables us to obtain a quotient algebra. We prove that

the quotient algebra is complete.

Theorem 53. If C c 3, then there exists a countable subset K

of C such that for each C e C, C-UK € T.

Proof. If L 1is a a-ring generated by (, then obviously

CcL cod. Let N be the family of sets each of which can be
covered by a countable union of elements of (. Clearly N . is a
o-ring containing (¢, and therefore (¢ < L < N. Zorn's lemmma
implies that there exists a maximal family F of disjoint elements
of L-T. Since F [~ L-rvg 9-T', it follows from Proposition 24
that |F| < Ng which, in turn, implies that UF e L, for [ is
a o—ring. This means that UF ¢ ¥ and hence there exists a
countable subset X of (¢ such that OF € UK. The fact that
F is maximal implies L-UF e¢ T ‘for each L € L. Now C e C,
implies C e L. This means that C-UK < C-UF ¢ I'. Hence

C-UK ¢ T:

Definition 54. AVB <f and only if AAB € T.

Proposition 55. ™" ig an equivalence relation.

Proof. AvA since ¢ € I'. Due to the symmetric property of "A',
AnB implies BnA. Now suppose AvB  and BC; then A-C ¢ (A-B) u

(B-C) - and C-A c (C-B) u (B-A) and so A-C and C-A are both

21
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in I, Therefore A~C.

Since "v'" is an equivalence relation, it decomposes
3 into disjoint classes, i.e. the equivalence classes of the re-
lation "a'': A; ,A, are in the same class if and only if Aj~VA,.
The class containing an element A € 3 will be denoted by [A].
By definition, the following conditions are equivalent: A¢B,
A e [B], [A] = [B].

Let 3/T denote the set of all equivalence classes
[A]l, (A e d). 3/T is an algebra and it is called the quotient

algebra of '3 modulo T.
Theorem 56. |3/T| = e:

Proof. Suppose A e 3; then A contains a Borel set B such
that AnB and so |3/T| < | B] = c. Now suppose A,B are two
open intervals, and suppose A ¢ B. Then there exists x e A-B
and an open neighbourhood Nx of x such that Nx < A-B. Hence
A-B § T, and,so [A] X [B]. Since there are ¢ .distinct open
intervals, there are at least c¢ distinct equivalence classes.

Hence |3/T| = c.

R. Sikorski proved in [22, p. 74] that 3/T is a g-algebra and,

for every Ng-indexed set At e d(t e T), V%eT[At] = [éiT AtJ and

/\teT[At] =[O AtJ where "\/", " A" denote the join and the
teT

meet respectively. Sikorski also established the following: an

element [A] (A e 3) is the join of an indeied set of elements

[At] (t eT) in 3/T if and only if ({E) At-A e I' for every
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teT, ({Ei) If At-AQ el (Aq € 9) for every t € T, then

A-Aq € T.

Definition 57. An algebra U is said to be complete if and only

if both the join and the meet exist for all subsets of U.

There is a theorem in algebra [5, p. 26] which states that if
every subset of an algebra has a join, then that algebra is com-

plete. Hence there is no need to check the existence of the meet.
Theorem 58. 3/T <s a complete algebra.

Proof. Let '{[At]} be a subset of 9/T', and C = {A }

teT t teT’

Since C € 3, by Theorem 53 there exists a countable subset

K= {Aat}ath of ¢, such that At-L)K e T for every t e T.
Suppose’ At-AO eT (Ag € 3) for every t € T, then

UK-Ag = ()ath (Aat_AOJ' But Aut—Ao e T for every a e N,

implies (UK-Ay € I'. Hence [(JK] is the join of {[A Y, -



CHAPTER IV

There are many approaches to analytic sets (see [8]).
We define analytic sets through the A-operations. This approach
has advantages over the others as we will see in this chapter.

bLet F be a class of sets. Assign to each finite col-
1ectiqn (kl’kz"'°’kn) of natural numbers, a definite set

Ak X in F. The set
100Ky

F = O 8 ,
.. .. n=1 Akl"'kn

where the union is over all infinite sequences of natural numbers,
is called the result of A-operations on the sets of the cléss F.
;f F is a class of closed sets, then F is called an analytic
set, briefly A-set. Let A(Fj denote the family of all sets which
are the results of the A-operations on the sets of F. Also,

let S(F) and ILF] be the families of all sets which are the
unions and intersections, respectively, of a countable aggregate

of sets which belong to F#. The following results are proved in

[20, p. 212].
1) A(F) = AA(F)).
(ii) S(F) < A(F).

(iii) I(@F) = A®).
In particular, F < A(F). Now if (C denotes the family of all
closed sets, then A(C) is the family of all analytic sets.  Since

AA(C)) = A(C), it follows that S(A(C)) = A(A(C))= A(C) and

24
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-IQA[C)) c A(C); hence'analytic.sets.are closed under countablé
unions and countable intersections. Also C c A(C), 1i.e. every
closed set is analytic. From these observations, it can be seen
easily that every Borel set is an A-set. The fact that analytic
sets form a strictly larger class than the class of Borel sets was
proved by Kuratowski in [10], §38, VI.

9 is closed under countable unions and complementation.
Proposition 24 implies that each class of disjoint sets in 3-T
is at most countable. These conditions coincide with conditions
1°,2° and 3' in E. Szpilrajn's paper [23], therefore 38 is in-

variant under A-operations.

Proposition 59. 93 = A(3).

Proof. 3 is invariant under the A-operation, so that A(3) =« 9. This

together with 3 c A(3) implies that 3 = A(3).
Theorem 60. ALl analytic sets belong to 3.

Proof. Let C  be the family of all closed sets. It is obvious
that A(C) < A(8) for (C < 3. Therefore A(C) £ 3 by Proposition

59.

Sierpinski [20, p. 224] proved that every uncountable analytic
set contains a non-empty perfect subset. Now suppose both H and
H' are totally imperfect. If A is any uncountable set in T,
then either AnH or AnH' is an uncountable set in 9 which

contains no non-empty perfect subset. Hence the following result
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is proved.

Proposition 61. Every uncountable set in [ contains a non-ana-

lytic subset.

Kuratowski in [10] defined the projective sets of class
0 as the Borel sets. The projective sets of class 2n+l are con-
tinuous images of the projective sets of class 2n (lying in the
same space); the projective sets of class 2n are the complements
of the projective sets of class 2n-1. In particular, the.pro»
jective sets of class 1, i.e. the continuous images of Borel sets,
are called analytic sets; their complements, i.e. the projective
sets of class 2 are called analytic complements. Kufatowski
also proved that the definition he used for analytic sets and the
definition of analytic sets as given here are equivalent? 1f Ln
denotes the projective sets of class n, then Ly, Lj, L, belong
to 9. K. Godel [3] proved that the hypothesis of existence of
non-measurable sets of L3 does not contradict the axioms of set
theory. However no actual example of a non-measurable set of Lj
is known (see [24]). Thus it is impossible to prove -that L3 < 3

by the usual system of axioms of set theory.



CHAPTER V

This chapter is devoted to the discussion of the local
properties of sets. We use the definitions introduced hy

Kuratowski in [10]. Then we prove some interesting results.

Definition 62. A s said to be of T at the point p <if there

exists a neighbourhood. E of p such that (AnE) € T. Let A*

denote the set of points at which A is not of T.

Note that the neighbourhood E of p in the above de-
finition may be required to be open since each neighbourhood E
of p contains an open neighbourhood G of p. The following

properties are given by Kuratowski in [10], §7, IV.

Proposition 63. (7Z) A* <is closed.

(ii) A < B implies A* c B*.

(iii) A** c A* = A% c 4.

in

(zv) If G <s open, then .G n A* = G n (Gndl*,
(w) (O Aa)* s 0O A; and U A* c (Q A )*
ael oel aeT & aelT &
where T <s any set of indices.

(vi) (AuB)* = A* u B*,

(vii) A*-B* ¢ (A-B)*.

Theorem 64. A e T if and only if A is of T at each of its

points.

Proof. If A e T, it is trivial that A is of T at each of

its points. Now suppose A is of T at each of its points, R

27
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has a countable open base Rj;,Rp,... . For p e A, let Rn(p)

be any basic open neighbourhood of p. Since (Aan(p)) e I', this

implies that ;A (Aan(p)] =Ael.

Proposition 65. The following are equivalent:
(Z) AeT.
(27) AnA* = ¢,

(iiz) A* = ¢.
Proof. Result follows easily from Theorem 64.

Proposition 66. (4-A*)* = ¢.

Proof. Proposition 63 (ii) implies (A-A*)* < A*. Since
(A-A*) n (A-A*)* c (A-A*) n A* = ¢, then by Proposition 65,

(A-A%)* = ¢.

Proposition 67. A*-A** = ¢.

Proof. By Proposition 63 (vii), A*-A** c (A-A*)* and the re-

sult follows from Proposition 66.

Proposition 68. A* = A4*%*,

Proof. Proposition 63 (iii) and Proposition 67 impliés the result.

Proposition 69. (AnA*)* = A*,

Proof. Since A = (A-A*)} u (ApA*), by Proposition 63 (vi],

A* = (A-A*)* u (AnA*)*. Therefore A* = (AnA*)*.
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Proposition 70. If A € 38, .them A contains a Borel set B

such that A* = B* < B.

Proof. If A eT, then B = ¢. Now suppose A e 3-I'. Proposi-
tion 10 implies that A = BuM for some ‘Be [B-T and M e T.

This gives A* = (BuM)* = B*uM*. But M* = ¢, hence A* = B* c B.

Proposition 71. If Ay ={x e A : A isof T at x}, then Ay € T.

Proof. Obviously A; = A-A*, the result follows from Proposition

65 and Proposition 66.

Proposition 72. If A*-A EIF, then A contains a set K such

that K* =K = A*,

Proof. A*-A X I' implies that A § I'. Let K = AnA*, obviously

KX ¢ and A-K e I'. Also K c A* = A* because A* is closed.

A = Ku(A-K) implies A¥*

K*u(A-K)* = K*. But K* ¢ K implies

=l

that A* c K, hence A* K* =

.

Proposition 73. For any set A, there exists a Borel set B con-

taining A such that for all C o A with C*-C € T, then B-C € T.

Proof. Since A-A* € T (Proposition 71), Axiom iii implies that
there is a set K containing A-A* with K e Bnal'. Let

B = KuA*, then B e¢ IB and B > A. Suppose C > A and

1

C*-C ¢ T. Then B-C = (KuA*)-C = (K-CJu(A*-C). But K-C c K e .
Proposition 63 (ii) implies that A* < C*. Then A*-C c C*-C e T.

Therefore B-C < (K-C)u(C*-C) which means that B-C e T.



CHAPTER VI

We have seen in Chapter II how elements in [ behave as
"negligible sets". In the present chapter we will exhibit the
"negligibility" of sets in I from another approach. The work is
taken from [14], a masterpiece written by J. C. Morgan II, who has
generalized in that paper, the Banach-Mazur game. We enter his

work here for completeness of the thesis.

Definition 74. A family C of subsets of a non-empty set X 1is

called an M-family if C satisfies the following axioms:

1. The intersection Qf any descending sequence of (C-sets is non-
empty.

2. Suppose x <is a point in X. Then (a) there is a C-set con-
taining x, t.e. X =UC; and (b) for each C-set A, there 18
a C-set B < A such that x § B.

3. Let A be a C-set and let D be a non-empty family of dis-
joint C-sets which has power less than the power of C. (al If
An(QUD) contains a C-set, then there is a D-set D such that
AnD contains a C-gset. (b) If An(UD) contains no C-set, then

there is a C-set B < A which 18 disjoint from all sets in D.

Definition 75. Let C be a family of subsets of X. A subset

S of X is singular with respect to C, or more briefly, C-
singular, if each C-set A contains a C-set B disjoint from S.

A countable unton of C-singular sets is called a Cq-set.

30
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Game-theoretical definitions 76. 6 wtll denote the empty sequence.

A play ts a descending sequence <An>:=1 ~of C-sets, and the re-
sult of the play is the set E; .An. A étrategy fbf player I is a
function o defined for all ?;iite seQuehces of even length in C
and the empty sequence such that a(8) <is a C-set andg'fbf nz1,
a(Al,...,AZn) 18 a C-set contained in A2n' A strategy for player
IT is a function 1 defined for all finite sequences of odd length
?n C such that, for each n = 1, TCAl,...,AZn_l) is a C-set

contained in A To each strategy o for player I and each

2n-1°
strategy 1 for player II there is associated a play <a,T> de-
fined inductively as follows: Ay = a(8), and AZn = rCAl,...Azn_l)

and Ag i7 = 0641,...A2n) for each n 2 1. If o Vand T are
strategies for players I and II, respectively, then a play <An>:=1
is consistent with o <if A) = o(8) and Agoig = °(A1""A2n)

for m 2 1; consistent with 1 if A2n = T(Al,...Azn_l) for
nz=1; and consistent with o and < if it 1s consistent with
both o and 1. Let S be a subset of X. A strategy o for
player I is winning for player I in the game ~(S,C) <if, for

every strategy 1 of player II, the result of the play <o,1> in-
tersects“ S. A strategy Tt for player II is winning for player
II in the game ~(S,C) 1if, for every strategy a of player I,

the result of the play <a,tT > does not intersect S. The game
v(S,C) s determined if either player I or player II has a winning

strategy.

Morgan proved the following theorem.
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Theorem 77. Let C be an M-family of subsets of X and let S
be a subset of X. Player II has a winning strategy in the game

Y(8,C) if and only if S 1is a C)-set.

Proposition 78. The family C = {4 : A" ¢ T} <8 an M-family.

Proof. (1) If A; 2 A 2 ... 1is a descending sequence of C-sets,
then (O A.)' = U A.' belongs to . Therefore ) A. %4 4.

. i . i . i

i=1 i=1 i=1

(2) (a) Since ¢ € I' implies IR e (C, R =uc trivially,
(b) Suppose x € IR and A € C, then A-{x} e C.

(3) It is sufficient to prove that if A and D are C-
sets, then AnD is also a C-set. This is because (AnD)' = A'uD'

which belongs to T. Hence (AnD) & C.

Proposition 79. S <s C-singular if and only <f S e T.

Proof. Suppose S e T and A e ¢, then (A-S)' = A'US which

belongs to T. Therefore A-S € C. Now suppose S is (-singular

then there exists a C-set A such that SnpA = ¢. This implies
(SnA)!' = S'UA' = JR which means that IR-S' ¢ A'. But A' ¢ T,

hence IR-S' = S belongs to T.

Corollary 80. S s C; <if and only if S ¢ T.

By Theorem 77 the following is true.

Theorem 81. Let C ={A : A' e I} and let S be a subset of IR.
Player II has a winning strategy in the game v(S,C) <if and only

if S eT.
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Corollary 82. S ¢ T' <f and only if there exists a C-set A such

that for every C-set B < A, SnB § T.

Proof. Since there exists a set B such that SnB & I, obviously
S § T. Suppose for every C-set A, there is a C-set B & A such
that SnB € I'. Then player II has a winning strategy in the game

Y(S,0) and consequently S e T.

Corollary 83. If S e Cur, then the game +v(S,C) +is determined.

Proof. Suppose player II has no winning strategy, then S & T.
Let S =CuM where Ce C and Me I. Since S' =C'nM' e T,
then for any C-set A, player I has a winning strategy by choos-

ing the C-set A-(AnS').

Remark. Due to Theorem 81, T may be defined as the family of

"negligible sets".



CONCLUSIONS

With slight modifications, this thesis can be general-
ized to the setting of a complete separable metric space with power
N;. Here certain questions are listed.

1. The family of nullsets and the family of all sets of first
category satisfy tﬁe Axioms. But does there exist another non-
trivial o-ideal which satisfies the Axioms also?

2. Can Axiom v be derived from Axioms i to iv?

3. In Theorem 18, there is a bijection f of IR to itselfrsuch
that f(A) € T'* if and only if A € I'. Now under what conditions
"is it true that there exists a bijection g of IR to-itself
such that g(A) € 9* if and only if A € 9, where

* = {A < IR : A =BAM* for some B e IB and M* € I'*}, and

9 is defined as before?

4. Can the hypothesis "If B e BAT, then x+B = {x+b : b e B}
belongs to T'" 'be proved without addingrmore axioms?

5. A Vitali set (for definition, see [18]) is non-measurable and it
does not possess the property of Baire. 1Is it possible also to
prove.that it does not belong to 3, even if we assume the hypo-

thesis "If B € I[BAT, then x+B = {x+b : b € B} belongs to T"?

34
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