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ABSTRACT 

Hoegy, Z.R.W. 2016. Genetic diversity and colonization patterns of Onnia tomentosa and 
Phellinus tremulae (Hymenochaetaceae, Aphyllophorales) in the boreal forest near Thunder Bay, 
northwestern Ontario. 90 Pp. + x Pp. 

Keywords: genets, heart rot, root rot, somatic incompatibility, spatial mapping, white rot 

 Forest health is impacted greatly by fungi, particularly those that cause disease in living 
trees. By examining genetic diversity within populations of pathogenic fungi and their patterns of 
colonization it is possible to gain a greater understanding of host-pathogen interactions. Two 
common pathogens in the boreal forest are Onnia tomentosa, causal agent of a root-rot disease in 
spruce known as stand opening disease, and Phellinus tremulae, causal agent of white heart rot 
in stems of trembling aspen. Both fungi are members of the Hymenochaetaceae in the 
Basidiomycota. 

 Two black spruce (Picea mariana) plantations located north of Nipigon were examined 
for Onnia tomentosa. Spatial coordinates of 124 basidiomata were taken, and the basidiomata 
collected from plots that had received different commercial thinning treatments. Using extracted 
DNA from each of the basidiomata, it was possible to measure genetic diversity and 
consequently genet size. One hundred and sixteen genetically distinct individuals were found 
suggesting that the majority of the basidiomata represented unique genets. The distribution 
pattern was mapped. Stand thinning appears to negatively impact colonization of spruce by O. 
tomentosa compared with that observed in unthinned control stands.  

 In an ancillary study, a stand of trembling aspen (Populus tremuloides) located at Silver 
Mountain (74 km SW of Thunder Bay) was examined for Phellinus tremulae. Four infected trees 
were harvested and each stem cut into 50 cm sections with the top 5 cm from each section 
removed as a cookie. From each cookie, isolations of P. tremulae were made onto agar media 
and somatic compatibility techniques were utilized to determine size and distribution of genets in 
each tree. Two trees contained two genets of P. tremulae, one tree contained a single genet, 
while the remaining tree failed to yield any isolations of P. tremulae at all.  
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GENERAL INTRODUCTION 

 

 The boreal forest stretches across North America, Europe, and Asia south of the arctic 

tundra, and is dominated primarily by conifers. This forest provides benefits in the form of air 

and water filtration, carbon sequestration, oxygen production, and habitat for various plant and 

animal species. The boreal forest also provides economic opportunity for many communities. 

 Although many factors affect forest health, including fire, weather, and insect pests, it is 

the role of fungi that has the greatest impact. Forest health is positively affected by those fungi 

that form a symbiotic association with tree roots known as mycorrhizae. This association benefits 

trees by increasing the efficiency of nutrient and water uptake, provides protection of roots from 

soil-borne root pathogens, and provides protection from elevated levels of heavy metals and 

other toxins in the soil. Other fungi are important in decomposing wood and woody debris and 

aid in the creation of the organic layer in forest soils. However, some fungi are serious pathogens 

which can detrimentally affect individual trees, or entire forest stands and as a result, can have a 

negative ecological effect on the ecosystem as well as a negative economic effect on the forestry 

sector.  

 Two common and widespread disease-causing fungi found in the boreal forest are Onnia 

tomentosa (Fr.) P. Karsten and Phellinus tremulae (Bond.) Bond. & Borisov. Both species 

belong to a group of bracket fungi placed by mycologists in the Family Hymenochaetaceae 

within the Division Basidiomycota. Onnia tomentosa causes a white pocket rot in the roots and 

butt of living conifers, particularly spruce (Picea spp.), eventually leading to blow down of the 

infected trees. Phellinus tremulae causes a white pocket rot in the heartwood of living poplars 

(Populus spp.), particularly trembling aspen (Populus tremuloides Michx.).  
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 The objectives of this study was to map the basidiomata of Onnia tomentosa found in two 

black spruce plantations and determine genetic diversity and subsequently genet size through 

extraction and analysis of DNA from the fruiting bodies. The result would determine if the 

genets were small, indicating recent colonization of the spruce stand, or were large thus 

suggesting the genets were present for many years. Comparisons between different thinning 

treatments and unthinned controls would also help towards the creation of a management 

strategy. As an ancillary study, four trees of trembling aspen infected with Phellinus tremulae 

were cut, and isolations of the fungus made onto agar media. Genetic diversity was determined 

through the pairing of isolations utilizing the somatic incompatibility technique. This would 

determine whether each tree was colonized by a single individual of P. tremulae or several.  

 This thesis is divided into three chapters: 1) a literature review of existing research 

related to the biology and pathology of Onnia tomentosa; 2) an examination of genetic diversity 

and colonization patterns of Onnia tomentosa in plantations of black spruce; 3) an examination 

of genetic diversity of Phellinus tremulae in stems of four individual trembling aspen.  

 

 

 

 

 

 

 

 

 

 

 



 
 

3 
 

 

CHAPTER 1: 

BIOLOGY AND PATHOLOGY OF ONNIA TOMENTOSA –  

A LITERATURE REVIEW 
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The Boreal Forest 

In the northern hemisphere, the boreal zone covers 552 million hectares, of which 307 

million hectares is forested (Natural Resources Canada 2016a). In North America, the boreal 

zone stretches from the western shores of Alaska to the east coast of Newfoundland and 

Labrador, a distance of over 10,000 kilometres. The boreal zone covers approximately 53% of 

Canada, and represents 28% of the world’s total boreal zone (Naturals Resources Canada 2015; 

Natural Resources Canada 2016a). It provides habitat for many organisms such as mammals, 

birds, insects, fungi, and other microorganisms and provides space for important lakes and 

wetlands. The region is home to several coniferous species of trees such as black spruce (Picea 

mariana (Mill.) Britton, Sterns & Poggenburg), white spruce (P. glauca (Monench) Voss), jack 

pine (Pinus banksiana Lamb.), balsam fir (Abies balsamea (L.) Mill), tamarack (Larix laricina 

(Du Roi) K. Koch), and eastern white cedar (Thuja occidentalis L.) (Archibold 1995). It is a 

valuable resource for the forest industry; in 2013, 148 million cubic metres of industrial 

roundwood was harvested in Canada. This wood was mainly used for lumber production but also 

for plywood, veneer, and oriented strand board, as well as pulp and paper products (Natural 

Resources Canada 2016c). That 148 million cubic metres represents 0.3% of Canada's total 

standing wood, 47 billion cubic metres (Natural Resources Canada 2016c).  Canadian forest 

exports contribute 17.1 billion dollars in net trade, and approximately 47% of total exports are 

made up from three key products; northern bleached softwood kraft pulp (NBSK), newsprint 

(Canada is the largest producer worldwide with having 12% of the world's total), and softwood 

lumber (accounts for 20% of the value of Canada's forest exports) (Natural Resources Canada 

2016c).  
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The boreal forest covers 74% of Ontario’s land mass and is 65.2% productive. In 2013, 

115,358 hectares were harvested in Ontario and in 2014, trade exports resulted in over 3 billion 

dollars (Natural Resources Canada 2016c). The harvesting of timber is done sustainably within 

Canada and if the timber is cut on public land (which is about 94% of Canada’s forests) the trees 

must either be replanted or allowed to grow back naturally so that deforestation does not occur 

(Natural Resources Canada 2016b).  

The boreal forest is a disturbance driven system that is greatly affected by wildfire, 

insects, and disease. Between 2012 ̶ 2014, 200,378 hectares of forested area were burned in 

Ontario from a total of 2404 fires (Ontario 2015; Natural Resources Canada 2016c). Fire 

disturbance is a natural occurrence in the forest, and is required for nutrient cycling, influencing 

habitat for various species, as well as other ecological processes (McCullough et al. 1998). For 

renewed life to occur, plants such as jack pine (Pinus banksiana) have adapted to fire 

occurrence, and require the heat to open their cones and allow the seeds to disperse. The effects 

of a large, stand-replacing fire is comparable to clearcutting in that, tree species adapted to the 

occurrence of fire will have an advantage once the over story is opened up to allow light through 

the canopy. Fire not only affects the trees which it uses for fuel (McCullough et al. 1998) but can 

also affect insects either by directly killing them or altering variables such as over or understory 

vegetation, soil composition (i.e. sand, silt, clay), tree density, or other aspects (Lyon et al. 1978; 

Martin and Mitchell 1980). However, fire can also predispose surviving trees to attacks by bark 

beetles or wood-borers (McCullough et al.1998) depending on the severity of the fire. 

Beyond fire, insects are another major disturbance vector in the boreal forest. Epidemic 

insect populations can represent a threat to the sustainability of the forest ecosystem. Insect 

damage can cause large disturbances within the boreal forest due to severe defoliation and tree 
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wounding that can lead to tree death. Across Canada between 2012 and 2013, 839,848 hectares 

were either defoliated by insects or contained beetle-killed trees (Natural Resources Canada 

2016c). An estimated 416,503 hectares of trees in Ontario were killed by major insects in 2013 

(National Forestry Database 2016). Insects not only create volume loss due to their feeding and 

the mechanical destruction of the tree, but also act as vectors for fungi by providing openings in 

the tree for the spores of pathogenic fungi to enter through.  

Disease pathogens are useful for effective control of plant species (Dinoor and Eshed 

1984) especially at the regeneration layer (Grubb 1977). Disease pathogens, however, are 

normally viewed negatively with regards to economically important hosts. For example, white 

pine blister rust (Cronartium ribicola J.C. Fisch.) has negatively influenced the distribution of 

eastern and western white pine (Pinus strobus L. and Pinus monticola Douglas ex. D. Don, 

respectively) (Manion 1991). Beech bark disease is the result of an interaction between a scale 

insect (Cryptococcus fagisuga Lindinger) and the fungus Nectria coccinea Desm., which has led 

to significant impacts on populations of the American beech (Fagus grandifolia Ehrh.). This 

disease causes mortality in clumps due to the limited dispersal abilities of the causal agent 

(Houston et al. 1979). Fungal pathogens can also have such a devastating impact on their target 

host, that it can result in functional extinction. For example, chestnut blight is caused by 

Cryphonectria parasitica (Murrill) Barr. The American chestnut (Castanea dentata (Marsh.) 

Borkh.) was the dominant tree species in the Appalachian mountain range until the mid-1900s 

when the blight was introduced and eliminated it from the forest canopy (Keever 1953; Mackey 

and Sivec 1973; McCormick and Platt 1980), resulting in various other tree species replacing the 

chestnut’s dominant/codominant role (Stephenson 1986).  
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Impact of Root-rotting Fungi 

Disease causing fungi enter through wounds on a tree and are able to begin the 

breakdown of the tree for their own growth and eventual reproduction. Root rot alone represents 

more than 74% of the annual economic loss in black spruce (Basham 1994). Over 90% of all 

merchantable trees that were sampled in Ontario showed evidence of root decay (Whitney 1988). 

Wood decay is an important nutrient cycling process where nutrients are returned to the soil, and 

become available to be used by other organisms. Fungi are essential for the task, but not all fungi 

are saprophytes (feeding on dead organic matter). Some fungi attack living trees to obtain 

essential nutrients. Specifically, root rot diseases impact the structural integrity, mortality, and 

overall health of trees (Cruickshank et al. 1997; Garbelotto et al. 1999; Dettman and van der 

Kamp 2001; Heinzelamm et al. 2012; Travadon et al. 2012). Root rotting pathogens play an 

integral role in forest dynamics by killing individual trees, which allows nutrients that are locked 

in the host tree to be released by the forest fungal community. 

The interaction of these key disturbance mechanisms (fire, insects, and root rotting 

pathogens) all play a role on one another. When a disturbance caused by one of these occurs, it 

opens up opportunities for the other two in stand dynamics and regeneration. For example, if a 

tree is structurally weakened by root rot, the infected tree collapses and can damage other trees 

as it falls. If the stand density is high this can lead to more infection points for pathogenic spores 

(Whitney 1976, 1988, 2000). Eventually this leads to dried, dead wood on the forest floor 

(weather permitting) - a perfect fuel source for fire (McCullough et al.1998). A fire can either be 

a stand replacing fire that allows for faster growing pioneer tree species to regenerate or it can 

weaken non-killed trees, predisposing them to attacks by insects, continuing the cycle. 
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There are three major pathogens of root rot in North American forests (Whitney 1985). 

The first, Armillaria mellea (Vahl: Fr.) Kummer, is the most often identified species. However, it 

has been discovered that several closely related species of Armillaria (known as biological 

species) can cause Armillaria root rot in stands of both coniferous and deciduous trees and are 

thus referred to collectively as the Armillaria mellea complex (Williams et al. 1986; Dumas 

1988). The spread of the majority of Armillaria species is mainly through vegetative mycelial 

growth in the form of rhizomorphs along the root systems of susceptible hosts (Kile et al. 1991). 

The pathogen then grows radially outwards creating distinct patches of dead and decaying hosts 

known as infection centres and the size of these centres can range from a single tree to tens of 

hectares (Kile et al. 1991, 1986; Korhonen 1978; Rishbeth 1978, 1991; Ullrich and Anderson 

1978; Smith et al. 1992, 1994; Worrall 1994; Rizzo et al. 1995; Legrand et al. 1996). 

Armillaria’s infection strategy is based on clonal vegetative spread rather than dissemination 

through basidiospores (which is considered a rare event) (Redfern and Filip 1991; Taylor et al. 

1999).  

The second major root rot pathogen is Heterobasdion annosum (Fr.) Bref. (formerly 

Fomes annosus (Fr.) Karst.) which is the causal agent of annosum root rot and is most prevalent 

on pine species (Barnard 1979; Swedjemark and Stenlid 1993) throughout the temperate regions 

of the world (Hodges 1969). A species complex consists of three intersterility groups (S, F, and 

P) which are separated by their host affinity. The three main phylogenetic clades are European 

isolates (F group), Eurasian isolates (S group), and North American isolates (S group) 

(Johannesson and Stenlid 2003). Symptoms of H. annosum are thin, discoloured crowns, 

windthrown trees, and discolouration, staining, or decay of tree roots. Advanced decay is noted 

by white pocket rot sometimes with attendant black spots or flecks (Barnard 1979). 
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Basidiospores germinate on the surface of cut stumps of susceptible species and proceed to 

colonize the stump (Hodges 1969), entering into the root system where it can enter the healthy 

root systems of adjacent trees (Barnard 1979; Whitney 1988). Infection can be prevented by 

denying access to the host through chemical treatment of the stumps (Hodges 1969), through the 

use of biological control agents applied directly to the stump (Whipps and Lumsden 1989) or by 

limiting root contacts between susceptible species by mixing host trees with non-host trees 

(Hodges 1969; Menges and Loucks 1984). Both Armillaria and Heterbasidion annosum can 

cause extensive damage to forest stands through root degradation thus increasing susceptibility to 

fire, wind, insects and other pathogens.  

Onnia tomentosa 

The third major root rot pathogen in North America is Onnia tomentosa (Fr.) P. Karsten 

(formerly known as Inonotus tomentosus (Fr.) Teng, or as Polyporus tomentosus Fries) (Whitney 

1962, 1980, 1993, 1995; Bernier and Lewis 1999; Germain et al. 2002, 2009). It is a 

basidiomycetous fungus that forms stalked fruiting bodies on the ground above infected roots of 

its host, or can form bracket shaped fruiting bodies on the butt of the tree (Whitney 1962, 2000; 

Germain et al. 2009) (Fig. 1.1). Above ground fruiting is not apparent until many years after 

infection. So, accurate disease recognition involves labour intensive root sampling to find the 

characteristic white pocket rot (Lewis 1997).  
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Figure 1.1 Basidioma of Onnia tomentosa in a plantation of black spruce. 

The taxonomic history of Onnia tomentosa is both varied and confusing because the first 

description (Fries 1821) was based on the nature of the tissue context and the pore layer depth 

which is highly variable (Haddow 1941). The distinction between O. tomentosa and the similar 

Onnia circinata (Fr.) P. Karst. (formerly Inonotus circinatus (Fr.) Teng) is based on macro-

morphological features of the basidioma such as central or lateral stipe, colour of the pileus, tube 

layer thickness, setae (quantity, presence, and whether or not they are hooked or straight), 

basidia, and host preference (Gilbertson and Ryvarden 1986). However, these features are so 

similar when comparing the two species against each other that it can easily attribute to 

misdiagnoses of occurrence and/or pathogenicity.  

Although Onnia tomentosa can be found on several conifer species (Farr et al. 1989), it is 

most damaging on spruce and pine species (Whitney 1977; Germain et al. 2009). It can be found 
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in Europe (Breitenbach and Kranzlin 1986), Asia (Teng 1996), as well as North America where 

it occurs throughout the commercial range of native spruce in the boreal forest east of the Rocky 

Mountains in Canada (Whitney 1977, 1988; Gilbertson and Ryvarden 1986). As well, it is 

considered an important disease-causing agent on inland spruce in the British Columbia interior 

(Hunt and Peet 1997; Whitney 2000). Onnia tomentosa is also found at higher elevations in 

southern North America (Gilbertson and Ryvarden 1986; Farr et al. 1989).   

Pathology 

Onnia tomentosa causes a characteristic white pocket rot in infected roots. In the United 

States, the disease is known as tomentosus root rot, but in Canada it is commonly known as stand 

opening disease (Whitney 1962, 2000). Onnia tomentosa is able to affect both the root and the 

butt of a host tree, weakening it’s structural integrity, and thereby predisposing it to other 

environmental factors. This results in the eventual decline of the infected tree. Hosts of O. 

tomentosa suffer ecological and economic losses because of reduced growth and the devaluation 

of the log due to butt cull, windthrow damage, and tree mortality (Whitney 1977, 1995; Lewis 

1997). 

Lewis et al. (1992) showed that intrabark mycelium of O. tomentosa only directly 

penetrates roots that are less than 4 centimetres in diameter while xylem infection occurs through 

the feeder roots or small junctions. The disease will then spread and decay the small living roots 

and then progress to the bark. However, when roots are greater than 5 centimetres in diameter, 

the fungus is unable to readily grow in the bark which causes the hyphae from O. tomentosa to 

advance through the heartwood until the tree dies, at which point it will then begin decaying the 

stained wood (Lewis et al. 1992).  
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Onnia tomentosa commonly infects older, more mature trees (around the age of 50) and 

has been known to infect trees as young as 19 years (Whitney 1977). Once roots are infected, the 

fungus can extend upwards into the butt of the tree. The heartwood is the primary area being 

attacked (Whitney 1977, 1988). The time it takes for the rot to extend radially from the 

heartwood into the sapwood is relatively long compared to how rapidly it moves up the 

heartwood longitudinally (Whitney 1977; Hunt and Peet 1997).  Due to the extensive rot through 

the heartwood, the central column of stain and decay is able to extend upwards from ninety to 

one hundred and fifty centimeters from the base of the tree (Whitney 1962, 1977). The actual 

time it takes to go from initial infection to tree death and eventual spread to another tree is 

dependent on tree health at time of infection, as well as other factors that may significantly 

weaken the trees health during the infection process by O. tomentosa.  

Onnia tomentosa is capable of persisting for decades (up to 30 years) in the remains of 

spruce and pine trees (Whitney 1962, 1977; Lewis and Hansen 1991a; Bernier and Lewis 1999). 

Lewis and Hansen (1991a) postulated that viability and therefore, infectivity could extend 

beyond the 30 year period. When stumps that were infected with the fungus were examined, it 

was noted that the fungus moved to a position within the stump ready to infect another host as 

soon as the tree roots made contact (Lewis and Hansen 1991a).  

Spread within host 

As O. tomentosa spreads throughout the trunk of the tree, its hyphae also radiate 

outwards from the point of infection through the roots. This infection of the roots will hinder the 

tree’s growth because even if only one root is infected with tomentosus root disease, it can 

reduce the radial growth of the host (Lewis 1994; Hunt and Peet 1997). The estimated spread 

rate of O. tomentosa was calculated by Hunt and Peet (1997) to vary between 12 cm year-1 to 25 
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cm year-1. This rate of spread is relatively slower compared to other important root rotting fungi 

such as Armillaria ostoyae (Romagn.) in Douglas-fir (van der Kamp 1993), Phellinus weirii 

(Murrill) Gilb. on Douglas-fir (Bloomberg 1988; Nelson and Hartman 1975), and 

Heterobasidion annosum (Fr.) Bref. in northeastern California (Slaughter and Parmeter 1995) 

with mean spread rates of 22 cm year-1, 25-35 cm year-1, and 22-39 cm year-1 respectively. Hunt 

and Peet (1997) also noted that once O. tomentosa becomes established, growth rate increases to 

a rate that is more than double the rate measured by Whitney (1962) of 12.4 cm year-1. The rate 

at which O. tomentosa spreads is affected by the weather, temperature, and age of establishment. 

In areas where temperatures are cooler, it results in a negative impact on the growth of O. 

tomentosa (Hunt and Peet 1997). 

Dissemination and establishment of new infection points 

Onnia tomentosa has two modes of dissemination throughout the boreal forest. The first 

is by spore inoculation, similar to other fungi in the Basidiomycota. Onnia tomentosa releases 

basidiospores from pores on the underside of the basidiomata and these are carried by the wind 

where they land on susceptible hosts (Whitney 1962; Germain et al. 2009). The basidiospores 

can travel up to several kilometers (Pedgley 1986; Lewis and Hansen 1991a; Germain et al. 

2009). Once released from the fruiting body, the basidiospores can then enter the tree through 

wounds caused by insects, wind, etc., before germinating. Germinating spores of Onnia 

tomentosa produce hyphae which commonly enter wounds in roots 1 cm or less in diameter 

(Whitney 1962), although it is inconclusive as to which specific wounds the hyphae from 

germinating spores usually enter. Whitney (1961, 1962) ruled out weevil (Hylobius sp.) feeding 

sites as infection sites, but did note that the wounding caused by the weevil predisposes the roots 

to infection, allowing O. tomentosa to infect the susceptible host.  
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The second mode of dissemination is through root contact. This is where a root from an 

infected tree comes into contact with a root from an uninfected tree of the same species and the 

fungus spreads via vegetative growth from tree to tree (Whitney 1988; Myren and Patton 1970; 

Lewis et al. 1992).  The mycelium from the first host will spread into the second host where it 

will begin the process of decay (Whitney 1988; Lewis and Hansen 1991a). This second mode of 

dissemination is the major cause of O. tomentosa’s spread throughout the forest (Whitney 1962, 

1980, 1988; Lewis and Hansen 1991a).  

Formation of basidiomata 

After infection by the fungus has occurred and weather conditions are optimal (moist 

weather in August and September, within stand openings), basidiomata (fruiting bodies) will be 

produced (Whitney 1962). As the disease progresses into later stages within the host, more 

basidiomata will occur on infected areas. Observations by Whitney (1962, 1977, 1995) have 

shown the fruiting body will appear with either a pileus and stalk originating from the infected 

roots or as a bracket from the infected areas of the trunk (Whitney 1962, 2000). However, host 

trees can be infected with O. tomentosa for several years before exhibiting above ground 

symptoms (Myren and Patton 1970; Lewis 1997). Not only are optimal weather conditions 

required for the forming of the fruiting bodies but soil and site conditions also play an integral 

role in the spread of O. tomentosa.  

Influence of soil characteristics 

Previous studies and observations have indicated that a relationship between ecosystem 

characteristics and the presence of O. tomentosa may exist (Hobbs and Partridge 1979; Merler 

1984; Oulette et al. 1971; van Groenewoud and Whitney 1969; Bernier and Lewis 1999). Studies 
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conducted by Whitney (1976, 1980) and Bernier and Lewis (1999) suggested factors that may 

affect root rot include moisture, pH, nutrients in the soil, slope gradient, aspect, slope position, 

soil texture, effective rooting depth, depth to seepage water, humus depth and form, and 

predominant tree species. Observations by Bernier and Lewis (1999) showed the largest quantity 

of O. tomentosa was present in their driest moisture regime, however, if this regime was 

compared, on an absolute scale to the rest of the sub-boreal spruce zones, it would be considered 

moist relative to the other sites. This result would indicate that O. tomentosa prefers moist sites 

compared to dry conditions but if the site becomes wet to very wet, it will negatively impact the 

incidence of O. tomentosa. Bernier and Lewis (1999) were also able to obtain statistically 

significant impacts of pH on incidence of O. tomentosa. The range found by them (pH of 3.0 to 

7.0) was found by Whitney (1962) to be uninhibiting to O. tomentosa grown in vitro. Others (van 

Groenewoud and Whitney 1969) determined that the disease did not occur in soils with pH 

higher than 7.  However, Lewis et al. (2004) contradicted what was previously stated by Bernier 

and Lewis (1999) and reported that pH does not have a strong influence on the root disease. 

Unlike pH, factors such as moisture, nutrients, slope, soil texture, etc., seem to have a greater 

impact on the tree species present, which indirectly affects O. tomentosa (Bernier and Lewis, 

1999; Whitney 1976).  

Another factor thought to play a role in the spread of O. tomentosa is stand density or 

basal area. Researchers van Groenewoud and Whitney (1969) reported a positive relationship 

between disease incidence and stand density, however, Lewis et al. (2004) found that disease 

incidence of O. tomentosa was not related to spruce density, supporting earlier work done by 

Bernier and Lewis (1999). The surest way to determine if the fungus is primarily spreading by 

root contact or by spores within a forest stand is to determine the size of O. tomentosa genets 
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(clones) since each basidiospore should be the outcome of a unique recombination event 

(Germain et al. 2009).  

Genetics and genets 

In many Homobasidiomycetes, inbreeding is prevented courtesy of a heterothallic 

tetrapolar mating system (Peterson 1995). This system involves two different alleles on two 

different genes and when a basidiospore germinates and produces haploid monokaryotic hyphae 

it will only anastomose or fuse with haploid monokaryotic hyphae that possess differing alleles 

on each of the two genes (i.e. A1B1 will anastomose with A2B2 but not with A1B1, A1B2, or A2B1) 

(Peterson 1995; Germain et al. 2009). This is known as sexual incompatibility. This new 

dikaryotic hyphae will grow vegetatively and anastomose with other individuals of the same 

genetic background (Germain et al. 2009).  

Somatic incompatibility (sometimes known as vegetative incompatibility) is where 

dikaryotic mycelium will not anastomose with genetically different dikaryotic mycelium of the 

same species (rejection of genetically dissimilar, usually dikaryotic mycelia) (Worrall 1997). The 

individuals are known as genets (Worrall 1997; Germain et al. 2009). What somatic 

incompatibility is and how it differs from sexual incompatibility is that it is associated with 

genetic difference, therefore it is a heterogenic incompatibility system (whereas sexual 

incompatibility is a homogenic incompatibility system) (Worrall 1997). The function of somatic 

incompatibility is to maintain individuality of mated mycelia through prevention of genetic 

exchange. The role this incompatibility serves is to maintain phenotypic diversity among 

genotypically distinct individuals in a population as well as avoiding infection (such as by 

mycoviruses) (Worrall 1997).   



 
 

17 
 

To understand how an organism is infecting an area, genet studies can be extremely 

useful. Genet studies have been conducted on Armillaria gallica Marxm. & Romagn. (formally 

A. bulbosa (Barla) Kile & Watling) (Smith et al. 1992), Heterobasidion annosum (Swedjemark 

and Stenlid 2001), as well as other important soil-inhabiting fungi (not necessarily all root 

rotting). Most pertinent to the case of O. tomentosa is the study conducted by Germain et al. 

(2009). Through somatic incompatibility one could calculate spread of infection allowing for the 

approximate determination of the point of infection, how many distinct individuals there are, and 

how large of an area an individual covers. Determining area covered by the mycelium of an 

individual, one can determine how long it took to cover that area by dividing that area by the 

colony growth rate of that particular species of fungus. Somatic incompatibility can also be used 

to determine whether a fungus spreads vegetative or by basidiospores (Worrall 1997).  

The conclusions made by Germain et al. (2009) showed that spruce stands in Western 

Quebec were initially colonized by spore inoculation followed by vegetative expansion and those 

basidiospores were an important mode of infection. This was similar to what Lewis and Hansen 

(1991b) had observed in north central British Columbia. Genet size (similar to overall incidence 

of O. tomentosa) was found to vary extensively and is likely to depend on age of colonization, 

site quality, tree density, etc. (Germain et al. 2009). Compared to other studies, genets of O. 

tomentosa were small in comparison to some tree pathogens (various species of Armillaria, 

Heterobasidion annosum, Phellinus tremulae), yet similar in size to other tree-associated 

basidiomycetes (such as ectomycorrhiza-forming fungi).  

What Germain et al. (2009) alluded to was that since there was no recorded history of O. 

tomentosa prior to the spruce plantation where their study took place, they assumed that the 

pathogen was patchy and not abundant because it does not infect deciduous trees. However, once 
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a plantation had been established, and the stand ages and matures it then becomes more 

susceptible to O. tomentosa infection (Germain et al. 2009). A previous study by Dahlberg and 

Stenlid (1994) on the ectomycorrhiza-forming fungus Suillus bovinus (L.) Roussel, observed that 

as the forest matures the number of individual genets decreased, although the size of the 

surviving genets will increase. Germain et al. (2009) anticipated the same outcome to occur 

within their study area.  

Onnia tomentosa is a major player in the boreal forest as it is a very significant pathogen 

of spruce, pine, and other conifer species. It targets hosts when they reach maturity and 

predisposes them to other factors that can cause tree mortality in addition to the decay they cause 

within the host. The root rotting pathogen is able to survive in infected stumps for decades, ready 

to infect another host as soon as contact is made (Whitney 1962; Lewis and Hansen 1991a). 

Debate is ongoing regarding its most significant mode of dissemination. Regardless though, 

when it is present in a stand, it is able to stay there for as long as there are optimal hosts for it to 

colonize. It can be speculated that site and soil characteristics play a larger role on the pathogen’s 

host rather than directly affecting the pathogen, which is likely true for most pathogens. Unlike 

some other major root rotting fungi of conifer forests (e.g. Armillaria spp.), O.tomentosa appears 

to produce many small genets that, over time, will be reduced, but surviving genets will grow to 

larger size (Lewis and Hansen 1991b; Germain et al. 2009). More studies with O. tomentosa 

with regards to genet size is required to confirm these assumptions. 
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CHAPTER 2: 

GENETIC DIVERSITY AND COLONIZATION PATTERNS OF 

ONNIA TOMENTOSA IN TWO PLANTATIONS OF BLACK SPRUCE  

(PICEA MARIANA) IN NORTHWESTERN ONTARIO FOLLOWING  

DIFFERENT LEVELS OF THINNING 
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Abstract 

 Onnia tomentosa (Fr.) Karst. is prevalent throughout North America, Europe, and Asia 

and is responsible for causing a significant root-rot disease of conifers commonly known as 

stand-opening disease. Although the disease infects both spruce and pine, it is more severe on the 

former. In the late summer of 2014, the spatial coordinates of 124 basidiomata were taken, and 

the basidiomata collected from two black spruce plantations near Limestone Lake (Boom Lake 

planted in 1960 and the Airstrip planted in 1962), north of Nipigon, Ontario that had undergone 

thinning treatments six years prior. The three thinning treatments were light thinning (25% basal 

area removal), heavy thinning (45% basal area removal), and control (no thinning occurred). 

There was also a clear cut treatment, however, no basidiomata of O. tomentosa were found. 

Using extracted DNA from each of the basidiomata, single strand conformational polymorphism 

polymerase chain reaction (SSCP-PCR) of two nuclear loci were conducted, and DNA 

sequencing of two mitochondrial loci were used to measure genetic diversity and consequently 

genet size in order to see if stand density had an effect on O. tomentosa's colonization patterns. 

There were 116 genetically distinct individuals identified, suggesting that the majority of the 

basidiomata represented unique genets. Stand thinning appeared to negatively influence O. 

tomentosa colonization, however, it is inconclusive whether the light or heavy thinning 

treatments are better at countering the fungal pathogen. 
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Introduction 

Onnia tomentosa (Fr.) P. Karsten is a widespread, root-rotting pathogen found throughout 

North America, Europe, and Asia (Whitney 1962; Breitenbach and Kranzlin 1986; Teng 1986). 

Its preferred hosts are conifer tree species, but is particularly severe on spruce (Whitney 1977; 

Germain et al. 2009). Once infected, the roots of the tree begin to decay, forming the 

characteristic white pocket rot which leads to the eventual degradation of the tree roots and butt 

(Whitney 1988; Lewis 1997). This makes the host susceptible to blow down, hence the common 

name for the disease – Stand Opening Disease. 

Onnia tomentosa has two modes of dissemination; (i) release of basidiospores formed by 

the basidioma and (ii) vegetative growth from extramatrical mycelial expansion or root contact 

(Germain et al. 2009). Each basidioma is a unique recombination event (Pedgley 1986). Fruiting 

bodies (basidiomata pl., basidioma sing.) do not begin to form until significant infection of the 

host has occurred. These basidiomata greatly enhance the range that the disease can spread 

through the release of basidiospores.  

The sexual recognition system is under the control of two different mating-type loci 

which is referred to as the heterothallic tetrapolar mating system (Germain et al. 2009). Each 

basidiospore produces monokayotic hyphae which will anastamose with another monokaryotic 

hyphal strand of the opposite mating type forming dikaryotic hyphae. This dikaryotic mycelium 

grows vegetatively and can anastamose with hyphae of the same individual (or hyphae that has 

identical genetic loci controlling somatic compatibility) (Peterson 1995; Worrall 1997; Germain 

et al. 2009).  It is the dikaryotic mycelium that infects rootlets and spreads via root contact which 

results in an infection centre that consists of a single somatic-compatibility genotype- or genet 

(Whitney 1962; Lewis and Hansen 1991b; Lewis et al. 1992; Germain et al. 2009). If 
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colonization occurs by basidiospores, a genetic mosaic (meaning multiple genets) will result 

since each colonization event is the result of recombination. The size of the genets positively 

correlates to the age of colonization, meaning large genets are expected to be older than small 

genets (Germain et al. 2009).  

Spreading either by basidiospores or vegetatively, O. tomentosa can cover and infect 

multiple hosts in a relatively short time. Stand density is reported to have a positive relationship 

on disease incidence (van Groenewoud and Whitney 1969). Although, Lewis et al. (2004) stated 

that disease incidence was not related to stand density.  

In 2006-2007, the Centre for Northern Forest Ecosystem Research (CNFER) secured 

funding to establish a commercial thinning trial in black spruce (Picea mariana (Mill.) B.P.S.) 

plantations that were established by George Marek (former district forester) in the early 1960s 

near Limestone Lake near Nipigon, Ontario to examine the effects of thinning. Early density 

regulation is not only important for disease disruption either through planting or juvenile 

spacing, but is essential for ensuring that stands meet the age, live crown, and health criteria that 

makes them suitable for commercial thinning (McKinnon et al. 2006). Between 1993 and 2003, 

approximately one million hectares of Ontario’s boreal forest was regenerated to conifer 

plantations, mostly black spruce and jack pine (Pinus banksiana Lamb.) (CCFM 2003).  

In 2008, thinning plots were established. Sixteen one-hectare experimental thinning plots 

and 10.8 hectares of operational thinning plots were installed. The treatments represent a range 

of intensity based on the amount of basal area removed; light thin (LT 25% removed), moderate 

quality thinning (QT 35% removed), heavy thinning (HT 45% removed), clear cuts (CC 100% 

removed), and un-harvested controls.  
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In the summer of 2013, it was noted that basidiomata of O. tomentosa were beginning to 

fruit. Whitney and Fleming (2005) discovered that even though the basidiomata of O. tomentosa 

fruit episodically, their presence correlates with root rot in white spruce plantations and was 

useful in predicting losses. The above ground presence of basidiomata represents approximately 

the occurrence of below ground mycelial structure (Germain et al. 2009). Traditional methods 

involved pairing dikaryotic cultures derived from basidiomata on agar to observe somatic 

compatibility/incompatibility to determine genet size (Worrall 1997). However, molecular 

techniques allow for generating a larger sample size and prevents misidentification of O. 

tomentosa with other morphologically similar species (e.g. Onnia circinata (Fr.) P. Karst.). 

Single-strand conformational polymorphism (SSCP) PCR was the chosen method to observe 

genetic differences among O. tomentosa populations. SSCP was chosen because it allows for the 

screening of mutations in a specified DNA region by choosing DNA primers that span that 

region and SSCP PCR allows for the screening of a large number of samples due to the 

simplicity and quickness of the technique. The purpose of this study was: a) to map the 

occurrence of basidiomata of O. tomentosa in two plantations of black spruce, b) determine the 

size and distribution of individual genets of O. tomentosa in the two plantations, and c) 

determine whether operational thinning in the black spruce plantations affects colonization by O. 

tomentosa. It is hypothesised that the incidence of O. tomentosa in thinned treatment plots will 

be less compared to control plots due to reduction in root contacts.  
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Materials and Methods 

Fungal Sampling 

 One hundred and twenty-four basidiomata of Onnia tomentosa were collected in the late 

summer of 2014 on the forest floors of a 56 and 54 year old black spruce (Picea mariana) 

plantations (Fig. 2.1) known as Boom Lake and Airstrip respectively, located near Limestone 

Lake (49º6′36″N, 88º9′41″W), Ontario, Canada. The soil characteristics and climate factors for 

the two plantations are provided in Table 2.1. The area had undergone randomized blocking of 

four treatments: control (no basal area removal), light thin (25% basal area removal), heavy thin 

(45% basal area removal), and clear cut (100% basal area removal). However, only the light thin, 

heavy thin, and control plots were used to sample from since we knew there was O. tomentosa 

present in those plots. Clear cuts were not sampled from because the host is not present for O. 

tomentosa to fruit from. Plots that were used for sampling were systemically assessed and all 

plots received a complete examination of the entire plot. Basidiomata gathered from control, 

light thinned, and heavy thinned all had spatial coordinates (x, y) recorded using a 62s Garmin 

GPS unit (Garmin Inc.). Samples were then numbered, placed into paper bags, and then stored at         

-15ºC until DNA extractions were completed in 2015.  
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Figure 2.1 Location of study site in Ontario, and layout of thinning treatment plots. 

 

Table 2.1 Variables between Airstrip and Boom Lake plantations. 

 Airstrip Boom Lake 
Soil Type Calcareous clay Sandy Loam with a  

loess silty cap 
Moisture Regime 4 1 
Drainage Class 4 1 
Annual Mean Temperature (ºC) 2.7 2.7 
Annual Mean Precipitation (mm) 668 668 
Site Index (m)* 14.71 15.12 

*Index age for site index = 50 years at breast height age. 

 

DNA Extraction 

 Samples were brought out of -15ºC storage and a section of the pileus (or stipe if pileus 

was too degraded) was removed and weighed to approximately 5 mg. To limit contamination 

from the environment, the piece was aseptically removed from the interior of the pileus or if the 
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piece was taken from the stipe it was taken from the middle area after the outer area was 

removed.  

 All work involving DNA extraction was undertaken at the Lakehead University Paleo-

DNA Laboratory. DNA was extracted by placing each sample in a separate sterile 0.2 mL tube 

where one stainless steel bead was also placed. The 0.2 mL tube containing both sample and 

bead was then placed into the TissueLyser LT adapter (QIAGEN Inc.). The lid was then securely 

fastened once all sample tubes had been placed in the rotator. The TissueLyser LT ran for one 

minute at 50 Hz. When the tissues had been completely homogenized they were removed and 

placed into a test tube rack until the next step. Samples that were not homogenized completely 

were run again for another minute at 50 Hz. No samples were homogenized for more than two 

minutes.  

 Using the DNeasy® Plant mini kit (QIAGEN Inc.) 400 µL of AP1 buffer and 4 µL of 

RNase A stock solution (100 mg/mL) were added to the samples and then vortexed vigorously. 

To reduce precipitates (if any), buffers were warmed before use. The AP1 buffer and RNase 

were not mixed before use.  The mixture was then incubated for 10 minutes at 65ºC using a 

Thermomixer R (Eppendorf Ltd.). Tubes were inverted 3 times throughout the 10 minute 

incubation period to lyse the cells. After the incubation was completed, 130 µL of AP2 buffer 

was then placed on ice for five minutes, which precipitates polysaccharides, detergent, and 

proteins. Tubes were then centrifuged for five minutes at 13,000 rpm using a 5415D model 

centrifuge (Eppendorf Ltd.). The solution was then pipetted out and moved to QIAcube specific 

2 mL tubes (QIAGEN Inc.) and placed in the rotator of the QIAcube (QIAGEN Inc.). Samples 

then underwent the QIAcube protocol for plant DNA which is provided in the following steps: 

lysate was pipetted into the QIAshredder Mini spin column (QIAGEN Inc.) and then placed into 
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a 2 mL collection tube and centrifuged for 2 minutes at 13,000 rpm. The flow through fraction 

was then transferred into a new tube (without disturbing the pellet). 1.5 mL of Buffer AP3/E 

(QIAGEN Inc.) was pipetted into the cleared lysate followed by 650 µL of the flow through 

fraction into a DNeasy Mini spin column (QIAGEN Inc.) in a 2 mL collection tube. This was 

then centrifuged for 1 minute at 8000 rpm. The remaining sample then had another 650 µL of 

flow through fraction pipetted in and was then again centrifuged for 1 minute at 8000 rpm. The 

DNeasy Mini spin column (QIAGEN Inc.) was then transferred to a new 2 mL collection tube 

and 500 µL of Buffer AW (QIAGEN Inc.) was added and was centrifuged for 1 minute at 8000 

rpm. The flow through was discarded and another 500 µL of Buffer AW (QIAGEN Inc.) was 

then added to the DNeasy Mini spin collection tube. This was then centrifuged for 2 minutes at 

13,000 rpm to dry the membrane, and then transferred to a 2 mL tube. Finally, 100 µL of Buffer 

AE (QIAGEN Inc.) was then pipetted directly to the DNeasy membrane, which was then 

incubated for 5 minutes at 20ºC, and then centrifuged for 1 minute at 8000 rpm to elute the 

solution.  

Marker Selection 

 Screening for single-strand conformational polymorphism (SSCP) was done on 

amplicons created by four different pairs of primers (Table 2.1) specific to Onnia tomentosa. 

Two pairs, MS1 / MS2 (MS) and ML5 / ML6 (ML) (White et al. 1990) were selected to amplify 

mitochondrial genes. The it-BT-15-f / it-BT-490-rc was designed from an alignment of β-tubulin 

(BT) sequences that were from amplification with fungal primers BT1a / BT1b (Glass and 

Donaldson 1995). The fourth and final set of primers used were it112.31act2501f / 

it112.31act2700rc and it was designed from actin (ACT) and RNA polymerase II largest subunit 

(RPB1) aligned sequences which were obtained from amplification with degenerate primers 
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ACT2-F / ACT2-R (Germain et al. 2009). The latter two sets of primers were used to select and 

amplify nuclear genes specific to Onnia tomentosa. The four primers were chosen because of the 

work done by Germain et al. (2009) where a similar study was undertaken. 

Table 2.2 Primer sequences, annealing temperatures, and amplification length for locus and 
allele specific amplifications at two mitochondrial and two nuclear loci in Onnia tomentosa. 

Locus Primers Primer Sequence Annealing 
Temperature 
(ºC) 

Amplicon 
Length (bp) 

Mitochondrial 
large subunit 

ML5 5’-CTCGGCAAATTATCCTCATAAG-3’ 59 778 

 ML6 5’-CAGTAGAAGCTGCATAGGGTC-3’   

Mitochondrial 
small subunit 

MS1 5’-CAGCAGTCAAGAATATTAGTCAATG-3’ 59 619 

 MS2 5’-GCGGATTATCGAATTAAATAAC-3’   

Beta-tubulin 
(specific) 

it-BT-15-f 5’-GGAGCCAGCAGTACCGTG-3’ 50 494 

 it-BT-490-rc 5’-CGTGAAGTATGCGTTAGC-3’   

Actin 
(specific) 

it112.31act2501f 5’-GTGAAATTGTGCGCGACATC-3’ 59 200 

 it112.31act2700rc 5’-AACACGCCGCAAGTCAAC-3’   

 

Genomic DNA Amplification 

 Nuclear DNA amplification was carried out using 5.0 µL 5x GoTaq Flexi Buffer, 0.5 µL 

of dNTP mix 10 mM, 2.0 µL of magnesium chloride 25 mM, 0.25 µL of each primer, 0.13 µL of 

GoTaq DNA polymerase, 14.9 µL of double distilled H2O, and 2.0 µL of sample at 1.0 ng 

concentration for a total 25 µL volume. Samples were then placed in the PTC-225 Peltier 

ThermoCycler (BioRad Laboratories Inc.) and had a hot start at 95°C for 2 minutes, then 

denatured at 95°C for 30 seconds, followed by an annealling step at 50°C for BT primers and 

59°C for ACT primers for 1 minute, and extended at 72°C for 2 minutes for 40 cycles. The final 

extend was at 72°C for 5 minutes and the holding step at 7°C. 
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 Mitochondrial DNA amplification required 2.5 µL of 10x PCR buffer (minus Mg), 0.5 

µL of dNTP mix 10 mM, 1.0 µL of magnesium chloride 25 mM, 0.25 µL of each primer, 0.1 µL 

of Platinum Taq (5U/µL), 15.4 µL of double distilled H2O, and 5.0 µL of 1.0 ng concentration 

sample of DNA for a 25 µL volume. PCR was carried out using a PTC-225 Peltier 

ThermoCycler using the following protocol: hot start (94°C for 2 minutes), denature (94°C for 

30 seconds), anneal (59°C for 1 minute), extend (72°C for 2 minutes), repeated for 50 cycles and 

then held for 7°C.  

Single Strand Conformational Polymorphism - PCR 

 Nuclear DNA was run through a 6% PAGE (polyacrylamide gel electrophoresis) gel to 

detect polymorphisms. An 8% PAGE gel was used for detecting polymorphisms within 

mitochondrial DNA. The 8% PAGE gel was made from 1.0 mL 5xTBE buffer (1.1M Tris; 900 

mM Borate; 25 mM EDTA; pH 8.3), 1.0 mL of acrylamide, 5.2 mL of H2O, 10 µL of TEMED, 

100 µL of 10% ammonium persulfate, and 0.7 mL of glycerol.  

 Nuclear DNA samples (5 µL) were mixed with 3 µL of DNA gel loading dye (6x) 

(Thermo Fisher Scientific Inc.) and then loaded into  6% PAGE gels which ran in 1xTBE buffer 

for 45 minutes at 118 volts at room temperature. Mitochondrial samples were placed in 0.5 mL 

tubes using 5 µL of sample, 5 µL of Formamide, and 3 µL of DNA gel loading dye (6x) (Thermo 

Fisher Scientific Inc.). Tubes were heated for 7 minutes at 95°C (standard heatblock, VWR 

Scientific Products) then immediately placed on ice for 5 minutes. After which, tubes were 

vortexed and spun down and then placed back on ice while the gel was being loaded. 8% PAGE 

gels ran in 1xTBE buffer that was refrigerated until the buffer was approximately 4°C and the 

entire gel casing was placed in a Styrofoam cooler with ice packs lining the inside to keep the 

entire unit around 4°C. The gel ran for 180 minutes at 140 volts. The X Cell SureLock 
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(Invitrogen Canada Inc. Burlington, ON) gel container was powered by ACCU power (VWR 

Scientific Products). 

 After gels (both 6% and 8% PAGE gels) were finished running, they were then separated 

from their gel cassette and the polyacrylamide gels were placed into a staining bath filled with 

ethidium bromide solution. Gels were left in the bath for 15 minutes then removed and placed 

onto the transilluminator (MultiImage Light Cabinet, Alpha Innotech Corperation, San Leandro, 

CA). The gel was photographed and removed from the transilluminator. The gel was then 

analyzed using AphaEaseFC 4.0 software (ProteinSimple, San Clara, CA).  

Mitochondrial DNA Sequencing 

 Mitochondrial DNA samples were sequenced, as inconclusive results were derived from 

the gels. Samples were purified by adding 4 µL of shrimp alkaline phosphatase (SAP) and 2 µL 

of Exonuclease I to 20 µL PCR reaction. Everything was done on ice. The mixture was then 

vortexed and incubated at 37°C for 15 minutes then at 80°C for 15 minutes using the 

Mastercycler (Eppendorf Scientific Inc.) This procedure inactivates the enzymes and the PCR 

product is now purified.  

 For sequencing, all reagents were placed into a 0.2 mL PCR tube: 3.0 µL of sample, 4.2 

µL of sterile water, 2.0 µL of 5x sequencing buffer, 0.3 µL of 10 µM primer, and 0.5 µL Big 

Dye Terminator Ready Reaction Mix v3. The mixture was vortexed and briefly centrifuged 

(approximately 20 seconds) to settle the solution into each tube. Tubes were then placed into  the 

thermocycler Mastercycler (Eppendorf Scientific Inc.). The protocol for the thermocycler was as 

follows: initial denatured at 96°C for 60 seconds, denatured at 96°C for 10 seconds, annelled at 

50°C for 5 seconds, extension at 60°C for 75 seconds, repeated for 15 cycles, denatured at 96°C 

for 10 seconds, annealled at 50°C for 5 seconds, extension at 60°C for 90 seconds, repeated for 5 
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cycles, denatured at 96°C for 10 seconds, annealled at 50°C for 5 seconds, extension at 60°C for 

120 seconds, repeated 5 cycles, held at 7°C. After cycling, samples were then cleaned using a 

sodium acetate/ethanol precipitation.  

 A sodium acetate/ethanol solution (3M sodium acetate, pH 5.4 - 3.0 µL and 95% ethanol 

62.5 µL) was prepared in 0.5 mL tubes and vortexed briefly (~10 seconds). 24.5 µL of sterile 

water was added to the sequencing reaction. The diluted sequencing reaction was transferred to a 

tube containing ethanol/sodium acetate mixture. Tubes were vortexed and sat at room 

temperature for 20 minutes. Tubes were then placed in a microcentrifuge (Eppendorf centrifuge 

5415D) and ran for 20 minutes at 13000 rpm (inserts for 0.5 mL tubes were required for the 

centrifuge). The supernatants were then aspirated with a separate pipette for each sample. 250 µL 

of 70% ethanol was added to the tube and vortexed for 20 seconds. Tubes were placed back into 

the centrifuge in the same orientation as they were the first time and spun for 5 minutes at 13000 

rpm. The supernatants were aspirated again and the tubes were dried in a vacuum centrifuge 

(Eppendorf concentrator 5301) for 12 minutes.  

 After purification and desiccation, samples were then suspended in 15 µL of Hi-Di 

formamide. Samples were vortexed for 1 minute, the formamide being kept near the base of the 

tube. Samples were then heated at 95°C for 3 minutes and then placed on ice for 2 minutes after 

which they were vortexed again to ensure formamide was at the base of the tube. Samples were 

then pipetted into an ABI plate which was then placed in an Eppendorf centrifuge 5804 to ensure 

the product was at the base of the wells. The ABI plate was then placed on a Hitachi Applied 

Biosystems 3130x1 Genetic Analyzer. Sequences were analyzed using Sequencher 4.10.1 (Gene 

Codes Corporation, Ann Arbor, MI). 
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Spatial Mapping 

 The spatial maps of the basidiomata of O. tomentosa were done using ArcMap 10.1 

(Esri's ArcGIS software). The points were taken using a 62s Garmin GPS unit (Garmin Inc.) and 

where clusters of basidiomata occurred, a single GPS point was taken and then the basidiomata 

had their distance and bearing taken from where the GPS point was.   

Results  

Genet Composition and Distribution 

 One hundred and twenty-four basdiomata were collected from 12 treatment plots (4 

control, 4 light thin, and 4 heavy thin): 3 replications were undertaken in the Airstrip plantation 

(clay site) while only 1 set of treatment plots was undertaken in the Boom Lake plantation (sandy 

loam site). Two basidiomata had missing data at more than one locus and were removed from the 

study. The remaining 122 basidiomata were plotted spatially (Fig. 2.2 and 2.3) and where a genet 

with more than one baisdiomata occurred, a unique symbol was used to represent the basidioma 

belonging to the same multilocus genet (MLG) (Fig. 2.4-2.10). One hundred and sixteen MLGs 

were discovered, 110 of which were represented by a single basidioma (Table 2.2). For genets 

represented by more than one basidiomata, the average diameter of the genet was 0.55 m.  
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Figure 2.2 Map of the Airstrip plantation and location of Onnia tomentosa basidiomata that were 
collected from control treatment (18, 21, and 24), light thin (17, 20, and 23), and heavy thin (16, 
19, and 22) treatment plots.  
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Figure 2.3 Map of the Boom Lake plantation and location of O. tomentosa basidiomata that 
were collected from control (15), light thin (14), and heavy thin (13) treatment plots.  
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Figure 2.4 Spatial distribution of Onnia tomentosa in control plot 18. Each genet is represented 
by a single basidioma, each having a unique multilocus genotype (MLG). Points denoted with a 
Δ, indicate those genets represented by more than one basidioma.  
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Figure 2.5 Spatial distribution of Onnia tomentosa control plot 24. Each genet is represented by 
a single basidioma, each having a unique multilocus genotype (MLG). Points denoted with 
various symbols (+, Δ) indicate those genets represented by more than one basidioma.  
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Figure 2.6 Spatial distribution of Onnia tomentosa in light thin treatment (25% basal area 
removal) plot 14. Each genet is represented by a single basidioma, each having a unique 
multilocus genotype (MLG). Points denoted with a Δ indicate those genets represented by more 
than one basidioma.  
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Figure 2.7 Spatial distribution of Onnia tomentosa in heavy thin treatment plot (45% basal area 
removal) 22. Each multilocus genet is represented by a single basidioma, each having a unique 
multilocus genotype (MLG). Points denoted with a Δ indicate those genets represented by more 
than one basidioma. 
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Figure 2.8 Spatial distribution of Onnia tomentosa in control plot 15. Each genet is represented 
by a single basidioma, each having a unique multilocus genotype (MLG).
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Figure 2.9 Spatial distribution of Onnia tomentosa in light thin treatment (25% basal area 
removal) plot 17. Each genet is represented by a single basidioma, each having a unique 
multilocus genotype (MLG). 
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Figure 2.10 Spatial distribution of Onnia tomentosa in heavy thin treatment (45% basal area 
removal) plot 13. Each genet is represented by a single basidioma, each having a unique 
multilocus genotype (MLG). 

 

Multi-locus Genet Analysis 

 The DNA analysis was done from both the PAGE gels (e.g. Fig. 2.11) and DNA 

sequencing, with each sample being scored at each locus to congregate samples that had the 

same scoring for each locus into a MLG (Table 2.3).  
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Figure 2.11 Gel chromatography image of genetic samples observed with mitochondrial large 
subunit primer. The grid overlay is part of the AlphaEaseFC software to measure 
polymorphisms. 
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Table 2.3 Genotype of each discrete multilocus genet of Onnia tomentosa identified. 

   Locus    

Genet # N* Size (cm) MS ML ACT BT 

1 1 - A A FF B 

2 1 - A A H A 

3 1 - C - H B 

4 1 - A A A AA 

5 1 - B A D A 

6 1 - B A FF W 

7 1 - B A T X 

8 1 - B A FF S 

9 2 480 B A CC R 

11 1 - D A FF N 

12 1 - A A FF R 

13 1 - A A T N 

15 1 - A A N V 

16 1 - A A EE P 

17 1 - A A K T 

18 1 - A A R S 

19 1 - A A P I 

20 1 - A A P L 

21 1 - A A V E 

22 2 3600 A A X D 

23 1 - A A Z GG 

24 1 - A A Z A 

25 1 - A A X A 

26 1 - A A V B 

28 1 - A A V A 
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29 1 - A A Z K 

30 1 - A A H T 

31 1 - A A C Y 

32 1 - A A C Q 

33 1 - A A B V 

34 1 - A A S T 

35 1 - A A Y S 

36 1 - A A Z U 

37 1 - A A F W 

38 1 - A A I I 

39 1 - A - S Z 

40 1 - A A K W 

41 1 - A A S R 

42 1 - A A S K 

43 1 - A - W Q 

44 1 - A A R D 

45 1 - A A S E 

46 1 - A A U K 

47 1 - A - R K 

48 1 - A A P FF 

49 1 - A A K O 

50 1 - A A H M 

51 1 - A - K R 

52 1 - A A K M 

53 1 - A A K L 

54 1 - A A P O 

55 1 - C - H O 

57 1 - A A H L 
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58 1 - A A C M 

59 1 - A A C J 

60 1 - A A A M 

61 1 - A A F M 

62 1 - A A F U 

63 1 - A A H S 

64 1 - A A N T 

65 1 - A A K U 

66 1 - A A P V 

67 1 - A A K GG 

68 1 - B A D I 

69 1 - B A D K 

71 1 - B A B N 

72 1 - B A F P 

73 1 - A A D P 

74 1 - A A A P 

75 1 - C A B DD 

76 1 - A A A V 

77 1 - A A A U 

78 1 - A A A S 

79 1 - A A DD S 

80 1 - A A R J 

81 1 - A A L C 

82 1 - A A V D 

84 2 1980 A A P J 

86 1 - A A O F 

89 1 - C A H DD 

90 1 - C - T BB 
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91 1 - C A V CC 

92 1 - A A T F 

93 1 - C A P CC 

94 1 - C A V R 

95 1 - A A T C 

96 1 - C A J N 

97 1 - C A J GG 

98 1 - A - P C 

99 2 30 A A M E 

101 1 - A A M G 

102 1 - A A G G 

103 1 - A A E I 

104 1 - A A E G 

105 1 - A A C G 

107 1 - A A DD G 

108 1 - A A W O 

109 1 - A A S I 

110 1 - A A V I 

111 1 - D A W I 

112 1 - D A W J 

113 1 - D A Y M 

115 1 - D A BB O 

116 1 - C - Y EE 

118 2 70 A A V P 

120 1 - A A Q S 

121 2 300 A A G L 

122 1 - A A E L 

123 1 - A A B H 
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*Number of basidiomata per genet. Loci were groupings based on genetic differences observed  
at each specific primer. Mitochondrial small subunit primer (MS), mitochondrial large subunit 
primer (ML), β-tubulin primer (BT), actin primer (ACT). 

 

Allelic Diversity within Onnia tomentosa 

 The alleles discovered by nuclear primers showed a high level of diversity at both loci. 

The ACT locus had 31 alleles and the BT locus had 33 alleles (Table 2.4). Genetic samples 

observed at both loci were grouped by a single base pair differences among PAGE gels. After 

sequencing the samples, the mitochondrial large subunit loci observed a single grouping among 

O. tomentosa samples and mitochondrial small subunit loci observed 4 groupings among O. 

tomentosa samples. 

 

Table 2.4 Allele frequency at two nuclear loci genotyped in Onnia tomentosa.  

 Locus  

Allele ACT BT 

A 0.049 0.041 

B 0.033 0.025 

C 0.041 0.025 

D 0.041 0.033 

E 0.033 0.033 

124 1 - A A G M 

125 1 - A A I J 

127 1 - A A I R 

128 1 - A A D M 

129 1 - A A E P 

130 1 - A A G J 

131 1 - A A I K 
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F 0.033 0.016 

G 0.041 0.041 

H 0.066 0.008 

I 0.033 0.057 

J 0.016 0.057 

K 0.066 0.049 

L 0.008 0.049 

M 0.025 0.066 

N 0.016 0.033 

O 0.008 0.041 

P 0.074 0.057 

Q 0.008 0.016 

R 0.033 0.057 

S 0.049 0.057 

T 0.041 0.033 

U 0.008 0.033 

V 0.074 0.033 

W 0.033 0.025 

X 0.025 0.008 

Y 0.025 0.008 

Z 0.033 0.008 

AA -- 0.008 

BB 0.008 0.008 

CC 0.016 0.016 

DD 0.016 0.016 

EE 0.008 0.008 

FF 0.041 0.008 

GG -- 0.025 
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Colonization and Distribution under Thinning Effects 

 Thinning treatments seemed to negatively impact the presence of Onnia tomentosa as 

fewer basidiomata were collected from plots that were thinned (Fig. 2.12 and Fig. 2.13). The 

average basidioma count for the control was 24.33 compared to the light and heavy thinned 

treatments which had 2.33 and 3.67 respectfully in the Airstrip plantation (Fig. 2.12) however, a 

one-way ANOVA was done and confirmed no significant differences among treatments, p-value 

was 0.165. Boom Lake plantation had more basidiomata in control (15) but the light thinning and 

heavy thinning treatments did have basidiomata present as well, 9 and 7 respectively (Fig. 2.13), 

however, it is important to note that these basidiomata were collected from thinning treatments 

without replicates. 
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Figure 2.12 Box plot of total basidiomata collected from each treatment within the Airstrip 
plantation.  
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Figure 2.13 Bar graph of total basidiomata collected from each treatment at Boom Lake 
plantation.  
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Discussion 

 The plots underwent thorough examination for basidiomata of O. tomentosa and each 

treatment was surveyed equally. Using both spatial coordinates and discrete MLGs it was 

determined that thinning operations did have a negative effect on the colonization and spread of 

Onnia tomentosa. However, it is difficult to say definitively if it was the thinning treatments or it 

some other factor that caused the reduced presence of basidiomata since there was no significant 

differences among the two thinning treatments and control at the Airstrip plantation (Fig. 2.12). 

Only one plot representing each thinning treatment was sampled from the Boom Lake plantation 

and this was done simply because it was known that O. tomentosa was present in that specific 

area and the collections were biased in favour of collecting basidiomata for DNA sampling. It is 

known that the basidiomata appear episodically (Whitney and Fleming 2005; Germain et al. 

2009) and that the basidiomata do not appear until after the pathogen is already well established 

in its host. The episodic appearance makes it difficult to ascertain the full scale of the O. 

tomentosa presence when doing above ground sampling.  

 The heavy thinned treatment at the Airstrip plantation had a slightly larger basidioma 

count of O. tomentosa compared to the light thinned treatment, but that was largely a function of 

a single plot (plot 22, Fig. 2.7) which was a heavy thinned treatment adjacent to a control plot 

(plot 24) that had a very large number of basidiomata. Perhaps the two adjacent areas are over an 

epicentre that was in the process of colonization by O. tomentosa, resulting in a cluster that 

contributes greatly to the heavy plot basidiomata count. Also, Lewis et al. (2004) and previous 

work by Bernier and Lewis (1999) suggested that disease incidence is not related to host density 

when studying O. tomentosa. Although fewer basidiomata were collected within plots that 

underwent thinning treatments versus the control, whether or not thinning treatment actually 
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affects the spread of O. tomenotsa will have to be tested in the future when the fungus is allowed 

to spread via root contact. The high variability between the control plots can also attest to the 

work of Lewis et al. (2004). 

 It is apparent, based on the genetic analysis of the basidiomata that the pathogen is in the 

early stages of colonizing the plantation. This is from the fact that out of the 122 basidiomata 

analyzed, there were 116 genets, 110 of which were represented by a single basidioma. Also, 

based on the spatial patterns observed in Fig. 2.4 – Fig. 2.10, the treatment plots were inoculated 

by basidiospores and that these observations were made at the start of the fungus colonizing the 

area. It is anticipated that future collections of basidiomata followed by analysis will probably 

show the growth of the genets as they vegetatively spread and compete with one another. Some 

genets may be overtaken, but the genets that do thrive will prosper and become larger. This 

decrease of population diversity and increase of genet size as stands age has been documented 

with ectomycorrhiza-forming fungi such as Suillus bovinus (L.) Roussel (Dahlberg and Stenlid 

1990).  

 Genets, once established will spread radially outwards from the point of colonization, 

with the age of the genet being calculated through the use of growth rates from published 

estimates. The growth rate of O. tomentosa is subjected to factors such as age of the stand, soil 

temperature, weather, etc. Due to the fact the study occurred in northwestern Ontario where the 

average annual temperature is 2.7ºC in the Limestone Lake area, it is justifiable to use the lower 

growth rate presented by Hunt and Peet (1997) of 12 cm year-1. The two plantations were planted 

in 1960 (Boom Lake) and 1962 (Airstrip), so genets would have to be 12 metres in diameter to 

be as old as the plantation itself.  In fact, if we look at genet size represented by two or more 

basidiomata the average diameter size was 55 cm. Most genets were represented by a single 
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basidioma and thus were significantly smaller. However, two larger sized genets did occur and 

they were represented by #22 and #27 and #84 and #87 that were 36 m and 19.8 m in diameter, 

respectively (Table 2.3). These two rather large genets could however have had their sizes 

skewed because the distance measured between the two basidiomata for each was based on their 

reference points on the spatial charts (Fig. 2.4 and Fig. 2.6, respectively). There can be 

measurement error from the GPS unit (+/- 5 m) as well as human error. Ideally, to obtain an 

accurate diameter measurement of each genet one would have to physically measure the distance 

between the genetically identical basidiomata. However, since basidiomata were removed for 

genetic analysis this was not possible. In retrospect, numbered markers could have been placed 

in each location of a basidioma.  

Despite the two larger genets found, the other genets were substantially smaller, with the 

third largest genet being 3.0 m and the next largest being only 0.48 m (Table 2.3). Germain et al. 

(2009) found the average genet size of O. tomentosa in their white spruce plantation in Quebec 

to be 3.42 m which, when compared to the genets found by this study are larger. They also found 

a greater abundance of genets that contained more than a single basidioma. However, this is 

likely due to the white spruce plantation having the pathogen well established for a greater 

amount of time compared to the Limestone Lake plantations where a variety of harvestings, 

wildfires, and pesticide treatments occurred between 1937 and 2014. Harvesting took place at 

Limestone Lake between 1937 to 1940 followed by wildfire which occurred over the next 8 

years. The Boom Lake plantation was established in 1960 with seedlings from the Fort William 

Nursery and the same was done in the Airstrip plantation in 1962. In 1964 Airstrip was also 

planted with seedlings from Swastika Nursery. Hand cleaning occurred at the Boom Lake 

plantation in 1966 then herbicide treatment was applied to the Airstrip plantation in 1969. Hand 
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cleaning occurred in both the Boom Lake and Airstrip plantations from 1971 – 1980. Both 

plantations were then treated to eradicate weevils (Hylobius spp.). Whitney (1961, 1962) ruled 

out weevil feeding sites as entry points for O. tomentosa but did note that the weevil can 

predispose the tree itself to infection by the fungus. Then in 1990 and 1991 the plantations 

underwent treatment to kill budworm (Choristoneura spp.). The two plantations underwent 

thinning treatments in 2008. Germain et al. (2009) also hypothesized that O. tomentosa was not 

necessarily abundant on living trees as it was likely present in the stumps of white spruce trees 

that occupied the stand before clear cuts occurred in their study site in Quebec.  

It has been documented that O. tomentosa can survive in infected stumps for up to 30 

years (Lewis and Hansen 1991a; Tkacz and Baker 1991). Germain et al. (2009) also stated that 

the stand they studied was previously a mixwood stand, containing both deciduous and 

coniferous trees resulting in a patchy appearance of O. tomentosa. It was not noted whether O. 

tomentosa was present within the Limestone Lake plantation before it was replanted to black 

spruce in the early 1960s but if it is likely that there were patches of it residing in the soil or 

infected material (stump or roots) it is only now beginning to colonize the maturing black spruce 

host.  

 Onnia tomentosa genet size observed here was substantially smaller compared with 

studies investigating other root rotting pathogens such as species within the Armillaria mellea 

(Vahl) P. Kumm. complex, Heterobasidion annosum (Fr.) Bref. as well as to some tree-

associated basidiomycetes that form ectomycorrhizas (Germain et al. 2009). Genets for 

Armillaria species were found ranging from 1 hectare to 37 hectares (Coetzee et al. 2001; 

Dettman and van der Kamp 2001a, b; Bendel et al. 2006), and in the case of Armillaria gallica 

Marxm. & Romagn a single genet was found to be 635 m across (about 1,500 years old) (Smith 
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et al. 1992). Heterobasidion annosum genets were smaller, around 18 to 21 m in diameter 

(Vasiliauskas and Stenlid 1998). Lactarius xanthogalactus Peck, Amanita franchetii (Boud.) 

Fayod, and Russula cremoricolor Earle are ectomycorrhiza-forming fungi which were reported 

to have genets that covered 9.3, 1.5, and 1.1 m2, respectively (Redecker et al. 2001). It is 

anticipated, now that the population of O. tomentosa is establishing itself that some will grow to 

form genets in size comparable to those genets found by Germain et al. (2009) and the 

ectomycorrhiza-forming fungi.  

 There was also prolific diversity of nuclear alleles. This high diversity also suggests that 

this population is just starting their colonization. As the genets increase in size, the number of 

genets is likely to be reduced, which, in turn will reduce this nuclear allele diversity. Germain et 

al. (2009) also noted high allelic diversity at the two nuclear loci. In this present study, the two 

nuclear loci were used to form MLGs to give us an idea of how the plantation was being 

colonized. However, in future studies of this population, it would be beneficial to sequence the 

PCR derived segments to confirm the SSCP analysis. Sequencing each PCR derived segment 

would also clarify whether introns (non-coding sections of the DNA strand) are contributing to 

the polymorphism differences observed in the PAGE gels or not, as introns can be absent or 

present which contributes to size variation within the gels.  

 The use of universal BT and ACT primers in combination with the specific nuclear 

primers in future studies would allow for the determination of whether or not the population is at 

a Hardy-Weinberg equilibrium and is experiencing hetero- and homozygous deficiency/excess. 

An example of another nuclear locus that could have been examined would be the RNA 

polymerase II largest subunit (specific) (Germain et al. 2009). It would also be useful in future 

studies to compare back to the present day population and determine what genets increased in 
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size and which ones, if any, were out competed. It will be important to revaluate the study site 

again to see if the thinning treatments did indeed have an effect on the spread of O. tomentosa 

now that vegetative spread will likely play a larger role since the original colonization event 

occurred.  

 Molecular techniques other than SSCP-PCR that could be applied to this type of study in 

the future could be simple sequence repeat markers (SSR) or microsatellites to examine genetic 

populations of O. tomentosa. The use of microsatellites is useful when dealing with minute 

concentrations of DNA but are not ideal when dealing with samples larger then 350 base pairs. 

Three out of the four locus examined were greater than 490 base pairs (MS, ML, and BT) (Life 

Technologies 2012).  

 From this present study, it appears that tree thinning does negatively affect the presence 

of O. tomentosa but since it is still in the early stages of colonization, it is difficult to predict 

what the minimum amount of thinning is required to have an effect. Since the population of O. 

tomentosa is in the early stages of colonization, and since the basidiomata appear episodically it 

would be important to re-examine the plantation in the future to measure how population size 

and diversity is progressing.  A more balanced sampling design over the two plantations with 

contrasting soil types will be critical to examine if soil is influencing disease incidence. 
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CHAPTER 3: 

THE OCCURRENCE OF GENETS OF PHELLINUS TREMULAE IN LIVING STEMS 

OF TREMBLING ASPEN (POPULUS TREMULOIDES) FROM A STAND 

IN NORTHWESTERN ONTARIO 
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Abstract 

 Phellinus tremulae (Bond.) Bond. & Borisov is a pathogen on trembling aspen (Populus 

tremuloides Michx.) that causes a severe heart rot which can extend out into the sapwood. Four 

infected trembling aspen were harvested in May 2015 from Lakehead University`s Silver 

Mountain property. Each tree stem was cut into 50 cm bolts with the top 5 cm from each cut into 

cookies. From each cookie, isolations of P. tremulae were initially made onto 2% malt extract 

agar while pairing cultures to demonstrate somatic incompatibility were carried out on carrot 

agar. One tree failed to yield P. tremulae while another tree contained a single genet. The 

remaining two trees possessed two genets each. This study confirms the work conducted by 

Holmer et al. (1994) that more than one genet of P. tremulae can occupy a single host.  
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Introduction 

 Phellinus tremulae (Bond.) Bond. & Borisov, a serious heart rot pathogen, can reduce the 

economic value of aspen for lumber (Niemelä 1974). The geographic range of P. tremulae is 

widespread across northern Europe, Siberia and North America (Breitenbach and Kranzlin 

1986). Phellinus tremulae infects European aspen (Populus tremula L.), trembling aspen 

(Populus tremuloides Michx.), and large tooth aspen (Populus grandidentata Michx.) (Basham 

1958; Thomas et al. 1960; Hiratsuka and Loman 1984), although in North America it occurs 

mainly on trembling aspen (Allen et al. 1996). Trembling aspen is one of the most widely 

distributed hardwood trees in North America and comprises a sustainable portion of wood 

volume in the boreal forest (Peterson and Peterson 1992; Mallett and Myrholm 1995). 

 Taxonomically, P. tremulae was initially considered as part of the Phellinus ignarius (L.: 

Fr.) Quél complex however, it was concluded that P. tremulae is host specific exclusively to 

species of aspen (Niemelä 1974, 1975; Allen et al. 1996). The basidiomata are perennial, woody 

conks that are triangular in shape (Hiratsuka and Loman 1984; Allen et al. 1996). The upper 

surface of the fruiting bodies are zoned with grey-black to black that become roughed with 

maturity, while the underside is brown and poroid (Allen et al. 1996) (Fig. 3.1).  
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Figure 3.1 Basidioma of P. tremulae (A) and "sterile" conks on trembling aspen (B) (Allen et al. 
1996).  

 The infection cycle of P. tremulae is not entirely clear, although it is theorized that the 

fungus enters into the heartwood of the host by using dead or broken branches as channels where 

basidiospores germinate (Brown and Merrill 1971; Wikstrom and Unestam 1976). However, 

Etheridge (1961) felt that the rot caused by P. tremulae were merely lateral extensions from the 

heartwood and not the other way around. Black, sterile mycelial masses commonly referred to as 

sterile conks, blind conks, or punk knots form at the branch scars alongside the basidiomata 

(Allen et al. 1996). Fire scars and insect injuries are other entry points through which P. 

tremulae basidiospores could inoculate a new host (Schmitz and Jackson 1927). The actual 

symptoms of an infected trembling aspen tree appear as a yellow-white zone within the 

heartwood that is surrounded by a yellow-green to brown margin. As the disease progresses, a 

soft yellow-white wood develops with fine black lines running throughout the area (Hiratsuka 

and Loman 1984; Allen et al. 1996).  
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 Like most tree pathogenic Basidiomycota, there are no external symptoms (such as 

basidiomata) until well after the pathogen becomes established, therefore, estimating volume loss 

due to P. tremulae can be difficult. Phellinus tremulae can cause severe decay in an aspen tree 

and a single fruiting body can indicate as much as 82% gross volume loss (Allen et al. 1996). It 

is also noted that decayed wood of tremblng aspen infected with P. tremulae has a distinct 

wintergreen odour when cut (Allen et al. 1996). 

 Sexual and somatic (vegetative) compatibility studies have been conducted on various 

species of basidiomycetous fungi (Peterson 1995; Worrall 1997). Mating or sexual compatibility 

studies are conducted by examining monokaryotic hyphae and the interactions between other 

monokaryotic hyphae (Peterson 1995). Sexual incompatibility promotes outbreeding by allowing 

the monokaryons to have self-recognition and prevent inbreeding (Peterson 1995; Hiscock and 

Kües 1999). Whereas somatic incompatibility is determined by secondary mycelium (vegetative, 

dikaryotic mycelium) interacting with other dikaryotic mycelium and preventing anastomoses to 

occur. This is useful for the fungi as it prevents unwanted or unfit nuclei into the thallus, 

prevents transmission of mycoviruses, and helps maintain genetic heterogeneity in populations 

(Worrall 1997).  

Somatic incompatibility studies have been used to examine populations of root rotting 

fungi, ectomycorrhiza-forming fungi, and other decay fungi (Childs 1963; Barrett and Uscuplic 

1971; Adams 1974; Shaw and Roth 1976; Korhonen 1978; Kile 1983; Stenlid 1985; Dahlberg 

and Stenlid 1990; Stenlid and Holmer 1991; Germain et al. 2009). Pairing two dikaryotic 

cultures against each other on the same plate of agar is a classical method to determine genets 

among a population of a given species.  
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When P. tremulae is cultured on malt extract agar, two morphologies of mycelium form, 

referred to as a bleaching type (B-type) and the other referred to as a staining type (S-type) 

(Hopp 1936; Verrall 1937; Niemelä 1974; Holmer et al. 1994). The difference between the two 

types of mycelium is that the B-type produces aerial mycelium that grows faster compared to the 

S-type which does not produce aerial mycelium and grows out as a flat brown-red culture that 

secretes dark pigments into the agar (Holmer et al. 1994). When the bleaching type is plated on 

the same agar medium as another, but genetically distinct, culture of P. tremulae it will form 

brown-black pigmentation at the interaction zone where the two colonies come into contact 

(Rayner and Boddy 1988; Hiorth 1965; Holmer et al. 1994). Using this phenomenon, it is 

possible to distinguish genets of P. tremulae within a population.  

 Is there only one genet of P. tremulae in a single aspen or is there more than one genet 

per host? The purpose of this study was to examine the population structure of P. tremulae in 

trembling aspen by using the classical somatic incompatibility technique. This will allow for a 

comparison with a study conducted in Sweden by Holmer et al. (1994) on P. tremulae genets in 

European aspen (P. tremula). It is hypothesized that if the trees are infected with P. tremulae 

then more then one genet will be within the host.  
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Materials and Methods 

Harvest 

 Four trembling aspen trees were harvested in May 2015 from Lakehead University's 

Silver Mountain property, which covers approximately 287 hectares (Fig. 3.2). The property is 

located off highway 593, about 3 kilometers south from Silver Mountain station and it is 74 km 

southwest from Thunder Bay, Ontario (latitude 48º 14’ 44” North and longitude 89º 52’ 36” 

West). The annual precipitation for this area is 469 mm and the average temperature for the 

month of May (when the trees were harvested is 8ºC). Trees were selected that had numerous 

basidiomata present on the stems (Fig. 3.3) and were within one hectare of each other. The trees 

were cut as close to ground level as possible which resulted in a stump, the height of the stump 

varied because of the severity of the rot which was deemed unsafe to cut through. Each log was 

then painted with a vertical line to help orientate each cookie cut with each other. Bolts were cut 

at 50 cm intervals and the top 5 cm of each bolt were cut as cookies (Table 3.1) and marked with 

a “T” to signify top end orientation. Each cookie was bagged and labelled (e.g. 1-1, 1-2, etc.) to 

signify tree identity and position along the stem (Appendix I). The cookies were then brought 

back to the lab and were placed in a freezer at -15°C. 
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Figure 3.2 Map of Silver Mountain property, located 74 km southwest from Thunder Bay, 
Ontario. Retrieved from http://flash.lakeheadu.ca/~fluckai/PMsilver.html 
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Figure 3.3 Distribution of basidiomata on trees 1, 2, and 3 before harvesting. Tree four had a 
reduced amount of basidiomata in comparison to the other three trees. 

 

Table 3.1 Number of cookies collected from harvested trembling aspen, diameter at breast 
height (DBH), age, height of tree up to the base of the crown, and the height from ground level 
that measurements started. 

Tree Estimated Age 
(years) 

DBH 
(cm) 

Number of 
Cookies 

Actual Height to 
Base of Crown (m) 

Height of Stump 
(cm) 

1 42 31 23 11.97 47 

2 41 33 22 11.9 90 

3 49 38 28 15.2 120 

4 41 33 22 11.6 60 
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Isolations from Wood 

 When isolations were ready to be done, the cookies were thawed overnight. A scalpel 

blade (#21 blade) was sterilized using 95% ethanol and flamed, before it was used to remove a 

layer of wood that was originally cut with the chainsaw. This removal was done to prevent 

contamination, and a sample was taken aseptically from the area beneath. The pieces of wood 

were taken from incipient decaying sapwood because the heartwood was extremely degraded. 

The pieces were placed onto modified 2% malt extract agar (2% MEA) (20 g malt extract, 15 g 

agar, 1.0 g yeast extract, 1.0 L distilled water; 300 mg penicillin and 30 mg streptomycin were 

added after autoclaving). Once P.tremulae began to colonize the agar it was transferred onto a 

clean plate of 2% MEA. If the P. tremulae was not removed quickly enough (within a week or 

two of it starting to colonize the plate) it would often get overwhelmed by other fungi that were 

co-infecting the wood.  

Somatic Incompatibility Studies 

 Once each isolate of P. tremulae had grown out sufficiently, it was paired against every 

other isolate from the same tree to observe the interactions in order to allow for the 

differentiation of genets (Fig. 3.4). The isolates were taken using a 7 mm plug and placed 2 cm 

from the other plug on a Petri dish containing carrot agar (CA) (Mallett and Myrholm 1995). The 

pairings were then incubated for 5-6 weeks in the dark at 20°C. The reaction zone that formed 

between isolates of differing genets would be a brownish black line (Fig. 3.4 B). 
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Figure 3.4 Somatic pairing reactions: genetically similar mycelium (A) and genetically different 
mycelium (B).  

 

Results 

Genet Distribution 

 Thirty three isolates of Phellinus tremulae were obtained out of 285 samples taken from 

tree 1, 16 isolates out of 294 samples from tree 3, and 7 isolates out of 41 samples taken from 

tree 4. Tree 2 yielded no successful isolations of P. tremulae as it was severely decayed by other 

fungi. Somatic incompatibility studies showed that tree 1 had two genets. The first one occurred 

from 4.0 to 11.5 m in height above the stump while the second genet intersected at 9.0 m (Fig. 

3.5). Similarly, tree 3 had two genets, the first genet occurred from 0.5 to 3.5 m in height above 

the stump while the second genet was from 4.0 to 10.0 m in height (Fig. 3.6). The final tree, tree 

4 had a single genet infecting it and it occurred from 1.5 to 10.5 m in height above the stump 

(Fig. 3.7). Samples were only taken from cookies of the trunk of the tree, extending from the 

stump to where the crown began to start. No isolations were made from branches. 
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Figure 3.5 Distribution and orientation of P. tremulae genets within tree 1. Somatically 
compatible genets are identified by having the same letter. Each disc is indicated by bars and are 
50 cm apart.  
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Figure 3.6 Distribution and orientation of P. tremulae genets within tree 3. Somatically 
compatible genets are identified by having the same letter. Each disc is indicated by bars and are 
50 cm apart. 
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Figure 3.7 Distribution and orientation of P. tremulae genets within tree 4. Somatically 
compatible genets are identified by having the same letter. Each disc is indicated by bars and are 
50 cm apart. 
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Discussion 

 Studies on the occurrence and distribution of genets of decay fungi in stems of living 

trees provide an opportunity for better understanding the complexity of fungal infection and 

colonization of host trees. In this present study, each of the four trembling aspen examined had a 

different story to tell. Tree 4 only had a single genet infecting it (Fig. 3.7). It was observed that 

tree 4 had (i) a reduced number of basidiomata compared to trees 1, 2, and, 3 and (ii) was in 

substantially better (sound wood) condition compared to the previous trees. Wikstrom and 

Unestam (1976) and Hiorth (1965) found a single column of decay throughout the host with no 

marked zone lines (which would have appeared if two genetically different strains of P. tremulae 

had met) suggesting only one genet was present in their represented studies. 

Tree 2 was considerably more decayed than trees 1 and 3 and P. tremulae isolations 

failed, as other decay fungi and other common moulds were isolated. This could suggest that 

succession of fungi was occurring based upon a competition strategy theory first proposed by the 

British plant ecologist J.P. Grime (1977) for plants but quickly adopted by mycologists for fungi 

(Dix and Webster 1995). The theory refers to fungi that have selective niche strategies when 

parasitizing/colonizing a host. The first fungi to parasitize a host utilize the stress tolerant 

strategy (S) where the environments are harsher than dead wood reducing the amount of 

saprophytes that can compete. These fungi have distinct physiological adaptations such as slow 

spore germination, growth and reproduction rates. However, these fungi lack combative abilities 

and cannot compete with other fungi once the host dies. Ruderal strategy (R) fungi are primary 

colonizers of recently dead trees that have physiological adaptations that make them successful 

such as rapid spore germination, growth, and fruiting body production. They are ephemeral and 

cannot compete with C-strategy fungi. Combative strategy (C) fungi are secondary colonizers 
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that take over territories from primary colonizers by having better enzymatic capabilities 

compared to R-strategy fungi and can degrade more complex carbon compounds, and are able to 

last longer than R-strategy fungi (Dix and Webster 1995). Phellinus tremulae would be an 

example of a S-strategy fungus that would outcompeted by C-strategy fungi. 

Trees 1 and 3 each had two different genets of P. tremulae occupying the stems (Fig. 3.5 

and 3.6). Tree 1 had a single genet throughout its entire trunk except where a small second genet 

intersected the larger genet at 9.0 m. It is likely that the second genet entered the tree later via a 

broken or dead branch and used the branch as a channel to move to the host's heartwood. Work 

done by Holmer et al. (1994) shows that P. tremulae does in fact exist in small twigs and they 

hypothesized that, through the small branch or twigs P. tremulae could infect the heartwood of 

the host. The infection of the small twigs is extremely advantageous for a fungus that relies 

solely on spore dispersal for its spread (Holmeret al. 1994). The genets in tree 3 are separated 

and both occupy a large portion of the host stem. It is likely that wounds on the branches or 

wounds that occurred because of branches that have broken off lead to seperate prime infection 

points for P. tremulae spores. However, there does seem to be a point where once the P. 

tremulae has sufficiently decayed the trembling aspen host, the host starts to decline allowing for 

other opportunistic fungi to enter and eventual kill of the tree.  

 Evidently, from this present study and others previously mentioned, it is possible for one 

to multiple genets of P. tremulae to exist in a single host. Wounds on twigs and wounds caused 

by branches breaking along the side of the trunk are also important for genetically different 

basidiospores of P. tremulae to enter, germinate and start to decay already infected trembling 

aspen. Holmer et al. (1994) has discussed in detail that decay fungi may lie dormant within its 

ideal host until conditions become favourable for the fungus to attack, as long as the pathogen is 
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able to penetrate the cambium before it can become established. Phellinus pini (Thore: Fr.) Pilát 

is an example of one such fungus that resides in twig stubs of eastern white pine (Pinus strobus 

L.) until the area which the fungus occupies turns into heartwood allowing the fungus to 

establish itself (Haddow 1938; Sinclair et al. 1987). 

 For future studies, the population size should be increased and a larger variation of trees 

that are in various stages of the decay process examined in order to understand how P.tremulae 

enters its host and forms genetically distinct populations. It would also be important to get 

trembling aspen that vary in age to observe how genets grow as the host ages, and see if older 

hosts have fewer, or more genets. The sampling of attached branches would also be useful in 

determining how wounded branches can act as channels for the decay fungi to infect its targeted 

host. Molecular techniques such as single-strand conformational polymorphism PCR or 

microsatellites could be used to examine the genetic differences among P. tremulae populations 

but culturing isolations and pairing them on CA remains a time and cost effective way to observe 

genetic differences.  
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APPENDIX I 

IMAGES OF WOOD COOKIES USED FOR ISOLATION OF 

PHELLINUS TREMULAE 
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Tree 1: Cookies 1 to 23. The numbers correspond to the order they were cut from the stem. The 
lettering on the surface of the wood cookie represent their respected genet from that tree. 
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Tree 3: Cookies 1 to 28. The numbers correspond to the order they were cut from the stem. The 
lettering on the surface of the wood cookie represent their respected genet from that tree. 
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Tree 4: Cookies 1 to 22. The numbers correspond to the order they were cut from the stem. The 
lettering on the surface of the wood cookie represent their respected genet from that tree. 
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