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ABSTRACT 

Energy transfer from one system to another system, or vice versa, is happening constantly in many 

processes with various forms. Vibration in machines or structures can be considered as a form of 

energy transfer from a source to a receiver. In general, such vibration is unwanted. Vibration 

suppression is of importance in order to protect machines or structures. To monitor vibration of a 

large system such as building or bridge, a network of sensors is used. Supply of power to these 

sensors is challenging due to various difficulties such as accessibility or cost. Energy harvesting 

using ambient vibration is motivated to make sensors autonomous. Vibration energy can be 

converted into electric energy through electromagnetic transduction or piezoelectric effect. This 

research proposes a method to achieve simultaneous vibration suppression and energy harvesting 

in the broadband manner. 

 A nonlinear energy sink (NES) is a special vibration absorber that is capable of sinking or 

localizing vibration energy from a primary system. Unlike a linear or nonlinear vibration absorber, 

the NES’s spring is essentially nonlinear. In this research, a variant NES is developed to achieve 

vibration suppression and energy harvesting in a broad frequency band. The developed apparatus 

consists of a fixed-fixed composite beam acting as the NES spring and two magnets attached at 

the middle of the beam acting as the NES mass. The composite beam is formed by a thin steel 

beam and two piezoelectric bimorphs attached at the ends of the steel beam. The piezoelectric 

bimorphs convert the NES vibration energy into electric one. The system modeling is presented. 

System identification is conducted to determine the parameter values. The transient behaviours of 

the system are investigated numerically and experimentally. It has shown that the developed 

apparatus demonstrates the characteristics similar to those of the NES. The harmonically forced 

responses of the system are examined. The approximate analytical solutions of the steady-state 

responses are derived. The Matcont is used to obtain the frequency responses plots for various 

cases. An experimental study has been conducted. Both the numerical solutions and experimental 

results show that the developed apparatus is capable of harvesting energy while suppressing 

vibration in a wide frequency band. 
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Chapter 1 Introduction 

1.1 Overview and motivation of the research 

The motivation of this research is to study the behaviour of Piezoelectric Energy Harvester 

(PEH) coupled with a Nonlinear Energy Sink (NES) that is used to perform vibration reduction 

along with energy harvesting. Vibration can be caused by numerous ways, such as earthquake, 

unbalanced mass of rotating machines, or impulsive forces. This undesirable vibration can 

result in structural damages, machine failures, and human being discomfort. Therefore, it is 

very important to suppress vibration. 

 Energy harvesting approaches that transform this vibrational kinetic energy to electrical 

energy offering the potential of renewable power sources which can be used to directly replace 

or augment the battery in wireless sensor applications. Such renewable energy sources could 

reduce environmental impact of disposable batteries. Kinetic energy is typically converted into 

electric energy by electromagnetic, electrostatic, or piezoelectric transduction mechanisms [1, 

2]. In this research, piezoelectric energy harvesting coupled with a nonlinear energy sink is 

proposed. 

 Two common problems occurring in machines and structures are dealt with: (a) the 

transient response of the system and (b) the harmonically forced response of the system. Figure 

1.1 shows that the general schematic of these two vibration problems where xp(t) is the 

displacement of primary system, mp, kp and cp are the mass, stiffness and the damping 

coefficient of the primary system. 

 

Figure 1.1 Schematic of two vibration problems: (a) transient response due to initial disturbance; (b) harmonic 

base excitation. 
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 For the system that is demonstrated in Figure 1.1(a), the equation of motion is defined  

by Equation (1.1), 

 

20 or 2 0

(0), (0)

p p p p p p p n p n p

p p

m x c x k x x x x

x x

   



       



  (1.1) 

 
p

n

p

k

m
    (1.2) 

where px , px , px  are the displacement, velocity, and acceleration of the primary mass. mp, kp 

and cp are the mass, stiffness, and the damping coefficient of the primary system.   and ωn are 

the damping ratio and natural frequency of the primary system respectively. 

 Figure 1.2 shows a typical transient response for the system with a low damping ratio. 

As the damping is low, it takes a long time for the response to die out. This extended duration 

of vibration is not desirable. Therefore, the goal of vibration control is to suppress this 

oscillation and settle the mass in a much quicker manner. 

 

Figure 1.2 Transient response of the primary system: ��(0) = 0.003 � and �̇�(0) = 0 �/�, mp = 0.839 kg, kp 

= 3799.3 N/m, and cp = 1.129 Ns/m 

 The equations of motion for the second type of problem shown in Figure 1.1(b) is given 

by, 

 
cos( )

p p p p p p p pm x c x k x k y c y

y Y t

     


 
  (1.3) 
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where Ω is the harmonic base excitation frequency. In this scenario, the initial force due to the 

base acceleration becomes an exciting force applied to the primary mass. The steady-state 

response of the system is concern. Because of the low damping coefficient of the system, 

vibration displacement of the primary mass tends to attenuate for extended period of time. 

Figure 1.3 shows the displacement ratio of amplitude of xp over excitation amplitude Y for the 

system having natural frequency fn = 10.71 Hz. 

 

Figure 1.3 Displacement ratio of system: fn = 10.71 Hz 

 In Figure 1.3, it can be seen that when the excitation frequency approaches the natural 

frequency of the system, the displacement ratio is greatly increased. And, it reaches a peak 

when the excitation frequency equals to the natural frequency of the system. This is known as 

the resonance. The suppression of harmonically forced responses is one of the major objectives 

of this research. 

 With the vibration problem identified, it draws attention to investigate at a different 

view angle and explore if there are any benefits of this. The cause of any vibration in either 

transient or steady-state case is the energy added into the system. This added energy could be 

harvested. This research intends to explore a way of achieving simultaneous vibration 

suppression and energy harvesting. 
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1.2 Literature review 

1.2.1 Passive vibration absorption 

Passive attenuation method presents an approach to control undesired vibrations [3, 4, 5, 6]. 

One particular method is to use passive vibration absorbers which has been studied in the past 

and widely used in vibration control. Passive vibration absorbers consist of a mass attached to 

a structure via a spring or a combination of spring and damper. Passive vibration absorbers are 

often constructed with elastomeric materials installed between the structure and a proof mass. 

The primary goal of passive vibration absorbers is to increase the effective dynamic stiffness 

of a structure over a narrow frequency range. In practice, passive vibration absorbers are 

typically used at a specific frequency to minimize vibration. The advantage of using passive 

vibration absorbers are low cost, low weight, and easy setup. The limitation of passive 

vibration absorbers is that it is only effective at a single frequency. By adding a passive 

vibration absorber, the combined system now has two degree of freedom and two natural 

frequencies [7, 8]. If the external excitation frequency changes, the structure will have 

amplified vibrations at those two natural frequencies. In this research, passive vibration 

absorbers are not main focus. 

1.2.2 Nonlinear energy sink 

In the past, nonlinear energy sink (NES) has been studied and researched [9, 10, 11]. In 

contrary to a linear vibration absorber, a NES consists of a small mass, a linear damper, and a 

spring which has only essential nonlinear stiffness, and it is attached to a linear primary 

structure shown in Figure 1.4. 



 

5 

 

Figure 1.4 Schematic of a NES attached to a primary system subjected to base excitation. 

 In comparison to a nonlinear vibration absorber, the nonlinear stiffness of the NES does 

not possess a linear stiffness term [12]. From Figure 1.4, the equations of motion are formulated 

in Equation (1.4) below. Note that it has a nonlinear stiffness term k3 and lacks of a linear 

stiffness term k1. In this research, the nonlinear restoring force is approximated as a cubic 

function 3
1 3F k x k x   to provide smooth fitting from parameter identification experiment 

data, and yet it provides a strong nonlinearity.  
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  
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             
   


    

 (1.4) 

 A previous research [13, 14] examined the behaviours of a linear primary structure 

attached with an essential nonlinear system. And, it showed the effectiveness of such a setup 

to absorb vibration energy in passive way from the linear primary structure. This energy 

transfer is defined as energy pumping which is defined as an irreversible transfer of energy 

from a linear or linearized structure to a nonlinear energy sink (NES) with relatively small 

mass [15], and it is caused by internal 1:1 resonance. The internal 1:1 resonance is a special 

case that a nonlinear oscillator matches its own oscillation frequency to the oscillation 

frequency of the linear primary structure. And, energy pumping is also explained as a 
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controlled one-way energy channelling in an irreversible manner. This phenomenon is 

considered as transferring vibration energy to a passive nonlinear “sink”, and the transferred 

energy is localized and dissipated due to damping effect. Hence, this leads such a device named 

nonlinear energy sink (NES). In [16], analytical analysis was conducted to further examine the 

energy channelling and 1:1 resonance. The study compared the NES with the traditional TMD, 

and showed that the former has a better performance and robustness than the latter. This stored 

energy in NES can be utilized by incorporating electrical circuits [17, 18, 19] for an optimized 

power output. 

 In [20, 21], the phenomenon of one-way energy transfer was referred to as targeted 

energy transfer (TET). An essential nonlinear oscillator is attached to a linear primary structure 

to reduce the vibration. This results in transferring the vibrational energy to the essential 

nonlinear oscillator. The study in [20, 21] explained the reason for the benefit and robustness 

of the NES as lacking a dominant natural frequency due to absence of a linear stiffness. In 

consequence, a certain initial energy level is required to set the NES into nonlinear oscillation 

in the transient response scenario. This implies that there is an energy threshold for the 

effectiveness of NES. In [22], a detailed study of the TET for the transient response was carried 

out in order to determine the effectiveness of the TET. Three different initial energy levels 

were defined to examine the effectiveness. It was found that the TET would not occur under 

low initial energy level. Thus, only a fraction amount of energy is transferred to NES and get 

dissipated. As the initial energy level increases, the TET occurs and the NES is able to dissipate 

between 90% to 95% of the total initial energy. Further increasing to high initial energy level, 

the TET still occurs but its effectiveness decreases. The NES could still dissipate a large portion 

of the total energy. The study in [22] showed that the design of NES was not pre-tuned or with 

a-priori knowledge. In [23], the design criteria of the NESs were extensively discussed in order 

to achieve the optimal performance by adjusting the mass, nonlinear stiffness, and the damping 

of the NES under a known initial input energy level. 

 In [9, 24, 25], an analytical solution for a NES attached to a linear structure was derived 

and three types of responses were investigated namely: common steady-state response, weakly 

modulated response, and strongly modulated response (SMR). A complexification averaging 

method is used to perform analysis to these responses in [22]. The dynamics of the system are 
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divided into two scales as slow time scale and fast time scale. Both the primary and NES 

systems are assumed in 1:1 resonance. The complexification averaging method is used to find 

saddle nodes and Hopf bifurcation nodes to represent the resulting equations [22]. A frequency 

response plot (FRP) is plotted to see system’s response in wider frequency range. Similarly, 

saddle bifurcation nodes are found during the FRP and indicate that there exist multiple 

periodic solutions. The areas between the Hopf bifurcation nodes indicate a strongly modulated 

response, and this SMR is related to a called relaxation oscillation. The SMR can be considered 

as a part of repetitive TET under harmonic forcing. 

 NES has been proven in both theories and experimentally, but it is difficult to achieve 

zero linear stiffness. The NES proposed in [26] was achieved by attaching two coil springs to 

a mass that sits on a linear rail track. The other ends of both the coil springs were pivoted to 

the primary structure. When the springs are free of tension or compression, the setup results in 

an essential nonlinear stiffness. In [26], it presented a NES setup and demonstrated good 

experiment results which confirm with theoretical results. In [27, 28, 29], another approach of 

achieving an essential nonlinear stiffness was proposed in which two thin steel wires with zero 

tension were used. And, experiments of this approach of NES shows a good match to the theory. 

It has also shown the initial energy threshold exists in order for TET to occur. In [30], harmonic 

excitation is examined using the same device, however, experiment results are different from 

theoretical results. And, system consists of periodic solutions with noted saddle bifurcation 

nodes. It was also found that the experiment results differ from the theoretical results due to 

difficulty of modeling cubic stiffness, and this also leads to the difference in response 

amplitude. 

1.2.3 Energy harvesting 

The exciting potential to implement energy-autonomous portable electronics such as wireless 

sensors has attracted numerous research interests in vibration energy harvesting in recent years 

[31, 32]. Current solutions for vibration-to-electricity transduction are mostly accomplished 

via electrostatic, electromagnetic, or piezoelectric methods. Regardless of the conversion 

mechanisms, most of the harvesters are designed as linear oscillators as they provide large-

amplitude responses when excited at resonance. However, linear resonant harvesters are 
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susceptible to a reduction in performance if the excitation conditions vary from the ideal 

sinusoidal form and resonant frequency. 

 Various methods have been attempted to address this issue. The natural frequency of 

tunable harvesters can be varied to resonate with varying frequency excitation [33, 34, 35 ,36]. 

Tuning can be done on open-loop or closed-loop configurations. These harvesters have a more 

complex design and a low overall efficiency. A summary of the pros and cons of tunable 

harvesters can be found in [37]. A multimodal energy harvester is a multiple degree-of-

freedom (DOF) system or distributed parameter system that is capable of resonating at multiple 

exciting frequencies. As multimodal energy harvesters do not require tuning, they are much 

easier to implement than the tunable counterparts [38, 39, 40, 41, 42, 43]. 

 Nonlinear energy harvesters have attracted increasing attention as they offer some 

promising features [41, 42, 43, 44, 45, 46]. Nonlinear energy harvesters are usually classified 

as mono-stable and bi-stable harvesters. In the mono-stable system, the potential energy 

function of the system has a sole stable equilibrium state in the potential energy function, while 

in the bi-stable system, there are two stable equilibria separated by a potential barrier (an 

unstable saddle). The studies have shown that mono-stable devices have a large bandwidth 

over which the significant power can be harvested due to the bending in the resonant peak. 

However, the multi-value and jump phenomenon due to nonlinearity implies that its broadband 

feature is not guaranteed. For a bi-stable system, when excited by sufficient energy, it will 

overcome the potential barrier and escapes from one potential well to the other. This non-

resonant behaviour permits coupling between the ambient excitation and the harvesters over a 

wide range of frequencies. Bi-stable oscillators may exhibit low-energy intrawell vibrations or 

periodic interwell vibrations. It has been shown that, when engaged in the periodic interwell 

vibrations or high-energy orbits, a bi-stable device can dramatically improve energy harvesting 

performance [46, 47]. 

 There have been some reported attempts to employ the NES for energy harvesting. [48] 

presented an analytical study on the use of the NES for simultaneous vibration suppression and 

energy harvesting. The NES mass is attached to a vibrating host system and coupled with an 

electromagnetic energy harvester so that its effect can be represented by an 
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electromechanically induced damping term. The study found that the use of the NES for 

harvesting energy is advantageous as it does not require tuning and is suitable for low-level 

broadband vibration sources. [49, 50] extended their investigation to the performance of 

piezoelectric energy harvesting using essential nonlinearity and compared to the linear 

counterparts. However, these efforts focus on the dynamics and energy harvesting performance 

of the NES itself, instead of the behaviour of the NES coupled to a primary system. In [51], it 

has shown research and investigation of an energy harvesting system composed of two 

oscillators coupled with essential stiffness nonlinearity and subject to impulsive loading. Their 

conceptual design of the harvester consists of a piezoelastic cable attached to an oscillating 

mass. Due to the geometric/kinematic mechanical effects, the piezoelastic cable generates 

nonlinearized cubic stiffness nonlinearity. However, the design feasibility remains to be 

validated experimentally. In [52], it reported a conceptual study in the vibration control and 

energy harvesting for a free-free beam coupled with a piezoelectric energy harvesting NES. 

However, no prototype design and experimental study were presented. Another attempt was 

made to utilize the principle of the NES for simultaneous vibration suppression and energy 

harvesting by [53]. Different from the previous NES designs, the proposed device was not 

essentially nonlinear. Instead, it possessed a hardening spring in which its linear stiffness is 

made much lower than the stiffness of the primary system. Retaining this linear stiffness was 

necessary in order to minimize mechanical damping, which is a must for energy harvesting. 

The study showed that the apparatus behaved similarly as the NES and was capable of 

harvesting vibration energy while suppressing vibration of the primary system. 

1.3 Objectives and contributions 

From the previous literature review, it is noted that there have been few reports on experimental 

study of simultaneous vibration suppression and energy harvesting by employing the NES 

principle and piezoelectric energy harvesting. This study is motivated by combining the NES 

principle and piezoelectric energy harvesting to localize vibration energy in the NES and 

convert it into electrical energy via direct piezoelectric effect. In this way, the NES acts as both 

a vibration absorber and a piezoelectric energy harvester (PEH). The novelty of this study is 
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twofold: the use of no essential nonlinear spring to obtain the performance of the NES and the 

experimental validation of the numerical results. 

 The objectives of this study are as follows: (1) to develop an apparatus that possesses 

the NES characteristics for vibration suppression and energy harvesting; (2) to identify the 

system parameters; (3) to investigate the transient responses of the system; (3) to investigate 

the steady-state responses of the system subject to a harmonic base motion. 

1.4 Thesis outline 

The thesis is divided into the following chapters. Chapter 2 first presented the proposed 

apparatus and its modeling. Then it addressed parameter identification. Chapter 3 focused on 

the transient behaviours of the system. Numerical simulations of transient responses were 

carried out and the results were verified by an experimental study. A nonlinear normal mode 

(NNM) analytic study were performed to unveil the energy dependency of the NES under 

transient response. Chapter 4 focused on the harmonic excitation system response. The 

approximate steady-state responses were derived using a mixed Multiple scale/harmonic 

balance method. Then the frequency response plots were found via a continuation package 

Matcont. An experimental study was conducted. Chapter 5 summarized the findings of this 

research and present suggestions for the future study. 
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Chapter 2 Apparatus, modelling, and parameter identification 

2.1 Apparatus 

To investigate the performance of the PEH based on the NES, an apparatus is developed, which 

comprises three parts: a base, a primary system, and an energy harvesting NES. Figure 2.1 

shows the schematic of the developed apparatus. The base is a slip table mounted on a pair of 

linear bearings which sit on a linear track. The primary system consists of a platform supported 

by two steel plates. The lower ends of the steel plates are fastened to the base. The NES consists 

of a fixed-fixed composted beam and two magnets. The composite beam, acting as the NES 

spring, is formed by a thin steel beam (1) and two piezoelectric bimorphs (MIDE Volture 

V21BL) (2). Piezoelectric bimorphs act as energy transduction components. The two magnets 

are attached to the middle of the beam by their own magnetic force, acting as the NES mass. 

The NES beam is fixed to a rigid cage that is fastened to the platform. The NES beam is axially 

prepressed so that it is slightly buckled. This will greatly reduce the linear stiffness of the NES 

spring to achieve quasi essentially nonlinear stiffness. In order to avoid a bi-stable 

configuration, another magnet is held by a bracket fixed to the platform and positioned 

collinearly to the oscillating magnets in a repelling manner. By adjusting the distance between 

this magnet and the oscillating magnets, the oscillating magnets (NES mass) are kept to the 

zero position. Two laser reflex sensors (RF) (Wenglor model CP24MHT80) are used to 

measure the displacement of the NES mass, the primary mass and the base, respectively. Key 

physical parameters are listed in Table 2.1. 

 Figure 2.2 shows the schematic of the testing system. The base is driven by a Brüel & 

Kjær shaker (model 2809) through a stinger. The shaker is driven by a Brüel & Kjær power 

amplifier (model 2718). A computer with dSPACE dS1104 data acquisition board is used to 

collect sensor data and voltage output across a variable load resistor and mean while send 

voltage signal to the power amplifier to drive the shaker. The control program is developed 

using Matlab Simulink which is interfaced with dSPACE Controldesk Desktop software. 
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Figure 2.1 Schematic of apparatus 

 

Figure 2.2 Schematic of testing system 

Table 2.1 Parameters of NES 

Beam Oscillating magnet Repelling magnet 

Length (mm) 393 Length (mm) 25.4 Length (mm) 3.175 
Width (mm) 30 Width (mm) 12.7 Diameter (mm) 12.7 

Thickness (mm) 0.52 Height (mm) 12.7   
  Material type NdFeB (N40) Material type NdFeB (N40) 
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2.2 Modelling 

As shown in Figure 2.1,  px t  and  ax t  represent the displacement of the primary mass and 

the NES mass, respectively, and  y t  represents the displacement of the base. The governing 

equations of motion are given below, 

      3
1 3 0p p p p p p am x c x y k x y c z k z k z V                 (2.1) 

        3
1 31 0a a p p p pm z c z k z k z V c x y k x y                        (2.2) 

 0SV
C V z

R
       (2.3) 

where mp, cp and kp are the mass, the damping coefficient, and the stiffness of the primary 

system, respectively; ma and ca are the mass and damping coefficient of the NES, respectively, 

k1 and k3 are the linear stiffness and nonlinear stiffness of the NES spring, respectively; z = xa 

- xp is the relative displacement between the NES mass and primary mass; /a pm m   is the 

mass ratio; parameter   is the electromechanical coupling coefficient of the PEH and 

identified in Section 2.3.2 NES system parameter identification; V is the voltage across the 

resistive load R and CS is the capacitance of the PEH. When the parallel connection is used, CS 

= 83.5×10-9 F from the datasheet of piezoelectric transducer (MIDE Volture V21BL). 

2.3 System parameter identification 

2.3.1 Primary system parameter identification 

The mass of the primary system is found to be mp = 0.839 kg. The spring of the primary system 

is approximated as a linear spring. To determine its stiffness, the primary mass is set into free 

oscillation by an initial displacement. The response is recorded, and a Fast Fourier Transform 

(FFT) is applied. The natural frequency of the primary system is found to be 10.71 Hz. Under 

the assumption of a linear spring, the primary structure spring stiffness kp is determined by the 

following equation: 

 2
p p pk m   (2.4) 
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The result is found to be kp = 3799.3 N/m. 

The damping coefficient is estimated using the logarithmic decrement method [7]. Figure 2.3 

shows a typical free response of the primary mass. By measuring all the peak values, the 

damping ratio can be obtained by the following equations 

  
 

1
= ln

x t

n x t nT


 
 
  

  (2.5) 

 
2 2

=
4




 
  (2.6) 

Where x(t)is the first peak of the response, x(t+nT) is the nth peak of the response, and   is the 

damping ratio. The damping ratio is found to be 0.01  . The damping coefficient is found 

to be 1.129 Ns/mpc   by using the following equation, 

 2p p pc m   (2.7) 

All the parameters of the primary system are tabulated in Table 2.2. 
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Figure 2.3 Experimental result of primary system: (a) Primary system free response with curve fitted damping 

curve; (b) FFT plot of free response fp = 10.71 Hz 

Table 2.2 Estimated parameter values of the primary system 

Parameter Estimated value 

mp 0.839 kg 

kp 3799.3 N/m
 

cp 1.129 Ns/m
 

fp 10.71 Hz
 

2.3.2 NES system parameter identification 

To identify the restoring force of the NES spring, the equation of motion governing the NES 

system can be rewritten as, 

  , a aF z z m x     (2.8) 
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where   3
1 3, aF z z c z k z k z V     . The NES mass is easily found to be ma = 0.0307 kg. If 

ax , z , and z  are available at discrete time interval k with a sampling time t , then a force 

surface can be generated using the method described in [54, 55]. To do this, the two side plates 

supporting the primary system mass are removed and the platform with the NES is fastened to 

the slip table directly. To fully excite the NES, the following slowly modulated periodic signal 

is used to perform this excitation, 

      = cos 0.1 cos 20y t Y t t    (2.9) 

where excitation amplitude is equal to Y = 0.0005 m. 

 

Figure 2.4 Restoring force �(�, �̇) vs. relative displacement z and relative velocity �̇ 

 The displacements xa and y are measured through the laser reflex sensors. Note that the 

� = �� − �  in this case. The velocity and acceleration data are obtained by numerical 

differentiation. Figure 2.4 shows that the force surface obtained. It clearly shows that the NES 

spring possesses a nonlinear stiffness. As the displacement z increases, the restoring force F 

increases in a nonlinear manner. Figure 2.4 also shows that the NES has low mechanical 

damping as the force surface is quite flat at z = 0 plane along the velocity �̇ axis. 
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Figure 2.5 Restoring force �(�, 0) vs. displacement z (circle: measured data; line: fitted curved) 

 On the section 0z  , the restoring force is assumed to have the following format: 

  3
1 3, 0F z k z k z V   . In Figure 2.5, circles represent the values on this section. By 

applying short circuit condition, V = 0, and thus the term V  disappears. This leads the 

restoring force to   3
1 3, 0F z k z k z  . By using this cubic function to curve-fit the points 

(circles) in Figure 2.5, it is found that 1 25.53 N/mk   and 7 3
3 1.979 10  N/mk   . 



 

18 

 

Figure 2.6 Restoring force �(0, �̇) vs. velocity �̇ (circle: measured data; line: fitted curved) 

 On the section z = 0, the damping force is assumed to have the following format: 

 0, aF z c z V   . In Figure 2.6, circles represent the values on this section. By applying 

short circuit condition, V = 0, and thus the term Θ� disappears. This leads the damping force 

to  0, aF z c z  . By curve-fitting, it is found that 21.770 10  Ns/mac   . 

 The electromechanical coupling coefficient   is a direct link between the mechanical 

system and piezoelectric system. The experiment is conducted to estimate this 

electromechanical coupling coefficient [19]. By setting the piezoelectric energy harvester into 

open circuit condition or R   , Equation (2.3) becomes. 

 
S

V z
C

 


   (2.10) 

By integrating Equation, it yields  

 
S

V z C
C


    (2.11) 
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where C is the integration constant that is zero if the PEH is perfectly symmetric. An 

experiment is conducted to measure the relationship between the open-circuit voltage of the 

PEH and the deflection. Figure 2.7 shows the measured voltage values in a closed curve and 

the fitted curve in solid line with circle markers. By curve-fitting these values, the constant 

31.5521 10sC    is obtained. With the known value of CS, the electromechanical coupling 

coefficient is found to be -512.96 10  N/V   . 

 

Figure 2.7 Piezoelectric energy harvester voltage vs. relative displacement z = xa - xp 

2.4 Conclusion 

An apparatus has been developed for the purpose of using the nonlinear energy sink to achieve 

the vibration suppression and energy harvesting. The system modeling has been addressed. A 

parameter identification has been conducted. The key findings are as follows. The NES spring 

possesses a cubic nonlinearity consisting of a linear term and nonlinear term. By compressing 

the NES beam axially, the linear term can be minimized so that the NES’s natural frequency 

is much smaller than the primary system’s one. Therefore, the NES system is weakly coupled 

to the primary system. It has been shown that the electromechanical coupling coefficient   is 

a link between the mechanical system and electric system. 
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Chapter 3 Transient responses 

3.1 Introduction 

From the previous studies, it has been found that the NES possesses a good performance and 

effectiveness of vibration absorption when system responses are induced by initial disturbances 

[13, 15, 56, 57, 58]. This effectiveness of vibration absorption is achieved by the targeted 

energy transfer (TET). During the process of TET, vibration energy is transferred to the NES 

and is localized. This localized energy in the NES is then dissipated through damping. In the 

case of energy harvesting, the localized energy is converted to electrical energy that is 

dissipated through the load resistors. One of the important features of TET is 1:1 resonance. In 

this case, the NES is oscillating at the frequency of the primary system, resulting efficient 

energy transfer. 

 As the NES does not possess linear stiffness, it is capable of 1:1 resonance capture such 

that it can respond to a wide bandwidth of frequencies. As shown in Chapter 2, the proposed 

apparatus is not a true NSE as it has a hardening spring. The previous studies [53] have shown 

that if the linear natural frequency of the NES is much smaller than that of the primary system, 

the behaviours similar to those of a true NES can still be obtained. Different from the study in 

[53], the present apparatus uses a piezoelectric energy harvester. Therefore, it is of importance 

to study its performance. In this chapter, the transient behaviours of the developed apparatus 

will be investigated by computer simulation and experimental study. 

3.2 Simulation results 

As transient responses are considered, the base is fixed, that is, y(t) = 0. Hence, the governing 

equations of the system are rewritten as, 

 

 
 

3
1 3

3
1 3

0

1 ( ) 0

0

p p p p p p a

a a p p p p

S

m x c x k x c z k z k z V

m z c z k z k z V c x k x

V
C V z

R

  

 

 

 


           

               


   


  (3.1) 
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 To generate transient responses, the following initial conditions are used (0)px X , 

(0)ax X , (0) 0px  , (0) 0ax  . In this case, the relative displacement is intentionally set to 

be zero to ensure that the total initial system energy is only contained within the primary system 

and is given by: 

 21
(0) (0)

2
ini tot p pE E E k X     (3.2) 

 To measure the effectiveness of the TET phenomenon, the percentage of the 

instantaneous energy in the NES is defined as follows: 

 
( )

( ) 100%
( ) ( )

NE

p

S

NES

E t
D t

E t E t
 


  (3.3) 

where ( )NESE t  is the instantaneous energy in the NES at time t and defined as follows, 

 
2 42

1 3[ ( ) ( )] [ ( ) ( )]( )
( )

2 2 4
NES

a p a pa a
k x xt t t tt

E t
k x xm x  

    (3.4) 

and  pE t  is the total energy in the primary system at time t and defined as the follows: 

      
2 21 1

2 2
p p p p pE t m x t k x t    (3.5) 

To measure the total accumulated energy,  hE t  is defined as the follows: 

  
 

2

0

t

h

V t
E t dt

R
    (3.6) 

where t is the time duration, R is the resistance value of load resistor, and V(t) is the 

instantaneous voltage across the load resistor R. 

 Four different initial energy levels are used. They are X = 0.52 mm, X = 1.42 mm, X = 

2.65 mm, X = 4.45 mm and named as low, medium, medium high, high energy level, 

respectively. First, open circuit condition is considered in which the load resistance is set to a 

significantly large value � = 100 MΩ. 
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Figure 3.1 shows the simulation results with the low initial energy level. It can be seen 

that it takes a long time for the primary system response to die out, the percentage of the 

instantaneous energy in the NES is low, and the open circuit voltage is low as well. Clearly at 

this initial energy level, the TET and energy localization in the NES do not occur. Figure 3.2 

shows the contour plots of the wavelet transform spectrum of xp and xa, respectively, and 

complex morlet is used in this wavelet transform. Obliviously, the primary mass and NES mass 

oscillate at different frequencies. Furthermore, it is noted that each of the masses oscillates at 

a frequency that is close to its own natural frequency. 

 

Figure 3.1 Simulation results with X = 0.52 mm: (a) displacements (Solid line: primary; Dotted line: NES), (b) 

the the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH 

 

Figure 3.2 Wavelet transform spectra for simulation results with X = 0.52 mm: (a) xp and (b) xa 



 

23 

Figure 3.3 and Figure 3.4 show the simulation results with the medium initial energy. 

It can be seen that at this energy level, the NES is engaged. With TET, the vibration energy is 

quickly localized in the NES. A significant increase is noted in the open circuit voltage. Figure 

3.4(a) shows that the dominant oscillating frequency of the primary mass is still very close to 

fp indicating that the NES’s oscillation has little effect on the primary system. Figure 3.4(b) 

shows a clear nonlinear behaviour in which the instantaneous frequency gradually reduces and 

eventually becomes close to fa. However, it should be also noted that the existence of the beat-

like waveform, showing that the TET is not fully established. Figure 3.5 and Figure 3.6 show 

the results with the medium-high initial energy level. The system behaves similarly to the 

previous medium initial energy case. 

 

Figure 3.3 Simulation results with X = 1.42 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 

 

Figure 3.4 Wavelet transform spectra for simulation results with X = 1.42 mm: (a) xp and (b) xa 
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Figure 3.5 Simulation results with X = 2.65 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 

 

Figure 3.6 Wavelet transform spectra for simulation results with X = 2.65 mm: (a) xp and (b) xa 

Figure 3.7 and Figure 3.8 show the simulation results with the high initial energy level. 

The desired TET still occurs, but becomes slightly slower than the previous two cases. This 

indicates that the best performance of the NES exists in a certain range of initial energy levels, 

which is a typical behaviour of the nonlinear system. Figure 3.8(a) shows a less modulated 

response of the primary system, and Figure 3.8(b) indicates that the NES is in 1:1 resonance. 
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Figure 3.7 Simulation results with X = 4.45 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 

 

Figure 3.8 Wavelet transform spectra for simulation results with X = 4.45 mm: (a) xp and (b) xa 

 To investigate the load effect on the energy harvesting, the circuit is closed by 

connecting a resistor. The vibration is induced by the high initial energy level X = 4.45 mm. 

Figure 3.9 shows the results for five different load resistance values, namely, R = 50, 100, 500, 

1000, 5000 KΩ. Figure 3.9(a) is the percentage of instantaneous energy in the NES defined 

previously in Equation (3.4). Figure 3.9(b) is the accumulated energy harvested by the PEH 

defined in Equation (3.6). Figure 3.9(c) is the ratio of the accumulated harvested energy over 

the maximum kinetic energy in the NES. Figure 3.9(b) and (c) show that the accumulated 

energy in the NES  hE t  is the highest when the resistance R = 100 KΩ among the five 

resistances. 
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Figure 3.9 Simulation results with X = 4.45 mm: (a) the percentage of instantaneous energy in NES, (b) 

accumulated energy in NES, and (c) ratio of accumulated energy in NES to maximum of kinetic energy of NES. 

3.3 Experimental results 

For the comparison purpose, experiments are conducted to validate the simulation results. The 

experimental setup is shown in Figure 3.10 except that the base is fixed and RF sensor for 

measuring the base motion is unused. Figure 3.11 and Figure 3.12 show the results with the 

low initial energy level. It is noted that the NES is not engaged. The desired 1:1 resonance and 

energy localization in the NES clearly do not occur in this case. It is also noted that the 

generated voltage from the PEH is quite low. These observations are similar to the simulation 

results shown in Figure 3.1 and Figure 3.2. Figure 3.12 clearly shows that the primary mass 

and the NES mass vibrate at different frequencies. 
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Figure 3.10 Testing apparatus setup 

 

Figure 3.11 Experimental results with X = 0.52 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 
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Figure 3.12 Wavelet transform spectra for experimental results with X = 0.52 mm: (a) xp and (b) xa 

Figure 3.13 and Figure 3.14 show the results with the medium initial energy level. 

Similar to the simulation results in Figure 3.3 and Figure 3.4, the NES is engaged and a visible 

1:1 resonance occurs. The energy is being transferred to the NES. The oscillation of the NES 

clearly shows a nonlinear nature as indicated by Figure 3.14(b). The bear-like waveform of the 

primary system indicated that the TET is not fully established. The open circuit voltage from 

the PEH is significantly enhanced compared to that in the previous low initial energy case. 

 

Figure 3.13 Experimental results with X = 1.42 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 
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Figure 3.14 Wavelet transform spectra for experimental results with X = 1.42 mm: (a) xp and (b) xa 

Figure 3.15 and Figure 3.16 show the results with the medium-high initial energy level 

while Figure 3.17 and Figure 3.18 show the results with the high initial energy level. In both 

the cases, the NES is activated and 1:1 resonance clearly takes place along with the desired 

TET. After the energy is transferred to the NES, the vibration of the primary system is 

suppressed quickly, and the NES vibrates somewhat independently as evidenced by its varying 

frequency which follows the nonlinear manner. 

 

Figure 3.15 Experimental results with X = 2.65 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 
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Figure 3.16 Wavelet transform spectra for experimental results with X = 2.65 mm: (a) xp and (b) xa 

 

Figure 3.17 Experimental results with X = 4.45 mm: (a) displacements (Solid line: primary system; Dotted line: 

NES), (b) the percentage of instantaneous energy in NES, and (c) open circuit voltage of PEH. 

 

Figure 3.18 Wavelet transform spectra for experimental results with X = 4.45 mm: (a) xp and (b) xa 
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 To validate the simulation results shown in Figure 3.9, experiments are conducted with 

the five different load resistances of 50, 100, 500, 1000, and 5000 KΩ. Figure 3.19 shows the 

results obtained with the high initial energy level of X = 4.45 mm. Figure 3.19(a) shows the 

percentage of the instantaneous energy in the NES defined in Equation (3.4). Figure 3.19(b) is 

the instantaneous accumulated energy harvested by one PEH. Figure 3.19(c) is the ratio of the 

instantaneous accumulated harvested energy over the maximum kinetic energy of the NES. 

Compared to the results shown in Figure 3.9, the similar trends are observed and the highest 

accumulated energy Eh(t) is obtained with load resistance of 100 KΩ, as predicted by the 

simulation. 

 

Figure 3.19 Experimental results with X = 4.45 mm: (a) the percentage of instantaneous energy in NES, (b) 

accumulated energy in NES, and (c) ratio of accumulated energy in NES to maximum of kinetic energy of NES. 

3.4 Nonlinear normal mode analysis 

From the previous section, it is observed that there is an initial energy threshold requirement 

in order to fully engage the NES into 1:1 resonance. Therefore, it can be assumed that there is 

a relationship between the oscillation frequency and this energy threshold. To investigate this 

relationship between the threshold and 1:1 resonance, a concept of nonlinear normal mode 

(NNM) and periodic orbits is employed [22]. For this purpose, the underlying Hamiltonian 

system is considered, 

 
3

1 3

3
1 3

0

(1 )( ) 0
p p p p

a p p

m x k x k z k z

m z k z k z k x 

    


    




  (3.7) 

The NNM analysis starts with introducing new complex variables as follows, 
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 1 2 and p p a ax j x x j x          (3.8) 

where ω is the dominant frequency or also known as the fast frequency of oscillation and � =

√−1. By rearranging these new complex variables, displacements and accelerations of the 

primary system and NES system are obtained as, 

 1 1
1 1 1,  ( )

2 2
p p

j
x x

j


  
  




      (3.9) 

 2 2
2 2 2,   ( )

2 2
a a

j
x x

j


  
  




      (3.10) 

where the overhead bar represents its complex conjugate. Since periodic orbits are sought, it 

is assumed that the primary system and NES oscillate with the same fast frequency ω, the 

previously introduced complex variables in Equation (3.8) are approximately expressed in 

terms of the fast frequency ω, j te  and modulated by slowly varying amplitudes ( )i t , 1, 2i   

as 

 1 1 2 2( ) ( )  and ( ) ( )j t j tt t e t t e        (3.11) 

Substituting Equations (3.9) - (3.11) into Equation (3.7) yields, 
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p
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   

   


    



   


   
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  (3.13) 

 The above equations are simplified further, and only terms associated with the fast 

frequency ω are kept. And, higher order frequency terms associated with 3j te   and 5j te   are 

ignored. Collecting the terms only associated with j te   yields a set of complex modulating 

equations as 
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  (3.14) 
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  (3.15) 

where dot denotes the derivative with respect to time. Furthermore, the polar form of complex 

amplitudes is introduced as    
1

j ta t e    and    
2

j t
b t e

  , where a(t) and b(t) are real 

amplitudes and α(t) and β(t) are real phases. Substituting the polar forms into Equations (3.14) 

and (3.15), and separating the real and imaginary parts yields the following equations, 
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  (3.19) 

Since periodic solutions are being sought, these solutions shall be found in the steady-

state. Thus, the derivatives of α and β with respect to time in Equations (3.17) and (3.19) are 

to be set to zero. Furthermore, the system is assumed to oscillate in phase, then α = β. Equations 

(3.17) and (3.19) are therefore reduced to a set of two coupled nonlinear algebraic equations 

defining the amplitudes of the system, 

 

   

 

2 3 2 2
3 3 1 33 3

2 4 2 3 2
1 3 33

1 3
0 9 3 4

8 8

1
    4 4 4 3 6

8

p p

p p

p

k a b k b k b k b
m a m

k a m a k a k a k ab
m a


 

  


    

    

  (3.20) 
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  (3.21) 

 The two equations are numerically solved for a and b by specifying a frequency ω. In 

general, the periodic responses can be expressed as follows, 
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2

a a

b
x t X t t

j

 
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 


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 In order to find the relationship between energy and frequency, the total energy of the 

system is defined by its potential energy as follows, 

 2 2 4
1 3

1 1 1

2 2 4
p pE k X k Z k Z     (3.24) 

where Z = Xa - Xp denotes the relative displacement amplitude. 

 Figure 3.20 is the so-called frequency-energy plot (FEP) in which the amplitudes  and  

obtained by solving Equations (3.20) and (3.21) are plotted as a function of the total energy 

defined by Equation (3.24) and frequency . There exist two backbone branches of NNMs, an 

in-phase branch, S11+, originating from the natural frequency fa = 4.587 Hz of the NES and 

an out-of-phase one, S11-, originating from the natural frequency fp = 10.71 Hz of the primary 

system. The energy threshold of the system, shown in Figure 23, represents the minimum 

energy required to set the system into oscillation along the S11+ curve. If the energy is lower 

than this threshold, the system will be attracted to the S11- curve. 

 

Figure 3.20 Frequency energy plot: backbone curves S11± 
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 To illustrate this effect, a wavelet transform is applied to the relative displacements 

corresponding to the four initial energy levels. At each time t, the total energy level of the 

responses is determined so that the corresponding time is matched to this energy level. Then, 

the contour of the wavelet spectra defined by the frequency and energy level is superimposed 

on top of the backbone curves of the frequency energy plot. Figure 3.21 shows the plots 

obtained with the simulation results. As shown in Figure 3.21(a), for the low initial energy 

level, the system tends to be attracted to the S11- curve. The system exhibits a weak 

nonlinearity so that there is little energy exchange between the primary mass and NES mass, 

noting the existence of the energy concentration around the low frequencies that are close to 

the natural frequency of the NES. This is attributed to the fact that the NES is not essentially 

nonlinear. 

 Shown in Figure 3.21(b), as the initial energy exceeds the threshold level, the higher 

frequency components are present at the higher energy level region, revealing by the initial 

nonlinear beating phenomena. Once the nonlinear beating becomes less dominant, the 

fundamental TET due to 1:1 transient resonance capture is triggered, as the transient dynamics 

traces approximately the in-phase backbone branch S11+. This indicates that the energy is 

gradually localized in the NES. 

 Figure 3.21(c) shows the case of the medium-high initial energy level while Figure 

3.21(d) showing the case of the high initial energy level. The higher frequency components 

still appear, and however only last for a short period of time at the higher energy level region. 

The beat-like wavelet transform is significantly less dominant comparing to the previous case. 

At those energy levels, the responses are firmly in 1:1 resonance and attracted to the S11+ 

backbone curve. The energy is rapidly transferred to the NES. 
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Figure 3.21 Frequency energy plots and wavelet transforms of relative displacement xa - xp from the simulation 

results for fp = 10.71 Hz: (a) low initial energy X = 0.52×10-3 (m); (b) medium initial energy X = 1.42×10-3 (m); 

(c) medium-high initial energy X = 2.65×10-3 (m) and; (d) high initial energy X = 4.45×10-3 (m). 

 Figure 3.22 show the plots obtained using the experimental results. In Figure 3.22(a), 

for the low initial energy level below the energy threshold, it can be seen that energy is 

primarily concentrated around fa and fp similar to that in Figure 3.21(a). In Figure 3.22(b), as 

the initial energy level increases above the energy threshold, higher frequency components are 

present at higher frequency region. And, now the energy is shifted and concentrated along the 

backbone curve S11+. 

 Figure 3.22(c) and Figure 3.22(d) show the case of the medium-high and high initial 

energy level, respectively. The higher frequency components appear but are not dominating 

comparing to low frequency components. It can still be seen that the energy is concentrated 

primarily along the backbone curve S11+, and the nonlinear beating effect are not present in 

these plots. This indicates that the TET is activated. The energy is following the backbone 

curve S11+ and towards to the lower frequency region with less high frequency components, 

and this indicates that the energy is gradually localized in the NES 
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Figure 3.22 Frequency energy plots and wavelet transforms of relative displacement xa - xp from the 

experimental results for fp = 10.71 Hz: (a) low initial energy X = 0.52×10-3 (m); (b) medium initial energy X = 

1.42×10-3 (m); (c) medium-high initial energy X = 2.65×10-3 (m) and; (d) high initial energy X = 4.45×10-3 (m). 

3.5 Comparison of three systems 

As pointed out previously, the developed apparatus is not a true NES as it possesses a linear 

stiffness. The simulation results have indicated that the apparatus acts similarly when its linear 

natural frequency is much lower than that of the primary system. In this section, three systems 

are compared in order to examine how the linear natural frequency of the NES affects its 

behaviours. For this purpose, the equations of motion derived in the previous chapter are 

reformulated by defining several dimensionless variables and time in a similar way used in [30, 

55, 56, 57]. The equations of motion presented in Chapter 2 are represented below, 

  3
1 3 0p p p p p p am x c x k x c z k z k z V              (3.25) 

    3
1 31 0a a p p p pm z c z k z k z V c x k x                   (3.26) 
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By dividing Equation (3.25) by  and Equation (3.26) by  respectively, it yields, 
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  (3.29) 

By simplifying Equations (3.28) and, it leads to, 
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  (3.31) 

where, 
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A dimensionless time   is defined as pt  , thus 
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where prime denotes differentiation with respect to  . Similarly, 
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By substituting Equations (3.33) to (3.37) into Equations (3.30) and (3.31), this leads to, 
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Dividing Equations (3.38) and (3.39) by ��
� and dividing Equation (3.40) by ��

�, this leads to, 
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32 2 0p p p p ax x x z z k z V               (3.41) 

   2 3
3

1 1
1 2 2 0a p p pz z z k z V x x     

 

 
          

  
  (3.42) 

 0
S

p p p

V C
V z

k R k



      (3.43) 

where, 

 3
3, , a

p p p

k
k

k k


 




     

 The variable η is called the frequency ratio that can be used to represent the linear 

coupling between the primary system and NES system. If η = 0, the system becomes a true 

NES. If η = 1, the system becomes a nonlinear vibration absorber. In what follows, the linear 

natural frequency of the NES is fixed as fa = 4.5 Hz, three different values for η will be used, 

i.e., ηi = [0.3 0.5 1]. This leads to, 
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   

2

pa a i a a
i p p pi

p i p i i

k
k m

m

   
 

   

 
         
 

  (3.44) 

    7752.32 2790.84 697.71  N/mp i
k    (3.45) 

    15 9 4.5  Hzp i
    (3.46) 

 To have a fair comparison of the systems with different η values, the free responses are 

generated by keeping the initial potential energy equal or    
21

2
p p pi i

E k X . The primary 

system with the natural frequency of 9 Hz is used as a baseline to determine beam deflection 

for the specified initial energy level. From experiments trials, the maximum initial deflection 

for the baseline system is 4.45 mm. Thus, the initial energy is �� =
�

�
����

� = 0.02736 �. 

Therefore, for two different systems with η1 and η2, respectively, their initial displacements of 

the primary systems 1( )pX  and 2( )pX  are related by 

 

       

   
         

 

2 2

1 1 2 2

1 1

2 1 2 1

2 2

1 1

2 2
p p p p p

p p

p p p p

p p

E k X k X

k
X X X X

k





 

   

  (3.47) 

 Using the primary system with fp = 9 Hz as a base line system or Ep = 0.02736 J, the 

initial displacements for the three systems are found to be    2.67 4.45 8.9  mmp i
X  . 
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Figure 3.23 Simulation results of non-dimensional system: (a) the percentage of instantaneous energy in NES, 

(b) accumulated energy in NES, (c) ratio of accumulated energy in NES to maximum of kinetic energy in NES, 

and (d) ratio of accumulated energy in NES to total system energy, (solid blue line: � = 0.3 �� �� = 15 Hz, 

dash green line: � = 0.5 �� �� = 9 Hz, and red dotted line: � = 1 �� �� = 4.5 Hz). 

 Figure 3.23 shows the simulation results for the three systems. Figure 3.23(a) indicates 

the percentage of the instantaneous energy in the NES over the instantaneous total system 

energy. At η=0.3 or f
p
=15 Hz, the general trend of this curve rapidly increases comparing to 

the other two curves. Figure 3.23(b) shows that the harvested energy in joules over time at a 

resistance value of R = 100 KΩ, and it shows that the amount of the harvested energy is inverse 

proportional to the frequency ratio. Figure 3.23(c) and Figure 3.23(d) show the ratio of the 

accumulated energy in the NES to the maximum kinetic energy of the NES and the ratio of the 

accumulated energy in the NES to the total system energy at the open circuit condition, 

respectively. In Figure 3.23(c), it is observed that the ratio is overall decreasing when 

increasing frequency ratio η; however, Figure 3.23(d) shows that the ratio of accumulated 

energy in NES to total system energy is higher with increasing frequency ratio η. 
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Figure 3.24 Experimental results of non-dimensional system: (a) the percentage of instantaneous energy in 

NES, (b) accumulated energy in NES, (c) ratio of accumulated energy in NES to maximum of kinetic energy in 

NES, and (d) ratio of accumulated energy in NES to total system energy, (solid blue line: � = 0.3 or �� =

15 Hz, dash green line: � = 0.5 or �� = 9 Hz). 

Experiments are conducted and presented in Figure 3.24 to compare with Figure 3.23. 

However, only primary systems of 9 Hz and 15 Hz are used in experiments and shown in 

Figure 3.24.  

 Figure 3.25(a) and (b) shown below is the frequency energy plot (FEP) in which the 

amplitudes Xp and Xa obtained by solving Equations (3.20) and (3.21) are plotted as a function 

of the total energy defined by Equation (3.24) and frequency ω for η = 0.5 and η = 0.3 

respectively. There exist two backbone branches of NNMs as an out-of-phase branch S11- and 

an in-phase branch S11+ in both (a) and (b), while system total energy decreases, the in-phase 

branch terminates toward to the linear natural frequency fa = 4.5 Hz of the NES and an out-of-

phase one, S11-, terminates toward to the natural frequency fp = 9 Hz and fp = 15 Hz of the 
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primary system respectively. The energy threshold of the system, shown in Figure 3.25, 

represents the minimum energy required to set the system into oscillation along the S11+ curve. 

If the energy is lower than this threshold, the system energy will be attracted to the S11- curve. 

The energy threshold shown in Figure 3.25(a) and (b) are referred as tongue discussed in [22], 

and it is observed that the tongue is leaping toward to higher energy value as primary system 

natural frequency fp increasing while maintaining NES linear natural frequency constant. 

 

Figure 3.25 Frequency energy plot: backbone curves S11± for (a) fp = 9 Hz, (b) fp = 15 Hz 

 Figure 3.26 shows frequency energy plots superimposed by the contours of the wavelet 

spectra of the relative displacements obtained with the simulation results for fp = 9 Hz. As 

shown in Figure 3.26(a), for the low initial energy level, the system tends to oscillate with the 

S11- curve. The system exhibits a weak nonlinearity so that there is little energy exchange 

between the primary mass and NES mass, noting the existence of the energy concentration 

around the low frequencies that are close to the natural frequency of the NES. This is attributed 

to the fact that the NES is not essentially nonlinear. 

Shown in Figure 3.26(b), as the initial energy exceeds the threshold level, the higher 

frequency components are present at the higher energy level region, revealing by the initial 

nonlinear beating phenomena. Once the nonlinear beating becomes less dominant, the 

fundamental TET due to 1:1 transient resonance capture is triggered, as the transient dynamics 

traces approximately the in-phase backbone branch. This indicates that the energy is gradually 

localized in the NES. 
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 Figure 3.26(c) shows the case of the medium-high initial energy level, and Figure 

3.26(d) the case of the high initial energy level. The higher frequency components still appear, 

and however only last for a short period of time at the higher energy level region. The beat-

like wavelet transform is significantly less dominant comparing to the previous case. At those 

energy levels, the responses are firmly in 1:1 resonance and attracted to the S11+ backbone 

curve. The energy is rapidly transferred to the NES. 

 

Figure 3.26 Frequency energy plots and wavelet transform of relative displacement xa - xp from the simulation 

results for fp = 9 Hz: (a) low initial energy X = 0.52×10-3 (m); (b) medium initial energy X = 1.42×10-3 (m); (c) 

medium-high initial energy X = 2.65×10-3 (m) and (d) high initial energy X = 4.45×10-3 (m). 

 Figure 3.27 shows the experimental results. As shown in Figure 3.27(a), for the initial 

energy level that is below the energy threshold, the energy is primarily concentrated around fp 

and fa, respectively, that is similar to that revealed in Figure 3.26(a). As shown in Figure 

3.27(b), when the initial energy level increases above the energy threshold, higher frequency 

components are present at higher energy region. As a result, the energy is concentrated along 

the backbone curve S11+. 

 Figure 3.27(c) and Figure 3.27(d) show the case of the medium-high and high initial 

energy level, respectively. The higher frequency components appear but are not dominant 
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comparing to low frequency components. It can still be seen that the energy is concentrated 

primarily along the backbone curve S11+, and the nonlinear beating effect is not apparently 

present in these plots. This indicates that the TET is activated. As the time progresses, the 

energy is reduced by following the backbone curve S11+. This indicates that the energy is 

gradually localized in the NES. 

 

Figure 3.27 Frequency energy plots and wavelet transforms of relative displacement xa - xp from the 

experimental results for fp = 9 Hz: (a) low initial energy X = 0.52×10-3 (m); (b) medium initial energy X = 

1.42×10-3 (m); (c) medium-high initial energy X = 2.65×10-3 (m) and (d) high initial energy X = 4.45×10-3 (m). 

 Figure 3.28 shows the simulation results for fp = 15 Hz. As shown in Figure 3.28(a), 

for the initial energy level which is much lower than the energy threshold, the energy is 

primarily concentrated around fa and fp, respectively Figure 3.28(b) shows the case for the 

medium initial energy level. It is observed that in the beginning, the system’s energy is 

primarily concentrated around fp. It is also noted that as the initial energy level gets close to 

the energy threshold, the oscillation energy quickly switches to a curve that is bent toward to 

the in-phase backbone curve S11+. However, the NES is not yet fully activated. Figure 3.28(c) 

shows the case that the initial energy level gets just above the energy threshold level It can be 

seen that the NES is now activated and the vibration energy follows the S11+ curve. However, 
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the nonlinear beating phenomenon appears at the beginning. Figure 3.28(d) shows the case for 

the high initial energy level. Again, the NES is activated. The nonlinear beating is less 

dominant and only lasts a short period of time comparing to Figure 3.28(c). The TET and 1:1 

resonance capture are triggered. As a result, the system’s energy follows the S11+ curve. 

 

Figure 3.28 Frequency energy plots and wavelet transforms of relative displacement xa - xp from the simulation 

results for fp = 15 Hz: (a) low initial energy X = 0.312×10-3 (m); (b) medium initial energy X = 0.852×10-3 (m); 

(c) medium-high initial energy X = 1.59×10-3 (m) and (d) high initial energy X = 2.67×10-3 (m). 

 Figure 3.29 shows the experimental results for fp = 15 Hz. Figure 3.29(a) and (b) are 

similar to the simulation results shown in Figure 3.27(a) and (b). The initial energy levels both 

are below the energy threshold; hence, the NES is not activated in both the scenarios. As shown 

in Figure 3.29(c) and (d) when the initial energy level is above the energy threshold and the 

NES is activated. It can be noted that although the system’s energy follows a general trend 

similar to the in-phase curve S11+, there is lag between the energy concentration and backbone 

curve S11+. The reason that causes this lag requires a further investigation. 
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Figure 3.29 Frequency energy plots and wavelet transforms of relative displacement xa - xp from the 

experimental results for fp = 15 Hz: (a) low initial energy X = 0.312×10-3 (m); (b) medium initial energy X = 

0.852×10-3 (m); (c) medium-high initial energy X = 1.59×10-3 (m) and (d) high initial energy X = 2.67×10-3 (m). 

3.6 Conclusion 

In this chapter, the transient behaviours of the system are investigated. It has shown that the 

developed apparatus demonstrates characteristics similar to those of the NES. It has been 

shown that there is an energy threshold needs to be reached in order to engage the NES in 1:1 

resonance, and the initial energy levels slightly greater than the energy threshold has excellent 

vibration suppression and energy harvesting. Higher initial energy levels also result in 

excellent performance in system’s response and enhancing the energy pumping. It has been 

also found that the energy threshold increases as the natural frequency of the primary system 

increases, and it results in higher initial energy level required in order to activate the NES. 
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Chapter 4 Harmonically forced responses 

4.1 Analytical solution of harmonically forced responses 

Commonly the method of complexification [59] is used to analyze the harmonically forced 

responses of the NES systems. With this method, the system dynamics are broken into the slow 

and fast parts similar to the steps taken in Section 3.4. Assuming a response of 1:1 frequency 

matching, a harmonic balance method is used to average the response and bifurcation analysis 

are performed. This method is tedious to implement and the obtained results are difficult to 

interpret. In the following study, a mixed Multiple Scales/Harmonic Balance Method 

(MSHBM) proposed in [59] is used to obtain the differential equations describing the steady-

state responses of the system subject to a harmonic base excitation. The elegance of this method 

is that the final equations are presented in the real coordinates. The results also prove to be 

highly accurate for the purpose of identifying saddle nodes and bifurcations. The equations of 

motion for the system subject to a base excitation are defined as 

 3
1 3p p p p p p a pm x c x k x c z k z k z V m y              (4.1) 

 3
1 3( )a p a am z x c z k z k z V m y           (4.2) 

 0SV
C V z

R
      (4.3) 

where xp is the displacement of the primary mass relative to the base, xa is the displacement of 

the NES mass relative to the base, and z = xa - xp is the displacement of NES relative to the 

primary mass, 2 cos( )y Y t     is the acceleration of the base with   as the excitation 

frequency and Y as the amplitude of the base motion. 

 Introducing a frequency ratio 
p





  where p  is the natural frequency of the primary 

system. And, a dimensionless time scale is introduced as pt  . The derivative of this new 

time scale is 
d

d
p

t


 . The derivatives of x(t) with respect to   are given as follows, 
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d d ( )

( )
d d p

x t dt x
x x t

t d



  
      (4.4) 

 
2 2 2

2 2 2 2

d d ( ) d
( )

d d d p

x t t x
x x t

t



  
      (4.5) 

where    denotes the derivative of x(t) with respect to dimensionless time  . This yields, 

 2,p px x x x       (4.6) 

Substituting Equation (4.6) into Equations (4.1) to (4.3) and also normalize by dividing 

the mass of the primary system, 

  2 3

2

1
( ) ( ) ( )p p p

p

x x x z z z V y    


               (4.7) 

   3

2

1
( ) ( ) ( )p

p

z x z z z V y    


           (4.8) 

 0S

p

V
C V z

R



      (4.9) 

where, 

31
2 2 2

2
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p a

p p p p p p p p p p

pa
p a p

p p p

c c kk

m m m m m

km
z x x

m m

  
    

    



      


      

 

Using the method of multiple scale, a small parameter �  is introduced that ε≪1. 

Equations (4.7) to (4.9) are transformed as follows, 

  2 3( ) ( ) ( ) ( ) cosp p p cx x x z z z V A                       (4.10) 

  3( ) ( ) ( ) ( ) cosp cz x z z z V A                 (4.11) 
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 0S

p

V
C V z

R
  


      (4.12) 

where 
2

2

2c

p

A Y Y



  . 

 Following the MSHBM, define the fast and slow time scales �� = ��� = �, �� = ��, 

and �� = ���. The derivatives are then changed to:  

 2 20 1 2
0 1 2

0 1 2

d d d d

d d d d

T T T
D D D

T T T
    

   

  
       

  
  (4.13) 

  
2

2 2 2
0 0 1 1 0 22

d
2 2

d
D D D D D D  


       (4.14) 

Approximate solutions of Equations (4.10) to (4.12) are assumed to be the following 

formats, 

 

0 0 1 2 1 0 1 2

0 0 1 2 1 0 1 2

0 0 1 2 1 0 1 2

( , , ) ( , , ) ...

( , , ) ( , , ) ...

( , , ) ( , , ) ...

p p px x T T T x T T T

z z T T T z T T T

V v T T T v T T T







  

  

  

  (4.15) 

Substituting Equation (4.15) into Equations (4.10) to (4.12), and collecting terms 

associated with the same order of � result in 

Order of ε0: 

 2 2
0 0 0 0p pD x x    (4.16) 

Order of ε1: 

 
 

2 2 3
0 1 1 0 0 1 0 0 0 0 0 0 0 0

0

2

cos 0

p p p p p

c

D x x x D D x D x D z z z v

A T

    



        

 
  (4.17) 

  2 2 3
0 0 0 0 0 0 0 0 0 0( ) cos 0p cD z D x D z z z v A T              (4.18) 

 0 0 0 0 0 0S
p pv R C D v R D z       (4.19) 

Order of ε2: 
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2 2 2
0 2 1 0 2 0 1 1 0 0 1 1 1

2
0 1 1 0 0 1 1 1

2

3 0

p p p p p pD x D x x D x D x D D x x

D z D z z z z v
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   

     

      
  (4.20) 

 

2 2
0 1 0 1 1 0 0 1 0 0 0 1 1 0

2
0 1 1 1

( ) 2 2

3 0

p pD z D x D D x D D z D z D z

z z z v

    

 

    

    
  (4.21) 

    0 0 1 1 0 0 1 1 0 0S
p pv R C D v D v R D z D z         (4.22) 

It is observed that there are no nonlinear terms or damping terms in Equation (4.16) for 

the order of ε0. It describes the motion of the undamped primary system that has a solution in 

the form of: 

 0

0 0 1 1 2( , ,...) ( , ,...) . .j T
px T T A T T e c c    (4.23) 

where 1 2( , ,...)A T T  is unknown complex function, j is the imaginary number and c.c. stands for 

the complex conjugate. From this point an important assumption must be made regarding the 

dynamics of the NES. Similar to the transient responses, one can expect that the NES will have 

a 1:1 internal resonance, and will oscillate with frequency ω. With this assumption, the 

assumed first order solution for the relative motion is 

 0

0 0 1 1 2( , , ...) ( , ,...) . .j Tz T T B T T e c c    (4.24) 

where 1 2( , ,...)B T T  is unknown complex function. From Equation (4.19), the assumed first-

order complete solution for the voltage is given by 

  
0

0

0 0 1 1 2 1 2( , ,...) ( , ,...) , ,... . .
1

s

T

p j T RC
s

p

j R
v T T B T T e E T T e c c

j RC

 

 



  


  (4.25) 

 It is noted that the first term and second term on the right-hand side of the above 

equation are the particular solution and homogenous solution to Equation (4.19), respectively.  

 Substituting Equations (4.23), (4.24), and (4.25) into Equations (4.17) and (4.18) 

yields, 
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  (4.26) 
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A B A

j C

      

 
   

 

        

   




  (4.27) 

Note that in the above substitution, the homogenous solution in Equation (4.25) was dropped 

as the steady-state solutions are sought. The terms 1 2( , ,...)A T T  and 1 2( , ,...)B T T  in Equations 

(4.23) and (4.24) are assumed to have the form of the following format: 

 1 2 1 2

1
( , ,...) ( , ,...)

2
j tA T T a T T e    (4.28) 

 1 2 1 2

1
( , ,...) ( , ,...)

2
j tB T T b T T e    (4.29) 

 Equations (4.28) and (4.29) describe the real amplitudes of the primary system and the 

relative displacement (�, �)  and (�, �)  is the phase of each respectively. Substituting 

Equations (4.28) and (4.29) into Equations (4.26) and (4.27), and it yields, 
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  (4.30) 
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 Separating Equations (4.30) and (4.31) into the real and imaginary parts and solving 

for the derivatives of each term, complex amplitude modulation equations (AME) ruling the 

slow dynamics of the primary system and NES can be obtained, 
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 Equations (4.32) to (4.35) describe the amplitudes and phases for 1 2( , ,...)A T T  and 

1 2( , ,...)B T T . These equations need to be solved so that the derivatives on the left-hand sides 

are equal to zero. Once the solutions are obtained, the steady-state responses can be 

reconstituted as follows: 

 ( ) cos( )px t a t      (4.36) 

 ( ) cos( )z t b t      (4.37) 
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4.2 Simulation results 

4.2.1 Frequency response plot 

Equations (4.32) to (4.35) are a set of coupled highly nonlinear differential equations with 

multiple solutions at different excitation frequencies. In this study, the continuation software 

Matcont [60] is used to solve them. The use of the software involves finding the steady-state 

solutions to Equations (4.32) to (4.35), and then finding neighboring equilibrium points by 

continuing with a single parameter, in this case the forcing frequency. By sweeping the forcing 
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frequency forward and backward, respectively the so-called frequency response plot (FRP) can 

be generated. The advantage of such an approach lies in the fact that during continuation, 

stability can be determined from the eigenvalues of the system equations, as well as 

determining the type of bifurcation at points of lost stability. In this section, Matcont simulation 

results are presented. 

 

Figure 4.1 FRP for Ay = 0.6 m/s2 and R = 1000 Ω: (a) primary displacement Xp and (b) relative displacement Z. 

Blue line indicates stable periodic orbits. Red lines are unstable indicating non-periodic orbits. Black squares 

are Hopf bifurcation points and green triangles are Limit points. Red circles are from numerical integration of 

Equations (4.1) to (4.3) 

 The parameter values obtained in Chapter 2 are used in the Matcont solution. In 

addition to specifying the frequency sweeping range, the excitation amplitude Ay = Ω2Y and 

the load resistance R are given. Figure 4.1 shows the FRPs with Ay = 0.6 m/s2 and R = 1000 Ω. 

In the figures the following conventions are used, the blue line indicates the stable solutions, 

the red line indicates the unstable solutions, the green triangle symbols represent the limit 

points, and it is noted that between these two points there exists multiple solutions at a same 

excitation frequency. The curve between the limit points shown in red colour are obtained only 

through numerical integration, being an unstable saddle region. In real applications, responses 

will be attracted to one of the other two points at the same frequency. The black squares 

indicate the Hopf bifurcation points. The responses within this unstable region is modulated 

periodic ones. 

 To verify the solutions obtained by Matcont, Equations (4.1) to (4.3) are numerically 

integrated using Matlab ODE45 function. The Matcont simulation results show multiple 

solutions at frequency range from 11.46 to 26.9 Hz, and it is possible to obtain from numerical 
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integration from Matlab ODE45 by carefully choosing initial conditions. However, it would 

require numerous attempts. Therefore, Monte Carlo method [36] is used to seek these multiple 

steady-state responses throughout the frequency sweeping region. With 50 sets of randomly 

generated initial conditions fed into Matlab ODE45 for numerical integration, the system 

responses are obtained. It is observed that in general there exist two groups of responses: low 

amplitude and high amplitude. Therefore, along the Monte Carlo method, these responses are 

separated the integration results into low and high amplitude for the frequency range where 

multiple solutions exist. These results are indicated in Figure 4.1(a) and (b) as red circles. In 

Figure 4.1(b), in the frequency range of 12 to 16 Hz multiple solutions shown in circles are 

seen. As shown, these multiple solution points are located in two branches: high amplitude 

branch and low amplitude branch. It is noted that among 50 sets of random initial conditions, 

only a few sets of the system response belong to high amplitude branch and the rest belong to 

low amplitude branch. Coexistence of these high and low amplitude solutions are considered 

to be a typical jumping phenomenon found in harmonically forced responses of nonlinear 

systems [51]. It is also noted that high amplitude responses in the frequency range of 16 to 27 

Hz are not found. 

 In order to verify the Matcont results, the exciting frequency at Ω = 10.58 Hz, which is 

within the Hopf bifurcation points, is selected to compare Matcont and Matlab ODE45 results. 

Therefore, it is expected that the system responses should be so-called strongly modulated 

response (SMR) [36] shown in Figure 4.2. Figure 4.2(a) shows the primary displacement 

amplitude a and relative displacement amplitude b, and Figure 4.2(b) shows the reconstituted 

primary displacement and relative displacement using Equations (4.36) and (4.37). And, 

Figure 4.2(c) shows Matlab ODE45 numerical integration results of the primary displacement 

and relative displacement. It shows a good match between Figure 4.2(b) and Figure 4.2(c), and 

it also shows a sign of strongly modulation response (SMR). 
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Figure 4.2 Time response of strongly modulated response with Ay = 0.6 m/s2, R = 1000 Ω, and Ω = 10.58 Hz: 

(a) amplitudes by solving Equations (4.32) to (4.35) with Matcont; (b) reconstituted responses defined by 

Equations (4.36) and (4.37); (c) responses by numerically integrating Equations (4.1) to (4.3). 

4.2.2 Frequency sweeping direction 

The Matcont solution generates FRPs by sweeping the exciting frequency forward and 

backward, respectively. Figure 4.3 uses arrows to show the frequency response curve obtained 

by sweeping the exciting frequency forward. Figure 4.4 shows the case obtained by sweeping 

the exciting frequency backward. Note that from hereinafter the displacement transmissibility 

ratio (T.R.) for the primary mass displacement is defined as Xp/Xpst while the displacement 

transmissibility ratio for the NES relative displacement is defined as Z/Xpst where Xpst = 

mpΩ2Y/kp is the static deflection of the primary spring when a force mpΩ2Y is applied. As shown 

in Figure 4.3, both the responses jump from high amplitude to low amplitude when the forward 

sweeping reaches the right limit point. As shown in Figure 4.4, Xp/Xpst jumps to low amplitude 

while Z/Xpst jumps to high amplitude when the backward sweep reaches the left limit point. 
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Figure 4.3 FRPs obtained by forward frequency sweeping with Ay = 0.6 m/s2: arrows indicate the response path. 

(a) Xp/Xpst, (b) Z/Xpst 

 

Figure 4.4 FRPs obtained by backward frequency sweeping with Ay = 0.6 m/s2: arrows indicate the response 

path. (a) Xp/Xpst, (b) Z/Xpst 

4.2.3 Interpretation of FRPs 

From the previous transient study, it was found that the behaviours of the NES depend on 

initial energy level. Naturally it is expected that the NES exhibits the similar characteristics 

under harmonic forcing excitations. Figure 4.5 compares the FRPs for three cases: the green 

line is the FRP for the primary mass without the NES; curve A is the FRP obtained with a high 

amplitude excitation of Ay = 1.8 m/s2; curve B is the FRP obtained with a low amplitude 

excitation of Ay = 0.6 m/s2. It can be seen that while the NES has little effect on suppression of 

the peak amplitude, it does reduce the amplitude in the certain frequency region. It is also noted 

that the NES performs better for the low amplitude excitation than for the high amplitude 

excitation. Figure 4.6 shows the FRPs for three different acceleration levels: Ay = 0.6, 1.2, 1.8 

m/s2. 
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Figure 4.5 Comparison of FRPs for two excitation levels at R = 1000 Ω. Curve A obtained with Ay = 1.8 m/s2; 

curve B obtained with Ay = 0.6 m/s2. Green line represents the FRP of the primary system with NES detached. 

 

Figure 4.6 Comparison of FRPs for three excitation levels. 

 Various initial points are selected to test if the Matcont would generate different 

responses. Before Matcont starts the frequency sweeping continuation, it first conducts a time 

domain simulation. For the time domain simulation, a set of initial conditions should be 

provided. In this case, the selected initial conditions are a = 1×10-5, α = 0, b = 0, and β = -3.17. 

After 5000 seconds of time domain simulation, Equations (4.32) to (4.35) converge to the 

steady-states a = 4.1177×10-4, α = 0, b = -5.2238×10-2, and β = -3.1582 . These steady-state 

values are used for the frequency sweeping to obtain Figure 4.7. It is noted that there exists a 

closed island of low amplitude comparable to the green line. This closed island consists of a 

stable solution in the frequency region of 8.19 to 9.56 Hz, and this actually shows a better 

vibration suppression performance. 
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Figure 4.7 Closed island and FRP at Ay = 0.6 m/s2. (a) Xp/Xpst, (b) Z/Xpst. Green line represents the primary 

system with NES detached. 

 After finding the closed island at low acceleration Ay = 0.6 m/s2, a lower acceleration 

of Ay = 0.3 m/s2 is also attempted to examine if there exists this type of closed island. The 

steady-state points of a = 6.5587×10-4, α = -1.9105×10-1, b = 1.1015×10-1, and β = -3.2992 

are used for the frequency continuation. A closed island is found and shown in Figure 4.8 in 

dashed line. Comparing to the previous closed island shown in Figure 4.7, it covers much wider 

frequency band. This found closed island has a stable solution for the frequency region of 6.59 

to 23.49 Hz. It shows better vibration suppression performance from 6.59 to 12.27 Hz. Higher 

accelerations of Ay = 1.2 and 1.8 m/s2 are also attended and examined under various initial 

points, however, the closed island is not discovered. 

 

Figure 4.8 Closed island and FRP at Ay = 0.3 m/s2. (a) Xp/Xpst, (b) Z/Xpst. Green line represents the primary 

system with NES detached. 
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 A group of acceleration levels Ay = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 m/s2 are also 

examined. Initial conditions and steady-state points for time domain simulation and 

equilibrium simulation in Matcont are recorded and listed in Table 4.1 and Table 4.2 below. 

Table 4.1 Initial condition for Matcont time domain (P_O) simulation. 

  Initial condition 

Ω (rad/s) 64.5485 64.5485 64.5485 64.5502 53.4071 56.5487 

Ay (m/s2) 0.1 0.2 0.3 0.4 0.5 0.6 

� 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

α 0 0 0 0 0 0 

� 0 0 0 0 0 0 

β -3.17 -3.17 -3.17 -3.17 -3.17 -3.17 

Table 4.2 Steady-state point for Matcont equilibrium (EP_EP) simulation. 

 Steady-state point 

Ay (m/s2) 0.1 0.2 0.3 0.4 0.5 0.6 

� 2.4024×10-4 4.6708×10-4 6.5587×10-4 6.8349×10-4 2.8049×10-4 4.1177×10-4 

α -2.1020×10-1 -2.0426×10-1 -1.9105×10-1 -1.4896×10-1 -4.0334×10-2 -5.2238×10-2 

� 3.3493×10-4 6.8992×10-4 1.1015×10-3 1.7512×10-3 7.3984×10-4 1.0382×10-3 

β -3.3207 -3.3141 -3.2992 -3.2495 -3.1475 -3.1582 

 In Table 4.2, it is noted that the result of � − �  is slightly fluctuating around 3.107 on 

average for the detected closed island at the end of the equilibrium simulation. This indicates 

that the position of primary mass or NES mass is leading the other. 

4.2.4 Energy harvesting 

The generated voltage is related to the relative displacement defined in Equation (4.38). The 

peak power can be determined by the following, 
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 Substituting Equation (4.38) into Equation (4.39) and converting it back to the physical 

parameters yield, 
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To obtain the maximum peak power, a first order derivative is applied to Equation (4.40) with 

respect to load resistance R. And, letting the first derivative equal to zero and solving R, 
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It results in 
1
S

R
C




. This is known as resistive impedance matching [61]. The resistive load 

value R is found to be inverse proportional to the capacitance of piezoelectric energy harvester 

CS and the external excitation frequency Ω to reach maximum generated power. Because the 

external excitation frequency Ω is changing, this shows that resistive load R should be adjusted 

accordingly for maximum power. 

 Matcont simulations are performed under two acceleration levels of Ay = 0.6 and 1.8 

m/s2 at various load resistance values 5 70, 1000, 10 , 10  ΩR  . Figure 4.9 shows the FRP of 

the relative displacement and the peak power for various resistances at Ay = 0.6 m/s2. It appears 

that at R = 105 Ω it has a maximum peak power generated about 0.883 mW at Ω = 26.9 Hz. 

 

Figure 4.9 Relative displacement and peak power at acceleration Ay = 0.6 m/s2. (a) FRP for relative 

displacement and (b) peak power as a function of frequency at 5 70, 1000, 10 , 10  ΩR  . 

 Figure 4.10 shows the relative displacement and peak power at Ay = 1.8 m/s2. Similar 

to the previous case, it has a maximum peak power generated at R = 105 Ω about 1.135 mW at 

Ω = 29.5 Hz. Both Figure 4.9 and Figure 4.10 have shown that the optimum load resistance is 

R = 105 Ω that somewhat agrees with the simulation and experimental results for the transient 

responses for maximum power in Figure 3.9 and Figure 3.19. 
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Figure 4.10 Relative displacement and peak power with Ay = 1.8 m/s2. (a) FRP for relative displacement and (b) 

peak power as a function of frequency at 5 70, 1000, 10 , 10  ΩR  . 

4.3 Experiment results 

Figure 4.11 shows the testing apparatus setup. Three reflex sensors are mounted vertically to 

ground to measure the displacements of the NES, primary mass, and the base respectively. An 

accelerometer is placed on the base to monitor the acceleration. The circuit is connected to the 

piezoelectric energy harvester, and a potentiometer is used to achieve a required resistance 

value. 
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Figure 4.11 Testing apparatus setup 

 To conduct a sweeping harmonic base excitation, the challenge is to maintain a constant 

acceleration of the base. The base is mounted on two linear bearings that seat on a precision 

track. A shaker (Brüel & Kjær shaker model 2809) is used to drive the base through a stinger. 

A power amplifier (Brüel & Kjær power amplifier model 2718) is used to drive the shaker. By 

removing the NES mass from the apparatus, a series of tests are conducted to find relationship 

between voltage signal sent to the power amplifier and base acceleration at each excitation 

frequency. Three sets of the voltage signal amplitudes vs the exciting frequencies are recorded 

for acceleration Ay = 0.6, 1.2, 1.8 m/s2 correspondingly. 

 First, the NES mass is detached from the apparatus, a sweep excitation test is 

conducted. The T.R. Xp/Xpst is produced with the measured response of the primary mass. 

Figure 4.12 compared the measured T.R. (circles) with the analytical one (solid line). It can be 

seen that there is a good agreement between the experimental T.R. and analytical one. 

Circuit 

Reflex 
sensors 
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Figure 4.12 Comparison of the analytic T.R. and experimental T.R. of the primary system with Ay = 0.6 m/s2. 

 

Figure 4.13 Test results with Ay = 0.6 m/s2 and R = 1000 Ω. (a) Xp/Xpst, blue line indicates the experiment results 

with the NES removed; (b) Z/Xpst; (c) the average harvested power. (Red circle: forward frequency sweeping; 

Blue square: backward frequency sweeping.) 

 With the NES mass attached, the forward and backward sweeping tests are conducted. 

The forward sweeping test starts from 5 Hz. When the steady-state is reached, the data are 

saved. With the steady-state kept, the exciting frequency is increased by 0.5 Hz and the voltage 

signal is adjusted to the corresponding level. Then the steady-state under the new exciting 

frequency is saved. The process is repeated until the exciting frequency of 20 Hz is reached. 

The backward sweeping test starts from 20 Hz and the exciting frequency is decreased by 0.5 
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Hz each time. Figure 4.13 shows the experimental results with acceleration Ay = 0.6 m/s2 and 

R = 1000 Ω. It shows some degrees of vibration suppression around the natural frequency of 

the primary mass. Figure 4.13(a) shows a jump at around 12.5 Hz in comparison to the Matcont 

result shown in Figure 4.4(a). Both the results of the T.R. for the relative displacement in the 

forward and backward frequency sweepings in Figure 4.13(b) are similar to those in Figure 

4.4(b). Figure 4.13(c) shows the average power dissipated across the resistor. It shows a peak 

average power of 0.105 mW at 10 Hz. However, the average peak power is in relative low 

amplitude, and the jump phenomenon does not appear. 

 

Figure 4.14 Test results with Ay = 0.6 m/s2 and R = 2000 Ω. (a) Xp/Xpst, blue line indicates experiment results 

with NES removed; (b) Z/Xpst; (c) the average harvested power. (Red circle: forward frequency sweeping; Blue 

square: backward frequency sweeping.) 

 Figure 4.14 shows the results with a high load resistance of R = 2000 Ω. As shown in 

Figure 4.14(a), there is a slight vibration suppression around the natural frequency 10.71 Hz 

of the primary system only. Figure 4.14(a) also shows a jump on the backward frequency 

sweeping curve at 12.5 Hz. Figure 4.14(b) shows a jump on the forward frequency sweeping 

curve around 19 Hz, and it is slightly different from the Matcont prediction shown in Figure 

4.3(b). On the backward frequency sweeping curve in Figure 4.14(b), the jump occurs at 16.5 

Hz which is slightly skewed to the right comparing to the result in Figure 4.4(b). Figure 4.14(b) 
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shows that the relative displacement ratio stays in the low amplitude branch in the higher 

frequency region and a jump occurs when the exciting frequency is reduced from 16 Hz to 15.5 

Hz. Figure 4.14(c) shows the average power dissipated across the resistor, and the dissipated 

power is low comparing to Figure 4.9(c). It shows a peak average power of 0.00536 mW at 9.5 

Hz. It is also noted that changing of resistance does not affect the displacement ratios much. 

 

Figure 4.15 Experiment results of displacement response at acceleration Ay = 0.6 m/s2 and R = 2000 Ω and 

excitation frequency Ω = 12 Hz. 

 As pointed out, the strongly modulated response (SMR) [36] occurs when the exciting 

frequency falls within the Hopf bifurcation points. Figure 4.15 shows the time responses when 

the system is excited at 12 Hz. The primary mass displacement appears to be the SMR while 

the relative displacement appears in a weakly modulated response. It is noted that in the 

experiments, such the SMR only occurs occasionally. 
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Figure 4.16 Test results with Ay = 1.2 m/s2 and R = 1000 Ω. (a) Xp/Xpst, blue line indicates experiment results 

with NES removed; (b) Z/Xpst; (c) the average harvested power. (Red circle: forward frequency sweeping; Blue 

square: backward frequency sweeping.) 

 Figure 4.16 shows the results with Ay = 1.2 m/s2, and the amplitudes experiences jumps 

in both the forward and backward frequency sweepings as predicted by the Matcont solution. 

Figure 4.17 shows the results with Ay = 1.8 m/s2. As shown in Figure 4.17(a) with the backward 

frequency sweeping, the primary mass displacement ratio experiences a jump at 13 Hz. As 

shown in Figure 4.17(b), with the forward frequency sweeping, the amplitudes jump from high 

amplitude to low amplitude at 19 Hz. However, jump is not observed in the as shown in Figure 

4.17(c) in the forward frequency sweeping. The maximum power peaks 0.0107 mW at 11.5 

Hz which is around the resonance frequency of the primary mass. 
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Figure 4.17 Test results with Ay = 1.8 m/s2 and R = 1000 Ω. (a) Xp/Xpst, blue line indicates experiment results 

with NES removed; (b) Z/Xpst; (c) the average harvested power. (Red circle: forward frequency sweeping; Blue 

square: backward frequency sweeping.) 

4.4 Conclusion 

The harmonically forced responses of the system have been investigated. The approximate 

analytical solutions of the steady-state responses have been derived using the MSHBM. The 

Matcont has been used to obtain the FRPs. These FRPs reveal the characteristics of the 

harmonically forced responses including the excitation level dependence, limit points, Hopf 

bifurcation points, amplitude jumping, strongly modulated response, etc. The power obtained 

by the piezoelectric energy harvester has been also examined. An experimental study has been 

conducted. The experimental results somewhat agree with the Matcont results. At high 

excitation levels, the experimental results match better with the Matcont results than those at 

low excitation levels. The typical behaviours such as amplitude jumping and strongly 

modulated responses have been observed.  
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Chapter 5 Conclusion 

The intended goal of this study is to use the nonlinear energy sink (NES) for energy harvesting 

and vibration suppression. For this purpose, an apparatus has been developed. The apparatus 

description, system modeling and parameter identification have been addressed in Chapter 2. 

The key findings are as follows. The NES spring possesses a cubic nonlinearity consisting of 

a linear term and nonlinear term. By compressing the NES beam axially, the linear term can 

be minimized so that the NES’s natural frequency is much smaller than the primary system’s 

one. Therefore, the NES system is weakly coupled to the primary system. It has been shown 

that the electromechanical coupling coefficient  is a link between the mechanical system and 

electric system. 

 The transient behaviours of the system have been investigated in Chapter 3. It has been 

shown that the developed apparatus demonstrates characteristics similar to those of the NES. 

There is an energy threshold needed to be reached in order to engage the NES in 1:1 resonance, 

and the initial energy levels slightly greater than the energy threshold has excellent vibration 

suppression and energy harvesting. Higher initial energy levels also result in excellent 

performance in the system’s response and enhancing the energy pumping. It has been also 

found that the energy threshold increases as the natural frequency of the primary system 

increases, and it results in higher initial energy level required in order to activate the NES. 

 The harmonically forced responses of the system have been investigated in Chapter 4. 

The approximate analytical solutions of the steady-state responses have been derived using the 

MSHBM. The Matcont has been used to obtain the FRPs. These FRPs reveal the characteristics 

of the harmonically forced responses including the excitation level dependence, limit points, 

Hopf bifurcation points, amplitude jumping, strongly modulated response, etc. The power 

obtained by the piezoelectric energy harvester has been also examined. An experimental study 

has been conducted. The experimental results somewhat agree with the Matcont results. At 

high excitation levels, the experimental results match better with the Matcont results than those 

at low excitation levels. The typical behaviours such as amplitude jumping and strongly 

modulated responses have been observed. 
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 Future work may include to optimize the testing apparatus. The current setup requires 

a skillful adjustment to properly control the beam buckling state. If the beam is compressed 

inappropriately, a bi-stable state may result. A better clamping device should be sought. An 

ideal clamping devise should allow a better beam tension control when it is loosened and 

achieve a secure clamped-clamped support when it is tightened. 
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Appendix A  

Four equations describe the amplitudes and phases of the system under harmonically forced 

excitation is returned to physical coordinate and listed below. 
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