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Abstract 

The goal of this project is to find a molecular probe for HPV variant 16 protein E6. This 

goal is accomplished using a combination of Virtual Ligand Screening (VLS) and experimental 

ligand binding assays.    

Protein E6 is a protein that is expressed in all individuals with the human papillomavirus 

(HPV) virus. A number of HPV 16 protein E6 genetic variants have been associated with 

increased risk for cervical cancer. Currently, there is no fast and reliable method for testing for 

the presence of these high-risk protein variants. We want to develop a method that is both fast 

and reliable for detecting the presence of this protein using molecular probes. These molecular 

probes could potentially be used for optical or PET diagnostic imaging, for risk-assessment and 

to guide early intervention. 

Using virtual ligand screening, we have identified a number of molecular probe 

candidates with affinity for the binding site of prototype E6. This affinity is assessed using 

binding energy scores. Compounds possessing favorable calculated binding energy scores and 

other desirable molecular properties are identified as potential molecular probes. Selected 

candidates include: O-succinyl-L-homoserine (-46 kcal/mol), paclitaxel (-70 kcal/mol), and 3-

Amino-5-fluorobenzo [E] [1,2,4] Triazine 1, 4 dioxide (-47kcal/mol), for 3-Chloro-2-(2-[(3-oxo-

2-Benzfuran-1 (3H)-Yliden] methyl) Hydrazino)-5-(Trifluoromethyl) Pyridinum Acetate (-

68.33kcal/mol), 3-Chloro-2-(3-[1-(Phenyl sulfonyl)-(H-pyrazol-3-YL] Phenoxy)-5-

(Trifluoromethyl) Pyridine (-66.12kcal/mol), and N-(2,4-dinitrophenyl)-L-arginine ) (-

78.58kcal/mol).  

We have performed experimental ligand-binding assays of the potential molecular probes 

against purified prototype protein E6. Both intrinsic tryptophan fluorescence and fluorescence 



 

II 

polarization assays have been performed. One of our compounds 3-Amino-5-fluorobenzo [E] 

[1,2,4] Triazine 1, 4 dioxide (AFTD) was shown to have affinity for our target protein (EC50 

6M). Due to its intrinsic fluorescence and the presence of a fluorine atom, this molecule could 

potentially be used for either PET or optical imaging modalities. Cell based assays have also 

been conducted to further characterize AFTD's potential as an in vivo imaging probe. Results 

indicate that AFTD is cytotoxic at 25M, although it appears to be cell permeable. Further 

experiments need to be conducted to assess its potential use as in-vivo imaging probe. An 

alternative use for this molecule as a probe in biochemical assay tracking E6 protein-protein 

interactions is suggested. This is demonstrated using a monoclonal antibody (6F4) that is specific 

to HPV16 E6. These results set the stage for future work to further characterize this potential 

dual-purpose probe which may aid our understanding of the link between HPV infection and 

cancer.  
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Chapter 1.Introduction 

 

1.1.OVERVIEW 

Human Papillomavirus (HPV) is a double stranded DNA virus
1
. To date this virus has 

more than 150 types known. Some types are considered high risk and some low risk with regards 

to likelihood of cancer development
3
. High risk HPVs can cause cancerous lesions, whereas low 

risk HPVs is associated with benign lesions
4
.  This relationship was first described by Dr Harold 

zurHausen and collaborators during the 1980s. This was the first time that HPV DNA was 

isolated and discovered in a cervical tumor biopsy
5
. It is estimated that about 99.7% of cervical 

cancer cases are HPV positive
6
. The majority of these cases are shown to be HPV16 (50-70%)

7
. 

More recent numbers have indicated a more exact number of 54.4% of cervical cancer cases are 

linked to HPV16
8
. HPV not only has a link to cervical cancer but it is estimated that 90% of 

anogenital cancers are HPV positive
8-9

. HPV is also associated with head and neck cancers and 

non-melanoma skin cancer
8-9

.  

1.2.PROTEINS EXPRESSED IN THE HPV GENOME 

Long control regions (LCR) in the HPV genome encode six proteins (E1, E2, E4, E5, E6, 

E7, L1 and L2), which are expressed either early or late in the infection. L1 and L2 are expressed 

later in the infection and are found within the upper layers of the infected epithelium
10

. The early 

proteins (E1, E2, E4, E5, E6, and E7) are found in the lower to mid epithelial layers
11

. E1 and E2 

are responsible for the initiation of viral replication and control gene expression
11

. E4 and E5 

proteins aid in genome amplification
11

. E6 and E7 are said to be oncoproteins; both play a role in 

cell immortalization
12

.  
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E7 is known for its interaction with retinoblastoma protein (pRb), which leads to the 

release of transcription factor E2F which causes entry into S phase of the cell cycle
13

. This will 

lead to increased cell proliferation
13

. E6 plays a critical role in cell immortalization by degrading 

tumor suppressing protein p53
14

.   

1.3.PROTEIN E6 PROTEIN INTERACTIONS LEADING TO CELL 

IMMORTALIZATION 

Protein E6 is known as an oncoprotein due to its role in cancer development. E6 is shown 

to lead to the ubiquitination of p53
15

. The process of ubiquitination requires a protein ligase to 

transfer the high-energy thioester bond to the protein in order to transfer ubiquitin
16

. This process 

is facilitated through the binding of E6 and E6 associated protein (E6AP) 
17

. This complex will 

work as an E3 ligase and will transfer the thioester bond to protein p53 leading to its 

ubiquitination (Figure 1)
17

. The presence of ubiquitin will signal the proteosomes to come and 

degrade the protein
16

. The presence of E6 can also supress p53 function in an E6AP independent 

manner. This is through its interaction with p300/CBP complex
18

. Protein p53 is a tumor 

suppressor, important in the prevention of cancer. It functions as the guardian of the cell
19

. 

Protein p53 keeps the cell cycle regulated and it is involved in DNA repair
19

. The levels of p53 

are regulated in the cell, and generally, p53 has a short half-life
20

. Levels of p53 are also shown 

to increase upon any detected DNA damage, which can lead to mutations
19

. p53 will activate cell 

cycle arrest in these situation leading to potential apoptosis
19

. Low levels of p53 have been 

documented in almost all carcinomas
19

. This is not a surprise as destruction of p53 increases 

cancer susceptibility.  In the absence of p53, cell division is no longer properly controlled and 

DNA repair mechanisms are depleted
19

.   
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Figure 1: Ubiquitination of p53 mediated through the presence of E6. Flow chart shows the 

process leading the degradation of p53 in a series of steps. Certain variants of E6 bind to E6AP 

in such a way to allow this process to occur. The majority of these E6 variants are expressed in 

HPV type 16.  

 

E6 is also shown to interact with other proteins such as MAGI-1
21

, MAGI-2, MAGI3, 

hScribble
22

, and hDIg
23

. These PDZ contain domain-containing proteins are responsible for cell 

signalling and cell polarity, leading to cellular transformation to a malignant phenotype
22

. The 

presence of E6 also upregulates hTERT expression, which leads to E6 induced telomerase 

activity
24

.  This increased telomerase activity will protect chromosomes from damage during cell 

division
25

.     

1.4.SPECIFIC E6 PROTEIN VARIANTS LEAD TO INCREASED CANCER 

SUSCEPTIBILITY 

Specific changes from the prototype E6 have been shown to increase the risk for the 

development of cancer
7
. Some high-risk E6 variants include: Q14H/H78Y/L83V and 

R10G/L83V 
7
.  Although all E6 proteins bind to E6AP it is believed that certain mutants bind in 

such a way to facilitate the interaction with p53
26

. Much of these variants of E6 are associated 

E6 E6 E6 + E6AP   E6 + E6AP   Ubiquitin ligase Ubiquitin ligase 

Transfer of 
thioester bond of 
Ubiquitin to p53   

Transfer of 
thioester bond of 
Ubiquitin to p53   

p53 degradation 
through 

proteosomes 

p53 degradation 
through 

proteosomes 
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with HPV16
7
. In addition,  recent studies have indicated that these high-risk variants of  E6 alone 

can lead to cell immortalization and increased susceptibility to cancer development
27

. This 

makes E6 an ideal biomarker for high-risk HPV.  This creates an excellent opportunity to find a 

molecular probe that is specific for HPV16 E6, in particular those variants associated with cancer 

development. Prior to looking at high-risk variants, methods will have to be employed on the 

prototype in order to obtain proof of concept. An E6-specific molecular probe could serve two 

purposes: it could be used as a tool for diagnostic imaging for early intervention, or it could be 

used as a molecular probe for biochemical assays involving E6 protein interactions.  

1.5.THE PROCESS OF DEVELOPING A MOLECULAR PROBE 

Molecular probes aid in the visualization, characterization, and measurement of 

biological processes
28

. A molecular probe can be defined as an agent that has the ability to 

characterize and quantify biological functions
29

. Molecular probes can be target specific or non- 

specific
30

. A specific probe is a probe that only binds to one particular biomarker
30

. Non-specific 

probes do not bind to any specific target or have any biochemical activity in-vivo
30

.  Instead, 

they make use of high capacity systems such as blood and kidneys to provide image contrast. 

Molecular imaging probes assist medical imaging techniques and may bind to a specific 

biomarker, usually a protein. Advantages associated with the use of molecular probes include 

improved prognosis and improved staging
31

. Improved staging is the ability to determine the 

stage of the specific disease. This leads to a more specific treatment regime. These advantages 

come from the probe’s ability to specifically identify the biomarker at an early stage of the 

disease
3
. In order to obtain a probe with such advantages many steps need to be taken. The 

characteristics required to develop a molecular imaging probe include: high binding affinity for 
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target, high specificity to target, high sensitivity, high contrast ratio, high stability in vivo, low 

immunogenicity and toxicity,  production and economic feasibility (Figure 2)
31

.   

 

Figure 2: Desired characteristics of molecular probe. A molecular probe candidate must be 

evaluated for these characteristics. If the molecule does not pass one of these requirements, 

modifications to its structure may be introduced or an entirely new molecule may have to be 

considered.  

 

In order to be marketed as a molecular probe, the compound must be shown to have high 

affinity for the target. This molecule must bind quickly to the target and be slow to unbind
31

. As 

it is to be used in diagnostic imaging it is critical that it accumulates in the target tissue. In order 

to acquire a well-defined image, non-specific binding must be avoided
31

. Additionally, off-target 

binding must be avoided in order to reduce false positive rates
31

. It is for these reasons that 

affinity and specificity are crucial in the process of molecular probe development. Once affinity 

and specificity have been assessed experimentally, the probe must be shown to have high 

sensitivity, meaning that a small amount of molecular probe is needed to produce an image
31

. 

Images obtained with the probe must have high contrast ratio, thus the signal to noise ratio must 
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be low
31

. Upon showing its potential to produce a high quality images, the probe must be shown 

to be stable in vivo. Due to the large amount of enzymes present in an organism, a probe could be 

easily degraded once placed in vivo. If the probe is easily degraded then it is not of much use
31

. 

Once all requirements have been met the compound can then be used as a molecular probe.  

1.6.PROJECT AIMS AND SCOPE 

The goal of this project is to identify and characterize molecular probe(s) for prototype 

HPV16 E6. In searching for a molecular probe, the requirements discussed earlier will be taken 

into consideration (Figure 2). For the scope of this thesis and the time frame allotted, we believe 

that we can identify probe candidates computationally, and evaluate both affinity and specificity 

to HPV16 E6 experimentally. Initial affinity to HPV16 E6 C-terminus, will be evaluated using 

computer software. Databases will be developed that contain compounds that are suitable for use 

as a molecular probe. Once docked these compounds will be further evaluated in order to 

determine, which compounds are worth testing experimentally.  

Upon finding probe candidates, experimental ligand binding assays will take place in 

order to further validate the affinity to target HPV16 E6. Once affinity has been evaluated, the 

probe candidate can be placed in the cell environment in order to test specificity to HPV16 E6.  
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Figure 3: Specific aims associated to the identification and characterization of potential 

molecular probes for HPV16 E6.   

 

Successfully achieving these aims will provide proof of concept for the development of a 

molecular imaging probe that is specific to those variants of HPV16 E6 shown to increase cancer 

susceptibility (Figure 3). Such probes will enable a specific test for high-risk HPV, thus 

facilitating diagnostics and early intervention in HPV-associated cancers.  

1.7.REFERENCES 

1. Fernandez, A. F.; Rosales, C.; Lopez-Nieva, P.; Graña, O.; Ballestar, E.; Ropero, S.; 

Espada, J.; Melo, S. A.; Lujambio, A.; Fraga, M. F.; Pino, I.; Javierre, B.; Carmona, F. J.; 

Acquadro, F.; Steenbergen, R. D. M.; Snijders, P. J. F.; Meijer, C. J.; Pineau, P.; Dejean, A.; 

Lloveras, B.; Capella, G.; Quer, J.; Buti, M.; Esteban, J.-I.; Allende, H.; Rodriguez-Frias, F.; 

Castellsague, X.; Minarovits, J.; Ponce, J.; Capello, D.; Gaidano, G.; Cigudosa, J. C.; Gomez-

Lopez, G.; Pisano, D. G.; Valencia, A.; Piris, M. A.; Bosch, F. X.; Cahir-McFarland, E.; Kieff, 

E.; Esteller, M., The dynamic DNA methylomes of double-stranded DNA viruses associated 

with human cancer. Genome Research 2009, 19 (3), 438-451. 

Identify molecular 
probe candidates for 

HPV16 E6  

Identify molecular 
probe candidates for 

HPV16 E6  

Determine if candidates 
bind experimentally to 
target; if yes, determine 

EC50 values  

Determine if candidates 
bind experimentally to 
target; if yes, determine 

EC50 values  

Determine if probe is 
cell-permeable, and if 

probe signal is 
proportional to E6 

concentration 

Determine if probe is 
cell-permeable, and if 

probe signal is 
proportional to E6 

concentration 

Identify other potential 
probe candidates for 

the N-terminus domain 

Identify other potential 
probe candidates for 

the N-terminus domain 



 

8 

2. http://pave.niaid.nih.gov/#home. 

3. Zehbe, I.; Tachezy, R.; Mytilineos, J.; Voglino, G.; Mikyškova, I.; Delius, H.; Marongiu, 

A.; Gissmann, L.; Wilander, E.; Tommasino, M., Human papillomavirus 16 E6 polymorphisms 

in cervical lesions from different European populations and their correlation with human 

leukocyte antigen class II haplotypes. International Journal of Cancer 2001, 94 (5), 711-716. 

4. Quint, W.; Jenkins, D.; Molijn, A.; Struijk, L.; van de Sandt, M.; Doorbar, J.; Mols, J.; 

Van Hoof, C.; Hardt, K.; Struyf, F.; Colau, B., One virus, one lesion—individual components of 

CIN lesions contain a specific HPV type. The Journal of Pathology 2012, 227 (1), 62-71. 

5. Dürst, M.; Gissmann, L.; Ikenberg, H.; zur Hausen, H., A papillomavirus DNA from a 

cervical carcinoma and its prevalence in cancer biopsy samples from different geographic 

regions. Proceedings of the National Academy of Sciences 1983, 80 (12), 3812-3815. 

6. Walboomers, J. M. M.; Jacobs, M. V.; Manos, M. M.; Bosch, F. X.; Kummer, J. A.; 

Shah, K. V.; Snijders, P. J. F.; Peto, J.; Meijer, C. J. L. M.; Muñoz, N., Human papillomavirus is 

a necessary cause of invasive cervical cancer worldwide. The Journal of Pathology 1999, 189 

(1), 12-19. 

7. Zehbe, I.; Richard, C.; DeCarlo, C. A.; Shai, A.; Lambert, P. F.; Lichtig, H.; Tommasino, 

M.; Sherman, L., Human papillomavirus 16 E6 variants differ in their dysregulation of human 

keratinocyte differentiation and apoptosis. Virology 2009, 383 (1), 69-77. 

8. Crow, J. M., HPV: The global burden. Nature 2012, 488 (7413), S2-S3. 

9. Forman, D.; de Martel, C.; Lacey, C. J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; 

Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; Franceschi, S., Global Burden of Human 

Papillomavirus and Related Diseases. Vaccine 2012, 30, F12-F23. 

10. Doorbar, J., The papillomavirus life cycle. Journal of clinical virology : the official 

publication of the Pan American Society for Clinical Virology 2005, 32, 7-15. 

11. Doorbar, J.; Quint, W.; Banks, L.; Bravo, I. G.; Stoler, M.; Broker, T. R.; Stanley, M. A., 

The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 2012, 30, F55-F70. 

12. Münger, K.; Phelps, W. C.; Bubb, V.; Howley, P. M.; Schlegel, R., The E6 and E7 genes 

of the human papillomavirus type 16 together are necessary and sufficient for transformation of 

primary human keratinocytes. Journal of Virology 1989, 63 (10), 4417-4421. 

http://pave.niaid.nih.gov/#home


 

9 

13. Chellappan, S.; Kraus, V. B.; Kroger, B.; Munger, K.; Howley, P. M.; Phelps, W. C.; 

Nevins, J. R., Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 

protein share the capacity to disrupt the interaction between transcription factor E2F and the 

retinoblastoma gene product. Proceedings of the National Academy of Sciences 1992, 89 (10), 

4549-4553. 

14. Kessis, T. D.; Slebos, R. J.; Nelson, W. G.; Kastan, M. B.; Plunkett, B. S.; Han, S. M.; 

Lorincz, A. T.; Hedrick, L.; Cho, K. R., Human papillomavirus 16 E6 expression disrupts the 

p53-mediated cellular response to DNA damage. Proceedings of the National Academy of 

Sciences 1993, 90 (9), 3988-3992. 

15. Zehbe, I.; Wilander, E.; Delius, H.; Tommasino, M., Human Papillomavirus 16 E6 

Variants Are More Prevalent in Invasive Cervical Carcinoma than the Prototype. Cancer 

Research 1998, 58 (4), 829-833. 

16. Lowe, E. L.; Doherty, T. M.; Karahashi, H.; Arditi, M., Review: Ubiquitination and de-

ubiquitination: role in regulation of signaling by Toll-like receptors. Journal of Endotoxin 

Research 2006, 12 (6), 337-345. 

17. Nakagawa, S.; Huibregtse, J. M., Human Scribble (Vartul) Is Targeted for Ubiquitin-

Mediated Degradation by the High-Risk Papillomavirus E6 Proteins and the E6AP Ubiquitin-

Protein Ligase. Molecular and Cellular Biology 2000, 20 (21), 8244-8253. 

18. Zimmermann, H.; Degenkolbe, R.; Bernard, H.-U.; O’Connor, M. J., The Human 

Papillomavirus Type 16 E6 Oncoprotein Can Down-Regulate p53 Activity by Targeting the 

Transcriptional Coactivator CBP/p300. Journal of Virology 1999, 73 (8), 6209-6219. 

19. Ryan, K. M.; Phillips, A. C.; Vousden, K. H., Regulation and function of the p53 tumor 

suppressor protein. Current Opinion in Cell Biology 2001, 13 (3), 332-337. 

20. Kastan, M. B.; Onyekwere, O.; Sidransky, D.; Vogelstein, B.; Craig, R. W., Participation 

of p53 Protein in the Cellular Response to DNA Damage. Cancer Research 1991, 51 (23 Part 1), 

6304-6311. 

21. Kranjec, C.; Banks, L., A Systematic Analysis of Human Papillomavirus (HPV) E6 PDZ 

Substrates Identifies MAGI-1 as a Major Target of HPV Type 16 (HPV-16) and HPV-18 Whose 

Loss Accompanies Disruption of Tight Junctions. Journal of Virology 2011, 85 (4), 1757-1764. 



 

10 

22. Massimi, P.; Gammoh, N.; Thomas, M.; Banks, L., HPV E6 specifically targets different 

cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-

mediated degradation. Oncogene 2004, 23 (49), 8033-8039. 

23. Grm, H. S.; Banks, L., Degradation of hDlg and MAGIs by human papillomavirus E6 is 

E6-AP-independent. Journal of General Virology 2004, 85 (10), 2815-2819. 

24. Veldman, T.; Horikawa, I.; Barrett, J. C.; Schlegel, R., Transcriptional Activation of the 

Telomerase hTERT Gene by Human Papillomavirus Type 16 E6 Oncoprotein. Journal of 

Virology 2001, 75 (9), 4467-4472. 

25. Veldman, T.; Liu, X. F.; Yuan, H.; Schlegel, R., Human papillomavirus E6 and Myc 

proteins associate in vivo and bind to and cooperatively activate the telomerase reverse 

transcriptase promoter. Proceedings of the National Academy of Sciences of the United States of 

America 2003, 100 (14), 8211-8216. 

26. Thomas, M.; Tomaić, V.; Pim, D.; Myers, M. P.; Tommasino, M.; Banks, L., Interactions 

between E6AP and E6 proteins from alpha and beta HPV types. Virology 2013, 435 (2), 357-

362. 

27. Niccoli, S.; Abraham, S.; Richard, C.; Zehbe, I., The Asian-American E6 Variant Protein 

of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, 

and Migration of Primary Human Foreskin Keratinocytes. Journal of Virology 2012, 86 (22), 

12384-12396. 

28. Weissleder, R.; Mahmood, U., Molecular Imaging1. Radiology 2001, 219 (2), 316-333. 

29. Massoud, T. F.; Gambhir, S. S., Molecular imaging in living subjects: seeing 

fundamental biological processes in a new light. Genes & Development 2003, 17 (5), 545-580. 

30. Chopra, A.; Shan, L.; Eckelman, W. C.; Leung, K.; Latterner, M.; Bryant, S.; Menkens, 

A., Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress. Mol 

Imaging Biol 2012, 14 (1), 4-13. 

31. Chen, K. C. a. X., Design and Development of Molecular Imaging Probes Current Topics 

in Medicinal Chemistry 2010 10 (12), 1227-1236. 

 

 



 

11 

Chapter 2.Background and Significance 

 

2.1.CURRENT CLINICAL PROCEDURES 

Human Papillomavirus (HPV) and its association with various cancers has become a 

large concern within health care. HPV is now one of  the most common sexually transmitted 

disease
1
. HPV is divided into several types, with HPV 16 and 18 being the highest risk for cancer 

development
2
. It is estimated that 68% of cervical cancer cases have HPV16 of HPV18 

genotype
3
. Due to this association specific screening methods for these high-risk HPV types need 

to be employed. Current screening methods, such as pap smears and cytological screening, have 

resulted in decreased incidence of invasive cervical cancer
4
. However, HPV remains a major 

burden on health care systems around the world
4
.  

Current burdens are over or under treatment of women with HPV infection
4
. This is due 

in large part to the lack of specificity of current screening methods
4
. The non-specific nature of 

screening leads to over/under treatment
4
. This issue could be quickly fixed with the use of a 

specific biomarker to properly evaluate the high-risk nature of the virus in a clinical setting. This 

biomarker could potentially reduce much of the current burden to the health care community. 

Current methods used in HPV detection include: 1) Woman with cytological 

abnormalities are brought in for additional screening  2) follow-up appointment for women with 

abnormal screening results 3) Cervical Intraepithelial Neoplasia (CIN)  is treated following a risk 

assessment; 4) HPV DNA testing is conducted, usually in combination with a Pap smear, to look 

for cervical-cancer precursors; 5) Information on the persistence of specific HPV type is 

acquired (Figure 4)
5
.  
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Figure 4: Flow chart displaying the current clinical methods used in HPV detection. This is the 

rational used to detect HPV. Although these tests have alleviated some of the burdens that HPV 

creates, more specific tests are needed that consider the proteome as opposed to the genome.  

 

 In addition to these methods vaccines are available for HPV infection. There is a bivalent 

vaccine (type 16 and 18) and a quadrivalent (type 6, 11, 16, and 18)
6
. The vaccination against 

type 16 and 18 is thought to be able to lower the incidence of cervical cancer by more than two 

thirds
5
. Broad spectrum HPV vaccines are currently in development

5
. However, such vaccines 

are only available in certain parts of the world. This creates a need for highly automated, 

inexpensive screening method that can be used in all parts of the world.   

2.2.MOLECULAR GENOTYPING FOR HIGH RISK HPV TYPES 

The current methods for HPV detection rely heavily on molecular testing in order to 

identify the type of HPV present in the sample
5
. Current molecular methods for genotyping are 

presented in Table 1
5
.  
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 Table 1: Molecular methods used for HPV genotyping to date 

Nucleic Acid 

Hybridization Assays 

Signal Amplification 

Assays 

Nucleic Acids 

Amplification Assays 

Southern blot Cervista HPV Microarray 

In situ hybridization Hybrid capture 2 (he2) PapilloCheck 

Dot blot hybridization  PCR, PRC RFLP 

  Real-time PCR 

  Abboott Real-time 

  Cobas 4800 HPV 

  Genome sequencing 

  CLART HPV-2 

  Inno-LiPA 

  The linear array 

  Clinical Arrays HPV 

  MCHA 

  PreTeck proofer 

  APTIMA HPV assay 

 

All of these assays have advantages and disadvantages associated with them. The biggest 

disadvantage of these methods is the lack of automation and the price
5
. In an attempt to 

overcome these disadvantage a study was conducted to genotype HPV infection using PCR from 

urine samples
7
. This paper was able to conclude by comparing results collected from cervical 

brush technique that HPV DNA can be accurately detected in urine samples
7
. These positive 

samples were then genotypes using RFLP typing
7
. This leads to another disadvantage of such 

molecular techniques. Genotyping a HPV infection, however important, is not always going to 
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be indicative of a cancer-causing HPV infection
5
. This is the advantage of using specific disease 

biomarkers such as HPV proteins E6 and E7
8
. These proteins are important in specific detection 

of HPV because certain variants of these proteins are associated with higher cancer development 

risk
8
. Even if molecular tests are done and the HPV infection is declared type 16 it does not 

mean that these oncoprotein variants are present. Research has shown that certain variants of E6 

can cause cell immortalization independent of E7
9
. This is due to E6s many interactions with 

other proteins including E6AP
10

.  Although all E6 proteins bind protein E6AP, certain variants 

are shown to interact in such a way to make this possible
10

. It is due to this complexity that 

specific testing for E6 needs to be implemented in current clinical practise.  

2.3.HPV16 E6 DETECTION  

Since E6 has been well defined as a biomarker for high-risk HPV
9
, a lot of work is being 

done in order to detect this protein. This is because of its major role in cell immortalization
9
. One 

way by which this protein can be detected is through the use of antibodies. However, since these 

antibodies are not cell permeable techniques such as High Intensity Focused Ultrasound (HIFU ) 

need to be employed for intercellular screening
11

. Studies conducted showed proof of concept 

using a combination of HIFU and microbubbles for the delivery of antibodies
11

. The antibodies 

used showed some therapeutic effects
11

. This suggests the potential of using antibodies for 

intercellular delivery using such methods. Antibodies can also be delivered inside the cell, using 

transfection reagents; however these reagents are toxic
11

. For this reason these reagents are only 

useful for in-vitro work. Being able to deliver an antibody to E6 can potentially be difficult as E6 

mainly resides in the nucleus
12

. Using a small organic molecule would be very beneficial for 

specific HPV16 E6 detection, even though small molecule interaction with proteins can be 

complex
13

. However, small organic molecules are more likely to be cell permeable then larger 
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molecules such as antibodies. These interactions are complex due to the high number of 

conformations that the molecule and protein can take
13

. As a result when selecting a small 

molecule as a potential ligand, conformational changes of the ligand need to be taken into 

account in order to make sure the binding event is properly scored.    

An additional monoclonal antibody method involving test strips is also available and 

recently described. This is an in vitro method for specific E6 detection and  has been shown to 

identify high risk HPV with 95% confidence
14

. Two monoclonal antibodies are used one specific 

for type 16 and the other for type 18 and 45
14

. This test gives great qualitative measure as it is 

shown to be able to detect high risk E6 variants.  

2.4.ANTIBODIES AGAINST E6 

 Monoclonal antibodies are available for the N-terminus of E6. Monoclonal Antibody 6F4 

was first developed by Giovane and colleagues
15

. It is a mouse monoclonal antibody specific to 

HPV16 E6. The epitope region was described by Mason and colleagues in 2003 is as following:   

F/Y  X  X  P/L  X  X  R (Figure 5)
16

.  

 

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV

YRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPE

EKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL   

Figure 5: Amino acid sequence of E6 prototype highlighting the epitope (yellow) recognized by 

antibody 6F4. This sequence was taken from GenBank (GenBank #AAA46939.1).  

 

2.5.SMALL ORGANIC MOLECULES THAT BIND SPECIFICALLY TO E6 

Little success has been made in the attempt to find a small organic molecule that binds 

specifically to E6. Some attempts have been made using zinc-finger ejecting molecules
17

.  A 
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pharmacophore model was developed in order to target the zinc-finger domain to inhibit the 

binding of E6AP
17

. The reason for targeting E6AP binding is that  E6 will not interact with p53 

unless bound to E6AP
17

.Through screening two databases, one from the National Cancer 

Institute (NCI) and that other from Sigma Aldrich
17

, 10 molecules were selected for testing and 

IC50 values were experimentally determined (Table 2)
17

.  

Table 2: Zinc-finger ejecting molecules tested experimentally. Two data bases were screened: 

one from the national cancer institute and the other was rare compounds available through Sigma 

Aldrich. A pharmacophore model was used in order to find compounds that would bind to a 

particular region in order to inhibit binding to E6AP. It was determined that none of the 

compounds generated an IC50 that was low enough to be used as a therapeutic drug.  

 

Compound name E6AP binding IC50 (µM) 

National Cancer Institute (NCI) 83143 29 

NCI 117907 29 

NCI 135098 22 

NCI 216029 12 

Sigma Aldrich (SA) s32701 52 

SA 207721 21 

SA r218634 27 

SA r225975 12 

SA r278319 17 

SA s204102 11 

 

Also when using controls for non-specific inhibition it was determined that the inhibition may 

have been non-specific
17

. Cell permeability tests were also conducted with NCI 117907, which 

was intrinsically fluorescent
17

. This compound showed little to no uptake at 100µM
17

. This result 

along with the non-specific nature of the binding interactions led to the conclusion that the 
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pharmacophore model failed. It is suggested that a better model could be made once a series of 

known compounds that bind to E6 are discovered
17

.  

To date there is no small organic molecule that is known to bind to HPV16 E6 with 

enough affinity to be marketed as a molecular probe. This makes our work extremely novel in 

the field of HPV detection.      

2.6.BIOCHEMICAL ASSAY FOR HPV16 E6 PROTEIN-PROTEIN 

INTERACTIONS 

 Currently, there is not a biochemical assay available for looking at HPV16 E6 protein-

protein interactions outside of the cell environment. Available assays tracking E6 protein-protein 

interactions take place in the cell environment. The most common is the Glutathione-S-

transferase (GST) pull-down assay. In this assay, a protein is fused to GST and expressed in E-

coli (bait protein) after which it is bound to glutathione (GSH)- coupled particles
18

. This will 

cause affinity purification of any proteins (prey) it comes into contact with
18

. This assay is 

deemed accurate
18

; however testing protein-protein interactions outside of the cell environment 

still serves an important purpose. Due to the massive amount of interactions inside the cell 

environment, testing protein-protein interactions outside of the cell environment can provide 

valuable information without confounding factors that would be present in the cell environment. 

Also, as the list of E6 protein-protein interactions continues to grow, having a biochemical assay 

to probe E6 interactions with other proteins will enable better understanding of HPV infection’s 

role in cancer.   

2.7.HPV PROTEIN E6 AND AVAILABLE STRUCTURES 

 Protein E6 is a small protein that is only composed of 151 amino acids (Figure 7)
19

. E6 

contains two distinct domain an N-terminus and a C-terminus domain, which are both 
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approximately 75 amino acids in length
19

. Both domains contain a zinc binding domain
17

. 

Finding a stable folded form of this protein has been a real challenge and has limited full 

understanding of the full-length E6 structure
19

. This small protein interacts with many proteins in 

the cell, with the most well-known partner being E6AP. The E6-E6AP complex is responsible 

for the ubiquitination of tumor suppressor p53
19

. The structure of E6 only contains one 

tryptophan making suitable for intrinsic tryptophan fluorescence experiments (Figure 6).   

 

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV

YRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPE

EKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL 

Figure 6: Amino acid sequence of E6 prototype highlighting tryptophan. This sequence was 

taken for GenBank (GenBank #AAA46939.1). E6 only contains one tryptophan making it 

suitable for intrinsic tryptophan fluorescence ligand binding experiments.  

 

Various experimentally determined structures for E6 are currently available through the PDB, 

which creates an excellent starting point for molecular docking.    

 At the beginning of this project, structural information for HPV16 E6 was limited as 

there was only one human HPV16 E6 structure available. This structure represented the C-

terminus of HPV16 E6 (PDB 2FK4)
19

(Figure 7).  
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Figure 7: Structure of C-terminus HPV16 E6 (2FK4)
19

. 

 

This structure was solved using Nuclear Magnetic Resonance (NMR). This structure had 75 

amino acids (Figure 8)
19

 and was highly useful for our search for small organic molecules that 

bind to E6. In these structures some cysteine’s were mutated to serine in order to obtain better 

protein folding for experimental determination
19

.  

 

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV

YRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPE

EKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL 

Figure 8: Amino acid sequence of E6 prototype highlighting the sequence corresponding to the 

structure with PDB code 2FK4 (red). This sequence was taken from GenBank (GenBank 

#AAA46939.1). The yellow represents mutations from the original sequence primarily cysteine 

is mutated to serine for protein folding for experimental determination.   

 

 In 2012, the same group published the 3D structure of the N-terminal domain of protein 

HPV16 E6 (PDB 2LJX)
20

(Figure 9).  
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Figure 9: Structure of N-terminus HPV16 E6 (2LJX)
20

.  

 

This structure contains 84 amino acid residues and has some overlap with that of the C terminus 

domain (PDB 2FK4) published years prior (Figure 10)
20

.  

 

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV

YRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPE

EKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL 

Figure 10: Amino acid sequence of E6 prototype highlighting PDB 2LJX (red). This sequence 

was taken for GenBank (GenBank #AAA46939.1). The yellow represents mutations from the 

original sequence primarily cysteine is mutated to serine for protein folding for experimental 

determination. 

 

This structure was also resolved by NMR. This structure combined with the previous 

structure (2FK4) represents a complete structure for E6. However, we proceeded to 

computationally screen each structure individually due to insufficient information to assemble 

both structural domains together. Putting the full structure together computationally would be 

difficult and time-consuming, and the resulting structure may have lacked accuracy.   
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Just this year (2013) for the first time the full structure of HPV16 E6 was published in 

Science by the same group once again (PDB 4GIZ)
21

 (Figure 11).  

 

Figure 11: Full length HPV16 E6 structure (PDB 4GIZ)
21

. 

 

This structure was experimentally determined using X-ray crystallography
21

. This structure was 

solved with bound peptides (LXXLL) isolated for Paxcillin and E6AP
21

. This structure contains 

135 amino acids of the total 151 (Figure 12).  

 

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV

YRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPE

EKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL 

Figure 12: Amino acid sequence of E6 prototype highlighting PDB 4GIZ (red). This sequence 

was taken for GenBank (GenBank #AAA46939.1). The yellow represents mutations from the 

original sequence primarily cysteine is mutated to serine for protein folding for experimental 

determination. 

 

A hydrophobic pocket is formed in the structure between the two zinc domains that are 

connected by a linker helix
21

. This pocket aids in the binding of proteins that contain the 
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(LXXLL) binding motif
21

. This was a big step forward in understanding E6 structurally and its 

interactions with other proteins.  

2.8.STATEMENT OF SIGNIFICANCE 

 Finding a molecular probe of HPV16 E6 that can be used for either diagnostic imaging or 

in a biochemical assay will be very useful in the quest for a further understanding its role in HPV 

infection and HPV-related cancers. An E6-specific molecular probe suitable for medical imaging 

may also lay the foundation for new preventive screening and diagnostic tools, which could one 

day save the lives of many and potentially alleviate some of the burden on our health care 

system.  

2.9.REFERENCES 

1. Stanley, M., Pathology and epidemiology of HPV infection in females. Gynecologic 

Oncology 2010, 117 (2, Supplement), S5-S10. 

2. Khan, S.; Jaffer, N. N.; Khan, M. N.; Rai, M. A.; Shafiq, M.; Ali, A.; Pervez, S.; Khan, 

N.; Aziz, A.; Ali, S. H., Human papillomavirus subtype 16 is common in Pakistani women with 

cervical carcinoma. International Journal of Infectious Diseases 2007, 11 (4), 313-317. 

3. Muñoz, N., Human papillomavirus and cancer: the epidemiological evidence. Journal of 

Clinical Virology 2000, 19 (1–2), 1-5. 

4. Chow, L. T.; Broker, T. R.; Steinberg, B. M., The natural history of human 

papillomavirus infections of the mucosal epithelia. APMIS 2010, 118 (6-7), 422-449. 

5. Abreu, A. L.; Souza, R.; Gimenes, F.; Consolaro, M. E., A review of methods for detect 

human Papillomavirus infection. Virology Journal 2012, 9 (1), 262. 

6. Garland, S. M.; Hernandez-Avila, M.; Wheeler, C. M.; Perez, G.; Harper, D. M.; 

Leodolter, S.; Tang, G. W. K.; Ferris, D. G.; Steben, M.; Bryan, J.; Taddeo, F. J.; Railkar, R.; 

Esser, M. T.; Sings, H. L.; Nelson, M.; Boslego, J.; Sattler, C.; Barr, E.; Koutsky, L. A., 

Quadrivalent Vaccine against Human Papillomavirus to Prevent Anogenital Diseases. New 

England Journal of Medicine 2007, 356 (19), 1928-1943. 



 

23 

7. Tanzi, E.; Bianchi, S.; Fasolo, M. M.; Frati, E. R.; Mazza, F.; Martinelli, M.; Colzani, D.; 

Beretta, R.; Zappa, A.; Orlando, G., High performance of a new PCR-based urine assay for 

HPV-DNA detection and genotyping. Journal of Medical Virology 2013, 85 (1), 91-98. 

8. Walboomers, J. M. M.; Jacobs, M. V.; Manos, M. M.; Bosch, F. X.; Kummer, J. A.; 

Shah, K. V.; Snijders, P. J. F.; Peto, J.; Meijer, C. J. L. M.; Muñoz, N., Human papillomavirus is 

a necessary cause of invasive cervical cancer worldwide. The Journal of Pathology 1999, 189 

(1), 12-19. 

9. Niccoli, S.; Abraham, S.; Richard, C.; Zehbe, I., The Asian-American E6 Variant Protein 

of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, 

and Migration of Primary Human Foreskin Keratinocytes. Journal of Virology 2012, 86 (22), 

12384-12396. 

10. Thomas, M.; Tomaić, V.; Pim, D.; Myers, M. P.; Tommasino, M.; Banks, L., Interactions 

between E6AP and E6 proteins from alpha and beta HPV types. Virology 2013, 435 (2), 357-

362. 

11. Togtema, M.; Pichardo, S.; Jackson, R.; Lambert, P. F.; Curiel, L.; Zehbe, I., 

Sonoporation Delivery of Monoclonal Antibodies against Human Papillomavirus 16 E6 Restores 

p53 Expression in Transformed Cervical Keratinocytes. PLoS ONE 2012, 7 (11), e50730. 

12. Jackson, R.; Togtema, M.; Zehbe, I., Subcellular localization and quantitation of the 

human papillomavirus type 16 E6 oncoprotein through immunocytochemistry detection. 

Virology 2013, 435 (2), 425-432. 

13. Froloff, N.; Windemuth, A.; Honig, B., On the calculation of binding free energies using 

continuum methods: Application to MHC class I protein-peptide interactions. Protein Science 

1997, 6 (6), 1293-1301. 

14. Schweizer, J.; Lu, P. S.; Mahoney, C. W.; Berard-Bergery, M.; Ho, M.; Ramasamy, V.; 

Silver, J. E.; Bisht, A.; Labiad, Y.; Peck, R. B.; Lim, J.; Jeronimo, J.; Howard, R.; Gravitt, P. E.; 

Castle, P. E., Feasibility Study of a Human Papillomavirus E6 Oncoprotein Test for Diagnosis of 

Cervical Precancer and Cancer. Journal of Clinical Microbiology 2010, 48 (12), 4646-4648. 

15. Giovane, C.; Trave, G.; Briones, A.; Lutz, Y.; Wasylyk, B.; Weiss, E., Targetting of the 

N-terminal domain of the human papillomavirus type 16 E6 oncoprotein with monomeric ScFvs 

blocks the E6-mediated degradation of cellular p53. Journal of Molecular Recognition 1999, 12 

(2), 141-152. 



 

24 

16. Masson, M.; Hindelang, C.; Sibler, A. P.; Schwalbach, G.; Trave, G.; Weiss, E., 

Preferential nuclear localization of the human papillomavirus type 16 E6 oncoprotein in cervical 

carcinoma cells. Journal of General Virology 2003, 84, 2099-2104. 

17. Baleja, J. D.; Cherry, J. J.; Liu, Z.; Gao, H.; Nicklaus, M. C.; Voigt, J. H.; Chen, J. J.; 

Androphy, E. J., Identification of inhibitors to papillomavirus type 16 E6 protein based on three-

dimensional structures of interacting proteins. Antiviral Research 2006, 72 (1), 49-59. 

18. Detection of protein-protein interactions using the GST fusion protein pull-down 

technique. Nat Meth 2004, 1 (3), 275-276. 

19. Nominé, Y.; Masson, M.; Charbonnier, S.; Zanier, K.; Ristriani, T.; Deryckère, F.; Sibler, 

A.-P.; Desplancq, D.; Atkinson, R. A.; Weiss, E.; Orfanoudakis, G.; Kieffer, B.; Travé, G., 

Structural and Functional Analysis of E6 Oncoprotein: Insights in the Molecular Pathways of 

Human Papillomavirus-Mediated Pathogenesis. Molecular Cell 2006, 21 (5), 665-678. 

20. Zanier, K.; ould M'hamed ould Sidi, A.; Boulade-Ladame, C.; Rybin, V.; Chappelle, A.; 

Atkinson, A.; Kieffer, B.; Travé, G., Solution Structure Analysis of the HPV16 E6 Oncoprotein 

Reveals a Self-Association Mechanism Required for E6-Mediated Degradation of p53. Structure 

2012, 20 (4), 604-617. 

21. Zanier, K.; Charbonnier, S.; Sidi, A. O. M. h. O.; McEwen, A. G.; Ferrario, M. G.; 

Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K. O.; Ansari, T.; Muller, I.; Stote, R. 

H.; Cavarelli, J.; Vande Pol, S.; Travé, G., Structural Basis for Hijacking of Cellular LxxLL 

Motifs by Papillomavirus E6 Oncoproteins. Science 2013, 339 (6120), 694-698. 

 

 

  



 

25 

Chapter 3.Methodology and Rational 

3.1.COMPUTATIONAL APPROACHES 

3.1.1.Molecular Docking 

 Molecular docking involves virtually placing a molecule within a protein binding site, 

using computer software
1
. The complexity of the conformational degrees of freedom of both the 

protein and ligand are taken into account
1
. It is critical that these conformations are taken into 

consideration so that the conformation used for scoring is biologically significant
1
. It is important 

that the conformation selected is similar to the conformation in-vivo. The main algorithms 

available for molecular docking can be classified into three approaches: systematic, stochastic, 

and simulation-based methods
2
.   

Systematic approach provides a complete coverage of all reasonable conformations
2
. 

Such an approach is suitable for molecular fragments. Even small molecules have too high a 

number of conformation making this method impractical
2
.  

Stochastic approach is subdivided into two techniques Monte Carlo and Genetic Search 

algorithms. Monte Carlo will generate a random conformation, which is scored, then a series of 

additional random conformations are generated and scored
2
. These conformations are compared 

to the original conformation. Genetic Search algorithms attempt to simulate the random events 

that take place during gene replication in order to generate various conformations
2
.       

Simulation-based methods are molecular dynamics simulations in which a molecular 

system is observed while its energy varies over time in order to observe all theoretical 

conformational states
2
. Such methods can take a long time in order to produce a good sampling 

of conformational states. Such methods are only useful when necessary computational resources 

are available
2
.  
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3.1.2.Virtual Ligand Screening (VLS) 

Virtual ligand screening consists of screening large libraries of chemical compounds 

using computational methods in order to identify candidates with probable biological activity or 

desired properties. Two major subtypes of VLS include descriptor based methods and structure 

based methods. In descriptor based methods the screening of compounds isbased on structural 

features that are shared amongst known ligands. Examples of this approach include similarity 

and substructure matching
3
, pharmacophore matching

4
, and 3D shape matching

5
. Structural 

based methods are those that use a known 3D structure of the target protein, and the affinity of a 

ligand for its target is evaluated based on how well the ligand is bound to the binding site of the 

protein target
6
. Our particular area of interest is in structural based methods as E6 has no known 

ligands at this point and attempts using pharmacophore modeling or descriptor based approaches 

have been unsuccessful and have demonstrated a need for a known ligand database for E6
7
.  

3.1.3.HierVLS and Scoring Functions 

Hierarchical Virtual Ligand Screening (HierVLS) is a method that uses molecular 

docking to screen large libraries of chemical compounds against proteins. HierVLS will dock a 

large number of conformations of a ligand to a protein which is kept at a fixed conformation 

until the last step in procedure, when the protein is allowed to relax to accommodate the bound 

ligand
8
. This method saves the most expensive computational procedures for the most promising 

conformations
8
. The docked ligands are scored using force fields

8
. Force field based scoring 

functions are commonly used for the estimation of potential energy of protein-ligand 

interactions
9
. These functions are based on principles of classical mechanics, and provide 

accurate potential energy estimates
10

. Force fields describe intramolecular and intermolecular 
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forces as a summation of bonded atoms and non-bonded atoms (Epotential=EBonded+ENon-Bonded)
10

. 

Drieding is the force field used in HierVLS
10

.  

3.1.3. a)Steps in HierVLS 

The first level is level 0: Coarse Grain Conformation Search using  Dock 4.0 software 

package
8
. A scoring function alone with Gasteiger charges

11
 is used to obtain a predefined 

number of protein-bound conformations per ligand in a ligand library
8
. In this level multiple 

conformations of the ligand are docked to the protein in different orientations
8
. To move to level 

1, a docked conformation must pass a user-defined buried surface cut off. This buried surface 

filter is used to eliminate those conformers that do not have the minimum specified amount of 

surface buried
8
. In order to pass through this filter the ligand must be buried at least 70% in the 

field of the protein or otherwise specified. Conformers that meet this requirement will be carried 

on to the next stage.  In Level 1 energy minimization takes place on all conformations generated 

using Drieding
10

 force field
8
. Out of all the conformations energy-minimized in level 1, the top 3 

conformations with the lowest energy will be selected to move to Level 2, which is an all-atoms 

energy minimization
8
. The best (lowest) docked conformer by energy for each ligand is selected 

and used for ligand ranking
8
. The binding energies used for ligand ranking take into account the 

solvation energies associated to the free protein, free ligand, and bound complex. Solvation 

energies are calculated using an implicit solvation model, which allows us to account for solvent 

effects without the explicit inclusion of water molecules
8
. The implicit solvation model used in 

this step is Analytical Volume Generalized Borne (AVGB)
8
. The binding energies are calculated 

as:  

BindE = E (solvated complex)- E (solvated free protein) – E (solvated free ligand)
8
.   
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Through taking the differences, as shown in the equation above, binding energy (BindE) 

between ligand and protein is estimated
8
 (Figure 13). VLS is an effective tool and useful for the 

discovery of a molecular probe, as it is both fast and cost effective.  Computational screening is 

expected to provide a ranked list of potential molecular probes for prototype E6. The HierVLS 

method has been shown to be an effective virtual ligand screening method in several studies
12

.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Steps of HierVLS. The best bound conformations are submitted to increasingly 

demanding computational steps, with the most demanding steps reserved for most promising 

conformations. 

 

3.2.EXPERIMENTAL APPROACHES 

3.2.1.Overview  

Experimental ligand binding assays were selected carefully in order to properly 

characterize binding affinity of a molecule keeping in mind the hope of using the molecule as 

either a diagnostic imaging agent or tool for biochemical assays. Experimental approaches have 

been selected in order to not only demonstrate binding but also show that the binding is specific 

as opposed to non-specific. This was be done by demonstrating dose-dependence. Binding assay 
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will either use the protein (tryptophan fluorescence) or the ligand (fluorescence polarization) as 

source of signal. 

3.2.2.Tryptophan Fluorescence 

Since molecules do not have to be fluorescent to be tested in tryptophan fluorescence, 

this method allows us to test affinity without conjugating the molecules to a fluorescent tag, 

which can negatively impact binding affinity. Tryptophan fluorescence is a biochemical assay 

that takes advantage of the indolechromophore naturally present in tryptophan
13

. Tryptophan has 

an observable intrinsic fluorescence that is sensitive to changes in its environment caused by 

conformational changes that occur upon ligand binding
13

. This intrinsic fluorescence is generally 

observed at an excitation wavelength of 288nm and an emission wavelength of 350nm
13

. 

Tryptophan is a rare amino acid in proteins, and is generally only seen once in every polypeptide 

chain
13

. Due to the rareness of tryptophan and its sensitivity to environment, Trp fluorescence is 

an ideal model for tracking conformational change. Changes shown in fluorescence can indicate 

a change in environment of the tryptophan due to ligand binding
13

. This method has been shown 

useful in showing affinity of potential drugs
14

. E6 only contains one tryptophan making this 

method adequate for probing ligand binding (Figure 6). 

This assay will be used to calculate the change in intrinsic tryptophan fluorescence of top 

hit compounds obtained through HierVLS. In all experiments the E6 protein concentration will 

be held constant. Wells and controls are made to represent each ligand on its own at each 

concentration used. This is done in order to make sure that the fluorescence from the background 

is omitted when calculating the percentage change. Solvent controls were also present in later 

experiments, as different solvents will impact the environment of tryptophan differently. Curves 

were taken using and excitation wavelength of 288nm and an emission wavelength of 350nm. 
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Fluorescence intensity values were then manipulated to determine percentage change. A change 

in intrinsic tryptophan fluorescence that is greater than 30% is indicative of a binding event. This 

binding event will be further tested using fluorescence polarization.  

3.2.3.Fluorescence Polarization 

In fluorescence polarization, the fluorescent ligand is excited with polarized light
15

. An 

emission filter is then used to measure the fluorescence intensity emitted by the ligand in both 

the parallel and perpendicular directions
15

. When the ligand is stationary, it is not able to rotate 

or tumble, and the fluorescence emitted is polarized. Thus, the parallel intensity will be greater 

than the perpendicular which results in a higher polarization value
15

. That is the case when the 

ligand is bound to the protein target. When the fluorescent molecule is unbound, the fluorescence 

emitted is depolarized because the ligand is free to rotate. In this case, the parallel and 

perpendicular intensities should be close to equal, resulting in a low polarization value
15

. Thus 

the value of polarization of a system is proportional to the number of occupied binding sites.  

Fluorescence polarization is generally used as a ligand binding assay
16

. This is because of 

the positive correlation between it and the number of occupied binding sites
15

. Therefore a higher 

polarization values means more ligand is bound. This method has a few strong advantages, 

which include high sensitivity, highly reproducible, and its simple mix and read format
15

. Due to 

the dose relationship of fluorescence polarization and these advantages, this method is an ideal 

choice for obtaining a dose-response curve with a fluorescence-tagged lead or an intrinsically 

fluorescent compound. From this method we hope to obtain an accurate EC50 that is in the mid 

or lower micro-molar range to show necessary affinity for probe development. This was shown 

in the recent study where paclitaxel was identified as an inhibitor of botulism neurotoxin A, 

further validating our rationale
12d

.  
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3.2.4.Dose-Response Curves and Curve Fitting 

 A dose response curve is used to track the response proportional to the concentration of a 

stressor
17

. In the case of probe/ drug development this stressor is a molecule binding to its target 

usually a protein. These curves are used for the visualization and calculation of binding constants 

such as EC50
18

. When building such a curve proper fitting methods need to be employed in order 

to accurately determine these constants.  

When fitting a dose-response curve it is important that the properties of the hill slope are 

properly evaluated. The hill equation is traditionally a three parameter equation that shows a 

non-linear relationship between x (independent) and y (dependent) variables
19

. However, an 

additional parameter has been added that accounts for the baseline response giving the equation 

four parameters
19

. The hill equation is used for the fit of experimental data from physiochemical 

reactions
19

. It is particularly useful in pharmacology demonstrating dose effects, based on drug 

concentrations
19

.  

The hill equation contains a coefficient known as the hill coefficient. The hill coefficient 

represents cooperative binding
20

. Cooperative binding means that the binding affinity to the 

protein by the ligand is increased upon ligand binding
20

. This binding could even take place at 

other binding sites. This is represented by a hill slope or hill coefficient greater than 1. A hill 

slope that is less than one indicates negative cooperative binding, meaning once the ligand is 

bound its affinity to the protein is decreased
20

. If it is equal to one then the binding is completely 

independent of other binding events
20

.  

 Prism Graphpad (http://www.graphpad.com/scientific-software/prism/) is a program that 

has several curve fitting functions, being widely used in dose-response curve fitting
21

. This 

program contains specific functions used for fitting a dose-response curve. Since we do not want 
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to assume that binding is not co-operative, the four parameter equation was used: Y=Bottom + 

(Top-Bottom)/(1+10^((LogEC50-X)*HillSlope)) was used
21

. In this fitting, the hill slope is not 

assumed to be one. Since the binding of E6 is not understood at an experimental level, 

independent binding was not assumed.  

3.3.CELL BASED METHODS 

      Cell permeability and viability was tested tested for promising compounds from ligand 

binding experiments. The main purpose of these assays is to demonstrate cell permeability and 

specificity within the cell environment. This was conducted using one of two methods. The first 

choice method is to use a microscope capable of inducing and detecting fluorescence. This will 

provide visualization of a binding event using photographs. This method and the other method 

will require the molecule to be labeled with a dye or be intrinsically fluorescent, however 

databases will be created that contain molecules that are suitable for fluorophore attachment. 

Prior to using the microscope cells, were incubated with a predefined concentration of compound 

for a fixed amount of time. These time points vary from one hour of incubation to 24 hours in 

order to get an idea of ligand uptake over time. After the various time points are complete, cells 

were placed under a microscope that induces fluorescence of the molecule and detect it. If the 

molecule has made it successfully through the cell membrane then it should be seen 

accumulating within the cell. Each well containing the drug has a corresponding control well 

containing all ingredients, except the compound, for proper comparison. If proper fluorescence 

filters are not available that match the excitation and emission wavelengths of the promising 

compounds, then an alternative method can be employed.  

The second method uses fluorescence reads from the compound being tested using a 

microplate reader. Wells that contain potential probe were compared to control wells that contain 
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no potential probe. This was carried out by incubating cells with the compound being tested at 

two concentrations for various time lengths, after which cells will by lysed. The lysate was then 

filtered and fluorescence measurements was then taken from each sample and compared to a 

control that contains no compound.  

In order to evaluate whether the compound targets E6 specifically, obtain proper cell 

lines need to be selected. CaSki, SiHa, and C33A cells were used in order to test cell viability, 

permeability and E6 dependency of promising compounds. CaSki contains 200-300 copies of the 

gene coding for E6
22

, whereas SiHa only contains 1-2 copies
23

. C33A cells are cervical cancer 

cells, however they contains zero copies of E6, making them an ideal negative control
24

. Due to 

the varying number of copies of E6 gene in each cell type, if binding is specific we expect higher 

accumulation of the compound being tested in CaSki cells then in the other cell lines, as more E6 

is present. Either method will be sufficient to indicate cell permeability and will give insights on 

specificity. 
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Chapter 4.Materials and Procedures 

4.1.MATERIALS 

O-succinyl –homoserine (MFCD00055782) was ordered from Sigma Aldrich Co in a 

25mg quantity at 98% purity, determined by Sigma Aldrich using TLC.125mg of 3-amino-5-

fluorobenzo [e] [1,2,4] triazine 1, 4 dioxide (AFTD) was ordered from Sunbiochem Inc 

(MFCD14636665) at 98% purity, determined by Sunbiochem Inc using TLC. Paclitaxel was 

ordered from Sigma Aldrich Co (T7402) with a purity of 95% as confirmed by High 

Performance Liquid Chromatography (HPLC). Aminopterin (ALX-440-041-M010) was obtained 

from Enzo Life Sciences Inc, through Cedar Lane Inc, with a purity of 98%. These compounds 

were order and properly stored until usage in ligand binding experiments. Protein E6 was 

ordered from GenScript Inc in both unlabelled and biotinylated form. GenScript Inc determined 

the purity of E6 through the use of Coomassie blue-stained SDS-PAGE gel. Protein was stored in 

a buffer solution to keep the pH at 8.0 (50nM Tris-HCl, 10% Glycerol, pH 8.0). This protein was 

stored at -80C until used in ligand binding assays. CaSki, SiHa, and C33A cell lines were 

obtained through American Type Culture Collection Inc (ATCC).  6F4 E6 monoclonal antibody 

was a gift from the Arbour Vita Co. Dulbecco’s Modification of Eagles Medium (DMEM) 

supplemented with 10% fetal bovine serum and anti/anti was obtained through Fisher Co.  

4.2.COMPUTATIONAL SCREENING 

 Prior to conducting molecular docking, databases of drug like compounds needed to be 

created. The compounds in these databases all shared common drug like properties and had 

characteristics that were suitable for a potential molecular imaging probe for HPV16 E6. Three 

databases were created and screened.   
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4.2.1. a)Primary Amine Database  

 Compounds of this database were downloaded from PubChem
1
. Lipinski’s rule of 5 was 

used as part of the search criteria
2
. A basic primary amine was drawn so that structural similarity 

was searched as well. 2,000 compounds were downloaded. Editing was then conducted to 

eliminate those molecules that contained counter ions and atoms that our docking software 

(Cassandra) cannot process, such as Boron. After editing, 1,153 molecules were left in the 

database. Gasteiger method
3
 was used to calculate partial charges and energy minimization was 

conducted using MMFF94x force field
4
. The database was then saved as a mol2 file in Molecular 

Operating Environment MOE 2010.10 (CC group) 
5
and converted to BGF file format using 

Babel
6
. The BGF file was then cleaned up using an already prepared script (clean_BGF.pl). BGF 

files were then converted into a BGF400FSM files using an additional in house script 

(BGF2BGF4fsm). 

4.2.1. b)Imaging Compound Database   

 Imaging compound database was created using Discovery Gate software
7
.  Lipinski’s rule 

of 5 was used as part of the search criteria
2
. In addition, the "known imaging agents compounds" 

tab was clicked for search criteria. Compounds were then downloaded from Discovery Gate in 

sdf format. Some compounds were edited to eliminate counter ions and atoms that Cassandra 

cannot process. A total of 4,965 were prepared for this database. These compounds were 

imported into MOE 2010.10 (CC group) 
4
, compiled as a database, saved as a mol2 file and 

converted to BGF file us Babel
6
. Gasteiger method

3
 was used for calculating partial charges and 

energy minimization was conducted using MMFF94x force field 
2
. The BGF file was then 

cleaned up using an already prepared script (clean_BGF.pl). BGF files were then converted into 

a BGF400FSM files using an additional in house script (BGF2BGF4fsm).  
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4.2.1. c)Fluorine-Containing ligand Database  

 Fluorine containing compounds were downloaded from both Discovery Gate
7
 and 

PubChem
1
 in sdf format. The major search criteria used was Lipinski’s rule of 5

5
. In addition we 

searched for molecules that contained fluorine atoms. This generated a library of 4,146 

compounds, which was used for molecular docking. These compounds were imported into MOE 

2010.10 (CC group) and compiled as a database and saved as a mol2 file
4
. Gasteiger method

3
 

was used for calculating partial charges and energy minimization was conducted using 

MMFF94x force field
2
. Mol2 file was converted to BGF using Babel

6
. A BGF file was then 

cleaned up using an already prepared script (clean_BGF.pl). BGF files were then converted into 

a BGF400FSM files using an additional in house script (BGF2BGF4fsm).   

4.2.1. d)Shelf Compounds Database   

 A series of compounds that were readily available within the laboratory were also 

prepared as a database. This database was also saved a mol2 string using MOE 2010.10 (CC 

group) 
5
. Gasteiger method

3
 was used for partial charges were calculated and energy 

minimization was conducted using MMFF94x force field
2
. Mol2 file was converted using Babel

6
 

to a BGF file. A BGF file was then cleaned up using an already prepared script (clean_BGF.pl). 

BGF files were then converted into a BGF400FSM files using an additional in house script 

(BGF2BGF4fsm).  

4.2.2.N-Terminal (PDB 2LJX) Docking 

4.2.2. a)Editing Protein Structure. 

 The structure for the N-terminal domain of HPV16 E6 was downloaded from PDB.org 

(PDB 2LJX). This particular structure contained multiple conformations of HPV16 E6. To 

determine which confirmation to use, each conformation was energy-minimized using the 
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Dreiding force field
8
. The conformations and their binding energies were ranked according to 

total potential energy (Table 3). The best (lowest energy) conformer, conformation 18 with a 

potential energy of -1609.1491kcal/mol, was selected for further analysis.  

Table 3: All conformation in the PDBfile (2LJX). Confirmation 18 was selected for screening. 

Conformation Number Potential Energy ( kcal/mol) 

1 -1494.0000 

2 -1439.0000 

3 -1571.5252 

4 -1546.5809 

5 -1544.9435 

6 -1488.8126 

7 -1569.3594 

8 -1466.7676 

9 -1539.3421 

10 -1607.8191 

11 -1537.3729 

12 -1542.4821 

13 -1539.1646 

14 -1363.9693 

15 -1587.9279 

16 -1522.7819 

17 -1416.2263 

18 -1609.1491 

19 -1462.3501 

20 -1493.3796 



 

41 

Several file types needed to be created for the protein structure (2LJX) (mol2, PDB, BGF, and 

BGF 400 fsm). The structure of the protein is generally saved in MOE 2010.10 (CC group)
5
 as a 

mol2 and PDB files, then scripts were utilized to make the remaining files. Using the program 

Yassara
9
 we were able to save the PDB file with no hydrogen’s. The scripts used included: 

BGF2BGF4fsm and PrepareBGF. 

4.2.2. b)Submitting HierVLS jobs to SHARCNET  

 With the structure files created for the protein and the databases of ligands, jobs could be 

submitted to Shared Hierarchical Research Computing Network (SHARCNET)
10

, using the 

Cassandra interface
11

 to the HierVLS method
12

. SHARCNET is a high performance computer 

cluster, which allows thousands of jobs to run simultaneously. Default parameters (see appendix 

B) were used when submitting all databases except for shelf compounds database, where the 

buried surface area was lowered to 30% because of the large size of some of the molecule. 

4.2.2. c)Analysis of HierVLS Results   

  When each molecule is docked, a series of files are made for each ligand. Files of 

particular interest to our analysis include a BindE table, which contains the raw (force field) 

binding energy score. A BGF file is also present, which contains the ligand bound to the protein 

structure. PDB files are made for the protein that contains the computationally determined 

binding sites as determined by PASS
13

. The N-terminal domain contained two binding sites, R1 

and R2. HierVLS generated 2,911 entries for the N-terminal domain R1, and 6,009 for R2. Force 

field based binding energies for each ligand was taken from the results folders and compiled into 

an excel spreadsheet. This was done by going into each results folder and concatenating the 

BindE energy tables. Each of N-terminus domain two binding sites were individually analyzed. 

Once compiled the mean and standard deviation of the force field scores for all ligands surviving 
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the HierVLS process were calculated in Excel for each binding region. The binding threshold 

was determined by calculating two standard deviations below the mean for each site. These 

results were imported into Prism 6 (Graph Pad, inc)
14

, where graphs were made to depict these 

results. It was shown that 10 compounds passed the binding/nonbinding threshold for R2 and 

only 3 passed for R1. The 10 molecules that passed the threshold for R2 were examined, as well 

as the three molecules that passed the threshold for R1. Even though all three databases were 

docked, the advantageous properties of the primary amine database and the fluorine containing 

database made these databases first priority. Those compounds from the fluorine containing 

database and primary amine database were further examined to determine commercial 

availability and ligand interaction diagrams were also generated using MOE 2010.10 (CC group) 

5
.  

4.2.3.C-terminus Screening (2FK4) 

4.2.3. a)Obtaining and editing protein structure    

  We obtained our structure for the C-terminal domain of HPV 16 E6 protein using the 

PDB search engine (PDB code 2FK4). Once the structure was downloaded, energy minimization 

was performed MMFF94x force field
4
. The quality of this structure was checked using Procheck 

software
15

. For molecular docking, a few different file types of the protein are required (mol2, 

PDB, BGF, and BGF 400 fsm). The structure of the protein is generally saved in MOE 2010.10 

(CC group)
5
 as mol2 and PDB file formats, then scripts are utilized to make the remaining files. 

Using the program Yassara
9
 we were able to save the PDB file with no hydrogen’s. The scripts 

used included: BGF2BGF4fsm, and PrepareBGF. 
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4.2.3. b)Submitting jobs to SHARCNET HierVLS 

 With the structure files created for the protein and the databases of ligands, jobs could be 

submitted to Shared Hierarchical Research Computing Network (SHARCNET)
10

 using the 

Cassandra
11

 interface to the HierVLS method
12

. SHARCNET is a high performance computer 

cluster, which allows thousands of jobs to run simultaneously. Default parameters (see appendix 

B) were used when submitting all databases except for shelf compounds database, where the 

buried surface area was lowered to 30% because of the size of the molecule. 

4.2.3. c)Analysis of Results  

A script was used to sort through the HierVLS output files and identify molecules in the 

database that were missed in the initial screening (checkruns). The script created a mol2 file, 

which was then turned into BGF and BGF4fsm files using the same methods as described above. 

This was done until all our molecules had been docked, from each database.  When each 

molecule is docked a series of files are made for each ligand. Files of particular interest to our 

analysis include a BindE table, which contains the raw binding energy score. A BGF file is also 

present, which contains the ligand found to the protein structure. In PDB files are made for the 

protein that contains the computationally determined binding sites from PASS
5
.  For case of the 

C-terminal domain 3,339 entries acquired. All force field based binding energy tables were 

concatenated together and transferred into the Excel (Microsoft)
16

 where the binding threshold 

was calculated by as two standard deviations below the mean binding energy of the entire set. 

This was done as we are assuming normal distribution due to the large sample size. Two 

standard deviations will thus give us 95% confidence. Confidence intervals are commonly used 

in statistics to test the validity of an estimate. In our case, it was used to ensure that we select 

those ligands with the highest probability of binding, which are the 5% with the best scores.   
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This binding threshold was used as an ideal screening tool in order to eliminate those 

ligands that have little chance of binding. Using this threshold we went through the fluorine 

containing molecule database as well as the primary amine database to make a selection based a 

selection rational: Observe ligand interaction diagrams to make sure binding is specific, Check 

for commercial availability, obtain toxicology information (Figure 14).  

 

 

Figure 14: Step by step process used for the selection of ligands for C-terminus domain. 

Molecules will selected for experimental ligand binding assays based on these steps  

      

     Five molecules were examined from the fluorine containing database and 3 molecules 

were examined for the primary amine database. Ideally we wanted to select one molecule from 

each database. In order to do so ligand interaction diagrams were created using MOE 2010.10 

(CC group) 
5
. This was easily done as each output file for each ligand contains a BGF file that 

contains the protein structure with the ligand bound. However, to further eliminate compounds 

commercial availability was looked at. Although all molecules were available some were more 

than others (AFTD). In addition some molecules had properties that made them a lot less toxic 

(O-succinyl-L-homoserine). The imaging agents database results can be further examined if 

those top candidates from other databases fail to show experimental affinity.  

View ligand 
interaction 
diagrams to 

identify if 
interaction 
is specific 

Check for 
commercial 
availablity  

Obtain 
toxicology 

information  
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4.3.TRYPTOPHAN FLUORESCENSE EXPERIMENT 

    3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) (300M,100M, 

25M,10M,3M,1µM,0.1µM,0.01µM), O-succinyl-L-homoserine (300M,100M, 

25M,10M,3M,1µM,0.1µM,0.01µM,) and Paclitaxel (15M,10M,1M)  were tested in an 

intrinsic tryptophan fluorescence assay at several concentrations with a fixed concentration of 

protein E6 (0.03mg/ml). AFTD and O-succinyl-L-homoserine concentrations were accurately 

measured using a 1mM stock solution dissolved in deionized water, with dilutions prepared 

(100µM, 10µM, 1µM) in order to reach lower concentrations. E6 protein was accurately 

measured from the stock concentration (0.201mg/ml). The assay was buffered to a pH of 7.5 

using 20mM HEPES, 0.01% tween (v/v) and incubated to a temperature of 37C. Control wells 

were included for the protein alone, AFTD, O-succinyl-L-homoserine, and paclitaxel (at each 

concentration tested). Samples were plated as triplicate wells, and duplicate wells for all controls, 

in a 96-well black bottom microplate (Nunclon®).The experiment was run using a Synergy 4 

Microplate Reader (Biotek). The monochromator was used to collect emission spectrums for 

each well from 310nm-700nm at an excitation of 288nm. Fluorescence intensity was read using a 

probe height of 4mm, a 150 sec delay between wells, and 20 reads per well. Data was collected 

every 30 minutes for 60 minutes using a sensitivity value of 100 with Gen5 software (Biotek)
17

. 

The read settings and filter/mirror combination were optimized during preliminary experiments. 

Changes in intrinsic tryptophan fluorescence were calculated using Prism 6 (Graph Pad, Inc)
4
 

baseline reduction functions.   

Water, buffer, and required solvent were added first to all the wells in the microplate. 

Once water buffer and solvent were added the ligands and antibody were measured out 

accurately using the stock solutions made at the desired concentrations. The reaction was 
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initiated with the addition of E6 protein (0.03mg/ml) after which the plate was incubated in the 

plate reader under the conditions specified above.   

4.3.1. a)Data Analysis   

 Fluorescence intensity readings were imported into Excel 2010 (Microsoft, Inc)
2
 then 

directly imputed into Prism 6 (Graph Pad, Inc)
14

. Means and standard errors were calculated 

using Prism 6 (Graph Pad, Inc)
14

for all duplicate and triplicate wells using column statistic 

function. For each sample containing protein plus ligand, the background for each corresponding 

ligand at the appropriate concentration was deducted using baseline column math 

(Difference=Value-Baseline)
14

. Each individual ligand concentration on its own was assigned as 

the baseline for the corresponding sample, in order to deduct the background from the ligand. 

Baseline column math, was once again performed or each ligand and concentration, this time 

assigning the protein with  corresponding solvent, as the baseline value to generate the percent 

change values for each wavelength (%difference:= 100*(value-baseline)/baseline))
14

. The 

baseline was assigned as the proper protein control depending on sample and concentration. The 

350nm  percent change values were then plotted in a bar graph with error bars representing the 

standard error that was propagated by Prism 6 (Graph Pad, Inc)
14

. In addition fluorescence 

intensity curves for each ligand concentration were also made from the background reduced 

values.   

4.4.CHARACTERIZATION OF AFTD 

4.4.1.Spectroscopy Characterization of AFTD 

      Characterization was conducted for 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 

Dioxide (AFTD) using a 50M concentration. Experiment was run using a BioTek Synergy 4 

Microplate reader. Using a microplate (Costar) 96 well black bottom for emission spectrum and 
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a clear microplate (Falcon) 96 well plate was used for absorbance and excitation spectrums. 

Sample was buffered to a pH of 7.5 (20mM 7.3 HEPES, 0.01% tween (v/v)) and ran at 37C. A 

blank well that contained buffer (20mM 7.5 HEPES) and water was also used. All wells were 

topped up with distilled water to a final volume of 100 L. Initially an absorbance spectrum was 

run by collecting values every 5nm. This indicated a maximum absorbance at 270nm. This value 

was used as excitation wavelength for the emission spectrum, which was run from 300-700nm at 

a sensitivity of 100. Emission spectrum indicated a maximum emission at 535nm. This value was 

then used to run an excitation spectrum in the Falcon clear plate from 250-700nm. This indicated 

that the maximum excitation was at 260nm with a secondary peak at 435nm. In addition, the 

secondary peak max was found at 435nm. Emission spectrum was re-run using 260nm instead of 

270nm from 300-700nm using a sensitivity of 100. Once again the maximum emission was 

shown to be 535nm. From these results, a suitable excitation filter (460/40nm), emission filter 

(528/20nm) and dichromatic mirror (510nm) were identified for use in the binding assays.     

4.4.2.Standard Curve and AFTD Equilibrium 

       A standard curve for AFTD was made by testing 6 concentrations (300M, 100M, 

50M, 25M, 10M, 1M). This was done using a sensitivity of 80 in a microplate (Nunclon®) 

at a pH of 7.5 (20mM HEPES, 0.01% tween (v/v)) at an incubation temperature of 37ºC. 

Fluorescence intensity values were taken using a filter set combination (Ex 460/40nm, Em 

528/20nm, and dichromatic mirror 510nm). The 25µM AFTD was also included in well with a 

set amount of E6 protein (0.04mg/ml) as a single point. Reads were taken every 15minutes under 

the same conditions described for the standard curve except fluorescence intensity values were 

taken in both the perpendicular and parallel directions to calculate polarization. This was done in 
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order to determine the time point our system reaches equilibrium.  Data analysis was conducted 

as described in section 4.5.1.  

4.5.FLUORESCENCE POLARIZATION CONCENTRATION CURVE TO 

DETERMINE EC50 

AFTD was tested in a fluorescence polarization assay at seven concentrations 

(300M,100M,50M,25M,15M,10M,1M) with a fixed concentration of protein E6 

(0.04mg/ml). AFTD concentrations were accurately measured using 1mM and 100µM stock 

solutions dissolved in half water/half ethanol. E6 protein was accurately measured from the stock 

concentration (0.201mg/ml). The assay was buffered to a pH of 7.5 using 20mM HEPES, 0.01% 

tween (v/v) and incubated to a temperature of 37C. Control wells were included for the protein 

alone, and AFTD without protein at each concentration tested. Samples were plated as duplicate 

wells in a 96-well black bottom microplate (Nunclon®).The experiment was run using a Synergy 

4 Microplate Reader (Biotek). An excitation filter (460nm/40) and emission filter (528nm/20) 

were used with a dichromatic mirror (510nm). Fluorescence polarization was read using a probe 

height of 4mm, a 350 sec delay between wells, and 40 reads per well. Data was collected every 

15 minutes for 75 minutes using a sensitivity value of 80 with Gen5 software (Biotek). The read 

settings and filter/mirror combination were optimized during preliminary experiments. 

Fluorescence polarization values were calculated with blank values discounted.   

          The reaction was initiated by first adding water, solvent, and buffer. Once these amounts 

were measured into the reaction wells AFTD was then accurately added from the 1mM or the 

100µM stock solutions. Once all ingredients were in each well the protein was added to each 

protein-containing well from the stock solution to initiate the binding reaction. After which the 
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plate was incubated in the microplate reader under conditions described above. Readings were 

taken every 15 minutes starting at time zero to 120 minutes using Gen5 software (Biotek)
17

. 

4.5.1. a)Data Analysis   

Data was exported into Excel 2010 (Microsoft, Inc)
16

 from Gen5 (Biotek), where values 

for parallel and perpendicular intensities were manipulated for each time point. The blank was 

discounted by hand using excel in both perpendicular and parallel directions. The perpendicular 

values were manipulated using an experimentally determined G-Factor (0.96) (G-Factor=Parallel 

intensity*(1-0.02)/ Perpendicular intensity (1+0.02))
17

. Calculating the G-factor is required to 

correct for instruments that have a variety of different optical designs. Using these values 

polarization was calculated in Microsoft excel according to equation (Polarization= ((parallel-G-

factor*perpendicular)/ (parallel+ G-Factor* perpendicular))
17

. Values were then imported into 

Prism 6 (Graph Pad, inc)
14

 where graphing and curve fitting took place. The second well value 

for polarization in the 300 µM was dropped from this calculation as it was inconsistent across the 

time points. The error bars represent the standard error of the duplicate polarization values. EC50 

was estimated using Prism’s non-linear dose-response fitting function (four parameters)
14

.  

4.6.CELL BASED ASSAYS 

4.6.1.Cell culturing 

4.6.1. a)Cell lines and Routine Maintenance   

 CaSki, SiHa, and C33A cells were obtained for ATCC. CaSki cells contain 200-300
18

 

copies of E6 protein, whereas SiHa only contain 1-2 copies
19

. C33A cells contain zero copies of 

E6
20

. All cells were cultured in DMEM complete medium (10% fetal bovine serum and 1X 

anti/anti) obtained through Fisher Co. Cells were held in an incubator at constant conditions 

(37C, 5% C02). These cells were feed every 2-3 days and split when they reached 60-80% 
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confluent.  All cells were routinely screened for Mycoplasma contamination, which is a common 

contaminant in cell cultures and none was found.  

4.6.1. b)Freezing and Storage   

Freezebacks were made by adding 10% DMSO to complete DMEM medium. Cells were 

then frozen at -80C then moved into liquid nitrogen.        

4.6.1. c)Thawing Cells  

Cells were taken out of liquid nitrogen then added to 10ml of complete medium (DMEM) 

and centrifuged for 5 min at 750rpm. Centrifugation is used in order to make sure that all DMSO 

is removed from the cells as this can be cytotoxic. Cells are then, re-suspend in clean complete 

medium in a T75 flask (Fisher, Inc).  

4.6.2.Cell Viability 

 Cells were prepared as described in routine maintenance. Cells were then removed from 

flasks and seeded into 24 well plates (flat bottom, Fisher). Approximately 25,000 cells were in 

each well prior to application of AFTD. AFTD was added to the cells (CaSki, SiHa, and C33A) 

24 hours after seeding. This was done by adding a calculated amount of AFTD stock (2mM) in 

complete medium (DMEM) accurately for each concentration (25µM and 10µM) used to make 

up treated medium which was added directly to each well (500µL). The effect of ethanol, used as 

solvent for AFTD, was controlled by adding the same volumes respectively for each 

concentration (25µM and 50µM) of a solution that contained half ethanol and half de-ionized 

water. The original medium (500µL) in each well was removed and the treated medium 

containing AFTD and control medium, which contained ethanol was then added (500µL). For 

each time point, there were three treated wells with AFTD at each concentration tested and 3 



 

51 

controls, which were treated with ethanol at the same percentage by volume as the corresponding 

concentration. Enough medium was made for all the plates created to serve each time point (3, 6, 

12, and 24). Since no change was observed using a light microscope after 3 and 6 hours, the next 

time point observed was at 24 hours.    

4.6.3.AFTD Cell Permeability 

 AFTD was added to each plate as described in (Section 4.5.2). However, the final 

concentrations in medium were 25µM and 50µM. Different time points were also used (1hour, 

2hours, and 3hours). Plates were removed from the incubator at corresponding time points. Cells 

were then rinsed in 1X Phosphate Saline Buffer (500µL) of and then lysed for 1hour in lysing 

buffer (55% water, 32%DMSO, and 13% triton). The lysate was taken and transferred to 2ml 

centrifuge tubes and centrifuged at 750rpm for 5 minutes. The supernatant was added to a 

Nunclon® 96 well microplate at a volume of 100µL per well. Fluorescence was read using a 

Biotek Synergy 4 Microplate reader using an optical system that consisted of an excitation filter 

(460/40nm), emission filter (528/20nm), and mirror 510nm. 350µs delay was used with a 4mm 

probe height, 40 reads per well, and a sensitivity of 100. In addition, absorbance was also taken 

at 260nm, 280nm, and 535nm to control for cell density.    

4.6.3. a)Data Analysis      

 Absorbance and fluorescence intensity for each time point was collected using Gen5 

(Biotek) software. These values were then imported into Excel 2010 (Microsoft, Inc)
16

. Due to a 

large amount of bubbles in the microplate, the 1hour time point was omitted from analysis. The 2 

hour and 3 hour time points were analyzed by importing values into Prism 6 (Graph Pad, Inc)
14

, 

where means and standard deviations were calculated for each of the triplicate samples. The 

means and standard deviations were calculated using Prism 6 (Graph Pad, Inc) column statistics 
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analysis. These values were then graphed as bar graphs. Sidak’s multiple comparisons ANOVA 

was conducted using Prism 6 (Graph Pad, Inc) software
14

. This will calculate if any difference 

between the sample and its corresponding control is significant within a 95% confidence interval.  

Turbidity (optical density) at 535nm was used to verify that the density of cells in each sample 

and control wells were comparable. If there were discrepancies, then the measured fluorescence 

values would have to be corrected for the difference in cell density. Optical density values at 

535nm were about the same for each well and, for this reason, no correction was needed.  The 

ratio of absorbance values at 260nm (nucleic acids) and 280nm (proteins) was used to further 

verify that the cell cultures in each well were consistent. 

4.7.6F4 ANTIBODY COMPETITION EXPERIMENT 

A competition experiment was conducted varying the concentration of antibody 6F4 

against fixed concentrations of AFTD (6M) and E6 (0.04mg/ml).  The concentrations of protein 

and AFTD were chosen based on the EC50 value determination of 6M at a protein 

concentration of 0.04mg/ml (Section 5.4). The experiment was conducted using a 96 well 

Nunclon® black bottom microplate at 37C and buffered to a pH of 7.5 (20mM 7.5 HEPES 

0.01% tween (v/v)) in a Synergy 4 BioTek microplate reader. The AFTD 6M wells were 

measured from a 100M stock solution. The 100µM AFTD stock solution was diluted using de-

ionized water from a 1mM stock solution in 2ml centrifuge tube. The 1mM AFTD stock solution 

was dissolved half ethanol half de-ionized water. All wells containing AFTD were topped up 

with 15µL of ethanol to make sure it did not precipitate out of solution. Antibody 6F4 

concentrations varied from 4ng/ml all the way to 4x10
-6

ng/ml using 10 fold dilutions from a 6F4 

antibody stock solution (2.69mg/ml). A standard antibody control with the antibody on its own in 

buffer solution was present at the highest concentration in a single well. A single protein control 
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well was also present. Controls wells were also present for the antibody at each concentration 

used (4ng/ml-4x10
-6

ng/ml) with AFTD (6M). The ethanol was controlled by making sure each 

well controls and samples contained a consistent amount of ethanol (15µL). All wells were 

topped up to 100µL using deionized water.  Perpendicular and parallel fluorescence intensity 

values were collected every 15 minutes using an optical system that consisted of an excitation 

filter (485/20nm), emission filter (528/20nm), and 510nm dichromatic mirror with a sensitivity 

of 80, a probe height of 4mm and a time delay of 350µsec per well. 

4.7.1. a)Data Analysis     

 Manipulation of data to calculate polarization values were done in the same fashion as 

described in 4.4.1a).One of the 4ng/ml of antibody 6F4 was omitted from the dataset as 

inconsistencies were observed. Polarization was plotted against concentration of antibody in a 

log scale to see if any concentration-dependent behaviour had taken place.    

4.8.O-SUCCINYL-L-HOMOSERINE CONJUGATE 

4.8.1.Synthesis of O-succinyl-L-homoserine-Bodipy 

O-Succinyl-L-homoserine-Bodipy was synthesized using 1:1:1 equivalents of Bodipy-

NHS, O-succinyl-L-homoserine, and triethylamine under argon gas. Reaction was initiated by 

dissolving 5mg of Bodipy in 500µL of dimethylformamide (DMF). The reaction vial was placed, 

with stirring, in a water/ice bath at 0ºC. While in the water/ice bath, one equivalent (2.730mg) of 

O-succinyl-L-homoserine was added and mixed, followed by 1.39µL of triethylamine. The 

remainder of the reaction vial was filled with argon gas. The reaction was left to proceed for 30 

minutes at 0ºC after which the vial was removed from the water/ice bath. Once removed from the 

water/ice bath, the reaction vial was left to stand at room temperature overnight. Separation was 

performed using water and a small amount of ethyl acetate. Our product was found to be in the 
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aqueous phase. This was confirmed using TLC (5:1 dichloromethane:methanol). Purity was also 

verified at 95% using TLC (5:1 dichloromethane:methanol). The sample was then freeze dried, 

and stored at -20°C. 3mg of product was obtained from this reaction. Liquid chromatography 

mass spectrometry (LC-MS) was used to confirm the identity of O-succinyl-L-homoserine-

Bodipy(supplementary  information).   

4.8.2.Spectroscopic Characterization of O-succinyl-L-homoserine-Bodipy 

Characterization of O-succinyl-L-homoserine-Bodipy was conducted using a 50µM 

concentration. This was conducted at 22ºC in a Synergy 4 microplate reader (BioTek) buffered to 

a pH of 7.5 (20mM HEPES, 0.01% tween (v/v)). Absorbance spectrum was conducted using a 

microplate (Falcon) clear 96 well and absorbance spectrum was acquired collecting data every 

5nm. An absorbance spectrum indicated a maximum absorbance at 500nm. This value was used 

as the excitation value to conduct an emission spectrum using a sensitivity of 70 and a probe 

height of 4mm with the same concentration of O-succinyl-L-homoserine-Bodipy (50µM) and 

was conducted in a black bottom microplate (Nunclon®). This demonstrated a maximum 

emission of 510nm. This value was then used as the emission wavelength to conduct an 

excitation spectrum at the same concentration sensitivity and probe height. The maximum 

excitation was confirmed to be 500nm. These values allowed us to determine a proper filter set 

combination to be used in the ligand binding assays, which includes an excitation filter 

(485/20nm) emission filter (528/20nm) and a dichromatic mirror (510nm).  

4.8.3.Fluorescence Polarization Assay 

 O-succinyl-L-homoserine-Bodipy was tested in a fluorescence polarization assay at three 

concentrations (1, 10, and 100M) with a fixed concentration of protein E6 (0.04mg/ml). The 

assay was buffered to a pH of 7.5 using 20mM HEPES, 0.01% tween (v/v) and incubated to a 
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temperature of 37C. Control wells were included for the protein alone, and O-Succinyl-L-

homoserine-Bodipy alone (at each concentration tested). Samples were plated as single wells in a 

96-well black bottom microplate (Nunclon®).The experiment was run using a Synergy 4 

Microplate Reader (Biotek). An excitation filter (485nm/20) and emission filter (528nm/20) were 

used with a dichromatic mirror (510nm). Fluorescence polarization was read using a probe 

height of 4mm, a 350sec delay between wells, and 40 reads per well. Data was collected every 

15 minutes for 75 minutes using a sensitivity value of 65 with Gen5 software (Biotek). The read 

settings and filter/mirror combination were optimized during preliminary experiments. 

Fluorescence polarization values were calculated with blank values discounted.  A standard 

curve was also included for the concentrations tested and included in the characterization of this 

molecule.  

4.8.3. a)Data Analysis    

 Manipulation of data to calculate polarization values was done in the same fashion as 

described in 4.4.1a). The second well value for polarization in the 4ng/ml well was dropped from 

this calculation as it was inconsistent across the time points. Each concentration tested was 

plotted against time. The error bars represent the standard error of the duplicate polarization 

values.   
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Chapter 5.Results and Discussion 

5.1.COMPUTATIONAL SCREENING 

      Computational screening was conducted using two different structures of HPV16 E6, in 

order to make sure both C-terminus and N-terminus domains were analyzed. This will allow us 

to be able to properly evaluate potential lead compounds that can then be used for further 

experimental testing. Note that the C-terminus domain was published first so more extensive 

analysis was conducted and the N-terminus was used in order to make further suggestions on 

potential molecular probes. Three libraries of molecules were downloaded using both PubChem 

and Discovery Gate online services. These libraries comprised a total of 10,264 molecules. One 

library was of known imaging agents; however, due to the lack of availability of these molecules 

and advantageous functional groups of the other databases, these were not fully examined. One 

of the other databases contained molecules with one or more fluorine atoms, which is 

advantageous for Positron Emission Tomography (PET). The third database was composed of 

molecules that contain a primary amine functional group. The primary amine compounds are 

suitable for labelling with amine-reactive fluorescent dyes available commercially. This 

represents a challenge in the identification of hits from this library. Compounds with promising 

binding energies to the target structures (hits) were selected for experimental testing from the 

fluorinated and the primary amine databases. 
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5.1.1.N-Terminus Computational Screening (2LJX) 

 

Figure 15: Full surface structure of 2LJX N-terminal structure of E6. The red dotes show the two 

binding sites R1 and R2 as determined by PASS
1
.   

 

All three databases were computationally screened against the N-terminal domain of 

HPV16 E6 (2LJX) using Virtual Ligand Screening (VLS). Through examining the potential 

energy of each confirmation, it was concluded that the structure (2LJX) was in good shape for 

molecular docking. Two binding regions (R1 and R2) were identified  within this domain (Figure 

15) using PASS
1
.  Non-binder/binder thresholds were calculated for each region of the structure 

(Table 4).  

Table 4: Summary of HierVLS results for N-terminal domain of HPV16 E6 (2LJX)   

Binding Region Number of 

Compounds 

Submitted 

Number of 

Molecules Scored 

Binding 

Threshold 

(kcal/mol) 

Number of 

Molecules that 

Passed Threshold 

R1 10,264 2,911 -53.12 3 

R2 10,264 6,009 -58.20 10 

 

Non-binder/binder threshold was calculated as the mean of the full data set for each 

binding site plus two standard deviations from the mean. Assuming normal distribution, the 

selected ligands will be at the 95% confidence interval. For R1 this threshold was calculated to 

be (-53.12kcal/mol) (Figure 16) and for R2 (-58.20kcal/mol) (Figure 17).   

R2 

R1 
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Figure 16: Scatter plot of results from the computational screening of NT-E6 (PDB code 2LJX) 

for binding region 1 (R1). The solid black line represents the mean score for the entire library 

docked to NT-E6.The dotted lines represent plus or minus two standard deviations from the 

mean, which was used to determine a binding threshold of -58.20kcal/mol. A total of three 

molecules passed the binding/nonbinding threshold. The complete list of hits passing the  

threshold for R1 is provided in Table 5. 

 

 

 

Figure 17: Scatter plot of results from computational screening of 2LJX for R2. The solid black 

line represents the mean and the dotted lines represent plus or minus two standard deviations. 

This was used to determine a binding threshold of -58.20kcal/mol.  A total of 10 molecules based 

the binding/nonbinding threshold. The complete list of hits passing the threshold for R2 is 

displayed in table 6.  
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Table 5: Compounds that passed the R1 threshold of -53.12kcal/mol. Refer to table A for 

molecular structures 

Rank Identifier Binding Score 

(kcal/mol) 

IUPAC name Smiles 

1 cmp450432 -55.93 (2R)-2-amino-3-

iodanyl-phenyl)-2-

methyl-propanoic 

acid 

Ic1cc(cc10)CC(N)(

C(0)=0)C 

2 cmp450769 -55.29 2-amino-8-

fluoranyl-9-[[2-

hydroxy-1-

1(hydroxymethyl) 

ethoxy] methyl]-4,5-

dihydro-1H-purine-

6-one 

FC1=NC2C(N=C(N

C2=0)N)N1C0C(C0

)C0 

3 SOLANESYL-

PYROPHOSPHAT

E-1-3H 

-55.06 Solanesyl-

PyrophosphatE-1-

3H 

P(0CC=C(CCC=C(

CCC=C)CCC=C(C

CC=C(CCC=C(CC

C=C(CCC=C(CCC

=C(C)C)C)C)C)C)

C)C)C)C)(0P(0)(0)

=0(0)=0 
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Table 6: Compounds that passed the threshold of -58.20kcal/mol HierVLS targeting regions R2 

in NT-E6. Refer to Table B for molecular structures. 
Rank Identifier  Binding Score 

(kcal/mol) 

IUPAC name  Smiles  

1 AMINOPTERIN-3-5-7-

9-3H-N 

-80.13 Aminopterin-3-5-7-9-

3H-N 

O=C(O)C(NC(=O)C1C

CC(CC1)NCC2NC3C(

NC2)NC(NC3N)N)CC

C(=O)O 

2 PA24273 -78.58 N-(2,4-dinitrophenyl)-L-

Arginine 

OC(=O)[C@@H](Nc1

ccc([N+](=O)[O-

])cc1[N+](=O)[O-

])CCCNC(N)=N 

3 PACLITAXEL-

BENZOATE-RING-UL-

14C- 

-78.41 Paclitaxel-Benzoate-

Rink-UL-14C 

CC1=C2C(C(=O)C3(C

(CC4C(C3C(C(C2(C)C

)(CC1OC(=O)C(C(C5

=CC=CC=C5)NC(=O)

C6=CC=CC=C6)O)O)

OC(=O)C7=CC=CC=C

7)(CO4)OC(=O)C)O)C

)OC(=O)C 

4 MFCD01113139 -68.33 3-Chloro-2-(2-([3-oxo-2-

Benzofuran-1(3H)-

Ylinden]methyl) 

hydrazino)-5-

(Trifluoromethyl) 

Pyridinium Acetate 

C1c1cc(cnc1NN\C=C\

1/OC(=O)c2c/1cccc2)

C(F)(F)F 

5 MFCD00214696 -66.13 3-Chloro-2-(3-[1-

(Phenylsulfonyl)-1H-

Pyrazol-3-YL]Phenoxy)-

5-(Trifluoromethyl) 

Pyridine 

C1c1cc(cnc1Oc1cc(ccc

1)-

c1nn(S(=O)(=O)c2cccc

c2)cc1)C(F)(F)F 

6 cmp450572 

 

-66.06 2-amino-4-[[5-(6-

aminopurin-9-yl)-3,4-

dihydroxy-

tetrahydrofuran-2-yl] 

methyl-sulfonio] 

butanoate 

[S+](CC1OC(n2c3ncnc

(N)c3nc2)C(O)C10)(C

CC(N)C(=O)[O-])C 

7 PA24775 

 

-65.07 Beta-Nicotinamine 

Mononucleotide 

P(0C[C@H]1O[C@@

H]([n+]2cc(ccc2)C(=O

)N)[C@H](O)[C@@H

}1O)(O)(=O)[O-] 

8 MFCD00172501 

 

-61.85 4-(2-([3-Chloro-5-

(Trifluoromethyl)-2-

Pyridinyl] Amino) Ethyl) 

Benzenesulfonamide 

C1c1cc(cnc1NCCc1ccc

(S(=O) (=O)N)cc1) 

C(F) (F) F 

9 MFCD15731617 

 

-61.14 4-Anilino-2-([(4-

Fluorobenzyl) 

(Methylsulfonyl) Amino] 

Methyl) Pyrimidine-5-

Carboxylic Acid 

S (=O) (=O) (N(Cc1ccc 

(F) cc1) Cc1nc 

(Nc2ccccc2)c(cn1)C(O

)=O)C 

10 MONENSIN-3H-G 

 

-60.28 Monensin-3H-G 01C(C(CC(C)C1(0)C0)

C)C10C(C2(0C(CC2)C

2(0C3(0C(C(C(0C)C(C

(0)=0)C)C)C(C)C(0)C

3)CC2)C)CC)C(C1)C 
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The compounds solanesyl-pyrophosphate, aminopterin, and paclitaxel were already available in 

the lab. However, information regarding vendors for the three other molecules needed to be 

obtained using information stored in the database (Table 7). Based on commercial availability, 

the compounds in Table 7 were recommended for experimental testing.  

Table 7: Promising lead compounds from the NT-E6 virtual screening. Refer to Table C for 

molecular structures. 

Computational 

Identifier 

Rank/Region Molecular 

name 

Binding 

Energy 

Score 

(kcal/mol) 

Commercial 

Availability 

SMILES 

MFCD01113139 4/R2 3-Chloro-2-

(2-[(3-oxo-2-

Benzfuran-1 

(3H)-Yliden] 

methyl)Hydr

azino)-5-

(Trifluoromet

hyl) 

Pyridinum 

Acetate   

 

-68.33 Bionet C1c1cc(cnc

1NN\C=C\1

/OC(=O)c2c

/1cccc2)C(F

)(F)F 

MFCD00214696 5/R2 3-Chloro-2-

(3-[1-(Phenyl 

sulfonyl)-(H-

pyrazol-3-

YL] 

Phenoxy)-5-

(Trifluoromet

hyl) Pyridine  

 

-66.13 Bionet C1c1cc(cnc

10c1cc(ccc1

)c1nn(S(=O

)(=O)c2cccc

c2)cc1)C(F)

(F)F 

PA24273 7/R2 N-(2,4-

dinitrophenyl

)-L-arginine 

-78.58 Sigma 

Aldrich 

OC(=O)[C

@@H](Nc1

ccc([N+](=

O)[O-

])cc1[N+](=

O)[O-

])CCCNC(

N)=N 
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In addition to commercial availability, these ligands were also found to have specific 

interactions to the protein according to their HierVLS-predicted ligand-protein structures. Ligand 

interaction diagrams were generated using MOE 2010.10 (CC group)
2
 and used to identify 

specific interactions between ligand and protein. The ligand interaction diagram for 3-Chloro-2-

(2-[(3-oxo-2-Benzfuran-1 (3H)-Yliden] methyl) Hydrazino)-5-(Trifluoromethyl) Pyridinum 

Acetate bound to the NT-E6 (2LJX) shows the following non-bonded interactions between the 

ligand and protein E6: Hydrogen bonds Cys51 and Arg10 (Figure 18). 

 
Figure 18: Ligand interaction diagram of 3-Chloro-2-(2-[(3-oxo-2-Benzfuran-1 (3H)-Yliden] 

methyl)Hydrazino)-5-(Trifluoromethyl) Pyridinum Acetate bound to N-terminal E6 (NT-E6).   

 

 The ligand interaction diagram for 3-Chloro-2-(3-[1-(Phenyl sulfonyl)-(H-pyrazol-3-YL] 

Phenoxy)-5-(Trifluoromethyl) Pyridine bound to the NT-E6 (2LJX) shows the following non-

bonded interactions between the ligand and protein E6: Hydrogen bonds Cys51 as well as an 

arene hydrogen bond with Val53 (Figure 19). 
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Figure 19: Ligand interaction diagram of 3-Chloro-2-(3-[1-(Phenyl sulfonyl)-(H-pyrazol-3-YL] 

Phenoxy)-5-(Trifluoromethyl) Pyridine bound to N-terminal E6 (NT-E6).     

 

 The ligand interaction diagram for N-(2,4-dinitrophenyl)-L-arginine ) bound to the NT-

E6 (2LJX) shows the following non-bonded interactions between the ligand and protein E6: 

Hydrogen bonds Cys51 and Arg10 (Figure 20). 

 

Figure 20: Ligand interaction diagram of N-(2,4-dinitrophenyl)-L-arginine to N-terminal E6 

(NT-E6).     
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Based on these interactions we can conclude that these molecules interactions are specific to E6, 

making them highly favourable potential candidates for molecular probe development.  

5.1.2.C-Terminus Computational Screening (2FJK) 

 
Figure 21: Surface representation of Protein E6 C-terminal domain (2FK4). The red dot 

represents the binding site as determined using PASS
1
.  

 

All three databases were also docked to the C-terminus HPV16 E6 structure (CT-E6), 

with PDB code 2FK4, which only had one binding region identified by Pass
1
 (Figure 21). Prior 

to docking the protein structure (PDB 2FK4) was checked for quality of dihedral angles using a 

Ramachandran Plot (Figure 22). Most of these angles were found in the allowed region and for 

this reason this structure was deemed adequate for VLS.  
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Figure 22:  Ramachandran plot of HPV16 E6 C-terminal domain (PDB 2FK4)  The plot was 

generated using MOE 2010.10 and used to check the dihedral angles of the experimentally 

determined structure prior to docking. 

 

The screening of these databases against one binding site of E6 using a high performance 

computer cluster at the Shared Hierarchical Academic Research Computing Network 

(SHARCNET)
3
. A binding/nonbinding threshold (-35.47Kcal/mol) was established as the mean 

binding energy of the entire 3,339 compounds set plus two standard deviations from the mean 

(Figure 23). A summary of this screening is laid out in Table 8.   

Table 8: Summary of HierVLS results for C-terminal domain of HPV16 E6 (2FK4)   

Number of 

Compounds 

Submitted 

Number of 

Molecules Scored 

Binding 

Threshold 

(kcal/mol) 

Number of 

Molecules that 

Passed Threshold 

10,264 3,339 -35.47 295 
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Figure 23: Force field scores for 3,339 compounds docked to CT-E6.  binding/nonbinding 

threshold (-35.47Kcal/mol) was established as the mean binding energy of the entire 3,339 

compounds set plus two standard deviations from the mean 

 

. Establishing a statistical threshold is necessary because there are no available known small-

molecule binders to HPV16 E6 that could be docked to the structure and used as reference. 

Using this non-binder/binder threshold, three compounds from the primary amine database and 

five from the fluorine-containing database were selected for further analysis (Tables 9 and 10, 

respectively). 

Table 9: Top three compounds from the primary amine database in order of rank. All molecules 

passed the binding/non-binding threshold of -35.47kcal/mol. Refer to Table D for molecular 

structures.  

 

 

Compound 

ID 

Compound 

Name 

Binding 

Energy 

(Kcal/mol) 

Commercial 

Availability 

Smiles String 

Cmp47400 L-mimosine -46.81 Sigma 

Aldrich 

OC1=CN(C=CC1=O)C[C@H](N)C 

(O)=O 

Cmp144614 (S)-2-Amino-2-

methyl-4 

phosphonobutano

ic acid 

-45.83 Sigma 

Aldrich 

P(O)(O)(=O)CC[C@] (N) 

(C(O)=O)C 

Cmp37088 O-succinyl-L-

homoserine 

-45.62 Sigma 

Aldrich 

O(C(=O)CCC(O)(=O)CC[C@H](N 
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Table 10: Top 5 compounds from the fluorine-containing molecule database in order of rank. All 

these compounds passed the binding/nonbinding threshold of -35.47kcal/mol. Refer to Table E 

for molecular structures  

 

Both, the top three primary amines and top five fluorine-containing compounds, were further 

evaluated for commercial availability and safety, in addition to presence of specific ligand-

protein binding interactions, as determined by ligand interaction diagrams created using MOE 

2010.10 (CC group)
4
. These diagrams allow the visualization of the interactions that the ligand 

has with the residues of the protein. These interactions validate the binding energy score, since 

Compound ID Compound Name Binding 

Energy 

(Kcal/mol) 

Commercial 

Supplier 

Smiles String 

MFCD09040704 3-methyl-

4(trifluoromethyl) 

Isoxazolo [5,4-B] 

Pyridin-6-YL-4-

methyl benzene 

sulfonate 

 

-62.22 

 

Enamine S(Oc1nc2onc 

(c2c(c1)C(F)(F)F)C) 

(=O) (=O) c1ccc (cc1) 

C 

MFCD14636665 3-Amino-5-

fluorobenzo [E] 

[1,2,4] Triazine 1, 4 

dioxide 

 

-49.53 

 

Sunbiochem 

 

Fc1c2[n+]c(n[n+]([O-

])c2ccc1)N 

MFCD00871869 Ofloxacin N-Oxide -48.80 Sinochem Fc1cc2c3N(C=C(C(O)

=O)C2=O) [C@@] 

(COc3c1N1CC[N+]([

O-]) (CC1)C)C 

MFCD00955225 (5-methylisoxazo-

3-YL) ((2-

(trifluoromethyl) 

phenyl) sulfonyl) 

amine 

 

-48.70 

 

ABCR and Ryan 

Scientific  

 

S(=O)(=O) 

(Nc1noc(c1)C)c1ccccc

1C(F)(F) F 

MFCD11977074 Ethyl 6-chloro-2-

(4-Fluorophenyl) 

imidazo [1,2-A] 

pyrinde-3- 

carboxylate 

 

-47.94 

 

Golden Bridge 

Pharma 

 

C1C=1C=Cc2n(C=1)c

(C(OCC)=O)c(n2)-

c1ccc (F) cc1 
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favourable binding energies should correspond to specific interactions between ligand and 

protein.  

The ligand interaction diagram for 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 

Dioxide (AFTD) shows hydrogen bonds (HBs) from the ligand to the Lys45, and Arg58 residues 

of the CT-E6 (2FK4) structure (Figure 24). These HBs indicate specific interactions between the 

partners, as opposed to non-specific atomic interactions. The ligand interaction diagram for O-

succinyl-L-homoserine bound to the CT-E6 (2FK4) shows the following non-bonded 

interactions: HBs Arg40, Lys45, and Glu37 as well as a metal/ion contact with Arg40 (Figure 

25). The presence of these non-bonded interactions justify the favourable binding energies 

calculated for this complex and, hence, increases our confidence that binding of this ligand to the 

target protein will be specific. This would be observed experimentally as a ligand concentration-

dependent binding response. 

 

Figure 24: Ligand interaction diagram of 3-Amino-5-fluorobenzo [E] [1,2,4] Triazine 1, 4 

dioxide (AFTD) bound to C-terminal E6 (CT-E6).  
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Figure 25: Ligand-protein interactions diagram of O-succinyl-L-homoserine bound to C-terminal 

(CT-E6). 

 

With the objective of performing experimental assays, compounds that were not available 

commercially or were not safe to work with were deemed not useful for our purposes regardless 

of their binding energy score, and were eliminated from our list. Based on our selection criteria, 

O-succinyl-L-homoserine (O-succinyl) and 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 

Dioxide (AFTD) were selected for experimental testing (Table 11).  Additionally, two of the 

shelf compounds, paclitaxel (-70.10 kcal/mol) and aminopterin (-59.61 kcal/mol), were found to 

have sufficiently high binding energy (above the non-binding/binding threshold), to justify 

experimental testing. The ligand interaction diagram for paclitaxel bound to the CT-E6 (2FK4) 

shows the following non-bonded interactions: H-bonds Arg 58, Lys45, and Arg40 (Figure 26). 

The ligand interaction diagram for Aminopterin bound to the CT-E6 (2FK4) shows the following 

non-bonded interactions: H-bonds Try7, Lys45, and Gln46 (Figure 27). Due to these specific 

interactions for both compounds, we expect binding to be specific.  

The binding of all four compounds to the protein was assessed experimentally using 

intrinsic tryptophan fluorescence. Table 11 contains information about all ligands tested 

experimentally.  
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Figure 26: Ligand-protein interactions diagram of Paclitaxel bound to C-terminal E6 (CT-E6) 

 

 

 
 

Figure 27: Ligand-protein interactions diagram of Aminopterin bound to C-terinal E6 (CT-E6) 
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Table 11: Ligands selected for experimental testing. All four ligands were selected based on 

binding scores, ligand interactions to the protein, and commercial availability. Refer to Table F 

for molecular structures. 

Compound 

Name 

Overall 

Rank 

Binding 

Energy 

(kcal/mol) 

Abbrevi

ation 

Similes  

O-succinyl-L-

homoserine 

25 -45.62 O-

succinyl 
 O(C(=O)CCC(O)(=O)CC[C@H](N)C(O)=O 

 

3-Amino-5-

Fluorobenzo [E] 

[1,2,4] Triazine-

1,4 Dioxide  

12 -49.53 AFTD Fc1c2[n+]c(n[n+]([O-])c2ccc1)N 

Aminopterin 8 -59.61 Amino O=C(O)C(NC(=O)C1CCC(CC1)N

CC2NC3C(NC2)NC(NC3N)N)CC

C(=O)O 

Paclitaxel 4 -70.10 Pac CC1=C2C(C(=O)C3(C(CC4C(C3C

(C(C2(C)C)(CC1OC(=O)C(C(C5=

CC=CC=C5)NC(=O)C6=CC=CC=

C6)O)O)OC(=O)C7=CC=CC=C7)(

CO4)OC(=O)C)O)C)OC(=O)C 

 

5.2.INTRINSIC TRYPTOPHAN FLUORESCENCE EXPERIMENT 

Intrinsic tryptophan fluorescence assays were employed in order to test against E6 

ligands from computational screening that are not fluorescent labelled or intrinsically 

fluorescent. In these assays we hope to observe a change in the protein's intrinsic tryptophan 

fluorescence that is greater than 30% in the presence of the ligand. This will indicate a 

significant change to the environment of the tryptophan, suggesting a binding event. Principles 

of tryptophan fluorescence are outlined in the methodology section of this thesis (3.2.2).  

The tryptophan (Trp) fluorescence assay was performed for paclitaxel, O-succinyl-L-

homoserine and AFTD in an attempt to obtain binding constants which would facilitate the 

fluorescence polarization dose-response curve assay. The ligands were tested at 300M, 100M, 

25M, 10M, 1M, 0.1M, and 0.01M. Paclitaxel was tested at 15M, 10M, and 1M in 

order to make sure it did not precipitate out at higher concentrations as it is not soluble unless the 
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concentration of DMSO is high. We wanted to keep the concentration of DMSO low as it could 

denature E6 protein. Preliminary experiments showed that a protein concentration of 0.02mg/ml 

was sufficient to obtain a good signal (See appendix A). However, to improve signal even 

further, the protein concentration was increased to 0.03mg/ml. Proper solvent controls were 

provided for DMSO, which is used to solvate paclitaxel. Unfortunately, our instrumentation 

setup was not adequate for obtaining emission spectra in the < 340 nm range with excitation at 

288 nm.  This prevented the use of intrinsic Trp fluorescence for determining binding constants. 

We instead used the percent change at 350 nm emission to probe binding. Percent change (% 

change) was considered indicative of binding if > 30%. An E6-specific antibody (6F4) was used 

as positive control and induced a change greater than 30%. The change in intrinsic fluorescence 

induced by   3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine -1, 4 Dioxide (Figure 28) shows 

concentration-dependency, whereas the presence of O-succinyl-L-homoserine induces quenching 

albeit not concentration-dependent (Figure 29). In addition, concentration dependence was 

observed for Paclitaxel (Figure 30).  
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Figure 28: Change in intrinsic tryptophan fluorescence at 350nm induced by 3-Amino-5-

Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) after 30minutes incubation in the presence 

of E6. A) Fluorescence intensity. B) Bar graph %change. C) log scale % change plot. D) AFTD 

300µM (black) and protein alone (red). Reaction was incubated at a temperature of 37C and 

buffered to a pH of 7.3 (20mM HEPES 7.3, 0.01% tween (v/v)). Protein concentration was held 

constant at 0.03mg/ml. 6F4 antibody was used as a positive control at a concentration of 

0.4ng/ml AFTD concentration was varied (300µM-0.01µM). The red line in graph B represents 

the 30% change baseline. Experiment was validated by our positive control, 6F4 antibody, 

producing a change above 30%. The effect of AFTD is concentration-dependent.  
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Figure 29: Change in intrinsic tryptophan fluorescence at 350nm induced by O-succinyl-L-

homoserine after 30minutes incubation in the presence of E6. A) Fluorescence intensity. B) Bar 

graph %change. C) log scale % change. D) Plot of O-succinyl-L-homoserine 300µM (black) and 

protein alone (red). Reaction was incubated at a temperature of 37C and buffered to a pH of 7.3 

(20mM HEPES 7.3, 0.01% tween (v/v)). Protein concentration was held constant at 0.03mg/ml. 

6F4 antibody was used as a positive control at a concentration of 0.4ng/ml. O-succinyl-L-

homoserine concentration was varied (300µM-0.01µM). The red line in graph B) represents the 

30% change baseline. Experiment was validated by our positive control, 6F4 antibody, 

producing a change above 30%. The effect of O-succinyl-L-homoserine did not follow a 

concentration-dependence, however showed multiple concentrations where quenching above 

30%  was observed.  
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Figure 30: Change in intrinsic tryptophan fluorescence at 350nm induced by Paclitaxel after 30 

minutes incubation in the presence of E6. Reaction was incubated at a temperature of 37C and 

buffered to a pH of 7.3 (20mM HEPES 7.3, 0.01% tween (v/v)). A) Bar graph % change. B) 

%change log scale concentration. C) Protein alone 15M control (red) and paclitaxel on its own 

15M (black).  Protein concentration was held constant at 0.03mg/ml. 6F4 antibody was used as 

a positive control at a concentration of 0.4ng/ml. Paclitaxel was tested in three concentrations 

(15µM, 10µM, and 0.01µM). The dotted line in graph A) represents the 30% change baseline. 

Experiment was validated by our positive control, 6F4 antibody, producing a change above 30%. 

The effect of paclitaxel is concentration-dependent. 



 

77 

Although O-succinyl-L-homoserine did not show concentration-dependence it still induced a 

change in fluorescence greater than 30% at some concentrations. However, further ligand 

binding assays are needed before we can conclusively say binding has occurred. Paclitaxel will 

also need to be further tested for verification. The antibody used also appears to be giving 

inconsistent results. This is believed to be due to the antibodies sensitivity to the environment 

and the lack of sodium azide in the antibody's buffer. Sodium azide is usually in antibody buffers 

to prevent microbial contamination. Since the antibody had been in and out of the fridge between 

experiments, contamination might have occurred. In addition the antibody may have denatured 

or degraded when exposed to the external environment even for a short period of time.   

5.3.CHARACTERIZTION OF AFTD 

5.3.1.Spectroscopic Characterization of AFTD 

   In order to determine a proper filter set for AFTD, spectroscopy characterization needed to 

be conducted. Through this characterization a maximum excitation at 260nm with a second 

maximum at 435nm, and a maximum emission at 535nm was determined (Figure 31). This 

allows us to decide on a proper filter set suitable for AFTD, which contained an excitation filter 

(460/40nm), emission filter (528/20nm), and dichromatic mirror (510nm). 
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Figure 31: Excitation/Emission spectrum of 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 

Dioxide (Fluoro). Experiment was run at 37C at a pH of 7.5 (20mM 7.3 HEPES, 0.01% tween 

(v/v)). A maximum excitation was observed at 260nm with a secondary max at 435nm. 

Maximum emission was shown at 535nm.  

 

5.3.2.Standard Curve for AFTD 

A standard curve for AFTD, which was in the same microplate was used to show linearity in 

the concentration range used for the dose-response curve with a R
2
 value of 0.99 (Figure 32).  

This experiment also demonstrated that a sensitivity of 80 is sufficient for the concentration 

range chosen of AFTD (300µM-1µM).   
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Figure 32: Standard curve for AFTD. This assay was conducted at an incubation temperature of 

37C using a BioTek Synergy 4 microplate reader. Data was taken only 2 minutes after 

incubation. Each concentration was buffered to a pH of 7.5 (20mM HEPES, 0.01% tween (v/v)) 

with a sensitivity of 80 and a probe height of 4mm. A correlation coefficient R
2 

value of 0.99 

was determined, indicating a high degree of linearity.    

 

5.3.3.Equilibrium Test for AFTD bound to E6 

In order to gain further information in regards to the equilibrium of our system, change in 

polarization was tested over time using a 25µM concentration of AFTD (Figure 33).  

 

 
Figure 33: Time plot of AFTD and E6 complex. This was conducted at an incubation 

temperature of 37C using a BioTek Synergy 4 microplate reader. Each concentration was 

buffered to a pH of 3.7 (20mM HEPES, 0.01% tween (v/v)). Excitation filter (460/40nm) and 

emission filter (528/20nm) was used and 510nm dichromatic mirror. A sensitivity of 80 was used 

as well as a probe height of 4mm. Our system does not follow any particular pattern however, a 

few time points show great separation. Through this experiment, it was evident that our system 

fluctuates over time. It also shows that the signal from AFTD appears to go down after the two 

hour time point.  For this reason data was to be collected every 15 minutes for a two hour period.  
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5.4.FLUORESCENCE POLARIZATION AND EC50 DETERMINATION 

Fluorescence polarization was used to determine the EC50 value of AFTD, which was 

found to be a positive ligand in the intrinsic Trp fluorescence assay, against E6,. Through this 

assay we hoped to obtain an EC50 for AFTD that was low enough to indicate sufficient affinity 

to E6 for molecular probe. The basic principles of this assay were outlined in section 3.2.3. In 

addition basic principles of dose-response curves, which will be used to estimate the EC50, are 

discussed in section 3.2.4.  

Prior to running the FP curve, calibration experiments (Section 5.3) and preliminary 

attempts (Appendix A) were ran in order to determine concentration ranges and parameters. With 

the information gathered in the calibration experiment, a concentration range for AFTD (1µM-

300µM) was determined. Results indicated that 75 minutes was the best curve (Figure 34). This 

was not against what was shown in the equilibrium experiment (5.3.3) as the system appeared to 

oscillate over the various time periods. However in preliminary attempts time points around the 

hour mark seemed to create the best shaped curves (Appendix A).   
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Figure 34: FP curve of E6 (0.04mg/ml) incubated with varying the concentration of 3-Amino-5-

Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) (1µM-300µM). This experiment was 

performed in a Nunclon® 96 well black bottom plate at an incubation time of 75 minutes, at 

37ºC. The reaction was buffered to a pH of 7.5 (20mM HEPES 7.5, 0. 01% tween). The black 

dotted line represents the background polarization of AFTD without protein. EC50 value was 

estimated at 6µM, which indicates sufficient affinity for a molecular probe.  

 

     The estimated EC50 value from this curve is 6µM with a range of 3.6 µM to 10µM, as 

determined using Prism 6 (Graph Pad, inc)
5
 non-linear regression dose-response four parameters 

function. This range is fairly small and not unreasonable based on previous results (Appendix A). 

The EC50 value is adequate for probe development as molecular probes should have binding 

constants that indicate high affinity. Ideally this value would fall in the nM range; however, µM 

range is deemed sufficient affinity for a molecular probe
6
.  The EC50 value is also aligned with 

the range of affinity generally associated with virtual ligand screening. This experiment validates 

the computational screening, confirming AFTD as a binder to E6 with an EC50 value in the 

micromolar range (6µM).  
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5.5.CELL BASED EXPERIMENTS 

 Cell permeability and toxicity are important factors in the assessment of AFTD as 

potential in-vivo molecular probe for diagnostic imaging.  The cell assays were designed to give 

information regarding specificity of AFTD to E6. The cell types chosen for these assays were 

CaSki, SiHa, and C33A. CaSki and SiHa cell express E6, whereas C33A is a cervical cancer cell 

line that does not express E6.  

5.5.1.Cell viability assay 

      The goal of this experiment is to determine if AFTD is toxic to cells at the concentrations 

proposed (25µM and 10µM), and whether toxicity is E6-dependent. The first cell-based 

experiment used an Axiovert microscope at the Thunder Bay Regional Health Sciences Center 

(TBRHSC) following exposure to two different concentrations of 3-Amino-5-Fluorobenzo 

1,4Triazine Dioxide (10µM and 25uM). Each cell type was incubated for 1, 3, 6, 12 and 24 hours 

then imaged using the microscope. Very little change was noticed after one hour and three hours. 

For this reason the cells were not viewed again until the 24 hour time point. It was discovered 

that all the CaSki and SiHa cells were dead in the 25uM concentration wells, and most of the 

cells were dead in the 10µM wells (Figure 35). To determine whether toxicity was caused by our 

compound and not the ethanol used in our stock solutions, the three cell types were exposed to 

the same concentration by volume of ethanol and incubated for 24hrs as a control in both cell 

lines (Figure 35). Upon observing the cells it was determined that it was not the ethanol killing 

the cells but our fluorescent compound AFTD (Figure 36).  
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Figure 35: CaSki cells after incubation with AFTD (25uM) for 24hrs. Most of the cells have 

died at this time point: the cells are floating and appear to have a white ring.  

 

 

Figure 36: CaSki cells incubated with ethanol (0.01%) for 24hrs. In this solvent control, the 

cells are indeed healthy as they look normal, indicating that it is AFTD and not ethanol that is 

causing cell death.   
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Since both these cells types contained copies of E6, it was possible that AFTD is killing the 

cells in an E6 specific manner. To further test this hypothesis, an additional cell line C33A was 

tested.  C33A cells were used in order to test if the cell death induced by AFTD is E6-dependent. 

C33A is a cervical cancer cell line, however contains zero copies of E6, making it an ideal 

choice for a negative control. Wells were incubated with AFTD (25µM and 10µM) for 24 hours. 

Ethanol control wells were included in this experiment. Upon examination under a light 

microscope at the 24 hour time point, it was determined that our ligand is generally cytotoxic at 

the concentrations tested (Figure 37). This was further concluded using the ethanol control 

(Figure 38) 

 

Figure 37: C33A cells incubated with ethanol (0.01%). In this solvent control, the cells are 

alive (not floating), indicating that it is AFTD and not ethanol that is causing cell death.   
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Figure 38: C33A cell lines after incubation with AFTD (25uM) for 24hrs. Most of the cells are 

dead as they are still attached to the plate. 

 

     Although cytotoxic at 10µM,  AFTD would still be useful as imaging probe in imaging 

modalities such as Position Emission Tomography (PET), where very small amounts, generally 

in the nM range, are used
7
. AFTD can be labelled with 

18
F and it is, hence, suitable as PET 

probe. However, further cytotoxicity studies need to be conducted to investigate if AFTD is safe 

in vivo at lower concentrations. Regardless of toxicology, AFTD may be useful as a biochemical 

probe for fluorescence-based assays involving E6. 

5.5.2. AFTD Cell Permeability Experiment 

In order to determine if AFTD is cell permeable, a fluorescence ligand uptake experiment 

was designed utilizing AFTD’s intrinsic fluorescence. We tested AFTD against the three cell 

types (CaSki, SiHa and C33A) in order to determine if AFTD is cell permeable, and if uptake is 

E6-specific uptake should be seen most in CaSki cells as they contain the most copies of the E6 
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genome, with SiHa and C33A following respectively. All three cell types CaSki, SiHa and C33A 

cells were incubated with two concentrations of AFTD (25µM and 50µM). The time points 

selected were 1, 2, and 3 hours (Figure 39). We also controlled for cell density by reading 

absorbance at 260, 280 and 535nm using the microplate reader. The one hour time point was not 

analyzed as it was inconsistent with the other time points. This is because a lot of air bubbles 

were present in the plates and our technique had to be adjusted for the consecutive time points to 

make sure more accurate reads could be made.  
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A) 

 B) 

 

Figure 39: Fluorescence intensity (FI) at 2 hour (A) and 3 hour (B) incubation. Intensities 

collected from the second cell permeability test. Cells were incubated AFTD at 25µM and 

50µM. Experiment was conducted in a BioTek Synergy 4 Microplate reader at an incubation 

temperature of 37ºC. AFTD-associated FI showed significant difference (P<0.05) relative to 

control at 50µM in C33A cells, indicating cell permeability. These controls are cells under the 

same environment as those wells that contain cells that have been exposed to AFTD just with no 

AFTD.  Fluorescence was measured using a fluorescence filter system (Ex 460/40nm, Em 

528/20nm, and 510nm dichromatic mirror).   
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Multiple comparison ANOVAs were ran for each cell type, time point and concentration. 

The C33A 50µM sample was shown to be statistically higher in fluorescence than its 

corresponding control (Figure 39). This allows us to conclude that our molecule did get inside 

this cell type. This cell type does not contain any copies of E6, however further testing can be 

done outside the scope of the project to look at specificity of binding to E6. The fact that AFTD 

was not present in the CaSki cells does not mean it does not accumulate in this cell type. CaSki 

cells grow in tight clusters making it difficult for compounds to get inside the cells
8
. Another 

potential reason for the negative result could be drug-resistant pumps with affinity for AFTD, 

such as MDR-1, which has been detected in SiHa cells
9
. Drug resistance has been scene in CaSki 

cells although by estrogenic hormones
10

. This hypothesis would need to be further investigated 

using an alternative method, such as a microscope capable of inducing fluorescence. Cells would 

be incubated with different concentration of AFTD (50µM and 25µM) and multiple time points 

would be viewed using the microscopes where pictures would be taken. Pictures would have to 

be taken at time point shorter than one hour to be able to observe drug resistance pumps at play. 

Further experiments are thus needed to determine if AFTD accumulates in the CaSki cell lines 

versus SiHa or C33A.  

5.6.6F4 ANTIBODY COMPETITION ASSAY 

 Preliminary fluorescence polarization assays using AFTD and the 6F4 antibody indicated 

that these molecules bind to different regions within E6. This was evidenced as an increase in 

polarization observed when the antibody 6F4, AFTD, and E6 were all in the same reaction well, 

as shown in appendix A. In order to further demonstrate this cooperative binding event, we 

tested various concentrations of 6F4 antibody against fixed concentrations of both AFTD (6µM) 

and E6 (0.04mg/ml). These correspond to the EC50 concentration conditions as determined in a 
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separate FP assay (Section 5.4). Seven 7 concentrations of 6F4 antibody were tested (4ng/ml to 

0.000004ng/ml). These results are shown in Figure 40. The system appears to be equilibrated 

after 90 minutes. For this reason, the 105min time point was used for further analysis.  

 

 

Figure 40: Time curve showing the change in polarization of the protein and ligand complex and 

the antibody, protein ligand complex. This experiment was run using a fixed concentration of 

ligand 6µM and 0.04mg/ml of protein. This experiment was performed in a Nunclon®® 96 well 

black bottom plate at a temperature of 37ºC and buffered at a pH of 7 (20mM HEPES 7.3, 0.01% 

tween). Our system seems to be equilibrated after 90 minutes. However no real clear pattern of 

change in polarization is observed within the concentrations used of 6F4.  

 

A bar graph was created for the 105 minute time point to compare the FP values for all 

concentration of antibody tested (Figure 41). This bar graph shows the higher concentrations of 

antibody (6F4) do not produce a significant change in polarization when comparing them to the 

positive control of protein E6 and AFTD. The last two concentrations appear to show a 

significant result. One potential explanation of this couple could be that AFTD and antibody 

(6F4) are binding at the higher concentration, which was further investigated.  
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Figure 41: Fluorescence polarization varying the antibody concentration. Seven concentrations 

of 6F4 antibody (4ng/ml-0.000004ng/ml) were used with a constant concentration of AFTD 

(6µM) and E6 protein (0.04mg/ml). This reaction was conducted at an incubation temperature of 

37ºC and at a pH of 7.5 (20mM 7.5 HEPES 0.01% tween (v/v/)). An increase in polarization was 

observed for samples containing 6F4 in presence of AFTD and E6 relative to samples containing 

only AFTD and E6, indicating that 6F4 binds to the AFTD-E6 complex. Some binding between 

the antibody 6F4 and AFTD is also observed.  

 

The fluorescence polarization calculated for AFTD and 6F4 shows some binding 

interaction but with an oscillating behaviour relative to antibody concentration, within the range 

tested (Figure 42). Additional assays are necessary to better understand this behaviour, but 

antibody aggregation may play a role (Figure 42). 
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A) 

 

B) 
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Figure 42: Fluorescence polarization versus log of the concentration (µg/ml) of 6F4 antibody. A) 

Concentration scale and B) log scale. Plate was incubated for 105 minutes at a temperature of 

37ºC, and pH was buffered to 7.5 (20mM 7.5 HEPES, 0.01% tween (v/v). Concentrations of 3-

Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) at 6µM and E6 protein at 

0.04mg/mLwere held constant while varying the concentration of antibody 6F4.The black dotted 

line represents the polarization of AFTD and E6 and the red dotted line represents the 

background polarization from AFTD on its own. It can be concluded that 6F4 and AFTD are not 

interacting more at the higher concentrations then at the lower concentrations, within the range 

tested.  
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 In order to overcome the inconsistencies shown with the antibody, an additional 

experiment should be performed, where E6 interaction with E6AP, a protein known to bind to 

E6, will be tracked using AFTD. This will give further validation of use of AFTD for the 

purpose of a tool for such biochemical assays.  

Although additional assays need to be performed, the competition assay results indicate 

that AFTD may be useful as a probe for biochemical assays involving E6 interactions with other 

proteins.  E6 is known to interact with many proteins within the cell. The best known interaction 

being with E6AP, which can lead to ubiquitination of p53 if high risk variants are present
11

. E6 is 

also shown to interact with other protein such as MAGI-1
12

, MAGI-2
13

, MAGI3
13

, hScribble
14

, 

hDIg
13

 and p300/CBP complex
15

. With these interactions in mind, developing a tool to further 

track protein-protein interaction of E6 would be very useful. Current tools used are GSP-pull 

down assays, which are accurate, however are time consuming and only show interaction inside 

the cell environment
16

. It is important to look at these interactions outside the cell as many 

factors within the cell can impact the interaction of these proteins. Testing E6 protein binding 

interactions outside of the cell would enable a better understanding of these interactions. A 

small-molecule molecular probe to allow for protein-protein interaction to be tracked outside of 

the cell environment would be the first of its kind for E6.  

 

5.7.CHARACTERIZATION OF O-SUCCINYL-L-HOMOSERINE-BODIPY 

      O-succinyl-L-homoserine was conjugated with Bodipy dye (3-Bodipy-

proanoylaminocaproic Acid, N-Hydroxysuccinimide) in order to further validate O-succinyl-L-

homoserine's potential use as a molecular imaging probe. Following successful conjugation of O-

succinyl-L-homoserine, the conjugate was characterized in order to determine what filters and 

mirror were optimal for fluorescence experiments. It was determined, based on emission and 
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excitation analysis, that the conjugate compound has well-defined maximum excitation (500nm) 

and maximum emission (510nm) (Figure 43). Given these values, an excitation filter (485/20nm) 

and emission filter (528/20nm), and a dichromatic mirror (510nm) were selected.     

 

Figure 43: Emission (green) and excitation (red) plot of O-succinyl-L-homoserine-BODIPY. 

This plot shows a maximum excitation at 500nm and emission at 510nm. Using these values we 

were able to develop a proper optical system (Ex filter: 485/20nm, Em filter: 528/20nm, and 

dichromatic mirror 510nm)  

 

       Prior to conducting this experiment a standard curve was run using all the concentration 

proposed for the actual experiment to make sure that our concentrations demonstrated linearity 

(Figure 44). It was determined that this filter set up was adequate as an R
2 

value of 0.90 was 

determined indicated linearity (Figure 44).    
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Figure 44: Linear fluorescence intensity plot of O-succinyl-L-homoserine-BODIPY (300M, 

100M, 10M, and 1M) and protein E6 (0.04mg/ml). Plate was incubated at a temperature of 

37C and pH was buffered to 7.5 (20mM HEPES, 0.01% tween (v/v)).R
2
 was determined using a 

linear function to be 0.90.  

   

5.8. FP FOR O-SUCCINYL-L-HOMOSERINE CONJUGATE 

 Fluorescence polarization was conducted using three concentration of O-succinyl-L-

homoserine-BODIPY (100M, 10M, and 1M) and 0.04mg/ml of E6 (Figure 45).  

 

Figure 45: Fluorescence polarization time plot of O-succinyl-L-homoserine-BODIPY (100M, 

10M, and 1M) and protein E6 (0.04mg/ml). Plate was incubated at a temperature of 37C and 

pH was buffered to 7.5 (20mM HEPES, 0.01% tween (v/v).  Protein concentration was held 

constant at 0.04mg/ml. The dotted line represents the baseline polarization of O-succinyl-L-

homoserine-BODIPY. Equilibrium is reached around 1hour, but FP values are at baseline by 

then. Our results indicate that the O-succinyl-L-homoserine-BODIPY is not binding at any 

concentrations tested. 
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Based on the time plots (Figure 45), it is evident that the system equilibrated after 1hour. 

Upon equilibrium there is no difference in polarization between free O-succinyl-L-homoserine-

BODIPY and O-succinyl-L-homoserine-BOPIDY added to E6 protein at any of the 

concentrations tested.  

 

Figure 46: Bar graph of polarization (mP) at 60 minutes for the O-succinyl-BODIPY binding 

experiment. Plate was incubated at a temperature of 37C and pH was buffered to 7.5 (20mM 

HEPES, 0.01% tween (v/v). E6 protein concentration was held constant at 0.04mg/ml. All three 

concentration were plotted (100µM, 10µM and 1µM) with the control in red, which represents 

the polarization (mP) of  O-succinyl-L-homoserine-BODIPY on its own. This bar graph 

demonstrates that O-succinyl-L-homoserine-BODIPY does not bind to E6 at the concentrations 

tested.  

 

Based on these results it is not believed that O-succinyl-L-homoserine-BODIPY binds to E6. 

However, results for unlabeled O-succinyl-L-homoserine are still potentially promising, as 

quenching above 30% was observed in tryptophan fluorescence experiments.   
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Chapter 6.Conclusion and Future Work 

Much work has gone into further understanding HPV as it remains a large concern in 

today’s health care system, due to its association with various cancers, including cervical. HPV 

remains a complex virus with many known genotypes. However, the complexity does not end 

there as even high risk types do not necessarily express variants of E6 responsible for the cell 

immortalization leading to increased susceptibility to cancer development. Finding a way to 

detect protein E6, specifically those variants associated with invasive cancer, has the potential to 

aid in early intervention, thus improving the life of those impacted. Finding a molecule that can 

be used as a molecular probe for biochemical assays for E6 protein-protein interactions (PPIs) 

would also be beneficial as E6 is known to bind to many proteins within the cell. To date no 

method for probing PPIs outside of the cell environment has been developed. This would allow 

for better understanding of these interactions, and may lead to new therapeutic and diagnostic 

strategies.    

To date there is not a small organic molecule known to bind specifically to E6. This left a 

great starting point in the pursuit to find such a compound. Through using a combination of 

computational methods and experimental methods our hope was to find a small organic molecule 

that could bind to wild-type HPV variant 16 protein E6 specifically. Such small organic 

molecule could be a very useful tool in the further understanding of HPV infection. 

3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD), showed great promise 

and for this reason was tested extensively, both computationally and experimentally. Due to its 

intrinsic fluorescence, and fluorine atom this molecule could be used for optical imaging or 

Positron Emission Tomography (PET), respectively, if shown to be specific and non-toxic.  
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 Both tryptophan and fluorescence polarization assays for AFTD against E6 were 

conclusive of a concentration-dependent binding. An EC50 value of 6µM was determined for 

AFTD and this is deemed sufficient for molecular probe development. This not only 

demonstrates affinity but also indicates that binding is indeed specific. Cell based assays 

indicated that AFTD is cytotoxic at 25μM; however further cytotoxicity experiments would need 

to be conducted to test at what concentration AFTD could potentially be used safely in-vivo. Cell 

based experiments also demonstrated evidence of cell permeability; however this was shown 

significantly in a cell line that contains no copies of E6 (C33A). This event was believed to be 

the result of drug resistance pumps shown and documented in SiHa cells, and morphological 

characteristics documented and shown in CaSki cells. Microscopic images along with shorter 

time points will allow us to validate this hypothesis. High Intensity Focused Ultrasound (HIFU) 

methods could be employed in order to overcome the tightly packed clusters that limit 

permeability, shown and documented in CaSki cells.  

AFTD also appears suitable for usage as a molecular probe for a biochemical protein-

protein interaction assay. AFTD was able generate results that indicate protein-protein 

interactions between E6 and HPV16 E6 specific antibody (6F4). However, due to inconsistencies 

seen with this antibody other proteins known to bind to E6, will be tested in the future such as E6 

Associated Protein (E6AP).    

In addition to AFTD, O-succinyl-L-homoserine, and paclitaxel also demonstrated binding 

to E6 when using intrinsic tryptophan fluorescence and could be further investigated. O-

succinyl-L-homoserine conjugated to a bodipy dye failed to bind to E6, which is disappointing. 

Conjugation with other dyes could be explored, both computationally and experimentally in an 

attempt to find a conjugate that retains binding affinity to E6.  Paclitaxel showed an excellent 
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dose-dependence at the concentrations tested using intrinsic tryptophan fluorescence. This is a 

particularity interesting result as Paclitaxel is a commonly used chemotherapy drug. However, in 

order to fully characterize Paclitaxel, additional experimental testing would be required in order 

to gain an accurate EC50. Due to availability of radio-labelled Paclitaxel this could be easily 

done using a scintillation proximity assay. Paclitaxel would be an interesting probe for E6 due to 

its current use and availability within a clinical setting. Paclitaxel it is already a characterized 

drug approved for clinical use.  

Computational screening conducted using the structure of the N-terminal domain of E6 

suggests additional compounds that could be characterized in the future as potential molecular 

probes. Also with the publishing of a full structure of HPV16 E6 (PDB 3GIZ) further 

computational studies can be conducted with the already created databases. This will allow us to 

further validate our computational work with the two separate domains.   

Through the utilization of a variety of computational and experimental techniques we 

were able to find and begin the characterization of AFTD. Affinity was demonstrated both 

computationally and experimentally. Cell permeability was also demonstrated in C33A, however 

due to potential drug resistance shown in CaSki and SiHa cells further work will need to be 

conducted in order to determine specificity for E6. AFTD is also believed to be a suitable probe 

for biochemical assays for E6 protein-protein interactions. Other molecules such as O-succinyl-

L-homoserine and paclitaxel also showed great promise for use as a molecular probe. However, 

AFTD due to advantageous characteristics was the major focus of this study. We believe that 

AFTD as a dual propose molecular probe could be a very powerful tool in furthering our 

understanding of HPV's link to cancer.  The same approach that identified AFTD may lead to the 
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identification of   molecular probes for high-risk variants of protein E6 associated with cancer 

development.  
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Chapter 7.Appendix A: Calibration and Preliminary Results 

7.1.OBTAINING FLUORESCENCE AND ABSORBANCE SPECTRUMS FOR 

LIGANDS   

 Prior to running ligand binding assays aborbance and emission spectrums were run for 

each ligand. Emission spectrums were run at an excitation of 288nm in order to make sure 

ligands that could cause quenching in tryptophan fluorescence were identified. Absorbance 

spectra for all four ligands were obtained using a Take3 microplate. Fluorescence emission 

spectrum of all for ligands was obtained using a Nunclon® 96 well- microplate. Both plates were 

run on a Synergy 4 BioTek microplate reader at an incubation temperature of 37C. All ligands 

were kept at a constant concentration (10uM) (Figure A).  
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A) 

 

B) 

 

 

 

 

 

 

Figure A: Shows the emission (A) absorbance (B) and for the four ligands tested (10M). These 

graphs were taken using a Nunclon® 96 well plate incubated at 37C at a constant pH using a 

HEPES 7.0 buffer system (20mM Hepes pH 7.3). These ligands were excited at 288nm (B) and 

the blank containing the buffer and water. Each well was toped up to a total volume of 100L. 

Each ligand was at a concentration of 10M. From these graphs we can see that Aminopterin is 

the only ligand that may cause quenching in tryptophan fluorescence assays. In addition a 

maximum absorbance was identified at 270nm with a secondary max at 470nm for AFTD with a 

max emission at 535nm. The other ligands tested were deemed non-fluorescently active.   
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  Ir was determined that the only ligands that were fluorescently active were Aminopterin 

and AFTD. AFTD was determined to have a max absorbance at 270nm and a max emission at 

535nm. Since this compound was to be used in fluorescence polarization assays a proper filter 

set would need to be established. Due to availability of filters the secondary absorbance 

maximum was used (470nm) (Figure A). From this a filter set containing an excitation filter 

(485/20nm), emission filter (528/20nm), and dichromatic mirror (510nm) was implemented. 

Paclitaxel appeared to come out of solution and for this reason was not included in the 

absorbance spectrum .  

7.2.PRELIMINARY RESULTS   

7.2.1.6F4 antibody preliminary test to select concentration  

Lots of work has been conducted with an antibody specific to E6 (6F4), as it has taken 

part in both tryptophan fluorescence, and fluorescence polarization experiments.   

Preliminary experiments were conducted to determine the proper concentration of 

antibody to be used in tryptophan fluorescence assays. Four 100 fold dilutions of the antibody 

from a 4µg/mL stock solution were prepared.  Change in intrinsic tryptophan fluorescence 

induced on E6 in presence of the antibody was measured. Results indicated that a change of at 

least 30% was possible with each of the concentrations used (Figure B). However the 0.04ng/mL 

concentration showed the highest percentage change (80%) (Figure B).   
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Figure B: %change curves showing the change in intrinsic tryptophan fluorescence of the protein 

and ligand complex and the antibody, protein ligand complex. A)5minutes B) 30minutes and C) 

1hour. This experiment was run for 60 minutes using 4g/mL, 4ng/mL, 0.4ng/mL, 4pg/mL, 

0.04pg/mL of antibody, 10M of ligand, and 0.24M of protein. This experiment was performed 

in a Nunclon® 96 well black bottom plate at a temperature of 37C and buffered at a pH of 7 

(20mM HEPES 7.3, 0.01% tween). From this we can see that all the concentrations of antibody 

produce about the same change in tryptophan florescence. From this we selected a concentration 

of 0.4ng/mL to be the optimal concentration.  
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In order to assess whether or not the antibody contains tryptophan curves of each 

concentration were examined with an excitation of 288nm (Figure C). As shown in figure C, the 

6F4 antibody contains tryptophan and proper controls for its contribution to the measurements 

need to be used in other tryptophan fluorescence assays for each concentration tested.  

  

Figure C: Fluorescence intensity curve of the antibody (6F4) at various concentrations on its 

own. This experiment was run and data was taken at 60 minutes using 4g/mL, 0.04µg/mL, 

0.0004ng/mL, 0.000004µg/mL, 0.00000004µg/mL of antibody, 10M of antibody, and 0.24M 

of protein. This experiment was performed in a Nunclon® 96 well black bottom plate at a 

temperature of 37ºC and buffered at a pH of 7 (20mM HEPES 7.3, 0.01% tween). It is shown 

based on the fluorescence intensity in the 300nm-400nm that tryptophan’s are present in the 

antibody (6F4).  

 

7.2.2.Fluorescense polarization using AFTD and antibody 6F4  

In order to further investigate AFTD binding to E6, 6F4 antibody was tested in 

fluorescence polarization competition assays (Figure D).  A competitor would decrease the 

polarization associated to ligand binding to E6, as it would displace the ligand from the binding 

site. It was observed in this assay that at 60min, and 15min that the polarization actually 

increased (Figure D).  This was an interesting result as polarization is proportional to the 

molecular weight of the complex. It is expected that the polarization values for the complex of 



 

 

105 

the antibody, AFTD and E6 would be higher than the AFTD complex values.  This increase in 

polarization indicates that both antibody (6F4) and AFTD are bound at the same time. This 

property could be used to track protein-protein interactions involving E6. The results obtained 

for the 6F4 antibody show that AFTD is a good candidate for the development of a fluorescence-

based assay to study protein-protein interactions involving E6.  

   

Figure D: Time curve showing the change in polarization of the protein and ligand complex and 

the antibody, protein ligand complex. This experiment was run for 60 minutes using 0.4ng/mL of 

antibody, 100M of ligand, and 0.90M of protein. This experiment was performed in a 

Nunclon® 96 well black bottom plate at a temperature of 37C and buffered at a pH of 7 (20mM 

HEPES 7.3, 0.01% tween). This graph demonstrates the increase in polarization at 15minutes 

and 60minutes when the antibody (6F4) is present. This increase in polarization indicates a 

complex between AFTD, 6F4, and E6.   

 

This result is in agreement with the modeling results, as the E6 specific antibody is 

known to bind the N-terminus, whereas the docking results suggest that AFTD binds to the C-

terminus domain of E6. Further concentrations of the antibody and of AFTD need to be tested in 

order to better characterize the complexes. From this assay we can conclude that there is some 

evidence to indicate that antibody (6F4) is binding and can be indicated by AFTD. This would be 
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further validated by attempting a dose response curve varying the concentration of 6F4 (section 

5.5).  

7.2.3.Tryptophan Fluorescence Results  

 Prior to obtaining these results four previous attempts were made. These results were all 

inconclusive due to lack of solvent controls and concentration of protein. In addition, the error 

between wells was extremely high in some cases.  This was attempted prior to obtaining accurate 

results (section 5.2). 

7.2.3. a)First attempt  

Tryptophan fluorescence was initially conducted using a fixed concentration of both 

protein (0.01mg/mL) and ligand (10µM). Error was extremely high so error bars were not 

plotted, in order to make graphs easier to read. For this reason this plot was not included.  

7.2.3. b)Second attempt,  

The protein concentration was slightly increased from 0.01mg/mL to 0.02mg/mL. It was 

noted that the error between wells was significantly lower than in the first attempt. It was 

concluded that mechanical issues were partly to blame for the inconsistencies in the first attempt. 

Some parameters were adjusted in order to reduce error, such as the number of reads per well. 

The default number of scans is 10. We changed this value to 20 scans per well. The samples 

were run in triplicate instead of duplicate, which also aids in lowering the error. Only one ligand 

showed (O-succinyl-L-homoserine) a significant change (> 30%) in the protein's intrinsic 

tryptophan fluorescence (figure 5A). O-succinyl-L-homoserine also showed an increase in time 

starting at 39% at 30minutes then 42.9% at the one hour time point (Figure E).  
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Figure E: Percent change in protein intrinsic tryptophan fluorescence upon ligand interaction. 

Experiment (A) 30minutes and (B) 1hour. The concentration of E6 was 0.02mg/mL for all 

samples. Each ligand was tested at10M. This experiment was performed in a Nunclon® 96 well 

black bottom plate at a temperature of 37˚C and buffered at pH of 7.3 (20mM HEPES 7.3, 0.01% 

tween (v/v)). The change in tryptophan fluorescence was monitored over time and the percentage 

change relative to E6 without ligand was plotted using prism graph pad. At 1 hour incubation, O-

succinyl-L-homoserine induces a 42.9%. Increase in Trp fluorescence. The dotted line represents 

the 30% threshold.  



 

 

108 

Some of the other ligands such as 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 

Dioxide (AFTD) and Aminopterin showed a decrease in change in intrinsic tryptophan 

fluorescence at 30mintues versus 1 hour. Paclitaxel did not cause significant change in intrinsic 

Trp fluorescence, appearing not to bind, and its error bars were very high, which is why they 

were not included in the plot (Figure E).  

7.2.3. c)Third attempt  

The last experiment described appeared successful, however we did not control for 

solvent effects. O-succinyl-L-homoserine was dissolved in water so proper controls for this 

ligand were already in place. Other ligands such as 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine 

1, 4- Dioxide (Fluoro), were dissolved in a half water/half ethanol solution. In addition, 

paclitaxel and aminopterin, were dissolved in 100% DMSO. Since solvent can have impact on 

fluorescence and potentially the environment of tryptophan, we repeated this experiment a third 

time to include solvent controls. A positive control was also added (Monoclonal antibody 6F4).  

This antibody was previously tested (Section 7.2.1), and shown to induce a significant change in 

intrinsic tryptophan fluorescence relative to the unbound protein. Since the previous experiments 

were positive for some of the ligands, we tested different concentrations of each ligand 

(25,10,and 1M). In theory, the change in tryptophan fluorescence should be proportional to the 

concentration of the ligand. Unfortunately this experiment was unsuccessful for the 

concentrations tested, with no significant change in intrinsic fluorescence for any of the ligands 

tested, including our positive control (Figure F). 
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Figure F: Intrinsic Trp fluorescence. Protein, antibody (ligand) and antibody protein complex. 

Assay was run in a Nunclon® 96 well microplate in a BioTek Synergy 4 microplate reader. 

Samples were incubated at a temperature of 37C and buffered to a pH of 7.3 (20mM HEPES 

7.3, 0.01% tween (v/v).  Protein was at a concentration of  0.01 mg/mL and the antibody was at a 

concentration of 0.04g/mL. Emission was collected at 350nm with an excitation wavelength of 

288nm. No evidence of the antibody binding to the protein is observed, even though the antibody 

is E6-specific. This is believed to be in large part to the low concentration of the protein used.  

 

It was concluded that the protein concentration used was too low to conduct tryptophan 

fluorescence. No significant change in intrinsic Trp fluorescence were seen associated to any of 

the ligands tested (Paclitaxel, Aminopterin, AFTD, and O-succinyl-L-homoserine). Comparing 

this result to our first tryptophan fluorescence attempt this experiment confirmed that a protein 

concentration of 0.01mg/mL is too low for the tryptophan fluorescence experiments.  
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7.2.3. d)Fourth attempt  

The tryptophan fluorescence experiment was repeated using a higher concentration of 

protein (0.02mg/mL) under the same conditions as the previous experiment. Antibody 6F4 

appeared to be below the 30% threshold in this experiment, which indicates experimental issues. 

O-succinyl-L-homoserine appears to be a positive result, however does not show dose 

dependence (Figure G).  
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Figure G: Bar graph of change in E6's intrinsic tryptophan fluorescence experiment A) 30min B) 

1hour. Change is shown at 30min (A) and 1hour (B) incubation times. Assay was run using 

Nunclon® 96 well microplate in a BioTek Synergy 4 microplate reader. Samples were incubated 

at a temperature of 37C and buffered to a pH of 7.3 (20mM HEPES 7.3, 0.01% tween (v/v).  

Protein was at a concentration of 0.02mg/mL and the antibody was at a concentration of 

0.04g/mL. Ligands were tested at 25M, 10M, and 1M. Emission was collected at 350nm 

with an excitation wavelength of 288nm. The dotted line represents the 30% change in intrinsic 

fluorescence which is considered to be significant and associated to binding. The change in Trp 

fluorescence is dose-dependence for 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide 

(AFTD). However our positive control (antibody) was negative.  
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In this case the best result was AFTD (figure G). Dose dependence was shown for this 

ligand at the concentrations used in this assay. The 10µM and 1µM appeared to show dose 

dependence for Paclitaxel, however the 25uM concentration due to high error was inconclusive 

(Figure G). This high error is most likely associated with paclitaxel precipitating out of solution 

at high concentration as it requires a high concentration of DMSO to stay in solution. One 

interesting result from this assay was that the antibody (6F4), which was previously shown to be 

positive, was negative. In this experiment the result was closer to 20% at best. One possible 

reason for this inconsistent result is due to improper storage of the antibody. This antibody had 

been stored in a minus 20ºC freezer for a number of months and had been warmed to room 

temperature and refrozen a number of times. It is believed that this sample of our antibody was 

most likely denatured. Desmosine was added as a negative control, however appeared to be 

positive. When examining the computational results again this was not a surprise as Desmosine 

was still above our Binding Energy mean.  O-succinyl-L-homoserine is not showing dose 

dependence. However the positive result at 10µM is consistent with previous experiments.  

7.2.4.Fluorescence Polarization Results  

7.2.4. a)Preliminary polarization assessment  

Prior to attempting a dose response curve we need identify a concentration of fluorescent 

compound to use, and perhaps gain some hints as to potential concentration ranges we can use. 

The concentrations of florescent compound used were 10nM, 100nM, 10M, and 100M 

(Figure H).  Each concentration was tested against various concentration of protein (Figure H). It 

was evident that the lower concentrations (10nM and 100nM) were not able to produce a 

substantial signal. The 10M and 100M concentrations were selected for further assays (Figure 

H). 
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Figure H: Fluorescence polarization assay at 10µM and 100 M of 3-Amino-5-Fluorobenzo [E] 

[1,2,4] Triazine-1,4 Dioxide (AFTD) with varying the concentration of E6 (0.18µM, 0.09µM, 

0.05µM, and 0.009µM) . Reaction was buffered at pH of 7 (20mM HEPES 7.3, 0.01% tween) 

and incubated at a temperature of 37C for one hour. Excitation filter (485/12) and emission filter 

(528/12) were used to measure fluorescence intensity in the parallel and perpendicular directions. 

The 100µM ligand concentration produces a cleaner signal with less standard error.  

 

7.2.4. b)First dose-response curve attempt 100µM AFTD  

A dose response curve for AFTD was first attempted using a fixed concentration of the 

compound (100M). Initially results were poor and little to no convergence was found. This lead 

to adjusting the probe height to 4mm, to better suit the total volume of 100µL. Using the  

adjusted probe height, a better curve was obtained at the three-hour time point (Figure I). From 

this graph we were able to use non-linear regression dose-response fitting four parameter was 

implemented in Prism (GraphPad, Inc.) to estimate EC50 (0.7µM) (Figure I), however this was 

just an estimate as although it converged the range was quite high.  
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Figure I: Dose-response curve at 3 hour incubation using 100M of 3-Amino-5-Fluorobenzo [E] 

[1,2,4] Triazine-1,4 Dioxide (AFTD) at varying protein (E6) concentrations (0.0010µM -1.8µM). 

Probe height was 4mm and a sensitivity of 50 was used. This experiment was performed in a 

Nunclon® 96 well black bottom plate at a temperature of 37ºC and buffered at a pH of 7 (20mM 

HEPES 7.3, 0. 01% tween). Excitation filter (485/12) and emission filter (528/12) were used to 

measure fluorescence intensity in the parallel and perpendicular directions. The top part of the 

curve is not well defined. Therefore greater concentrations of protein are required. An EC50 

value of 0.7µM was estimated using Prism Graph non-linear regression four parameter equation.  

 

Since the top part of the curve is not complete this EC50 value is merely an estimate. 

Other time points to show that the system is equilibrated could not be analyzed as the probe 

height was not properly adjusted until the three hour time point. With this in mind, the 

experiment was repeated a second time with higher concentrations of protein. In addition, the 

concentrations were chosen to better space the points as the first curve had most points too close 

together (Figure I).        

7.2.4. c)Dose-response curve evaluation 25µM and 50µM AFTD 

A preliminary fluorescence polarization test was conducted at 25uM and 50uM to 

determine which of the two concentrations produces the best signal to noise ratio for a dose-
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response curve. Values in this experiment were collected every 15 minutes and it was determined 

that our system equilibrates around 45min-60min incubation time. The 50uM curve at one hour 

(figure 10A) produced an adequate signal to noise ratio, however the shape of the dose-response 

curve was not ideal as the concentrations of AFTD used were not sufficient to produce a 

significant polarization signal (Figure J). The 25µM curve (Figure J) also produced good signal 

to noise ratio with a more satisfactory curve (Figure J).  

 

Figure J: 1 hour does response attempt using 25µM and 50µM of AFTD. Various concentrations 

of E6 protein were used (0.007mg/mL -0.07mg/mL). This experiment was performed in a 

Nunclon® 96 well black bottom plate at a temperature of 37C and buffered at a pH of 

7.3(20mM HEPES 7.3, 0. 01% tween). From this plot it is evident that the shape of the 25µM is 

much better than the 50µM curve. 25µM curve had an EC50 value of 0.04mg/mL where the 

50µM curve had an EC50 values of 0.25mg/mL.  

 

An EC50 value of 0.04mg/mL was estimated for the 25µM curve using the non-linear 

regression dose-response four parameter function. It was concluded that a ligand concentration 

of 25µM was better suited for future dose-response curves with variable protein concentrations.     
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7.2.4. d)Full 25µM Dose-response attempt  

With the information gathered above, a new dose response curve was obtained at 25µM 

of 3-amino-5-fluorobenzo [e] [1,2,4] triazine 1, 4 dioxide. The protein concentrations varied 

from 0.09-1.07M (Figure K).  

            

Figure K: One hour does response attempt using 25µM AFTD. Various concentrations of E6 

protein were used (0.007mg/mL -0.07mg/mL). This experiment was performed in a Nunclon® 

96 well black bottom plate at a temperature of 37C and buffered at a pH of 7.3 (20mM HEPES 

7.3, 0. 01% tween) at fixed concentration of AFTD 25µM.  Unfortunately this curve did not 

converge and it was determined that a different approach would need to be taken in order to 

obtain a good quality dose-response curve.  

 

The curve obtained was of poor quality and could not be used to estimate EC50 with confidence. 

Our concentrations were noticeably too close in log units and the top part of the curve is not 

well-defined. The best time point curve was observed after 45minutes (figure K).  Since a good-

quality dose-response curve could not be obtained varying the concentration of the protein, a 

different approach was taken.      
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7.2.4. e)Dose-response curve varying AFTD concentration   

Based on the equilibrium analysis, it was determined that data would be collected every 

15 minutes after 30 minutes until the 75 minute mark. Another important test was to determine 

the proper sensitivity setting to use. This sensitivity needs to be high enough to give us a 

reproducible signal for our lowest concentration and not so high that it over flows our highest 

concentration. Through testing a few sensitivities, it was determined that a sensitivity of 100 was 

appropriate for the proposed concentration range of 3-Amino-5-Fluorobenzo-1,4-Triazine 

Dioxide (300µM-1µM).   

 Using the preliminary work a dose-response curve was obtained with variable ligand 

concentration, using the parameters determined in the preliminary experiments. Numbers right 

from the first time point at 30minutes appeared to be off. One big concern was that the 

perpendicular values appeared to be higher than the parallel values. Data was collected up to the 

one hour mark. The remainder of the scans collected were done using a slightly different 

protocol, however this appeared to not fix the problem. Once experiment was completed, data 

was still analyzed in order to determine what the issue was. Upon further investigation, it was 

determined that our protein sample was contaminated. This was evident as the protein alone well 

had a high fluorescence intensity value. Upon analysis it was determined that it was 

contamination from the ethanol solution used to create the protein blank. Despite this, data 

analysis was conducted by discounting the fluorescence in the protein alone well in both 

directions. In addition, our lower concentration (1µM) did not produce a signal strong enough to 

calculate polarization and was therefore eliminated. The best plot was obtained at 30 minutes 

(Figure L) 
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Figure L: 30minute does response attempt using 0.04mg/mL of E6 protein and varying the 

concentration of 3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) (1µM-

300µM).  Probe height was 4mm and a sensitivity of 100 was used. This experiment was 

performed in a Nunclon® 96 well black bottom plate at a temperature of 37C and buffered at a 

pH of 7.3 (20mM HEPES 7.3, 0. 01% tween). Red line represents the background polarization of 

3-Amino-5-Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) on its own. EC50 value was 

estimated at 16.5µM.  

 

The 30minute time point converged and generated an EC50 value of 16.5 µM. This value 

is close to our expected value. However due to contamination from the ethanol solution used this 

curve was not able to be trusted.      

7.2.5.Preliminary Ligand Uptake Experiment  

Cell permeability needs to be tested. Since our molecule is intrinsically fluorescent this 

can be used to trace if the molecule is getting inside the cell. CaSki, SiHa, and C33A cell types 

were used for cell permeability assays at 10uM and 25uM of AFTD. Ethanol control wells were 

present for each cell type and concentration. The cells were incubated at various time points (1, 

3, and 6 hours), lysed and filtered with a 0.2 micron filter. Each well was kept as an individual 

sample for testing. Standards were also made so a calibration curve could be made to estimate 
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the concentration of our molecule within the cell. Each sample from each time point was then 

plated (100µM) and read in the Microplate reading using an excitation of 270nm and emission at 

525nm. Data was then exported into Prism Graph Pad where bar graphs were made (Figure M).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

120 

A) 

 

B) 

 

Figure M: Fluorescence intensity at 1 hour (A) and 3 hour (B) incubation of  3-Amino-5-

Fluorobenzo [E] [1,2,4] Triazine-1,4 Dioxide (AFTD) at 10µM and 25µM with CaSki, SiHa, and 

C33A cell lines. Intensities collected from the first cell permeability test. Cells were lysed after 

incubation and filtered with 0.2 micron filter. 100µM of each sample were analyzed with an 

excitation of 270 nm, and emission at 525 nm in a Biotek Synergy 4 microplate reader. Values 

were blank-discounted.  Samples were compared to their corresponding controls which account 

for cellular background fluorescence. Some evidence of cell permeability was obtained in 

particular in the C33A cells. However, this experiment needs to be repeated to show 

reproducibility and validity.  
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The most significant differences between samples and controls were observed for the C33A 

cells. Some difference was also present in the SiHa cells; however the background control 

appeared to be higher than the sample after three hours. Some of these inconsistencies could be 

due the use of a monochromator instead of optical filters for the readings. Also, the readings 

were not normalized for cell density. It is assumed that the same number of cells in each well is 

the same, however this was not determined and many factors may alter cell growth and 

proliferation differently across samples. In addition by the time the fluorescence was read the 

cells had been sitting in DMSO for over 48hours. Since DMSO is a harsh solvent it could cause 

degradation of many components contributing to the fluorescence readings. The experiment was 

thus repeated to address these issues and show reproducibility.  
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Chapter 8.Appendix B: Supplementary Material 

Parameters used in Cassandra for:  

protocol HierDock 

job_distribution_mode per_ligand 

protein_type globular 

diversity_option none 

grid_margin 15 

grid_spacing 0.25 

flexible_ligand yes 

maximum_orientations 10000 

torsion_drive no 

nconf_level0 1500 

bump_maximum 10 

anchor_search no 

nconf_filter 150 

bursurface_cutoff 70 *note changed to 30 for shelfed compounds  

energy_cutoff 100 

mpsim_threads 1 

min_method_mpsim CONJUGATE_BDO 

cmm_level_level1 0 

cmm_level_level2 3 

nb_update_frequency_level1 5 

nb_update_frequency_level2 10 

force_field_file dreidii322-mpsim.par 

nconf_level1 3 

ptn_option_level1 fix 

max_steps_level1_min 30 
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eps_ff_min 2.5 

ptn_option_level2 move 

max_steps_level2_min 20 

solv_method_oneE AVGB 

solv_method_min GAS 

eps_ff_oneE 1.0 

solv_in_eps 1.11 

solv_out_eps 78.2 

solv_probe_radius 1.4 

solv_ionic_strength 0.1 

solv_ptn_option move 

nconf_diversity 50 

diversity_threshold 0.6 

rejection_threshold 2.2 

sample_min 500 

no_family 50 

child_avg 6 

enrichment_maximum 1000000 

 

Parameters Used for MMFF94x Energy Minimization of E6 and ligand Databases 

Gradient 0.05    

Options: Calculate Forcefeild Partial Changes   

The remaining boxes were unchecked.   

Enable: bonded, van der Waals, Electrostatics, Restraints, and cutoff     

Solvation: Distance     

Scale Like: 1  

On: 8  
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Off: 10  

Dielectrin: 1  

Exterior:80  

Unlike: 0  

Wild: 1   

Treads: 0  

 

Table A: Compounds that passed the R1 threshold with structures  

Rank Identifier Binding Score 

(kcal/mol) 

IUPAC name Molecular 

Structure  

1 cmp450432 -55.93 (2R)-2-amino-3-

iodanyl-phenyl)-2-

methyl-propanoic 

acid 
 

2 cmp450769 -55.29 2-amino-8-

fluoranyl-9-[[2-

hydroxy-1-

1(hydroxymethyl) 

ethoxy] methyl]-4,5-

dihydro-1H-purine-

6-one 

 

3 SOLANESYL-

PYROPHOSPHAT

E-1-3H 

-55.06 Solanesyl-

PyrophosphatE-1-

3H 
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Table B: Compounds that passed R2 threshold with structures  
Rank Identifier  Binding Score 

(kcal/mol) 

IUPAC name  Molecular Structure  

1 AMINOPTERIN-3-5-7-

9-3H-N 

-80.13 Aminopterin-3-5-7-9-

3H-N 

 

2 PA24273 -78.58 N-(2,4-dinitrophenyl)-L-

Arginine 

 
3 PACLITAXEL-

BENZOATE-RING-UL-

14C- 

-78.41 Paclitaxel-Benzoate-

Rink-UL-14C 

 
4 MFCD01113139 -68.33 3-Chloro-2-(2-([3-oxo-2-

Benzofuran-1(3H)-

Ylinden]methyl) 

hydrazino)-5-

(Trifluoromethyl) 

Pyridinium Acetate 

 

5 MFCD00214696 -66.13 3-Chloro-2-(3-[1-

(Phenylsulfonyl)-1H-

Pyrazol-3-YL]Phenoxy)-

5-(Trifluoromethyl) 

Pyridine 

 

6 cmp450572 

 

-66.06 2-amino-4-[[5-(6-

aminopurin-9-yl)-3,4-

dihydroxy-

tetrahydrofuran-2-yl] 

methyl-sulfonio] 

butanoate 

 

7 PA24775 

 

-65.07 Beta-Nicotinamine 

Mononucleotide 

 
8 MFCD00172501 

 

-61.85 4-(2-([3-Chloro-5-

(Trifluoromethyl)-2-

Pyridinyl] Amino) Ethyl) 

Benzenesulfonamide 
 

9 MFCD15731617 

 

-61.14 4-Anilino-2-([(4-

Fluorobenzyl) 

(Methylsulfonyl) Amino] 

Methyl) Pyrimidine-5-

Carboxylic Acid  
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10 MONENSIN-3H-G 

 

-60.28 Monensin-3H-G 

 

 

Table C: Promising lead compounds from the NT-E6 virtual screening  with molecular structure 

Computational 

Identifier 

Rank/Region Molecular 

name 

Binding 

Energy 

Score 

(kcal/mol) 

Commercial 

Availability 

Molecular 

Structure 

MFCD01113139 4/R2 3-Chloro-2-

(2-[(3-oxo-2-

Benzfuran-1 

(3H)-Yliden] 

methyl)Hydr

azino)-5-

(Trifluoromet

hyl) 

Pyridinum 

Acetate   

 

-68.33 Bionet 

 

MFCD00214696 5/R2 3-Chloro-2-

(3-[1-(Phenyl 

sulfonyl)-(H-

pyrazol-3-

YL] 

Phenoxy)-5-

(Trifluoromet

hyl) Pyridine  

 

-66.13 Bionet 

 

PA24273 7/R2 N-(2,4-

dinitrophenyl

)-L-arginine 

-78.58 Sigma 

Aldrich 
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Table D: Top three compounds from the primary amine database in order of rank with molecular 

structure  

 

 

 

 

 

 

 

 

 

 

 

Compound 

ID 

Compound 

Name 

Binding 

Energy 

(Kcal/mol) 

Commercial 

Availability 

Molecular Structure  

Cmp47400 L-mimosine -46.81 Sigma 

Aldrich 

 
Cmp144614 (S)-2-Amino-2-

methyl-4 

phosphonobutano

ic acid 

-45.83 Sigma 

Aldrich 

 
Cmp37088 O-succinyl-L-

homoserine 

-45.62 Sigma 

Aldrich 
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Table D: Top 5 compounds from the fluorine-containing molecule database in order of rank with 

molecular structure   

 

 

 

 

 

 

 

 

 

 

 

Compound ID Compound Name Binding 

Energy 

(Kcal/mol) 

Commercial 

Supplier 

Molecular Structure 

MFCD09040704 3-methyl-

4(trifluoromethyl) 

Isoxazolo [5,4-B] 

Pyridin-6-YL-4-

methyl benzene 

sulfonate 

 

-62.22 

 

Enamine 

 

MFCD14636665 3-Amino-5-

fluorobenzo [E] 

[1,2,4] Triazine 1, 4 

dioxide 

 

-49.53 

 

Sunbiochem 

 

 
MFCD00871869 Ofloxacin N-Oxide -48.80 Sinochem 

 
MFCD00955225 (5-methylisoxazo-

3-YL) ((2-

(trifluoromethyl) 

phenyl) sulfonyl) 

amine 

 

-48.70 

 

ABCR and Ryan 

Scientific  

 

 

MFCD11977074 Ethyl 6-chloro-2-

(4-Fluorophenyl) 

imidazo [1,2-A] 

pyrinde-3- 

carboxylate 

 

-47.94 

 

Golden Bridge 

Pharma 
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Table E: Ligands selected for experimental testing with molecular structures   

Compound 

Name 

Overall 

Rank 

Binding 

Energy 

(kcal/mol) 

Abbrevi

ation 

Molecular Structures 

O-succinyl-L-

homoserine 

25 -45.62 O-

succinyl 

 
3-Amino-5-

Fluorobenzo [E] 

[1,2,4] Triazine-

1,4 Dioxide  

12 -49.53 AFTD 

 
Aminopterin 8 -59.61 Amino 

 
Paclitaxel 4 -70.10 Pac 

 
 


