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Abstract 

 The focus of this case study was to explore how my questions as a teacher 

impacted my students‟ construction of part-whole relations and their use of a benchmark 

model in learning fractions.  The research conducted in my classroom comprised of 12 

Gr. 4 students and 12 Gr. 5 students.  There were 13 boys and 11 girls.  A pre-test, 

instruction and post-test sequence was used.  The teaching unit was developed to assist 

the students in building a benchmark model for comparing and ordering fractions and to 

develop an understanding that a fraction is a relationship between its parts and the whole.  

A math class consisted of a small mini-lesson, which focused the students‟ thinking, a 

contextual problem that they solved in pairs, and a congress in which the strategies and 

solutions were debriefed and discussed.  At the beginning of the unit most, but not all, of 

my students struggled with these concepts, but by the end of the unit most were 

comfortably using the benchmark model and had a very good understanding that a 

fraction was a relationship between its parts and the whole. 
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The Impact of Teachers' Questions 

Chapter 1: Introduction 

1.1 Context of the Study 

 

School mathematics programs have undergone significant changes over the last twenty 

years, and more importantly, the role of the teacher has begun to shift from a dispenser of 

knowledge to a facilitator of knowledge development, one who orchestrates learning through 

effective questions, contexts and discussion (Stein, Engle, Smith, & Hughes, 2008) prodding the 

learner to construct his or her own understanding.  This change in emphasis, is central to the 

instructional practice known colloquially as, "reform."  Though reform instruction is a relatively 

new practice for teachers, it has nonetheless undergone many transformations already.  The one 

to which I am referring originated in the 1980s in response to a perceived failure of traditional 

teaching methods (Battista, 1999).  Battista suggested that the instructional focus of most school 

mathematics classes had stressed an endless sequence of memorization of facts and procedures, 

which were often forgotten or misunderstood by students.  It was for this reason that in 1989 the 

United States' National Council of Mathematicians (NCTM) conceived of five standards for 

teaching mathematics: 1) worthwhile mathematical tasks, 2) discourse between teacher and 

students, 3) discourse between student and student, 4) teacher acceptance of the use of different 

methods and manipulatives to solve problems, 5) teacher engagement in ongoing assessment and 

analysis of teaching and learning (NCTM, 1989, p. 25-63).  Reformers hoped that these 

standards would create a shift towards developing, and deepening, students‟ conceptual 

understanding of mathematics instead of what Battista (1999) referred to as “mindless mimicry 

mathematics” (p. 427) which is to say, mathematics instruction that had students mimicking the 
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teacher's lessons without an emphasis on understanding.  In addition, this shift focused on 

presenting students with complex problems, whereby they could formulate and test the validity 

of their personally constructed mathematical ideas and draw their own conclusions.  

1.1.1 Changes in reform - two "generations" of reform teachers. 

 

Stein, Engle, Smith, and Hughes (2008) contend that over the last twenty years of 

mathematics reform there have been two waves of implementation: the first generation and the 

second generation.  Their idea of first and second generation does not refer to the chronological 

age of the teachers, but rather to a philosophy or stage in the progression of understanding 

effective reform instruction.  They observed that in the first generation of reform, the roles of the 

teacher and of the students were not well defined.  The emphasis was placed on encouraging the 

students to think through problems, and then praising students for their unique strategies.  The 

congress, or whole group discussion time, was used as an opportunity to practise listening skills; 

teachers‟ questions tended to focus on having students explain why they used a particular 

strategy, or asking students to explain their strategies further.  Many teachers felt that in order for 

discussion to be focused on student thinking, teacher thoughts or interjections were to be 

avoided; both teaching and learning needed to come from the students (Stein et al., 2008). Stein 

et al. added that in the first reform generation, students‟ strategies often became inefficient; 

students and teachers would remain stuck on how to move towards more efficient strategies or 

how to move towards connecting the strategy to a bigger mathematical idea. In addition, Sherin, 

Mendez, and Louis (2000), contrary to popular belief at the time, suggested that student talk by 

itself did not necessarily improve students‟ learning.  In much of the research, the role of the 

teacher has come under sharper scrutiny.  Stein et al. (2008) proposed that teachers needed to 

move towards a second generation of instructional reform, in which the emphasis would be on 
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directed and purposeful student talk, which is choreographed by the teacher but indirectly led.   

Some researchers have suggested that the key to creating this type of environment may be 

through effective class discussion and purposeful critical questions, asked by the teacher or by 

the students.  

They contended that if teachers were able to implement the instructional reform aligned 

with second wave methods (in particular strong questioning techniques), then their students 

would construct a deeper understanding and be more proficient in mathematics (Stein et. al., 

2008).  This contention may extend to areas of mathematics such as fractions, which have proven 

particularly difficult for children (and adults alike) to learn well.  At the elementary level 

children often have difficulty constructing a full understanding of the part-whole relationship in 

fractions.  This knowledge is foundational to students' later ability to calculate using fractions 

(Fosnot & Dolk, 2000, Van De Walle, 2007).  It may be that reform-oriented instruction, in 

particular well-constructed questions, will lead to greater student learning in this challenging 

area. 

1.2 Purpose of the Study 

 

The purpose of this study is to explore how teacher questions impact students‟ 

construction of part-whole relations and their use of a benchmark model in learning fractions.  

Although there are many problems that can arise, understanding part-whole relations is a key 

concept at the junior level and in future mathematical development.  

 

 

 

  



4 

 

 

 

1.3 Research Question 

 

How do a teacher‟s questions impact student construction of part-whole relations and the 

students‟ use of a benchmark model in learning fractions? A benchmark model in the context of 

fractions is a model that showcases where pivotal fractions (0,1/2, 1/4, 3/4, 1) are located.  In 

addition, students who use this model understand where other fractions are in relationship to 

these benchmarks. 

Sub questions: 

A)  On what mathematical knowledge does a teacher draw in order to generate the questions 

used during the fraction math class? Mathematical knowledge in the context of this study 

is an understanding of mathematical big ideas, concepts and possible student models.  

B) What planning is involved for the teacher when constructing these questions? 

1.4 Key Terms 

 

Within the context of the study the key terms are as follows: 

Benchmark Model: A benchmark model in the context of fractions is a model that showcases 

where pivotal fractions (0,1/2, 1/4, 3/4, 1) are located.   

Landscape of Learning:  A developmental map of student progression through fractional number 

sense. 

Teacher's Mathematical knowledge: An understanding of mathematical big ideas, concepts and 

possible student models. 

Part-Whole Relationship in Fractions: A relationship between the part of a whole and its whole. 
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Reform Mathematics: A change in teaching practices. One to which I am referring originated in 

the 1980s in response to a perceived failure of traditional teaching methods.  

Second Generation reform: Teaching emphasis is on directed and purposeful student talk, which 

is choreographed by the teacher but indirectly led. 

1.5 Significance of the Research 

 

As a beginner in reform practices, I started out as a first generation teacher and as I 

gained experience, read professional material, and observed reform practitioners, I have slowly 

moved towards becoming a second generation reform-based teacher.  Over these years, I have 

observed teachers just beginning the process, teachers questioning the process, and teachers 

totally opposed to the idea of reform methods.  Frequently, I have mentored teachers in the use 

of reform instruction and observed many of the challenges that come with implementing a new 

pedagogy in the classroom.  Many of these struggles revolve around the use of questioning and 

"bringing out" the mathematics in the congress.  Questioning is not a new topic of discussion.  

Teachers have been implementing this technique for years; however, questions have tended to be 

focused on initiation-response-evaluation (IRE) (Fuson, 2007) model of teaching.  In this model 

teachers ask the questions and then wait for an anticipated response from their students.  This 

pattern in turn prompts the teacher to ask further questions for clarification.  Student 

communication often takes the form of answering the teacher's direct questions about gaps in 

learning, or what type of solutions need more practice; there is often no mathematical thinking 

involved except on the part of the teacher (Franke, Kazemi, & Battey, 2007).  Ackles, Fuson, and 

Sherin (2004) suggest that for success to happen in reform education, teachers need to change 

their traditional teaching practices significantly, and develop a discourse community in their 
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classrooms.  In addition, Franke et al. (2007) note that although there is research about the role 

that the teacher plays in supporting discourse in the classroom, little is known about what 

teachers need to do to best support classroom discourse that uses students‟ discussion as 

instruction.  In order for teachers to develop mathematical discussions that focus on the 

contributions of students, more research needs to be undertaken to understand the process, 

knowledge, and impact these questions have on students‟ development, understanding, and 

overall enjoyment of mathematics. 

1.5 Contributions to the Community 

 

 This research will contribute to teachers, researchers and parents' understanding of the 

amount, and type, of work that is needed in order to use student talk as a focus for instruction, as 

well as the type of work necessary to focus that discussion on specific mathematical concepts.  

Fractions continue to be an area of great anxiety for adults and students alike.  With effective use 

of questions in the classroom, teachers may be able to increase understanding of fractions in their 

classroom and reduce anxiety.  In addition, questions may deepen understanding by creating 

dialogue among the students.  By understanding how questions are created, the nature of the 

questions, and the impact they have on children‟s understanding, teachers may become more 

effective in their questioning techniques.  This study may act as a model for future studies, the 

results of which may be of interest to classroom teachers and curriculum developers, possibly 

leading to further teacher professional development around instructional practices, and may 

promote reflective practices. 
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1.6 Bias and Limitations 

 

There are some limitations to consider with this research.  Firstly, I am the researcher and 

the teacher and therefore may be positively biased in my analysis of the results.  Secondly, this is 

one case study of a Grade four/five classroom.  Accordingly, the observations in this research are 

not representative of other classrooms.  In addition, before this study was conducted I had 

established a collection of norms for the community; these norms gave students guidelines for 

discussion, because without them student discussion does not happen (Sherin, 2002).  It is 

therefore a study that captures a period in time rather than the full development of questioning 

and its impact on the students. 
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Chapter 2: Literature Review 

 

Introduction 

 

 The purpose of this section is to examine what the research has suggested concerning the 

challenges students may face when working with fractions, the role of the teacher in a reform 

context, the types of questions that teachers ask, and the impact teacher questions have on 

students' thinking. 

2.1 Instructional Practices Leading to Poor Understanding of Fractions 

 

The research suggests four underlying reasons that may result in students struggling with 

fraction concepts.  The first is a natural progression of understanding which teachers tend to 

forget, moving too quickly through the curriculum for their students (Fosnot & Dolk, 2000; 

Lamon, 1996; Pothier & Sawada, 1983).  Second is the instructional practices that result in poor 

understanding of part-whole relations (Cramer, 2002; Fosnot & Dolk, 2000; Kamii, 1999).  Third 

is the teaching of algorithms and procedures without developing conceptual understanding 

(Battista, 1999; Cramer, 2002; Fosnot & Dolk, 2000; Kamii, 1999; Mack, 1999).  Finally, 

emphasizing the teaching of and memorization of computational skills, resulting in poor problem 

solving skills with fractions (Asku, 1995). 

2.1.1 Natural progression for learning fractions. 

 

Much of the research has suggested that students progress through discernible stages 

while developing an understanding of fractions.  The problem occurs when teachers either ignore 

these stages, or do not understand students' developmental path in learning fractions.  Pothier and 
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Sawada‟s (1983) study of 43 students (Kindergarten to Grade 3) suggests that students progress 

through five stages when developing an understanding of fractions.  The first stage is a sharing 

stage.  At this stage students learn the basic language of fraction sharing along with a natural 

procedure for halving (Pothier & Sawada, 1983).  Students understand that when there are two 

people, each person gets a piece of the whole but that piece does not necessarily equal a half.  It 

is interesting to note that this is developed at a social level, which suggests that students do come 

to school with some fraction concepts and schemas from which to build their knowledge; this is 

in contrast to the traditional argument that the teacher imparts all knowledge to their students.   

The second stage is a mastery of the halving process that students created in the earlier 

stage.  The researchers contend that this is a critical stage in developing fraction concepts 

because it is here that students learn equivalency (1/2 = 2/4) at a basic level, when they start to 

share pieces equally and realize what happens to the whole piece as they share with more people, 

or that children can double the number of parts to obtain fractional parts whose denominators are 

half the size (Pothier & Sawada, 1983).   

 Pothier and Sawada‟s third stage is a development of fair sharing.  At this stage students 

realize that partitions are classified as “fair” or “not fair.”  In addition, students also learn 

addition and subtraction of fractions (1/4+1/4= 2/4), when they give the pieces they create to 

each other.  This critical stage was confirmed by Reyes (1999) who reported that students who 

struggled with creating benchmarks and equivalent fractions needed more practice representing 

equal fair shares.  According to Reyes (1999) and the Ontario Curriculum benchmarks are 

critical fraction placements where students see other fractions are in comparison to those 

placements.  Those critical fractions are 0, 1/2, and 1; sometimes, it also includes, 1/4, and 3/4.
1
   

                                                 
1
 When I refer to Benchmark or Benchmark model it is this definition to which I refer. 
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 In the fourth stage students recognize the inefficiency in the doubling strategy when 

dealing with odd fraction denominators.  At this stage students use a counting strategy to 

calculate thirds, fifths, ninths, and so on.  Pothier and Sawada‟s developmental stages were 

replicated in later research by Lamon (1996) who followed students from grades 4 to 8 

suggesting that students‟ progress from using inefficient calculation strategies to more efficient 

strategies.  Lamon noted that although Pothier and Sawada‟s fifth stage, using multiplication, 

was described as theoretical in their research, her findings confirm that students can reach this 

fifth stage.  In addition, Lamon also pointed out that students used their social sharing strategies 

to solve their particular problems.  Ignoring the natural progression of student development is 

one aspect of teaching that often leads to further struggles in fractions (Pothier and Sawada, 

1983).   

2.1.2 Instructional practices that result in poor understanding of part-whole 

relations.  

 

One of the most critical big ideas
2
 that research explores is the issue with part-whole 

relationships.  Fosnot and Dolk (2002) explain that this is one of the foundational pieces in their 

Landscape of Learning, which is a developmental map of student progression through fractional 

number sense (p.70).  Researchers such as Fosnot and Dolk suggest that a problem occurs when 

educators begin fraction instruction with shading in diagrams and labelling the parts.  This 

enables students to think only of the number of parts instead of thinking about the relationship 

between the whole and its parts.  Cramer (2002) confirmed Fosnot and Dolk's theory when she 

looked at two students in her study, Jeremy and Annie.  In the study she observed that Jeremy, a 

student in the Rational Number Project (RNP), compared 4/35 and 4/29 in relation to the 

                                                 
2
 A big idea: is the mathematical understanding, or mathematical principle, which is inherent within the student's 

strategies.  Often, a big idea is the stepping stone or platform for the next stage in the student’s learning process 
and is what underpins the learning process of young mathematicians (Fosnot and Dolk, 2000).   
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numerator and the denominator, whereas Annie compared the two with her whole number 

knowledge system, suggesting that 4/35 was bigger because 35 is greater than 29.  Moss (1999) 

also observed this difficulty in her study.  She suggested that educators did not spend enough 

time distinguishing between rational number systems and whole number systems.  Another 

researcher who discussed this was Mack (1999) who found that overall, students were unable to 

see how fractional parts were different from whole numbers, often partitioning and referring to 

them as a number of pieces rather than the size of fractions.  When students see only the 

individual parts they often compare fractions using whole numbers not realizing that as the 

denominator increases the size of the piece decreases.  This becomes a problem when students 

are later expected to multiply and divide fractions or when trying to solve for equivalent 

fractions.   

2.1.3 Teaching of algorithms and procedures without developing conceptual 

understanding. 

 

A third instructional practice that causes difficulty is the practice of teaching algorithms 

and procedures before students understand the part-whole relationship of fractions.  Asku (1995) 

asserts that a common type of error in teaching fractions is to have students begin computations 

before they have sufficient background to profit from such operations.  Asku suggested that the 

reason procedures are taught first is that they are easier to teach.  Students may be able to 

memorize rules and procedures, but no understanding is associated with them.  In addition to 

Asku's findings, Mack (1990, 1995) found that students‟ initial knowledge frequently interfered 

with their attempts to give meaning to fractions in two ways: students were unable to use their 

informal or prior knowledge even for contextual problems; and, when using previously taught 

algorithms, students often ignored their prior knowledge in favour of an incorrect answer, 
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trusting in the algorithm instead.  In addition to this, Fosnot and Dolk (2002), in theory, echo this 

finding, contending that when rules and procedures are taught first, or in isolation, students often 

stop thinking, and give up on their own thinking, in order to perform the procedures.    

The emphasis on the teaching of algorithms is a central instructional issue in the reform 

versus the traditional debate.  As Fosnot and Dolk note, parents think that if students don't learn 

the traditional algorithms then they aren't learning anything.  However, reformers (Asku, 1987; 

Fosnot &Dolk, 2002; Small, 2008; Van deWalle, 2007)  do not suggest that computation 

procedures are unimportant; rather they disagree with the method and timing of teaching of 

procedures.   

2.1.4 Problem solving difficulties. 

 

 A fourth issue arises in the observation that traditional instructional methods result in 

students who do far better on computation tasks than word problems, even when the problems 

contain the same numbers.  Fosnot and Dolk (2000) contend that much of the issue lies in what 

educators think problem solving is meant to accomplish.  Fosnot and Dolk believe that first, 

problems should allow students to explore and investigate a range of calculation strategies.  They 

observe that many educators use word problems that allow one solution only and the problems 

are usually designed to teach and practise algorithms.  Learning to solve problems by calculation 

in a variety of ways more closely resembles mathematicians‟ methods.  Dowker (as cited in 

Fosnot and Dolk, 2002), asked 44 mathematicians to solve several typical math calculations.  

Dowker found that the mathematicians first looked at the numbers and then chose an efficient 

strategy for calculation.  They varied their solutions from calculation to calculation, always 

looking for the most efficient strategy to solve the problem.   
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Secondly, Fosnot and Dolk contend that problems should begin with a context familiar to 

the student.  This is supported by Sharp (2002), who studied a girl named Leah as she played 

fraction games with her father. The context of the fraction games was a discussion of fair sharing 

food with her friends.  Once Leah constructed the conceptual knowledge by solving problems in 

a familiar context, her father taught her the fractional notation for those fractions.  Furthermore, 

Fosnot and Dolk suggest that once children construct conceptual knowledge of fractions, they 

can meaningfully learn, or even create for themselves, appropriate alternative algorithms.  This is 

supported in Cramer and Henry‟s (2002) research in the Rational Number Project (RNP).  The 

Rational Number Project espoused four main tenets: 1) children‟s learning about fractions could 

be improved through involvement with concrete models; 2) children needed time to use these 

concrete examples to build mental images needed to think conceptually about fractions; 3) 

children would benefit from discussion with one another and with their teacher; and 4) teaching 

should focus on the development of conceptual knowledge prior to formal work of algorithms.   

Cramer and Henry looked at two fourth-grade classrooms, one in which fractions were taught 

using traditional methods and one in which the RNP project was being taught, using instructional 

practices based on the foundational principles previously outlined.  Overall, RNP students‟ 

thinking depended on mental images for fractions and was directly related to their use of fraction 

circles.  Cramer and Henry also observed that RNP students were better able to discuss and 

communicate their thoughts, whereas, traditionally taught children struggled with understanding 

fraction size or in estimating simple fraction problems (1/2 + 1/4 = ?).   The RNP children who 

solved problems in a familiar context explained and defended their ideas and constructed a more 

flexible, deeper understanding of fractions than their traditionally instructed peers. 
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2.2 Constructivism 

 

The research findings discussed in the previous section depict a very different picture 

about how children learn than what was traditionally thought.  Traditionally, many researchers 

subscribed to a behaviourist approach to learning, one in which curriculum is broken into 

specific skills which are then sequenced into hierarchical parts.  Assumptions are made that 

simply by listening to explanations from teachers followed by practice, the necessary skills to 

learn the concepts could be built (Fosnot & Perry, 2005).  

The researchers cited previously subscribed to more of a constructivist and sociocultural 

theory of learning.  Constructivism is a theory about knowledge and learning.  Knowledge is 

viewed as being personally constructed by learners as they try to make sense of situations 

(Fosnot, & Perry, 2005).  Students construct new knowledge based on prior knowledge, they 

then reflect on, or actively think about, an idea, rather than passively absorbing it unaltered from 

the teacher.  Because constructivism is about learning, it is a theory with important implications 

for the classroom.  The sociocultural brand of constructivism is a theory about knowledge and 

learning where knowledge is thought to be gained through a series of human interactions, which 

emerge over extended periods of time (Cobb, Stephan, McClain, & Gravemeijer, 2001).  

Students construct new knowledge and learning with the teacher and with the whole class.  

Together they discover concepts through participation in dialogue with each other. 

Constructivists, such as Piaget, proposed that the mind is not a blank slate.  Even at birth, 

infants have organized patterns of behaviour, or schemas (Fosnot, & Dolk, 2002).  Students learn 

at different rates; they use their personal schemas in various situations and re-structue them as 

different situations arise.  Fosnot and Dolk suggest that at the very beginning these schemas are 
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very specific and can be simply seen as representations of situations or problems by the learner.  

As students become more familiar with the topics and explore the connections between and 

across them, these schemas become more generalized to other situations.   

2.3 The Role of the Landscape in Children’s Learning: a Conceptual Framework. 

 

Based on this constructivist theory of how students learn, Fosnot and others perceive 

learning not as an accumulation of concepts absorbed from the teacher but instead as series of 

understandings that are constructed over time.  They view this progression as a landscape rather 

than a continuum thereby creating a developmental map of students‟ learning in mathematics.  

Fosnot and Dolk (2002) have developed a more complex understanding of fractions in The 

Landscape of Learning: Fractions, Decimals and Percentages (See Figure 1).  Although they 

built on the earlier work of Pothier and Sawada (1983), and later Lamon (1996), Fosnot and Dolk 

view development not as stages, but rather as a journey of learning.  Students may move in a 

linear fashion, but they also can move back and forth as they develop and re-valuate their 

knowledge of fractions. In addition their landscape identifies possible big ideas, strategies, and 

models that may be created by students.  They explain that the big ideas outline the major 

mathematical thinking that is happening within the students‟ minds (p. 36), the strategies are 

what the students are actually thinking and doing mathematically (p. 34), whereas the models are 

what the children use to represent their thinking (p. 73).  Fosnot and Dolk point out that 

historically, curriculum designers did not use a developmental framework like the one they have 

devised, nor did the designers recognize mathematics as students mathematizing: that is both 

using and talking math; instead, in traditional curriculum, skills were viewed to be accumulated, 

and the accumulations or clusters would eventually turn into concepts.   Fosnot and Dolk note 

that by perceiving student learning as developmental, teachers will no longer see strategies, big 
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ideas, and models, as static points in a landscape but rather dynamic movements on the part of a 

learner in a mathematical development.  In addition, they suggest that teachers must have this 

landscape in mind when they plan activities, when they interact, question, and facilitate 

discussions. In so doing, teachers can further facilitate the development of students' 

understanding of fractions.  The role of the teacher in this type of reform classroom is very 

different from the traditional one based on behaviourist theory of learning. 

Figure 1 Fosnot and Dolk's Landscape of Learning 

 

from: Fosnot,C. 2002. Context for Mathematics: Fractions, Decimals and Percentages.  

2.4 The Role of the Teacher in a Second Generation Reform-Oriented Classroom 

 

Battista (1999) explains that historically, the role of the teacher was to show several 

examples to students of how they could solve certain procedural problems.  The expectation was 

to have all students learn the same algorithms and practise applying them throughout the school 
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year.  Furthermore, Ackles, et al. (2004) state that: “Questions asked of students by the teacher 

were primarily answer-focused and at times the teacher did not even wait for an answer from the 

students, often giving the answer to the students instead of waiting for the response” (p.99).  

With a shift to reform practices, the emphasis was initially placed on encouraging the students to 

think through problems using their own methods, and then praising students for their unique 

strategies.  The congress, was used as an opportunity to practise listening skills; teachers‟ 

questioning tended to focus on having students explain why they used a particular strategy, or 

asking students to explain their strategies further.  Many teachers felt that in order for discussion 

to be focused on student thinking, teacher thoughts or interjections were to be avoided; all of the 

discussion needed to come from the students (Stein et al., 2008).  They add that students‟ 

strategies often became inefficient and students and teachers were stuck on how to move towards 

more efficient strategies, or connecting the strategies, to a bigger mathematical idea.  Stein et al. 

proposed that teachers needed to shift to a second generation in which the emphasis would be on 

directed and purposeful student talk, choreographed by the teacher but indirectly led.  However, 

they noted that this was a challenge for teachers.  Teachers lacked the knowledge to ask good 

questions which would achieve these goals.  What should these questions look like at each stage 

of the lesson? 

2.5 Effective Questioning   

 

The three-part lesson as described by Van de Walle (2007), and endorsed by the Ontario 

Ministry of Education (2010) provides a useful structure for examining the theory and research 

on effective questioning in second generation reform-oriented mathematical classes.  The first 

part of the lesson plan is structured to pose meaningful and purposeful problems to the students.  

The second part is designed to allow students to problem solve and work through the problems 
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using their existing schema.  The final part of the lesson is created to use student dialogue and 

careful teacher questions to consolidate, highlight and discuss the mathematics from the problem.  

For each section of the lesson various questioning techniques can be used. How does a second 

generation teacher effectively use questioning in each part of the lesson? 

2.5.1 Part 1 of the lesson: Posing the problem 

 

In a reform context, choosing a problem is as important as the teaching itself.  Lampert 

(2001) suggests that the task should relate to the particular students in the classroom and with the 

particular mathematics the teacher wants the students to study.  Furthermore, it needs to  be both 

intellectually and socially possible for all of the students to work on the tasks in a way that 

supports that intended content.  According to Fosnot and Dolk (2002) Part 1 of the three part 

lesson plan involves three unique components: using mathematical big ideas, models and 

strategies of the landscape as potential goals for learning; finding real life contextual problems 

for students to solve, and finally, anticipating students‟ thoughts and strategies in order to help 

with the next part of the lesson.  The first component is to chose the goal for the lesson.  

 The second component is to chose a contextual problem.  According to Fosnot and Dolk 

a rich problem is one that makes the students think about the big ideas in mathematics and is 

connected to a rich context or real life situation.  The students shouldn't be thinking about just 

the numbers but rather about the contexts.  Once a teacher has decided on a potential 

mathematical big idea, model, or strategy as a goal for the lesson, it is suggested that they think 

about an authentic, contextual problem for their students to solve.  Fosnot and Dolk (2002) 

contend that the realistic nature of the context allows the students to understand the mathematics 

because it is grounded in their life.  It also supports the students‟ ability to reflect and check 
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whether their strategy makes sense.  In addition, working within a familiar context allows 

students‟ to make sense of mathematics using their own lives and experiences.   Finally, they 

note that in order for students to construct these relationships, a context needs to be open-ended 

enough for students to observe the patterns in the data.   

The last component of Part 1 is anticipating students‟ responses.  Stein et al. (2008) 

suggest that this involves actively thinking about what students might be doing mathematically 

when they approach the given task.  This includes thinking about the different approaches, level 

of development, or current understanding of each student in the class.  Both Lampert (2001) and 

Stein et al. (2008) note that it is critical at this stage for the teacher to solve the problem 

themselves and also to think of a number of different ways to solve the problem from a student‟s 

perspective.  By anticipating students‟ strategies teachers are able to foresee potential difficulties 

the problem may pose for students and potential questions that could be asked in order to move 

students beyond their current developmental stage.   

2.5.2 Part 2 of the lesson: students solving the contextual problem 

 

Once the problem has been posed students enter into Part 2 of the lesson.  It has been 

known by many different names.  The Ontario Ministry of Education and Van de Walle (2007) 

name it the during section of the lesson; Fosnot and Dolk (2002) name it working on the problem 

and Stein et al. (2008) name this stage monitoring student responses.  It is where, as Lampert 

(2001) states, students work simultaneously with their relationships amongst their partners, their 

teachers and with the content.   She explains that as a teacher she needed to attend to each of 

these aspects to enable the relationships among the students, and between the students and the 

subject matter.  She needed to learn more about how the students interacted, and what their 
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communication skills were like, which then gave her information for potential use for later 

lessons or the congress.  Lampert also observed that there were specific aspects of students‟ 

interactions during Part 2 that needed attention: 1) building a community of norms and 

accountability, 2) asking questions that facilitated discussion, 3) helping struggling students and, 

4) monitoring student responses for the congress (Part 3 of the lesson). 

Both Stein et al. (2008) and Lampert suggest that if teachers take the time to anticipate 

students‟ possible strategies, difficulties, and vocabulary, they will then be able to ask 

appropriate questions that guide students to learning mathematical concepts.  According to 

Franke et al. (2007), and Sherin, Mendez, and Louis (2000) during Part 2 of the lesson these 

questions are often framed as an interrogation asking the students to give a reason for a 

particular idea, or to state how they arrived at the specific result.  In addition, teachers can ask 

the other partner to clarify what is being said, or to rephrase the solution; in so doing they are 

balancing the accountability of the group with the mathematical learning.  During this section of 

the lesson Lampert (2001) also notes that some teacher interaction takes the form of direct 

intervention.  Lampert suggests that this often occurs when she notices her students heading 

down an unproductive path.  These questions can be more direct, or open ended, depending on 

the challenges facing the student.  In both cases, the teacher can re-voice students‟ responses for 

further clarification, interject with another idea, whether the teachers or other students, or 

scaffold the question depending on the level of student development (Small, 2010). 

Finally, Stein et al. (2008) note that teachers can use response-monitoring to actively 

participate with the students, observing what is being said, the validity of students‟ ideas, as well 

as planning who will be participating in the whole class discussions.  Furthermore, by closely 

observing, reflecting, and planning during this time, Stein et al. (2008) suggest that it will give 
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teachers minutes instead of seconds to ask critical questions of students during the congress 

section. 

2.5.3 Part 3 of the lesson: the congress 

 

  Whole class discussions play an integral role in the development of mathematical ideas 

and concepts.  This is the place where teachers‟ questions play the most critical role.  By 

carefully planning, watching and listening to their students, teachers can ask the appropriate 

questions and guide their students towards understanding and generalizations.  In addition, 

during this time students also play an integral part in the construction of knowledge.  As students 

participate in discussion, by answering the teachers questions, they reorganize their own and the 

class's beliefs about the mathematical notions being presented (Cobb, Stephan, McClair, & 

Gravemeijer, 2001). 

During this time, teachers need to purposely select students‟ responses to present in 

whole class discussions, as well as select the sequence of students‟ strategies, and to connect the 

mathematical concepts between various students‟ responses (Lampert, 2001; Stein et al., 2008; 

Van De Walle, 2007).  Stein et al. (2008) remind us that the teacher remains in control of which 

students present and therefore the mathematical content that might be discussed.  During this 

whole class discussion time, teachers can air common misconceptions, introduce an important 

strategy, or increase the variety of strategies that are available to share.  Each of the above 

suggestions brings about a variety of desired outcomes.  This sequencing is a result of the 

constant monitoring that the teacher has done in Part 2 of the lesson.  Stein et al. emphasize that 

it is the role of the teacher to connect the mathematical ideas for the students.  Furthermore, they 

suggest that rather than having mathematical discussions consisting of separate presentations of 
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different ways to solve particular problems, the goal is to build on each strategy presented by the 

students (p. 331).  Franke, et al. (2007) contend that a teacher must find ways to make explicit 

the underlying mathematical similarities and differences in the solutions in a way that makes 

sense to the students and not by telling them the answer.  

 Sherin, et al. (2000) suggest two different questioning strategies to bring out the 

mathematics in the congress (Part 3): build and go beyond.  Teachers would use the build 

strategy to enhance the nature of discussion further by comparing student strategies and building 

upon student ideas and mathematical comments.  The authors note that for this strategy to be 

useful, it is critical that students learn how to listen and talk to one another.  At this stage the 

guiding questions might include: What do we think? Can we make any comparisons between the 

strategies we just heard?  Both these types of questions focus the discussion on the thoughts of 

the student presenters, as well as the mathematics in the students‟ strategies.  This can also be 

accomplished with a gallery walk, which is a strategy used by Fosnot and Dolk (2002): students 

walk around the classroom looking at the different strategies presented on student posters.  

During this time the teacher and the students are often asking explaining type questions about the 

strategies given; however, at times the teacher can ask building type of questions though this is 

normally reserved for a whole class discussion.  Their second technique, go beyond, occurs when 

teachers have students offer a response but also try to have the students generalize to bigger 

mathematical concepts or models.  Sherin, et al. (2000) believe that the congress is also a time to 

connect the mathematical big ideas to what the students have done in their own work.   

Franke, et al.(2007) and Colburn (2000) discuss three techniques to support the practice 

of to build or go beyond questioning.  Firstly, provide students with wait time after asking 

leading questions.  They propose that this is an important skill to remember because students 
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need to struggle a little in order to build and understand concepts.  This is also echoed in other 

researchers and theorists (Fosnot & Dolk, 2000; Lampert, 2001; Stein et al., 2007), when 

responding to students, paraphrase their learning or repeat what they have said.  This strategy has 

two benefits: it gives validity to what students have created, and it also allows students to hear 

what they have just said, providing them with opportunities to re-evaluate their thinking.  Franke, 

et al. (2007) believe that this rephrasing should be supplied by student voices more often than by 

teachers; however, at times, teachers must re-voice in order to redirect the discussion back to the 

big idea or plan of the congress (p. 228).  

Franke, et al. (2007) conclude that teaching mathematics is about the teacher making 

decisions in the moment, decisions that serve both the individual student and the collective 

classroom‟s mathematical understanding.  This is similarly found in the Ministry of Ontario's, 

Growing Success (2009).  It suggests that primary purpose of assessment is to improve student 

learning.  This can be done through a combination of assessment of, as and for learning (Ministry 

of Ontario, 2010)
3
.  Franke et al. (2007) suggest that teaching is deliberate work, but it is 

deliberate work that takes into account the interaction among people and ideas and content 

(p.228).  By orchestrating the three Part lesson as Franke et al. (2007) suggest, the teacher is 

moving his instruction towards a second generation of reform mathematics. 

In addition to questioning during the three part lesson there is a second, short lesson, or 

mini-lesson structure which is also central to the second generation of reform instruction. 

  

                                                 
3
 Assessment for learning is the process of looking for and understanding evidence in order to see where learners 

are in their learning, where they need to go and how best to get there.  Assessment as learning focuses on 
monitoring and fostering student learning in the moment and, assessment of learning is a public display of learning 
(Ministry of Ontario, 2010, pg. 31). 
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2.5 Mini-Lessons 

 

Fosnot and Dolk (2002) explain that mini-lessons or strings or clusters (Van De Walle, 

2007) can be done at the beginning of the class for ten to fifteen minutes.  They provide students 

with practice in applying specific mental strategies for the upcoming problems.  They are also a 

place where students can discuss and debate strategies, learning concepts at the same time as 

learning effective and efficient procedures.  An example of a string to focus on the strategy of 

using a clock model to add fractions is found in Figure 2.    

 Figure 2 String Lesson 

 

 

 

from: Fosnot, C. (2002). Mini-Lessons for Operations with Fractions, Decimals, and Percents. 

Portsmouth, Ma: Heinemann. 

  Mini-lessons are yet another place for teachers to use effective questioning to highlight 

certain strategies or have students consolidate learning.  During this time, Fosnot and Dolk 

(2002) view the teacher as using more direct instruction, often rephrasing students' comments 

and using them for instructional purposes.  However, they also suggest allowing students enough 

wait time to solve the problems. 

2.6 Summary and Statement 

 

Franke, et al. ( 2007) and Stein et al. (2008), argue that teaching is not just about starting 

with mathematically rich problems, or just about listening to students‟ conversations, and asking 

them to describe their thinking.  It is about shifting to a second generation of reform instruction 

in which teachers move away from a show and tell method and towards connecting students‟ 

1/3 + 1/4 

1/2 + 2/3 

10/60 + 1/2 

1/3 + 25/60 + 1/4 

1/6 + 1/2 
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thinking and conceptual understanding to the broader mathematics.  There is limited research 

documenting the implementation and the impact of second generation instruction on student 

learning. Franke, et al. (2007) argue that the limited citations in their research clearly 

demonstrate that the research on building an effective classroom discussion has just begun (pg. 

237).  In addition, Tzur (1999) believes that studying teaching and learning together in a 

classroom setting would prove useful.  Furthermore this limited discussion on second generation 

techniques has focused on mathematics instruction generally rather than specific concepts with a 

few notable exceptions (e.g. Franke, et al., 2000; Lampert, 2001; Stein et al., 2008).  None of 

these studies has focused on the impact of these techniques on learning fractions and in 

particular, on childrens' constructions of part-whole relationships.  Therefore, studying the 

impact of second generation instruction on children's development of the part-whole relationship 

in fractions could offer new and useful research to the field.  
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Chapter 3: Methodology 

 

3.1 Research Questions 

 

How do a teacher‟s questions in a second-generation reform-oriented classroom impact 

student construction of part-whole relations, and their use of a benchmark model, in the learning 

of fractions? (The benchmark model, in the context of fractions, is a model that showcases where 

pivotal fractions (1/4, 1/2 3/4, 1/1) are located in relation to each other, as well as other 

fractions.) 

Sub questions: 

A)  What mathematical knowledge does a teacher draw on to generate the questions used 

during the fraction math class?  

B) What planning is involved for the teacher when constructing these questions? 

3.2 Research Design 

 

 This research project was designed as a qualitative case study (Bogdan & Biklen, 1998) 

investigating the impact of my questions as a teacher on students‟ construction of the part-whole 

relations and their use of a benchmark model as they learned to work with fractions.  It was a 

case study because the focus of the study was bounded by one case: my students in a Grade 4/5 

classroom and me (as defined by Creswell, 1998).  This study also tried to answer a question of 

how my questions as a teacher impacted student learning of fractions.  In so doing, a case study 

was an appropriate research design for this thesis because it was asking how questions would 

impact learning. It also had three other characteristics delineated by Baxter and Jack (2008) as 

part of a case study: 1) I did not manipulate the behaviour of those being studied, 2) I wanted to 

cover the contextual conditions because they were important to the study and, 3) the boundaries 
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were not clear between the phenomenon and context.  Finally, the study also includes various 

data sources over a period of five weeks. These sources included: pre- and post- assessments, 

video recordings of conversations and lessons, student work samples and, written self-reflections 

of the students and me.  

 These data sources allowed me to view the results of the students from different 

perspectives.  The pre-and post-assessments allowed me to have a quick picture of the students' 

prior knowledge and areas of problems, as well as allowing me to see at a quick glance whether 

they made improvements in their learning.  Collecting student work over time allowed me to 

capture student thinking at different times in the study.  However, not all learning could be 

captured on a piece of paper, which is why videotaping, student work samples, and student and 

my reflections were needed in order to understand the full impact of my teaching and the student 

learning that happened during the case study.  Table 1 is an overview of the data collected during 

the study as well as the alignment with the thesis questions the data was gathered to address.  

 Table 1 Overview of Data Sources 

Type of Data Type of Data Collected Thesis Question it Answered 

Pre-Assessment Observations, Student Work 

Samples, Teacher Reflections 

Main 

   

Red Cross Problem Observations, Video, Journal, 

Student Work Samples, Teacher 

Reflections 

Main, a, and b 

Mississauga Marathon #1 Observations, Video, Journal, 

Student Work Samples, Teacher 

Reflections 

Main, a, and b 

Mississauga Marathon #2 Observations, Video, Journal, 

Student Work Samples, Teacher 

Reflections 

Main, a, and b 
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How much is Blue? Observations, Video, Journal, 

Student Work Samples, Teacher 

Reflections 

Main, a, and b 

What fraction of the 

whole does each shape 

represent 

Observations, Video, Journal, 

Student Work Samples, Teacher 

Reflections 

Main, a, and b 

Post-Assessment Observations, Student Work 

Samples, Teacher Reflections 
Main 

 

3.3 Research Sample 

 

Participants 

The main focus of my research was on my questions of students and their impact on 

student learning.  The research was conducted in my classroom.  Data was collected from the 

whole class but, because of time limitation and large amount of data, the study was narrowed to 

four pairs of Grade 4 students.  The students worked in homogeneous pairings.  Pairings were 

established at the beginning of the year based on my observations, grades from the previous year 

and initial math assessments from the beginning of the year.  For the case study I chose to keep 

the pairs together instead of creating new groups for this study based on the pre-test data. I 

thought the pre-test data would confirm my groupings and I felt that the trust and collaboration 

the pairs had already created far outweighed changing the groups for the case study.   

I selected four pairs:  two low, one middle, and one high achievement.  These 

achievement groups were chosen based on report card marks, pre-test results and my 

observations. The first two pairs had had low achievement in mathematics.  This group consisted 

of Holly, Rick, David and Erick.  Because Erick was away for the beginning of the unit, David 

worked on the first two problems while partnered with Rick and Holly.   In my mid-achievement 
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pair were Nancy and Anita and my last pair James and Nick, had high achievement in 

mathematics. 

3.4 Ethics  

 

Ethics approval was required from Lakehead University.  Since the research involved 

students, permission from the parents, students, and school principal was required by the school 

board.  As I am an employee of the school board and involving my classroom only, I did not 

need permission from the board to conduct the research; however, guidance on this subject was 

given by the board.  Letters and permission forms were sent to parents and guardians 

(Appendices A and B), to students (Appendices C and D), and to the school principal 

(Appendices E and F) during the month of March, 2012. 

3.5 Instruction and Data Collection 

 

The study was conducted over a period of five weeks in April 2012.  Generally, a math 

class was 90 minutes and was scheduled in the morning before the first nutrition break; however, 

occasionally, scheduling conflicts occurred and lessons were not always in the mornings.  A 

math class consisted of a small mini-lesson, which focused the students‟ thinking, a contextual 

problem that students solved in partners, and a congress in which the strategies and solutions 

were debriefed and discussed.  My role as the teacher was to be a facilitator of the students‟ 

learning, questioning and offering suggestions when needed to extend the students‟ explorations.  

After each congress students answered a small reflective question on part-whole relations to 

document their understanding and growth. 
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3.5.1 Pre-test  

Prior to the start of the unit introduction I administered a pre-test (Appendix I).  The 

purpose of the pre-test was to obtain a diagnostic assessment and a general idea of the students‟ 

abilities before beginning the fraction unit.  It set a baseline for comparison with the results of 

the final post-test.  It also allowed me to see if group pairings needed to be changed, which was 

not the case.  The test was divided into three main curriculum-based areas: representing, ordering 

and comparing fractions as well as three mathematical big ideas: fair sharing, part-whole 

relations and as the denominator gets larger the piece gets smaller.  The test was composed of 

three questions using the following rationale.  The first question was created because students 

often organize fractions by looking at the denominator, only or the numerator only, forgetting 

that fractions are a part-whole relation.  It also tested the curriculum connection of representing, 

ordering and comparing fractions.  The second question was used because it highlighted 

students‟ understanding of fraction sizes.  For this question, students sometimes assume that 

because three is larger than two, it will always be bigger.  Although this question did not deal 

mainly with the part-whole relation, students nonetheless needed to consider not only the 

individual numbers but also what the fractions actually represent.  The third question was very 

similar to the second, as students will have to first create, and then organize, the fractions.  Here 

students might struggle with the Pothier and Sawada‟s (1983) stages, as well as using only the 

denominator or the numerator to compare them.   

Students were advised to do their best and that the results would help future planning of 

the units.  The pre-test was not timed; students who required extra time to complete the test were 

able to do so during nutrition-breaks or the periods that followed. 
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3.5.2 Word Problems Lessons 

 

During the instructional unit the five bolded word problem lessons (included in Table 2) 

were used to gather data from the unit.  I focused on the five word problem lessons that dealt 

specifically with the part-whole relation. The rationale for each of the lessons and questions 

asked can be found in Appendix H.   

The lessons were taught according to reform methods of instruction, (as generally 

delineated in Van de Walle (2008), and also followed the five practices set by Stein et al. (2008), 

(see Appendix L). First I used a field journal to document the planning that I did in order to 

conduct the lesson.  I included my thinking around the types of strategies I looked for, my choice 

in partners, the types of questions I thought about asking. 

Next I taught the lesson and recorded observations using anecdotal notes that I took while 

teaching. Additionally the lesson was videotaped (to capture a record of the instruction and 

students‟ reaction to my questions).  During the period of instruction, the eight students were 

videotaped in order to obtain detailed data on what the students knew and could do. In order to 

minimize disruption to the class, the video camera was placed on a tripod at the side or back of 

the room or placed over the students as they worked.  At the end of each day I reflected on the 

learning in the classroom. I would ask myself what went well, what didn't work, problems that 

my students had and possible next steps for the next day.  I also reflected upon the eight students 

to assess where they were on the landscape and see what could be done in the next problem to 

move them along the continuum.  

  



32 

 

 

 

Table 2 Outline of Unit Plan 

Day 1: Building your fraction kit and playing fraction 

games uncover and cover up (Adapted from Burns, 1999) 

Day 2: Exploring Fractions with pattern blocks (Burns, 

1999) 

Day 3*: Red Cross Problem (Fosnot, 2002) 

Day 4: Red Cross Problem Day two   

Day 5: Using their fraction kit: play games 

Day 6: Day three Red Cross Problem    

Day 7: Congress of the Red Cross Problem 

Day 8:  Mississauga Marathon Version #1    (adapted from 

Burns, 1999) 

 

 

 

Day 9:  Mississauga Marathon Version #2  (adapted from 

Burns, 1999) 

Day 10: Congress  

Day 11: How much is blue? (Burns, 1999) 

Day 12: What Fraction of the Whole Does Each Shape 

Represent? (Burns, 1999) 

 Day 13: Day seven of field trip: developing equivalence 

(Fosnot, 2002) 

Day 14: Day eight of race for autism:  (adapted from 

Fosnot, 2002) 

Day 15: Bar capture game (Fosnot, 2002) 

Day 16: If the world were a village  

Day 17: Final assessment 

* Days in bold indicated data sources.

3.5.3 Post Assessment 

 

At the end of the unit a post-test (Appendix J) was administered to evaluate the impact of 

my questions on students‟ development.  The purpose of the post-test was to see if any 

improvement could be in with the students' thinking.   Although I obtained pre and post 

assessments no significant statistical analysis could be undertaken with a set of only eight 

students; instead, the assessments were used to look at individual growth.  The post test followed 

the same parameters as the pre-test.  

3.6 Data Sources and Analysis 

 

The data was described, classified, interpreted and represented (Creswell, 2008) in the 

process described below.  Student work, and pre- and post-tests were entered into Atlas.ti 

qualitative software. Table 3 outlines the data entered into Atlas.ti, the resulting number of 

primary documents as well as the link to the curriculum and the big ideas in mathematics.  
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Table 3 Sources of Data and Relationship to Mathematical Big Ideas and Curriculum 

Connections  

Source No. Students No. 

Problems 

No. Primary 

Documents 

Big Ideas and Curriculum Connections 

 

Pre-Test 

 

8 

 

3 

 

24 

 

Part-Whole Relationships, As the denominator gets larger 

the piece is smaller, fair sharing, representing, ordering and 
comparing fractions 

 

Red Cross Problem 8 1 20 Part-Whole Relationships, As the denominator gets larger 
the piece is smaller, fair sharing, representing, ordering and 

comparing fractions 

 

Mississauga Marathon 8 1 14 Part-Whole Relationships, As the denominator gets larger 

the piece is smaller, fair sharing, representing, ordering and 

comparing fractions 
 

Mississauga Marathon 

Part 2 

8 1 17 Part-Whole Relationships, As the denominator gets larger 

the piece is smaller, fair sharing, representing, ordering and 
comparing fractions 

 

How much is blue? 8 1 13 Fair Sharing, Representing Fractions 
 

What fraction of the 

whole does each shape 

represent? 

8 1 14 Fair Sharing, Representing Fractions 

Post-Test 8 4 32 Part-Whole Relationships, As the denominator gets larger 

the piece is smaller, fair sharing, representing, ordering and 
comparing fractions 

 

 

Two general areas of coding were done. The first area was of student work, their thinking 

and their mathematical development. The assessments and student word problem samples were 

coded either: as correct, correct with support, or incorrect; and secondly, each was coded by type 

of solution strategy, model used and/or big idea addressed.  The latter codes were based on the 

landscape for fractions, decimals and percents developed by Fosnot and Dolk (2002), as well as 

from Pothier and Sawada‟s (1983) stages for fraction development.  The pre- and post-tests was 

compared together in order to check for student growth in fractions.        

The second general area of coding was on my own practice. The videotaped lessons were 

also entered into Atlas.ti. I also consulted my field journal on my planning process and thoughts 

about the lessons. I coded on my talk moves, questions and student responses to both.  The codes 

on questioning were based on the literature from Ackles, Fuson, and Sherin, (2004); Franke, 
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Kazemi, and Battey, (2007); Sherin, (2002); and Sherin, Mendez, and Louis, (2000). See the 

preliminary coding list included in Appendix K.  In addition to the literature, codes were also 

developed during the course of the study using grounded theory as described by Bogden and 

Biklen (1998).  These codes were derived from discussion with my supervisor.  This was needed 

because some things happened in the classroom were not found in the research.  For example, at 

times, it was unclear if my question was a direct interrogation (initiate-evaluate-respond) or a 

question trying to lead to a big idea.  Through careful discussion it was decided to look at the 

wording of the question and end result to see if the question was an IRE or one designed to foster 

the development of a big idea. The final coding list is included in Appendix M.  An explanation 

of the talk moves and question codes is found in Appendix N. Once everything had been coded, 

the students‟ solutions were re-examined to investigate evidence of the impact that my questions 

had on my students‟ development of part-whole relations and the development of a benchmark 

model.   

After I coded each response I tallied the amount of times that I used each talk move and 

question.  In addition, I would make notes in Atlas.ti on the reaction of my students had when I 

ask a question or performed a talk move.  Finally, I tabulated whether the talk moves and 

questions were tied to big ideas (from the landscape) or talk.  In doing so, I was able to get a 

better understanding of the types of moves and questions that I performed during a normal math 

class.  It also allowed me to see if these moves and questions had a purpose and if they had any 

impact of the students.     

The trustworthiness of this coding and analysis was checked through a variety of 

processes. First I gathered a variety of data (student work and video data). During the analysis, 

data was analyzed through discussion with my thesis advisor.  This allowed me to check that my 
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observations were less biased.  In addition, the analysis was based largely on the codes, which 

were created from other research.  This allowed me to verify my thoughts against other research.   

Using qualitative software allowed me to easily revisit video of the classroom lessons and the 

student work to verify my analysis.  
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Chapter 4: Findings and Analysis 

 

I assessed the impact of my questions on students‟ construction of part-whole relations, 

and their use of a benchmark model in the learning of fractions, by evaluating students‟ 

responses to fraction problems, as well as analyzing video data of each lesson. Findings will be 

discussed in ability groups with lower students together, and then mid, and high groups.  

Furthermore, it will discussed within these groups by first their pre-test results, then the unit 

problems and finally their post-test results.  In the unit problems the findings will include the 

planning, teaching results and the types questions I used in teaching the problem.  The analysis 

will examine the learning that the students took part in and the impact these particular questions 

had on students learning   

4.1 Results of the Pre-test and Analysis 

 

  The purpose of the pre-test was to obtain a diagnostic assessment and a general idea of 

the students‟ abilities before beginning the fraction unit.  The test was divided into three main 

curriculum-based areas: representing, ordering and comparing fractions.  Upon administering the 

test I realized that I had worded one question incorrectly and that it was asking the students to 

solve a problem that did not depend upon a big idea in fractions.  In addition, it was not focused 

on comparing fractions or determining if they understood the part-whole relationship in 

fractions.  I decided to ask another question, the next day and coded that instead.  I have 

provided both questions in Table 4 below but will be discussing only the revised question.  The 

pre-test was designed to capture what the students understood about fractions.  It tested four 

mathematical big ideas: the greater the denominator the smaller the piece, fair sharing, the size of 
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the whole matters, and part-whole relations.  These related to the Ontario Math Curriculum: 

representing, ordering and comparing fractions.  In addition, it also tested the students 

understanding of a benchmark model of fractions.  It tested these big ideas because they are the 

foundations of fractions and the curriculum expectations are what I needed to cover and assess 

for the students in my classroom; however, they too are foundational expectations for students 

learning fractions.  These big ideas and expectations also align with the research of Fosnot and 

Dolk (2002), Pothier and Swanda (1989), and others.  It confirms that these are the 

developmental questions to be asking this set of Gr.4 students.   

Most of the students, that is 6 out of 8, were unable to solve any of the pre-test questions, 

which showed that my students struggled with many of the concepts of fractions.  In fact, only 

one student could answer the first question and then struggled with the other questions to follow. 

Table 4 contains a summary of the percentages of correct responses, responses correct with 

support, incorrect responses, and no response. This is followed by a description of each problem 

broken down by low, mid and high achievement group solutions.  

Table 4 Pre-Test Results: Question Wording and Percentages of Correct, Correct with Support 

and Incorrect Responses 

Question Number and 

Short Form 

Question Wording 

 

 

Correct Correct, 

Needs 

Further 

Explanation 

Incorrect No 

Reply 

 

#1. Ordering 

Fractions/ 

Benchmarks/ Part-

Whole Relations 

 

Order these fractions from greatest to least: 

3/4, 5/12, 2/3, 3/2, 2/5, 5/8 

 

1 

 

 

1 

 

 

6 

 

#2. Comparing 

Fractions/ Size of the 

Whole Matters 

Jeremy and Fiona are eating pizza.  Fiona 

has 1/2 of a pizza and Jeremy has 1/3 of a 

pizza.  Is it possible that Jeremy has more?  

Explain your thinking 

    

 

#2 Revised. 

Comparing Fractions/ 

Benchmarks/ 

Part-Whole 

Relationships 

 

Where does 3/6 fit in the list below? 

1/16, 1/4, 3/8, 11/16, 1/1 

  

1 

 

 

 

 

6 

 

 

 

1 

 

 

 



38 

 

 

 

 

 4.1.1 Questions 1 and 2: ordering fractions 

  

There are three main components to the Ontario Mathematics Curriculum (2005) for 

Grade Four: representing, ordering and comparing fractions.  For all three components the most 

challenging area for students to understand tends to be: understanding fractions as a part-whole 

relationship.  Often students will look at the numerator only or at the denominator only, rarely 

seeing the ratio between the two sets of numbers (Mack, 1999). This is exactly what occurred in 

the first two questions of the pre-test, thus echoing Mack‟s findings: overall, students were 

unable to see how fractional parts were different from whole numbers, often partitioning and 

referring to them as a number of pieces rather than the size of fractions.   

4.1.1.1 Lower students’ results (Holly, Rick, David, Erick) 

 

These four students struggled with the pre-test.  None of them saw the part-whole 

relationship and looked only at the numerator or only the denominator.  For most of these 

students their response was like Holly's who said,  “I ordered them 5, 5, 3, 3, 2, 2” (PD37) see 

 

#3. Ordering/ Part-

Whole Relations 

A fifth-grade class traveled on a field trip 

in four separate cars.  The school provided 

a lunch of submarine sandwiches for each 

group.  When they stopped for lunch, the 

subs were cut and shared as follows: 

a) The first group had 4 people and shared 

3 subs equally. 

b) The second group had 5 people and 

shared 4 subs equally. 

c) The third group had 8 people and shared 

7 subs equally. 

d) The last group had 5 people and shared 3 

subs equally. 

1. Was the distribution fair – did each 

group get the same amount? 

2.  How much of a sub did each person get, 

assuming the pieces were cut equally? 

 

  

 

 

7 

 

 

 

 

 

 

 

 

 

1 
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Figure 3
4
. Only when the numerators were the same did they decide to look at the denominator 

(PD43
5
), see Figure 4.  Here the students stated similar comments to Erick who stated, “I put 

them in order by looking at the first number and the second number.  Say I have 5, 5 and 8.  

Since the 8 is the largest then it comes after the 5.” 

Figure 3 Holly's work for Question 1 

 

Figure 4 Erick's Work for Question 1 

  

For the second question the students followed the same strategy, whereby they looked at 

the numerator only and when the numerators were the same they looked only at the denominator.  

For example conferencing with James, he said, “I put 3/6 between 1/4 and 3/8 because it goes 1, 

3, 3 and 4, 6, 8” (PD.45).
6
 

  

                                                 
4
 Because of working in homogeneous groupings students for the majority have a similar level of thinking.  They 

struggled with the same concepts and problems.  Moreover because they worked together to solve the problems 
they often had similar reasoning.  As a result I will often refer to a student's comment as a group’s comment. 
5
 In this example, Holly first looked at the numerator and ordered the numbers 5, 5, 3, 3, 2, 2.  She has not looked 

at the denominator to see a relationship or even recognize that the numbers exist. 
6
 Primary Documents (PD) are the name and number of a piece of data entered into Atlas.ti such as the video of a 

class or in this instance student’s work sample. 
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4.1.1.2 Mid and high students (Nancy, Anita, James and Nick) 

 

Of these four students only Nick was able to answer any of the questions correctly, but 

his responses contained insufficient detail to indicate how he arrived at the answer.  Nancy 

appeared to answer the question correctly; but when I looked at her work more closely her 

answer was correct but her explanation didn‟t match her answer (see Figure 5).  This discrepancy 

between her answer and explanation became even more apparent when looking at similar 

questions in the pre-test.  When asked the revised Question 2, for example, she had some very 

interesting results.  For both of the questions Nancy represented the fractions and looked at the 

shaded parts.  However, she wasn‟t looking at the numerical relationships between the 

denominator and the numerator, only the visual representations of the fraction. In essence, Nancy 

was looking at the numerator and comparing it to the denominator and not the understanding the 

relationship between the two, see Figure 6.  The other two, James and Anita, answered the 

question in a very similar way as the literature suggests: looking at one of the numbers only and 

not seeing the relationships, (Asku, 1999; Fosnot & Dolk, 2000; Mack, 1999).  James and 

Anita‟s responses were very similar to those of the lower group, and are indicative of the types of 

misunderstandings that many students demonstrated.     

In summary, all students, low, middle and high, except one, could not order the fractions 

from greatest to least.  
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Figure 5 Nancy's Response to Question 1 

 

 

 

 

 

 

 

Figure 6 Nancy's Response to Question 2 

 

 

4.1.2 Question 3: comparing fractions  

  

The last question in the pre-test was asked to determine how students represented 

fractions and if they could compare them.  It also allowed me to obtain insight into what they 

understood about fractions.  All of the students failed to answer this question correctly, and 

therefore I will analyze their results together.   

Many of their areas of difficulty were the same as those referred to by Asku (1995), 

Empson (2002), Fosnot and Dolk (2002), and Mack (1995, 1999).  As Pothier and Sawada 
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(1983) have suggested, there is a natural progression of representing fractions.  Many of my 

students struggled to understand that the pieces had to be equal, which is the first stage in the 

natural progression of fractional development.  Many of them struggled with odd numbered 

denominators (see Figure 7), often resorting to halving the piece and then splitting that half into 

odd denominators.  Finally, all of my students represented fractions as a circle.  In Cramer‟s 

RNP study (2002), she used only circles to represent fractions and found that the students were 

able to communicate better about the comparisons between fractions. In direct contrast, my 

results seem to suggest that using circles to represent fractions hindered the students when they 

were asked to explain who had the most or the least amount of subs.  Students struggled to see 

how the whole had to be the same in order to compare fractions and when it came to odd 

numbers they were not able to see how they could represent the fraction (see Figure 7).  Rick, for 

example, made all four circles differently and used a halving strategies to solve for odd 

denominators.  In fact, this question was so difficult for my grade four students that one of them 

broke down in tears
7
. 

Figure 7 Rick's Work on Question 3 

 

                                                 
7
 Although this may appear as if the questions were too hard for Grade 4 students Fosnot and Dolk (2002) use this 

question in their grade four classes.  It also is a very rich question that brings many of the big ideas and curriculum 
expectations in a Grade 4 classroom. 
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The pre-test focused on two aspects of fractional reasoning, part-whole relations and 

comparing fractions. These informed my practice alerting me as to where my students were and 

what I needed to do as a teacher to move them forward in their understanding.  It allowed me to 

see that the majority of them did not understand the part-whole relation and that many of them 

were still in stage two of Pothier and Sawada‟s (1989) developmental stages: trying to master a 

halving process.  Moreover, it affirmed that it is a challenge to learn fractions.  I speculated that 

although students struggled with these concepts there was nonetheless a possibility that effective 

questions, asked at a pivotal moment in student's learning might increase their individual 

understanding.  For this reason I had to look more closely at the problems and learning of the 

students as they worked in groups and congress.  I turn to the next section of findings and 

analysis: the instructional unit and the five problems used to gather data.      

 4.2 Teaching Unit Problems: Planning, Questioning and Student Results. 

  

Throughout the unit (begun after the pre-assessment) I used five word problems to assess 

how the students grasped the concepts being taught. Each problem will be discussed as ability 

groupings (lower group and mid/high group). For the full unit see Appendix G. Generally, as 

students progressed through the unit they understood more of the concepts (moving from one 

correct answer to the full groups solving the problem) and were able to solve the problem 

progressively faster (going from 80 minutes to 30 minute on average).  The overall results of all 

students problems can be seen in Table 5; a discussion of each group will follow the table. 
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Table 5 Unit Assessment Problems Results 

 

Question 

Number 

and Short 

Form 

Question Wording 

 

 

Correct Correct, 

needs 

Further 

Explanation 

Or Support 

Incorrect No reply 

Sub 

Problem: 

 

One 

student’s 

partner was 

away for this 

problem, and 

therefore the 

was put into 

another 

group.  

Hence why 

there are 

only three 

marks. 

 

At a recent rescue mission by the Red Cross, the Red 

Cross decided to hand out sub sandwiches to family 
groups: 

a) The first group had 4 people and shared 3 subs 

equally. 
B) The second group had 5 people and shared 4 subs 

equally. 

c) The third group had 8 people and shared 7 subs 
equally. 

d) The last group had 5 people and shared 3 subs equally. 

1. Was the distribution fair? Did each person in each 
group get the same amount? 

2.  How much of a sub did each person get, assuming the 

pieces were cut equally? 
 

2(full 80 

minutes) 
 

 

 
 

 

 
 

 

2(full 80 

minutes) 
 

 

 
 

 

 
 

2 (full 80 

minutes) 
 

 

 
 

 

 
 

 

 

Mississauga 

Marathon 

Problem #1 

 

There was a local marathon in Mississauga, and I found 

these stats about the people who ran the race.  It was a 
very difficult race so some didn‟t finish, and I think the 

sun was getting to some so they ran more than they 

should have. Can you put them in order from who ran the 
least distance to who ran the most/farthest? 

Set 1 (put names to each fraction): 3/16, 5/8, 3/4, 1/4, 

2/4, 1/2, 9/8, 1/1, 17/16, 15/16, 3/2 
 

4 (60 

minutes) 
 

 

 
 

 

2 (full 80 

minutes) 
 

 

 
 

 

 

 2 (full 80 

minutes) 
 

 

 
 

 

Mississauga 

Marathon 

Problem #2 

 

There was a local marathon in Mississauga, and I found 

these stats about the people who ran the race.  It was a 

very difficult race so some didn‟t finish, and I think the 

sun was getting to some so they ran more than they 

should have. Can you put them in order from who ran the 
least distance to who ran the farthest? 

Set 2 (put names to each fraction): 

12/10, 9/8, 47/50, 6/9, 2/3, 9/16 

4 (30 

minutes) 

 

 

 
 

 

 
 

2 (30 minutes) 

 

 

 

 
 

 

 
 

2 (30 

minutes) 

 

 

 
 

 

 
 

 

How much is 

Blue? 

 

Page 97 in Marilyn Burn‟s Introduction to fractions 4-5 

book.  The question is to determine from the shape what 
fraction is blue? 

 

6 (20 

minutes) 
 

 

 2 (75 

minutes) 
 

 

Set of a 

Shape: 

 

Shape: 
To create thirds in a circle you make a “Y.”  But if I do 

this in a square, what fraction is each piece? 

 
 

 

6 (20 
minutes) 

2 (30  
minutes) 
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4.2.1 Problem #1: The Red Cross (Sub Problem) 

The first problem in the teaching unit was a reprise of one of the pre-test questions
8
, 

Fosnot‟s Submarine Problem (2000). I changed it to include a social justice theme and the Red 

Cross (see Table 6: The Sub Problem).  Before introducing this problem students had created 

fraction kits using a halving schema (1/2, 1/4, 1/8, 1/16) and played two fraction games, which 

were designed to build an understanding of a whole, a half, and equivalent fractions, at least with 

these denominators.  I chose to do this problem because it lent itself to having the students 

explore many of the big concepts in fractions: fair sharing; when comparing fractions the size of 

the whole matters; as the denominator gets larger the pieces get smaller; benchmark fractions; 

unit fractions; and, part-whole relations.   The goal of this problem was to build a linear model to 

compare fractions.  

Before giving the students the problem I tried to anticipate many of the difficulties that 

could possibly occur. For example, I felt that many of the students would struggle with 

representing the fractions, especially when dealing with the fifths.  In addition, when comparing 

fractions I anticipated that they would struggle with the concept that all of the fractions except 

3/5 were one piece away from the whole, and therefore, most students would suggest that the 

fractions were the same until they compared them with a linear model. The majority of my 

questions and talk moves were derived from these anticipated difficulties and big ideas outlined 

in Fosnot and Dolks‟ Landscape of Learning. See Appendix G for a full list of learning 

difficulties that I anticipated students would have with this problem. As Fosnot and Dolk (2002) 

suggest, my questioning was not a random act but rather, a process that required me to have 

certain big ideas and models in mind when I planned the activities, interacted, questioned, and 

                                                 
8
 This is a typical teaching move as it allows the students to revisit the problems from the pre-test.  Some 

improvement is going to happen but it is such a rich problem that it needed to be solved and discussed as a class. 
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facilitated the discussion (see Appendix G).  When a student approached these big ideas and 

models, I would know how to direct and guide their learning, moving them toward the next big 

idea (p.23-24).  For this particular problem the big idea that I was trying to have students 

construct was: understanding what the whole was and what parts had been used in each of the 

groups.  In addition, they were required to compare these parts to each other.  Along with these 

big ideas come a variety of potential areas of difficulty, most of which have been described in the 

literature. I anticipated that many of the students would be at different stages of development, 

and some would have issues with understanding the part-whole relationship.  I also thought that 

there might be issues around comparing fractions as I know that most of their experiences with 

fractions had been shading in circles and determining which picture had more shaded parts.   

 4.2.1.1  Teaching, questioning and student results the Red Cross /sub problem: 

the lower group (Holly, Rick and David). 

 

Unfortunately, Erick was not a part of this problem-solving activity because of his 

absence, and therefore my lower group consisted of Holly, Rick and David.  The first challenge 

with learning fractions concerned appropriate representation of fractions as equal parts.  Pothier 

and Sawada (1983) proposed that students learn fractions in five stages: fair sharing, representing 

in equal parts, halving, halving in repetition, and finally, multiplication for odd numbers.  These 

stages were evident with these students as they solved the problem.  As a result, it took numerous 

rounds of guiding questions to prod them into thinking about the fractions and what they 

represented.  When I first came to check on Holly, Rick, and David, I noticed that the three of 

them had constructed the fractions incorrectly (see Figure 8), falling into stage two, which is 

typical for students at this age.  I asked them, “How did you decide that it was 4 over 3?” 

(PD69).  The response I received was, “There was three subs.”  However, the students drew only 
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one circle broken into 4 parts. To see if it would change their thinking by bringing them back to 

the context, I continued to ask them how many subs they had represented with the one circle.  

They were able to draw the correct amount of subs, but still represented them as circles instead 

of linear models, which meant that the fifths were a problem.  

The group was able to represent the first set of fractions but then struggled to break the 

subs into fifths; this particular group was still in Pothier and Sawada‟s third stage of 

representation: using a halving strategy.  As you examine Figure 9, take a close look at how they 

drew the lines for the fifths.  In both cases they divided the image in half and then split the figure 

accordingly.  Neither one is an equal nor a fair representation of the odd numbers. 

Figure 8 Holly, David, and Rick's First Attempt 
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Figure 9 Holly, David and Rick’s Second Attempt 

 

After twenty minutes I came to check on them I had to spend another twenty minutes 

working with odd denominators, using a lot of scaffolding, re-voicing ideas, and interrogation of 

their thoughts around fair sharing and the part-whole relationship (PD. 69-71).  I started off with 

the question, “How much did the first group get?” referring to the poster in Figure 9. I asked this 

question because I wanted to see if they understood what the fraction actually represented.  Also, 

in their first attempt they seemed to understand this quite easily.  Unfortunately, it took them 

quite some time to answer the question, so I followed up with, “How much does the blue 

represent?”  (see Figure 9).  Again this took them some time, so I decided to scaffold this with a 

small leading question, or word, “people?” pulling them back to the context as Fosnot & Dolk 

(2002) suggest:  teachers need to notice how children are thinking about a problem, seeing if 

they stay grounded in the context.  When the context is a good one, the children talk about the 

situation.   

This sparked some discussion with a simple, “Yeah.”  This type of conversation went on 

for some time with my asking leading questions, about fractions, to help them understand what 
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they had actually represented.  For those leading questions, I used their fraction strips and asked 

them familiar fractions (1/2, 1/4, 2/4, 3/4) and had them represent them with their strips.  I then 

asked them what they would call those fractions and I drew that representation out on their 

paper.  I also modeled this representation as a linear model, hoping that they would see the 

connection to the subs and move away from circle notation.  After some time they finally 

concluded that each blue section was a group of people and the green was another.  This took 

some time because they struggled to understand that what they were doing was dividing each 

whole into four parts or the amount of people they had and that each person would get 1/4 of 

each sub for a total of 3/4. Unfortunately, when I asked them about how much sub the group of 

students received they continued to struggle with representation, saying that each unit piece was 

a quarter, or an eighth instead of 3/4.  It was at this point I decided that these particular students 

needed more work with understanding how to represent fractions instead of comparing them.  In 

fact they did not even get to compare the fractions; they did, however, achieve an understanding 

of what each group received.   

In the end we worked through all of the fractions, relating everything back to our first 

group, and that the reason the answer was ¾ was because each sub had been broken into fourths 

based on the number of people and the fact that each person got a piece of each sub.  This 

process helped them to identify that the answers for the remaining groups would be 4/5, 7/8 and 

finally 3/5.  When I left them I did not know if at this point, whether they truly understood how 

to represent fractions.  I did, however, want them to present what they had done in order to set up 

the problem and encourage their involvement in the subsequent class discussion.  

 Overall, Holly, David, and Rick struggled with representing fractions.   All three were 

stuck in between stages 2 and 3 referred to by Pothier and Sawada (1989): struggling to 
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understand how to divide by odd numbers using a halving strategy.  For the equal fractions they 

were able to represent fair sharing and split all in half but when it came to odd denominators 

their strategy failed them, and they were unable to represent them.  In addition, they were still 

unsure about the relationship between the parts and the wholes.  They were struggling to 

understand how a fraction could be one number with two parts.  

4.2.1.2  Analysing the types of questions I asked during the small group work 

 

What role did my questions play in any new learning on my students‟ part? I found that 

of the 23 questions, the majority were interrogation questions (13) followed by going beyond
9
 

questions (7).  The reason I tended to lean towards more interrogation questions was that these 

students were not able to work yet with many of the big ideas of fractions.  They seemed to 

struggle with the basic representation of fractions and that fractions needed to be fair shares.  

This in turn led me to differentiate the lesson for them, scaffolding their work until they were 

able to work with the big ideas.  As a result, I think Holly, David, and Rick were able to enter the 

problem and contribute to the congress
10

.  In addition, they were able to build upon this lesson 

and use what we discussed in the next set of word problems. See Table 6 for a breakdown of 

question types across the three groups during the Red Cross/Sub problem.  

  

                                                 
9
 Going beyond is when a teacher pushes the students or class beyond the stage of development that they are at. 

(see appendix N for full definitions of questions and talk moves). 
10

 A congress is a whole class discussion.  As a class we came together to discuss the big ideas, problems and 
solutions that the students had created and thought about.   
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Table 6 Questions I Initiated During the Red Cross/Sub Problem Set 

Types of Questions Holly, Rick and David Nancy and Anita Rick and James Congress 

T- Building On 1 (5%) 1 (7%) 0 11 (25%) 

T- Direct Teaching 2 (9%) 0 0 0 

T- Go Beyond 7 (30%) 4 (29%) 0 10 (23%) 

T- Compare 0 0 0 0 

T- Initiation- Response- 

Evaluation 

0 0 0 2 (4%) 

T- Interrogation 13 (56%) 9(14%) 0 18 (41%) 

T- Question Unclear 0 0 0 3 (7%) 

T- Scafolding 0 0 0 0 

T- Shares Strategy 0 0 0 0 

Total Questions: 23 14 0 44 

 

4.2.1.3 Teaching, questioning and student results: Red Cross /Sub Problem: the 

mid group Nancy and Anita.  

 

When I first came to these students, I saw that they had all of the correct fractions, with 

some error in their representations.  They represented the three subs, broke one of them in half 

and said that each person would get 3/4.  This piqued my interest so I asked them, “How did you 

figure out that it was 3/4?”  Their response was, “Well... we had three subs and four people, 

which means one person wouldn‟t get a sub, so we divided a sub in half and each person would 

get a part: two people get one whole sub and the other two get a half” (PD.64).  They would each 

get 1 of 4 pieces but the pieces were not the same size. This was an interesting statement because 

we had been talking about fair sharing with our fraction strips.  For that problem they had to 

share a sub with friends equally, and as a result they had learned how to divide a sub equally; 

however, Nancy and Anita were struggling in this specific context to see how you could divide a 
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sub equally without giving each person a whole.  This may have occurred because I was moving 

away from the concrete strips. It was also the first time that they had tackled a fraction problem 

as a partner group instead of a whole class discussion. 

 It appeared to me that Nancy and Anita were struggling to understand how to divide the 

subs fairly.  With this in mind, I asked them, “Does everyone need to get a whole sub?”  This 

seemed to spark an idea in their head and brought about a discussion concerning the size of 

pieces and how the number of people seemed to determine the amount of the denominator.   

Once they realized that each person didn‟t need to get a whole sub, I asked them, “Are your 

pieces the same?”   I waited for them to do some thinking, watching them draw things in the air 

and talk to themselves.  I asked them, “How many subs would each person get with your 

representation?” (PD. 64).  They told me 2 1/2, which led me to ask, “Is this possible?” (PD. 64).  

They finally concluded that it was not possible but were struggling with why.  It dawned on me 

that the two girls were struggling to understand how to divide something into parts because, with 

the kit, which they had been using, this was already done for them.  Moreover, even though we 

had done some work with sharing using their fraction kits, their previous experiences with 

dividing had always been with quotients larger than one.  Therefore I asked them, “Does 

everyone have to have a whole sub?” (PD. 64).  This seemed to spark some thinking because 

Nancy concluded, “No,” and further, that each person would receive ¾ of the sub because there 

were four people and three subs, therefore each sub would be divided into fourths and each 

person would get one of those fourths for a total of 3/4s” (PD. 64).    

 When I visited them next I noticed that, like Rick, Holly and David, Nancy and Anita 

were able to represent the fractions of 3/4 and 7/8 but struggled to figure out the fifths.  The 

difference was that Nancy and Anita were still able to understand what the fraction was and 
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didn't seem to be bothered by their inaccurate representation.  We had a brief talk about 

representing fractions and moved on to determining which group had the most subs and which 

one had the least (i.e. to order fractions).  When I approached them this time I asked, “Are you 

saying that these fractions are all equal?”  They suggested that they were.  I then said, “But why 

would they argue?” relating everything back to the context of the problem (PD.66). Fosnot and 

Dolk (2002) suggest that using a contextual problem grounds students in real world thinking.  It 

allows them to apply real world strategies, or applications, that they have used in the past.  It no 

longer becomes a discussion about the numbers or procedures but more about the application of 

strategies (P.35).   When Nancy and Anita realized that their thinking didn‟t make sense within 

the context, they struggled to find a strategy for comparing fractions.  They then realized that 

they could use their fraction strips, and made five different strips to represent the different subs 

and fractional amounts and then tried to compare them to how much they each had left to a 

whole (PD.67-68).   

 In the end, they created a benchmark model for comparing fractions.  They understood 

that a fraction was a relationship between its parts and its whole.  The interesting thing is that in 

their linear model they were able to make fifths properly, but when they had originally split it 

incorrectly as a square I believe they still were thinking of it as a circular model.  If you look at 

Figure 10, you will notice that at the top of their paper are circles; these drawings look very 

similar to their square representations.  Whereas on the back of the poster, they drew full 

rectangles in a true linear model.   By the end of their group work these students understood how 

to represent fractions.  They were able to see that fractions are a part-whole relation and that 

there are two different parts to a fraction.  Unlike the first group, Nancy and Anita were able to 

move just past representing fractions and started to compare them to one another.  At this time in 
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the process, this level thinking was a work in progress. What role did my questions play in any 

new learning on their part? 

Figure 10 Nancy and Anita’s work 

 

  

4.2.1.4 Analysing the types of questions I asked during the small group work 

 

 Examining my own role in questioning I found I used a similar proportion of 

interrogation (9) and going beyond (4) questions to those used with the lower group, but far 

fewer of them in total (14) thus reflecting their knowledge base of representing fractions.  For 

Nancy and Anita I was able to ask more questions that stretched their thinking.  While 

conversing with them I noticed that they grasped the concept, and my questions turned towards 

making them think, and communicate their strategies instead of trying to lead them to an answer 

through my questioning, as I had done with Rick, Holly, and David.  In addition, Nancy and 

Anita were able to work with my questions and relate them to their work, whereas the first group 

really struggled with the basic big ideas of fractions and needed more scaffolding and a smaller 

task.  This reduction in my questioning was even more pronounced with the high group.  
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4.2.1.5 Teaching, questioning and student results: Red Cross /sub problem: 

high group (Nick and James).  

 

This was the only group that did not struggle with the problem.  In fact, when 

conferencing with Nick and James they were able to articulate what the fraction was just by 

looking at the number of people and the number of subs.  This was probably because they were 

able to represent the fractions as a line and therefore did not struggle with dividing their whole 

into an odd denominator.  For them, it was a matter of breaking each sub into equal parts 

depending on the number of people; for example, for four people and 3 subs, they broke each sub 

into four parts and each person got 3 of them.  Rick and James stated, “We knew what the 

answer was because we divided the amount of subs by the people and gave each person one 

piece of each sub”(P.D.80).  See Figure 11.    

Figure 11 Rick and James’ work on the Red Cross problem 

 

Fosnot and Dolk (2002) note the strategy that they used is called a unit fraction, which is 

a strategy used by the Ancient Egyptians.  However, unlike the Egyptians, Nick and James, 

broke the part into sections and then iterated those sections. The important variation is that Nick 
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and James take it one step further by adding the units together to compose a final fraction (e.g. 

1/4 +1/4 + 1/4 = 3/4).  When I saw this particular strategy I knew that this would have to be the 

last strategy to show my students during the congress, in order to discuss this unit representation.  

Not only does this support the idea of a part-whole relation but it encourages students to realize 

that each section is worth a certain numerical amount and not just a section shaded in. 

Furthermore, it reflects the big idea that multiplication is related to fractions. This particular 

conversation happened as a whole class congress, or the part three in a three-part lesson plan. 

Looking back on their discussion, these students understood the question right from the 

beginning and didn‟t need any help from me as the teacher.  When I first approached them all I 

asked was, “What are you thinking?” and they were able to articulate their reasoning.  In the end, 

Nick and James were able to represent each fraction and then compare them based on their 

constructed benchmarks.  They knew how many pieces each group had left and, combining this 

with their understanding of the big idea that as the denominator got larger the pieces got smaller, 

they were able to figure out who had more and who had less, something that both the other 

groups and most of the class were not able to do. 

4.2.1.6 Congress and concluding thoughts. 

 

After monitoring all of the students and their thinking I realized that the majority of my 

students were struggling with understanding how much each group received in the problem.  

This discovery was surprising because I thought that after making our fraction strips and playing 

two days of games and mini-lessons on these games, the students would be able to compare these 

fractions correctly.  However, this was not the case and therefore I decided that the congress 

would be focussed on a discussion around how they came up with the fractions and, more 
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importantly, unit fractions.  As previously mentioned, unit fractions prompt the students to think 

about the relationship between the whole and its parts in a fair sharing situation.  In addition, it 

connects the students to multiplication and division, two familiar areas for my students.  As the 

discussion unfolded, we were able to talk about what a numerator and denominator was and their 

corresponding relationship. 

 During the last thirteen minutes of our class congress we discussed what they noticed 

about each of the fractions.  Reflecting back on their work from the previous day and some of the 

responses in the classroom, I noticed they had trouble with some of the fraction concepts.  Due to 

this observation, I thought that even though they were not able to come to these conclusions as 

partners they possibly might do so as a community.  As Cobb et al. (2001) suggest new 

knowledge is constructed with the teacher and the whole class.  At times it takes the congress to 

consolidate the learning as students listen to others express their learning and opinions.  Not only 

would this serve as a way for modeling fractions, and sharing our thinking, but it would also set-

up the next day‟s lesson on comparing fractions using the Mississauga Marathon problem.  As 

students worked together through many “think, pair and share” prompts
11

, a lot of re-voicing on 

my part and wait time, they concluded that the subs were close but not equal.  In fact one student 

in the class and one not being followed stated, “They all were one part away from a whole, that 

the one parts all had different values” (PD. 82).  This prompted me to ask them why they could 

not look only at the numerators only.  Their response was, “When you are looking at the 

numerators you are only seeing a part of the fraction and you need to see both parts because it is 

a relationship” (PD.82). 

                                                 
11

 Think, Pair and Share occurs when, in response to a teacher question or prompt, the students are asked to first 
think by themselves and then share with a partner and finally share their ideas with the whole class.  When I have 
done this I have often found that students feel more willing to share ideas that have been confirmed by their 
peers.  They also had a chance to try it out on their peers to see if their idea had any validity.   
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Reflecting on my own role as a questioner during the congress, I found I used 18 

interrogation, 10 going beyond, and 11 building on type questions during this congress (see the 

earlier Table 6).  For this particular congress, I felt that my students were having a hard time 

moving beyond the concrete representations; hence many of my interrogation type questions 

came from these pivotal moments.  At the end of the congress I decided to do a whole group 

discussion on comparing fractions.  This opportunity is where I tried to push the students beyond 

what they knew and build upon the concepts that they learned in the sharing section.  At this time 

in the congress, I also implemented a lot of wait-time and think-pair share strategies.  This 

situation allowed my students time to talk among themselves about the questions, which gave 

more opportunity for sharing. 

To summarize: just as the literature suggested, this problem brought out many of the 

challenges that students face when learning about fractions.  It developed an understanding of 

representing fractions, both even fractions and odd fractions.  It allowed me to have a 

conversation about unit fractions and how they needed to think about the part-whole 

relationships.  More importantly, it allowed us to have a guided discussion around how to 

compare fractions and that, as the denominator gets larger, the pieces actually get smaller.  

Through this process students were building a knowledge of fractional understanding.  Although 

in the problem solving students struggled, (especially the lower group), it was not until the 

congress that students started to consolidate their learning and bring together many of the big 

ideas in fractions.  Without this interaction between teacher and student or the questions that 

were asked the students would have continued to struggle.  By having those pivotal questions 

during the congress it allowed the whole class to move along a continuum of learning (or 

trajectory) and prepared them for the next set of problems. 
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4.2.2 Problems #2 and problem #3: Mississauga marathon context. 

 

The next two problems were chosen from a set of questions devised by Burns (2003).  I 

used the context of the Mississauga Marathon because it provided me with a useful structure in 

which students could use a benchmark model or a number line.  In addition, it also offered me a 

context that was practical for comparing fractions and one that students could relate to and have 

an interest in.  These sets of problems also follow a natural progression from the Red Cross 

problem because students can work on the concept of comparing fractions, which we started to 

introduce in the congress.    

Before teaching this lesson I reflected on the previous Red Cross problem that the 

students had done.  During this problem I noticed that students were struggling with making 

fractions, and not seeing the relationship between the numerator and the denominator.  In 

addition, many of the students struggled with actually comparing fractions because they were 

looking only at one of the fraction numbers, either the denominator or the numerator; or they 

forgot that as the denominator gets larger the piece actually gets smaller. The purpose of these 

two questions was to see if students would first learn how to compare fractions and also 

construct a linear model and benchmarks to perform those comparisons.  Many of my questions 

for students were focused around how far away each fraction was from a whole, a half or zero.  

My aim in doing so was for students to construct an idea or benchmark model of how to compare 

fractions without using common denominators but instead a benchmark strategy.  Furthermore, 

my questions were geared to leading my students to construct the big idea that as the 

denominator gets larger the piece gets smaller; therefore, if a smaller piece is closer to a whole it 

is the larger fraction.  For example, 7/8 is smaller than 8/9 because 1/9 is closer to a whole 

because it is a smaller piece than 1/8.   
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 Before the actual problem was given out, I decided to do a small mini-lesson on how far 

away certain fractions were from the critical benchmarks of 0, 1/2, 1.  Not only did this help set 

the tone and highlight certain strategies for the problem, but it allowed me to directly showcase 

why benchmarks are key when comparing fractions.  I was really amazed at my students‟ 

responses and how much they had retained from the previous congress.  Based on the last 

problem, I felt that some students were just starting to understand benchmarks, but upon 

reflection of this mini-lesson they truly understood the part-whole relation and how the fraction 

pieces could help determine how far away fractions were from these critical benchmarks.  Holly 

stated, “Mr. So, I noticed that 7/16 is 1/16 away from ½ whereas 2/3 is over so it is larger” 

(PD.135).   

4.2.2.1 Teaching, questioning and student results for the Mississauga marathon 

#1 and #2 children: lower group.  

 

 On their first attempt at this problem Holly, Rick and David seemed to struggle with the 

question; however it did take them significantly less time (27 minutes versus 49 minutes) to 

solve this question than the sub sandwich problem (see Figure 12). First, they attempted to use 

their fraction strips and find the fractions that they could. In addition, they were trying to figure 

out which fraction was greater than a half or less than a half; this part was challenging for them.  

When I approached them I asked them what this fraction meant, pointing to 3/2s (PD.86).  They 

replied by stating that it was 3 twos, then 2/3, and finally coming to the conclusion that this was 

3 halves.  I asked them how much that was and they pulled out 3 half sections from their 

combined fraction kits.  It was at this point I felt that they had learned from the last problem that 

a fraction is a relationship and that it is a unit of quantity, meaning that the 1/2 was not just one 

piece but that it was 1 x 1/2 and 3 halves is 3 x 1/2.  I decided to let them continue the task.  As 
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they were working they came to the conclusion that they needed to establish benchmarks of a 

whole, a half and 0.   

 Throughout their discussion the group continued to use the idea of a benchmark and 

where each of those fractions lay according to this, often stating, “11/12 is only 1/12 away from 

the finish line,” (PD.87) and then placing a line next to the finish line.  Where they struggled was 

when the fractions were really close together (2/3 versus 11/12), not fully understanding that as 

the denominator gets larger the pieces get smaller.  It was at this point that I came to them next. I 

asked, “Why did you place 11/12s here?” pointing to the position on their paper (see Figure 12).  

I continued with, “Why did you place 2/3 here?” (PD.87). The students responded by stating, 

“Cause 2/3 is smaller, and if the number is smaller, then the fraction is smaller.”  What they were 

trying to explain was that as the denominator increases the pieces get smaller, so because they 

were both one piece away from the whole, 2/3 was closer because the piece was smaller.  Seeing 

that there was confusion in their understanding I asked, “So if the piece is bigger, does this mean 

it is closer or farther from whole?” (PD.88). Rick responded by saying, “farther, because the 

11/12 has more pieces than 2/3, therefore it is bigger” (PD.88).  Again I responded by asking, 

“Does the amount of pieces matter?” (PD.88).  What I was trying to do was bring them back to 

the understanding of a part-whole relation and prompt them to see that because 1/12 was a tiny 

piece, it was in fact closer to a whole than 1/3.  Holly finally saw this and stated, “a 12
th

 was 

smaller than a 3
rd

 so therefore it was closer to a whole” (PD.88). 
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Figure 12 Holly and Rick's work for Mississauga Marathon problem #1 

 

 

The second Mississauga Marathon Problem was presented in order to give the students 

some more practise using a number line.  For this second problem, Erick had returned from being 

sick, so I decided to break Holly, David and Rick apart by making Holly and Rick their own 

group.  Furthermore, because of how far David was behind and how much Erick had missed I 

decided to do a small mini-lesson with just David and Erick.  The mini-lesson focus was on 

using the fraction kit to compare small fractions within it.  During this mini-lesson they did not 

do the problem, which is why I turned my attention to Holly and Rick.  During their problem 

solving task, Holly and Rick did much better, starting right away with a number line and splitting 

the line into halves and wholes.  They were also able to recognize that certain groups didn‟t 

improve, stating, “Jen didn‟t improve because 3/2s is more than 9/8.  This is because 1/8 is 

smaller than 1/2 compared to 1” (PD. 96).   The next time that I saw them they had completed 

the whole number line and accurately represented each of the fractions on the number line (see 

Figure 13).  When I asked them to explain, they had some small minor errors in their 
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representations, but they were able to sort these through while I revoiced their thinking to them.  

What really impressed me was that while in the first problem they had struggled to understand 

that as the denominator increased the size of the piece decreased, in this problem they were able 

to explain who ran the farthest distance and the least, based on this big idea.  Not only were they 

able to do this, they were also able to articulate different equivalent fractions and identify with 

some scaffolding the location of all of the key benchmarks (PD.97/98).   

Figure 13 Holly and Rick’s Work in the Mississauga Marathon Problem #2 

 

 

Examining my own role I found I used an equal proportion of interrogation (7) and going 

beyond (7) questions in the first problem and moved towards more building on questions (11) for 

the second problem.  Though there wasn‟t as much of a decrease in the amount of questioning 

(23 vs 19), there was however, a decrease in the amount of interrogation questions that I needed 

to ask and more of an emphasis towards pushing their understanding beyond what they knew.  

This decrease might have been as a result of their growth in understanding fractions.  Both Holly 

and Rick were starting to use the concepts they had learned in the congress and the mini-lessons.  

David and Erick were still struggling a little to work through the problems that were given, but 
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that is understandable considering Erick‟s first day with fractions was this problem and David 

was still working towards making fair shares and representing fractions.   

4.2.2.2 Teaching, questioning and student results Mississauga marathon #1 and 

#2 children: High and middle groups (Nick and James, Nancy and Anita). 

 

The mid and high groups demonstrated two different paths towards understanding this 

question.  James and Nick automatically saw the relationship between the fractions and were 

able to organize them based on how far they were over a whole or under a whole.  For the 

smaller fractions they were able to compare those to one half (see Figure 14).  In fact, they 

finished the question so quickly that I didn‟t even have time to come to them while they worked; 

at best I was able to ask them what they were thinking and use two building on questions to help 

them with their communication.   Looking closely at their explanation they consistently used a 

benchmark model along with the big idea that as the denominator gets larger the pieces get 

smaller.  Clearly these two students were able to carry their learning from the first problem into 

the second and had solidified their understanding of this big ideas in fractions. 

Figure 14 Nick and James’ Work on  Mississauga Marathon Problem #1 
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Nancy and Anita initially struggled with this question, even more so than Holly and Rick, 

though for different reasons.  Their initial difficulty was a result of some procedural 

misconceptions, they were trying to make everything into a common denominator (see Figure 

15).  Both Mack (1995, 1999) and Asku (1999), suggested that this would happen, finding that 

students‟ procedural knowledge got in the way of their learning because students often would 

give up on making sense in order to rely on an algorithm.  This is what happened with Nancy and 

Anita.  When I first approached them, I found them discussing how they could make all of the 

fractions into a common denominator, mostly because Nancy insisted that this was the way it had 

to be done.  Anita was very confused and just wanted to write out the fractions.  In the end, and 

most likely because Nancy couldn‟t determine how to make a common denominator that worked, 

they settled on representing the fractions as circles.  However, after the third representation they 

found it hard to compare to find which one was larger so they stopped this and decided to make a 

linear model (PD.91). But the girls ran into problems when they didn‟t make their wholes the 

same length, which is an essential big idea that we had stressed from the beginning of the unit; 

this is where I found them the second time.  When I approached them I asked, “I noticed that 

your wholes look a lot different, are you able to compare them?”  Their response was, “Yes, 

because if one is bigger, then they ran the most.”  I countered, “But isn‟t this whole different 

than this whole?” pointing to the two wholes.  Nancy was still adamant that it was possible but 

Anita said, “No, because we don‟t know where one starts or ends” (PD.92).  This small 

discussion prompted them to redo their strategy, but once again, Nancy wanted to make all of the 

denominators the same (PD.92).  Again, the girls were at a standstill:  Anita wanted to represent 

them as the same wholes and Nancy wanted to use like denominators.  They decided to use the 

same denominators and spent the next ten minutes struggling to convert each fraction.  When I 
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came to them again I asked them what they were going to do, and when I found that they were 

going to make them into common denominators I stated, “Wow, that is a lot of multiplication.”  

Next, I asked them, “Where would you place the first fraction, 3/2, on a number line?” After 

some minor discussions about number lines, they then measured one out and accurately placed 

the fraction in the right spot.  I queried, “How did you do that so quickly?”  They replied, “Well, 

because it was over a whole by a half.”  I continued asking them some of the easier fractions that 

I assumed they would know from the list, 2/4, 1/3, 4/16, and so on, and they continued to place 

the fractions on the number line in quick succession.  Once on the number line they were able to 

finish the problem very quickly.   

Looking back at Rick and Holly, it is interesting to see that even though they struggled 

from the beginning to conceptualize fractions, once they constructed an understanding of it, they 

could visualize the ordering. Nancy and Anita however, struggled to work through schemas and 

concepts that they had not properly constructed or were still working through.  This was what 

Asku (1997) and Mack (1990) suggested would happen, when students relied on taught 

algorithms procedures versus learning through problem solving.  

Figure 15 Nancy and Anita’s work for the Mississauga Marathon #1 
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For the second problem, both mid and high level groups were able to successfully apply 

their learning and do the problem rather quickly.  I also decided that for both of these problems 

in the unit, we would only do a gallery walk.  This allowed students to question each other's 

strategies and see how each of them solved the problem.  After completing both problems the 

students were able to effectively use a number line and a benchmark model.  Most of the students 

no longer used a circular model to compare fractions and many of them knew how much less or 

more a fraction was away from the critical benchmarks of 0, 1/2 or 1.  Some of this success can 

be attributed to the work done with the fraction kits and the time spent on working with concrete 

models.  This was similarly seen in the Cramer, Tate and del Mas (2002) RNP project, where 

they noted that students benefited from working with concrete models, and those students that 

did so had a better understanding of a part of a whole and its fractional amount. 

In examining my own role and questioning across all the groups, I found, once again, I 

used an equal amount of interrogation (7) and building on (7) questions which were closely 

followed by going beyond (6) (see Table 7).  This time around I observed that Nancy and Anita 

really struggled to find a solution.  Many of their problems centered on using procedural ideas. 

As a result, I spent the majority of the time trying to refocus their thinking back to a working 

model to strengthen their understanding.  Eventually, these students will be able to use common 

denominators effectively, but at that moment they did not have the fractional understanding or 

the multiplication skills to apply this strategy.  Additionally, common denominators is not the 

most effective and efficient strategy, which is why I was trying to lead them towards a 

benchmark model.  Left to their own devices, these students would have continued to struggle 

with this problem.  They would also have tried the same procedure thinking as this is what was 

typically expected of them, getting discouraged in the end.  This would confirm Asku's (1997) 
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and Mack's (1990) findings on how reliance on procedural knowledge can lead to 

misconceptions in learning fractions.  By using effective questioning skills (going beyond and 

interrogation) and knowing the landscape of fractional development, it allowed me to redirect the 

students so that they could focus on the fraction concepts and construct the big ideas.  This could 

be seen in both the lower groups and the higher groups. 

Table 7 Questions I initiated during this problem set for Mississauga Marathon Problem #1 and 

#2 

Types of Questions Holly, Rick, and David Nancy and Anita (no #2 

video available) 

Nick and James  

Problems #1                   #2 #1                          #2          #1                 #2 

T- Building On 4 (21%) 11 (41%) 7 (27%) 0 0 2 (100%) 

T- Direct Teaching 1 (5%) 0 2 (8%) 0 0 0 

T- Go Beyond 7 (37%) 5 (19%) 6(23%) 0 0 0 

T-Compare 0 0 0 0 0 0 

T- Initiation- Response- Evaluation 0 0 0 0 0 0 

T- Interrogation 7 (37%) 4 (15%) 7 (27%) 0 0 0 

T- Scaffolding 0 7 (26%) 5 (19%) 0 0 0 

Total of Questions: 19 27 26 0 0 2 

 

 Overall, the majority of the groups handled these problems effectively.  The only group 

that was still struggling was that of Erick and David because Erick was just starting the unit and 

David was my weakest student in the class for fraction understanding.  Through the questioning 

the other groups were able to develop an understanding of a benchmark model, and were able to 

use this model to compare fractions effectively.  In addition, the groups were using a lot of 

fractional big ideas to communicate their thinking, instead of relying on previously taught 

procedures or strategies they thought I wanted to see.  They were able to articulate that because a 

fraction had a large denominator it, in fact, was a small piece, and that because it was a small 
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piece, it was closer to the benchmark they were looking at.  It is also interesting to note that the 

number of questions that I asked declined, and I was able to move away from interrogation 

methods and push the students‟ understanding beyond their initial schemas from the previous 

problems.  Fosnot and Dolk (2002) would suggest that students are building upon their 

knowledge as they move through the various contexts and landscape.  By this time in the unit 

plan, students had worked on three contextual problems, and played various fraction games.  

This has led to many opportunities for interacting with the students both individual, group and as 

a whole class.  As Cobb et al. (2001) suggests the more interactions a student has the more 

learning is created.  Moreover, Sherin et al. (2000) and Sherin (2002) suggest that these type of 

questioning (going beyond and building upon) helps students make deeper connections from one 

concept to the next.  In so doing, students have assistance to bridge concepts faster than if on 

their own.  This improvement in student learning can be seen here and in future problems as my 

questions move away from interrogation and scaffolding to go beyond and building upon.     

4.2.3 Problem 4: How much is blue? Problem 5: What fraction is each piece?  

 

I decided to group these two questions together because both explored the same big idea: 

that the size of the whole matters, and that fractions are multiplication, for example, 3/4 is also 3 

x 1/4 and work towards understanding how fractions are a part-whole relationship.  Both of these 

problems involved students figuring out the fractional amount of a given area in the whole.  

Problem #4 asked them how much of the shape was blue and Problem #5 asked them for the 

fractional amount of each shape.  Both of these problems were an excellent way for me to see if 

my students understood the part-whole relation.  If they did understand the relationship they 

would quickly see that the number of pieces was unequal and therefore not the denominator, 

forcing them to create equal pieces to find out how much of the shape was blue.  The students 
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that struggled to see this might still be having trouble seeing that fractions are a relationship 

between the whole and its parts.  In addition, some students might have trouble recognizing how 

different students could have different answers but still be correct.  A full description of my 

anticipated problems and questions associated with those problems can be found in Appendix G.   

4.2.3.1 Mini-lesson with a small group of struggling students. 

 

Between these two problems I inserted a small group mini-lesson for some of my 

struggling students, which included David, Erick, Holly, Rick and other students in the 

classroom.  The other students in the class were playing fraction games taught at the beginning 

of the unit.  I noticed that these students, were struggling with some of the basic big ideas we 

were talking about: 1) part-whole relation, 2) comparing fractions using the big idea that as the 

denominator gets larger the pieces get smaller and 3) benchmarks.  Much of the time was spent 

having the students explore questions with their partners.  I would often ask a building on 

question that was related to work we had already done in hopes of having the students make the 

connections between the class problems and the big ideas I was trying to have them work 

through.   

Looking at the types of questions that I asked during the mini-lesson I noticed that they 

were predominantly going beyond and building on questions (see Table 8).  In addition, there 

was a lot of opportunity for students to talk to each other with think, pair and share or just letting 

the students talk to each other for a long period of time, which enabled them to discuss without 

my interference.  They already understood the basic concepts, but I was trying to build upon 

these skills and push their thinking so that they had a deeper understanding of the larger 
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concepts.  Moreover as students talked and interacted with me and the rest of the group it created 

more opportunities to consolidate their learning. 

Table 8 Questions I initiated during this problem set: Mini-Lesson, How much is blue and what 

fraction is each piece? (HMB/FEP) 

Types of Questions Holly and Rick David and Erick Nancy and 

Anita 

Mini-Lesson Congress for 

HMB 

 HMB      FEP HMB      FEB HMB     FEB   

 

T- Building On 

 

0 

 

2 

(40%) 

 

11 

(31%)/ 

 

3 

(37.5%) 

 

0 

 

2 (50%) 

 

9 (39%) 

 

6 (30%) 

T- Direct Teaching 0 0 0 3 

(8.5%) 

0 0 3 (13%) 1 (5%) 

T- Go Beyond 0 1 

(20%) 

0 8  

(23%) 

0 2 (50%) 5 (22%) 7 (35%) 

T-Compare 0 0 0 0 0 0  2 (10%) 

T- Initiation- Response- 

Evaluation 

0 0 0 0 0 0 1 (4%) 0 

T- Interrogation 0 0 3 

(8.5%)/ 

2  

(25%) 

0 0 5 (22%) 4 (20%) 

T- Scaffolding 0 2 

(40%) 

10 

(29%) 

3 

(37.5%) 

0 0 0 0 

Total of Questions: 0 5 35 8 0 4 23 20 

 

4.2.3.2 Teaching, questioning and student results problems 4 and 5: lower 

students (Holly, Rick, David and Erick). 

  

 This was a tale of two groups.  Holly and Rick showed an enormous improvement and 

solidification of the big ideas and learning, David and Erick demonstrated smaller growth with 

more work needed in understanding the fraction big ideas.  Unfortunately I was not able to video 

tape Holly and Rick‟s first session, but looking at their work and reflecting on the short 
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discussion I had with them, they were able to identify what the whole and what fraction of the 

shape was blue (see Figure 16).  Initially, Holly and Rick made the critical mistake that most 

students do when working with this problem, they counted the unequal pieces of the shape (13), 

which became their denominator and then counted the amount that were blue (6), which became 

their numerator.  In the end, they arrived at a 6/13.  I asked them, “Are your pieces the same 

amount?”  The purpose of this question was to highlight the fact that they assumed that the 

triangular pieces and other shapes were all the same size, a common misconception with 

fractions (see Figure 16). When they looked at their answer they quickly realized, the pieces 

were not the same, and divided all of the pieces into triangles.  In the end, they were quite 

comfortable with the concept, which translated into the next problem where they easily saw that 

the shape was a square and if you created four even triangles you could then derive the fractional 

amounts for each of the shapes.  Improvement was not only seen in their understanding, but they 

also answered the question in 20 minutes, this was an improvement from the first question which 

had to be modified, and took them 85 minutes to solve.  In addition, I was able to ask far fewer 

questions (5), and those questions were geared to help them explain their thinking more and to 

communicate their understanding. 
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Figure 16 Rick and Holly’s work on how much is blue? 

 

  

 It was a very different story for Erick and David.  Because of their struggles with 

fractions and the fact that Erick joined us part way through the unit, I decided to spend a lot of 

my time with them working through some of the concepts that we had already completed.  I 

started by having them locate a variety of benchmarks on a number line.  They were quickly able 

to identify where to place a half and a quarter on the number line but struggled to identify where 

to put 3/4.  I asked them, “What relationship do you notice between 1/2 and 1/4?"  They told me 

that 1/4 was a half of a half.  We then continued to work through where to put 3/4, which they 

kept insisting was 1/4.  I noticed that they knew that each space was 1/4 but were struggling to 

iterate them to make 3/4 (PD. 107).  This led me to do some scaffolding and direct teaching to 

help them grasp the concept.  Unfortunately, this discussion kept happening for each of the 

fractional benchmarks with which we were working: eighths, sixteenths.  Every time Erick and 

David struggled to understand how unit fraction was not 1 part of the fraction.  It wasn‟t until I 

compared it to a rational number line that they were able to see that a number line goes in a 

sequential order:  1/8, then 2/8, then 3/8, and so on (PD.108).   
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 When they eventually understood where to put these fractional benchmarks I had them 

practise placing some quick fraction amounts, 5/8, 4/16.  By the end of our little discussion I felt 

that they had worked with the concepts enough in order to start the problem.   I realized that they 

might have been left with an impression that they were to use a number line for the problem 

because when I went to them again I found that they were lining up the shapes in a row and 

marking them on a number line (PD. 109).  I asked them, “What are you thinking about?”  They 

explained to me that they were trying to figure out how much each piece was worth.  I asked 

them how they would figure that out.  Erick said that the hexagon would be a quarter because it 

was a big piece.  I asked him, “Is that the biggest fraction you know?”  “No,” he replied,” but it 

can‟t be a half because it is not quite half of the whole shape” (PD.110).  His answer prompted 

me to ask them, “Does the whole matter?”  And then, “What would the whole be?”  Erick told 

me that he was going to try and make them into one shape, and David suggested that they should 

count them because it would tell them how many pieces they would have.   

 I decided to leave them for a bit so they could work through things.  When I came back to 

them I noticed that they were going back to the number line strategy, lining up the shapes in a 

line and then marking on the number line the space that each of these shapes occupied.  Thus 

putting a line at the end of each triangle, then at the end of each hexagon, and so forth, forgetting 

that the space that these shapes occupied was not just a linear dimension.  At this time, I thought 

it was best to scaffold the lesson and do some direct teaching as they did not understand and I 

wanted them ready for the congress.  I started by asking them about what relationships they 

noticed, reminding them, “We have to make sure our pieces are equal.  After some wait time and 

letting them work through it they were able to suggest that we could make all of them triangles 

(PD.110).   Unfortunately, I did not realize the video camera's battery had died.  But by the end 
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of the problem they were able to understand that they needed to somehow divide the inside of the 

shape into equal parts.  At this point I felt that they were ready for the congress and hoped that 

the whole class discussion would allow them to see other students' work and talk through some 

of their difficulties with their peers.  

 While working on Problem #5 both David and Erick were able to apply some of their 

thinking from the previous problems and, with help from me, actually solve the problem.  When 

I first approached them they were working on trying to use a circle to draw the shape.  I decided 

to ask them, “Why?” Their response was, “That is what the question asked.”  I had them reread 

the question, and they realized it was asking them to use the same strategy for turning a circle 

into three equal parts, but apply this strategy to a square shape (see Figure 17).  I asked them to 

think about the first problem, and what they had to do with the pieces.  They told me that the 

pieces had to all be the same.  I then asked them, “Can you apply that strategy to this problem 

(PD.126)?”  This question got them thinking about how to break their shape into different equal 

parts.  When I found them next, I asked them what they were thinking about.  Erick told me that 

he noticed that with the "how much is blue" question, the trapezoid was twice the size of a 

triangle and, “if I split the square into triangles, I would get four triangles, and it would be 1/8 of 

the trapezoid (see Figure 18)”.  I asked him how he knew that.  He replied that he was still 

working on that (PD. 127).  I decided to let them work through this problem because I saw that 

they were on the right track.  When I came back for the final time, they had the representation 

completed but were struggling to figure out the fraction amount.  They understood that the 

triangle was 1/4 because they split the square into four pieces.  But they were struggling to see 

what the trapezoid would be.  I asked them what they noticed about the middle line, pointing to 

how they had broken the square into four equal pieces.  They told me that it broke the triangle in 
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half.  “Oh,” I replied, “What is half of a quarter?”  They responded that it was an eighth.  We 

then discussed how they could combine these two fractions to create 3/8.  

Figure 17 Erick and David’s work, first attempt 

 

Figure 18 Erick and David’s work, second attempt 

 

 Overall, for Holly and Rick, and David and Erick, I asked a variety of questions 

depending on what was needed.  At times, they needed a more direct approach, other times all 

they needed was a push to go beyond their pre-existing schemas.  Looking back at the questions I 
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used, I asked predominately building on (2 for Holly and Rick, 11 for David and Erick) and go 

beyond (2 for Holly and Rick, 8 for David and Erick).  These questions enabled them to 

understand that the size of the whole matters, and that a fraction is a relationship between its 

whole and its parts (See Table 8).  It is interesting to note that David and Erick were now moving 

away needing my scaffolding and interrogation types of questions, they were starting to 

articulate more of their learning without leading prompts.  I was able to once again, transition to 

more questions that pushed them beyond or built upon the concepts they were working with.    

4.2.3.3 Teaching, questioning and student results problems 4 and 5: middle and 

high students (Holly, Rick, Nick and James). 

 

 I analyzed the next two groups together because they both solved the problems in the 

same way as Holly and Rick, with very little difficulty.  The only difference was that Anita and 

Nancy divided the shape into rhombuses and Nick and James used trapezoids.  In the end both 

groups had little trouble answering the questions, and I only had to speak with Nancy and 

Anita‟s group in order to develop their communication.  This situation was the same when it 

came to the last problem: both groups were able to look at the question and identify that the 

shape needed to be broken into four equal triangles, then the trapezoid would be 1/4 +1/8 which 

would be 3/8 altogether. The figures below are a sample of their work:  Figure 19 is Nancy and 

Anita‟s and Figure 20 is Nick and James.   
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Figure 19 Nancy and Anita’s work on How Much is Blue? (Top) and Fraction Amount Of 

Each Shape (Bottom) 

 

 

  



79 

 

 

 

Figure 20 Nick and James’ Work On How Much Is Blue (Top), And Fraction Amount Of 

Each Shape (Bottom) 

 

 

 

4.2.3.4 Congress and concluding thoughts. 

 

 As I monitored my students, I noticed that either they were predominantly applying one 

of three strategies (using all triangles, using rhombuses, using trapezoids), or that the students 

initially struggled to see why they needed to do to make equal pieces.  I decided to start with the 
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latter issue and have the students identify why it was important that they break the pieces into 

equal parts.  We then reviewed each of the strategies, and I finally asked them, “If we all got 

different answers, then who is correct?”  This type of going beyond question allows me to push 

my students' thinking beyond a constructed schema.  In this case, I wanted to see if they 

understood that fractions could be equivalent even if they had different shapes and took up 

different space (the big idea that pieces don't have to be congruent to be equivalent).  I also 

wanted to see if they understood that the relationship was still the same regardless of the 

fractional representation.  In the end, I was confident that my students had an understanding of a 

part-whole relation, and that a fraction needed to be in equal pieces. 

4.3 Post-test Results and Analysis 

 

 The post-test was administered on May 12
th

, 2012, in order to see if the students had 

improved in their understanding of fractions and more importantly, the development of a 

benchmark model.  The test comprised four questions asking generally the same types of 

questions as in the pre-test. All of the questions dealt with the part-whole relationship in fractions 

and the majority also dealt with having the students use their understanding relating to a 

benchmark to compare and order fractions. The results of the post-test (see Table 9) do not 

reflect the full growth of the students‟ learning to the degree that can be seen in the unit problems 

and in the video discussions with the students.  This is predominantly because they had some 

difficulty with the bare calculation problems, even though they fine with the word problems.  

These difficulties can be exacerbated by many factors, besides their understanding: test anxiety, 

English language learners, the wording of the problems, etc.  This is examining only the pre and 

post would not give a sufficient or accurate representation of the students‟ learning.  For this one 
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must look at the whole picture.  The majority of the students had similar answers and problems, 

whether they were in the high, middle or low groups; David was the only exception.   

 Table 9 Post-Test Results:  Across all groups N=8 

Question Number 

and Short Form 

Question Wording 

 

 

Correct Correct, needs 

further 

explanation 

Incorrect No reply 

#1: Part-Whole 

Relations/ Fair 

Sharing 

Share two pizzas among three people.  

Explain your thinking (Burns, 1998) 

7 

 

 

 1 

 

 

 

#2: Benchmarks Decide if each fraction is closest to 0, 

1/2, or 1.  Explain your thinking.  3/4, 

3/9, 11/16, 1/4, 1/12 

 

6 

 

 

2 

 

 

  

#3: Comparing 

Fractions/ 

Benchmarks/ 

Part-Whole 

Relations 

Joey and Robert each had the same 

pizza.  Joey cut his pizza into 8 equal 

pieces and ate six of them.  Robert cut 

his into five equal pieces and ate four 

of them.  Who ate more pizza? 

 

 2 

 

 

 

 

 

6 

 

 

 

 

 

 

#4: Comparing 

Fractions/ 

Benchmarks/ 

Part-Whole 

Relations 

Raquel thought about this statement: 

When pitching, Joe struck out 7 of 18 

batters.  She said that it was better to 

say that Joe struck out about 1/3 of the 

batters than to say that Joe struck out 

about 1/2 of the batters.  “I think that 

7/18 is closer to 1/3 than 1/2,”she 

said.  Do you agree or disagree with 

Raquel?  Explain your reasoning 

(Burns, 1998) 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

5 

 

 

 

 

 

 

 

4.3.1 Question 1: fair sharing and representing fractions. 

 

  This question was used to assess the students‟ understanding of the part-whole relation.  

It is one of Burns‟ (2003) assessment questions on her book on fraction instruction. The students 

demonstrated the greatest success with this question (87.5%).  Only one student could not answer 

this question correctly; however, he made other strides in his learning.   

4.3.1.1 Low group Holly, David, Erick and Rick. 

 

All, but David, were able to understand that each person would get 2/3 of the pizza 

because the denominator was what they were dividing the whole into, and it represented people; 

the numerator represented the slices in the whole.  Holly and Rick used a unit fraction and then 
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added the two fractions together (see Figure 21) proving to be a significant improvement on the 

pre-test in which they didn‟t know how to use unit fractions or make fractions with odd 

denominators.  It is interesting to see that even though they could identify that each person would 

get 2/3 of the two pizzas they still struggled to represent the odd denominator as equal parts 

having two of the sections larger than the bottom third.  Again, this issue seems to happen 

frequently, first when students are dealing with a circle model, and second when dealing with 

odd denominators.  Nonetheless, as in the RNP project, the students still had a conceptual 

understanding of what the fraction represented and were able to identify the correct answer.  As 

previously mentioned, David was the only student to struggle with this question.  He represented 

a pizza cut into six equal parts, which then confused him when he tried to share those parts 

equally among three people (see Figure 22).  Unfortunately, David is still trying to construct a 

concept of fair sharing and unit fractions, and is situated at the bottom of the landscape.  This is 

still a big improvement from the pre-test in which David could not answer any questions because 

he had no conception of a fraction.  In this situation, he may be thinking that there is a 

relationship, and that he has to divide the pizza amongst the three people, which is something he 

was not thinking about in the pre-test. 
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Figure 21 Holly and Rick’s Correct response to Question 1 

 

 

Figure 22 David’s response to Question 1 

 

4.3.1.2 Mid and high: Nancy, Anita, James, Nick. 

 

For this group of students the answer was very similar to Holly and Rick‟s responses.  

The only difference was in the greater amount of communication (see Figure 23).  In both cases, 

their answers to this question showed me their development in understanding fair sharing and 

how to represent fractions.   
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Figure 23 Nancy’s response  

 

In the pre-test, students struggled to represent a fraction whether it was even or odd.  Here all 

were able to represent odd denominator fractions and divide them equally among three people. 

4.3.2 Question 2: Benchmarks. 

 

This question was chosen to determine if students were using benchmark fractions 

effectively, and if they understood how close fractions were to 0, 1/2, or 1.  Again, for this 

question students showed improvement:  six fully correct answers and two correct that required 

some further communication.  All eight students, were able to answer the questions and for the 

majority of them, without my assistance.   

4.4.2.1 Low students: David, Erick, Holly and Rick. 

 

All of the students, David, Erick, Holly and Rick, clearly communicated their thinking 

and used their understanding of part-whole relations and benchmarks to place each fraction on a 

number line.  The greatest improvement would be in David‟s response (see Figure 24).  During 

the initial pre-test David was unable to draw a fraction or understand what fractions represented.  
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He saw the denominator and numerator as separate whole numbers instead of a part-whole 

relation.  Even though he still struggled with the first question in the post-test he was able to 

identify where the fractions fit with common benchmarks.  However, I am still unsure if they 

were lucky guesses or if he had some understanding of the concept.  When I asked him to 

explain the fractions, 3/4, 1/4, 11/16 in his fraction kit, he was able to show me.  But for the 

other fractions, 3/9, 1/12, he couldn‟t tell me how. This might have occurred because he was 

familiar with the fractions in his kit.  We had been working extensively with them through math 

games and individual lessons, and he had been using some of the kit to assist with the numbers.  

In addition, when he had a concrete model, like the fraction kit, he could visually compare these 

to 1/2, 0 and the whole, whereas, the fractions that were not in the kit were harder to visualize for 

David because he was still in a concrete stage of learning fractions.  Although this was the only 

area in which he grew, he nonetheless showed improvement.  

Figure 24 David’s response 
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The rest of the students were all able to show multiple ways as to why they thought the 

particular fraction was closer to 0, 1/2, and 1.  In most cases they articulated how much closer to 

a 0, 1/2, or 1 a fraction was, and used that to define their answer.   Again the largest 

improvement was in these students‟ ability to communicate their thinking.  During the pre-test, 

many of the students gave up, one broke down in tears, and all of them lacked explanations of 

any kind.  With this question in particular, their level of detail dramatically improved.  In all but 

David‟s case, the students were able to use different models and explain their understanding 

about the big ideas.  In figure 25, Holly is clearly articulating her use of a benchmark model; she 

has linear measurements, which show her understanding of a part-whole relationship, and she is 

breaking the question apart into sections that she can tackle easily.  Not only has she 

demonstrated her understanding of fractions but she has also shown that she is becoming a 

mathematician and a patient problem solver.  In addition, it is interesting to see how Holly is 

using a benchmark model to show her understanding of these critical benchmarks, a model that 

we examined closely in the congress, to compare fractions, and used by many of the other 

students as well. 

Figure 25 Holly’s (low group) response  
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4.3.2.2 Mid and high students: Nancy, Anita, Nick and James. 

  

 In this question, these students performed well.  The main differences between these two 

groups and Holly and Rick‟s answers were in the vocabulary used, and the degree of 

communication.  When the fraction was between two of the benchmarks they would often tell me 

that it was close to both, whereas Holly and Rick would pick only the higher of the benchmarks.  

In addition, these groups were able to clearly articulate their understanding that as the 

denominator gets larger the pieces get smaller.  One student commented, “ I think that 1/12 is 

closer to 0 because half of 12 is six, and 1 is 5/12 away from 6/12 and 1/12 is only 1/12 away 

from 0” (PD. 14).  Some of the students even used a number line (PD. 13, 14, 15) onto which 

they placed each fraction and ordered them even though they were not asked to do this.    

4.3.3  Question 3 and 4: Comparing fractions. 

 

The final two questions investigated the students‟ understanding of how to compare two 

sets of fractions, which is one of the key curriculum expectations of Gr. 4.  The questions also 

combine both an understanding of part-whole relations and benchmark fractions.  Question 3 

asked the students to compare two children who ate pizza and determine who one ate the most.  

Question 4 asked the students to determine whether the following statement was correct: 7/18 is 

closer to 1/3 instead of 1/2.  The results for these two questions were the most surprising because 

after analyzing the students‟ work with the problems and listening to many of the conversations 

that we had had in the classroom, I thought that these two questions would be easy for them; 

however, this was not the case.  For both questions the results were mixed.  The low group 

struggled for various reasons, but my high and middle group had a lot of unexpected difficulties, 

as well. 
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4.3.3.1 Low group: Rick, Holly, Erick, and David. 

 

In question 3, two main issues were evident, some of them were identical issues that 

occurred in the pre-test.  David, Erick and Holly represented the fractions as circles, and though 

Empson (2002) and Cramer, Post & del Mas (2002) suggest that circles helped their students 

understand benchmarks and how to compare fractions, it negatively affected my students‟ 

understanding of which fraction was larger for two reasons.  First, it was very difficult for my 

students to ensure the circles were the same size, and as one of the basic principles of comparing 

fractions is that the whole must be the same, this confusion affected the outcome of their results 

(see Figure 26).   

Secondly, it was difficult to represent odd fractions in circles as one must understand the 

degrees and angles that are in a circle in order to make the correct measurements, whereas in a 

linear model the students can measure the line and divide
12

.  This discrepancy may be partially 

explained by Lamon‟s (1996) study in which she confirms Pothier and Sawada's (1989) research 

with the stages of fractions.  However, she notes that these stages are very developmental, and 

the last stage in which students need to use multiplicative thinking takes a long time to develop.  

It might be that since my students are only in Gr. 4, they have not had enough time to work with 

partitioning activities to develop this final stage, which they needed for this particular question.  

However, I think the students had the most difficulty with the context of the problem and 

choosing the right model to represent their thinking.  I did mention to the students during the unit 

that even though the context says pizzas their representations did not need to be circular; but it is 

hard to alter their strong personal experiences with pizza.  Yet again, context is something that 

                                                 
12

 Out of the four lower students, only Rick (PD. 20) used a linear model, but that was only after he tried a circular 
model.   
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always must be considered when thinking about questions in general, let alone ones used for 

assessment.  The reason I feel this assertion is true is that during the word problems, many of my 

students were comparing odd denominator fractions (see the Red Cross and Mississauga 

Marathon problems).  For both of these problems the context directed them to a linear model.  In 

many of the cases the students looked at what was left and compared those pieces to each other, 

which was what I was hoping for.  In fact, two students tried to do just that in the next problem.  

In the end however, it was not what I was expecting with this answer.  Having said that there 

were other improvements.  

 All, except for David, greatly improved in their level of communication.  As evident in 

their work, they are trying to articulate the big ideas that they were learning in the class.  In 

addition, not one of them felt aggravated or unsure about the problem.  All four of them tried the 

problem and solved it to the best of their ability.  This finding alone demonstrates a huge 

improvement from the pre-test to the post-test. 

Figure 26 Holly’s work for question 3 
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In question 4, only Holly and Erick were able to come close to a correct answer.  Their 

only challenge was with unclear communication, Holly used a benchmark of one half, and stated 

that, “7/18 is not quite a half but 1/3 is greater than a 1/4 and that if it was 8/18 it would be closer 

to a half” (PD29).  Although she didn‟t fully complete the question, she has started to use a 

benchmark.  She also demonstrated an understanding of where 7/18 was situated on that 

benchmark.  Erick was the only one in the group to compare 7/18 to both 1/2 and 1/3, stating, 

“9/18 is half which is 2 away, and 6 (meaning 6/18) is 1/3 which is 3 away from nine” (PD. 28).   

Erick's mistake was that he compared the 1/3 to the 1/2 instead of relating it back to the 7/18.  

This mistake might be a small mental error, since he did know what the equivalent fractions were 

for the other groups.  The other two in the low group struggled to even come up with an answer 

that made any sense.  They used the numerators only, stating, “7+7=14 which is 4 away so it 

must be 1/3” (PD. 33) not yet understanding that a fraction is a part-whole relationship.  This 

was a step back for Rick, who during the problems seemed to have a reasonable understanding of 

this relationship.  Rick's possible struggles could have been the wording in the problem or that he 

still needed more work with part-whole relationships.  At the beginning of the unit Rick struggle 

a lot with this problem and was starting to constructing the concept independently but most 

likely needed more concrete work with the concept.   

 Finally, I realized that the fractions in Question 3 may have been too close together in 

comparison, being only 1/20th apart.  However, more work with benchmark fractions might have 

allowed students to compare the pieces remaining as 1/5 vs. 1/4 and realize that 1/5 was smaller, 

meaning that Robert ate the most.   
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4.3.3.2 Middle and high-groups. 

 

Only two students in the middle and high groups answered question 3 correctly (Anita 

and James).  They were able to use the big idea that as the denominator gets larger the pieces get 

smaller, stating, “Robert ate more pizza because he had 1/5 left and Joey had 2/8, and 2/8 is 1/4 

and because 1/4 is bigger than 1/5 so Robert is closer to the whole” (PD. 18).  For the other 

students, however they all used a linear model and they struggled for various reasons.  One of 

these errors might have been , as stated above, because the two fractions I chose were very close 

together, which is why I think Nancy made them equal in her explanation (PD. 23).  Another 

reason the students had difficulty answering this question is that they may have constructed the 

big idea that larger denominators meant smaller pieces but were not able to use this to reason 

about who ate the most by looking at what remained.  Nick, for instance, states that 1/4 is larger 

than 1/5 (thinking about what was left), but then says that Joey ate more because he ate the ¼; 

whereas the correct answer demonstrates that the opposite is true: he had more left, therefore he 

would have eaten less (PD. 24).  

The students fared a little better on the fourth question as they could visualize a linear 

model more easily, and use a benchmark model as needed.  In fact, all but Anita answered the 

question correctly by comparing 7/18 to both 1/2 and 1/3, stating that 6/18 = 1/3 and 9/18= 1/2 

and 7/18 is only 1/18 away from a 1/3, so it‟s closer to 1/3 than 1/2 (PD. 32).  Anita‟s response 

was the most interesting (see Figure 27) because she modeled the fractions correctly, but then 

stated that 7/18 is more than 1/2 even though in her picture it is clearly not. 
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Figure 27 Anita’s answer  

 

In summary, students made significant improvements from the pre-test to the post.  Even 

though students may not have answered some of the question correctly, they persevered through 

the problem and communicated what they thought, which did not happen on the pre-test.  It is 

possible that the interaction between the student and me, as well as the community, contributed 

to this improvement.  In addition, all students attempted to use a benchmark model to some 

degree and some students had better success than others.  These small growths show that 

students had improvements in their learning.  Many of the students moved from no 

understanding to answering some to most of the problems and the post test questions.  This could 

possibly be done on their own; however, looking at how students struggled at the beginning, this 

learning would have taken a long time to achieve.  Some did have difficulties but perhaps some 

of their difficulty could be attributed to the way in which I worded the question or the numbers 

that I chose, ELL factors, and test anxiety.  If learning happened because of these questions and 

interactions then the question then arises: what were the instructional methods that made the 

difference? What prompted the learning to take place in such a short three-week unit? 
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4.4 What were the instructional methods that made the difference? Teacher questions, talk 

moves and planning. 

 

 In such a short time span the majority of my students increased their knowledge and 

understanding of fractions.  What enabled such insight or learning to occur?  As I reflect on the 

process I can think of two possibilities: 1) the planning process, and 2) the types of questions and 

talk moves that I made during the unit.  The following two sections briefly examine these two 

aspects of teaching. 

4.4.1 Planning. 

 

In their five practices, Stein, et al. (2008) (see Appendix L) suggest that teacher pre-

planning is the key to moving from a first generation reformist to a second generation reformist.  

Reflecting back on the process and my field journal, planning was the key for all of the questions 

and talk moves that happened in the unit.  Before the unit began I had identified most of the 

possible strategies that students might use to solve the problems. Within those strategies, I 

identified the misconceptions and problems that students might face, and then connected each of 

those challenges with particular guiding questions (see Appendix G).  By thoroughly planning 

my unit, I was able to deal with my students' impromptu discussions, and accelerate or add more 

problems to the unit depending on what needed to happen and where my students were in their 

learning.  In addition, it allowed me to make those split second decisions based on what I was 

noticing around the room.  Because of that careful planning, I was able to quickly judge the 

students‟ zone of proximal development (Vygotsky as cited in Fosnot & Perry, 2005), and then 

ask those careful guiding questions to move them along in their understanding.  After each lesson 

was presented and worked through, I reflected on how the lesson went and noted where the 
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students‟ challenges were, what discussions happened, and if any new issues occurred that I 

hadn‟t thought about.  This process then drove my next lesson and my next set of questions. 

4.4.2 Questions and talk moves. 

  

 Chapin, O‟Conner and Anderson (2009) suggest that teachers can spot misunderstandings 

much more easily when students are involved in discussion instead of sitting and listening to the 

teacher talk (p. 5).  They propose that teachers can employ a variety of talk moves such as 

revoicing, wait time, partner talk, and so on, that can accelerate student discussions and 

communication.  In addition, Sherin (2002) notes that the more students talk about mathematics, 

the more students learn about mathematics (p. 188).   It is these types of talk moves, partnered 

with the types of questions suggested by Franke, et al. (2007) or Sherin, et al. (2000) that became 

an integral part of my teaching and the students‟ problem-solving process.  Table 10 lists all of 

the talk moves that I used throughout the unit in interaction with the three groups.  I made a total 

of 298 talk moves, 234 of them were used to promote talk and construct a big idea, 24 were just 

to promote talk and 40 to think about big ideas.    
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Table 10 Types of Talk Moves and Resulting Student Focus 

Talk Moves Amount of Times 

Asked 

Talk Move Big Idea Both   

T- Air Misconceptions 27   27  

T- Answering With Another 

Question 

32   32  

T- Echos Students Words 15 15    

T- Letting Students Just Talk 9 9    

T- Monitoring Students 22  22   

T- No Confirmation/In Order 

to Push Beyond 

14   14  

T- Relate Back to Context 7  7   

T- Relate to Other Problems 11  11   

T- Revoicing 39   39  

T- Student Revoicing 5   5  

T- Think, Pair, Share 19   19  

T- Wait Time 27   27  

T- Checking for Understanding 71   71  

Total Talk Moves 298 24 40 234  

 

I also asked many questions throughout the problems to support student thinking.  See 

Table 11 for a complete list of the questions that I used in the unit the type of question I asked, as 

well as whether the question resulted in student discussion.  At the beginning of the unit I noticed 

that I was using more of an interrogation style of questioning, asking a lot of why questions or 

the talk move of revoicing the students‟ words back to them, hence, the high percentage of these 

types of questions (84).  As the unit progressed I was able to ask broader questions that built 

upon the students‟ previous knowledge and the challenges that we had encountered, thus 

accounting for 64 building on questions and 85 go beyond questions.  It is important to note that 
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although I may have asked equal proportions of interrogation questions and go beyond questions, 

the majority of my questions dealt with a big idea in mathematics.  This process may be very 

different than what is customary for teachers who typically ask questions to which they already 

know the response, or who ask a question expecting a certain response (Ackles, et al., 2004).  It 

is possible that my talk moves and questions enabled many of my students to take over the 

discussion for themselves and do much of their own questioning within their group or with the 

groups beside them.   

By the end of the unit students were asking questions of each other and interjecting their 

ideas into their discussions.  This kind of interaction even happened at the beginning of the unit 

when making their fraction kits.  For example during pair problem solving , James would often 

interject with questions like, "do you mean ... or so what you are saying...." (PD. 42)
13

  These 

questions and conjectures would often come up during the congress where the students and I 

would be discussing the big ideas of the problems.  In most cases, students would question what 

was being presented or disagree with a comment to my questions.  As a teacher I was there to 

observe and help when needed but the students did the discussing with me as the teacher 

focusing their talk on the big ideas.   The students' behaviour was close to what Ackles, et al. 

(2004) observed in their study when they noted that students who had a teacher asking more 

mathematically-focused questions began to defend and justify their mathematical ideas more 

confidently and thoroughly. I facilitated the atmosphere and context in which they learned. I 

gave them the problems designed to create the greatest learning. I also started the discussions at 

the beginning, but at the end the students led and developed their own models for thinking about 

fractions. 

                                                 
13

 James was not the only student to do this.  Many of the other students in the classroom would offer similar 
conjectures and thoughts to the class. 
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Table 11 Types of Questions and the Resulting Student Focus
14

  

Types of Questions Amount of Times 

Asked 

Talk Move Big Idea Both Didn‟t initiate any 

discussion 

T- Building On 64   64   

T- Introduce new strategy that 

has not been developed 

14   14   

T- Direct Teaching 27     27 

T- Go Beyond 85  85   

T- Compare 4  4   

T- Initiation- Response- 

Evaluation 

8    8 

T- Interrogation 87 23  64   

T- Question Unclear 3     3 

T- Scaffolding 34  34   

T- Shares Strategy 8  8    

Total of Questions: 334 31  265  38 

 

Some key observations can be made about the types of questions and talk moves that 

happened in the classroom.  The first is that I had provided a lot of wait time (42 instances)
15

, 

giving students time to think.  I noticed that by doing so, I had more engaged students who were 

willing to participate. I also noticed at the beginning of the units, I would often re-voice students‟ 

communication or re-tell what they said (54 times)
16

 over the course of the unit.  These actions  

served two purposes: 1) it allowed students time to process what was being said, and 2) it 

allowed students to defend or clear up any miscommunication.   

                                                 
14

 A question can be linked to both a talk move and a big idea.  It becomes a talk move when the question is asking 
surface information.  Surface information is when you are trying to ask basic ideas (e.g. what did you do? Why? 
you did this?  For this reason, I have included in this chart a column called talk move. 
15

 This is combined with the think, pair, share talk move because I am not talking, but letting the students think 
first. 
16

 I combined revoicing with echoing students' words to get the final result. 
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 The final observation is that, although I used some questions that were unclear, 55/642, 

the majority of my questions had specific purposes and were linked to a big idea.  Having a plan 

and a progression of learning for my students helped me to construct and use good questions.  It 

is due to this progression of learning that I was able to ask the types of questions that pushed my 

students to build upon and move beyond their constructed schemas of fractions, and move 

towards developing an understanding and a conceptual knowledge of part-whole relations and 

building a benchmark model.  
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Chapter 5: Conclusion and Thoughts 

5.1 Summary of Major Findings 

 

The purpose of the case study was to examine, from my perspective as a teacher, how the 

instructional practice of questioning might impact my students‟ understanding of fractions, 

specifically their construction of part-whole relationships and their use of a benchmark model.  

Part-whole relations is one of the fundamental challenges that students face in understanding 

fractions, and it becomes the corner-stone to their development in comparing and ordering  

fractions, and later skills.  In addition, the use of a benchmark model can also be helpful for 

students when comparing and ordering fractions, helping students to visualize a rational number 

and the magnitude of that number.   

The results of this study seem to suggest that teaching through problem solving and using 

specific, key questions at critical times appropriate to students‟ development, helped my students 

understand these concepts in a very short time frame.  In no way am I suggesting that my 

questions and talk moves were the only factors that had an impact on my students‟ learning.  

There were many variables at play within the dynamics of the unit, the students, and the case 

study.  However, three main findings emerged: 1) students improved and were engaged and 

focused, 2) my questions and talk moves were linked to a developmental understanding of 

students‟ learning of fractions or a trajectory of learning, and 3) my practice was linked to the 

NCTM standards and the five practices of 2
nd

 generation reform. 
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5.1.1 Student growth. 

 

It is clearly evident in the unit problem and the pre-test (Table 2) and post-test (Table 9) 

that students developed an understanding of the part-whole relations in fractions and constructed 

a benchmark model understanding of fractions.  Their growth in understanding ranged from one 

student, David, consolidating one concept, to the majority of the students understanding the 

concepts asked of them.  Although David still continued to have difficulties, he did show some 

sign of growth when you consider that he could not even represent a fraction before the unit, and 

by the end, he could identify the fractions in his fraction kit.  In a short three week period he 

moved from below Stage 1, (sharing, or understanding that a fraction is close to sharing), as 

described by Pothier and Sawada (1983), and Lamon (1996), to somewhere in between Stage 2, 

(students are equally fair sharing), and Stage 3, (using a halving strategy for all fractions).  This 

finding was also true for the rest of the students in the study.  Even though there was a consistent 

problem with question three of the post-test, the students showed growth in their development of 

fraction concepts, especially around understanding part-whole relations and making a benchmark 

model.  In addition, student problem solving times decreased considerably.  For most students, 

the first problem in the unit took 80-90 minutes to complete, and even then I had to modify the 

task for my lower groups.  By the end of the unit the same groups took twenty minutes to solve 

the problems, although not always correctly.  In addition, their confidence in problem solving 

rose.  As evidence, two students who cried during the pre-test, were able, like all of the students, 

to attempt the post–test and write a strategy.   

As previously mentioned, there are some other factors to consider in the development of 

my students‟ understanding. One factor is that the case study students belong to a community of 

other students, some in Gr. 5, and therefore, a year older.  It is also important to note that I teach 
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all subjects through a problem solving or inquiry based approach, which means that my students 

are accustomed to focussed discussions with one another.  It is an expectation that we 

communicate our thinking.  Many of my students are willing to take risks because they feel 

comfortable and understand that everyone‟s contribution is valued.  I make it clear that we, me 

included, are all members of a learning community working together in disciplined inquiry and 

focussed collaboration.   

Another factor that may have impacted this study is that some of my students have been 

with me for two years and, although I did not include any of them in this particular case study, 

they were still part of whole class discussions and may have influenced the case study students‟ 

learning.  The last factor to consider in their learning journey is parent involvement.  Some of my 

students have tutors or parents who are heavily involved in their education.  They ask questions, 

come in for regular interviews and help their children at home.  These are all factors that could 

have influenced and helped with the students‟ growth in understanding and development in the 

classroom. 

5.1.2 Questions focused on a landscape of learning. 

 

 Fosnot and Dolk (2002) note that the framework encompassing teacher belief systems 

about teaching and learning, and teacher knowledge of mathematical understanding in children, 

can influence the ways in which teachers interact with their students. This framework may 

determine the types of questions they ask, the ideas that they try to present, and even what 

activities they design or select (p. 2).  In this case study, and in all of my teaching, I tried to focus 

my attention on understanding and knowing the way in which students developed an 

understanding of fractions, and I used this as a lens to guide my instruction. Pothier and Sawada 
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(1983), and Lamon‟s (1996) work with stages of development, Fosnot and Dolk‟s Landscape of 

Learning and Empson‟s (2002) fraction progression were all key components in framing the 

problems that I selected as well as the big ideas that I presented in mini-lessons and focused on 

in congresses.  It was from these trajectories that the majority of my critical questions were 

developed.  My awareness of these trajectories enabled me to pose the questions or prompts at 

critical points in the development of my students.  Without understanding students‟ development, 

or without thinking about the misconceptions and pitfalls that students may face, it would be 

improbable to think that I could ask critical questions at the right time in my students‟ learning.  

Pre-planning and reflection helped me construct a bridge between theory and practice.  Also, as a 

teacher, I felt I could help my students draw mathematical conclusions about the strategies they 

and their fellow classmates made.  Through the questions and talk moves I initiated, my students 

were able to construct their own understanding of some to many of the critical big ideas in 

fractions at the Junior level.   

5.1.3 Connection to the NCTM standards and the five practices of 2
nd

 generation 

reform teaching. 

 

The National Council of Mathematics (NCTM) recommends five standards for teaching 

mathematics that would promote deep learning: 1) worthwhile mathematical tasks, 2) discourse 

between teacher and students, 3) discourse between student and student, 4) teacher acceptance of 

the use of different methods and manipulatives to solve problems, 5) teacher engagement in 

ongoing assessment and analysis of teaching and learning.  In addition, Stein, Engle, Smith, & 

Hughes (2008) promote the idea that teachers need to move from a first generation of teaching 

reform towards a second generation using teaching practice that is more focused on highlighting 

and talking about the mathematics rather than sharing wonderful and inventive strategies.  
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I found all of the teaching that happened in this case study supports these suggestions.  

Through worthwhile tasks my students experienced effective discourse about mathematics.  They 

participated in this discourse with me, the teacher, within the community congress, and with their 

learning partners during work time.  By modeling and promoting questions and talk in the 

classroom, I helped to facilitate the learning so that they felt comfortable to talk and discover 

fractions.  Could the students have learned fractions from a textbook and from a teacher using 

traditional rote and an IRE model of questions?  The answer is: without a doubt, yes; there are 

studies that promote this style of teaching (Mighton, 2003).  However, by following the practices 

suggested by the NCTM and from researchers such as Stein et al. (2008), all of my students 

developed not only accuracy but also some understanding of fractions as they worked, rather 

than some time in the future as Mighton (2003) contends they will. They were engaged in the 

learning and felt like contributors in the classroom. None of my students gave up on a problem; 

they felt confident that they had the skills necessary to tackle it and provide a solution.  I felt that 

my students were empowered, or felt no fear when it came to fractions, and this discovery has 

motivated me to continue honing my observation and questioning skills so that I can become a 

better facilitator of student learning.   

5.2 Conclusions 

 

As this study showcases, developing students‟ understanding of fractions takes time and 

careful planning. Today, fractions remain one of the toughest subjects for students in elementary 

mathematics.  This reality can be attributed to the various challenges and misconceptions that 

students may encounter in their development of the subject matter.  However, by carefully 

planning problems and questions around a trajectory of learning, allowing students to talk and 

discover these concepts,  and providing time to share and facilitate the learning, students will 
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learn and, at their own pace, move forward in the journey towards an understanding of fractions, 

specifically the part-whole relationship and the use of a benchmark model.  

However, questions such as the ones used in this case study do not happen on the spot.  

They take time to plan. First, I had to know the mathematics that my students needed in order to 

develop these skills.  I had to know the learning trajectory of my students, and finally, I had to 

reflect on and anticipate the learning that might happen in the upcoming day and throughout the 

rest of the unit.   Pre-planning the questions and congresses promoted frequent exposure to the 

terminology and concepts in the fraction unit. As a teacher, I was constantly reflecting on my 

practice: are my students understanding what is being asked of them, are they going where they 

need to go?  As a result of this reflection, we participated in an everchanging curriculum plan 

that ebbed and flowed with the students‟ own development.   

5.3 Considerations for Future Research 

 

There is still much research to be done in the area of teachers‟ questions and the impact 

that they have on student development.  This particular study was a small snapshot taken in a 

Grade 4/5 classroom.  It was taught by a fairly experienced reform teacher.   An extension of this 

study would be to see if it can be repeated using another group of students and a reform teacher, 

or to see if other non-experienced reform teachers can repeat the process and have the same 

success asking those types of questions.  In addition, further research could be conducted to see 

how my own students perform with fractions the following year: did they retain the information 

that was taught, or were they only able to retain the information for this particular unit that was 

taught with me?  
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 It would be interesting to examine teachers‟ question repertoires and tabulate the types of 

questions and their impact on student learning in other areas of mathematics.  Does experience 

play a role in the types of questions asked: do first year teachers use different questions than 

second, third or ten year teachers? Does professional development make a difference in the types 

of questions asked?  What training or types of professional development need to happen for 

questions to impact student learning?  

 Finally, it would be interesting to look at the other factors that existed in this study and if 

they contributed to the development more so than the questioning.  Does being in a reform 

classroom all year impact students?  How do student talk and discourse contribute to student 

learning?  How does working with homogeneous partners for the whole year affect the 

development of student learning?   Over time, what is this learning like?  Does it improve or 

hinder development, especially when students transition to a classroom where reform practices 

are not used? 

5.4  Final Thoughts 

 

Although this was a very small study, limited in size and site, and designed by an 

inexperienced investigator, the results tend to support some of the findings and conclusions in 

the relevant literature that was reviewed in Chapter 2.  That is that students do struggle with 

understanding part-whole relations and that they initially see the numerator and denominator as 

separate numbers.  They progress through stages outlined by Pothier and Sawada's (1983) and 

finally, they follow a progression of learning very similar to that of Fosnot and Dolk (2002) if the 

teacher employs questions related to the landscape of learning.  In addition, the findings suggest 

that specific types of questions do have a positive impact on student understanding of part-whole 
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relations in fractions and the use of a benchmark model.  In so doing, I have moved my students 

beyond their personal schemas of fractions, pushing them to understand that fractions are not just 

the shaded parts in pictures, nor that they should rely solely on taught algorithms, but to see that 

they are a relationship between two numbers.  As a result, my students have started to 

conceptualize the big ideas in fractions and move forward in their learning development.   

I hope that my students will utilize my provocative questions, such as: What are you 

thinking?  Why is this happening? Describe the mathematics that you are doing.  How does this 

compare to the person next to you? I hope that they will internalize this style of questioning for 

themselves, becoming more meta-cognitive about their own learning, eventually applying these 

questions to other areas of the curriculum.   

As I reflect on this experience I realize how much reform teaching and, more importantly, 

asking critical questions have become a very significant tool in my teaching practice.  At first 

this was an instructional practice that I started to employ at the beginning of my teaching career, 

seven years ago; but, the more that I see the outcomes and the young mathematicians that are 

produced, the more this practice has become a habit of the mind and a philosophy that I live by 

every day.  
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Appendix A: Parent Letter Centre 

 

[put on school letterhead] 

March, 1
st
, 2012 

Use one double space between date and salutation 

Dear Parent/Guardian, 

I am working on my Master of Education degree at Lakehead University. The goal for 

my thesis is to investigate an area in mathematics in which students have difficulty learning, and 

to find ways to improve the teaching of this topic. The focus of my research is on learning 

fractions and the impact that teacher‟s questions have on students' understanding of fractions 

concepts. 

  

I will be observing mathematics lessons in the classroom during the unit on fractions. The 

unit will be taught for 4 weeks during April 2012. The students will take a pre-test before the 

unit begins and a post-test when the unit is completed. Some samples of students‟ work will be 

collected. I will be videotaping the lessons. Also, with permission, some groups of students will 

be videotaped so that after the lesson I will be able to listen carefully to how they have solved the 

problems. Their conversations may be transcribed and quoted in my final project in order to 

illustrate their understanding of fractions. I, or my supervisor Dr. Lawson, may also make use of 

some of the edited classroom footage and work samples for professional development for 

teachers and academics at conferences.  I may also make use of this data for possible journal 

articles and further papers. Upon completion of the project, you will be welcome to obtain a 

summary of the research by contacting me at the school or by providing your mailing address on 

the consent form.  

 

Your child will not be identified in any written publication, including my master„s thesis, 

possible journal articles or conference presentations. If edited video data is used for professional 

development, your child will be identified by first name. The raw data that is collected will be 

securely stored at Lakehead University for five years and then destroyed.  

 

Participation in this study is voluntary and you may withdraw the use of your child„s data 

at any time, for any reason, without penalty.  The research project has been approved by the 

Lakehead University Research Ethics Board. If you have any questions related to the ethics of 

the research and would like to speak to someone outside of the research team, please contact Sue 

Wright at the Research Ethics Board at 343-8283 or swright@lakeheadu.ca. The research has 

been approved by the Peel District School Board and the Principal of [name of school].  

 

Please note that this research does not affect classroom instruction time.  The lessons are 

being carried out in the same manner and length of time as they would be without the research 

project. This research will not take away from the normal learning environment in the classroom, 

and there is no apparent risk to your child. The research is simply being conducted to make note 

of the impact of my questions on students‟ development of fractions, which is a regular part of 
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the fractions unit. If you choose not to have your child participate, he or she will still be engaged 

in the math lessons. The only difference is that his or her data will not be used. Even if you give 

permission for your child to participate, your child will also be asked whether he or she is willing 

to take part in this research.  

 

You are welcome to contact me at 905-452-8296 ext: 505 or see me in person before  or after 

school if you have any questions concerning this research project. I would be very pleased to 

speak with you. 

Please complete the consent form below and return it to the classroom by March, 30
th

, 2012.  

Sincerely,  

 

Jonathan So 

Grade 4/5 teacher 

Master‟s  Candidate 

 

 

[insert Principal‟s name] 

Name of school 

(905)- 

 

 

Dr. A. Lawson, Ph.D.  

Master„s  Candidate Thesis Supervisor  

Lakehead University  

alawson@lakeheadu.ca  

 

 

Sue Wright  

School Research Ethics Board  

Lakehead University  

807-343-8283  

swright@lakeheadu.ca 
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Appendix B: Parent Consent Form 

 

(to be printed on letterhead)  

 

I DO give permission for my son/daughter, 

_______________________________________,  

(Student„s Name/please print)  

 

to participate in the study with Jonathan So as described in the attached letter.  

 

I understand that:  

1. My child will be videotaped in the classroom environment as part of the research.  

2. My child‟s participation is entirely voluntary, and I can withdraw permission at any 

time, for any reason, with no penalty.  

3. There is no apparent danger of physical or psychological harm.  

4. In accordance with Lakehead University policy, the raw data will remain confidential 

and securely stored at Lakehead University for five years and then destroyed.  

5. All participants will be identified by first name only in any publication resulting from 

the research project.  

6. The video clips of the classroom or student work may be included in Professional 

Development for teachers conducted by Jonathan So, [teacher], or Dr. Lawson. If my 

child appears in the video clips he/she will be identified by first name only.  

 

I initial this box to give permission for my child to appear in video clips 

which may be used for Professional Development purposes, as outlined in 

#6.  

 

 

7. I can receive a summary of the project, upon request, following  its completion, by 

calling or writing, or by providing my address below.  

 

Please keep the introductory letter on file should you have any further questions. Bring 

sentence below up to here.If you agree to let your child take part in the study, please 

complete this page and have your child return it to [teacher].  

 

 

Name of Parent/Guardian (please print): __________________________________ 

 

Signature of Parent/Guardian: ___________________________________________ 

 

Address (if you would like a summary of the findings):  
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Appendix C: Potential Participant Letter 

(to be printed on letterhead)  

 

 

March  2012  

 

Dear Potential Participant,  

 

In April, I will be videotaping in the classroom in order to do some research on how my 

questions impact your understanding of fractions. I will be paying attention and writing 

things down during your math classes because I am curious about what helps students to 

learn fractions best.  

 

I will be teaching the lessons as usual and classes will be exactly the same as before.  A 

difference you will notice is that during some lessons there will be a video camera in the 

classroom and a microphone on your work table. These tools will help me with my 

project by recording what you say and do while you are solving problems.  

 

My supervisor Dr. Lawson may also want to use some video clips from the classroom 

and samples of my work for helping other teachers learn more about how to teach about 

fractions and in conferences. If you are in a video that will be seen by other teachers, I 

will use only your first name. I will use that name for any written part of my research and 

when showing the videos to other teachers.  

 

The unit will start with a pre-test so that I can see what you know about fractions before 

any of the lessons. I will then teach the lessons and your work will be collected as usual. 

At the end of the unit I will have another test to see what you have learned. Please ask me 

any questions you have about my project, and I will be happy to answer them. You can 

decide whether or not to be part of my project. You will be doing the same work in math 

class whether you are in my project or not, the only difference is that I will not use your 

test results or your work or any video clips with you in them if you decide not to take 

part. Thank you for thinking about being part of my project.  

 

Sincerely,  

 

Mr. So 
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Appendix D: Potential Participant Consent Form 

 

(to be printed on letterhead)  

 

Potential Participant Consent Form  

I, __________________________________________, want to take part in the project 

with  

(Student„s Name/please print)    

 

Mr. So as described in the letter.  

 

I understand that:  

 

1. I will be videotaped in the classroom as part of the project.  

2. I don„t have to take part in the project, but I want to be part of it I know I can change 

my mind about that later, and it  won't be a problem.  

3. It is safe to be part of this project.  

4. All of the information Mr. So collects for his project will be kept in a very safe place at 

Lakehead University for five years, and then it will be destroyed.  

5. My real name will never be used in anything Mr. So writes about the project.  

#6 ? 

7. Mr. So or Dr. Lawson might want to use some of the videos or copies of my work to 

help other teachers learn about teaching fractions. My first name might be used in video 

clips of the classroom. My name will not be on any written copies of my work.  

 

I put my initials in this box to show that it is alright for me to appear in video 

clips which may be used for helping other teachers learn about teaching fractions.  

Double space between sentence above and this one. Align the If to the left. If you 

want to be part of my project, please fill in this page and give it to [teacher].  

____________________________________________________  

 

Name of Student (please print): ____________________ 

 

Signature of Student: _________________________
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Appendix E: Principal Letter 

 

(to be printed on letterhead)  

 

 

March, 2012  

Dear [Principal„s Name],  

 

I am working on my Master of Education degree at Lakehead University. The 

goal for my thesis is to investigate an area in mathematics in which students have 

difficulty learning and to find ways to improve  how this topic is taught. The focus of my 

research is on learning fractions and the impact teachers' questions have on students' 

understanding of fractions concepts. 

  

I will be observing mathematics lessons in the classroom during the unit on 

fractions. The unit will be taught for 4 weeks during April. The students will take a pre-

test before the unit is taught and a post-test when the unit is completed. Some samples of 

students‟ work will be collected. During the lessons, I will be videotaping the teaching 

process. Also, with permission, some groups of students will be videotaped so that I will 

be able to listen carefully to how they have solved the problems. Their conversations may 

be transcribed and quoted anonymously in my final project in order to illustrate their 

understanding of fractions. I, or my supervisor Dr. Lawson, may also make use of some 

of the edited classroom footage and work samples for professional development for 

teachers and academics at conferences. Upon completion of the project, you will be 

welcome to obtain a summary of the research by contacting me at the school or by giving 

your mailing address on the consent form.  

 

The students will not be identified in any written publication, including my 

master„s thesis, possible journal articles or conference presentations. If edited video data 

is used for professional development, the child will be identified only by first name. The 

raw data that is collected will be securely stored at Lakehead University for five years 

and then destroyed.  

 

The research project has been approved by the Lakehead University Research 

Ethics Board. If you have any questions related to the ethics of the research and would 

like to speak to someone outside of the research team, please contact Sue Wright at the 

Research Ethics Board at 343-8283 or swright@lakeheadu.ca. The research has been 

approved by the Peel District School Board.  

 

Please note that this research does not affect classroom instruction time.  The 

lessons are being carried out in the same manner and length of time as they would be 

without the research project. This research will not take away from the normal learning 

environment in the classroom, and there is no apparent risk to the students. The research 

is simply being conducted to make note of the impact of my questions on students‟ 

development of fractions, which is a regular part of the fractions unit. Students who are 

not participating will still be engaged in the math lessons. The only difference is that his 
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or her data will not be used. Even if parents give permission for a child to participate, the 

child will also be asked whether he or she is willing to take part in this research.  

 

The School Board, [name of] School, [teacher], and his students will not be 

identified in any written publication, including my master„s thesis, possible journal 

articles or conference presentations. If video data is used for professional development, 

the students will be identified by pseudonyms; however, if students use the teacher„s 

surname it may be revealed.   

The raw data that is collected will be securely stored at Lakehead University for five 

years after completion of the project. A report of the research will be available upon 

request. I can be reached at 416-564-0231 or you can e-mail me at 

Jonathan.So@peelsb.com.   

If you give permission for participation in the study, please sign the attached letter of 

consent and return it to me.  

 

Sincerely,  

Jonathan So 

Master‟s  Candidate 

Lakehead University 

 

 

Dr. A. Lawson, Ph.D.  

Master„s  Candidate Thesis Supervisor  

Lakehead University  

807-343-8720  

alawson@lakeheadu.ca  

 

Sue Wright  

Research Ethics Board  

Lakehead University  

807-343-8283  

swright@lakeheadu.ca 46  

mailto:Jonathan.So@peelsb.com
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Appendix F: Principal Consent Form 

(to be printed on letterhead)  

 

Principal Consent Form double space between this line and next  

I __________________________________________, do agree to participate in the study  

(Principal„s Name/please print)  

 

with Jonathan So as described in the attached letter.  

 

I understand that:  

1. [teacher] and his students will be videotaped in the classroom as part of the research.  

2. Their participation is entirely voluntary, and I can withdraw permission at any time, for any 

reason, without penalty.  

3. There is no apparent danger of physical or psychological harm.  

4. In accordance with Lakehead University policy, the raw data will remain confidential and 

securely stored at Lakehead University for five years and then will be destroyed.  

5. The Peel District School Board, [name of] School, [teacher], and his students will remain 

anonymous in any written publication resulting from the research project.  

6. The video clips of the classroom or student work may be included in Professional 

Development for teachers conducted by Jonathan So or Dr. Lawson. If students appear in the 

video clips, they will only be identified by first name. If [teacher] appears in the video clips, he 

may be identified by surname.  

 

I initial this box to give permission for [teacher] and his students to appear in 

video clips which may be used for Professional Development purposes and 

academics at conferences as outlined  above.  

 

 

If you approve of participating in my study, please complete this page and return it to me.  

____________________________________________________  

 

Name of Principal (please print): ________________________ 

Close extra spacing between to double space 

Signature of Principal: ________________________ 

 Date: 
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Appendix G: Detailed Unit Plan 

 

Grade Five Fractions: Adapted from Cathy Fosnot Field Trips and Fund-Raisers, and Marilyn 

Burn‟s Introducing Fractions use italics for both books 

Adapted by: Jonathan So 

Day 1: Building your Fraction Kit and playing fraction games, uncover and cover up 

Materials: Strips of paper 48cm long.  One colour for each fraction.  (Whole, 1/2, 1/4, 1/8, 1/16, 

1/3, 1/6, 1/12, 1/9) 

Problem: Helping Mom 

 

 So, I went over to my mom‟s house with 1 of my friends.  She knew that we were 

coming, so she made us this huge submarine sandwich with everything on it.  Well, I  had a 

dilemma because I didn‟t know what to do.  I mean, how do I split this submarine sandwich so 

that my friend and I get an equal share?  What do you think I should do? 

 

Part 2: 

 Well, you remember yesterday how I told you about going to my mom‟s house? Well I 

didn‟t tell you the whole truth.  I had just figured out how much my friend and I get to eat when 

the doorbell rang.  Well, without my knowledge, my mom invited some of my other friends to 

help out.  At the door were seven more of my friends!  Now I was really stuck.  I was so worried; 

would I have enough sub to share equally?  How much of the sub would each person get? 

 

During:  

 This problem is easily completed as a whole class lesson, instead of working in 

partners.  The congress and the during section can happen at the same time 

 

Big Ideas Anticipated Problems and Questions 

Students have to build different 

fraction strips; though they will 

eventually be using them for 

equivalence, they must understand 

that fractions are relationships 

between the whole and its parts. 

 

Students will also be building how 

big a whole is in relation to all of its 

parts (1/2, 1/4, 1/8, 1/16, 1/3, 1/5, 

1/10, 1/9, 1/6, 1/12) 

1) Students often know that a half is two things, but they 

struggle to make a fair share of it 

a) How do you know this is a half? 

b) What strategies can I use to make sure it is exact? 

2) They also struggle with identifying the fraction as a 

relationship.  They see it has 2 and 1, not 1 part of 2. 

c) What is this fraction called? 

d) How many parts do you notice?  

e) How is this related to the fraction name? Notice 

anything? (This question might take time; so 

start with some and then, as they build more 

fraction strips, build on everyone’s answers) 
3) Students also struggle to use this strategy to make 

other fractional parts. 

a) What relationship do you notice between 1/2 and 
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1/4? Or other fractions. 

b) Which fraction is larger? Why? 

4) Students struggle to understand that the greater the 

denominator, the smaller the fractional part.  This 

confusion is because they often only look at each part 

as a separate number forgetting that  the fraction is a 

relationship between the two. 

a) Isn‟t 4 larger than 2? Why is it then that 1/2 is 

larger than 1/4? 

5) Finally, students struggle to understand that these 

strips are only parts of this particular whole.  Every 

whole has different sizes and different parts.  A half 

of a fridge is different than half of the school. 

a) What if I applied these strategies to finding half of 

the school? Would they work? 

b) How does this compare to the half of our strip? 

c) Aren‟t they both halves? Why is one bigger? 

Models expected: Measurement, fraction bars, fair sharing 

Strategies: Using landmark fractions 

 

Day 2: Exploring Fractions with Pattern Blocks 

a) Which number is bigger 2/8 or 6/16? 

b) Which number is the smallest 9/8 or 14/16? 

c) Use your strips to find fractions that are equal to: i) 3/6    ii) 30/40 

d) Write three ways to make 1 using different fractions from your fraction kit? 

Marilyn Burn‟s lesson that follows up with the strips and a new game 

Day 3: Field Trip Problem (Fosnot) 

A fifth-grade class traveled on a field trip in four separate cars.  The school provided a lunch of 

submarine sandwiches for each group.  When they stopped for lunch, the subs were cut and 

shared as follows: 

a) The first group had 4 people and shared 3 subs equally. 

B) The second group had 5 people and shared 4 subs equally. 

c) The third group had 8 people and shared 7 subs equally. 

d) The last group had 5 people and shared 3 subs equally. 

1. Was the distribution fair? Did each person in each group get the same amount? 
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2.  How much of a sub did each person get, assuming the pieces were cut equally? 

Questions and Look-Fors: 

Big Ideas Anticipated Problems and Questions 

This particular problem deals with 

having the students construct 

fractions and then compare them.  

 

Students have to understand what 

the whole is and what parts have 

been used.  Then they have to 

compare these parts to each other.   

 

The problem lies in that they are not 

all using a reference of a half (some 

are 1/5s), and they are not all equal 

shares though they are really close.  

Some fractions are both one part 

away from the whole, but with 

different denominators. 

1)  Students a struggle with identifying the fraction as a 

relationship.  They see it as 3 and 1, not 1 part of 2. 

a) How do you know this picture represents the 

fraction? 

b) What is the whole? 

c) What is the part? 

d) Can you use your strategy for all of the fractions?   

2) Students struggle with odd fractions. 

a) What does the whole represent? 

b) What does each part mean? 

c) What does this mean altogether? 

3) Students struggle to understand that the greater the 

denominator, the smaller the fractional part.  This is 

because they often only look at each part as a separate 

number, forgetting that it is a relationship between the 

two. 

a) Why are you suggesting that these two are equal? 

b) What conclusion did we make from yesterday? 

How do these apply to what we are learning now? 

Congress: 

The focus will be on a debate between those students that 

think it is fair and those that don‟t.  Students will be 

allowed to move back and forth depending on what is 

said. 

 

Students will have to think about why certain fractions 

are larger than others, and how a part-whole relationship 

helps us understand this concept.  Questions will be very 

similar to the ones in the during section of the lesson. 

Day 4: Day Two of Field Trip Congress (Fosnot) 

Have students make posters of their solutions, and then, in a group, share three or four that have 

interesting points to discuss. 

See above for congress set-up after the gallery walk and the questions to ask. 

Day 5: Using Their Fraction Kit:  

Compare 3/4 to 2/3 which is bigger? Explain. 

Delete extra space between line above and below. 
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Day 6: Day 3 of Field Trips (Fosnot): Redistributing the Subs 

Start the lesson with the mini string lesson: unbold this sentence 

10 x 127 

127 x 2 

127 x 12 

44 x 10 

44 x 9 

3 x 1/5 

7 x 1/8 

3 x 1/4 

4 x 1/5 

Before thinking that students cannot do multiplication with fractions, think what the questions 

are asking,   that three- 1/5s are really 3/5.  Students should understand this concept.  They 

should see the relationship between repeated addition and multiplication.  They also can use their 

fraction kits to help.  Record the possible strategies that students give for the answers. 

Problem:  

1. Three subs for 4 people is 1/2 +1/4, or 3/4, so 4 people each got 3/4 of a sub. 

2. Four subs for 5 people is 1/2 +1/5+ 1/10 or 4/5, so five people got 4/5 of a sub. 

3. Seven subs for 8 people is 1/2 + 1/4 + 1/8 or 7/8, so 8 people each got 7/8 of a sub. 

4. Three subs for 5 people is 1/2 + 1/ 10 or 3/5, so five people each got 3/5 of a sub. 

Ask the students to investigate if it would have been fairer if groups #1 and #3 combined and 

shared, and groups #2 and #4 combined and shared.   

Day 7: Congress for the Previous Problem 

Look at Fosnot's notes on how to setup the congress 

Day 8: Comparing and Ordering Fractions 

Using your fraction strips compare these numbers.  Are the >, <, = asking how much more is 

needed? 

3/8  9/16 

1/2  3/8  

3/4 5/8 

3/16 1/2 

1/2 2/4 

What do we need to compare fractions? 
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If students can do this activity, they will be able to discuss the relationship between the fractions.  

Often they will compare the wholes, saying “4/5 is bigger because it is one space away from a 

whole, and 1/3 is less because it is two spaces.”  They might also state as the denominator gets 

larger the piece gets smaller.  Finally, they may resort to common denominators  which happens 

when a) that is how they were taught and they go back to an algorithm without understanding, or 

the fractions are really close and pictures cannot help them. 

Context:   There was a local marathon in Mississauga, and I found these stats about the people 

who ran the race.  It was a very difficult race; so some didn‟t finish, and I think the sun was 

getting to some so they ran more than they should have. Can you put them in order from who ran 

the least distance to who ran the farthest? 

Set 1 (put names to each fraction): 3/16, 5/8, 3/4, 1/4, 2/4, 1/2, 9/8, 1/1, 17/16, 15/16, 3/2 

Big Ideas Anticipated Problems and Questions 

Students have to understand what 

the whole is and what parts have 

been used.  Then they have to 

compare these parts to each other.   

 

Students also have to start to think 

about landmark fractions that they 

have been building over the past 

couple of days.  What relationships 

are all of the fractions in comparison 

to 1/2, whole and 0? 

1) Students often only look at either the denominator or 

the numerator; they forget that fractions represent 

relationships of the whole.  Students must first figure 

out what the whole is, and how each part forms a 

representation of that whole. 

a) What does the numerator represent?  

b) What does the denominator represent? 

c) What does this fraction mean? 

d) How close is this to 1/2 or a whole? 

e) Why is this fraction larger than this one? 

f) How does the fraction kit help you? 

g) What other strategies do you know of that  are 

related to the strips? (number line) 

h) How does this help? 

i) What does it mean if the numerator is larger than 

the denominator? 

Congress:  

The focus of the congress will be on those students that 

have used a benchmark model.  I want to highlight this 

and  its use, but I also want to compare it to the students 

who have only used the fraction kits. 

 

Models:  

- use of benchmarks 

- constant whole 

- comparison of known fractions i.e.: 3/4 is greater the 1/2  

- Order them on a number line using the benchmarks of 0, 1/2, 1 

Big Ideas: 
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- The greater the denominator, the smaller the piece is 

- To compare fractions the whole must be the same 

 

Day 9: Day Five from Field Trips Working with Landmarks 

Problem:  

1. Three subs for 4 people is 1/2 +1/4 or 3/4, so 4 people each got 3/4 of a sub. 

2. Four subs for 5 people is 1/2 +1/5+ 1/10 or 4/5, so 5 people got 4/5 of a sub. 

3. Seven subs for 8 people is 1/2 + 1/4 + 1/8 or 7/8, so 8 people each got 7/8 of a sub. 

4. Three subs for 5 people is 1/2 + 1/ 10 or 3/5, so five people each got 3/5 of a sub. 

This distribution wasn‟t fair, and although it was a little fairer when two groups shared, it still 

wasn‟t fair.  Now as, “If the 17 subs had been shared by 22 children fairly, about how much of 

the sub would each child have received?”  

Day 10: Congress:  

The purpose of this congress is to discuss strategies, concepts and big ideas that we have used 

over the last couple of days.  Record all observations on chart paper.  In their journals, have them 

record ten things that they have learned about fractions and create a representation to 

demonstrate their knowledge. 

Day 11: How Much is Blue? 

Page 97 in Marilyn Burn‟s Introduction to fractions 4-5, the question is to figure out from the 

shape what fraction is blue? 

Big Ideas Anticipated Problems and Questions 

Students have to understand what 

the whole is.  They often think that 

each piece is a part of the whole, but 

they soon realize that it is to do with 

the individual shapes. 

 

This is a great question to evaluate 

what students have really learned 

over the past three weeks.  If they 

really understand that fractions are a 

relationship this question will not be 

an issue. 

What is the whole? 

How do you know? 

What is the part? How did you figure this out? 

 

Congress:  

The focus of the congress will be on how students 

decided on what the whole was?  How does having a 

different whole change the fraction?  How do each of the 

fractions change the representation of what is blue? 
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Day 12: Set of a Shape 

This question is very similar to the previous question.  It is asking them what fraction of the 

whole does each piece represent.  The shape is a rectangle with one triangle in the middle and 

two trapeziums on the sides.  Students soon realize that they cannot use the shapes as the parts, 

but divide the whole into equal parts (triangles).  The problems come when students think that 

each part is a third because there are three parts.  Ask the same questions as above and have a 

debate around why students chose those particular wholes. 

Shape: 

 

What fraction is each piece? 

 

 

 

Big Ideas Anticipated Problems and Questions 

Same as above just the shape has 

changed.  

Students often think that because there are three parts 

showing then each part is a third, or the two trapeziums 

are slightly bigger than the triangle so it is a fourth, which 

is a problem all on its own. 

a) What do you notice about the shapes? 

b) Are they all equal? 

c) Can we create a fraction that isn‟t equal? 

d) What can we use as a fractional part? 

e) What is our whole? 

I am also going to use a lot of the questions from above. 

 

Day 13: Day Seven of Field Trip: Developing Equivalence 

 Mini-lesson: 

1/2 of 24 

1/4 of 24 

1/8 of 24 

1/3 of 24 

1/4 of 12 

1/2 of 6 

Problem: Tell students that you want to ensure that you won‟t ever make the same mistake as the 

teacher in the field trip story. So, you thought it might be a good idea to make a chart to keep 

track of the number of subs needed for future field trips.  Tell them you think it is a good idea for 
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everyone to get about 3/4 of sub.  Ask them if they know how many subs that would be for four 

people.  Pass out the recording sheet. 

Congress for the last ten minutes of the period. 

Day 14: Day Eight of Fundraiser:  

Mini-lesson:  

100/4 

200/4 

100/8 

400/16 

300/12 

600/24 

Wow, I think you came up with exactly what I was thinking because I decided to call up the 

organization and see if I could plan one.  They told me that would be great, but what they need is 

a plan.  So I thought that you could help me with the design of the course part of the plan. 

This is what I have so far: 

The total race is 60K and will happen over two days (hopefully a Saturday and Sunday).  Since it 

is two days I will need to set up a rest station at the halfway point.  I will also need: 

- Resting points at every eighth of the course 

- Food stations at every fourth of the course 

- Water stations at every tenth of the course 

- Media stations at every fifth of the course 

- I need kilometre markers placed along the way so people can calculate how far they went.  

Remember people are pledging per kilometre.  These markers need to be placed at every 

twelfth, sixth and third of the course, as well as at the above points.  These markers 

should also tell how many kilometres they have gone and how many more they have to 

go. 

- I also need a finish line 

Fraction big ideas:  

- With unit fractions the greater the denominator, the smaller the piece. 

- Fractions express relationships; the size of the whole matters. 

- Multiplication is connected to fractions (3/4= 3 x 1/4). 

- To add or subtract fractions a common whole is needed. 

Congress: 

What locations have multiple landmarks? Why? 
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What do you notice about the relationships of the markers? 

What strategies did you use to determine the locations? 

Day 15: Bar Capture Game 

Look in Fosnot day ten for rules and game boards. 

Day 16: If the World Were a Village  

Read the story If the World were a Village.  Have students think about the whole (100).  At each 

page have a discussion about the fractional amounts that they see.  Discuss why they think  they 

see those amounts.  Stop at any page and have them work in partners to figure out the fractional 

amounts.  Then work on the electricity problem  

Day 17: Final Assessment 
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Appendix H:  Rationale for the Five Focus Lessons  

 

Lesson and 

data source 

Focus 

question 

it will 

answer 

My rationale of why 

this is a part-whole 

or bench mark 

model. 

Possible problems and questions to overcome 

them 

Lesson #1: 

Building the 

fraction kit 

 

Data source: 

 

Video of the 

partners 

working 

 

Video of the 

congress 

 

Student 

work 

 

Students' 

journals 

 

My field 

journal 

 

 

 

 

 

 

 

 

#1, b 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

Students have to 

build different 

fraction strips; 

though they will 

eventually be using 

them for 

equivalence they 

must understand 

that fractions are 

relationships 

between the whole 

and its parts. 

 

Students will also 

be building how big 

a whole is in 

relation to all of its 

parts (1/2, 1/4, 1/8, 

1/16, 1/3, 1/5, 1/10, 

1/9, 1/6, 1/12) 

1) Students often know that a half is two 

things but they struggle to make a fair 

share of it 

a) How do you know this is a half? 

f) What strategies can I use to make sure 

it is exact? 

 

2) They also struggle with identifying the 

fraction as a relationship.  They see it 

has 2 and 1, not 1 part of 2. 

 

3) What is this fraction called? 

 

4) How many parts do you notice?  

 

5) How is this related to the fraction 

name? Notice anything? (This 

question might take time, so start 

with some, and then as they build 

more fraction strips, build on 

everyone’s answers) 
 

6) Students also struggle to use this 

strategy to make other fractional parts. 

c) What relationship do you notice 

between 1/2 and 1/4? Or other 

fractions. 

d) Which fraction is larger? Why? 

 

7) Students struggle to understand that 

the greater the denominator, the 

smaller the fractional part.  This is 

because they often only look at each 

part as a separate number forgetting 

that it is a relationship between the 

two 

b) Isn‟t 4 larger than 2? Why is it then 

that 1/2 is larger than 1/4? 
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8) Finally, students struggle with 

understanding that these strips are only 

parts of this particular whole.  Every 

whole has different sizes and different 

parts.  A half of a fridge is different 

than half of the school. 

d) What if I applied these strategies to 

finding half of the school, would they 

work? 

e) How does this compare to the half of 

our strip? 

f) Aren‟t they both halves? Why is one 

bigger? 

Lesson 3: 

Field trip 

problem 

 

Data source: 

 

Video of the 

partners 

working 

 

Video of the 

congress 

 

Student 

work 

 

Students' 

journals 

 

My field 

journal 

 

 

 

 

 

 

 

 

#1, b 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

This particular 

problem deals with 

having the students 

construct fractions 

and then comparing 

them.  

 

 Students have to 

understand what the 

whole is and what 

parts have been 

used.  Then they 

have to compare 

these parts to each 

other.   

 

The problem lies in 

that they are not all 

using a reference of 

a half (some are 

1/5s), and they are 

not all equal shares 

though they are 

really close.  Some 

fractions are both 

one part away from 

the whole, but with 

different 

denominators. 

4) They also struggle with identifying the 

fraction as a relationship.  They see it has 

2 and 1, not 1 part of 2. 

e) How do you know this picture 

represents the fraction? 

f) What is the whole? 

g) What is the part? 

h) Can you use your strategy for all of 

the fractions?   

5) Students struggle with odd fractions. 

d) What does the whole represent? 

e) What does each part mean? 

f) What does this mean altogether? 

6) Students struggle to understand that the 

greater the denominator, the smaller the 

fractional part.  This is because they often 

only look at each part as a separate 

number forgetting that it is a relationship 

between the two. 

c) Why are you suggesting that these two 

are equal? 

d) What conclusion did we make from 

yesterday? How do these apply to 

what we are learning now? 

Congress: 

The focus will be on a debate between those 

students that think it is fair and those that 

don‟t.  Students will be allowed to move back 

and forth depending on what is said. 

 

Students will have to think about why certain 

fractions are larger than others, and how a 

part-whole relationship helps us understand 
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this concept.  Questions will be very similar to 

the ones in the during section of the lesson. 

Day 8: 

Comparing 

and ordering 

fractions 

(Mississauga 

Marathon 

training) 

 

Data source: 

 

Video of the 

partners 

working 

 

Video of the 

congress 

 

Student 

work 

 

Students' 

journals 

 

My field 

journal 

 

 

 

 

 

 

 

 

 

 

 

 

 

#1, b 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

Students have to 

understand what the 

whole is and what 

parts have been 

used.  Then they 

have to compare 

these parts to each 

other.   

 

Students also have 

to start to think 

about landmark 

fractions that they 

have been building 

over the past couple 

of days.  What 

relationships are all 

of the fractions in 

comparison to 1/2, 

whole and 0? 

9) Students often only look at either the 

denominator or the numerator; they 

forget that fractions represent 

relationships of the whole.  Students 

must first figure out what the whole is, 

and how each of the parts change to fit 

the different representations of the 

whole. 

j) What does the numerator represent?  

k) What does the denominator represent? 

l) What does this fraction mean? 

m) How close is this to 1/2 or a whole? 

n) Why is this fraction larger than this 

one? 

o) How does the fraction kit help you? 

p) What other strategies do you know of 

that are related to the strips? (number 

line) 

q) How does this help? 

r) What does it mean if the numerator is 

larger than the denominator? 

Congress:  

The focus of the congress will be on those 

students that have used a benchmark model.  I 

want to highlight this and  its use, but I also 

want to compare it to the students who have 

only used the fraction kits. 

Day 11: 

How much 

is blue? 

 

Data source: 

 

Video of the 

partners 

working 

 

Video of the 

congress 

 

Student 

work 

 

Students' 

 

 

 

 

 

 

#1, b 

 

 

 

 

 

 

 

 

 

 

Students have to 

understand what the 

whole is.  They 

often think that each 

piece is a part of the 

whole, but they 

soon realize that it is 

to do with the 

individual shapes. 

 

This is a great 

question to evaluate 

what students have 

really learned over 

the past three 

weeks.  If they 

really understand 

What is the whole? 

How do you know? 

What is the part? How did you figure this out? 

 

Congress:  

The focus of the congress will be on how 

students decided on what the whole was?  

How does having a different whole change the 

fraction?  How do each of the fractions 

change the representation of what is blue? 
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journals 

 

My field 

journal 

 

 

 

 

a 

 

that fractions are a 

relationship, this 

question will not be 

an issue. 

Day 12: Set 

of a shape 

unbold 

Data source: 

 

Video of the 

partners 

working 

 

Video of the 

congress 

 

Student 

work 

 

Students' 

journals 

 

My field 

journal 

 

 

 

 

 

 

#1, b 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

Same as above; just 

the shape has 

changed  

Students often think that because there are 

three parts showing, then each part is a third, 

or when the two trapeziums are slightly bigger 

than the triangle,  it is a fourth, which is a 

problem all on its own. 

f) What do you notice about the shapes? 

g) Are they all equal? 

h) Can we create a fraction that isn‟t 

equal? 

i) What can we use as a fractional part? 

j) What is our whole? 

I am also going to use a lot of the questions 

from above. 



132 

 

 

Appendix I: Pre-test 

Pre-test: 

1) Order these fractions: 3/4, 5/12, 2/3, 3/2, 2/5, 5/8, from greatest to least.  

 

2) Jeremy and Fiona are eating pizza. Fiona has 1/2 of a pizza and Jeremy has 1/3 of a pizza. 

Is it possible that Fiona has more pizza than Jeremy? Explain your reasoning (TIMSS Gr. 

8 item). 

 

3) A fifth-grade class traveled on a field trip in four separate cars. The school provided a 

lunch of submarine sandwiches for each group. When they stopped for lunch, the subs 

were cut and shared as follows: (Fosnot and Dolk) 

 

• The first group had 4 people and shared 3 subs equally. 

• The second group had 5 people and shared 4 subs equally. 

• The third group had 8 people and shared 7 subs equally. 

• The last group had 5 people and shared 3 subs equally. 

 

When they returned from the field trip, the children began to argue that the distribution of 

sandwiches had not been fair, that some children got more to eat than the others. Were they 

right? Or did everyone get the same amount? 
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Appendix J: Post-test 

 

Problem #1: Share two pizzas among three people.  Explain your thinking (Burns, 1998). 

Problem #2: Decide if each fraction is closest to 0, 1/2, or 1. Explain your answer.   

  3  3 11 1 1 

  4 9 16 4 12   

Problem #3:  Joey and Robert each had the same size pizza.  Joey cut his pizza into 8 equal 

pieces and ate 6 of them.  Robert cut his into 5 equal pieces and ate 4 of them.  Who ate more 

pizza? (Burns, 1998) 

Problem #4: Raquel thought about this statement: When pitching, Joe struck out 7 of 18 batters.  

She said that it was better to say that Joe struck out about 1/3 of the batters than to say that Joe 

struck out about 1/2 of the batters. “I think that 7/18 is closer to 1/3 than 1/2,” she said.  Do you 

agree or disagree with Raquel? Explain your reasoning (Burns, 1998). 
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Appendix K: Preliminary Codes 

 

     

      

 
Fosnot Landscape 

  
Pothier and Sawada's Stages 

F/S Fair Sharing Model 

 

Stage 1 

 P/W Part-Whole Relationship 

 

Stage 2 

 CM Concrete Model 

 

Stage 3 

 FrS Fraction Strips Model 

 

Stage 4 

 Mea Measuring Model 

 

Stage 5 

 W/S Whole the same 

   I/C Incomplete Tech Instructional reliance 

on procedures  D Dealing out scheme 

  W/N Whole Number Scheme 

   # Sick during post-est 

 
Teaching Codes  

 LMF Landmark Fractions  

 

ReV Revoicing 

U Only went up the number line Gb Go beyond 

U/D Up and down a fixed number line Mon Monitoring students 

  Wrong answer or wrong model/strategy  IRE initiation-response-

evaluation  

  Wrong answer, but parts are almost there   

 

inter Interrogation 

  Right, but needs further explanation  

interject ide interject with another 

idea 

    Correct Answer 

 

airmiscon Air misconceptions 

E Equivalence Scheme 

 

introimporstrat 
Introduce important 

strategies that have 

been developed 

F/R Fraction expresses relationships 

 Comm Further communication needed 

 CW Comparison with a common whole intornewstrat 
Introduce a new 

strategy that hasn't 

been discovered yet;      
GDSP 

The greater the denominator the smaller the piece  sharstrat just share the strategies 

    

compare Comparing question 

Fset Fractions as a set 

 

build Building type questions 

(L) Low 

  

WT (sec) 

 

Wait time (amount in 

sec) 

(M) Middle 

  

echo Echoing students' 

responses (H) High 

   C/P Context Problem  

   Chalf Comparison with a common half 
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Appendix L: Five Practises suggested by Stein, et al.  

 

1: Anticipation (P.322) 

The first thing is for the teacher to look and see how students might mathematically solve 

these types of problems.  In addition, teachers should also solve them for themselves.  

Anticipating students‟ work involves not only what students may do, but what they may not do.  

Teachers must be prepared for incorrect responses as well.  

2: Monitoring students' work (P. 326) 

While the students are working, it is the responsibility of the teacher to pay close 

attention to the mathematical thinking that is happening in the classroom.  The goal of 

monitoring is to identify the mathematical potential of particular strategies and figure out what 

big ideas are happening in the classroom.  As the teacher is monitoring the students work, they 

are also selecting who is to present based on the observations that are unfolding in the classroom. 

3: Selecting student work (P.327-328) 

 Having monitored the students, it is now the role of the teacher to pick strategies that will 

benefit the class as a whole.  This process is not any different than what most teachers do; 

however, the emphasis is not on the sharing, but on what the mathematics is that is happening in 

the strategies that were chosen.   

4: Purposefully sequencing them in discussion (P. 329) 

With  the students chosen, it is now up to the teacher to pick the sequence in which the 

students will present.  What big ideas are unfolding, and how can you sequence them for all to 

understand?  This sequencing can happen in a couple of ways: 1) most common strategy, 2) 

stage 1 of a big idea towards a more complex version or 3) contrasting ideas and strategies. 

5: Helping students make mathematical sense (P.330-331) 

As the students share their strategies, it is the role of the teacher to question and help  

them draw connections between the mathematical processes and ideas that are reflected in those 

strategies.  Stein et. al. suggest that teachers can help students make judgments about the 

consequences of different approaches. They can also help students see how the strategies are the 

same even if they are represented differently.  Overall, it is the role of the teacher to bridge the 

gap between presentations so that students do not see them as separate strategies, but rather as 

working towards a common understanding or goal of the teacher. 
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Appendix M: Final Code List 

*Correct 

*Correct with support 

*Further communication needed 

*In Correct 

BI- Fair Sharing (equal) Stage 2 

BI- Fair sharing (not always equal) Stage 1 

BI- Fractions may represent division less than one 

BI- Fractions represent a relationship (part whole relationship) 

BI- Greater the denominator the smaller the piece 

BI- Multiplication is connected to fractions Stage 3 

BI- pieces don't have to be congruent to be equal 

BI- Size of whole matters 

BI_-BIG IDEAS 

M- Algorithm Model 

M- Benchmark model 

M- Circle Fractions 

M- dealing out 

M- Fair Sharing Model 

M- Linear Fraction Model (FS) 

M- measurement 

M- No Model 

M- number line to compare fractions 

M__ -MODELS 

S- apply halving strategy to odd numbers (stage 3) 

S- Dealing out 

S- doubles a denominator to halve a fraction (Stage 2 halving) 

S- doubles numerator to multiply by two 

S- Landmark Fraction (when I do not know which one) 

S- Landmark fractions (compare to a whole) 

S- Landmark Fractions (compare to half) 

S- Reliance on procedural learning and understanding 

S- unit Fraction 

S- Use multiplication to equally divide odd numbers has to re adjust (stage 4) 

S- Uses a common whole to compare fractions 

S- Uses Multiplication efficiently (stage 5) 

S- uses proportional reasoning 

S- Using a ratio table as a tool to make equivalent fractions 

S- Whole number scheme instead of part/whole relation 

S__- STRATEGIES 

T- Air Misconceptions 

T- answering with another question 

T- Building a context 

T- Building on 

T- Checking for understanding 
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T- compares students work 

T- direct teaching 

T- Echo's students words 

T- Go Beyond 

T- Initiation- response- evaluation 

T- Interjection with another idea 

T- Interrogation 

T- Introduce new strategy that has not been developed 

T- Letting students just talk 

T- linked to Big idea/ landscape 

T- linked to talk move 

T- Monitoring students 

T- no confirmation/ in order to push beyond 

T- question unclear 

T- relate back to context 

T- relate to other problems 

T- Revoicing 

T- Scaffolding 

T- shares strategy 

T- student revoicing 

T- Think, Pair, Share 

T- Wait Time 

T-make students go beyond with their thinking 

T_- TEACHING 
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Appendix N: Talk Moves and Questions 

 

This is an explanation of the different talk moves and questions that I asked in the classroom. 

Talk Moves: 

 

Air Misconceptions: airing misconceptions is when the teacher will bring out a misconception 

in order to get more talk initiated.  It will often be in the form of presenting a wrong strategy or 

making an incorrect statement. 

 

Answering with another question: a strategy that is often employed by teachers.  It is meant to 

get the students talk.  By answering their statement with another question teachers are not stating 

that something is wrong but at the same time that the statement needs further clarification. 

 

Letting students just talk: Often the best talk move is to say nothing and let the students talk it 

out.   

 

Monitoring students: The talk move is to see if the students understand what is happening in 

their strategies or in the congress.  This is often stated as a quick question, "What do you mean?" 

"Why did you do this?" It is a talk move because it normally is not related to a big idea but more 

of a diving board to create further and deeper discussion. 

 

No confirmation/ in order to push beyond: Similar to letting students talk, with this talk move 

the teacher says nothing, which with time, will make the students want to explain more or keep 

going with the conversation. 

 

Relate back to context: When students are stuck on the problem it is always good to bring them 

back to the context. 

 

Relate to other problems:  Like above sometimes there is not context, in this situation bring the 

student back to the problem. 

 

Revoicing: A useful tool to make the students hear back what they have said.  For this talk move 

all you need to do is state what the student said.  "You are saying..." "Is this what you said...?"  It 

is important to repeat as best as you can what the student said. 

 

Student revoicing: Same as above but with the students. 

 

Think, Pair, Share: This is good with reluctant talkers or participators in the classroom.  For 

this move the teacher has the students first thing, then share with a partner and then share with 

the classroom. 

 

Wait Time: Is exactly what the term says, wait. The more time the better. 

 



139 

 

 

Questions:  

 

Building on: This type of questioning is when the teacher tries to build upon what a student has 

presented.  This type of question looks like: "How is this related? Why did you do this? What big 

idea are you using? etc." 

 

Compares students work: This type of question often is used to compare two strategies 

together.  This type of question looks like: "How is this compared to this strategy? How is this 

similar...? How is this different?" 

 

Direct teaching: This type of questioning is more teaching statements then questions.  Direct 

teaching is when the teacher tells the students the answers or information. 

 

Go Beyond:  For this type of questioning the teacher is trying to bring the students beyond what 

they may understand.  For this questioning the teacher may introduce a new strategy by asking 

students opinions.  They may also ask if they understand a particular term.  The teacher may also 

try to relate a problem to a term and see if the students understand. 

 

Initiation- response- evaluation: This is traditionally found when the teacher asks a question 

they already know the answer to the question.  The purpose of this is not to have students talk but 

to make sure that information is being disseminated.  Once the teacher hears the appropriate 

response they often move on or ask another question.  

  

Interrogation: This type of question is often used to gain information from the student.  This is 

normally is in the form of "Why?" or "How come?"  

 

Question unclear: This code was used more when I didn't know what type of question I asked 

or why I asked it. 

 

Scaffolding: These type of questions are used when the students may not understand fully the 

big idea.  Often the teachers will bring the questioning back to where the students are and then 

build on the knowledge and answers given.  The first questions may be talk moves, relate to the 

context, or bring it back to the numbers the students are working with.  To scaffold teachers need 

a good understanding of students progressions of learning. 

 

Shares strategy:  This is when a teacher, during a congress, just shares the students strategies.  

This would often happen in 1st generation reformists, according to Stein, M. K., Engle, R., 

Smith, M. & Hughes, E (2008).  


