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Abstract

Sonoporation is a method for inducing a transient increase in the permeability of cell

membranes to otherwise impermeable compounds using ultrasound. This technique has

therapeutic potential as it allows for localized delivery of therapeutic agents in a non-

invasive and non-cytotoxic manner. The discovery and testing of potential therapeutic

agents that can be delivered using this technique requires performing studies on cell

cultures in vitro. This thesis presents a prototype sonoporation device which aims to

reduce the time and expertise required to perform sonoporation on adherent monolayer

cell cultures.

First, a prototype sonoporation device was designed and constructed. The device con-

sisted of an array of six ultrasound transducers affixed below a cell culture stage. The

six transducers were each constructed and electrically matched to 50 Ω at an operating

frequency of 1 MHz. The acoustic near-field of each transducer was characterized using hy-

drophone scanning and the distance from the transducer at which the plane perpendicular

to the beam path was most homogeneous was determined. The mean(±s.d.) treatment

distance was 15.9(±0.67) mm and the mean -3 dB width was 1.97(±0.22) mm. The elec-

trical power required to produce 0.7 MPa on this plane was found for each transducer.

The mean(±s.d.) electrical power was 101(±12.2) W.

Next, the prototype device was experimentally validated. Sonoporation was performed

on cervical carcinoma-derived SiHa cells with 70-80% confluency at media temperatures

of 37°C, 39.5°C, and 42°C. Pulsed ultrasound of 1 MHz, 4.8% duty cycle, 1.6 kHz pulse

repetition frequency, and 0.7 MPa peak pressure was applied to induce sonoporation.

Ultrasound contrast agent was added to the cell culture media (0.33% v/v) to provide

cavitation nuclei during treatment. Plasmid DNA expressing green fluorescent protein

(GFP) was added to the cell culture (250 µg/10 mL) to quantify successful permeabi-

lization. While there were no significant effects due to the temperature of the media,

transfection was successfully performed using the prototype device given the positive ex-

pression of GFP in the cells 24 hours following treatment. The mean(±s.d.) transfection

efficiencies of the sonoporation treatment at 37°C, 39.5°C, and 42°C were 5.4(±0.92)%,

5.8(±1.3)%, and 5.3(±1.1)% respectively (n = 3 for each experimental group). Negative

control treatments had transfection rates of < 1.5% on average and the detected lev-

els of apoptosis among surviving cells was < 0.5% on average for all treatment groups.



These results were in good agreement with those obtained using a different sonoporation

experimental set-up on the same cell line with similar experimental parameters.

Finally, the design of high-power ultrasound driving circuitry was explored in order

to create an electrical device with the ability to provide independent, concurrent, and

controlled excitation of the six transducers. A class DE half-bridge amplifier topology

was chosen as the output power stage of this device. A design of a class DE amplifier was

simulated using LTSpice with both a resistive 50 Ω load and a Butterworth-Van Dyke

equivalent circuit model of one of the six transducers, matched to 50 Ω at 1 MHz. The

amplifier was designed to deliver 150 W to a 50 Ω resistive load at an output frequency

of 1 MHz using a DC supply voltage of 96 V. The simulation of the amplifier using

the transducer equivalent circuit yielded an output power of 134 W, a drain efficiency

of 98.8%, a power-added efficiency of 89.0%, a gate power gain of 22.6 dB, and a total

harmonic distortion at the output of 27.9%.

The device presented here was shown to be effective at performing sonoporation on ad-

herent monolayer cell cultures and will reduce the time and expertise required to perform

this technique in the future.
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Chapter 1

Sonoporation

1.1 Introduction

Ultrasound is a mechanical wave which can easily propagate through soft tissue in the

human body. At high intensities, thermal and non-thermal effects of the ultrasound me-

chanics become more apparent. Ultrasound waves can easily be focused to allow highly

localized effects to be produced. The biological effects of focused ultrasound were de-

scribed as early as [1] in 1942. In 1954, [2] developed a device which employed focused

ultrasound to perform thermal ablation in brain tissue. At the time, however, there was

no practical way to monitor the process. In recent decades, with the advent of magnetic

resonance imaging (MRI) and MRI thermometry, real-time monitoring of non-invasive

ultrasound has become possible [3–5]. Consequently, ultrasound has since gained a lot of

interest as a non-invasive therapeutic tool.

Focusing ultrasound energy has many potential therapeutic applications in the body.

For instance, tissue can be selectively heated using focused ultrasound in either a non-

destructive manner (e.g. mild hyperthermia) [6–8] or a resectional manner (e.g. thermal

ablation) [1–3, 5]. Non-invasive destruction of tumors, for example, is possible with high

intensity focused ultrasound (HIFU), allowing one to destroy the tumour while potentially

sparing sensitive surrounding tissue [3].

Thermal effects of ultrasound have also been used to aid in targeted drug delivery

[6–8]. Thermosensitive liposomes, for example, have been used to encapsulate therapeutic

agents in an biologically-inert lipid shell [9,10]. This shell can be disrupted non-invasively

using focused ultrasound by increasing the temperature of the shell beyond its gel-to-

liquid phase transition temperature in the desired treatment region thereby releasing the
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encapsulated therapeutic agent locally. This targeted release of the drug can potentially

spare other parts of the body from the drug’s effects [10].

Non-thermal effects of ultrasound, such as acoustic cavitation, have therapeutic ap-

plications as well. Ultrasound has been used to temporarily increase the permeability of

biological barriers to otherwise impermeable compounds [6, 11–13]. In [13], ultrasound

was used to enhance the permeability of the blood-brain barrier of rabbits in a local-

ized and transient manner. The blood-brain barrier is impermeable to many therapeutic

drugs, making the brain a difficult organ to treat [13]. With this technique, the effi-

cacy of therapeutic drugs targeting the brain can potentially be increased, requiring less

drug to be present in the bloodstream, thereby sparing other parts of the body from

undesired effects. A similar phenomenon is thought to increase the permeability of cell

membranes as well, a process which has been demonstrated both in vitro [11, 12, 14–22]

and in vivo [6–8, 23]. Cellular uptake of large genetic molecules such as small interfering

RNA (siRNA) [14, 16] and plasmid DNA (pDNA) [15, 20–22, 24, 25] has been shown to

be enhanced by the presence of micron-sized stabilized gas bodies in an ultrasonic field.

This ultrasound-induced permeability of cell membranes has been shown to be transient

in nature, with the permeability of the cell membrane returning to normal after a short

period of time [17, 19]. Delivery of genetic material into cells using ultrasound has the

potential for use in cancer therapy as these kinds of materials can disrupt actors and

processes responsible for cellular immortalization and proliferation [14, 21]. This process

provides a non-cytotoxic alternative for large molecule delivery in vivo [21].

Inducing transient increases in the permeability of cell membranes for material trans-

fer is the subject of this work. Here, a prototype device for performing large molecule

delivery in vitro on adherent cell cultures using ultrasound is presented. In vitro stud-

ies are a necessary step in developing non-invasive, targeted therapies which exploit this

phenomenon. This work presents a device which aims to reduce the time and expertise

required to perform these types of studies.

The subsequent sections in this chapter present additional background on this phe-

nomenon including a review of the potential physical mechanisms involved, measures of

its efficacy, a review of experimental parameters and their effect on its efficacy in the

literature, and a review of in vitro experimental set-ups used in the literature. Chap-

ter 2 introduces the problem statement, proposes a solution, and describes the design

and construction of a prototype for performing sonoporation in vitro; Chapter 3 details

the experimental validation of the prototype; Chapter 4 explores high-power ultrasound
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driving electronics to be used with the prototype; and Chapter 5 discusses future work.

1.2 Sonoporation

1.2.1 Physical Mechanisms

The process of inducing a transient increase in the permeability in biological membranes

using ultrasound is referred to as “sonoporation”. Ultrasound-induced membrane perme-

ability is a phenomenon attributed to the interaction between the cavitation of gas bodies

and nearby cell membranes [6,11,12]. Permeability has been shown to be enhanced by the

addition of micron-sized stabilized gas bodies (“microbubbles”) which lower the energy re-

quirements for acoustic cavitation [12,15,25]. Commercially available ultrasound contrast

agents (UCAs), which have historically been used to enhance contrast of blood vessels

in ultrasound imaging, are commonly used as sources of cavitation nuclei for enhancing

sonoporation [12,15].

Cavitating microbubbles present a number of possible modes of interaction with nearby

cell membranes which can result in pore formation [26]. At low acoustic intensities, stable

cavitation (oscillation) is thought to induce shear stress on the cell membrane through the

generation of rapid flow in the surrounding medium, referred to as “microstreaming” [27–

29] (Fig. 1.1a). In [27], the authors captured high-speed images of oscillating microbubbles

pushing and pulling on the cell membrane when in close proximity, an interaction which

correlated with increased uptake of propidium iodide. At higher acoustic intensities,

inertial cavitation (collapse) can occur, causing streams (“microjets”) to form due to the

presence of the relatively rigid cell membrane [30,31].

These microbubble-induced stresses are thought to cause physical disruptions in the

cell membrane (“pores”) which can then allow impermeable compounds to passively dif-

fuse across the cell membrane [27, 32]. There is evidence, however, that pore formation

may only facilitate cellular uptake of relatively small agents and that cavitation (or pore

formation) may be stimulating endocytosis for uptake of larger agents. In [32], the authors

observed a significant decrease in uptake of larger dextrans (70 kDa to 500 kDa) after

inhibiting endocytosis pathways, whereas smaller dextrans were still detectable. They

also observed smaller dextrans having a rather homogeneous distribution within the cell

whereas larger dextrans were heterogeneously distributed and encapsulated by “vesicle-

like structures” consistent with endocytosis.

In addition to the delivery of agents present in the extracellular region through pas-
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continuous wave (C.W.) or pulsed excitation, where pulsed modes are specified by duty

cycle (or pulse length) and pulse repetition frequency (PRF). Sonoporation is typically

performed using ultrasound frequencies ranging from a few hundred kHz to a few MHz

and pressures ranging from a few hundred kPa to a few MPa. Pulsed excitation has been

performed with duty cycles ranging from a few percent to a couple tens of percent and

PRFs of a few tens of Hz to a few kHz. A summary of acoustic conditions in a selection

of in vitro studies is available in Table 1.1.

In examining the effect of acoustic parameters on permeability and cell viability,

these acoustic parameters are often examined in the context of microbubble activity

[11, 12, 15, 18]. It has been noted that there exists an acoustic threshold below which

permeabilization and cell death do not occur, dependent on pressure, frequency and pulse

repetition frequency [11,15,18,35]. This threshold has been associated with inertial cavi-

tation [11,35] as the pressure required to surpass this threshold has been seen to increase

with frequency [11, 35]. In [15], low pressure amplitudes were unable to induce perme-

abilization, even at long pulse durations. Beyond this threshold, microbubble disruption

(i.e., inertial cavitation) is believed to occur within only a few cycles [12, 15], hence,

longer pulse durations and insonation times are considered to contribute less of an effect

to permeabilization [15, 16]. In [18], nearly all (99%) of the microbubbles were disrupted

when exceeding this threshold. However, as the authors point out, microbubble disrup-

tion may not be a sufficient indicator of successful permeabilization [18]. Permeabilization

due to microbubble concentration has been seen to plateau at low concentrations (e.g.

2%) [11,15,16]. Increasing microbubble concentration further has been seen to only lower

cell viability [15, 16,25].

Permeabilization and cell death have been noted to be inter-dependent [11,15,18,25].

That is, parameters which increase permeabilization tend to increase cell death as well.

For instance, cell permeabilization tends to increase with decreasing acoustic frequency, as

does the rate of cell death [18]. Longer pulse durations tend to increase cell permeability

but also decrease viability [18]. Increasing acoustic pressure has also been observed to

have a negative impact on cell viability while increasing permeability [11, 15, 18]. In

[18], the authors recommended that, for applications where cell survival is important,

sonoporation should be performed at high frequency, low pressure, and low duty cycle;

and in applications where viability is not important, permeabilization may be improved

by using low frequency, high pressure, and high duty cycle.

In vitro sonoporation can also be affected by experimental set-up. For example, stand-
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p− Center Freq. Duty PRF Insonation
Ref. (MPa) (MHz) (%) (kHz) time (s) Notes

[11] 0.05-0.8 2.25 C.W. - n.s.
[35] 0.025∼0.4 1.0 - 7.15 C.W. - 60
[16] 0 - 4 (W cm-2) 1.706 C.W. - 15 - 120 Reported “acoustic power”
[36] 0.2 - 0.6 2.25 C.W. - 60
[29] 0.05 - 0.3 1.0 C.W. - 20

0.1 1.0 C.W. - 0 - 60
[14] 0 - 11 (W) 1.653 C.W. - 10 Reported “acoustic power”

0 - 11 (W) 1.653 10 0.002 100 Reported “acoustic power”
[12] 0.23∼0.9 3.5 2.2 1.08 - 14.8 4 - 960 Doppler mode

0.39∼1.9 3.5 0.0032 3.4 60 2D imaging mode
[37] 0.25 - 3 (W cm-2) 1.0 20 0.1 0-60 Reported Isppa
[24] 0.402 1.15 20 0.1 10

0.570 2.25 20 0.1 10
[15] 0.13 - 0.5 1.0 10 - 80 (cycles) 1.0 40 Examined pulse length

0.5 1.0 40 (cycles) 0.5 - 2.5 40 Fixed pulse length
[18] 0 - 0.57 0.5 9.6 3.0 120

0 - 2.32 2.0 9.6 3.0 120
0 - 3.5 5.0 9.6 3.0 120

0.125 - 0.57 0.5 1.2 - 9.6 3.0 120
0.125 - 0.57 0.5 16 (cycles) 0.01 - 3 120 Fixed pulse length
0.125 - 0.57 0.5 9.6 3 0 - 120

[25] 0.13 - 0.48 1.0 25 0.1 180 (∼35/cell) Transducer translated across
cell culture during exposure

[20] 0 - 1 0.930 4.8 1.5 30
[21] 1.0 0.930 4.8 1.5 30
[22] 1.0 1.0 4.8 1.6 30
[19] 0.88 (p-p) 1.5 20 1.0 30 Reported peak-to-peak pressure (p-p)
[38] 0.88 (p-p) 1.5 20 1.0 30 Reported peak-to-peak pressure (p-p)
[39] 0.62 - 1.25 (p-p) 1.5 20 1.0 30 Reported peak-to-peak pressure (p-p)
[40] 0.88 (p-p) 1.5 20 1.0 30 Reported peak-to-peak pressure (p-p)
[41] 1.2 MI 1.3 n.s. n.s. 30-60 Reported mechanical index (MI)

n.s. - not specified

Table 1.1: A summary of a selection of in vitro sonoporation experiments and their acoustic parameters.
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ing wave formation has been shown to have a large effect on sonoporation efficacy [16].

The presence of standing waves in sonoporation studies can be problematic for reporting

the acoustic conditions under which sonoporation was performed as it is difficult to know

for certain what the conditions were [16]. In [16], the effects of standing wave formation

on sonoporation was explored in vitro and the authors found that the presence of standing

waves significantly increased transfection efficiency and decreased cell viability.

Other experimental parameters have been seen to have an effect on sonoporation effi-

cacy as well. For instance, treating cells in suspension or in monolayer may have different

effects. In [16], C166 endothelial cells treated in monolayer experienced higher viability

than those treated in suspension despite experiencing similar levels of permeability. While

some cells can be grown and survive in suspension, other cell types are inherently adher-

ent. It is likely the case that the viability of adherent cells may suffer during detachment

due to cellular processes such as anoikis.

Sonoporation efficacy tends to also be dependent on cell line [22, 42] and cellular

phase [22,43]. In [22], three different HPV-positive, cervical cancer-derived cell lines were

examined and it was observed that the average permeabilization of CaSki cells was signif-

icantly lower than that of HeLa and SiHa cells under the same experimental conditions.

Cell membrane fluidity has also been seen to contribute to transfection efficiency.

In [44], a 15-fold increase in transfection efficiency of prostate cancer PC-3 cells was

observed at cell temperatures of 42°C over temperatures of 37°C, an increase the authors

attributed to increased cell membrane fluidity due to thermal treatment. The increase

the authors observed was similar in effect to that of a lidocaine treatment, a substance

known to increase cell membrane fluidity.

1.2.4 Experimental Set-ups

The exposure of a cell culture to an acoustic field necessarily requires a cell culture and an

ultrasound source. In the literature, sonoporation has been performed using a number of

different experimental set-ups (Fig. 1.2, Table 1.2) and a number of different experimental

conditions (Table 1.1). The variety in physical conditions across the literature makes

comparing results from different studies problematic [15, 16,18,45].

Ultrasound generation is often performed using general laboratory equipment [15, 17,

18,20–22]. An electrical signal is generated by an arbitrary waveform generator, amplified

by a radio-frequency (RF) amplifier, and converted to a mechanical wave using an ultra-

sound transducer. Commercial ultrasound systems have been used in some instances to
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produce the ultrasound [12,14,16] but these systems often offer less control over acoustic

parameters [15].

There are commercially available sonoporation systems as well which aim to make

performing sonoporation studies easier. For example, the Sonidel SP100 (Sonidel Ltd.,

Dublin, Ireland) is a sonoporator which is commercially available. This device consists of

a free ultrasound transducer, driving electronics, and easy-to-use interface. While, this

device been used in a number of sonoporation studies, it often appears to be used with

“modification” [25, 46]. The acoustic conditions at the cells is not necessarily ensured

in its stock configuration due to the use of a hand-held ultrasound transducer. That

is, this sonoporator requires an additional experimental apparatus to ensure consistent

ultrasound exposure between experiments.

There are several ways in which target cell cultures can be situated in the acoustic

field. In some instances, well plates or Petri dishes were used [14, 16, 37, 41, 46]. Using

well plates or Petri dishes placed at the surface of the ultrasound bath is problematic

since acoustic reflections at the water-air interface make it difficult to know the physical

conditions under which the cells are being treated (Fig. 1.2c) [15,16]. In [14], the authors

go through great effort to avoid reflections and standing wave formation with well plates

by using a complicated set-up consisting of a second water tank placed above the well

plate, in the acoustic far-field (Fig. 1.2d).

The Opticell cell culture system (Nunc Thermo Scientific) has become a popular ex-

posure chamber for performing sonoporation on adherent monolayer cell cultures [15,19–

22,25,38–40]. An Opticell cell culture chamber consists of two thin gas-permeable mem-

branes (one of which is treated to allow cell cultures to adhere) and two rubber ports

which allow for material to be added and removed via needle and syringe. In [15], the

thin membranes of the Opticell presented <1% loss in acoustic intensity, demonstrating

that the Opticell is suitable for sonoporation applications. Opticell chambers are fully

submersible, eliminating the highly reflective liquid-air interface created when using al-

ternatives such as well-plates at the bath’s surface. Additionally, fully submersible cell

culture chambers allow for an acoustic absorber to be placed in the acoustic far-field,

mitigating reflection and standing wave formation further (Figs. 1.2e and 1.2f).

Cell cultures have been treated either as a suspension in cell culture media or as an

adherent monolayer. Suspended cell cultures are thought to reflect in vivo conditions

more accurately [16]. Suspended cells are often sonoporated in a test tube which may

be mechanically stirred or rotated (Figs. 1.2a and 1.2b) [11, 17, 24, 35, 36, 45]. Stirring or
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rotating the test tube is thought to provide the cell culture with a homogeneous ultrasound

exposure [45], however, in [35], no significant improvement in transfection efficiency was

observed using a rotating tube.

Adherent cell cultures in monolayer tend to receive multiple isolated sonoporation

treatments across their area [19–22, 25, 39, 40]. An Opticell chamber, for example, has

an area of 50 cm2. In order to perform multiple treatments with a single transducer,

a positioning system is often employed [19–22, 25, 39, 40]. For accurate reporting of the

acoustic conditions at the cells, the cell culture needs to be perfectly aligned with the

positioning system or the positioning system needs to be pre-configured (in the case of a

computerized positioning system) to correct for misalignment.

A summary of experimental set-ups for a selection of in vitro sonoporation studies is

available in Table 1.2.
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Suspension/ Stirred/ Standing Wave
Ref. Monolayer Rotated Chamber Orientation Positioning Mitigation US Generation

[29] Suspension Test tube Bottom-up Fixed Rubber stopper General
[11] Suspension Rotating Test tube Horizontal Fixed n.s. n.s.
[35] Suspension Rotating Test tube Horizontal Fixed n.s. n.s.
[24] Suspension Rotating Test tube Horizontal Fixed n.s. n.s.
[36] Suspension Rotating Test tube Horizontal Fixed n.s. n.s.
[18] Suspension Stirred Custom Horizontal Motorized No mitigation General
[14] Suspension Well plate Bottom-up Manual Absorber US driver
[16] Both Well plate Bottom-up Manual (Under study) US driver
[37] Monolayer - Well plate Bottom-up n.s. Moving source US machine
[41] Monolayer - Well plate Bottom-up n.s. No mitigation US machine
[12] Monolayer - Custom Bottom-up Fixed n.s. Imaging system
[31] Monolayer - Petri dish Bottom/Angled Fixed Angled n.s.
[19] Monolayer - Opticell Top-down n.s. n.s. n.s.
[39] Monolayer - Opticell Top-down n.s. n.s. n.s.
[40] Monolayer - Opticell Top-down n.s. n.s. n.s.
[15] Monolayer - Opticell Top-down Fixed Absorber General
[25] Monolayer - Opticell Bottom-up Manual n.s. Sonoporation system
[38] Monolayer - Opticell Bottom-up n.s. n.s. General
[20] Monolayer - Opticell Bottom-up Motorized Absorber General
[21] Monolayer - Opticell Bottom-up Motorized Absorber General
[22] Monolayer - Opticell Bottom-up Motorized Absorber General

n.s. - not specified

Table 1.2: A summary of a selection of sonoporation experimental set-ups.
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Chapter 2

Sonoporation Platform

2.1 Design Overview

2.1.1 Previous Sonoporation System

At the Thunder Bay Regional Research Institute (TBRRI), sonoporation experiments

have been performed using general-purpose laboratory equipment. The experimental

set-up for these experiments used a 3-axis, computer-controlled micropositioning system

(UMS2; Precision Acoustics, Dorsetshire, UK) to move a single-element focused ultra-

sound transducer to various positions across the area of an Opticell cell culture chamber

(Fig. 2.1). Electrical generation was performed using general lab equipment including

waveform generators and radio-frequency (RF) amplifiers. While this system has been

used to perform sonoporation in a number of studies at the TBRRI [20–22], it has a

number of drawbacks which impedes its routine use.

First, the water bath takes a considerable amount of time to set-up, treat, and tear-

down due to its size. The water tank measures approximately 97× 46× 46 cm internally,

requiring approximately 160 L of water per experiment day. A large part of the day is

spent filling the tank with deionized water, degassing the water, heating the water to a

biologically relevant temperature (e.g. 37°C), and emptying the tank. Typical times were

4 to 6 hours to set-up and about 30 minutes to tear-down.

Second, setting up the ultrasound exposure conditions is difficult without proper train-

ing and experience. The position and orientation of the cell culture needs to be determined

with respect to the 3-axis micropositioning system on a day-to-day basis before experi-

ments in order to ensure the ultrasound exposure is performed consistently at different



2.1. DESIGN OVERVIEW 13

Opticell

Transducer

Ultrasound absorber
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recirculation

Temperature
control

recirculation

Cell monolayer
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Figure 2.1: The previous sonoporation experimental set-up which used a large water bath
(∼160 L), a single-element focused transducer, a micropositioning system, an Opticell
chamber, an immersion heater, a circulating heater, and a circulating degasser.

target locations across the cell culture. This involves first levelling the cell culture mount-

ing apparatus and then localizing three holes on the apparatus, quasi-manually (i.e., with

the aid of software), using pulse-echo and scanning techniques.

Third, sonicating the cell culture takes considerable time as well due to the system

design. The system uses one single-element focused ultrasound transducer to perform

multiple acoustic exposures across the target cell culture. The process of sonicating each

target is automated using custom MATLAB software which controls the micropositioning

system and waveform generator. Due to the need to move and treat each zone sequentially,

the total treatment time was on the order of 25 minutes per cell culture.

Many of these issues stem from the use of general-purpose equipment to perform a spe-

cific task. A person wishing to use or build such a system must have sufficient knowledge

in each of the system’s constituent components (e.g. knowledge in software engineering,

electrical engineering, and acoustics) or the aid of people who do. Fortunately, these

issues can be addressed by designing a device for the specific application, minimizing the
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required technical expertise of the operator.

2.1.2 Proposed System

In this work, a sonoporation system is proposed which aims to reduce the time and

expertise required to perform sonoporation on cell cultures in adherent monolayer. The

design consists of an array of ultrasound transducers (i.e., multiple independent acoustic

sources) affixed beneath an Opticell mounting stage (Figs. 2.2 and 2.3).

Opticell

Ultrasound absorber

Transducer array

Degassasing
recirculation

Heating
recirculation

Figure 2.2: The proposed sonoporation experimental set-up with a much smaller bath
(∼20 L), multiple fixed transducers, and simpler heating system.

The features of the proposed design address all of the issues with the previous sys-

tem. First, the compact size of the device reduces the required size of the ultrasound

bath which in-turn reduces the required bath set-up, treatment, and tear-down times.

Second, the distances between the transducers and the cell culture are set once and do

not change between experiment days, reducing the time and complexity of the set-up of

the exposure conditions. Lastly, multiple transducers can insonate multiple areas of the

cell culture either concurrently, reducing the treatment time to that of a single exposure

(e.g. 30 seconds), or sequentially, eliminating the movement times associated with the use

of a micropositioning system. The design, construction, and calibration of the proposed

system are outlined in the following sections of this chapter.
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Opticell

Opticell Stage

Body Frame

Transducer Frame

Transducer Array

Cell Culture Area

Figure 2.3: A rendering of the device (exploded) showing its transducer array, transducer
frame, body, Opticell stage, and Opticell.

2.2 Transducer Design

The general construction of the type of transducer used here is shown in Fig. 2.4. This

transducer consists of a piezoelectric element (responsible for converting energy between

electrical and mechanical forms) positioned between two other material layers: a matching

(front) material and a backing material. The front matching material is used to match

the acoustic impedance of the piezoelectric material to the acoustic impedance of the

surrounding medium (e.g. the ultrasound bath water) [47, 48]. The backing material is

used to aid in the physical damping of the piezoelectric element as well as to reflect (or

absorb) acoustic energy [47, 48]. A housing is used to hold together the piezoelectric

element, the backing and matching materials, and the electrical circuitry.

The acoustic parameters chosen for the design of the proposed system were adopted

from those used with the previous system in a number of sonoporation studies [20–22]:

0.7 MPa peak-negative pressure, 1 MHz, 4.8% duty cycle, 1.6 kHz pulse repetition fre-

quency. These parameters were chosen in order to compare the effectiveness of the pro-

posed system with the previous system.
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Housing

Backing layer

Piezoelectric element

Matching layer

Figure 2.4: A rendering of a transducer (exploded) showing its housing (cut-away), its
backing layer (dotted outline), its piezoelectric element, and its matching layer (dotted
outline).

The design of the transducers began with the choice of the piezoelectric elements. In

order to reduce the complexity of the device while providing a large exposure area, a large

number of small transducers was desired. After consultation with the manufacturer, the

suggested piezoelectric elements which would fulfill the design requirements were 20 mm

(nominally) in diameter (DL-47; DelPiezo Specialties LLC, West Palm Beach, FL, USA).

The dimensions of the Opticell allowed for an array of six (3×2) of these piezoelectric

elements to fit comfortably within the cell culture area (Fig. 2.5).

The transducers were designed to be air-backed. Air has a much lower acoustic

impedance than the piezoelectric crystal material (∼410 Rayl v. ∼26 MRayl). There-

fore, this backing layer will be highly reflective of acoustic energy being transmitted out

of the back of the crystal [47]. The water in front of the transducer has an acoustic

impedance much closer to the crystal material than air, though still an order of magni-

tude less (∼1.5 MRayl v. ∼26 MRayl). Although the maximum transfer of energy occurs

when acoustic impedances are equal, no front material was used to match the acoustic

impedance between the crystal and the water bath.

Important physical features of the transducer housing are shown in Fig. 2.6. The

transducer housing has openings at both ends. The wide opening at the top of the housing

is designed to accept a circular piezoelectric element and a small “lip” was designed into

this opening for the piezoelectric element to rest (Fig. 2.6:2). The opening widens near

the top of the housing to allow for epoxy (EPO-TEK 301; Epoxy Technology, Billerica,

MA, USA) to be set between the housing and the piezoelectric element (Fig. 2.6:1). This
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Figure 2.5: An orthographic projection showing the placement of the six transducer ele-
ments with respect the Opticell cell culture area.

epoxy both holds the piezoelectric element in place and provides waterproofing for the

transducer air-backing. The opening at the bottom of the housing allows for the electrical

signal cable to be inserted (Fig. 2.6:4) (also sealed with epoxy). Three vertical channels

are evenly spaced around the inside of the housing which allow ground (GND) wires to

be connected from the signal cable termination inside the housing to the external face of

the piezoelectric element (Fig. 2.6:3).

2.3 Modelling and CAD

The device components were modelled using OpenSCAD (2013.02.28) [49], a tool which

provides a language-based interface for modelling 3D objects using constructive solid

geometry (CSG). Models created in OpenSCAD were exported to stereolithography format

(.stl) and prepared for printing using ReplicatorG (0037) [50] with skeinforge (50)

[51]. The 3D objects were then printed using a Makerbot Replicator desktop 3D printer

(Makerbot Industries, New York, NY, USA) using ABS plastic. ABS plastic was chosen

after a sample piece underwent a soak test and its wet mass was not largely different from

its dry mass, signifying that it did not absorb a significant amount of water.

ReplicatorG and skeinforge provide options for adjusting the density of the objects

being printed. This is done by using a solid wall for all external surfaces of the object

and using a supporting structure of lesser density, such as a honeycomb, internally. The

remainder of the internal volume of the object is occupied by air. The printed pattern
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Figure 2.6: Physical features of the transducer housing design: (1) a gap between the
transducer and the housing for epoxy to be placed; (2) a small lip for the transducer to
rest on; (3) channels for ground (GND) wires to be run from the inside of the housing to
the outside; and (4) the hole for the coaxial cable. These parts can be seen (a) from the
side (cutaway), (b) from an angled perspective, and (c) from above.

for the internal structure can be adjusted for density, affecting the time and material

requirements for printing. Since it is necessary for the device presented here to be fully

submerged in a water bath, these options were adjusted to achieve maximum fill density

for every part of the device in order to minimize the internal air gaps, to minimize leaking

and absorption, and to allow for the tapping of holes for fixing screws.

2.4 Transducer Construction

The exterior of each transducer housing was treated in a shallow acetone bath for 1 to 2

seconds per side. The acetone treatment was performed to smooth and help fill the rough

exterior in order to minimize the possibility of leaking.

Coaxial cable (RG-174 type, 24.5 AWG; Belden, St. Louis, MO, USA) was used to

connect to the piezoelectric element to the driving circuitry. The end of the coaxial cable

was fed through the bottom hole before connecting to the piezoelectric element. Six

electrical connections were made between the coaxial cable and the piezoelectric element

(Fig. 2.7) using 26 ∼ 30 AWG stranded wire. Three connections to ground (GND)

were evenly spaced around the outside edge of the exterior-facing side of the crystal and

three signal connections were made on the interior-facing side of the crystal. The signal

connections were staggered evenly with respect to the positions of the ground connections
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Figure 2.7: (a) Locations of solder points for the signal v(t) (circles) and ground (GND)
connections (squares). (b) A cut-away of the housing showing the internal and external
connections to the (translucent) piezoelectric element. Ground connections are made on
the outer-facing side of the element and the signal is applied to the inside-facing side of
the element.

and made half-way between the center of the element and its edge (Fig. 2.7a).

2.5 Transducer Electrical Matching

jX1

jX2 ZBZA

ZA
* ZB

*

Figure 2.8: L-type (two-element) matching network where Re{ZB} > Re{ZA}.

The electrical impedance of each transducer was matched to 50 Ω at 1 MHz using an

L-type (two-element) matching network (Fig. 2.8). The goal of the matching network is
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to ensure that maximum power is transferred between ZA and ZB [52]. While the quality

factor of this type of network cannot be controlled, it is normally low [52].

L-type matching networks come in low-pass and high-pass varieties. In the low-pass L-

type matching network, the series reactance, X1, is an inductor, and the parallel reactance,

X2, is a capacitor. For the high-pass case, the opposite is true. In both cases, the parallel

reactance X2 is in parallel with the component with the larger Re{Z}. Thus, there

need not be any differentiation between which is the source and which is the load when

performing the analysis [52].

Matching is performed for a single frequency by satisfying the following equality:

Z∗A = Z1 + Z2‖ZB (2.1)

RA − jXA = jX1 +

(
jB2 +

1

RB + jXB

)−1

(2.2)

where X1 and B2 are the reactance of the series matching component and the susceptance

of the parallel matching component respectively. If X = X1 + XA then the solution to

the matching circuit can be found by equating the real and imaginary parts and solving

for X and B2:

B2 =
XB

|ZB|2
±
√
RB

RA

√
|ZB|2 −RARB

|ZB|2
(2.3)

X = X1 +XA =
1

B2

+
RA

RB

(
XB −

1

B2

)
. (2.4)

Due to the compact size of the transducer housings, matching networks were installed

in small boxes placed between the 50 Ω source and the terminated end of the coaxial cable

of each transducer (Fig. 2.9). Hence, the impedance matching involved the impedance of

both the piezoelectric element and the coaxial cable.

Matching was performed with the aid of an RF network analyser (8127ES; Hewlett

Packard, Palo Alto, CA, USA) calibrated to using a 85032E Type N calibration kit

(Hewlett Packard, Palo Alto, CA, USA). The matching network was manually tuned

from initial values by adjusting the inductance by the number of turns on the inductor

and the capacitance by adding or removing parallel capacitors with the aid of a Smith

chart [52]. The results of the matching procedure are listed in Table 2.1.
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50Ω

jX1

Zpiezo

Zline

jX2

(a) (b)

Matching BoxSource Transducer

Figure 2.9: (a) The inside of a matching box with two L-type low-pass matching circuits
and external male BNC connectors featuring hand-wound iron-powder-core (Material #1;
Amidon Inc., Costa Mesa, CA, USA) toroid inductors and high-voltage ceramic capac-
itors. (b) A schematic showing the matching circuit in place. The matching network
input calibrated to 50 Ω and the load impedance includes both line and piezo-element
impedances. While the matching network shown assumes Re{Zline + Zpiezo} < 50 Ω, this
may not be true, in which case X2 would be in parallel with Zline + Zpiezo instead.

Device Unmatched Z (Ω) L (µH) C (nF) Matched Z (Ω) Matched |Γ|

A 45.78 + j7.028 1.09 0.966 50.85 + j1.402 0.01626
B 50.76− j8.435 1.65 0.127 50.98 + j2.029 0.02231
C 30.36− j6.428 4.91 2.56 48.21− j1.603 0.02446
D 44.13− j4.374 3.26 1.16 50.15− j0.739 0.007529
E 47.34− j8.224 3.09 0.755 48.57− j1.585 0.02165
F 46.97− j2.415 2.28 0.808 52.71− j0.439 0.02673

Table 2.1: The unmatched and matched impedances (Z = R + jX) at 1 MHz for each
transducer, the (theoretical) component values to match to 50 Ω at 1 MHz, and the
reflection coefficient magnitude |Γ| after matching.
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Figure 2.10: Hydrophone scanning acquisition set-up. The output of a waveform generator
(1 MHz, 30 cycles, 10 Hz PRF) is first amplified by an RF power amplifier. The electrical
output power is measured using a directional coupler and power meter. The amplified
signal is sent to the matching circuit and transducer. The acoustic pressure generated by
the transducer is converted to a voltage using a hydrophone. The hydrophone is attached
to the arm of a 3-axis micropositioning system. The hydrophone signal is (optionally)
boosted by a booster amplifier before being captured by an oscilloscope. A PC reads the
captured hydrophone voltage waveform from the oscilloscope for processing.
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2.6 Transducer Field Characterization

2.6.1 Acquisition Set-up

Hydrophone scanning was employed to obtain a detailed map of the acoustic profile of

each transducer. Measurements were conducted using a previously calibrated needle hy-

drophone using a 0.2 mm tip (SN1426; Precision Acoustics, Dorsetshire, UK). An ul-

trasound pulse was generated using an arbitrary waveform generator (33522; Agilent

Technologies Canada Inc., Mississauga, ON, Canada) and amplified using a linear RF

amplifier (A250; E&I, Rochester, NY, USA). This pulse was defined as a 1 MHz pulse

of 30 cycles, generated every 100 ms (10 Hz). The hydrophone was placed at various

positions within the acoustic beam of the transducer under test using a 3-axis motorized

micropositioning system (UMS2; Precision Acoustics, Dorsetshire, UK). Automatic posi-

tioning and waveform acquisition was performed using a custom MATLAB programme. A

schematic for the acquisition setup is shown in Fig. 2.10.

The acoustic field was reconstructed automatically using a custom MATLAB programme.

At each point the hydrophone visited, the software obtained the hydrophone voltage wave-

form and computed its root-mean-square (RMS) value. The RMS value was calculated

from the beginning of the pulsed waveform to the end of the pulsed waveform, which may

be offset in time from the moment of excitation based on the distance of the hydrophone

from the transducer and the speed of sound of the water bath. The acoustic field pulse-

average intensity (Isppa) for the given point in space will be proportional to the square of

the computed RMS hydrophone voltage [18]:

Isppa =
(prms)

2

ρc
=

(Vrms/M(f))2

ρc
(2.5)

where c and ρ are the speeds of sound and density of the propagation medium, and prms

is the pulse-averaged pressure which is proporational to the calculated RMS hydrophone

voltage by the linear response of the hydrophone M(f) at operating frequency f [53].

The custom MATLAB acquisition programme is only capable of performing scans along

the axes of the positioning system. This limitation required the transducer beam axis

to be physically aligned with one of the three micropositioning system axes. Additional

recommendations for performing hydrophone measurements, including alignment, were

available from the manufacturer [53].
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Figure 2.11: Normalized intensity along the acoustic axis for an ideal disc source 20 mm
in diameter, operating at 1 MHz in water (c = 1500 m/s).

2.6.2 Optimal Treatment Plane

Unlike curved (focused) transducers, planar transducers do not have a geometric focus.

However, they do have what is considered a “natural focus”, a distance where the acoustic

field transitions from the near- to the far-field (znf ) [48]. The acoustic field in the near-

field (z < znf ) is highly heterogeneous due to the constructive and destructive interference

of waves contributed by different points on the transducer’s surface. At a given point near

the source, the distance between each point on the surface of the source and this point

in space varies greatly across the surface, leading to large changes in phase contributions.

However, in the far-field (z > znf ), the distances between points on the surface of the

transducer and a given point in space become more similar and the acoustic field becomes

more homogeneous.

The normalized intensity I/Ipeak along the propagation axis for an ideal disc source is
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given by
I
Ipeak

= sin2

{
a2

λ

(√
a2 + z2 − z

)2
}

(2.6)

where a is the radius of the disc source, λ is the wave length of the medium, and z is

the distance along the propagation axis [48]. The distance at which the near-far field

transition (i.e., the natural focus) occurs for an ideal disc source is given by

znf =
4a2 − λ2

4λ
(2.7)

where a is the radius of the disc source and λ is the wave length of the medium [48]. At

this distance, the intensity along the propagation axis, given by (2.6), peaks for a final

time before decaying [48].

The solution to (2.6) for a disc source 20 mm in diameter, operating at 1 MHz in

water (c = 1500 m/s) is plotted in Fig. 2.11. For this source the near-far field transition

distance is approximately 66.3 mm.

In order to develop a compact device, it may be necessary to work within the near-field

region. In [15], sonoporation is performed in the near-field with minimal spacing between

the transducer and cell culture as the authors consider the treatment plane homogeneous

at this distance. It is possible, however, to find an optimal treatment plane in the near-

field which exhibits a resonable level of homogeneity.

To determine the optimal near-field treatment plane, planar scans of the acoustic field

were performed in the near-field region. The planes were 10.5×10.5 mm in size at a

resolution of 0.7 mm (< 1/2λ). These planes were obtained between 10 mm and 20 mm

from the transducer surface. This range was chosen as it encompasses the region between

the last two intensity peaks before znf (Fig. 2.11).

A circular region, 10.5 mm in diameter, was sampled to encompass the symmetry of

the field while computing the homogeneity of the field on the plane (Fig. 2.12b). The

homogeneity was quantified as the standard deviation from the mean intensity within

this circular region. The optimal plane was the plane where the standard deviation was

minimum (i.e., minimum variation in acoustic intensity from the mean) and the axial

distance at which this plane occurred became the “optimal treatment distance” (Fig.

2.13). The optimal treatment distance for each transducer is summarized in Table 2.2.
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Figure 2.12: (a) A planar acquisition (∆x = ∆y = 0.7 mm) showing relative acoustic
intensity at z=16 mm; (b) A binary mask used to sample acoustic field intensity (where
black) for homogeneity.

2.6.3 Electrical Power Required to Produce Peak Pressure

Once the optimal plane was identified for a given transducer, the electrical power required

to produce the desired acoustic pressure (i.e., 0.7 MPa peak-negative) on this plane was

determined. The booster amplifier was removed and the hydrophone signal was measured

directly by the oscilloscope. A dual-directional coupler (C5685-10; Werlatone Inc.) and

power meter (2× N8482H sensors and N1914A meter; Agilent Technologies Canada Inc.,

Mississauga, ON, Canada) were used to measure the total forward electrical power. The

hydrophone was positioned at a point on the optimal treatment plane which had ap-

proximately 90% of the peak intensity and the waveform generator’s output voltage was

slowly adjusted up from 0 mVpp until the oscilloscope measured the desired peak-negative

voltage. This peak voltage was determined by the hydrophone’s linear sensitivity, M(f),

provided by the manufacturer:

p(r, t) =
V (r, t)

M(f)
(2.8)

where p(r, t) and V (r, t) are the pressure and corresponding hydrophone voltage at spatial

point r and time t [53]. The results of the acoustic field characterizations are summarized

in Table 2.2.
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Figure 2.13: The heterogeneity (s.d.) of the acoustic intensity over a centered, circular
region on each plane along the acoustic axis of a transducer. The minimum relative
heterogeneity is seen at z = 16mm represents the most homogeneous plane. This distance
(z = 16mm) is chosen as the optimal treatment distance for the transducer.

2.6.4 Cross-talk

Each transducer in the array is approximately 6 mm apart at their closest point. In order

to determine the risk of cross-talk between adjacent transducers, the acoustic field for one

of the transducers was acquired over a wider plane, 40×40 mm in size, at the transducer’s

treatment distance (Fig. 2.14). The widths where the relative acoustic intensity is -3 dB,

-6 dB and -12 dB are approximately 2.18 mm, 10.5 mm, and 18.9 mm respectively. Peaks

of approximately -18 dB appear in adjacent zones.

2.7 Transducer Array Configuration

The final step in the construction of the sonoporation platform was configuring the trans-

ducer array. The transducer positions were adjusted such that the distance between the

each transducer face and the target Opticell membrane were as close as possible to the

optimal treatment distances obtained from the acoustic characterization.

In order to accurately measure the distance between a transducer and the Opticell

membrane, a secondary (imaging) transducer was used to generate a pulse and measure

the resultant echoes (Fig. 2.15). One of the two membranes of a dummy Opticell was

removed to prevent its unwanted echo. The transducer array was fixed and levelled in the

ultrasound bath and the imaging transducer was aimed at the transducer being adjusted.
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Figure 2.14: The planar acoustic profile of a transducer over a wide area at its optimal
treatment distance. Orthographic projections of 20 mm circular transducers are overlaid
(black, thick-dashed) to represent adjacent zones. Peaks of approximately -18 dB appear
in neighbouring zones.

The echo from the Opticell membrane arrived first at time t1 and the echo from the

transducer surface arrived second at time t2. The difference in time between the echoes is

directly proportional (by the speed of sound in the bath) to the relative distance between

the transducer face and the Opticell membrane:

∆d =
c∆t

2
(2.9)

where ∆d is the relative distance between the transducer face and Opticell membrane, ∆t

is the difference in time between the echoes, and c is the speed of sound in the propagation

medium (i.e., water).

The transducer array was held in place with five set screws, one for each “row” and

“column” of the array. The transducers were held in each row and column by frictional

force produced by the set screw position. A single transducer was able to be adjusted (or
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Figure 2.15: Setting the distances between the transducers and the Opticell membrane.
A short pulse (1) is sent from an imaging transducer. After time t1, the echo from the
Opticell membrane (2) returns to the imaging transducer. Shortly after, at time t2, the
echo from the transducer face (3) returns to the imaging transducer. The transducer
distance can be adjusted such that the time between echoes corresponds to the optimal
treatment distance.

later replaced) by loosening both set screws for the row and column it belongs to. The

other transducers in the same row remained in place by the force of the set screw in their

columns and the other transducers in the same column remained in place by the force

of the set screw in its row. When a transducer was adjusted to the desired position, the

set screws for its row and column were tightened, fixing it in place. Once the transducer

distances were set, the platform was ready for use (Fig. 2.16).
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Device Treatment -3 dB width Nominal source amplitude Electrical power

distance (mm) (mm) (mVpp) for 0.7 MPa (W)

A 17.0 2.33 410 106

B 16.0 2.18 380 94

C 14.7 1.68 370 94

D 16.0 1.78 360 85

E 15.8 1.96 430 123

F 15.9 1.89 390 106

Mean(±s.d.) 15.9(±0.67) 1.97(±0.22) 390(±23.8) 101(±12.2)

Table 2.2: Summary of transducer characterization

Figure 2.16: The platform constructed and ready for use.
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Chapter 3

Platform Validation

3.1 Purpose

A sonoporation study was carried out using the prototype sonoporation platform. The

purpose of this study was two-fold. First, the study aimed to examine the effect of cell

temperature on sonoporation efficacy. Second, the study allowed for the design of the

device to be experimentally validated.

Pore formation during sonoporation is mainly attributed to non-thermal mechanisms.

There is evidence, however, that both cell membranes and microbubbles — two non-

thermal actors associated with pore formation — have temperature-dependent qualities

including cell membrane fluidity [44, 54] and microbubble population size [55–57] which

may affect transfection efficiency and cell viability. In [44], increasing the temperature of

the cells to 42°C gave a 15-fold improvement of transfection efficiency of prostate cancer

PC-3 cells over the same treatment at 37°C.

Sonoporation is of particular interest to those in the field of cancer research as it

promises to provide a non-viral means for targeted drug delivery and gene therapy. High-

risk human papillomavirus (HPV) infection is strongly associated with the development

of cervical cancer, the second most common cancer affecting women world-wide [58]. Cur-

rently, standard treatment of cervical cancer includes radiation therapy and surgery, each

having their own undesirable side-effects. Ultrasound-mediated delivery of therapeutic

macromolecules which target the oncoproteins encoded by the HPV DNA (e.g. plas-

mid DNA [15, 24] and small interfering RNA [14, 21]) may provide a minimally-invasive

alternative to current treatment options.
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Figure 3.1: Sonoporation set-up featuring a transducer array below an Opticell chamber.
Beyond the cell culture is an ultrasound-absorbent material (Aptiflex; Precision Acoustics,
Dorsetshire, UK) intended to reduce reflection and standing wave formation.

3.2 Materials and Methods

3.2.1 Experimental Groups

Experiments were divided into nine groups consisting of three different treatments and

three different temperatures. Cells either underwent a sonoporation treatment (US+UCA)

which exposed the cells to high-intensity ultrasound with UCA present, an ultrasound

treatment (US) which exposed the cells to high-intensity ultrasound without UCA present,

or a sham ultrasound treatment (UCA) which used zero acoustic power (amplifier turned

off) with UCA present. Each of these three treatments was performed at 37°C, 39.5°C,

and 42°C with plasmid DNA present. All nine experimental groups were repeated three

times.

3.2.2 Ultrasound Exposure

The ultrasound generation parameters used in the experimental validation were adopted

from previous studies by our group [21, 22] in order to compare its relative performance

with our previous system. These parameters were originally chosen based on preliminary

work by our own group [20]. Pulsed ultrasound at 1 MHz delivered at a peak-negative

pressure of 0.7 MPa to the cell culture in bursts of 30 cycles every 625 µs (4.8% duty
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cycle; 1.6 kHz pulse repetition frequency) for a total time of 30 seconds.

The ultrasound signal for performing both characterization and sonoporation was gen-

erated using a waveform generator (33522; Agilent Technologies Canada Inc., Missis-

sauga, ON, Canada) and amplified using a linear, radio-frequency power amplifier (A150;

E&I, Rochester, NY, USA). The power during sonication was monitored using an in-line

directional coupler (C5685-10; Werlatone Inc., Patterson, NY, USA) and power meter

(2ÖN8482H sensors and N1914A meter; Agilent Technologies Canada Inc.) This setup

allowed for the excitation of one transducer at a time during experiments. Hence, each

treatment area of the cell culture chamber was treated sequentially in random order. An

additional period of 30 seconds after each exposure was added to allow the operator to

switch to the next transducer in the array.

3.2.3 Cell Culture and Plasmid DNA

Cervical cancer-derived SiHa cells (ATCC HTB-35, Manassas, VA, USA) were used in

this study. Such cells contain 1-2 genome copies of HPV type 16 per cell [59]. The

cells were maintained in 75 cm2 flasks containing Dulbecco’s Modified Eagle Medium

(DMEM; Sigma-Aldrich, Oakville, ON, Canada) supplemented with 10% heat-inactivated

fetal bovine serum (FBS; Hyclone Laboratories Inc., Logan, UT, USA), 100 U of penicillin,

100 µg of streptomycin, and 0.25 µg amphotericin B per mL (antibiotic/antimycotic;

Gibco, Grand Island, NY, USA) at 37◦C and 5% CO2. The cells were passaged to maintain

70–80% confluency. Twenty-four hours before treatment, the cells were seeded (0.6Ö106)

into an Opticell chamber to allow the cells to adhere to the inside membrane.

Plasmid DNA (pDNA) expressing green fluorescent protein (GFP) was used to quan-

tify successful transfection. The GFP plasmid cannot passively cross the cell membrane,

hence, green fluorescence will only be visible in successfully permeabilized cells. To pro-

duce the plasmid, chemically competent NEB 5-αF’Iq Escherichia coli bacteria (New

England Bio Labs Inc., Ipswich, MA, USA) were transformed with 6.3-kb Omicslink

pReciverM03 plasmid containing the GFP gene (Genecopia Inc., Rockville, MD, USA).

Plasmid DNA was extracted and purified with EndoFree Plasmid Maxi Purification kits

(Qiagen Inc., Toronto, ON, Canada) to minimize bacterial endotoxin levels. Prior to

treatment, the cells were washed with serum and antibiotic-free DMEM and incubated

with 250 µg of GFP plasmid DNA in 10 mL of serum and antibiotic-free DMEM for 15

minutes at 37°C and 5% CO2.

Immediately following treatment, the Opticell was removed from the ultrasound bath,
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wiped with 70% ethanol, and returned to the incubator where the cells were incubated at

37°C. The cells were given 2 hours of incubation time to stabilize after treatment. At this

time, 1.1 mL of serum free media was removed from the Opticell and the remaining media

was supplemented with 1 mL of FBS and 100 µL of antibiotic/antimycotic, returning the

cells to their original media composition. The cells were then incubated for an additional

24 hours to allow for the development of GFP in the cells.

3.2.4 Ultrasound contrast agent

Definity ultrasound contrast agent (Lantheus Medical Imaging, North Billerica, MA,

USA), consisting of bubbles of a perflutren gas core and lipid shell, was used to intro-

duce cavitation nuclei during the sonoporation process. The contrast agent was activated

according to the manufacturer’s recommended procedures (Vialmix, Lantheus medical

Imaging, North Billerica, MA, USA). For those experimental groups which included con-

trast agent, 33 µL of activated contrast agent was added to the 10 mL media in the

Opticell chamber 1 minute before transferring to the water bath, giving a final volume

concentration of 0.33%. Nominally, activated Definity contains 1.2Ö1010 microbubbles

per mL corresponding to a microbubble-cell ratio of 660:1. However, in [18], the authors

reported that many of the microbubbles in Definity UCA are small (<1 µm) and observed

those on the range 1∼8 µm at ∼33 microbubbles per mL. This would correspond to ∼ 1.8

microbubbles per cell. During treatment, the Opticell was placed horizontally in the cell

culture stage with the cells on the upper-most membrane, allowing for the microbubbles

to rise and rest against the cells during insonation.

3.2.5 Bath Conditioning and Heat Treatment

Experiments were conducted in a bath of deionized, degassed water (Fig. 3.1). The

bath water was initially circulated through a degassing system until the detectable level

of dissolved oxygen was <1.0 ppm (407510A; Extech Instruments Corporation, Nashua,

NH, USA). The water was also circulated through an in-line water heater (Model 210;

PolyScience, Niles, IL, USA) to raise it to the desired temperature. The heater continued

to circulate water throughout the duration of the experiment in order to maintain the

temperature of the bath. The compact dimensions of the device allowed for experiments

to be performed in a small water tank (a 26 L tote) reducing the time consumed by filling

and emptying the tank as well as degassing and heating the water bath.
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10 mm

Figure 3.2: An illustration of the exposure zones and imaging areas. The Opticells were
cut along the a 20 mm diameter region (dotted lines) to be treated for mounting on slides.
Imaging occurred within the center 10 mm diameter region (approx. -6 dB intensity) of
the cut-outs on slides (solid line).

The cells and medium in the Opticell chamber were given 1 minute to equalize with

the temperature of the surrounding bath before starting the ultrasound exposure. This

value was determined experimentally by measuring the time that water in an Opticell

chamber took to rise from the temperature of the incubator (37°C) to the maximum bath

temperature tested (42°C). Due to the large ratio between the surface area and the volume

of the Opticell, the average time for this rise to occur was approximately 40 seconds, which

was rounded up to 1 minute to ensure the temperature had stabilized.

Considering the initial temperature equalization time and subsequent treatment time,

each Opticell was submerged in the bath for a total of 7 minutes.

3.2.6 Quantification of Permeabilization and Viability

Permeabilization and viability were quantified using microscopy and image processing

(Fig. 3.2). Cell imaging was performed using a Zeiss Axiovert 200 inverted microscope

(Carl Zeiss Canada Ltd., North York, ON, Canada) and an LD A-Plan 10Ö/0.25 Ph1

objective for a total magnification of 100Ö. A 12-bit CCD camera (Q Imaging, Surrey,

BC, Canada) was used to capture the microscope images to digital format for processing.

Each image taken measured 1376 Ö1024 pixels, translating to an area of 2.752 Ö2.048

mm at 50 pixels per µm.
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Figure 3.3: Various images used in transfection and apoptosis quantification. Images (a)
and (b) are a blue DAPI intensity image and the associated segmented nuclei objects
(white) respectively. Image (c) is a green GFP secondary antibody intensity image, (d)
are the associated segmented cell objects (white), and (e) are the positive objects detected
using (c) and (d). Image (f) is the red cleaved PARP secondary antibody image, (g) are
the associated nuclei objects (from (b)), and (h) are the positive objects detected using
(f) and (g).
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Cell loss (detachment) was evaluated by imaging the cell cultures in three random

spots per exposure area (18 total per replicate) 15 minutes before and 2 hours after

treatment with phase contrast imaging. Each cell was manually identified by applying an

identifying marker (a dot) over the digital phase contrast images and subsequently creating

a new image containing only the dots on a blank background. These marked images were

then used to automatically obtain cell counts per field of view using CellProfiler software

(2.0.0) [60]. The cell counts per field of view were averaged per replicate for analysis.

The cell loss for each replicate was evaluated as the relative change in the average cell

count 15 minutes before and 2 hours after treatment where a negative relative change

represented a drop in cell count. It was assumed that any cells that detached were non-

viable. The viability of the remaining cells was determined by visualizing cleaved Poly

(ADP-ribose) polymerase (PARP), an early apoptotic indicator, 24 hours after treatment.

Twenty-four hours following treatment, the Opticell membrane with the adhered cells

was removed and the cells were fixed with a 4% solution of paraformaldehyde (PFA) in

phosphate buffered saline (PBS). The fixed cells were permeabilized with 0.1% solution

of Triton-X in PBS for 5 minutes and rinsed with PBS. The cells were then blocked with

1% solution of bovine serum albumin (BSA) in PBS for 10 minutes at room temperature.

Since the fluorescent signal produced by the GFP was quenched by the PFA fixing, a goat

polyclonal anti-GFP antibody (ab5450; Abcam Inc., Toronto, ON, Canada) was applied

at 1:1000 in 1% BSA/PBS to bind to the GFP protein produced by transfected plasmid. A

green fluorescent AlexaFluor 488 donkey anti-goat secondary antibody (LifeTechnologies

Inc., Burlington, ON, Canada) was applied at 1:400 in 1% BSA/PBS to visualize the anti-

bodies bound to the GFP. A monoclonal mouse anti-cleaved PARP antibody (ab1103315;

Abcam Inc., Toronto, ON, Canada) was applied at 1:760 in 1% BSA/PBS and visualized

with a secondary red fluorescent Alexa Fluor 594 donkey anti-mouse antibody (LifeTech-

nologies Inc., Burlington, ON, Canada) applied at 1:800 in 1% BSA/PBS. The cells were

counter-stained with 4’,6-diamidino-2-phenylindole (DAPI) to identify the nuclei of the

cells before being mounted onto slides for imaging.

The stained cells were imaged in five random spots per treatment area using green,

blue, and red fluorescence filters. One of the six treatment areas was used as a staining

control, limiting the total available fields of view for analysis to 25 per replicate. Each

field of view was captured for each of the three stains.

Object segmentation was performed on the fluorescent microscopy images (Fig. 3.3)

using CellProfiler (2.0.0) [60]. Two types of “objects” (independent areas of the image)
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were extracted in each field of view: 1) the nuclei objects, extracted from the blue DAPI

images; and 2) cell boundary objects, extracted using a combination of the blue DAPI and

green GFP secondary antibody images. These objects were extracted using an Ostu-global

segmentation method with minimization of weighted variance. The extracted objects

represented areas of the image occupied by individual nuclei (nuclei objects) or cells (cell

boundary objects). Consequently, the background of the image was identifiable, based on

the area not occupied by any object.

For an object to be considered positive for either transfection (green) or apoptosis

(red), the image intensity inside the object should be significantly higher than the image

intensity of the background. Thus, the following criterion was used to detect positive

objects:

Īobj ≥ Ībg + nσbg (3.1)

where Īobj is the mean image intensity within an object, Ībg is the mean intensity of the

background, σbg is the standard deviation of the background intensity, and n is the number

of standard deviations that the mean object intensity must be from the mean background

intensity for the object to be considered positive. In [21], a value of n = 2 was used with

this method. This threshold was increased to n = 3 in this work. A cell was considered

transfected if it met this criterion using the green GFP secondary antibody images. Cell

boundary objects were used in transfection detection since the GFP secondary antibody

signal would be observed in both the cytoplasm and nucleus of each positive cell (Fig.

3.3c-e). This same criterion was used for detecting cells positive for apoptosis using the

intensity of the red cleaved PARP secondary antibody images. Since the cleaved PARP

secondary antibody signal would be observed in the nucleus of each positive cell, the

nuclei objects were used (Fig. 3.3f-h). The number of objects positive for transfection

and apoptosis were counted relative to the number of cells in the image. The fraction of

positive objects within each field of view was averaged per replicate for statistical analysis.

3.2.7 Statistical Analysis

Statistical analysis was performed using R (2.15.2) [61]. Observations were tested for

normality using the Shapiro-Wilk test and homogeneity of variance using Bartletts test.

A two-way ANOVA was used to test the effects on parametric data. A post-hoc Tukeys

HSD (honestly significant differences) test was performed on significant effects. For non-
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Figure 3.4: Transfection rates for each treatment and temperature tested. Post-hoc
analysis showed that the US+UCA treatment group had significantly higher percent-
age of transfected cells over the other two treatment groups independent of temperature
(p<0.001 for both). There was no significant effects observed in transfection rates with
temperature or treatment-temperature mixed effects. Error bars represent ±s.d. (n=3
per group)

parametric data, the Kruskal-Wallis rank sum test was used to test effects and a post-hoc

pair-wise Wilcoxon rank sum test was performed for significant effects. The significance

level (α) was made 0.05 a priori.

3.3 Results

3.3.1 Transfection Efficiency

Treatment was observed to have a significant effect on transfection efficiency (p<0.001).

Post-hoc analysis showed that the cells that received the sonoporation treatment (US+UCA)

had a significantly higher expression of GFP over the control treatments (p<0.001 for

both). Transfection efficiency was not observed to be significantly affected by bath tem-

perature (p=0.564) or treatment-temperature interaction effects (p=0.684). Transfection

rates for each experimental group are shown in Fig. 3.4. For temperatures of 37°C,

39.5°C, and 42°C the average(±s.d.) percentages of transfected cells for the sonoporation

treatment (US+UCA) were 5.4(±0.92)%, 5.8(±1.3)%, and 5.3(±1.1)% respectively; the

percentages of transfected cells for the ultrasound treatment (US) were 0.66(±0.38)%,

1.1(±0.46)%, and 0.57(±0.26)% respectively; and the percentages of transfected cells for

the sham treatment (UCA) were 0.50(±0.22)%, 0.73(±0.24)%, and 1.3(±0.53)% respec-

tively.



40 CHAPTER 3. PLATFORM VALIDATION

US CAUS+CA

37°C

39.5°C

42°C

R
el

at
iv

e 
C

el
l L

os
s 

(%
)

Treatment

Temperature

0

-20

-40

Figure 3.5: Relative change in cell count following treatment (+2h) for each treatment
and temperature. Post-hoc analysis showed US+UCA treatment has significantly higher
cell loss over the other two treatments (p<0.001 for both). There was no significant effects
observed in transfection rates with temperature or treatment-temperature mixed effects.
Error bars represent ±s.d. (n=3 per group)
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Figure 3.6: The ratio of apoptotic cells for each treatment and temperature. Apoptosis
rates were low (<0.75%) across all treatments and temperatures. No significant effects on
apoptosis rates were observed with treatment, temperature, or mixed-effects. Error bars
represent ±s.d. (n=3 per group)
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3.3.2 Cell Viability

Cell loss was not significantly affected by temperature (p=0.661) or treatment-temperature

mixed effects (p=0.778). However, cell loss was found to be significantly affected by treat-

ment (p<0.001). Post-hoc analysis showed that US+UCA treatment had significantly

higher levels of cell loss over the US and UCA treatment groups (p=0.0076 and p=0.0002

respectively). Rates of cell loss following treatment for each experimental group are shown

in Fig. 3.5. For temperatures of 37°C, 39.5°C, and 42°C, the cell losses for the US+UCA

treatment group were -31(±3.4)%, -32(±13)%, and -34(±17)% respectively; cell losses for

the US treatment group were -6.7(±7.9)%, -9.1(±8.3)%, and -18(±5.9)% respectively; and

cell losses for the UCA treatment group were -5.6(±7.4)%, -2.8(±7.9)%, and -2.2(±12.2)%

respectively.

The percentage of remaining cells indicating apoptosis 24 hours following treatment

was low (<0.75%) and was not significantly affected by treatment (p=0.437), tempera-

ture (p=0.896), or treatment-temperature interaction effects (p=0.371). Rates of apop-

tosis for each experimental group are shown in Fig. 3.6. For temperatures of 37°C,

39.5°C, and 42°C, the ratios of apoptotic cells for the US+UCA group were 0.34(±0.15)%,

0.22(±0.08)%, and 0.41(±0.2)% respectively; the ratios of apoptotic cells for the US group

were 0.31(±0.25)%, 0.22(±0.10)%, and 0.23(±0.11)% respectively; and the ratios of apop-

totic cells for the UCA group were 0.18(±0.17)%, 0.32(±0.08)%, and 0.21(±0.10)% re-

spectively.

3.4 Discussion

3.4.1 Validation

The design of the sonoporation device presented here was able to induce significantly

higher expression of GFP over the control groups 24 hours following treatment. This

device was chosen to operate under the similar excitation parameters as our previous

system in order to compare its relative performance. In [22], our previous system produced

a transfection efficiency of 6(±2)% with a cell detachment rate of -47(±32)% using similar

excitation parameters, plasmid, and cell line. At 37°C, the system presented here was able

to achieve a transfection rate of 5.4(±0.92)% with a cell detachment rate of -31(±3.4)%.

The rates seen here are slightly lower than those seen with our previous system. As

permeabilization has been noted to be dependent on the acoustic pressure [12,18], a lower
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rate of permeabilization may be due to the use of 0.7 MPa here which is lower than the

1 MPa used in [22].

To the best of our knowledge, there are no other groups performing sonoporation on

SiHa cells in particular. Furthermore, the acoustic excitation parameters, acoustic condi-

tions, and impermeable agent used vary across the literature, making comparisons between

different studies difficult. There are a number of studies on adherent cell cultures which

exhibit similar rates of transfection albeit under different acoustic and experimental con-

ditions. For example, in [15], sonoporation using 1 MHz pulsed ultrasound was examined

under a number of different excitation parameters using a near-field set-up. The authors

found that sonoporation at their optimal parameters (1 MHz, 0.25 MPa peak-negative

pressure, 4% duty cycle, 1 kHz PRF, 10 s exposure, 4% SonoVue UCA concentration)

was able to deliver plasmid DNA at a rate of ∼4% to Chinese hamster ovary (CHO) cells

with ∼90% cell viability.

3.4.2 Cell detachment

The presence of UCA during ultrasound exposure not only had a significant effect on

permeability but it also appeared to have a significant effect on cell detachment. There

have been a number of reports of high levels of cell detachment among the same order

as seen here [15, 25, 62]. The level of cell detachment due to ultrasound exposure alone

(US group) was on the same order as the sham treatment (UCA group) at 37°C. Since

the US+UCA group had significantly higher cell detachment over US alone and UCA

alone, microbubble cavitation may be facilitating cell detachment. In [63], high-pressure

shock waves were used to induce cavitation in an adherent cell culture. Using high-speed

imaging, the authors found that cell detachment only occurred when cavitation activity

was present. The reason for this, they suggested, was that the flow due to the cavitating

bubble near the rigid substrate generated a shear force large enough to remove the cells

from the substrate. Though the rarefactional pressure of the shock waves in [63] was large

enough to induce cavitation without UCA present, a similar effect may have occurred at

a lower pressure amplitude here due to the presence of the UCA.

3.4.3 Effects of temperature

The preliminary study of temperature on sonoporation efficacy resulted in no observ-

able, significant, net-positive effect under our experimental conditions with increased bath
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temperature. There are many actors involved in the sonoporation process which have

temperature-dependent qualities which, together, may affect its efficacy. For instance,

the cavitation of microbubbles is an important factor. Microbubble properties such as

size distribution and stability have been shown to be affected by temperature [56, 57].

In [57], the mean microbubble diameter for SonoVue UCA (phospholipid-shell) was seen

to increase with temperature and, after a few minutes, dropped abruptly. The growth of

the microbubbles was thought to be occurring due to the gas expansion of the bubbles as

well as the reduced surface tension of the shell. The phase transition temperature of the

shell of SonoVue UCA has been noted to be around 40°C [56]. The decreasing stability

with time was attributed to the possibility of a phase change of the shell since a similar

drop was not observed at 37°C. Though the UCA used here (Definity) is not identical,

there may be similarities in its temperature-dependent behaviour. That is, the higher

temperatures may have affected both the microbubble size and stability of the Defin-

ity UCA during treatment. Here, the total treatment time was 7 minutes whereas the

abrupt drop in SonoVue population observed in [57] occurred around 6 minutes. It may

be the case that during the sequential insonations that the properties of the microbubbles

changed between the exposures, affecting the average per-replicate transfection efficiency

and cell detachment at the elevated temperatures.

Temperature-dependent qualities of the cell membrane such as membrane fluidity have

been seen to affect sonoporation efficacy as well. In [44], prostate cancer-derived PC-3 cells

treated with a heat treatment (44°C, 1-minute equalization) showed a 15-fold increase in

the rate of permeability from sonoporation treatment over 37°C. This is in contrast to the

effect observed here. The authors attributed the increase in permeability to an increase in

membrane fluidity as the effect was similar to lidocaine treatment, a substance known to

increase membrane fluidity. The effect of temporal microbubble size and stability in [44]

was likely minimal due to the short per-replicate insonations (1 minute).

Lastly, the magnitude and homogeneity of the acoustic field may have been affected

at the fixed treatment distance due to a change in the speed of sound of the water bath

at higher temperatures. Due to the device’s operation in the near-field region, this effect

would likely be more pronounced than if the treatment distances were closer to the near-

far field transition distance. However, the change in speed of sound due to temperature

from 37°C to 42°C is a relatively small change, approximately 0.53% (1524 m/s v. 1532

m/s [64]).

In order to come to a conclusion on the effect of temperature on sonoporation efficacy
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on SiHa cells, these many factors must be subject of future study.

3.5 Conclusion

The sonoporation platform was observed to be effective at inducing permeability of SiHa

cells at a similar rate to the previous system. The previous system took roughly a half-day

to set-up for experiments (3 to 4 hours). During this study, this new system took on the

order of a half-hour to 1 hour, dominated mainly on the bath treatment time (heating

and degassing). While the operator was not required to manage the acoustic conditions

at the start of each experiment day, the management of the general-purpose electrical

equipment was still required.
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Chapter 4

Power Drivers

4.1 Rationale

The proposed sonoporation device was designed to have six transducers which were to

be operated automatically. However, standard lab equipment (waveform generators and

amplifiers) typically have a single output. This limits the device to being operated in a

sequential manner. In this case, both the operating transducer and the excitation parame-

ters need to be manually switched between insonations by the operator. It would be ideal

to have an ultrasound excitation device which could support up to six independently-

controlled concurrent excitations. This chapter explores the possibilities for power output

stages for such an electrical driver and the design and simulation of this power output

stage.

4.2 Design Requirements

The electrical output power required to produce the desired acoustic pressure was previ-

ously determined for each transducer at its optimal treatment distance. The maximum

observed output power (123 W) served as a basis for designing power drivers for the

transducer array. The required output power was taken to be 150 W to provide addi-

tional margins for safety, reliability, and flexibility.

A summary of the electrical and acoustic requirements are listed in Table 4.1.
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Center operating frequency 1 MHz
Bandwidth (unspecified)
Output load 50 Ω (f = 1 MHz)
Maximum output power 150 W (C.W.)

Table 4.1: Power output stage requirements for ultrasound excitation device.

4.3 Amplifier Topologies

There are many varieties of power amplifiers (also referred to as power inverters) [65–67].

The two types discussed here are current-mode and switch-mode amplifiers. Both of these

types of amplifier use transistors to convert a low-power signal into a high-power signal.

They differ, however, in their use of transistor(s).

Current-mode amplifier topologies use transistors as controlled current sources [65,67].

These amplifiers are classified based on the portion of the waveform cycle during which

the transistor conducts, referred to in general terms as the conduction angle, θ. Class A

refer to those amplifiers whose transistors conduct during the entire waveform cycle (i.e.,

θ = 2π), Class B refer to those which conduct during a half the cycle (θ = π), and Class

C refer to those which conduct during less than half the cycle (θ < π). Class AB refers

to those amplifiers whose transistors conduct between a half (Class B) and a full (Class

A) waveform cycle (π < θ < 2π) [65, 67].

Switch-mode amplifiers topologies use transistors as switches, either non-conducting

(off) or fully conducting (on) [65, 67]. As a consequence, switch-mode amplifiers are

classified based on topology and operating principle rather than conduction angle [65].

Class D, for example, refers to an amplifier with transistors which are switched on and

off in alternating intervals in order to convert a DC voltage (or current) into a square

AC voltage (or current) waveform [65,67]. The harmonic content of this waveform can be

filtered by a resonant network at the amplifier output in order to produce a sinusoidal out-

put. Class E is another type of switching amplifier which employs zero-voltage switching

(ZVS) and zero-derivative switching (ZDS) conditions [65, 67]. These conditions ensure

that the switch voltage and switch current waveforms are non-overlapping, yielding zero

power dissipation and zero switching loss in the transistors for a theoretical efficiency of

100% [65,67]. Class DE amplifiers refer to those which combine typical Class D topologies

(e.g. half-bridge) with Class E ZVS and ZDS conditions to reduce switching and drain

power losses [65, 67].

Class A amplifiers can be highly linear, similar to a small signal amplifier, amplifying
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Class Mode Max. Efficiency Notes

A Current-mode 50% Low distortion
θ = 2π

B Current-mode 78.5% Cross-over distortion
θ = π

AB Current-mode 78.5% π < θ < 2π

C Current-mode 50-100% Non-linear
θ < π

ηmax = 100%, θ = 0
ηmax = 50%, θ = π

D Switch-mode 100% Inductive load preferred
High-side switching

E Switch-mode 100% ZVS and ZDS conditions
Single switch (low-side)

DE Switch-mode 100% ZVS and ZDS conditions
High-side switching

F Switch-mode 100% Multiple resonators
Complex circuit/analysis

Table 4.2: A summary of power output stage (amplifier) classes [65,67].

an input signal with little distortion [65]. However, Class A suffer from very low practical

efficiencies (e.g. 40-45% [65]). The input signal of switch-mode amplifiers, on the other

hand, are treated as a timing signal rather than a small signal needing to be amplified

undistorted [67]. As a result, switch-mode amplifiers have higher practical efficiencies but

suffer from non-linearity [65,67]. A summary of different classes of amplifiers is provided

in Table 4.2.

4.4 Candidate Amplifier Topology

Class DE half-bridge topology was considered for this application (Fig. 4.1) [67]. The

ultrasound driver to be designed is required to provide a high-power sinusoidal signal of a

single frequency. Switch-mode amplifiers are an efficient way to fulfill these requirements.

Class DE amplifiers provide lower voltage stresses on the transistors than Class E while

providing the same ZVS and ZDS switching conditions. The benefits of Class DE over
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the Class E come at the expense of added switching complexity and a high-side N-channel

MOSFET which is more difficult to drive [67]. An efficient amplifier reduces the size and

cooling requirements, potentially allowing for multiple drivers to be in a smaller device.

While current-mode amplifiers provide better linearity over switch-mode amplifiers,

linearity is important for applications such as ultrasound imaging, where a signal needs

to be amplified with minimal distortion. Linearity is less important in this application as

long as the output power can effectively be controlled.

4.5 Amplifier Design

4.5.1 Design Equations

The design for the Class DE amplifier was adopted from [65] and [67]. The amplifier

topology is shown in Fig. 4.1 and the design equations for a 25% duty cycle are sum-

marized in Tables 4.3 and 4.4. A detailed derivation of these equations is available in

Appendix A.
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Figure 4.1: Class DE half-bridge power amplifier topology [67].

4.5.2 Output Quality Factor

The quality factor of the output network, QL, must be chosen during design to yield prac-

tical component values. One of the design requirements was to support pulsed operation,

hence, a relatively low QL should be chosen to reduce oscillation and additional power
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Load resistance Ro =
V 2
I

2π2Po
(4.1)

Shunt capacitors Cm =
1

2πωRo

(4.2)

Output inductance L =
QLRo

ω
(4.3)

Output capacitance C =
1

ωRo(QL − π
2
)

(4.4)

Table 4.3: Component value equations for a Class DE half-bridge amplifier, k = 0.25 [67].

Maximum drain current IDM(max) = Im(max) =
Vm
R

=
VI
πRo

(4.5)

Maximum drain-source voltage VDS(max) = VI (4.6)

Maximum voltage across series capacitor VC(max) =
Im(max)

ωC
(4.7)

Maximum voltage across series inductor VL(max) = ωLIm(max) (4.8)

Table 4.4: Device stress equations for a Class DE half-bridge amplifier, k = 0.25 [67].

being transferred to the load after each pulse. However, the ability for the output network

to filter higher harmonics decreases (i.e. the bandwidth increases) with decreasing quality

factor as given by

QL =
fc

∆f
(4.9)

where ∆f is the bandwidth of the output network and fc is its resonant frequency [52]. As

QL decreases, the shape of the output current waveform becomes less sinusoidal and more

exponential, increasing the total harmonic distortion (THD) [67]. Therefore, the choice

of QL was made qualitatively and iteratively during simulation as a trade-off between

damping oscillations and the resulting harmonic power, with transient damping taking

precedence.

4.5.3 Output Impedance Transformation

The switching frequency, output power, and output load resistance have been given to

be 1 MHz, 150 W, and 50 Ω respectively. However, using these values with the design

equations in Table 4.3 may not necessarily yield a practical solution. For example, the
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DC supply voltage becomes 384.7 VDC using (4.1) and the requirements above. Instead,

the DC supply voltage was made a design parameter, yielding an output load resistance

different from that of 50 Ω. From this, an impedance transformation can be applied to

the output RLC network such that a 50 Ω load appears as the calculated design load,

Ro [52, 65,67].

Ca
L

Cs

Rs

Ca
L

RpCp

Zeq Zeq

Figure 4.2: Downward split-capacitor impedance transformation. The impedance (Zeq)
for the sections containing Cs-Rs and Cp-Rp can be made equal for a given frequency
(Rp > Rs).

For example, a split-capacitor downward impedance transformation can be applied

[67]. Here, one can take the series capacitor C and split it in two series capacitances Ca

and Cs (Fig. 4.2). Equating the impedances of the resulting series Cs-Rs section to a

parallel Cp-Rp combination yields expressions which can be used to transform the desired

load resistance Rp = 50 Ω into the resultant design load resistance Ro = Rs at the center

operating frequency:

Zs = Zp (4.10)

Rs + jXCs =
Rp(jXCp)

Rp + jXCp

(4.11)

Rs + jXCs =
Rp(jXCp)

Rp + jXCp

(
Rp − jXCp

Rp − jXCp

)
(4.12)

Rs + jXCs =
RpX

2
Cp

R2
p +X2

Cp

+ j
R2
pXCp

R2
p +X2

Cp

. (4.13)

If the “quality” of the series and parallel RC combinations is defined as

q =
XCs

Rs

=
Rp

XCp

(4.14)
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then the real and imaginary parts of (4.13) simplify to

Rs =
Rp

1 +
(

Rp
XCp

)2 =
Rp

1 + q2
(4.15)

and

XCs =
XCp

1 +
(
XCp
Rp

)2 =
XCp

1 + q−2
. (4.16)

The value of q can also described in terms of Rs and Rp by rearranging (4.15):

q =

√
Rp

Rs

− 1 . (4.17)

Note that for q to be a real, Rp > Rs. Additionally, given a desired Rp and a design value

of Rs, the ratio Rp/Rs is defined and, hence, q is defined.

The series capacitance Ca can be determined from (4.14):

1

Ca
=

1

C
− 1

Cs
(4.18)

1

Ca
= ωRs

(
QL −

π

2

)
− qωRs (4.19)

1

Ca
= ωRs

(
QL − q −

π

2

)
(4.20)

Ca =
1

ωRs

(
QL − q − π

2

) (4.21)

Note that the defined value for q raises the minimum design value of QL.

Since the impedance of the parallel Cp-Rp combination is equal to that of the series

Cs-Rs combination, the voltage across both are equal for the same output current io:

vRp = ioZs (4.22)

The voltage and current stresses in the parallel network can be found using the output

peak current Im(max):

VRp(max) = Im(max)|Zs| (4.23)

IRp(max) =
VRp(max)

Rp

(4.24)

ICp(max) =
VRp(max)

|XCp|
(4.25)
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4.5.4 Analysis

Let Po = 150 W, VI = 96 V, f = 1 MHz, Rp = 50 Ω, and QL = 8.

Component Values

Rs =
V 2
I

2π2Po
=

(96 V)2

2π2(150 W)
= 3.11 Ω (4.26)

Cm =
1

2πωRs

=
1

2π(2π(1 MHz))(3.11 Ω)
= 8.14 nF (4.27)

L =
QLRs

ω
=

8(3.11 Ω)

2π(1 MHz)
= 3.96 µH (4.28)

q =

√
Rp

Rs

− 1 =

√
50 Ω

3.11 Ω
− 1 = 3.88 (4.29)

Cp =
q

ωRp

=
3.88

2π(1 MHz)(50 Ω)
= 12.4 nF (4.30)

Ca =
1

ωRs(QL − q − π
2
)

=
1

(2π(1 MHz))(3.11 Ω)(8− 3.88− π
2
)

= 20.1 nF (4.31)

Cs =
1

qωRs

=
1

3.88(2π(1 MHz))(3.11 Ω)
= 13.2 nF (4.32)

Device Stresses

IDM(max) = Im(max) =
VI
πRs

=
96 V

π(3.11 Ω)
= 9.82 A (4.33)
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VDS(max) = VI = 96 V (4.34)

VCa(max) =
Im(max)

ωCa
=

9.82 A

2π(1 MHz)(20.1 nF)
= 77.8 V (4.35)

VL(max) = ωLIm(max) = 2π(1 MHz)(3.96 µH)(9.82 A) = 244 V (4.36)

VRp(max) = Im(max)

√
Rs

2 +

(
1

ωCs

)2

= (9.82 A)

√
(3.11 Ω)2 +

[
1

2π(1 MHz)(13.2 nF)

]2

= 122 V (4.37)

IRp(max) =
VRp(max)

Rp

=
122 V

50 Ω
= 2.44 A (4.38)

ICp(max) =
VRp(max)

XCp

= VRp(max)(ωCp)

= (122 V) (2π(1 MHz)(12.4 nF))

= 9.51 A (4.39)

4.6 Simulation

4.6.1 Components and SPICE Models

The amplifier was simulated using LTSpice (v4.20h; Linear Technology Corporation).

Some component models were chosen for the simulation at this stage based on the re-
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quirements and analytically determined maximum stresses above.

Switching Components

IRFB5620 (International Rectifier) N-channel MOSFETs were chosen for the switching

components. These MOSFETs are rated for a maximum drain-source voltage of 200 V,

much higher than the maximum computed stress VDS(max) = VI = 96 V. The output

capacitance of the MOSFETs (Co) limit the maximum switching frequency of the amplifier

[67]. The output capacitance is determined by

Co = CDS = COSS − CRSS (4.40)

where CDS is the drain-source (output) capacitance, and COSS and CRSS are values pro-

vided by the manufacturer [66]. For the IRFB5620, Co = CDS ≈ 108 pF, thus, the

maximum switching frequency is

fmax =
1

4π2RsCo
=

1

4π2(3.11Ω)(108 pF)
= 75.4 MHz . (4.41)

This frequency is well above the operating frequency, f = 1 MHz.

The rated continuous drain current is 25 A at 25 °C and 18 A at 100 °C, well above

IDM(max) = 9.8 A. The reverse-diode current rating is 25 A, or 100 A for short pulses

(the width depending on the junction temperature).

This MOSFET appears to be within the specifications for the amplifier. The SPICE

model for this MOSFET was provided by the manufacturer and used for simulation.

Gate Drivers

SPICE voltage sources were used to simulate gate drivers. These voltage sources were

set-up to deliver a “square” waveform at 1 MHz with 20 ns rise and fall times. These

drivers were given output resistances of 100 mΩ.

Passive Components

Passive components were simulated using the default SPICE models. The reactive compo-

nents were given equivalent series resistances of 100 mΩ, an estimate for ceramic capacitors

and hand-wound inductors.
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Figure 4.3: LTSpice schematic for the Class DE amplifier with a 50 Ω resistive load:
f = 1 MHz, Po = 150 W, and QL = 8.

DC Supply

The DC supply voltage was simulated using a SPICE constant voltage source. The output

resistance of the source was 100 mΩ, lower than the input resistance of the amplifier, in

order to produce a relatively constant supply voltage VI = 96 V during the simulation.

4.6.2 Measurements

Initial simulations were performed using a resistive 50 Ω load (Fig. 4.3). The pulsed

operation of the device (30 cycles at 1 MHz) was used to evaluate the transient behaviour

at the beginning and end of the pulse. The average input power, output power, drain

power, and gate (drive) power, drain efficiency, efficiency, power-added efficiency, gate

drive gain, and total harmonic distortion were each determined over 10 cycles in the
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centre of the pulse as an estimate of their steady-state values. The maximum time step

was set to 10 ns and the operation was simulated for 100 µs.

4.6.3 Adjustments

The MOSFET output capacitance was subtracted from the ideal switch shunt capacitors

Cm. While the datasheet provided a value for this capacitance, an alternative value of

Co = 1.02 nF was found by trail and error. The value of this capacitance was adjusted

in order to minimize the drain-source voltage and resultant spike in drain current at

the moment of switch-on (Fig. 4.4b). (That is to say, equivalently, that the design

value Cm was reduced to produce the desired effect.) As a result, the drain-source shunt

capacitances values became Cm = 8.14 nF − 1.02 nF = 7.12 nF. The large spikes in

current (of nearly 100 A) still remain at the beginning of the pulse due to the non-

zero DC voltage across the transistors during the transient start-up from rest. Taking

Co = 1.02 nF reduces the maximum switching frequency of the amplifier to 7.99 MHz,

still well above the 1 MHz design switching frequency.

4.6.4 Results

The results of the transient simulation of the circuit in Fig. 4.3 are summarized in Table

4.5. The average output power was 139 W, lower than the anticipated design value of

150 W. The average input DC power was 149 W. The average drain powers were 800 mW

for both MOSFETs. Thus, the drain efficiency, given by

ηD =

(
1− PD1 + PD2

Po

)
(4.42)

was 98.9% for the measured interval. The average gate drive power was 371 mW and

372 mW for M1 and M2 respectively. The power gain, given by

GdB = 10 log10

(
Po

PG1 + PG2

)
(4.43)

was 22.7 dB. The amplifier efficiency given by

η =
Po
PI

(4.44)
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was 89.8% and the power added efficiency, which accounts for the input gate drive power,

given by

PAE =
Po − (PG1 + PG2)

PI

(4.45)

was 89.3%.
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Figure 4.5: The relative power (dB) of the frequency components of the output voltage
waveform with a resistive 50 Ω load (fc = 1 MHz). The power of the 3rd and 5th
harmonics are -43.2 dB and -71.0 dB respectively.

The total harmonic distortion (THD) of the output voltage over this interval was

33.7%. The 3rd and 5th harmonic powers were -43.2 dB and -71.0 dB respectively (Fig

4.5). A DC component of 3.10 µV was present as well. The THD of the output voltage

could be improved by increasing the quality factor of the output RLC network (QL) at

the expense of slower transients at the start and end of the pulse.

Transients

Ideally, transients at the start and end of the pulse would not exist for a pulsed application.

This would allow the device to deliver a exact number of cycles per pulse. However, due

to the use of reactive components and the high quality factor of the output filter (under-

damped), transients will be present. The resulting output voltage waveform for a single

pulse is plotted in Fig. 4.4d. At the start of the pulse, the envelope of the output voltage

takes less than one cycle to reach 63.2% of the maximum of 118.8 V (i.e., the rise time)
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and about 6-7 cycles to reach the maximum. At the end of the pulse, the envelope of the

output voltage takes about 3-4 cycles to fall below 37.8% of the maximum (i.e., the fall

time) and about 18 cycles to fall below 0.1%.

These transient periods are relatively small with respect to the duty cycle. The rise

time is less than 3.33% of the pulse length (30 µs) and the fall time is less than 0.68% of

the dead time (595 µs).

4.7 Transducer Electrical Model

C0

Ls,1

Cs,1

Rs,1

Ls,3

Cs,3

Rs,3

Ls,5

Cs,5

Rs,5

Ls,n

Cs,n

Rs,n

...

Figure 4.6: Butterworth-Van Dyke electrical model of a piezoelectric transducer.

The simulations in the previous section were repeated, replacing the resistive 50 Ω

load with a model of the transducer. The model used here was the Butterworth-Van Dyke

(BvD) model (Fig. 4.6) [47, 68, 69]. This model is comprised of an electrical capacitance

(C0) in parallel with multiple series resonant branches. Each series resonant branch models

the mechanical oscillation of the piezoelectric element at each odd harmonic. A series

resonant frequency (ωs,n = 2πfs,n) and a parallel (anti-)resonant frequency (ωp,n = 2πfp,n)

exists for each branch, n. At fs,n, the series branch inductance and capacitance cancel

out, leaving the series branch resistance (Rs,n) in parallel with the static capacitance (C0).

The frequency, fs,n can be found when the real part of the measured admittance is at

local maximum (Fig. 4.7) [47]. Similarly, at fp,n, the real part of the impedance is at

local maximum [47]. The model values can be determined using the following equations
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Figure 4.7: The measured impedance (top) and admittance (bottom) for a transducer
from 0.5 MHz to 2 MHz. The series resonant frequency fs occurs on this range where
the real part of the admittance is at a maximum. The parallel (anti-)resonant frequency
fp where the real part of the impedance is at a maximum. Here, fs ≈ 0.995 MHz and
fp ≈ 1.09 MHz.
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Figure 4.8: The resultant Butterworth-Van Dyke model with input inductance and com-
ponent values determined up to the 5th harmonic.

[47,68,69]:

C0 =
Im{Ys,n}
ωs,n

(4.46)

Rs,n =
1

Re{Ys,n}
(4.47)

Cs,n = C0

[(
fp,n
fs,n

)
− 1

]
(4.48)

Ls,n =
1

ω2
s,nCs,n

(4.49)

where Rs,n, Cs,n and Ls,n are the series resonant branch resistance, capacitance, and

inductance respectively, and Ys,n is the total admittance of the model at the series resonant

frequency of the nth branch (ωs,n = 2πfs,n). Upon identifying fs,1, fp,1 and Ys,1, C0 can

be calculated from (4.46). The values Rs,1, Cs,1, and Ls,1 can be determined once C0 is

found using (4.47), (4.48), and (4.49). For additional branches, the same value for C0 can

be used, however, fs,n, fp,n and their corresponding impedances will differ.

4.7.1 Measurements and Computations

Model Modifications

Values for the electrical model were computed from impedance measurements made for one

of the six transducers in a water bath at a temperature of 37°C. The measurements were
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Figure 4.9: The impedance of the model (thin, black) against the measured impedance
(thick, grey) showing good agreement over 0.5 MHz to 6 MHz.

made using an Agilent E5071C network analyser (Agilent Technologies Canada Inc., Mis-

sissauga, ON, Canada). The measured impedance included that of the cable in addition

to the piezoelectric element. In order to fit the BvD model to the measured impedance,

the cable was modelled as an inductive impedance in series with the BvD model and was

subtracted from the measured values prior to computing the model.

The value of the input inductance was iteratively adjusted to achieve the best fit to

the measured data at high frequencies. The optimal input inductance was found to be

750 nH. The modified model and its values are shown in Fig. 4.8. The impedance of the

model is plotted against the measured impedance in Fig. 4.9.

Matching Circuit

In practice, the transducers are electrically matched to 50 Ω at 1 MHz using an L-type

(2-element) matching network. The impedance of the transducer model at 1 MHz was

Z = 48.2 − j8.57 Ω. A low-pass L-type matching network was computed and added to

the simulation.
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From Section 2.5, the condition for matching is

Z∗A = Z1 + Z2‖ZB (4.50)

RA − jXA = jX1 +

(
jB2 +

1

RB + jXB

)−1

(4.51)

and, by letting X = X1 +XA, the solution for X and B2 is

B2 =
XB

|ZB|2
±
√
RB

RA

√
|ZB|2 −RARB

|ZB|2
(4.52)

X = X1 +XA =
1

B2

+
RA

RB

(
XB −

1

B2

)
. (4.53)

For the transducer model impedance ZA = 48.2− j8.57 Ω and a source impedance ZB =

50 Ω,

B2 =
0 Ω

(50 Ω)2
±
√

50 Ω

48.2 Ω

√
(50 Ω)2 − (50 Ω)(48.2 Ω)

(50 Ω)2

= {−0.00386,+0.00386} S (4.54)

and

X1 = X −XA = ± 1

0.00386
Ω +

48.2 Ω

50 Ω

(
0 Ω∓ 1

0.00386
Ω

)
− (−8.57 Ω)

= {−0.756, 17.9} Ω . (4.55)

Choosing B2 = +0.00386 S (and correspondingly X1 = 17.9 Ω), the component values for

the matching circuit become

L =
X1

ω
=

17.9 Ω

2π(1 MHz)
= 2.85 µH (4.56)

and

C =
B2

ω
=

0.00386 S

2π(1 MHz)
= 615 pF . (4.57)

4.7.2 Simulation

The modified LTSpice circuit is shown in Fig. 4.10. This circuit differs from the resistive

case (Fig. 4.3) only in that the 50 Ω resistive load is replaced with a two-element matching

circuit and a BvD model subcircuit component. The simulation parameters were otherwise
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Figure 4.10: LTSpice schematic for Class DE amplifier with transducer model and L-type,
low-pass matching circuit.

identical to the resistive case described above.

4.7.3 Results

The results of the transient simulations using the BvD model are summarized in Table

4.5. The average output power was 134 W, about 5 W lower than the resistive case. The

average input DC power remained 149 W. Hence, the overall efficiency was 89.5%, a drop

of 0.3% over the resistive case. The average drain powers were 805 mW and 810 mW for

M1 and M2 respectively, a 5-10 mW increase over the resistive case. Nevertheless, the

drain efficiency remained at 98.8%. The average gate drive powers were 363 mW and

364 mW for M1 and M2 respectively. The resultant gain was 22.6 dB, a drop of 0.1 dB

over the resistive case. The power added efficiency was 89.0%, a drop in 0.3%.

The THD due to the transducer model was slightly better at 27.9%, a decrease of 5.8%

over the resistive case. The third and fifth harmonic powers were -43.2 dB (an increase

of 1.4 dB) and -71.7 dB (a decrease of 0.9 dB) respectively (Fig. 4.11). A DC component

of -160 mV was present as well.
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Figure 4.11: The relative power (dB) of the frequency components of the output voltage
waveform using the transducer model (fc = 1 MHz). The power of the 3rd and 5th
harmonics are -43.2 dB and -71.7 dB respectively.
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Quantity 50 Ω BvD ∆abs ∆rel

Input power (PI) - 149 W 149 W 0 W ±0%

Output power (Po) - 139 W 134 W -5 W -3.60%

Gate drive power (PG) M1 371 mW 363 mW -8 mW -2.15%
M2 372 mW 364 mW -8 mW -2.15%

Drain power (PD) M1 800 mW 805 mW +5 mW +0.625%
M2 800 mW 810 mW +10 mW +1.25%

Gate power gain (GdB) - 22.7 dB 22.6 dB -0.1 dB -1.43%

Drain efficiency (ηD) - 98.9% 98.8% -0.1% -0.101%

Efficiency (η) - 89.8% 89.5% -0.3% -0.334%

Power-added efficiency (PAE) - 89.3% 89.0% -0.3% -0.336 %

Total harmonic distortion - 33.7% 27.9% -5.8% -17.2%
DC 3.10 µV -0.16 V ∼ -0.16 V 5.16× 106%

3rd harmonic -44.6 dB -43.2 dB +1.4 dB +3.14%
5th harmonic -70.8 dB -71.7 dB -0.9 dB -1.27%

Pulse rise-time 63.2% 1 cycles 2 cycles +1 cycle +100%

Pulse fall-time 37.8% 4 cycles 8 cycles +4 cycles +100%
0.1% 19 cycles 86 cycles +67 cycles +352%

Table 4.5: LTSpice simulation results showing measured quantities for the 50 Ω case, the transducer model (BvD) case,
and the absolute and relative changes when using the transducer model.
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The transients at the output at the start and end of the pulse differed greatly from

those in the resistive case (Fig. 4.12). The start-up transient was much less damped. The

first peak of the output voltage occurs after 2 cycles but swings back down below 100 V

on the 5th cycle before rising again (Fig. 4.12a). The fall time after the pulse extends well

beyond that of the resistive case. The envelope of the waveform falls below 37.7% after

approximately 7-8 cycles, compared to 3-4 in the resistive case.

4.7.4 Discussion

Transducer Damping

The quality factor of the transducer model is fairly high. For example, the quality factor

of the fundamental branch is

Qs,1 =
XLs,1

Rs,1

=
ωs,1Ls,1
Rs,1

=
2π(0.995 MHz)(111µH)

50.9 Ω
= 13.6 . (4.58)

The Q of this branch is much higher than that of the output network of the amplifier

(Q = 8). Thus, between the two, the one with the larger Q (i.e., the transducer) will

dictate how long the voltage will oscillate after each pulse [52]. If the amount of ringing

is satisfactory, then it is possible to redesign the amplifier with an output network with

a quality factor closer to that of the transducer without it affecting too much the output

waveform, possibly improving the THD. If not, it may be necessary to provide damping

to the piezoelectric crystal. This can be done either by adding a backing or matching

layer into the transducer design, which will dampen the mechanical oscillation, or by

electrically loading the piezoelectric element [47,48]. Both may be worth exploring as an

option in the future.

Switching Conditions

The voltages across the switching components were affected by the use of the BvD model

over the 50 Ω resistive load. Like the resistive case, the drain-source voltage across the

lower switching component was high at the beginning of the pulse due to the rest state

of the amplifier at the start of the pulse, but nears zero after only a few cycles (Fig.

4.10b). However, unlike the resistive case, a negative drain current develops for the low-

side MOSFET after only a few cycles, just prior to the turn-on of the device (Fig. 4.10c).

This negative current may be due to the body diode of the MOSFET is turning on as the

voltage at the input of the RLC resonant network (i.e., the drain-source voltage) may be
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dropping below 0 V (Fig. 4.12b). While this diode clamps the voltage at one diode drop

below 0 V, the large reverse current may shorten the life of the switching component. In

the resistive case, the values for the shunt capacitors were adjusted to minimize the spike

in current at turn-on of the MOSFETs. It may be possible to reduce the negative drain

current at turn-on in the same manner. Other tuning strategies are available for Class

DE amplifiers as well, one of which controls the phase of the output voltage and current

waveforms by adjusting the output RLC network and duty cycle [65, 69].
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Chapter 5

Future Work

The goal of this project was to build a system to reduce the time and expertise required

to perform sonoporation on adherent cells in monolayer. In addition to platform (Chapter

2) and the power driver (Chapter 4), the vision for this system included driving circuitry,

output power control, water treatment, and experimental control. Hence, there remain a

number of components of the system that can be considered for future work.

5.1 Power Control

The next stages of work for the power driver are the design of the input DC power and

power control circuitry (Fig. 5.1). In order to expose cells at a given pressure, the

electrical power delivered to each transducer needs to be controlled. The electrical output

power of the Class DE drivers can be controlled directly by controlling the DC supply

Name Typ. Power Notes

Buck <100 W Regulator
Boost <100 W Regulator
Buck-boost <100 W Regulator

Flyback 100-200 W Converter; transformer
Forward 100-200 W Converter; transformer
Half-bridge 200-400 W Converter; complex switching
Full-bridge >400 W Converter; complex switching

Table 5.1: A summary of DC-DC converter topologies [70].
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Figure 5.1: A block diagram illustrating an ultrasound power driver, including the power
supply and power control configuration.

voltage [67] as given by:

Po =
V 2
I

2π2Ro

. (5.1)

To control the DC supply voltage, it will be necessary to design and build a power regula-

tor, such as a DC-DC power converter [71–73]. It may be sufficient to monitor and control

the DC supply voltage, thereby affecting the output power, rather than monitoring and

controlling the output power directly. However, the required DC supply voltage to get a

desired output power needs to be calibrated at some time before experiments, requiring a

sense of the output power. A brief summary of possible DC-DC regulators and converters

was compiled from [70] and is available in Table 5.1.

5.2 Experimental Control

An experimental controller can be made to provide an easy-to-use user interface to the

system for setting up experimental parameters, automate as much of the experiment and

set-up as possible by communicating with the different system components, log experi-

mental parameters and error messages, and display information, warnings, or errors to

the user.
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The experimental parameters that are not strictly fixed (but may have hardware limits)

are bath temperature, pulse duration, pulse repetition frequency, and output electrical

power. These parameters could potentially be configured by the user in a well-integrated

system. Additionally, acoustic parameters can potentially be specified on a per-transducer

basis if, for example, the user wanted to expose different sections of the cell culture to

different acoustic parameters. This operation would have the benefit of allowing one to

produce multiple biological replicates under a variety of acoustic conditions rather than

multiple “pseudo-replicates” exposed under a single set of conditions, while maintaining

the same material requirements.

The most hardware-dependent parameter of the system is the ultrasound operating

frequency. The piezoelectric elements of the transducers were cut for a specific operating

frequency. To change the operating frequency, the transducers may need to be redesigned

with different piezoelectric elements or may be driven at their odd harmonics. The ampli-

fier and matching circuits were designed to both operate at a single switching frequency

and the output of the amplifier is designed to minimize much of the harmonic content

of the output. Thus, to change the operating frequency of the system would require re-

peating much of the work presented here, for the new frequency, or designing broadband

electrical components.

5.3 Water Treatment

Water treatment, such as degassing and heating, could be integrated into the experimen-

tal control or left as separate systems. Commercial degassing options include Liqui-Cel

(Membrana-Charlotte, Charlotte, NC, USA) and PermSelect (PermSelect, Ann Arbor,

MI, USA). Commercial bath-heating options are available as well, including those avail-

able from PolyScience (PolyScience, Niles, IL, USA).

5.4 Transducer Damping for Pulsed Operation

The quality factor of the transducer model at 1 MHz was fairly high (13.6). This poses a

problem when operating pulsed mode [48] since the transducer will continue to oscillate

after excitation, affecting both the operation of the power driver as well as the acous-

tic exposure during sonoporation treatments. Taking a more detailed approach to the

transducer design may be part of some future work. Broadening the frequency response
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of piezoelectric elements (i.e., improving pulsed operation) has been performed both me-

chanically, by adding quarter-wave-length matching layers to the front-side of air-backed

transducers [74], and electrically, using lumped broad-band equalizer circuits [75,76]. Ad-

ditional information on broadband transducers for imaging and their design are available

from [47] and [77].

5.5 Near-focus Operation

The acoustic near-field was chosen as the operating region for the sonoporation platform

in order to reduce the height of the device. However, this need was based on the choice

of a 20 mm diameter piezoelectric element – a choice which resulted from consultation

with the manufacturer based on the acoustic requirements. It may be possible to achieve

a similar treatment distance (i.e., device height) with elements of half the size (10 mm

in diameter). The near-far field transition distance for such an ideal device would be

approximately 16.6 mm. The benefits of pursuing this design change include wider, more

homogeneous exposure zones and the possibility of more devices (i.e., an overall greater

exposure area).
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Appendix A

Modes of Operation of a Half-Bridge

Class DE Switch-Mode Amplifier

A.1 Circuit Description

The Class DE amplifier described in [67] is a half-bridge topology (Fig. A.1). The two

switching components are driven to saturation in an alternating fashion where the top

device is switched on at ωt = 0, the bottom device is switched on at ωt = π, and each

device is on no longer than half the period (k = ∆ωt
2π

< 0.5). Hence, there exists a dead-

time between each device switching off and the next switching on where two switch-shunt

capacitors charge or discharge, both supplying the output current and shaping the voltages

across the switching components. The design of the amplifier is such that the zero-

voltage switching (ZVS) and zero-derivative switching (ZDS) conditions are satisfied at

the time of turn-on of each switching device. The output consists of a tuned RLC network

of sufficiently high quality-factor, such that the output current waveform is assumed

sinusoidal. Here, the design equations are derived for the case of k = 0.25 (equal switching

and dead-times) [67].

A.2 Assumptions

1. All switches are assumed ideal, having zero switching times, zero on-state resistance,

and infinite off-state resistance.

2. The quality factor of the output RLC network QL is sufficiently high, such that the
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Figure A.1: Class DE power amplifier topology [67].

output current is considered sinusoidal, i.e., io = Imsin(ωt+ φ).

3. Each switch is on for one-quarter of the period (k = 0.25) with the top switching

component switching on at ωt = 0 and the bottom switching component switching

on at ωt = π.

A.3 Modes of Operation

The DE topology shown in Figure A.1 has four modes of operation.

Mode 1: S1 on/S2 off

This mode begins with S1 switching on.

vDS1 = 0 (A.1)

vDS2 = VI (A.2)

dvDS1

d(ωt)
=

dvC1

d(ωt)
= 0 (A.3)

dvDS2

d(ωt)
=

dvC2

d(ωt)
= 0 (A.4)
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Figure A.2: The waveforms for Class DE power amplifier with duty cycle of k = 0.25,
corresponding to voltages and currents in Fig. A.1.
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The current through the capacitors becomes

iC1 = ωC1
dvC1

d(ωt)
= 0 (A.5)

iC2 = ωC2
dvC2

d(ωt)
= 0 (A.6)

Thus, the output current, io = Im sin(ωt+ φ), is carried by S1

io = iC1 − iC2 + iS1 − iS2 (A.7)

io = 0− 0 + iS1 − 0 (A.8)

io = iS1 (A.9)

iS1 = Im sin(ωt+ φ) (A.10)

Mode 2: S1 off/S2 off

This mode begins with S1 switching off:

vC1 = VI − vC2 (A.11)

dvC1

d(ωt)
= − dvC2

d(ωt)
(A.12)

dvDS1

d(ωt)
= −dvDS2

d(ωt)
(A.13)

Since both switching devices are off, the output current is carried by the capcitors C1 and

C2:

io = iC1 − iC2 + iS1 − iS2 (A.14)

io = iC1 − iC2 + 0 + 0 (A.15)

io = iC1 − iC2 (A.16)

io = ωC1
dvC1

d(ωt)
− ωC2

dvC2

d(ωt)
(A.17)

io = ωC1

(
− dvC2

d(ωt)

)
− ωC2

dvC2

d(ωt)
(A.18)

Im sin(ωt+ φ) = −ω(C1 + C2)
dvC2

d(ωt)
(A.19)

dvC2

d(ωt)
=
dvDS2

d(ωt)
=

−Im
ω(C1 + C2)

sin(ωt+ φ) (A.20)
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At the start of mode 3, S2 will switch on. The design requires the voltage across the

switch (ZVS) and its derivative (ZDS) to be zero at the moment the switch turns on

(ωt = π):

vDS2

∣∣∣∣
ωt=π

= 0 (A.21)

and

dvDS2

d(ωt)

∣∣∣∣
ωt=π

= 0 (A.22)

Applying (A.22) (the ZDS condition) to (A.20) yields

−Im
ω(C1 + C2)

sin(ωt+ φ)

∣∣∣∣
ωt=π

= 0 (A.23)

−Im
ω(C1 + C2)

sin(π + φ) = 0 (A.24)

sin(π + φ) = 0 . (A.25)

Two solutions exist: φ = 0 and φ = π. Since C1 is charging and C2 is discharging during

this interval, the only physical result is

φ = 0 . (A.26)

In order to apply the ZVS condition, vDS2 must be deterimined by integration of

(A.20):

vDS2 = vDS2

∣∣∣∣
ωt=π

2

+

∫ ωt

π
2

dvDS2

d(ωt)
d(ωt) (A.27)

vDS2 = VI +

∫ ωt

π
2

−Im
ω(C1 + C2)

sin(ωt+ φ)d(ωt) (A.28)

vDS2 = VI −
Im

ω(C1 + C2)

∫ ωt

π
2

sin(ωt)d(ωt) (A.29)

vDS2 = VI −
Im

ω(C1 + C2)

[
−cos(ωt) + cos

(π
2

)]
(A.30)

vDS2 = VI +
Im

ω(C1 + C2)
cos(ωt) (A.31)
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Applying (A.21) (the ZVS condition) to (A.31) yields

VI +
Im

ω(C1 + C2)
cos(π) = 0 (A.32)

VI =
Im

ω(C1 + C2)
. (A.33)

As a result, vDS2 simplies to

vDS2 = VI +
Im

ω(C1 + C2)
cos(ωt) (A.34)

vDS2 = VI + VI cos(ωt) (A.35)

vDS2 = VI [1 + cos(ωt)] . (A.36)

Mode 3: S1 off/S2 on

This mode begins with S2 switching on:

vDS1 = VI (A.37)

vDS2 = 0 (A.38)

dvDS1

d(ωt)
=

dvC1

d(ωt)
= 0 (A.39)

dvDS2

d(ωt)
=

dvC2

d(ωt)
= 0 (A.40)

The output current is carried by S2:

io = iC1 − iC2 + iS1 − iS2 (A.41)

io = 0− 0 + 0− iS2 (A.42)

iS2 = −io (A.43)

iS2 = −Im sin(ωt) (A.44)

Mode 4: S1 off/S2 off

This mode begins with S2 switching off.
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vC1 = VI − vC2 (A.45)

dvC1

d(ωt)
= − dvC2

d(ωt)
(A.46)

The output current is carried by capacitors C1 and C2:

io = iC1 − iC2 + iS1 − iS2 (A.47)

io = iC1 − iC2 + 0− 0 (A.48)

io = iC1 − iC2 (A.49)

io = ωC1
dvC1

d(ωt)
− ωC2

dvC2

d(ωt)
(A.50)

io = ωC1
dvC1

d(ωt)
− ωC2

(
− dvC1

d(ωt)

)
(A.51)

io = ωC1
dvC1

d(ωt)
− ωC2

(
− dvC1

d(ωt)

)
(A.52)

Im sin(ωt) = ω(C1 + C2)
dvC1

d(ωt)
(A.53)

dvC1

d(ωt)
=

Im
ω(C1 + C2)

sin(ωt) (A.54)

dvDS1

d(ωt)
=

Im
ω(C1 + C2)

sin(ωt) (A.55)

At the end of this interval (ωt = 2π) the switch S1 should turn on with the ZVS and

ZDS conditions satisfied:

vDS1

∣∣∣∣
ωt=2π

= 0 (A.56)

and

dvDS1

d(ωt)

∣∣∣∣
ωt=2π

= 0 (A.57)

Integrating (A.55) to get vDS1,
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vDS1 = vDS1

∣∣∣∣
ωt= 3π

2

+

∫ ωt

3π
2

dvDS1

d(ωt)
d(ωt) (A.58)

vDS1 = VI +

∫ ωt

3π
2

Im
ω(C1 + C2)

sin(ωt)d(ωt) (A.59)

vDS1 = VI +
Im

ω(C1 + C2)

∫ ωt

π
2

sin(ωt)d(ωt) (A.60)

vDS1 = VI +
Im

ω(C1 + C2)

[
−cos(ωt) + cos

(
3π

2

)]
(A.61)

vDS1 = VI −
Im

ω(C1 + C2)
cos(ωt) (A.62)

and applying the ZVS condition in (A.56) to ,

VI −
Im

ω(C1 + C2)
cos(2π) = 0 (A.63)

VI =
Im

ω(C1 + C2)
(A.64)

gives

vDS1 = VI −
Im

ω(C1 + C2)
cos(ωt) (A.65)

vDS1 = VI − VI cos(ωt) (A.66)

vDS1 = VI [1− cos(ωt)] (A.67)

and

vDS2 = VI − vDS1 (A.68)

vDS2 = VI cos(ωt) . (A.69)

Since the DC current through the switch shunt capacitor is zero at steady state op-

eration, the DC supply current develops as a result of the switching components. Thus,

the average (DC) input current is
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II =
1

2π

∫ 2π

0

iS1d(ωt) (A.70)

II =
1

2π

∫ π
2

0

Im sin(ωt) (A.71)

II =
Im
2π

(A.72)

II =
ω(C1 + C2)

2π
VI (A.73)

and the input resistance at steady state is

RI(DC) =
VI
II

(A.74)

RI(DC) =
VI(

ω(C1+C2)
2π

)
VI

(A.75)

RI(DC) =
2π

ω(C1 + C2)
. (A.76)

A.4 Component Values and Stresses

Here, the amplifier will be operating above resonance (i.e., inductive) at its operating

frequency ω. That is, L = La + Lb where C resonantes with La at ω (Fig. A.1). Addi-

tionally, it is assumed that the output network filters the harmonic components of vDS2,

hence, the fundamental component of vDS2 is

vLb + vRo = VLbm cos(ωt) + Vm sin(ωt) (A.77)
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for operating frequency ω. Therefore, from Fourier anaylsis,

Vm =
1

π

∫ 2π

0

vDS2 sin(ωt)d(ωt) (A.78)

Vm =
1

π

(∫ π
2

0

VI sin(ωt)d(ωt) +

∫ π

π
2

VI [cos(ωt) + 1] sin(ωt)d(ωt)

+

∫ 2π

3π
2

VI cos(ωt) sin(ωt)d(ωt)

)
(A.79)

Vm =
VI
π

(
−cos(ωt)

∣∣∣π2
0

+ sin(ωt)
∣∣∣π
π
2

− cos(ωt)
∣∣∣π
π
2

− 1

2
cos2(ωt)

∣∣∣2π
3π
2

)
(A.80)

Vm =
VI
π

(A.81)

and

VLbm =
1

π

∫ 2π

0

vDS2 cos(ωt)d(ωt) (A.82)

VLbm =
1

π

(∫ π
2

0

VI cos(ωt)d(ωt) +

∫ π

π
2

VI [cos(ωt) + 1] cos(ωt)d(ωt)

+

∫ 2π

3π
2

VI cos2(ωt)d(ωt)

)
(A.83)

VLbm =
VI
π

(
sin(ωt)

∣∣∣π2
0

+
1

2
(ωt+ sin(ωt)cos(ωt))

∣∣∣π
π
2

+ sin(ωt)
∣∣∣π
π
2

+
1

2
(ωt+ sin(ωt)cos(ωt))

∣∣∣2π
3π
2

)
(A.84)

VLbm =
VI
2

(A.85)

The values for the resonant network can now be determined, beginning with Lb,

VLbm
Vm

=
ωLb
Ro

=
π

2
. (A.86)

Hence,

Lb =
π

2

Ro

ω
. (A.87)
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Consequently, the resonanting components become

La = L− Lb (A.88)

La =
QLRo

ω
− π

2

Ro

ω
(A.89)

La =
(
QL −

π

2

) Ro

ω
(A.90)

and

C =
1

ω2La
(A.91)

C =
1

ωRo(QL − π
2
)
. (A.92)

From (A.81), the output power becomes

Po =
(Vm/

√
2)2

Ro

(A.93)

Po =
V 2
I

2π2Ro

. (A.94)

Assuming an efficiency of η =
Po
PI

= 100%,

Po = PI (A.95)

Po = VIII (A.96)

V 2
I

2π2Ro

=
ω(C1 + C2)

2π
V 2
I (A.97)

C1 + C2 =
1

πωRo

. . (A.98)

Letting C1 = C2 = Cm, (A.98) yields

Cm =
1

2πωRo

. (A.99)

A.5 Summary

The design equations for the Class DE amplifier for k = 0.25 are summarized in Tables

A.1 (component values) and A.2 (device stresses).
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Load resistance Ro =
V 2
I

2π2Po
(A.100)

Shunt capacitors Cm =
1

2πωRo

(A.101)

Output inductance L =
QLRo

ω
(A.102)

Output capacitance C =
1

ωRo(QL − π
2
)

(A.103)

Table A.1: Component value equations for a Class DE half-bridge amplifier, k = 0.25 [67].

Maximum drain current IDM(max) = Im(max) =
Vm
R

=
VI
πR

(A.104)

Maximum drain-source voltage VDS(max) = VI (A.105)

Maximum voltage across series capacitor VC(max) =
Im(max)

ωC
(A.106)

Maximum voltage across series inductor VL(max) = ωLIm(max) (A.107)

Table A.2: Device stress equations for a Class DE half-bridge amplifier, k = 0.25 [67].
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