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Abstract 

The focus of this longitudinal case study was to investigate the progressive development 

of unitizing in a cohort of students receiving reform-oriented mathematics instruction. 

One-on-one videotaped mathematics interviews were conducted twice annually for 4 

years from Grade 1 to Grade 4 with a varying number of participants from 61 to 45 

respectively. Multiplication and quotative division questions were analyzed for 

correctness, the physical model used to solve the problem, and the computation strategy 

used to solve the problem. Multiplication and adding up for division models that required 

the development of more sophisticated unitizing included modelling only one group, 

modelling just the groups, modelling the groups with the composite numeral, and 

modelling the new whole. Multiplication and adding up for division strategies that 

indicated the development of a unitizing structure included rhythmic counting, starting 

with a doublet, skip counting, regrouping to form a new composite, and splitting the 

composite and then iterating the sub-composites to find the total. The varying levels of 

simultaneity demonstrated by students were also noted as they pertain to the development 

of a unitizing structure. A theoretical landscape of the development unitizing is proposed. 
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CHAPTER ONE 

INTRODUCTION 

Context of the Study 

 Proportional reasoning is a watershed concept in mathematics (Lesh, Post, & 

Behr, 1988), and comprehension of this idea is pivotal for future mathematical 

understanding. Many students who struggle in mathematics, particularly in the 

intermediate grades and beyond, lack true proportional reasoning. Lamon (1999) 

contended that more than half the adult population cannot reason proportionally across 

situations. Multiplicative reasoning, which begins to develop for some students as early 

as Grade 1, is foundational to the development of the concepts of ratio and proportion 

(Mulligan & Watson, 1998). The failure to develop multiplicative thinking skills hinders 

mathematical development and the later use of algebraic reasoning, including an 

understanding of functions and graphs. 

One of the necessary mechanisms discussed in the research as central to the 

development of multiplicative thinking has been termed unitizing (Lamon, 1996; 

Mulligan & Watson, 1998). Unitizing identifies the ability to simultaneously consider a 

group of objects or a number as an entity in itself and as a countable group or unit in a 

greater whole (see Figure 1). For example, a student who understands three packs of gum 

with four sticks in each pack as being three 4s is able to consider the number 4 as 

representing the number of pieces of gum in a single pack and the number that will yield 

the total number of pieces of gum in all three packs when it is iterated three times.  

It might be that unitizing is a cornerstone that must be addressed directly in 

elementary classrooms in order to foster multiplicative thinking and lead to the 
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development of proportional reasoning in older students. There has been very little 

research on how the potentially crucial understanding of unitizing develops over time and 

across situations in students throughout their elementary schooling. Fortunately, a larger 

body of research in the area of number sense development has been able to serve as the 

foundation on which to build unitizing research. 

 

 

Purpose of the Study 

The purpose of this longitudinal case study was to investigate the development of 

unitizing in children from Grade 1 to Grade 4 in reform-oriented classrooms at a public 

school in Mississauga, Ontario. Unitizing is a critical mathematical concept that is needed 

to achieve multiplicative reasoning (Fosnot & Jacob, 2010; Mulligan & Watson, 1998). 

Multiplicative reasoning is necessary to fully develop higher order mathematical 

understanding. This research was designed to discover critical computation strategies that 

students need to develop in order to fully construct a unitizing structure as well as to 

uncover any strategies that might hinder students as they develop this important concept.  

Figure 1. A graphical representation of unitizing in the context of three packs of 
gum with four pieces in each pack. 
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Research Question 

1. What are the critical models and cognitive strategies used by a cohort of 34 

children in a reform-based mathematics program as they develop their 

understanding of and ability to flexibility use unitizing structures from Grade 1 to 

Grade 4? 

Significance of the Study 

Multiplicative thinking, proportional reasoning skills, and algebraic logic are 

important mathematical reasoning processes that are stressed in mathematical curricula. 

Although multiplication problems can be solved through repeated addition, using 

multiplicative thinking is qualitatively different from and more sophisticated than using 

additive thinking (e.g., Nesher, 1988). Although unitizing is one of the key mechanisms 

in the development of multiplicative thinking (Lamon, 1996), it is surprisingly not 

mentioned in the current curriculum document for Ontario, The Ontario Curriculum, 

Grades 1-8: Mathematics, 2005 (Ontario Ministry of Education [OME], 2005).  

Aside from the importance of unitizing in the development of advanced 

mathematical ideas, unitizing might also be important for students who struggle in 

mathematics. Grobecker (1997) discovered that students who had a learning disability 

were less likely than their peers with no learning disability to successfully solve 

multiplicative tasks specifically designed to elicit unitizing. Recent research has 

continued to explore the idea that unitizing is an important missing piece for struggling 

students (McCandliss et al., 2010). This study offers insight into the development of 

unitizing, which can be used to better identify and create educational supports for 

students who struggle with this area of mathematics. 
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Limitations of the Study 

The participants in this study were students who attended a public school in urban 

Ontario and who belonged to a highly transient, middle- to lower socioeconomic status 

(SES) population. The children received their mathematics instruction through a reform-

oriented approach. Other research questions not reported here addressed the success of 

the reform approach with this population. Because of the transient nature of the target 

population, the original sample of 61 children was down to 39 by the spring of Grade 4.  

Because this study took place over 4 years, many of the questions on the test 

instrument were changed to challenge the students at the various stages of their 

mathematical development. No question was asked in an identical manner at all 

interviews, so it was not possible to use a single question on the test instrument to gauge 

a student’s development on an identical question over the 4 years. However, items on the 

various forms of the instrument were designed to map onto one another for the purpose of 

gathering information about a student’s mathematical development over time.  

In addition, the test instrument was not always administered in its entirety. If 

students were struggling with the addition or subtraction questions, the interviewer might 

have decided not to ask the multiplication or division questions. The assumption was that 

the children who struggled with foundation concepts such as addition would not yet have 

constructed unitizing. Some struggling students were interviewed with an instrument 

from the previous grade level.  

The interviews were conducted only twice annually, so it is possible that certain 

interim strategies and models that assisted in the construction of unitizing might not have 

been captured in the data if interviews were not conducted at the precise time when the 
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strategies were being used. In addition the participants in this study were actively in 

classrooms at the time of each interview. The timing of the various units of mathematical 

inquiry relative to the interview times likely impacted the students' use of particular 

strategies during the interviews. The longitudinal nature of this study exacerbated the 

difficulty in finding a control group for research in schools. As such, there was no control 

group in this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

The definition of multiplication in elementary texts and mathematics dictionaries 

usually involves summarizing it as a faster way to perform repeated addition (de Klerk, 

2009), but it does not take into account some of the complexities of multiplicative 

contexts. Moreover, this description might not be broad enough to include multiplication 

with rational numbers. Even though multiplication and division often are introduced to 

students separately, the difference between them lies partly in the location of the 

unknown in the problem. For multiplication, the unknown is the total number or amount, 

whereas division contexts ask students to find either the number of groups or the number 

or amount within each group. To fully appreciate the complexities of multiplication and 

division, it is essential to examine the types of problems and contexts in which they arise. 

Problem Types 

 Initially, much of the research on multiplication focused on the diverse semantic 

structure of multiplication and division problems. Construction of many of the 

multiplication problems seen in elementary education has been of the type called 

extensive quantities multiplied by intensive quantities (Schwartz, 1988), or equal groups 

(Greer, 1992). These typical questions also have been included in the more general 

categorizes termed isomorphism of measures (Vergnaud, 1988) and mapping rule 

(Nesher, 1988). In this type of problem, an amount of something (e.g., four sticks of gum 

in each pack) is mapped out over something else (e.g., three packs of gum). These types 

of problems reflect their direct link to proportional reasoning because they can be solved 
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like a rule-of-three problem (Greer, 1992). Rule-of-three problems involve two equal 

ratios in which three of the four quantities are known. The solution is found by using the 

proportional relationship to determine the fourth quantity. In the previous gum problem, 

the two equivalent ratios were 4:1 and x:3. To solve the problem, one has to determine 

the number (x) that has the same proportional relationship to 3 as 4 does to 1. Problems 

involving rate and price are usually considered special cases of this same type of 

problem. Multiplicative comparison problems (Carpenter, Fennema, Franke, Levi, & 

Empson, 1999; Greer, 1992; Nesher, 1988) are distinctly different because they involve a 

comparison between two related quantities, where one is n times larger or smaller than 

the other.  

These two general problem types, equal groups and multiplicative comparison, 

represent asymmetrical multiplication problems, where the two values in the problem 

would not yield the same picture if reversed. In the example of the packs of gum, a child 

might conceive of the problem as 4 + 4 + 4 =12 or 3 multiplied by 4. The reverse, 3 + 3 + 

3 + 3 = 12, although mathematically accurate, is not possible for this problem because the 

quantity three and the quantity four do not have reversible roles in the question. For each 

type of equal groups problem, there are three distinct varieties: multiplication, partitive 

division, and quotative division. With multiplication, the result is unknown; with partitive 

division, the amount in each group is unknown; and with quotative division, the number 

of groups is unknown. 

Although the former are asymmetrical, multiplicative problems also can be 

symmetrical (e.g., Carpenter et al., 1999). In the case of rectangular area problems (i.e., 

length × width = area), and Cartesian product problems (e.g., shirts × pants = outfits), the 
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two numbers in the problems are equally weighted. These symmetrical problems give rise 

to only two distinct varieties of questions, namely, multiplication and division, because 

there is no distinction as to partitive or quotative division. As researchers began to 

examine the types of problems that had a multiplicative structure, they realized that a 

fundamental difference between additive problems and multiplicative problems was that 

the referent for the solution was different from those in the problem.  

Changes in Referent 

Unlike addition and subtraction, where the two quantities being added or 

subtracted are of the same type, (e.g., three pieces of gum + four pieces of gum = seven 

pieces of gum), in multiplicative situations (i.e., problems that can be solved using 

multiplication or division), the numbers have different referents. In most cases, one of the 

referents is actually derived as a relationship between two things through division. For 

example, a problem such as, “There are four pieces of gum in each pack. If I have three 

packs of gum, how many pieces do I have?” gives rise to the multiplication problem 3 × 

4. The “3” in the problem is an extensive quantity; in other words, it is a quantity that can 

be counted or measured, namely, three packs. At first glance, the “4” also might seem to 

be an extensive quantity, four pieces, but it is an intensive quantity that is generated 

through division. In reality, the four is 4/1, that is, “4” pieces in “1” pack.  

Schwartz (1988) suggested that these two types of quantities, extensive and 

intensive, can be combined in multiplicative structures in a variety of ways: E × E` = E`` 

(meaning an extrinsic value multiplied by a different extrinsic value resulting in a third 

extrinsic value), I × I` = I`` (meaning an intrinsic value multiplied by a different intrinsic 

value resulting in a third intrinsic value) and E × I = E` (meaning an extrinsic value 
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multiplied by an intrinsic value resulting in a second extrinsic value) and their related 

division problems (see Table 1). The most popular triad, according to Schwartz, is the 

latter, that is, E I E`. In all cases, he argued that because the multiplicative structure has a 

referent transforming effect, it must be distinguished from additive structures. 

Table 1  

Multiplication and Division Questions With Extensive and Intensive Quantities 

 
Although changes in the referent when solving multiplication and division 

questions is undeniable, many adults become quite capable and proficient in solving 

problems using a multiplicative structure without giving much thought to this change. 

Another fundamental difference between multiplicative and additive thinking requires a 

Multiplicative triad Calculation Sample word problem 
(E E`E``) E × E`  If you own 4 different shirts and 3 different pairs of pants, 

how many different outfits can you make? 
 

(E E`E``) E``÷ E` If a rectangle with an area of 12 cm2 has a length of 3 cm, 
what is its width? 
 

(I I` I``) I × I`  A hybrid car that gets 25 km/ Litre of fuel on the highway 
burned an average of 3.0L/hour on a road trip. What was 
the average speed traveled during the trip? 
 

(I I` I``) I``÷ I  A hybrid car averaged a speed of 75 km/hour on a road 
trip. If the car usually gets 25km/Litre of fuel, what was 
the rate of fuel consumption during the trip? 
 

(I I` I``) I``÷ I` A hybrid car averaged a speed of 75 km/hour on a road 
trip. If the car usually burns 3.0L/hour, what was the fuel 
efficiency of the car during the trip? 
 

(E I E`) 
(rate) 

E × I 
 

Coffee costs $4.00 per pound. If I buy 3 pounds of coffee, 
how much will it cost? 
 

(E I E`) 
(partitive division) 

E`÷ E 
 

I paid $12.00 for 3 pounds of coffee. How much is each 
pound of coffee? 
 

(E I E`) 
(quotative division) 

E`÷ I 
 

I paid $12.00 for a bag of coffee. I know the coffee was 
priced at $4.00 for each pound. How many pounds were in 
the bag I bought? 
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major shift in understanding, namely, a change in the unit used to navigate the number 

system. 

Changes in the Unit 

In addition to a change in the referents, one of the themes that Hiebert and Behr 

(1988) felt rose from the initial research on multiplication was that during this critical 

period of mathematical development, children move beyond simply counting. In the 

primary grades, children initially count using the whole number 1 as their primary way of 

navigating and understanding the number system. As children move from addition and 

subtraction to multiplication and division, and from whole numbers to rational numbers, 

they have to reconstruct their understanding of the nature of the unit. As stated by Hiebert 

and Behr, “It is difficult to overestimate the significance of this basic shift” (p. 2).  

Steffe (1988) provided case study evidence to demonstrate how children might 

move from the ability to only move up and down the number system with units of 1 to 

being able to navigate the system with what he termed composites units, which are units 

that are more than 1. Hiebert and Behr (1988) saw this shift as a change in what is 

understood as a number. When this shift in thinking occurs, the new unit itself can be 

counted. For example, the unit can be 3 and 1 simultaneously; as they stated, “A change 

in the nature of the unit is a change in the most basic entity of arithmetic” (p. 2). Fosnot 

and Dolk (2001b) believed that this shift in thinking required a new understanding of the 

structure of mathematics. They called this new structure or big idea unitizing. 

Developing Unitizing 

 Although there has been very little research on the development of unitizing, 

reference to the development of a composite unit (e.g., Anghileri, 1989; Mulligan & 
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Watson, 1998; Steffe, 1988); unitizing (e.g., Lamon, 1996); and equivalent sets (e.g., 

Kouba, 1989) as a part of the development of multiplication and division, or 

multiplicative thinking, offered a point from which I could begin. Table 2 summarizes the 

related research and the variety of terms used to describe the strategies and structures 

constructed and represented by children as they develop the operations of multiplication 

and division. The following section summarizes the work in this area, focusing on the 

strategies that children use to solve multiplicative word problems. 

Frameworks for the Linear Development of Multiplicative Thinking  

In 1989, Anghileri conducted a cross-sectional study of the strategies that children 

in Grades 1 to 7 used to solve a variety of multiplication problems. The analysis included 

a progression through what Anghileri conceived of as three broad strategy categories: 

modelling strategies, calculation strategies, and use of a multiplication fact. The 

calculation strategies were further broken down into a progression of three distinct 

counting strategies: unitary counting; rhythmic counting in groups; and number patterns, 

or skip counting.  

At the same time, Kouba (1989) conducted another cross-sectional analysis of 

young children’s (Grades 1-3) solution strategies for multiplication and division 

problems. Kouba’s analysis acknowledged that children might use the support of objects 

in a variety of ways, including using them as tallies to support more sophisticated forms 

of calculation. For this reason, Kouba noted the use of objects, but did not include it 

within her progression of strategies. In order of increasing abstractness, Kouba reported 

the following strategies: direct representation, double counting, transitional counting 

(skip counting), additive or subtractive strategies, and recalled number facts.  
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Table 2 

Terminology Used in Prior Research on the Development of Unitizing 

Description Steffe (1988) Anghileri (1989) Mulligan & 
Mitchelmore 

(1997) 

Fosnot & Dolk (2001b)  Carpenter et 
al. (1999) 

Kouba 
 (1989) 

Big ideas       
cardinality  Cardinal meaning  The number they end on is the no. of objects 

in the set 
  

Hierarchical inclusion Explicitly nested 
number sequence 

Cardinal meaning  This means that amounts nest inside each 
other: 6 includes 5, plus 1 

  

Strategies       
Directly model the 
situation 

 Unitary counting Direct counting Represents groups and objects in the groups 
and counts by 1s; tries to make equal-sized 
groups through trial and error 

Grouping 
strategy 

Direct 
representation 

1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12 

So many more 
than 

Rhythmic counting in 
groups 

Rhythmic 
Counting 

   

1, 2, 3, 4, one 
5, 6, 7, 8, two 
9, 10, 11, 12, three 

Abstract composite 
units 

Tallying the groups Double count   Double counting 
Occurred only in 
division 

4, 8, 12 Iterate a unit along 
a number line 

Number pattern Skip counting Doubling, skip counting Skip counting Transitional 
counting 

4 + 4 + 4 = 12 
4 + 4 = 8  
8 + 4 = 12 

 Addition Facts; Unary 
Operations 

Additive 
Calculation 

Repeated addition; Repeated Subtraction Doubling Additive or 
subtractive 

Three 4s are 12  Multiplication facts; 
binary operations; 
retrieval of related 
number triple 

Multiplicative 
calculation 

Using doubling or halving, using partial 
products, using five times, using known facts 

Derived or 
known facts 

Recalled 
number fact 

Difficulties       
Children unable to use 
both pieces of 
information 
simultaneously 

Numerical 
composites 

Information- 
processing difficulties 
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A decade later, Mulligan and Watson (1998) generated a more sophisticated 

theory of the development of multiplicative thinking that acknowledged the importance 

of the development of the composite unit. Their longitudinal research outlined a linear 

development of multiplicative thinking in children in Grade 2 and Grade 3. They used the 

Piagetian-based structure of the observed learning outcome model that distinguishes five 

structural shifts in learning: sensorimotor, ikonic, concrete symbolic, formal-1 and 

formal-2. The sensorimotor mode is grounded in real objects. The ikonic mode uses 

mental images of real objects to support thinking. In the concrete symbolic mode, 

students use symbols to represent objects, and in the formal-1 and formal-2 modes, 

symbols are used in increasingly abstract ways.  

Within each of these modes, five levels form the cycles of learning: prestructural, 

unistructural, multistructural, relational, and extended abstract. A prestructural response 

would use no elements from the problem and may appear tangential or unrelated to the 

problem. A unistructural solution would use only one element of the problem, a 

multistructural solution would use multiple elements from the problem, and a relational 

solution would relate all problem elements to create a cohesive proof. A solution 

categorized as extended abstract would contain some difference from a relational 

solution, indicating that it is just a step away from the next mode.  

Mulligan and Watson (1998) concluded that the development of multiplicative 

thinking includes 12 levels that range from prestructural up to relational (concrete 

symbolic). Like Anghileri (1989), they included the use of objects as part of their lower 

ikonic level strategy; however, similar to Kouba (1989), they concluded that some 

solution strategies are multimodal, drawing on ikonic level modelling to support concrete 
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symbolic thinking. This conclusion might have stemmed from their decision to group 

strategies and models together so that if a student were to use concrete materials to 

support a repeated addition strategy, this strategy would be coded as multimodal. This 

and other previous research focused primarily on the strategies that children use when 

solving multiplicative situational problems, but there is more to understanding the 

development of mathematical understanding than simply examining a progression of 

strategies. 

Identifying Structures or Investigating Structuring  

On their own, the strategies that involve various degrees of unitizing do not fully 

explain how children construct their understanding of the unitizing structures possible 

within the number system. Mathematical computation is only part of the picture. The 

other part of the picture, highlighted by Fosnot (2001a, 2001b) and Fosnot and Jacob 

(2010), is the mathematical development of children. Simply identifying strategies, 

models, and big ideas alone is not enough to understand the development of mathematical 

structures. Fosnot (2001b) harkened back to Piaget by suggesting that through the process 

of equilibration, that is, the complex process of restoring and creating a new balance after 

a new idea or problem challenged the understanding, the developing cognitive structures 

become more and more dense as connections and relationships are made among 

situations in which children use the structure to understand their world. It is not enough to 

say that children have or have not built the structure of unitizing by investigating 

unitizing based solely upon the strategies that children are able to wield. To understand 

the development of this mathematical structure, it is necessary also to understand the 

development of children because the interaction between the structures of mathematics 
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and the mathematical development of children is of concern. To understand how children 

might develop mathematical understanding, it is essential to investigate learning in 

general and then choose a framework of learning through which to examine the 

development of unitizing. 

How Children Learn Mathematics 

The Pitfalls of Direct Instruction  

Until recently, instruction in mathematics used to begin with an explanation by 

the teacher on how to execute a specific math skill. If manipulatives or hands-on 

activities were used, students were instructed on different ways to use them. Students 

learned to follow the rules and procedures transmitted by their teachers (Van de Walle & 

Folk, 2008). After computations were mastered, application of word problems would 

follow (Fuson, 2003). It was held and continues to be held by some researchers that 

working with the basic facts and algorithms will eventually lead to deeper understanding 

(Mighton, 2007), but research with adults by Ma (1999) and Simon (1993), among 

others, has demonstrated that deep conceptual understanding does not usually develop 

through this progression. International comparison studies such as the Third International 

Mathematics and Science Study (Office of Educational Research and Improvement 

[OERI], 1996) were pivotal in uncovering the shortcomings of the traditional focus on 

procedures at the expense of conceptual understanding for most students. This traditional 

approach focuses only on the structure of mathematics as understood by adults, not on the 

diverse ways in which children think about, understand, and develop mathematically 

(Fosnot & Dolk, 2001b).  
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In 1999, Ma uncovered a lack of conceptual understanding in many American 

adult students as compared to adult students in China, a country that focuses on the 

development of conceptual understanding. Battista (1999) referred to a focus on 

procedure-based mathematics without concept development as “mathematical 

miseducation” (p. 425). Because traditional, direct instruction of mathematics, which is 

based upon the assumption of students as empty vessels into which teachers can simply 

deposit knowledge, had such poor mathematical outcomes, theoreticians challenged not 

only the fundamental beliefs about what it means to teach and to learn but also the core 

beliefs about what knowledge is and how it is acquired.  

Theoretical Conceptions of Knowledge  

For centuries, educators have built an understanding of learning around the idea 

that knowledge is concrete; an object that can be transmitted or constructed; and once 

attained, that knowledge can be generalized and used across a variety of situations and 

contexts. In order to examine the ways in which children might come to understand 

unitizing, it became imperative to address the underpinning conception of knowledge to 

frame an understanding of what it means to build a unitizing structure.  

In an article originally published in 1983 and republished in 2008, von 

Glasersfeld challenged the core belief that knowledge is something that exists outside of 

human beings. If what individuals think that they know about the world is an 

interpretation of their senses, then how do people know that their representation of some 

true reality, or knowledge, is accurate or valid? Instead, von Glasersfeld suggested an 

alternate conception of knowledge that did not raise this conundrum, but had far-reaching 

consequences in the field of education. He conceptualized knowledge as students’ 
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organization of the world in which they live. This change in the conception of knowledge 

would necessarily change the purpose of teaching from helping students to represent a 

situation in the same way adults have decided that it should be represented, to a role in 

facilitating students’ ability to organize their worlds in their own increasingly complex 

ways.  

Von Glasersfeld’s (2008) conception of knowledge is foundational to the 

constructivist theory of learning mathematics and has implications for teaching. Where 

other cognitive theories hold that knowledge is a representation of an independent reality, 

von Glasersfeld (2005) distinguished the constructivist model as identifying knowledge 

as residing within individuals, who then have the capacity to change and develop new 

structures through experience.  

Theoretical Conceptions of Learning  

Even if one adheres to a constructivist approach, the question remains as to how 

new knowledge is learned. Sfard (1998) summarized learning using the acquisition 

metaphor and the participation metaphor. According to Sfard, the acquisition metaphor of 

learning focuses on the development of concepts. Because learning theories have 

developed along with everyday language, Sfard contended that it is very challenging to 

talk or write about learning without referring to learning as obtaining possession of some 

knowledge object. Interpreting learning as something that is possessed by individuals can 

be problematic because of “the learning paradox” (Sfard, 1998, p. 7). If the only way to 

build knowledge is to do so in relation to what is already known, then no one can ever 

truly learn anything new. This paradox also leads one to wonder how learners who 
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construct their own understandings can build concepts that are essentially the same as 

those built independently by others. 

  The pitfalls of this view of learning become the most noticeable when they are 

contrasted with a different paradigm. Sfard (1998) illuminated these issues with the 

acquisition metaphor for learning by comparing it to the participation metaphor for 

learning. In the participation metaphor, knowledge is not a commodity that is gained; 

instead, it is a part of the practice, activity, or discourse of a group. Knowledge grows 

through shared activities of a community in constant flux: The participants are not locked 

into being or acting one way because of what they possess; rather, they are able to be 

fluid, acting one way today and another way tomorrow.  

Sfard (1998) suggested that the strongest research can draw from both metaphors, 

thus combining the best from both worlds. Current research on learning mathematics has 

roots in both  metaphors. The shift to reform instruction, as initially laid out in the 

National Council of Teachers of Mathematics’ (2000) groundbreaking Principles and 

Standards for School Mathematics, had at the core von Glasserfeld’s (2008) conception 

of mathematical knowledge as something that is constructed and Sfard’s (1998) 

participation metaphor for learning mathematics. Classes were meant to be places where 

children worked together to build a mathematical community and the teacher served more 

as facilitator than sole expert. Mathematical norms and ideas were to be discussed, 

debated, and decided upon as a group. Mathematical knowledge was viewed as 

constantly changing to accommodate challenges to current understanding (Fosnot & 

Dolk, 2001a). Von Glasersfeld (2005) called for researchers to use longitudinal 

interviews with children solving mathematical operations to guide classroom instruction 
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so that classroom teachers would know the direction that each child had to go in order to 

build an increasingly complex and useful mathematical organization.  

The Constructivist Model 

 Piaget (1977) maintained that knowledge does not serve a representative function, 

but an adaptive function. For Piaget, adaptive meant more than just increasing an 

organism’s success: It also meant that knowledge could change the organism in some 

way, perhaps even physically, such that the organism would have an advantage through 

the process of natural selection. Piaget theorized that just as with evolution, the process of 

equilibration brings about changes in cognition. When individuals encounter ideas that 

disturb their understanding through contradiction, they enter into disequilibrium, a state 

of puzzlement and investigating in order to find order and understanding (Fosnot & Dolk, 

2001a).  

Through a process that Piaget (1977) termed reflective abstraction, individuals 

create new structures that are possible solutions to this disturbance. Reflective 

abstraction, according to Piaget, has two parts: assimilation and accommodation. 

Assimilation involves recognizing that the features of current situations are similar to 

previously encountered situations. This recognition allows people to call upon schemes or 

strategies that they have used or have seen being used before and to try to use them in 

current situations. The term scheme, sometimes called scheme of action, has been used 

synonymously with the term strategy by Fosnot and Dolk (2001b). Both terms refer to 

patterns of behaviours. In other words, through assimilation, organisms can determine in 

what ways strategies used before can help to serve in new situations.  
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Accommodation is the opposite of assimilation. With accommodation, people can 

recognize the differences between previous and current situations. Coming to terms with 

how old strategies will continue to work in new situations or changing the strategies to fit 

new situations is the work of reflective abstraction. According to Piaget (1977), several 

options might be developed. This work might require small changes in strategies, or it 

might require larger cognitive shifts that involve the altering not only of the strategies but 

also of the structures, or big ideas, upon which the strategies are built. Of these new 

strategies and/or structures, the ones that help to regain equilibrium are adaptive and 

selected (Piaget, 1977).  

 In mathematics classrooms guided by the constructivist learning theory, teachers 

acknowledge that children come to the classrooms and new situations with backgrounds 

of experience that form the children’s current mathematical understanding (Carpenter et 

al., 1999). Any new understanding is formulated from this earlier understanding. When a 

teacher presents a problem that creates disequilibrium, as students struggle and grapple 

with possible solutions, there is opportunity for growth of mathematical structures. In a 

constructivist-informed classroom, various possibilities and conjectures are explored with 

the teacher taking the role as a catalyst, offering contradictions and supporting 

correspondences (Fosnot & Jacob, 2010). The teacher asks questions that will help the 

children either to discover flaws in their logic (further contradiction) or see the 

connections between this new idea and previous experiences (Fosnot & Perry, 2005; 

Schifter, 2005). 
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Classrooms That Support Children’s Thinking  

In a traditional classroom where fact memorization and traditional algorithms are 

the normal progression, it is unlikely to find children who experiment with strategies and 

solve problems in a variety of ways. Traditional instruction, through its “teacher show 

and students follow” approach, generally results in most children attempting to solve 

problems in the same manner as was shown by the teacher (van de Walle, 2008). To 

study the development of a deep understanding of multiplicative thinking, it is essential 

to study mathematical development in the types of classrooms where children are 

supported to develop their own thinking and understanding, such as in constructivist-

based, which build understanding together through the process of contradiction and 

correspondence of strategies. It is in this type of classroom that children are supported to 

develop rich, dense mathematical structures across situations and where they are assisted 

to develop increasingly more sophisticated mathematical structures. A framework of 

learning that captures both of these dimensions is essential to understand the dynamic 

nature of the development of mathematical thought. 

The Landscape of Learning 

 Fosnot and Dolk (2001b) introduced a framework for the development of 

mathematical ideas that they termed landscape of learning. Previous research had 

focused on the development of strategies for students to use to solve multiplication and 

division problems. Fosnot and Dolk took these progressions and wove them into a more 

comprehensive framework of learning, including more than just the strategies outlined in 

earlier continuums. Fosnot, who has authored and edited books on the application of 

constructivist theory to education, included in this framework not only the strategies that 
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children use on the path to developing multiplicative thinking but also the big structural 

ideas of the number system that children need to construct in order to develop true 

multiplicative thinking. The constructivist underpinning of this landscape does not end at 

the inclusion of big ideas. It also includes the mathematical models, or representations, 

that Fosnot and Dolk felt would support children’s development of strategies and big 

ideas. This initial framework was expanded by Fosnot in 2007(a).  

Big ideas (structures) 

 Within the constructivist paradigm, big ideas (Fosnot & Dolk, 2001a), or 

structures (Piaget, 1977), are the human-generated cognitive systems that are 

characterized by three properties: wholeness, transformation, and self-regulation. The 

wholeness of a structure includes all the parts that it contains and also encompasses the 

idea that the whole that is created is greater than the sum of the individual parts (Fosnot 

& Perry, 2005). These parts are interrelated and have no meaning without each other and 

the structure as a whole. Transformation describes the relationship between and among 

the parts, as well as how one part changes to become another part. The self-regulation 

aspect of structures refers to the fact that organisms seek structures that are organized and 

closed (Fosnot & Perry, 2005).  

 In mathematics, as students deepen their understanding, certain possibilities or 

pathways to equilibrium are so adaptive that they open up whole new cognitive ideas not 

previously accessible. Fosnot and Dolk (2001b) wrote about these big ideas as enabling 

leaps in mathematical understanding. Once these big ideas have been constructed, 

students can develop a deeper understanding of the strategies that they have already been 

using; in addition, they might be able to access new strategies that are now within their 
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grasp. For example, in the case of unitizing, children might have been using repeated 

addition to solve multiplication or division word problems, but once they have fully 

constructed the idea that they can change the unit within the number system, they can 

experiment with doubling strategies (e.g., 6 + 6 + 6 + 6 = 12 + 12); halving and doubling 

strategies (e.g., 6 × 4 = 12 × 2); and strategies involving the use of the distributive 

property (e.g., 6 × 4 = [3 × 2] × 4 = 3 × [2 × 4]). In classrooms where such ideas are 

supported, children also will employ models to represent their big ideas and facilitate 

their strategies. 

Models (representations)  

Models can be representations through images, symbols, or language that are used 

to communicate ideas and actions (Fosnot & Dolk, 2001a), but the power of models 

enables people to do more than simply represent their thinking. Because a model allows 

people to take a representation of a situation away from the immediacy of the concrete, 

they are able to draw on that model when they encounter a similar circumstance. Through 

assimilation, people can see the ways in which this previously used model is similar to 

the current situation, and through accommodation, they also can see the ways in which 

the two situations are different. This dichotomy between the attraction of categorization 

and generalization and the simultaneous appreciation of the individual differences in 

situations creates the conditions for Piaget's reflective abstraction (Fosnot & Perry, 2005).  

As people wrestle to include all aspects of a broadening variety of situations, 

models become more than just a representation of their thinking; they also become a 

mechanism or tool for thinking and learning (Fosnot & Dolk, 2001a). For example, the 

array is a powerful model that can be used to represent multiplication and division 
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problems (see Figure 2). This model also can aid in discovering deeper mathematical 

understanding, such as the link between partitive and quotative division; the commutative 

property of multiplication (e.g., 6 × 4 = 4 × 6); or the distributive property for 

multiplication and division. Models can represent big ideas and strategies as well as 

support the construction of new big ideas and strategies. 

 

Strategies (schema) 

As children develop their mathematical understanding, the strategies, or schema, 

that they use to mathematize the world around them develop as their understanding of the 

number system deepens. Initially, they are able to consider the number system only in 

units of 1. The only way that they are able to solve a problem, even a multiplication or a 

division problem, is by applying the strategy of counting by 1s. However, as they 

experience more situations, they begin to develop a greater flexibility with the number 

system in conjunction with a deeper understanding of the structure built into the number 

system. This flexibility allows them to experiment with new strategies to see whether 

they fit their current understanding. 

Figure 2. A 3 × 4 array. 
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The interplay among strategies, models, and big ideas 

Although it might be tidy and convenient to organize mathematical development 

in terms of these three aforementioned aspects, Fosnot and Dolk (2001b) indicated that 

the three parts must work together to form understanding. Sometimes, big ideas are 

constructed first and then followed by the strategies that they support. Other times, the 

strategies come first, and through representation and reflective abstraction, then the big 

ideas are constructed. Likewise, there are times when a model might be used to represent 

the way a child is thinking about something; at other times, it might be used as a tool for 

thinking, an aid in the solution process. When a model is used as an aid in the solution 

process, it can support the construction of new strategies and big ideas previously out of 

cognitive reach (Fosnot & Dolk, 2001a). All three aspects together build a deep 

understanding of mathematics. 

Unitizing is a big idea (structure) 

Unitizing fits the definition of a big idea because it involves a deepening of the 

understanding of the structure of numbers. The ability to simultaneously see a unit of 3 as 

both 3 units of 1 and one composite unit that can itself be counted requires a shift in the 

understanding of the part-whole relationship of numbers (Fosnot & Dolk, 2001a). 

Students struggle with the idea that six objects can be both 6 units of one and one unit of 

6. Often through a period of perplexity, analysis, and disequilibrium, a new perspective 

emerges. This new perspective, the ability to simultaneously hold the idea of the units in 

a group and the group that itself can be counted as a unit, supports a whole new range of 

ideas and strategies using multiplicative thinking. 
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The landscape, therefore, offers a more nuanced, less rigid framework for 

understanding the development of unitizing over time than earlier continuums. Rather 

than unitizing being something that one attains, and has or does not have, it is an 

understanding of the underlying structure of the number system, a big idea, that is slowly 

constructed through a range of situations. 

It seems doubtful that mathematical understanding is as linear as Mulligan and 

Watson (1998) contended. In a strong reform mathematics classroom, children will have 

access to a wide variety of strategies, whether or not they have sorted out all of the 

underpinning big ideas that support the strategy. To support this new strategy, they will 

draw upon other strategies or representations with which they have had success in the 

past, such as concrete modelling. It seems plausible that students will use different 

strategies at different times rather than learning them and using them in a particular 

succession. 

Therefore, I have drawn upon two frameworks to interpret the development of 

unitizing, namely, the landscape of learning theory (Fosnot, 2007b; see Appendix A) and 

Harel and Confrey’s (1994) book, The Development of Multiplicative Reasoning in the 

Learning of Mathematics, particularly the chapters by Lamon (1994), and Behr, Harel, 

Post, and Lesch (1994). These two works provided a lens through which to examine the 

data and to answer the question: How does multiplicative thinking and, more narrowly, 

unitizing, develop over time? 

Early strategies for multiplicative situations  

Initially, children cannot unitize multiplicative problems. Take the following 

problem for example: “Robin has three packages of gum with four pieces of gum in each 
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package. How many pieces of gum does Robin have all together?” Children who are just 

beginning to form their understanding might count out three objects and four objects but 

be unsure how to relate the two groups to each other and count, “One, two, three, four, 

five, six, seven. Seven sticks of gum.” Anghileri (1989) discussed this type of error as 

children develop mathematically. She argued that this type of error is to the result of 

children’s inability to process the given information in a meaningful way. She suggested 

that this inability is due to the fact that in multiplication, the two numbers do not have the 

same roles (referent), so children need to sort out not only how to solve the problem but 

also what each of the given numbers means. 

Use of a unit structure begins when children are able to model both numbers given 

in a problem with their appropriate roles (Mulligan & Watson, 1998). As children begin 

to construct the unitizing structure, they will be able to directly model the previously 

mentioned gum package situation using concrete objects. A typical solution strategy 

includes counting out three groups of four objects and then counting all of the objects 

again from 1 in order to determine how many pieces of gum Robin has all together 

(Carpenter et al., 1999; Kouba, 1989).  

 Children continue to construct the unitizing structure through quotative division 

problems such as the following example: “We went to the pet store and bought 21 fish. 

We have to put the fish into bowls, but we can only put three fish in each bowl. How 

many bowls do we need?” In the beginning, children generally solve this problem by 

making groups of 3 and building up until there are 21 in total (Fosnot & Dolk, 2001a). In 

order to determine the total, children will count all the objects from 1 and then count the 

groups to figure out how many bowls are needed. As children construct and reorganize 
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these foundation strategies, they might begin to move away from unitary counting of the 

first group by using a counting-on strategy (e.g. Anghilieri, 1989; Carpenter et al., 1999). 

Instead of counting all 21 objects from 1, they will start at 3, after the first bowl, and then 

count on to 21. Lamon (1994) considered this strategy one of the early signs of the 

development of a composite unit. 

Foundation big ideas 

Until this point, the counting-by-1s strategy might be the only way that children 

have interacted with objects and numbers. In order to move beyond counting by 1s, 

children need to have constructed the mathematical structure of cardinality (Anghlieri, 

1989). When children first begin counting, they often do not understand that the last 

number that they reach when counting a set is the number of objects in the set (Gelman & 

Gallistel, 1978; Fosnot & Dolk, 2001a). If there are five objects in a set, and if children 

can successfully count them, ending at 5, they might or might not have developed 

cardinality. If they demonstrate an understanding that they need all five objects to make 

5, and not just the last one that they tagged and called “five,” then they have constructed 

cardinality, at least with small numbers.  

Another important structure (big idea) of numbers is hierarchical inclusion, which 

refers to the relationship of the numbers in a number sequence (see Figure 3). Each 

number in the sequence is related to the one before as each number grows by exactly 1 

each time. Steffe (1988) referred to both of these concepts together when he discussed the 

explicitly nested number sequence. Cardinality and hierarchical inclusion are constructed 

as children work through multiplication problems with manipulatives such as fingers and 

blocks. When they count all the groups together, the mathematical structure of cardinality 
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means that each number includes all of the others up to that point. When solving 

multiplication problems, children often will count objects or fingers in groups as they 

directly model a problem. As they model and count, they are reinforcing the cardinal and 

hierarchical structure of numbers because they can visually see the number of items grow 

every time they add another object or group of objects. 

 

Landmark strategies, unitizing structure on the horizon 

Steffe (1988) suggested that through the construction of cardinality and 

hierarchical inclusion, children begin to realize that there is great power in being able to 

create a composite unit from a segment of the number sequence. This segment can be 

treated as a new unit. Instead of moving up the number line by 1s each time, now it is 

possible to move up using jumps of this new unit. It is here that the beginnings of skip 

counting are found. Grounded initially in concrete objects, children now will begin to 

count objects or fingers using rhythmic counting (Anghileri, 1989). For example, when 

solving the earlier gum example, a child who was confident in the cardinal structure of 

number would have counted, “one, two, three, FOUR”; pause; “five, six, seven, EIGHT”; 

pause; “nine, ten eleven, TWELVE.” The emphasis on and the pauses after the 4, 8, and 

12 would have indicated the new composite that the child was using when counting. 

Anghileri (1989) called this pause “tallying the groups” (p. 375), and she suggested that 

after stating the last number in each sequence, children must pause while they transfer the 

Figure 3. Graphical representation of hierarchical inclusion. 
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meaning of the number word they have just spoken from the counting meaning to the 

cardinal meaning to create a subtotal that they can then extend. Other researchers have 

referred to this strategy as many-to-one counting (e.g., Blöte, Lieffering, & Ouwehand, 

2006).  

Through repeated exposure to these rhythmic counting patterns, the interim words 

become internalized (e.g., whispered, mouthed, or paused), leaving only the sequence of 

emphasized words (Anghileri, 1989). Each time that a leap is taken along the counting 

sequence, the new number represents a subtotal of all the objects counted (or imagined) 

so far. In order to solve multiplication or division problems with rhythmic counting or 

skip-counting sequences, children must be able to keep two tallies going simultaneously. 

Anghileri (1989) suggested that the development of fluency with a number pattern (skip-

counting sequence) lightens the information-processing load, enabling children to better 

keep track using a form of double counting. When double counting, children keep track 

of the number of iterations either mentally or by using fingers or tallies.  

Skip-counting and double-counting strategies (note: double counting is skip 

counting while keeping track) might be critical to the development of unitizing (Mulligan 

& Watson, 1998) because these strategies set up the foundation for the iteration of a unit. 

The selection of the unit to skip count by is usually directly related to the structure of the 

problem. By looking again at the problem with the three packs of gum, each with four 

sticks of gum inside, it becomes clear that this problem could be solved with a skip 

counting strategy such as, “4, 8, 12, … 12 pieces of gum in all.” During this counting 

procedure, a double count might be used to keep track of how many times they counted. 

This second counting sequence represents the number of packs of gum that Robin has. 
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 Skip-counting strategies also can be used to solve division problems. Quotative 

division problems lend themselves more naturally to these strategies because children are 

able to skip count using the number of objects in each group as the unit to skip count by. 

In order to determine the number of fish bowls that someone needs to buy to have enough 

bowls for 21 fish when only three can fit in a bowl, a skip-counting strategy might look 

like this: “Three,…one (puts up one finger), six,…two (puts up a second finger), nine …, 

three (puts up third fingers), 12, … four (puts up fourth finger), 15, … five (puts up fifth 

finger), 18, … six (puts up sixth finger), 21. You need seven bowls.” Sometimes, if 

children know only the first few numbers in a skip-counting sequence, they might skip 

count initially and then finish their solution using unitary or rhythmic counting.  

  Partitive division problems also can be solved using skip-counting strategies, but 

because the size of the group is unknown, it is challenging for young children to know 

what to use as the skip unit. They usually use a trial-and-error strategy, guessing a 

possible number to skip by and checking to see if it works (Carpenter et al., 1999). They 

then adjust the number selection and try again.  

Children also use computation strategies, such as repeated addition and repeated 

subtraction (division context) to solve multiplication and division problems. (Anghileri, 

1989; Kouba, 1989; Mulligan & Mitchelmore, 1997; Mulligan & Watson, 1998). One of 

the difficulties for children using a repeated addition strategy, especially in a division 

context, is to know when to stop adding. In her study on understanding multiplication, 

Anghileri (1989) suggested that this computation strategy allows children to really only 

use one number in the problem at a time. One factor is used as the initial input, and this 
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unit is added over and over again before the second number is considered. This second 

factor is used only to determine when to end the addition sequence. 

 Not all students execute repeated addition or subtraction sequences in the same 

way. Examples from Fosnot and Dolk (2001b) showed a variety of ways that problems 

like these can be solved. They published findings describing how children solved the 

division question 328 ÷ 8. Some children who were just beginning to make use of these 

strategies added (or subtracted) all of the numbers one at a time until they found the 

solution. Other students made groups using known facts. It is in this grouping of terms 

that one of the children cited by Fosnot and Dolk began to speak about the composite unit 

as something that also is countable.  

We started to add up eights, but after we wrote down six of them, we realized that 

we knew six times eight. It’s forty-eight. So we wrote that” “Then two forty-

eights. So that is … twelve eights … and we added forty-eight and forty-eight. 

That’s ninety-six. (p. 66) 

  The children who were using this grouping strategy demonstrated that they were 

counting the units of 8. It was in this counting of units that the solution began to reflect a 

multiplicative structure.  

Other researchers have suggested that the doubling or grouping of units can act as 

a bridge between additive and multiplicative thinking. Kouba (1989) suggested a 

connection because she grouped these solution strategies with the recalled number facts 

when analyzing her data. Lamon (1994) also included regrouping strategies in her 

theoretical chart exploring the increasing sophistication of the unitizing structure. She 



33 

 

conceptualized these strategies as a part-part-whole relational understanding of unitizing 

when solving multiplication or division problems.  

Landmark strategies, multiplicative structure on the horizon. Children who 

have constructed the unitizing structure will talk about the iterated unit as something that 

can be counted. Mulligan and Watson (1998) reported that these children in their study 

represented their thinking using words like “nine eights are seventy-two” (p. 77). With 

this deeper understanding, children can develop flexibility with the units, allowing them 

to reorganize their previous strategies. Two new strategies then emerge, namely, using 

known facts and using derived facts. Derived facts using distributive property require an 

understanding of unitizing and the multiplicative structure of number.  

An understanding of unitizing and the multiplicative structure of number is also 

the case for using the algorithms for multiplication and division with understanding. The 

ability to model the binary structure of multiplication is essential to fully understanding 

the multiplicative structure. Clark and Kamii (1996) suggested that although additive 

thinking only requires one level of inclusion relationships, multiplication requires the 

composition of two levels of inclusion relationships. On one level, the many-to-one 

correspondence (e.g., four pieces per pack) creates one level of inclusion, and the other 

lies in the number of groups (e.g., three packs of gum). The multiplicative structure is 

powerful, enabling children to construct a deeper understanding of part-whole 

relationships and to use multiplication and division strategies to solve problems (Fosnot 

& Dolk, 2001a).  

Although researchers have been able to see the possible route and nature of the 

development of unitizing in children, all of the results have come from cross-sectional 
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studies, short studies, or a few studies of individual cases. To understand unitizing and its 

development fully, researchers must look at them over an extended period of time to gain 

a deep, rich, and connected understanding. Furthermore, researchers must do so in classes 

that support and develop the growth of unitizing rather than mask and undermine it with 

procedures. What does the development of unitizing look like in reform-oriented 

classrooms over a 4-year period from Grade 1 to the end of Grade 4? Is it similar to 

Fosnot (2007b) and Lamon’s (1994) framework, or is it different? 
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CHAPTER THREE 

METHOD 

Purpose 

 The purpose of this longitudinal case study was to investigate the development of 

unitizing in children from Grade 1 to Grade 4 in reform-oriented classrooms. The 

theoretical landscape of learning developed from the psychological theories of Piaget (as 

cited in Fosnot & Dolk, 2001b; Fosnot & Perry, 2005) and Lamon's (1994) theoretical 

development of the unitizing process were used as tools to assess the development of 

unitizing in this group of children. The data analysis and interpretation helped to extend  

these theories for the development of unitizing for this group. 

Design of the Study 

 Creswell (2007) defined a case study as a methodology requiring the gathering of 

multiple sources of data over time from a “bounded system” (p. 73). Merriam (1988), 

who wrote specifically about case studies in the field of education, defined a case study 

as “an intensive, holistic, description and analysis of a single instance, phenomenon, or 

social unit” (p. 21). Conducting a longitudinal case study allowed me to explore the 

complexity of the development of unitizing by students over time as well uncover themes 

as they developed unitizing (Creswell, 2007). To complete this study, I used previously 

collected data from the Elementary Mathematics Research Project, headed by Alex 

Lawson. I analyzed the video data of students solving multiplication and division 

problems to explore the development of unitizing over the span of 4 years.  
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Research Sample 

In 2005, a school in Mississauga, Ontario, was selected as the research site for the 

research ethics board (REB)-approved longitudinal study by Lawson. The school was 

purposefully selected because of the willingness of the principal and teachers to learn 

about and implement reform-oriented mathematics instruction. An additional 

consideration was the school’s diverse ethnic and lower SES student population.  

 In the fall of 2006, Lawson conducted private and separate interviews with 30 

Grade 1 students from two classrooms. In the fall of 2007, another 31 Grade 1 students 

were interviewed because it became apparent that a second cohort of students would be 

required to have sufficient numbers to complete the 5-year-long study. By the final 

interview session, the students were in the spring of Grade 5. Lawson conducted the final 

interviews with the second cohort in the spring of 2012. For the purposes of this study, 

only interview data from the Grade 1 fall interview for both cohorts (2006 and 2007) 

until the Grade 4 spring interview for both cohorts (2010 and 2011) were used.  

Procedure  

After receiving ethics approval from Lakehead University’s REB and the Peel 

District School Board, Lawson selected a school based upon the eagerness of the school’s 

principal to be involved in the study and support her teachers, the keenness of the 

individual teachers involved, and the cultural and SES demographics of the school. 

Teachers were offered the opportunity for professional development in the area of reform 

mathematics instruction. This instruction was provided by Lawson, the primary 

researcher of the longitudinal study. Teacher participation in the project was optional. 

Participation in the professional development and implementation of reform-based 
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mathematics varied among the individual teachers. Because all teachers in Ontario have 

the choice whether or not to take professional development and the autonomy to 

implement new ideas into their classrooms in their own ways, the situation in the research 

school was reflective of any other school in the province. 

Data collection began in the fall of 2006. Parents or guardians were sent a letter of 

information and a request asking their permission for their children to participate in the 

study. Similar permission was requested of the additional cohort of 31 students in the fall 

of 2007. Each September, a similar letter was sent home requesting continued permission 

for each child’s participation in the project. 

 Children were interviewed twice each school year, that is, once in the fall and 

again in the spring, by either Lawson or a member of the research team. Each interview 

lasted between 20 and 80 minutes, with the interviewer remaining sensitive throughout to 

participant success, engagement, and affect. The interviewer checked in with the 

participants about any desire to end the interview. The interviews were videotaped using 

two distinct angles: a medium shot and a bird’s eye shot. The written artifacts from each 

interview were collected and catalogued. Video footage was then edited using Final Cut 

Pro, and segmented clips were uploaded into ATLAS.ti. The full data set comprised in 

excess of 9,500 video clips. 

Data Collection and Development of the Codes  

To answer the research question (i.e., What are the critical strategies and models 

used by a cohort of 34 children in a reform-based mathematics program as they develop 

unitizing from Grade 1 to Grade 4?), I searched and sorted through the full interview 

instrument for questions that could have revealed information about the development of 
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unitizing (see Appendix B). From this list of possible questions, five were selected for 

analysis. No single question was asked in exactly the same way over the 5 years of 

interviews, but pairs of similar questions with similar attributes were grouped. The 

selection included one set of paired multiplication questions, one additional 

multiplication question, and one set of paired quotative division questions. 

Initially, each item was coded on a 4-level scale of correctness. For students who 

independently solved an item correctly or picked up on a mistake as they explained their 

thinking, the item was coded as correct. When students made a small calculation error as 

they solved the problem, but their solution strategy would work to solve the problem, the 

item was coded as incorrect but close. When students received a level of assistance from 

the interviewer that directed them in some way toward the solution or aided them in 

solving the problem, the item was coded as correct with help. When students were unable 

to solve the problem, opted to pass on a problem, or made large calculation or strategy 

errors, the item was coded as incorrect.  

 For each item or pair, I used the literature to create a list of expected strategies 

children might use to solve the calculation. I compiled these items or pairs and the 

expected strategies as well as the grades in which each question was asked (see Appendix 

C). In addition to strategies, I looked for the models that the children used to represent 

and organize their thinking. Models are representations of the strategies that children are 

using to solve a problem (Fosnot & Dolk, 2001a). These models can be a representation 

of their thinking or a tool to help them solve the problem. The models I expected to be 

used by the children in this study included concrete modelling, modelling with an 
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arithmetic rack, an open number line, a closed array, an open array, a T-chart or a ratio 

table, a money model, and modelling with symbols. 

Initially, I created a priori codes using Fosnot’s (2007b) landscape of learning for 

multiplication and division as well as her 2007(a) landscape of learning for addition and 

subtraction. The list of codes for strategies, models, and correctness can be found in 

Appendix D. After completing the initial coding, I analyzed across the question types in 

order to examine the development of unitizing across the variety of question types. 

 For the purposes of this analysis, the responses coded as correct and incorrect but 

close were combined because the errors in the category of incorrect but close were 

extremely minor (e.g., miscounting by 1) and did not constitute a mathematical 

misunderstanding. The percentages reported are the percentage correct for the sample 

only where indicated. All frequencies listed are the number of correct responses of a 

particular type, and the percentages for these frequencies are compared to the total 

number of correct responses for that item at the time of the given interview. The co-

occurrence values reported include all coded solutions, regardless of the level of 

correctness. 

Verification 

 Three distinct verification strategies were used: triangulation; member checking; 

and rich, thick descriptions. Triangulation was achieved in two ways. First, the 

development of unitizing was analyzed for each question or pair. Second, the questions or 

pairs selected for analysis were of two different types. The development of unitizing for 

each type of question was analyzed and compared.  
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During the course of the interviews, the interviewer often asked the students to 

explain their thinking or strategies. After this was done, it allowed me to check during the 

coding process whether what I saw in the video was reiterated by the students when they 

explained their thinking. When the analysis began, Lawson assisted with the initial 

coding to ensure that each strategy and model was well defined. If at any time I was 

uncertain of the strategy or model code, I asked her to assist until we came to a consensus 

about the implemented strategy or model.  

During the reporting process, I used rich, thick descriptions of the students’ 

solutions, along with scans, where useful, when giving examples of various strategies and 

models. The use of video made this possible. All descriptions were cited with a primary 

document number linked to the video clip to allow others to follow the qualitative trail of 

my analysis.  

Ethical Considerations 

The REB approved the research project under which this study fell. Permission 

for the video data to be used by other members of the research team had already been 

obtained from the parents of the children in the fall of each year of the longitudinal study. 

Because members of a vulnerable population were involved in this research, extra care 

was taken to ensure that the children were treated ethically in all respects. Letters of 

consent were sent home and signed for each year of participation in the study. The 

children and their families were able to withdraw from the project at any time without 

any negative repercussions. The children’s raw video data and edited data are stored on 

secure hardware in locked cabinets at Lakehead University in Thunder Bay, Ontario. 

When citing examples by specific children, only their first names were used. During the 



41 

 

interview process, extra care was taken to ensure that the children felt comfortable and 

were not overly stressed. To address the issue of benefits to the participants, Lawson 

provided ongoing professional development and support to the participating classroom 

teachers and the principal at the research site. The inevitable classroom interruptions that 

arose during the interviews were minimized. 
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CHAPTER FOUR 

FINDINGS 

Organization of the Findings 

Overall Organization  

  The following section is categorized by the type of question asked, that is, 

multiplication or division. Each section is further organized by the question posed. The 

items are then sequenced by grade in which the question was asked, beginning with early 

primary and ending with early junior. Student responses were coded as correct, incorrect, 

incorrect but close, or correct with help.  

Organization of Strategies and Models 

Organization of the strategies and the models in this study is different from that of 

most other research (e.g., Anghileri, 1989; Muligan & Mitchelmore, 1997) because I 

analyzed the strategies and models separately. This separation during the analysis phase 

also was done by Kouba (1989), albeit to a lesser degree. Although some of the models 

were used exclusively with particular strategies, many of them were used with a variety 

of strategies. Likewise, although a couple of strategies were used exclusively with a 

particular model, many of them were used with a variety of models. Through the use of 

the qualitative data analysis software ATLAS.ti, I coded the solutions in very fine detail 

and examined in depth the development of unitizing in this population of students. In 

Chapter 4, I report the interplay among the models and strategies that were revealed 

through this process.  

Typically, researchers have focused more on the diverse strategies that students 

use to solve problems, that is, by identifying models as simply concrete or symbolic. As 
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discussed in Chapter 3, researchers have noted that some students use more ikonic, or 

concrete, models to support more sophisticated strategies (Anghileri, 1989; Mulligan & 

Watson, 1998). Graphical representations and explanations of the models and strategies 

for multiplication can be found in Appendix E. Graphical representations and 

explanations of the models and strategies for multiplication can be found in Appendix F. 

Examination of Multiplication Problem Findings 

Primary Multiplication Problems 

Overview of results for 3 × 4. At the first interviews in the fall of 2006 and 2007 

with the two cohorts of Grade 1 students, 53 (87%) of the 61 students were asked to solve 

a word problem that required the calculation 3 × 4 similar to the following: “Robin has 3 

packages of gum. There are 4 pieces of gum in each package. How many pieces of gum 

does Robin have all together?” Thirty-three of the 53 students (62%) were able to solve 

the problem correctly (see Table 3). By the second interview in the spring of 2006 and 

2007 with the two cohorts of Grade 1 students, the number of students with correct 

solutions had risen to 43 (81%). 
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Table 3 

Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 3 × 4 or 6 × 4 

 
Models used in correct solutions for 3 × 4. The comparison of models used in 

correct solutions to the problems involving the calculations 3 × 4 and 6 × 4 are presented 

in Figure 4. Twenty-five (76%)  of the 33 Grade 1 students who responded correctly in 

the fall of 2006 and 2007 used a model in which they physically represented each object 

in each group. To represent the problem using this model, students had to be able to 

compose groups of 4 while also counting or subitizing that they had constructed three 

groups. Lamon (1994) suggested that this composition might indicate the very beginning 

of unitizing. Some students needed to count individual cubes and groups, but others were 

able to use subitizing to see the quantity of cubes in each group and/or the number of 

groups. However, data about this distinction were not coded. 

At the spring (2007 & 2008) interview, although 19 (44%) of the 43 Grade 1 

students continued to solve the problem correctly by representing each object in each 

group, there was an increase in the number of students who modelled only one group to 

solve the problem. The incidence of the use of this model rose from two of 33 students 

(7%) in the fall (2006 & 2007) to eight of 43 students (19) in the spring (2007 & 2008) 

Interview Total no. of 
students 

interviewed 

Total no. of 
students posed 3 × 

4 or 6 × 4 
question 

No. of 
students 

who 
answered 
correctly 

% correct of 
those who 
were asked 

1st interview: Grade 1 fall (2006 & 
2007) 

61 53 33 62% 

2nd interview: Grade 1 spring (2007& 
2008) 

61 53 43 81% 

3rd interview: Grade 2 fall (2007 & 
2008) 

56 56 36 64% 

4th interview: Grade 2 spring (2008 & 
2009) 

54 23 20 87% 
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students (58%) for solving this problem in the fall (2006 & 2007) was counting-by-1s. By 

the spring (2007 & 2008), the prevalence of this strategy had fallen, with only eight 

(20%) of 43 students using a counting-by-1s strategy. At each of the two interviews, a 

small number of students (one [3%] of 33 who answered correctly in the fall of 2006 & 

2007 and two [5%] of 43 who answered correctly in the spring of 2007 & 2008 ) also 

used a unitary counting strategy, but they began by counting on after the first set. 

According to Lamon (1994), the ability to count on is reflective of a very basic 

development of unitizing. Related to subitizing, the ability to consider the first group of 4 

as both four pieces of gum and as one pack demonstrated the very beginning step toward 

unitizing.  

At the time of the second interview with 61 students in Grade 1 in the spring of 

2007 and 2008, there was an increase in the number of students who knew the first 

doublet (i.e., 4 + 4 = 8) and then used rhythmic counting to count on the last group. In 

order to use this strategy, students had to be able to consider two levels of units 

simultaneously, that is, the two packs of gum and the eight pieces inside those packs. 

Students either could not consider a third pack in the same way or they did not yet know 

8 + 4 without counting. The number of Grade 1 students who used this strategy rose from 

four (12%) of 33 in the fall to 12 (28%) of 43 in the spring. There also was an increase in 

the number of students using strategies involving skip counting by the composite (i.e., 4, 

8,…) from zero to seven (16%) of 43 students. 

Overview of results for 6 × 4. At the time of the third interview in the fall of 

2007 and 2008 with 56 Grade 2 students, the item was altered to a word problem that 

required a calculation of 6 × 4. At this time, with this increased challenge came a 
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decrease in the percentage of correct responses to 64% of the 56 students. By the fourth 

interview in the spring (2008 & 2009) with 54 Grade 2 students, the percentage of correct 

responses had risen to 87%, or 20 of only 23 students who answered the question.  

Models used in correct solutions for 6 × 4. Although this new question was 

more challenging, there was no increase in use of the model in which students physically 

represented each object in each group. Instead, there was a slight decrease in its use, with 

only 36% (13) of the 36 correct responses from Grade 2 students reflecting this model. 

Six students (16%) continued to demonstrate the ability to model only one group in order 

to correctly solve the problem. 

In the fall (2007 & 2008) of Grade 2, a new model emerged in which four of 36 

students (11%) used counters, fingers, or tallies solely to represent only the groups 

themselves, not the objects within the groups. By the spring interview, the prevalence of 

this model had dropped to one (5%) of 20 students. To model the problem in this way, 

students had to be able to simultaneously see a concrete object such as a finger not only 

as a group but also as a representation of a group of objects. In the case of the current 

problem, the finger was both one package of gum and four pieces of gum.  

In addition, at the spring (2008 & 2009) interview, use of a ratio table in 

rudimentary form by one student (5%) was evident. This model was strongly related to 

the previous model, except that the tracking of the groups and the subtotals were done 

through writing the new subtotal for each group (see Appendix F). Each new number 

written not only represented the total number of pieces of gum so far but also served to 

track the number of packages. 
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Despite the shift to a more challenging computation in the third interview with 

Grade 2 students (fall 2007 & 2008), the number of students who correctly used mental 

calculations remained relatively constant from the spring of Grade 1 to the fall of Grade 

2, with nine (21% of 43) Grade 1 students and 9 (25% of 36) Grade 2 students using this 

strategy at both interview times, respectively. At the time of the fourth interview with the 

Grade 2 students in the spring (2008 & 2009), there was an increase in the number of 

students mentally calculating the solution to 6 (26%) of 23 students.  

Strategies used in correct solutions for 6 × 4. The downward trend in the use of 

the counting-by-1s strategy seen at the second interview for 3 × 4 continued at the third 

and fourth interviews, despite the increased challenge of the problem. Only 6 (17%) of 

the 36 students who answered correctly used that strategy in the fall of Grade 2, and by 

the interview in the spring of Grade 2, no students used that strategy. Strategies involving 

rhythmic counting continued to be correctly used with some frequency in the Grade 2 fall 

interview (2007 & 2008), varying only by whether students started counting from 1 (six 

[17%] of 36 students); after the first set (two [5%] of 36 students); or after the first 

doublet (three [8%] of 36 students).  
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this problem, they had to be able to consider each group of four pieces of gum as a new 

pack, and they had to keep track of how many packs they had counted. The strategy did 

not quite require the simultaneity that some of the other strategies required because the 

students could count the individual units (i.e., the pieces of gum) and then, during the 

pause, calculate the second level of units (i.e., the packs). By the Grade 2 spring 

interview (2008 & 2009), the most commonly used strategy that involved rhythmic 

counting was the one that began with a doublet (four [20%] of 20). 

New strategies also emerged at the time of the third interview (fall of 2007 & 

2008). Three (8%) of the 36 Grade 2 students used a regrouping or reunitizing strategy. 

This number increased to four (20%) of 20 students at the following spring interview. To 

use a regrouping strategy correctly, students had to be able to take two packs of gum, 

each pack comprising four pieces, to create groups of 8. The students had to keep track of 

the original six groups of 4 in order to know that each of the new groups of 8 represented 

two packs of gum. Because each new group constituted two packs, adding three of them 

was the same as adding six of the original packs of gum. According to Behr et al. (1994), 

correct execution of this strategy requires the conceptualization of units in units in units 

(i.e., three groups, two gum packs per group, four pieces of gum per pack; see Figure 6). 

Issues with the posing of 6 × 4. Unfortunately, 6 × 4 was not posed uniformly to 

all 43 students in the Grade 2 spring interview who were posed this problem. Twenty-

three students were asked to calculate 6 × 4 but twenty were asked 4 × 6. Although the 

difference between these questions appeared slight, four groups of 6 could easily have 

been solved with doubling, so there might have seen a larger trend toward regrouping to 

doubles than if the question had remained six groups of 4. Although the two forms did 
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not appear to alter model or strategy choice, I decided to use only the data from the 

question when asked as 6 × 4 to ensure a reliable comparison over time.  

 Figure 6. Depiction of the way 24 would be unitized when solving a multiplication 
problem with six groups of 4. 
 

Overview of results for 4 × 10. A word problem that required the calculation  

4 × 10 was included at the time of the Grade 1 fall interview for 30 students (see Table 4) 

similar to the following: “Corrine has 4 packages of baseball cards. There are 10 baseball 

cards in each package. How many baseball cards does Corrine have all together?” At that 

time, 22 (73% ) of the 30 students asked were able to answer the question correctly. By 

the spring of Grade 1, 91% (43) of the 47 students posed gave a correct response to the 

problem. This question also was asked at Interviews 3, 4, 5, and 6: fall of Grade 2, spring 

of Grade 2, fall of Grade 3, and spring of Grade 3. The percentages of correct responses 

during these interview times were 87% (45 of 52 students), 92% (48 of 52 students), 93% 

(37 of 40 students), and 97% (37 of 38 students), respectively.  

Models used in correct solutions for 4 × 10. A comparison of models used in 

correct solutions to the problems involving the calculations 4 × 10 are presented in Figure 

7. As with 3 × 4, 15 (68%) of the 22 students with correct solutions at the Grade 1 fall 
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interview primarily modelled out all the objects in all the groups to find the solution. Four 

(18%) of 22 students automatically knew the solution, and two (9%) of 22 students used 

mental calculation at the first interview.  

By the second interview of Grade 1 students in the spring, the percentage of 

correct solutions modelling all the objects and all the groups had dropped to 17 (40% of 

43 students), and the number of automatic student responses had risen to 15 (35%) of the 

43 students. At the Grade 1 spring interview, four (9%) of 43 students modelled only the 

groups; this model was not seen when students were asked 3 × 4 at the same interview 

time. 

Table 4  

Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 4 × 10 

 
At each of the three subsequent interviews (Grade 2 fall, Grade 2 spring, and 

Grade 3 fall), the number of students who modelled all the objects in all the groups 

continued to decline, with 10 (22%) of 45 fall Grade 2 students, eight (17%) of 48 srping 

Grade 2 students, and two (5%) of 37 fall Grade 3 students, respectively. There was a 

slight increase in the number of students using this model at the Grade 3 spring interview 

Interview Total no. of 
students 

interviewed 

Total no. of 
students asked  

4 × 10  

No. of 
Students who 

answered correctly 

% correct of 
those who were 

asked 
1st interview: Grade 1 
fall 

61 30 22 73% 

2nd interview: Grade 1 
spring 

61 47 43 91% 

3rd interview: Grade 2 
fall 

56 52 45 87% 

4th interview: Grade 2 
spring 

54 52 48 92% 

5th interview: Grade 3 
fall 

45 40 37 93% 

6th interview: Grade 3 
spring 

45 38 37 97% 
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Strategies used in correct solutions for 4 × 10. A comparison of strategies used 

in correct solutions to the problems involving the calculations 4 × 10 is presented in 

Figure 8. Nine (41%) of the 22 fall Grade 1 students used a counting-by-1s strategy to 

calculate the total. An additional two (9%) of these 22 students counted objects by 1s, but 

they counted on after the first set of 10. Two more of the 22 students (9%) demonstrated 

a rhythmic counting strategy starting from one. Four (18%) of the 22 students skip 

counted up the number sequence with jumps of 10. Skip counting is similar to rhythmic 

counting in terms unitizing. However, the children’s knowledge of the skip counting 

sequence removed some of the cognitive load required and allowed for a greater level of 

simultaneity between the calculation of the subtotals of individual units (i.e., candies) and 

the units of one-units (i.e., bags). In the fall of Grade 1, two (9%) of these 22 students 

already knew the solution as a math fact. 

By the Grade 1 spring interview, the number of students correctly using the 

counting-by-1s strategy had fallen to five (12%) of 43 students. There was no evidence of 

counting on from the first set or of rhythmic counting from one. Instead, 16 (37%) of the 

43 spring Grade 1 students used the strategy of skip counting by 10s. This result was 

congruent with Anghileri’s (1989) conclusion that as students become more familiar with 

the skip counting sequence (number pattern), they will replace rhythmic counting with a 

skip counting sequence. Eight (19%) of the 43 students reported knowing 4 × 10 as a 

math fact.  
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not to ask students who responded automatically about their strategies. Responses were 

determined to be automatic if the student's response to the question was so rapid that I 

felt that no calculation took place. In traditional mathematics classrooms, this speedy 

recall was called memorization and it was achieved through repeated drill of isolated 

facts with classroom tools such as flash cards. In the classrooms where the participants in 

this study learned, math facts were automatized. This means that through practice of 

relating facts to each other and calculating these facts and related facts over and over the 

process of calculating the fact becomes automatic and so fast that the recall of the fact is 

almost immediate. In the fifth and sixth interviews with the fall and spring Grade 3 

students, the number of student responses coded as method unsure was around 50%. 

Most of the occurrences of the code of unsure for this calculation across these two 

interviews co-occurred with automatic student responses (84% of 37); therefore it is 

likely that where these codes co-occurred, students knew the solution as a fact. 

Interplay Among the Strategies and Models in Primary Multiplication 

  To better understand the relationships between the models and strategies, co-

occurrence tables were generated in ATLAS.ti that allowed me to examine when 

particular strategies and models occurred together (see Table 5). The strategies of 

counting by 1s and counting on from the first set occurred primarily when students used a 

model in which they represented all the objects in all the groups. Students flexibly used 

the model representing all the objects in all the groups, as demonstrated by the fact that 

each main strategy to solve these problems was used in conjunction with this model. 

Rhythmic counting primarily occurred with the model of representing just one group, and 

rhythmic counting was the most common strategy used with that model. When students 
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represented the problem by representing only the groups, the most common strategy used 

in the primary grades was skip counting by the composite. This strategy was the only one 

used alongside the rudimentary ratio table model. 

Table 5 
 
Total No. of Occurrences of Various Strategies Used for All Solutions to Problems 3 × 4, 
6 × 4, and 4 × 10 
 

Model  
strategy  

Represents all 
objects in all 

groups  

Represents 
one group  

Represents 
only 

groups  

Rudimentary 
ratio table  

Other Total 

Counts by 1s  72 0 0 0 7 79 
Counts on from 
first set  

10 0 0 0 0 10 

Rhythmic 
counting  

10 21 2 0 20 52 

Skip counting by 
composite  

21 7 16 3 34 78 

Skip counting < 
composite  

8 1 0 0 1 10 

Doubling/Regroup
-ing  

6 0 0 0 18 24 

Other 40 1 7 0   
Total 167 30 25 3   
 

Primary/Junior Multiplication Problems 

  Overview of results for 6 × 7. At the Grade 3 and 4 interviews (see Table 6), 

students were posed a word problem that required the calculation 6 × 7 similar to the 

following: “Josh has six fish bowls. There are seven fish in each bowl. How many fish 

does Josh have?” In the fall and spring Grade 3 interviews, 36 students, respectively, 

were asked to use mental strategies to solve this problem. The children found this 

calculation very challenging to complete mentally, as reflected by the 50% (18) and 58% 

(21) success rates on this problem. By the Grade 4 interviews, students were allowed to 

use modelling on paper or manipulatives to support their thinking. The success rate rose 

to 33 (85%) of 39 fall Grade 4 students and 35 (95%) of 37 spring Grade 4 students. 
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Following is a report on the models used by students; it is important to keep in mind that 

students were not given free choice as to the model to use in the Grade 3 interviews. 

Table 6 
 
Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 6 × 7 
 

 

Models used in correct solutions for 6 × 7. A comparison of models used in 

correct solutions for the problems involving the calculations 6 × 7 is presented in Figure 

9. As expected, regardless of the mental calculation constraint, the number of students 

who knew the solution automatically grew across the interviews from one (6%) of 18 

students in the fall of Grade 3 to seven (20%) of 35 students by the spring of Grade 4. 

Sixteen (76%) of the 21 correct student strategies in the spring Grade 3 used completely 

mental calculations, and three (14%) of these 21 students modelled only the groups, using 

their fingers to keep track of their sevens.  

The Grade 4 interviews were likely more indicative of the students’ true models 

because they were once again free to select their own models. This freedom saw mental 

and automatic strategies drop to a total of 10 (30%) of 33 fall Grade 4 students, and the 

frequency of students representing all the objects in all the groups rise sharply to 9 (27%) 

Interview Total no. of 
students 

interviewed 

Total no. of 
students 

asked 6 × 7 
 

No. of students 
who answered 

correctly 
 

% correct of 
students who 
were asked 

1st interview: Grade 3 fall (2006 & 
2007) 

45 36 18 50 

2nd interview: Grade 3 spring (2006 
& 2007) 

45 36 21 58 

3rd interview: Grade 4 fall (2006 & 
2007) 

41 39 33 85 

4th interview: Grade 4 spring (2006 & 
2007) 

39 37 35 95 
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of 33 students in the fall Grade 4 interview. Although students’ use of automatic and 

mental models began to rise again in the spring Grade 4 interview to a total of 18 (51%) 

of 35 students, the modelling of all the objects in all the groups continued to be 

employed, as noted in eight (23%) of the 35 correct responses. Students continued to 

model only the groups with three (9%) of 33 and two (6%) of 35 student solutions 

reflecting this strategy in the Grade 4 fall and Grade 4 spring interviews, respectively.  

At the Grade 4 fall interview, students began to use a series of similar models that 

involved the writing of the number symbol 7 iterated six times; two (6%) of 33 students 

at this interview used the strategy of representing groups with number symbols, three 

(9%) students used the model of repeated addition, and two (6%) students used the new 

whole model. By the spring Grade 4 interview, these related models were used by four 

(11%) of 35 students, no (0%) students, and one (3%) student, respectively.  

To represent the problem with any of the above three models, students had to be 

able to see the number symbol 7 as representative of the number of fish inside each bowl 

as well as a single bowl in order to track the number of bowls being combined. Later, I 

discuss whether the models drew out different strategies when examining the interplay 

between strategies and models for primary and junior multiplication. Also seen was the 

emergence of the use of a rudimentary ratio table to model the problem, with three (9%) 

Grade 3 students using this representation in the fall interview and one (3%) Grade 3 

student continuing to represent the problem in this way at the spring interview. 
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addition), but for the purposes of analysis, these strategies were combined into a single 

group. The exception to this recombination (one student [6%]) was a strategy that 

involved doubling to form a new composite but then splitting the new composite along 

place value lines in order to add to the total.  

Found in the analysis of the Grade 3 spring interview data were results showing 

that occurrences of skip counting had dropped to zero and that use of repeated addition 

had dropped to two (10%) of 21 of the Grade 3 students. The prevalence of the strategy 

of doubling to form a new composite and then calculating the total using iterations of this 

new composite rose to seven (33%) of 21 student responses. The students’ solutions, 

making use of doubling to form a new composite, followed by a splitting strategy, also 

increased, with two (10%) of 21 students using this strategy.  

Even after students were permitted to use a variety of models at the Grade 4 fall 

interview, few of the 33 students used unitary counting strategies (i.e., two [6%] of 33). 

Three (9%) of the 33 students successfully used skip counting strategies. The doubling 

strategies that had emerged in the Grade 3 interviews continued to be used by students in 

the Grade 4 fall interview, with nine (27%) of the 33 students using the strategy in which 

the new composite of 14 was added consecutively three times. The other strategy 

involving doubles, in which students then split the three 14s in order to combine them, 

also was used by two (6%) of the 33 Grade 4 students.  
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working with the 7s and the 14s. The use of the commutative property of multiplication 

was evident in the remaining interviews at which this question was asked, with four 

(10%) of the 33 fall Grade 4 students using this property and only one (3%) of 35 

students using it at the Grade 4 spring interview. 

In each interview, some students reported knowing the solution as a fact. In the 

Grade 3 fall and spring interviews, this strategy was limited to one student, 6% of 18 and 

5% of 21, respectively. By the Grade 4 fall interview, this number increased to 5 (15% of 

33) students and then rose again to nine (26%) of 35 students at the Grade 4 spring 

interview. With this slightly more complex question, two strategies emerged that had not 

been seen in the primary multiplication problems. Students reported using a known fact 

to derive the new fact with either addition or subtraction (e.g., 6 × 7 = [5 × 7] + [1 × 7]). 

To build to a solution in this way, students had to understand that six groups of 7 

comprised five groups of 7 and one group of 7 (i.e., the distributive property).  

From a unitizing perspective, this strategy is very similar to a regrouping strategy. 

Students use a known math fact that is as close to the one being asked as they know, and 

then they build either up or down from there. This advanced regrouping strategy was 

utilized by one (5%) of 21 spring Grade 3 students, 4 (12%) of 33 fall Grade 4 students, 

and three (9%) of spring Grade 4 students, respectively. In addition, with a similar 

strategy, students built to the solution with two known facts. Three students (9% of 33) 

and two students (6% of 35) used a student-generated partial products strategy in the 

Grade 4 fall and spring interviews, respectively. 

  Overview of results for 6 × 24. At the four interviews, students were posed a 

word problem that required the calculation 6 × 24 similar to the following: “Sandy has 6 
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boxes of candy. There are 24 pieces in each box. How much candy does she have all 

together?” The challenging problem 6 × 24 provided an opportunity to see children work 

through a more complex multiplication problem that not only was unlikely to be 

automatic but also had large enough numbers that counting by 1s was not practical. 

Because of these two constraints, the weaker math students usually attempted calculation 

strategies instead of counting strategies, and the stronger math students continued to 

develop their solution strategies for the problem at all four interviews when this question 

was asked. Consequently, a wider variety of strategies was seen (see Table 7). 

Table 7 

Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 6 × 24 

 
This question was first asked in the fall of Grade 3. At this time, 21 (51%) of 41 

students who were asked the question solved the problem correctly. This number rose to 

27 (69%) of 39 students who were asked the same question in the spring of Grade 3. It 

fell to 22 (58%) of 38 students in the fall of Grade 4. The number of students who were 

able to correctly solve this problem rose drastically to 32 (82%) of 39 students by the 

spring of Grade 4 (see Table 7). 

Models used in correct solutions for 6 × 24. A comparison of models used in 

correct solutions to the problems involving the calculations 6 × 24 is presented in Figure 

11. The most prevalent models that students used involved those representing the number 

Interview Total no. of 
students 

interviewed 

Total no. of 
students asked  

6 x 24 

No. of 
students who 

answered 
correctly 

% correct of 
students who 
were asked 

1st interview: Grade 3 fall 45 41 21 51% 
2nd interview: Grade 3 spring 45 39 27 69% 
3rd interview: Grade 4 fall 41 38 22 58% 
4th interview: Grade 4 spring 39 39 32 82% 
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symbol 24 iterated six times in one of three ways: in six groups defined by a shape such 

as a square; iterated six times as part of a repeated-addition sequence; and as a new 

whole, where they simply modelled with the number written out six times without any 

other symbols or grouping diagrams. The representation of the problem as repeated 

addition was used correctly by two (10%) of 21 fall Grade 3 students. Two different 

students (7%) of 27 spring Grade 3 students used this model, and three (14%) of 22 fall 

Grade 4 students correctly used this model for solutions. This model was not used to 

represent this problem in the Grade 4 spring interview. The model, representing the 

groups with a number symbol, was used by four (19%) of the 21 fall Grade 3 students, 

two (7%) of the 27 spring Grade 3 students, five (23%) of the 22 fall Grade 4 students, 

and four (13%) of the spring Grade 4 students. Over the same four interviews, the model 

of the new whole was used by four fall Grade 3 students (19% of 21), six spring Grade 3 

students (26% of 27), six fall Grade 4 students (27% of 22), and three of spring Grade 4 

students (9% of 32). The differences among these three models were very slight.  

  In contrast to the results for the primary multiplication problems, there was very 

little use of the model to represent all the objects in all the groups; however, students 

usually did not have enough manipulatives available in the interview to represent the 

problem with this model. This was done expressly to prevent counting by 1s; nonetheless, 

students who required a concrete full representation were able to draw out all the objects 

and groups on paper. 

 
As with the earlier 6 × 7 question, students using a rudimentary ratio table to 

represent their thinking and help them to track the groups were recorded. This model was 

used by 3 (14%) of the 21 fall Grade 3 students, two (7%) of the 27 spring Grade 3 
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composite three times in some way to find the total of 144. Three (17%) of the fall 21 

Grade 3 students correctly used repeated addition. This strategy also was used by three 

(11%) of the 27 spring Grade 3 students and one (3%) of the 32 spring Grade 4 students. 

This strategy was not used in the fall of Grade 4.  

Students used the doubling strategy to create a new composite with much success. 

Of the 21 fall Grade 3 students with correct solutions, two (11%) of them used this 

strategy. The doubling strategy to create a new composite was used by seven (26) of the 

27 spring Grade 3 students, four (18%) of the 22 fall Grade 4 students, and nine (28%) of 

the 12 spring Grade 4 students, respectively. 

The complexity of the problem 6 × 24 resulting from the size of the number 24 

also revealed the presence of two related and more intricate strategies. In these strategies, 

students first split the 24 along place value lines into six 20s and six 4s. In one version, 

the students calculated the subtotal of the 20s and then began to recombine the six 4s one 

at a time to the subtotal from the 20s. This version was the most prevalent initially, used 

by seven (39%) of the 21 fall Grade 3 students correctly, but it was quickly dropped in 

usage and was used only by two students each at the Grade 3 spring (7% of 27), Grade 4 

fall (9 of 22), and Grade 4 spring interviews (6% of 32), respectively. 

In the related strategy, students calculated both the subtotal for the six 20s and the 

subtotal for the six 4s before recombining them to find the total (i.e., essentially using 

partial products). This strategy was executed correctly by only two (11%) of the 21 fall  

Grade 3 students, but it quickly increased in usage with nine (33%) of  27 spring Grade 3 

students, eight (36%) of 22 fall Grade 4 students, and eight (25%) of 32 spring Grade 4 

students, respectively. In terms of unitizing, the difference among these last three 
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ratio problems. In the middle was the middle strategy, not quite one and not quite the 

other (see Figure 13). Likewise, in the same middle ground lies the small number of 

students who split the composite but then doubled the subgroups to find the totals. 

 The added complexity of the problem provided the opportunity to see the use of a 

student-generated partial products strategy, commencing in the Grade 3 spring interview 

with one (4%) of 27 students correctly using this strategy. This frequency stayed about 

the same, with one (5%) of 22 students in the fall of Grade 4, but it rose to four (13%) of 

32 students by the spring of the Grade 4 interview. Students also began to use the 

traditional algorithm along the same time line, with two (7%) of 27 spring Grade 3 

students, two (14%) of 22 fall Grade 4 students, and three (9%) of 32 spring Grade 4 

students (9% of n = 32), respectively, using it. 

 

 

Figure 13. Representations regrouping, splitting with adding 1s to the subtotal, and 
splitting and using new subcomposites to calculate the total. 

 
Interplay Among Strategies and Models in Primary/Junior Multiplication 

I examined five models and seven strategies across the two primary and junior 

multiplication problems that were analyzed to see whether particular models encouraged 

mental strategies; multiplication-level unitizing strategies like regrouping, followed by 

adding the groups; or a ratio understanding of unitizing, as indicated by the use of 
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strategies where the students split the composite into smaller subcomposites and then 

used them to calculate the total, as seen with 6 × 24 (see Table 8). 

Table 8 

Co-occurrences of Strategies and Models in Primary and Junior Multiplication for 
Correct And Incorrect Solutions 
 

Model 
strategy 

Mental 
calculation 

Repeated 
addition 

 

New 
whole  

Represents 
groups and 
comp. no. 

symbol 

Other Total 

Doubles or regroups to 
create new composite 

23 5 12 8 17 65 

Doubles to create new 
composite then splits  

5 0 1 3 4 13 

Creates subcomposites by 
decomposing/splitting  

5 3 9 8 16 41 

Creates subcomposites by 
decomposing/splitting 
BUT recombines by 
adding 1s sequentially on 
to subtotal  

1 1 5 3 7 17 

Repeated addition  5 1 0 0 35 41 
Other 41 3 0 7   
Total 80 13 27 29   
 

As seen in Table 8, students who used a mental calculation to solve the problem 

did so primarily with doubling or repeated addition strategies. As mentioned previously 

in Figure 13, this tendency supported Lamon’s (1994) suggestion that splitting strategies 

are more cognitively demanding than regrouping or repeated addition strategies. Most 

students who used splitting strategies did so by either modelling with a new whole or 

representing the groups with a number symbol, arguably very similar models that 

appeared to be utilized similarly by students across the time span studied. These two 

models did not co-occur in the questions analyzed with the strategy of repeated addition. 

A shift in the model alone, however, was not enough to ensure a transition to the splitting 

solution strategies that required the most complex level of unitizing as the new whole and 
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representing the groups with the composite number symbol were also used by a large 

number of students who used a doubling strategy. 

Summary of Multiplication Findings 

Unitizing Through Models and Strategies in Multiplication Contexts  

 The students used various models through the primary and junior grades to solve 

multiplication problems. In previous research, these models have generally been 

categorized as either concrete modelling or symbolic. In this study, four different models 

or representations that students used to solve multiplication problems that had some 

degree of concrete modelling emerged. These models included concretely modelling the 

whole situation by representing all the objects in all the groups, representing only one 

group, representing only the groups, and representing groups with objects in subgroups. 

Representing the groups and the objects in the groups was the most widely used model by 

the students, particularly in the primary grades.  

Students appeared to use this model in a way that Fosnot and Dolk (2001b) would 

have described as a model of their thinking because they represented the action of the 

problem, and they also used unitary counting to determine the solution. However, this 

model also was widely used with more complex strategies, demonstrating that students 

used this model more generally to support their construction of mathematical relations 

and their increasingly sophisticated structures. In this way, this model supported the 

development of unitizing structures, as evidenced by its use in regrouping and splitting 

strategies. 



72 

 

Examination of Division Problem Findings 

Primary Division Problems 

Overview of results for 15 ÷ 3. In the fall and spring  Grade 1 interviews, 

students were posed a quotative division word problem that required the calculation 15 ÷ 

3 similar to the following: “Tad had 15 guppies. He put 3 guppies in each jar. How many 

jars did Tad put guppies in?” This type of division problem showed whether the students 

were able to iterate a given composite unit, in this case a 3-unit, to determine how many 

groups of 3 were in the total. This task proved quite difficult for many of the Grade 1 

students. In the fall interview, 43 Grade 1 students were asked to solve this problem, but 

only 21 (49%) were able to correctly find the solution (see Table 9). At the spring 

interview, of the 53 Grade 1 students asked, 41 (77%) of them solved the problem 

correctly. 

Table 9 

Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 15 ÷ 3 or 21 ÷ 3 
 
 

Interview Total no. of 
students 

interviewed 

Total no. of students 
asked  

15 ÷ 3 or 21 ÷ 3 

No. of 
correct 

% correct of 
those asked 

1st interview: Grade 1 fall 61 43 21 49% 
2nd interview: Grade 1 spring 61 53 41 77% 
3rd interview: Grade 2 fall 56 45 30 67% 
4th interview: Grade 2 spring 54 43 34 79% 
5th interview: Grade 3 fall 45 40 34 85% 
6th interview: Grade 3 spring 45 39 34 87% 

 

Models used in correct solutions for 15 ÷ 3. A comparison of models used in 

correct solutions to the problems involving the calculations 15 ÷ 3 and 21 ÷ 3 is presented 

in Figure 14. Students used models from three broader categories of models to represent 
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their thinking: adding up, repeated subtraction, and partitioning to represent the problem. 

At the first interview, 12 (57%) of the 21 Grade 1 students used an adding-up model, 

where they used the composite 3 to build up to the dividend of 15. These students either 

used manipulatives to model out each of the individual units inside each group of 3 or 

they used drawings, symbols, or a combination of the two to add up from zero, all the 

way up to 15. Three (14%) of the 21 Grade 1 students modelled the division by repeated 

subtraction. These students started with 15 and removed the composite three units 

repeatedly until they reached zero. Five (24%) more of the 21 Grade 1 students built the 

dividend of 15 with manipulatives or drawings and then partitioned off groups of 3.  

By the second interview in the spring, 18 (44%) of 41 Grade 1 students were 

using an adding-up model; two (5%) of the 41 students were using a subtraction model to 

represent their thinking; and 18 (44%) of the 41 students were using a partitioning model, 

up from only five students in the fall. 

The students used three main adding-up models at the Grade 1 fall interview. 

Four (19%) of the 21 Grade 1 students began their solution by drawing out a trial number 

of empty groups. Although the students demonstrated a large variation in their execution 

of this strategy (e.g., number of groups in the first trial, representation of the composite, 

and simultaneous tracking of the number of groups), the students first drew or otherwise 

represented the fish bowls in the problem. The students then proceeded to fill the groups 

with the composite of three objects using manipulatives, drawings, symbols, or imaginary 

objects. Students also were different in their processes, that is, by whether or not they 

tracked the subtotals and/or the number of groups as they added more groups and objects. 

No single model stood out because only one or two students used any one variation. By 
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the second interview in the spring of Grade 1, the number of students using this cluster of 

strategies had fallen to three (7%) of 41 students.  

At the Grade 1 fall interview, five (24%) of 21 students began by drawing out a 

trial number of groups, but this time, they drew in the objects inside the groups as they 

added each new group, using manipulatives, drawings, or the composite numeral. They 

began with a trial number of these composite-filled groups and then they proceeded to 

count up to see how many individual objects they had all together. There was a lot of 

variety in the ways that individual students used the model (e.g., number of groups in the 

first trial, how the composite is represented, and simultaneous tracking of the number of 

groups). None of these specific models was used by more than one or two students. By 

the spring interview in Grade 1, five (12%) of the 41 students were observed using this 

model. 

At the Grade 1 fall interview, the final adding-up model was used by three 14%) 

of 21 students to solve this division problem correctly. This model also involved 

representing all the groups and all the objects in the groups. However, this time, students 

did not guess a trial number of groups to start; instead, they began at 1 and tracked the 

subtotals while they added each new composite-filled group. There was far less variety 

with this strategy, but students were different on one important feature of simultaneity, 

which I discuss later. By the spring interview, the number of Grade 1 students who used 

this strategy had risen to seven (17%) of 41. This increase could have accounted for some 

of the decreases in the other adding-up models. 

At the second interview of Grade 1 students in the spring, a new adding-up model 

emerged where three (7%) of 41 students modelled out only the groups while they used a 
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counting strategy (i.e., rhythmic counting, skip counting) to count the composites in the 

groups. To use a strategy where they modelled only the groups, the students needed to 

have a more complete understanding of the structure of number. The students had to be 

able to unitize the first two levels required by the problem simultaneously because the 

students were able to represent both the fish (three 1-units) and the bowls (one 3-unit) 

with a single item. Each item (e.g., finger, cube, or tally) simultaneously represented both 

types of units. As the problem was solved, each representation was counted first as three 

units of 1 and then as one unit of 3.  

The four aforementioned adding-up models were different in terms of the depth of 

unitizing required for each, cardinality, hierarchical inclusion, and the simultaneous 

consideration of up to three levels of units. In the first model described, where students 

modelled out empty groups, they were able to consider the groups or fish bowls as 

separate, countable entities. When they went back and put the three fish in each empty 

bowl, they did not need to simultaneously consider the bowls (one unit of 3) and the fish 

(three units of 1). It was only once they reached the dividend that they simultaneously 

held these two levels of units in their heads as they considered the bowls and the total 

number of fish. When they counted up each unit of 3, or each bowl, it was not necessary 

for them to see the various levels of unitizing in the situation in order to solve the 

problem in this way. 

In the second model described, the students simultaneously considered the three 

units of 1 inside each unit of 3 as they built up to the dividend, but they did not have to 

also simultaneously consider the dividend as a third type of unit. To model out their 
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unit of 12, and one unit of 15). When analyzing the students’ solutions using the third 

model, a few students also demonstrated the ability to track the number of groups 

simultaneously as they built up to the dividend. This was essentially an oral ratio table. 

This simultaneity occurred only in two of the seven correct solutions that used the 

dealing-out model. 

In the fourth model, which emerged in the spring interview, the students 

represented only the groups. This was similar to the third model with respect to the levels 

of unitizing because the students need to be able to consider all three levels of units 

present in division problems simultaneously in order to use this model to support their 

thinking.  

Interestingly, some of the variations on the first and second models mentioned 

earlier included students who began with the first or second model, but their trial number 

of groups was less than the quotient. When some of these students then added more 

groups, they transitioned to the third model and began tracking the subtotals as they 

added more groups, perhaps realizing the importance of tracking this third level of unit as 

well as the other two. I will revisit these variations when examining 21 ÷ 3, but for 15 ÷ 

3, this transition happened seven times, four of which were from the second model, when 

students already had considered two levels of units simultaneously as they built their 

solutions, and only three of which were from the first model, when students had 

represented only one level of unit at a time. 

If these three models did provide insight into the ability of students to unitize one, 

two, or three levels simultaneously, it is important to note that in many cases, the student 

artifacts for these three different models looked identical. In many cases, without the 
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video analysis, there would have been no way of knowing the differences among the 

three models unless the students overshot the number of groups required and then 

adjusted by crossing out groups. In all other instances where the initial trial number of 

groups was either less than or equal to the quotient, the student artifacts looked identical 

for the first three models already mentioned. This is important for teachers and 

researchers because it indicated that paper-and-pencil artifacts cannot differentiate among 

three very different models in terms of students’ understanding of unitizing.  

The same statement can be made about the simultaneity of counting the groups. If 

the presence of simultaneously counting the groups also provided insight into students’ 

understanding of the unitizing structure, it is troubling from the perspectives of teachers 

and researchers’ because it cannot be determined from looking at a paper artifact whether 

the counting occurred concurrently with the formation of new groups or after the fact. It 

is impossible to know for certain without hearing the students in the process of solving 

the problem. 

Repeated subtraction was another category of models used by the students to 

solve the problem. At the time of the first interview with Grade 1 students in the fall, two 

(10%) of 21 students used a repeated subtraction model. One (5%) of the 21 students was 

able to do so with just the number symbols and his own ability to subtract, but the other 

required concrete support to help him to rhythmically count back by the composite. In the 

spring, the number of Grade 1 students correctly using the repeated subtraction model for 

division remained at two (5%) of 41. 

Mulligan and Michelmore (1997) suggested that repeated subtraction is an 

intuitive model for division for some students. By intuitive model, they meant a model 
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that came naturally to students due to the context or structure of the problem without 

instruction. The results of my study supported this finding. Very few of the Grade 1 

students used repeated subtraction to solve the division problem. As in the Mulligan and 

Michelmore study, far more students used a model based upon adding up or partitioning 

rather than repeated subtraction. Like Mulligan and Michelmore, I separated partitioning 

models, for quotative division problems (they referred to these as direct counting 

methods).  

I decided to group this model separately as a partitioning model for two reasons. 

The students who used this method initially did not necessarily go on to use repeated 

subtraction, as discussed in the results. In addition, a few students attempted a 

partitioning model with the more complex problem 64 ÷ 16. The analysis of the student 

solutions to that problem also influenced this decision. 

The third category of models used by the students included all models, where the 

students first built the dividend using manipulatives, drawings, or tallies and then broke 

this total number up into groups of equal sizes. Although this model might have appeared 

to be a precursor to repeated subtraction, the way the groups were handled was very 

different because there was no tracking of subtotals. The total number of objects simply 

was divided into equal groups. For this reason, I reported this model as a separate 

category.  

At the Grade 1 fall interview, five (24%) of the 21 students who correctly solved 

this problem represented their thinking with this model. Although errors were not 

analyzed, it was noted that this partitioning model was associated with eight incorrect 

responses, twice as many as any other single model. In the spring, the number of Grade 1 
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students who represented their thinking with this model increased to 18 (44%). At this 

time, the number of students using this strategy incorrectly fell to six (15%) of 41. 

At the time of the Grade 1 fall interview, two (10%) of the 21 students used 

mental calculations to solve the problem. No students knew the solution in the Grade 1 

fall interview. By the second interview in the spring, the number of Grade 1 students who 

used a mental calculation had fallen to one (2%) of 41, and one (2%) of the 41 students 

demonstrated knowing the solution automatically. 

Strategies used in correct solutions for 15 ÷ 3. A comparison of the strategies 

used in correct solutions to the problems involving the calculations 15 ÷ 3 and 21 ÷ 3 is 

presented in Figure 15. Like the models, the strategies also were mainly used for adding 

up, removing composite groups, or partitioning the whole. The exception was the most 

frequently used strategy of counting by ones. At the Grade 1 fall interview, in total, 11 

(53%) of the 21 students with correct solutions counted by 1s in order to reach the 

dividend. Of these, seven (33%) of the 21 students used counting by 1s with an adding-up 

model, and four (19%) used it with the partitioning model.  

At the spring interview, 19 (48%) of the 41 Grade 1 students used a counting-by-

1s strategy to count to the dividend. Of these, only seven (17%) of 41 students used an 

adding-up model, and the remaining 12 (29%) of 41 used a partitioning model. At this 

interview time, 5 (24%) of 41 students were found to be using rhythmic counting.  

As described earlier with multiplication, rhythmic counting demonstrates not only 

that the student knows in order to solve the problem, it is important to group the one units 

into new groups of three 1-units, but also that they are able to consider both of those 
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levels of units simultaneously. The pause that is apparent when rhythmic counting is 

required to help students to define the end of one unit of 3 and the beginning of the next.  

At the Grade 1 spring interview, 20 (48%) of the 41 students were observed using 

a counting-by-1s strategy, but only three (7%) of the 41 students were using rhythmic 

counting. The decrease in the number of students using rhythmic counting was likely the 

result of the increase in the number of students using skip counting from zero students to 

seven (17%) of the 41 students. In separate studies, Anghileri (1989) and Steffe (1988) 

postulated that rhythmic counting is the precursor to a skip counting sequence and that 

once the sequence or number pattern is learned, the middle numbers drop out, leaving 

only the skip counting sequence. 

At the Grade 1 fall interview, five (24%) of the 21 students correctly used a 

partitioning model to solve the problem. Four (19%) of the 21 students counted by 1s up 

to 15 using some representation for the fish and then removed or grouped three together 

to make the bowls. One (5%) of the 21 students built up to 15. He was able to take 

advantage of the 10 sticks (10 pop cubes stuck together to form a stick of 10) and build to 

the 15 without having to count individual cubes by ones.  

 This building or counting up to the dividend and then removing or grouping the 

units of three does not require students to consider the three levels of units 

simultaneously because the total number does not have to be held and considered at each 

step. The total can be discarded during the process of making the groups of 3. At the time 

of making the groups, one (5%) of the fall 21 Grade 1 students demonstrated the ability 

to make the groups and track the number of groups simultaneously. To do this, she took 
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likely were considering both levels of units as representing their thinking in this way, 

whereas others were using this model to help them to solve the problem. They were 

simply removing the three fish, not thinking of them simultaneously as a bowl. 

Two (10%) of the 21 fall Grade 1 students who used a repeated subtraction did so more 

symbolically by writing the number 15 and then proceeding to subtract groups of three. 

One student used subtraction to find the solution after the removal of each group of three, 

and the other drew out the fish bowls and counted back to find the remaining number of 

fish each time. As with the partitioning strategies, the students who chose this strategy 

did not have to hold the 15 in their heads because by starting with 15, they knew when to 

stop grouping or subtracting groups when they got to zero or ran out of objects. As they 

grouped or subtracted, they did have to consider that that each group of three or 

subtraction of three was also countable as one 3-unit. They also kept track of the new 

subtotal of fish after each bowl was removed. 

Overview of results for 21 ÷ 3. I determined that a slightly more challenging 

quotative division problem was needed commencing at the third interview (i.e., fall 

Grade 2 students), so the numbers in the word problem were changed such that the word 

problem now resulted in the calculation 21 ÷ 3. This new problem was asked at the Grade 

2 fall, Grade 2 spring, Grade 3 fall, and Grade 3 spring interviews. As seen in Table 9, at 

the Grade 2 fall interview, 30 (67%) of the 45 students who were asked this new question 

were able to solve it correctly. By the fourth interview, this number had risen to 34 (80%) 

of 43 Grade 2 students. This level held through Interviews 5 and 6, with 34 (85%) of 40 

fall Grade 3 students and 34 (87%) of 39 spring Grade 3 students, respectively. 
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Models used in correct solutions for 21 ÷ 3. At the Grade 2 fall interview, 

students were observed modelling the situation with one of the three categories of 

models: adding up, repeated subtraction, or partitioning (see Figure 12). At the Grade 2 

fall interview, the total number of correct solutions that the adding-up models accounted 

for was 12 (40%) of 30 students. At the same interview, a subtraction model accounted 

for 2 (7%) of 30 students, and the partitioning model was used by 15 (50%) of the 30 

Grade 2 students. The percentage of correct solutions where students used an adding-up 

model remained relatively consistent at the next two interviews, with 14 (41%) of 34 

students at the Grade 2 spring interview and 12 (35%) of 34 students at the Grade 3 fall 

interview. At the Grade 2 fall interview, the number of correct solutions that used a 

repeated subtraction model was consistent with only 2 (7%) of 30 students.  

By the fall of Grade 3, this number had risen to 7 (21%) of 34 students. The 

number of correct solutions represented using a partitioning model decreased slightly at 

the time of the Grade 2 spring interview to 12 (35%) of 34 students. This number fell 

again to 11 (32%) of the 34 fall Grade 3 students. There was a substantial increase in the 

use of adding-up models at the time of the Grade 3 spring interview (23 [68%] of 34 

students) and a related decrease at this interview in the use of both the subtraction model 

(3 [9%] of 34 students) and the partitioning model (5 [15%] of 34 students). 

At the Grade 2 fall interview, nine (30%) of the 30 students used one of the four 

adding-up models introduced earlier in the section discussing the 15 ÷ 3 models, but the 

distribution of the number of students using each type of model had shifted. A higher 

percentage of students used models that required more simultaneous consideration of 

different layers of units. Only one (3%) of the 30 fall Grade 2 students used a trial 
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number of empty groups to begin the solution, three (10%) of the students represented the 

problem with a trial number of groups with the composite number of objects inside, four 

(13%)) of the students dealt out the objects in composite groups, and one (3%) student 

represented only the groups as the student built up toward the composite.  

A new model, the ratio table, emerged at the time of this interview. Three (10%) 

of the 30 fall Grade 2 students used this new model at this time. To use a ratio table, 

students were only representing each new subtotal that they reached when were adding 

on a new 3-unit. They had to group three 1-units into one 3-unit to successfully represent 

their solution in this way. Simultaneous consideration of each group of three 1-units as 

part of a new layer of units was not required with this model because the students could 

go back and count their subtotals to determine how many groups of three were in 21. 

Two of the students who used this model did track the number of groups as they went. In 

order to do this, the students had to be able to consider all three levels of units 

simultaneously, namely, the 1-units, the 3-units, and the units of three 1-units. One 21 

unit also is seven 3-units and 21 1-units. To use a ratio table, students also had to 

demonstrate the ability to hold the cardinal meaning for each number along the sequence 

to 21. The number symbol 9, for example, first had to be understood as nine fish or nine 

1-units as well as three 3-units.  

As indicated earlier, subtraction models were not observed very often throughout 

the interviews. At the Grade 2 spring interview, the emergence of a new model, in which 

the students represented only the groups for subtraction, was observed. They did so with 

either fingers; counters; tallies; the composite numeral (i.e., 3); or with number symbols 

to count the groups as they tracked. Although only one (3%) of the 34 spring Grade 4 
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students, six (18%) of 34 students used it at the Grade 3 fall interview. At the time of the 

Grade 3 spring interviews, only two (6%) of 34 students used a subtraction model, with 

one (3%) using repeated subtraction, and the other representing only the groups to track 

as he subtracted. 

At the Grade 2 fall interview, 15 (50%) of the 30 students used a partitioning 

model by representing the total number of objects and then grouping by the composite. 

This model was always the most frequently observed, with 12 (35%) of 34 spring Grade 

2 students and 11 (32%) of 34 fall Grade 3 students using it. This changed at the Grade 3 

spring interview, when only five (15%) of 34 students used this model. 

As seen with multiplication, the number of fall Grade 2 students who knew the 

solution automatically was zero, when this problem was introduced. Automatic responses 

were not observed on this problem until Interview 5 (one [3%] of 34 fall Grade 3 

students). This percentage increased slightly by Interview 6 (two [6%] of 34 spring Grade 

3 students). Mental calculations were inconsistent, with only one (3%) of the 30 fall 

Grade 2 students calculating mentally, four (12%) of the 34 spring Grade 2 students 

calculating mentally, one (3%) of the 34 fall Grade 3 students calculating mentally, and 

five (15%) of the 34 spring Grade 3 students calculating this way.  

Strategies used in correct solutions for 21 ÷ 3. A comparison of strategies used 

in correct solutions to the problems involving the calculations 15 ÷ 3 and 21 ÷ 3 is 

presented in Figure 14. Counting by 1s was the most frequent strategy at the Grade 2 fall 

interview, with nine (30%) of the 30 students observed calculating their solutions using 

this strategy. At the Grade 2 spring interview, this number remained high, with eight 

(24%) of the 34 students using this strategy. However by the fall of Grade 3, only 6 
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(18%) of the 34 students were using this strategy, and by the final interview at which this 

question was asked, in the spring of Grade 3, only 3 (9%) of the 34 students were using 

this strategy.  

As noted earlier, this strategy was used by students who used the subtraction 

model as well as by students who used the adding-up model. At the fall of Grade 2 

interview, five of the nine students who were using this strategy did so to subtract. At the 

interview in the spring of Grade 2, only three of the eight students who were using this 

strategy did so to subtract. Half of the six students at the Grade 3 fall interview who were 

using this strategy did so to subtract. Two of the three students who counted by 1s at the 

Grade 3 spring interview were using this strategy with a subtraction model. Overall, 

counting by 1s did not appear to be used more frequently in conjunction with an adding-

up or a subtraction model, which lends support to the hypothesis that neither the adding-

up nor the subtraction model was used predominantly by either weaker or stronger 

students. In fact, students with high levels of mathematics achievement were found to be 

using both of these models. 

Only a small number of students were seen to be using rhythmic counting beyond 

the Grade 1 interviews, with two (7%) of 30 students using this strategy at the Grade 2 

fall interview, one (3%) of 34 students using this strategy at the Grade 2 spring interview, 

and two (6%) of 34 students using it at the Grade 3 fall interview. There was a surprising 

increase in the use of this strategy at the Grade 3 spring interview, with five (15%) of 34 

students using it.  

It is unclear what the cause of this increase was. The five students who used this 

strategy on this question at the Grade 3 spring interview varied by gender, teacher, and 
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mathematical ability. At the Grade 3 fall interview, two of these students had used a 

counting-by-1s strategy with an adding-up model, one had used a repeated-subtraction 

strategy, the fourth had used rhythmic counting, and the fifth had not been interviewed. 

The percentage of students who used a skip counting strategy held relatively 

constant over Interviews 3, 4, and 5, with six (20%) of 30 fall Grade 2 students, six 

(18%) of 34 spring Grade 2 students, and seven (21%) of 34 fall Grade 3 students, 

respectively. As with rhythmic counting, there was an increase in the use of this strategy 

at the Grade 3 spring interview, with nine (26%) of 34 students observed using it to solve 

the problem. Over the four interviews, one student used a repeated-addition strategy on 

two occasions, one at the Grade 2 spring interview (3% of 34) and one (3% of 34) at the 

Grade 3 spring interview. 

Two new strategies were observed, one at the Grade 2 fall interview and one at 

the Grade 2 spring interview. The first emerged at the fall of Grade 2 interview, when one 

(3%) of 30 students used a known multiplication fact (i.e., four 3s are 12) and then 

repeatedly added the composite unit (3) to derive the solution from a known fact. At the 

spring of Grade 2 interview, two (6%) of 34 students were able to use this strategy. This 

strategy was not observed at the Grade 3 interviews because of the increase in automatic 

responses and students moving out of the project. The second emerged at the interview in 

the spring of Grade 2. At this interview, one (3%) of 34 students was observed using 

doubling or regrouping to add up to the dividend and determine a solution.  

The use of this strategy continued to grow through the remaining fall and spring 

Grade 3 interviews at which this question was asked, with four (12%) of 34 fall Grade 3 
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students using this strategy and six (18%) of 34 spring Grade 3 students using this 

strategy.  

Both of the aforementioned strategies were quite advanced in terms of unitizing; 

in both cases, students were considering not only the 1-units (fish) but also the units of 

three 1-units (bowls), the 21 1-units that represents the whole, and the seven 3-units but 

also that that seven 3-units were made up of some kind of grouping of the t3-units, like 

two bowls is two 3-units (bowls), which is six 1-units (fish; see Figure 16). The use of 

reunitizing through doubles or other groups was difficult because it required the students 

to hold at least four levels of unitizing in their heads simultaneously. Surprisingly, this 

strategy did not appear error prone because no students were observed using it 

incorrectly; however, a few students did attempt it. 

The same partitioning strategies observed for this more difficult problem had been 

observed for the Grade 1 problem requiring the calculation 15 ÷ 13, as already reported. 

The strategy of building up to the dividend and then making groups was the most 

frequently used partitioning strategy on this problem throughout the remaining 

interviews, with six (20%) of the 30 fall Grade 2 students, eight (24%) of the 34 spring 

Grade 2 students, six (18%) of the 34 fall Grade 3 students, and three (9%) of the 34 

spring Grade 3 students observed using this strategy.  
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Figure 16. Depiction of the way 21 would be unitized when solving a quotative division 
problem with three in each group. 
 

The frequencies of repeatedly subtracting the composite and rhythmically 

counting back by 1s fluctuated slightly but remained relatively low. In the Grade 2 fall 

interview, only one (3%) of the 30 students used repeated subtraction. This number rose 

to two students (6% of 34), respectively, at the Grade 2 spring and Grade 3 fall 

interviews, only to fall back to one (3%) of 34 students at the Grade 3 spring interview. 

Rhythmically counting back by 1s from the dividend was used with similar frequency. 

Two (7%) of the 30 fall Grade 2 students, but only one 3%) of the 34 spring Grade 2 

students used this strategy. This number rose to three (12%) of the 34 fall Grade 3 

students and then fell again to two (6%) of the 34 spring Grade 3 students.  

Junior Division Problem 

Overview of results for 64 ÷ 16. At Interviews 7 and 8 students were posed a 

quotative word problem that required the calculation 64 ÷ 16 similar to the following: 

“The teacher was packing pencils into boxes of 16. She has 64 pencils. How many boxes 

can she make?” In the fall interview, 34 Grade 4 students were asked to solve this 

problem, but only 68% (23) of the 34 students were able to find the solution correctly 
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(see Table 10). At the spring interview, of the 35 Grade 4 students who were asked, 71% 

( 25) of the 35 solved the problem correctly. 

Table 10 

Percentage of Correct Responses Compared to Total No. of Students Interviewed and No. 
of Students Posed 64 ÷ 16 
 

Interview Total no. of 
students 

interviewed 

Total no. of 
students asked 

64 ÷ 16  

No. of students 
who answered  

correctly  

% correct of 
students who were 

asked 
1st interview: Grade 4 fall 45 34 23 68% 
2nd interview: Grade 4 spring 45 35 25 71% 

 
Models used in correct solutions for 64 ÷ 16. The percentages of models used in 

correct solutions over the two sets interviews are shown in Figure 17. As seen with the 

multiplication problem 6 × 24, the students used a variety of different models to work 

with the larger numbers. The underpinning subtraction model was evident at the Grade 4 

fall interview, but it was used by only 3 (13%) of the 23 students. Two (9%) of the 23 

students were observed using repeated subtraction to represent the problem. The 

remaining student (4%) of the 23 Grade 4 fall students used a mental calculation.  

At the Grade 4 spring interview, three (12%) of the 25 students were observed 

using a subtraction model to represent the problem. One (4%) of these 25 students was 

observed using repeated subtraction with the traditional algorithm to represent the 

problem. The remaining two (8%) students represented their thinking and underpinning 

subtraction model in a less structured way using only jottings. 

 At the Grade 4 fall interview, four (17%) of the 23 students represented this 

problem and solved it correctly using the partitioning model. These students represented 

the 64 by splitting it into six 10s and four 1s. They then decomposed some of the 10s to 

make groups of 16 with four left over. After making three groups of 16 in this way, they 
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then added up the four remaining 4s to make the final group of 16 (see Figure 18). This 

model appeared quite cumbersome for the students. This model seemed to require the 

students to reunitize the dividend, 64, twice. They reorganized the 64 first as six 10s and 

four 1s, and then they had to reorganize it again in order to create the four units of 16. 

The unitizing itself also seemed more complicated with this model because the four 16s 

were not created in the same way. Three of them were made with one group of 10 and 

one group of 6, whereas the last unit of 16 was made with four groups of 4. The unitizing 

structure is not iterated in the same way at all three layers (see Figure 18). Instead, inside 

the 64 are four units of 16, but those units of 16 are not made up of 16 units of 1. Instead, 

three of them are constructed with one unit of 10 and one unit of 6, and one of them is 

constructed with four units of 4. This added level of complexity, coupled with the 

students’ familiarity with larger numbers, could have accounted for the fact that this 

model was not used correctly in the Grade 4 spring interview. 

 The remaining 16 of the 23 students who solved the problem correctly at the 

Grade 4 fall interview used an underpinning adding-up model. At this time, the students 

were fairly spread over the various adding up strategies. Three (13%) of the 23 students 

used mental calculation, and another three (13%) used representing a trial number of 

groups filled with the composite number of objects. At this interview, the use of jottings 

(one student [4%]) as well as the use of symbolic notation (two students [9%]) to model 

their thinking using adding up was observed. Only one (4%) student of the 23 used a 

model where she tried multiplying the 16 by a trial number of groups in order to figure 

out the solution. Two (9%) of the students used the number line to add up to solve the 

problem. 
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 By the Grade 4 spring interview, 22 (88%) of the 25 students who correctly 

solved the problem did so with an underpinning adding-up model. Some of the variety of 

model use had diminished. Now twice as many students used mental calculations to solve 

the problem with adding up (8 [32%] of 25). Two (8%) of the 25 students used jottings to 

represent the problem, and three (12%) used the number line. Two (8%) of the 25 

students used a ratio table, two more (8%) represented their thinking with a trial number 

of composite-filled groups, and two more (8%) built up to the dividend with composite-

filled groups. Again, as at the fall interview, one (4%) of the 25 students used a trial 

number to multiply 16 by in order to determine the solution. 

Strategies used in correct solutions for 64 ÷ 16. The percentages of the 

strategies used by students who correctly solved the problem are shown in Figure 19. At 

the time of the Grade 4 fall interview, the three (13%) students of the 23 who answered 

correctly used an underpinning subtraction model for division did so using three 

variations of repeated subtraction of the composite. One student (4%) started with 64 and 

repeatedly subtracted 16 until reaching zero and then counted the number of subtractions 

made. The remaining two (9%) of 23 students tracked the number of groups as they 

solved the problem so that they did not have to go back and count them later. One of 

these students knew that two 16s were 32 and subtracted 32 from 64 to begin solving the 

problem. 
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Figure 18. Partitioning model used to solve 64 ÷ 16 and unitization that correct use of 
this model would require. 

 

At the spring interview, three (12%) of the 25 Grade 4 students used strategies 

based in the subtraction model. One (4%) student used the traditional subtraction 

algorithm. The remaining two (8%) students simultaneously tracked the number of 

groups, but one knew that there were two groups of 16 left once he reached 32. 

At the Grade 4 fall interview, three of the four students (13% of 23 students) who 

used a partitioning model had strategies that were evident as I coded. One of the students 

(4% of 23 students) built up to the composite using fives and 10s. The remaining two 

(9% of 23 students) split the 64 into 60 and four and attempted to then make groups of 

16. None of these strategies was used correctly at the spring interview; instead, the 

adding-up model was much more commonly used, as explored in the section on models. 

Unlike what was seen with the primary division problems, very few students used a 

counting-by-1s approach to solve this problem. In fact, none of the 23 fall Grade 4 

students used this strategy, and only one (4%) of the 25 spring Grade 4 students used it.  

The most frequently used cluster of strategies at the fall interview of 23 Grade 4 

involved doubling (11 students [48%]). At the fall interview, only three (13%) students 

were able to track the groups simultaneously. By the spring interview of 25 Grade 4 
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students, the number of students using doubling had increased slightly to 12 (48%), but at 

this interview, seven (28%) of the students were able to track the groups simultaneously.  

Some students split the composite in order to add up to 64. At the fall interview, 

two (9%) of the 23 Grade 4 students split the divisor (16) into a 10 and a 6 in order to add 

up to 64. At the spring interview, three (12%) of the students used this strategy. At this 

time, two (8%) more of the 25 students chose to use a similar strategy where they used 

skip counting by a value less than the composite to work their way up to 64. Two 

students (9% of 23 and 8% of 25) used a repeated addition strategy at the fall and spring 

interviews. 

 I also noted that one (4%) of the 25 Grade 4 spring students used a student-

generated method. Although all the strategies observed were considered student 

generated, with the exception of traditional or alternative algorithms, this student’s 

method was very similar to partial products, except for the organization. 

Interplay between strategies and models in primary/junior division. I 

analyzed seven models and 10 strategies across the two primary/junior division problems 

and the one junior division problem that I selected for this research. This analysis was 

conducted to determine whether particular models were associated with strategies that 

indicated more complex unitizing structures. The results of this analysis can be seen in 

Table 11.  

The number of models and strategies were far greater for division than for 

multiplication because there were three different underpinning models for division; 

within the underpinning adding-up model, four main models were used by students. 
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The transition from concrete modelling to the use of symbols is considered an 

important step on the path to a unitizing structure. Because there were far more models to 

consider in division, the subtleties of this nature were not explicitly analyzed. However, 

because a concrete model transitions to the use of symbolic notation, the strategies 

associated with it also shift in sophistication.  

As with multiplication, students who used mental calculations primarily did so in 

conjunction with a strategy involving doubling; however, there was an attempt at mental 

calculations for most of the strategies examined. The most common strategy to occur 

with the trial number of empty groups model involved counting by 1s. Although there 

was some occurrence of more sophisticated strategies such as rhythmic counting and skip 

counting, indicating that some students continued to use a variation of this model with 

number symbols, the higher number of co-occurrences with counting by 1s lent support 

to the conclusion that this model is less sophisticated in terms of its required a unitizing 

structure. 

The model of representing a trial number of composite-filled groups also co-

occurred the most frequently with the strategies of counting by 1s and rhythmic counting. 

This model also co-occurred with skip counting, repeated addition, and doubling, 

indicating that many students used this model with number symbols. The high co-

occurrence of this model with the simpler strategies as well as its occasional co-

occurrence with several more complex strategies supported the finding that this model is 

slightly more advanced than the previous model. In terms of the adding-up models, the 

strategy of counting by 1s co-occurred almost exclusively with these two models, in 

which students began with a trial number of groups. As support for an intuitive sense that 
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these two guess-and-check methods seem inefficient when compared to more 

sophisticated models, their high level of association with counting by 1s also indicates a 

reduced requirement for mathematical sophistication for their execution. 

The model of dealing out objects in composite groups occurred only infrequently, 

with a counting-by-1s strategy indicating that students who were using this model to 

support their thinking no longer needed to count by 1, but have a slightly more complex 

unitizing structure supporting their mathematics. The co-occurrence of this model with 

rhythmic counting and skip counting further supported this conclusion. 

The ratio table was the least used model that I examined in this analysis, with only 

14 occurrences across all three problems. The use of this model is exclusive to the use of 

number symbols. The majority of the students who used this model utilized a skip 

counting strategy to create their ratio table, although a few also used repeated addition or 

a doubling strategy. 

A repeated subtraction model was used by some students to represent and support 

their thinking with division problems. Two groups of strategies were used equally 

frequently to find the solution alongside this model, namely, counting back rhythmically 

from the dividend and using repeated subtraction. 

 The partitioning model of representing the total number of objects and then 

removing groups of the composite was the most frequently used primary division strategy 

with 105 occurrences. The majority of the students who used this model did so alongside 

one of two strategies, either counting by 1s to the dividend or the more complex strategy 

of building to the dividend. The two strategies are very similar, with the difference being 

when executing the latter, the students used knowledge of an underlying unit structure 
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within the dividend, usually with units of 100-units to create a representation of the 

dividend without counting by 1 s. 

Table 11 

Co-Occurrence of Strategies and Models for All Quotative Division Problems 
 

*Note. This student counted back incorrectly but then counted up correctly 

Summary of Division Findings 

 Unitizing in division contexts. The students used various models and strategies 

through the primary and junior grades to solve quotative division problems. As noted, 

Model 
strategy 

Mental 
 

Trial 
no. of 
empty 
groups 

Trial no. 
of 

comp.-
filled 

groups 

Deals 
out in 

comp.-
filled 

groups 
 

Total no. 
of 

objects, 
groups 

by comp.  

Repeat. 
Sub. 

 

Ratio 
table 

 

Other Total 

Counts to 
dividend 
by 1s 

0 9 15 5 45 0 0 1 76 

Rhythmic 
counting 
to 
dividend 

1 4 11 11 1 1 * 0 1 30 

Skip 
counting 

1 0 4 12 2 0 8 9 36 

Skip 
counting < 
composite 

1 1 0 1 3 0 0 0 6 

Repeat. 
addition 

1 1 3 0 0 0 2 3 10 

Repeat. 
doubling 

9 1 3 3 0 0 3 8 27 

Builds to 
Dividend 

0 0 0 0 34 0 0 0 34 

Splits 
dividend 
to solve 
problem 

0 2 0 0 7 0 0 0 9 

Counts 
back from 
dividend 

2 0 0 0 0 13 0 1 16 

Repeat. 
sub. 

1 0 0 0 1 13 0 3 18 

Other 11 7 14 13 12 2 1   
Total 27 25 50 45 105 29 14   
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these models and strategies have generally been placed together, with the models 

themselves being put together into one of two categories: concrete or symbolic. In my 

analysis, I attempted to separate the two categories to identify how models and strategies 

together shed light on the development of a unitizing structure in children as they engage 

in mathematizing through quotative division contexts. 

 Through this in-depth analysis, I determined that the students used one of three 

underpinning models to solve division problems: an adding-up model, a repeated-

subtraction model, or a partitioning model. The adding-up model was the most widely 

used across all grades and problems analyzed. I uncovered a difficulty for teachers and 

researchers who rely on paper artifacts to analyze students’ understanding of unitizing 

through my analysis of the responses to the division problems because four of the models 

used for division might look exactly the same as finished products on paper (i.e., 

represents total number of objects groups by composite, represents trial number of empty 

groups then fills with composite, represents trial number of composite-filled groups, and 

deals out objects in composite groups until total reached). Although these four models 

might indicate very different levels of development in terms of the underlying unitizing 

structure, which is critical for increasing sophistication of strategies and models, they 

might be impossible to distinguish without a video or audio record of students’ process. 

 Despite the fact that researchers have called repeated subtraction a primitive 

strategy for division (Mulligan & Michelmore, 1997), this model was used by only a 

small number of students to solve the division problems. This model was not associated 

with many of the more sophisticated strategies in terms of unitizing structures that were 

linked with the adding-up models. 
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 Students in the early primary grades often used a partitioning model to divide. 

This simple model did not require a unitizing structure to execute unless it was 

accompanied by simultaneous tracking of the groups. Although this model was widely 

used in early primary, few students who attempted to adapt this model to use with 

numerals with the junior level problem did so successfully. 
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CHAPTER FIVE 

CONCLUSIONS 

Development of Unitizing Across Primary Multiplication and Division 

I undertook this study to examine the development of unitizing over 4 years in a 

cohort of children in a reform-based mathematics program. I analyzed their videotaped 

solutions to whole-number multiplication and quotative division questions to determine 

whether they used critical models and/or strategies  as they developed their sense of 

numbers to include layers of unitizing structures. Figure 20 shows the development of 

unitizing constructed through this analysis.  

Models and Strategies Highlighting the Development of One Layer of Unitizing 

To correctly set up and solve multiplication and division problems, the students 

had to have been at least on the cusp of developing a unitizing structure beyond that of 

units of 1 (termed one-units by Behr et al., 1994). They must have been able to form 

composite groups of units and also count those same groups by 1s in order to calculate 

correct solutions; however, they could have considered these two layers consecutively 

instead of simultaneously when they solved multiplication and division problems by 

using the model of representing the groups and the objects in the groups for 

multiplication or by using the model of representing the total number of objects and then 

grouping by the composite when solving division problems. 
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Figure 20. Strategies, models and big ideas used and constructed in the development of unitizing. 
 

 

 



105 

 

Models told only a portion of the story. When examining the strategies used and 

their associations with particular models, counting by 1s was one of the most frequently 

used strategies with both of these models in the early primary grades. When the students 

counted by 1s, they were not taking advantage of any of the inherent 10 structure of the 

number system or using any composite unit imposed by the questions. As a result, the 

students had to do each phase of the question consecutively instead of simultaneously.  

By examining the strategies separately from the models, I began to see a shift 

toward simultaneity because some students were able to use the same model but use a 

strategy that required a small amount of simultaneity of two layers of units. In the case of 

multiplication, students who were able to count on from the first set demonstrated that 

they were able to consider the first set of 4 as both four units of 1 and one unit of 4 at the 

same time. This analysis supported the theoretical supposition put forward by Lamon 

(1994) that counting on is evidence of a primary level of unitizing. This preliminary 

ability to see a beginning group with two layers of units was even more apparent when 

students began counting on after the first doublet. To use counting on from the first 

doublet strategy, students had to be able to simultaneously consider 8 as eight units of 1 

as well as two units of four units of 1. A similar progression was seen in their division 

strategies. 

With division, the students began to build the total number of objects using 

known facts, such as the fact that a 10 stick contains 10 cubes and that in order to 

construct 21 cubes, they needed two 10 sticks and one more cube. This building required 

a different type of simultaneous construction of a number. In this construction, students 

had to be able to consider 21 to be 21 units of 1 and two units of 10 and one unit of 1 
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simultaneously. Although they did not have to simultaneously consider the 21 in terms of 

the composite unit imposed by the question with this model (i.e., 3), it was evident that 

the students could consider the whole 21 as well as the two 10-units within the 21. 

Models and Strategies Highlighting the Development of Two Layers of Unitizing 

As the students began to be able to consider two layers of units simultaneously, 

they were able to use slightly more complex models and/or strategies. For multiplication, 

the model of representing the groups and the objects in the groups persisted, but the 

selected numbers of the contextual problem also facilitated the use of fingers to solve 

problems. The use of fingers enabled the children to use a rhythmic counting strategy to 

solve the early multiplication problems, but because of the restriction of having only 10 

fingers, a new model where the students took a bit of a shortcut and only represented one 

group that they repeatedly counted emerged. This new model was observed the most 

frequently with fingers. Close inspection of rhythmic counting revealed variations in the 

execution of this strategy with respect to the time lag between iterations; some students 

were able to proceed very quickly from one group to the next, but others had long pauses 

between groupings. In agreement with Anghileri (1989), I attributed this time lag to 

different levels of simultaneity as students tracked the subtotals as well as the composites 

as they counted. 

New models and strategies that required the simultaneous consideration of two 

layers of units also arose for the division problems. When students were able to consider 

simultaneously or nearly simultaneously that the composite units also could be counted, 

they began to use three new division models. Use of a repeated subtraction model was 

seen with either rhythmically counting back from the dividend or with repeated 
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subtraction of the composites. To model their solutions in this way, students had to 

already understand that within the dividends, there were groups of the composite units, 

even if they were unsure how many. This different type of layering of units in units 

begins with one unit that contains a large number of units of 1, forcing students to 

remove groups of units to determine how many of those groups can be removed. 

Two similar models that the students used early on in division contexts were (a) 

representing a trial number of empty groups and then filling in the groups with the 

composite number of objects, and (b) representing a trial number of composite filled 

groups. Although the artifacts from these two models appeared identical, students who 

represented the trial number of empty groups and then filled those groups with the 

composites did not necessarily have to simultaneously consider two layers of units; 

instead, they first considered the groups of 3, in this case, the fish bowls and drew out an 

arbitrary number of them and then proceeded to fill those premade bowls with groups of 

three units that represent the fish in the bowls. Often, the children did this without 

tracking their total number of fish, so they either would go back and count the number of 

fish they had from 1 or would count on from the first set. 

The distinction between these two models might seem insignificant, but in 

examples of both strategies, some students, whose initial trial number of groups was 

lower than the required number, were able to transition from using a trial number of 

groups to tracking subtotals as they added new composite-filled groups until they reached 

the dividend. This transition happened more often from the model of representing the trial 

number of composite-filled groups than it did from the representation that began with the 

empty groups. This evidence supported the analysis that something is distinctly different 
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about these two models: The former indicates a more developed ability to simultaneously 

consider the four units of 1 as also one unit of 4 because the students who used this model 

appeared to more easily transition to a model that required more sophisticated unitizing. 

Models and Strategies Highlighting the Development of Three Layers of Unitizing 

As students began to be able to consider three layers of units simultaneously, I 

saw more use of number symbols and less use of concrete objects that required counting. 

Students who had constructed this level of a unitizing structure were able to use a variety 

of new models to solve a multiplication problem, including a repeated addition model, a 

representation of only the groups, a rudimentary ratio table, a representation of the groups 

with the objects in subgroups, a representation of the groups with the composite number 

symbol, the new whole model. The first three models were generally used with repeated 

addition or skip counting strategies, both of which were limited in terms of developing 

multiplicative thinking because they use consecutively addition, adding composites onto 

each new subtotal. The latter four models were used more multiplicatively, particularly in 

the junior grades, with doubling and splitting supporting the understanding of the 

distributive property. 

In division contexts, students who could unitize three layers consecutively utilized 

the models of dealing out objects in consecutive groups until the dividend was reached as 

well as representing only the groups when utilized with repeated subtraction. In division, 

I also saw students represent only the groups to add up and use the rudimentary ratio 

table.  

The three layers of unitizing are slightly different for division because one of the 

required layers is that the dividend contain smaller units, even though the number of 
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those units is unknown. In multiplication, the number of units of units is known, but it is 

unclear what the unit total will be. This added complication of units right from the very 

beginning of division could have accounted for the reduced number of correct responses 

on division problems in the early primary grades. 

Models and Strategies Highlighting the Development of Four Layers of Unitizing 

The strategies already mentioned that occur alongside the new models for 

multiplication include the use of doubling; regrouping; and splitting or decomposing the 

composite, as is done when using the distributive property, building from known facts, 

and using partial products, all require four layers of unitizing to be considered 

simultaneously. Only a couple of students extended their use of the rudimentary ratio 

table to a truer form of ratio table when they used known facts to build to the dividend. 

Most students with this level of unitizing structure used either a form of symbolic 

notation or a previously described model such as the new whole, albeit with a more 

complex calculation strategy such as doubling.  

The transition to this level of unitizing was not as clear as the proposed theoretical 

development of unitizing might falsely indicate. Although the doubling strategy does 

require four layers of units, those layers might not necessarily have to be simultaneously 

considered throughout the calculation. This lack of required simultaneity could have 

accounted for some of the errors in the use of this strategy for multiplication because 

some children were unable to track that each double accounted for two groups and 

proceeded to mistakenly calculate double the total number or more. Likewise, the use of 

splitting strategies resulted in a large variety in the required layers of simultaneous units 

and the length of time this simultaneity could be sustained. For example, when 
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calculating 6 x 24, some students used only multiplicative strategies for the groups of 20 

but added the groups of 4 back on to the subtotal for the 20s one at a time.  

Variations in the Development of Unitizing 

Gradual Development of Simultaneity 

  Some students were able to track the number of groups simultaneously when 

solving multiplication or division problems. This tracking of groups indicated a shift in 

the students proficiency with a particular level of unitizing. For this reason, as seen in 

Figure 20, I used arrows to indicate the shifting of various division models if they 

occurred with the simultaneous tracking of groups. The ability to simultaneously track 

the groups in division or in multiplication developed gradually as students expanded their 

understanding of the unitizing structure. As students began to consider each new layer of 

units, there was an increase in the time needed to consider all the layers and simultaneity 

was reduced temporarily. With practice these new unitizing structures became more 

familiar and the strategies associated with them become easier to execute.  As students 

need less time to consider each layer, simultaneity increased again until it was possible to 

simultaneously track groups. Alternatively students may have made a shift into a new 

model or strategy that required the addition of a layer to the unitizing structure.  

Size of the Unit 

The size of the unit could have affected the number of layers of units students 

were capable of utilizing. When students solved 4 × 10, they used models that required a 

more complex unitizing structure in earlier interviews than they did when solving 3 × 4. 

In the former, emergence of the model, where they represented only the groups to support 

their calculation in the spring of Grade 1, was noted. This model was not seen at all for  
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3 × 4 and did not emerge until the fall of Grade 2, when students were asked to calculate 

6 × 4. The development of unitizing requires that students be able to consider individual 

units inside other units simultaneously. Children have a lot of experience doing this with 

certain numbers, for example, 2 (e.g., two legs or two arms per person); 5 (e.g., five 

fingers is one hand); and 10 (e.g., 10 fingers on both hands). Perhaps it is for this reason 

that children can use this model so early when working with 10s. Another possibility is 

that this particular cohort of students had the opportunity to develop their number sense 

around 10 because of the content and pedagogical knowledge of their teachers with 

respect to the reform-oriented instruction used in their classrooms. 

Observations of a Common Error 

Once the children were able to conceive of the problem and use the two numbers 

in the problems for different purposes, one common error that the students made at the 

early primary level was to have the number of groups match the number of objects inside 

the groups. For 6 × 4, they would create either four groups of 4 or six groups of 6. Only 

latching on to one of the numbers and using the same number in two different ways might 

give further insight into the order of development of the structure of unitizing. I believe 

that for the students who made this error, the process of using the two numbers for 

different purposes and holding each number and its purpose simultaneously in their heads 

was too great, so they had to let something go, which was the second number. The two 

different functions, as well as one of the numbers, were maintained. I did not code the 

data specifically on errors, but this was a common error, even among some of the 

stronger students. Many times, the students self-corrected when the interviewer repeated 

the question. 
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Critical Models and Strategies in the Development of a Unitizing Structure 

Multiplication 

 When solving multiplication problems, the students began by modelling out each 

object in each group and using unitary counting to determine the total. As the students 

developed a beginning unitizing structure, they began to use one of two models, meaning 

that they either modelled one group that they iterated several times or used tallies, 

counters, or fingers to model only the groups to track their counting. These latter two 

models supported the development of rhythmic counting, an important skill that appears 

to help children solidify the beginning unitizing structure. Often in addition to rhythmic 

counting, the students began to count after the first set or more sophisticatedly after the 

first doublet. I theorize that the students’ use of the doublet, followed by rhythmic 

counting, was a steppingstone to the next level of unitizing that accommodated three 

layers of units because the use of the doublet demonstrated full simultaneity of two layers 

of units. The falling back to rhythmic counting showed that the students could not 

maintain that simultaneity throughout the whole solution. 

The next critical model appeared to be one of two similar representations: the new 

whole or representing the groups with number symbols (see Figure 21). Both models 

appeared to support the development of two clusters of strategies that required more 

multiplicative thinking, doubling and regrouping strategies, as well and decomposing or  

splitting strategies. These strategies can support the development of a broader and deeper 

understanding of the structure of number although they are very different from one 

another, with the latter cluster leading to more multiplicative solutions. 
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Figure 21. Graphical representation of the model representing the groups with number 
symbols and the model the new whole. 
 

An interesting though little used model was one in which the students actually 

modelled out the objects in the groups in subgroups (see Figure 22). This model is 

interesting in that it enabled the students to use a far more sophisticated strategy and 

unitizing structure because it facilitated the structure supporting the construction of the 

distributive property. It is unclear whether highlighting this strategy in the classroom 

might encourage more students to construct the multiplicative layers of a unitizing 

structure. 

Figure 22. Graphical representation of the model representing the groups with the objects 
in subgroups. 

Division 

When solving quotative division problems, students used one of three 

underpinning models, an adding up model, a repeated subtraction model, or a partitioning 

model. In the early primary grades, the latter was the most commonly used underpinning 

model to solve the problem, but once the children began to use numerals in their 

calculations, they rarely used the partitioning model. Instead, most of the children used 

4 4 4 4 4 4 
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adding up models, which then developed much like that of unitizing in multiplication 

contexts. The repeated subtraction model also was used infrequently, despite the fact that 

it required fewer simultaneous layers of unitizing than some of the more sophisticated 

adding up models. Perhaps this low frequency reflected the increased difficulty of 

subtraction itself in comparison to addition, particularly with a larger and less friendly 

number like 16.  

One of the major differences in division contexts was that the solution to the 

problem required students to determine the number of groups. If they used an adding up 

model, they needed to track the total as well as the number of groups. Consequently, I 

theorized that simultaneity, although part of a completed unitizing structure and critical to 

multiplicative thinking, had gradations of depth along each child’s trajectory. It is 

possible that the ability to track simultaneously is a skill that could be increasingly 

developed in the classroom setting to help children develop a unitizing structure. 

Conclusion 

 The strategies and models provided connected but different pictures of the levels 

of unitizing that the students were utilizing. In some cases, a particular model, such as 

representing one group, seemed to give rise to new strategies such as rhythmic counting; 

at other times, it seemed as though a new strategy such as skip counting gave rise to a 

model, as was the case with the rudimentary ratio table. In the multiplication context, 

more complex levels of unitizing were achieved with the models of the new whole or 

representing the groups with the composite number symbol than were achieved with the 

more classic representation of repeated addition. In the division context, more complex 

levels of unitizing structures were demonstrated with the adding-up models than were 
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demonstrated through either the repeated-subtraction model or the partitioning model of 

division. 

 Teachers interested in helping students to develop a sophisticated unitizing 

structure of numbers and researchers interested in examining its development need to 

recognize the differences among the various strategies and models in terms of the levels 

of unitizing that students will use to solve multiplication and division problems. In 

particular, having an awareness of the use of contexts to develop rhythmic counting, 

supported by constraints on the problem to facilitate students to model only one group or 

model just the groups might support the initial shift to two layers of unitizing by early 

primary students. For example a possible context might be figuring out cookies needed 

for people sitting around a table.  This context may encourage rhythmic counting because 

if the places are set around the table, the model provided is one of just the groups. This 

may promote rhythmic counting on each plate. A constraint on the problem could be that 

only enough manipulatives to make one group could be provided.  This would force 

students who want to count to count the one group over and over which will help develop 

a rhythmic counting rhythm. 

 When solving division problems it is critical for teachers and researchers to watch 

the student solutions. The variety of mathematical understanding cannot be captured and 

analysed accurately with a paper and pencil artifact as the levels of simultaneity and of 

layers of units cannot be determined. There were many instances of identical artifacts 

from students with a wide range of the development of a unitizing structure. 

As students move into the junior grades, having a focus on doubling and 

regrouping strategies will help them to develop their unitizing structure, but it will not 
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necessarily carry them as far as developing splitting strategies. Regrouping strategies 

enable students to gain a deeper understanding of number structures, but they also appear 

to be associated with more additive thinking by students.  

Doubling or regrouping strategies often were paired with the use of additive 

strategies such as repeated addition of the new composite and not with multiplicative 

strategies such as multiplication of the new composite. On the other hand, splitting 

strategies were found in conjunction with a variety of strategies ranging from additive to 

multiplicative, indicating its flexibility to support a progression from additive to 

multiplicative thinking. Reform teachers and researchers interested in understanding the 

difference between these two strategy types should ensure that the new whole model is 

used in classrooms and interviews in lieu of the more classic repeated addition model 

because the new whole appears to lend itself equally to both types of unitizing structures. 

In addition, allowing the continued use of paper-and-pencil modelling, when numbers 

can be deconstructed, might encourage the expansion of the unitizing structure in this 

way because the students in this study generally used only doubling strategies when they 

worked mentally. Number selection is equally important in eliciting more advanced 

unitizing structures. Beginning with number problems that use 10s in the early primary 

grades might support the development of more complex unitizing structures that could 

then be challenged to extend to other numbers (e.g., 5, 2, 3).  

Considerations for Future Research 

 The examination of the proposed trajectory for the development of a unitizing 

structure by analyzing individual student trajectories over time would further illuminate 
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the development of unitizing and provide insight into the accuracy of this developmental 

trajectory for the progression of the development of the unitizing structure.  

 The analysis of additional problems, including problems that use a composite unit 

of 10 and problems that are posed as ratio and proportion problems, could lead to the 

formation of a trajectory of development of unitizing structures. In addition, a reanalysis 

of the multiplication code with codes for simultaneously tracking the groups could shed 

light on the theory that although simultaneity is part of a complete understanding of the 

unitizing structure, there are gradations within each level of unitizing as simultaneity 

grows. 

Future unitizing research should include an instructional program designed to 

support the development of more sophisticated unitizing structures. Examining the effect 

of explicit practice in rhythmic counting and reunitizing games and contexts that 

encourage students to split the composite into pieces that are easier to use as well as 

double or regroup them into larger composites would shed light on whether the practice 

of these strategies could support the development of more sophisticated forms of 

unitizing.
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Appendix A: Landscape of Learning 

 Landscape of Learning (Fosnot, 2007b)

16 I N V E S T I G AT I N G  M U LT I P L I C AT I O N  A N D  D I V I S I O N

The landscape of learning: multiplication and division on the horizon showing landmark strategies (rectangles),
big ideas (ovals), and models (triangles).

032107_L2 Overview  3/21/07  4:03 PM  Page 16
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 9 3x4  
(6 x 4) 

Robin has 3 packages of gum. There are 4 
pieces of gum in each package. How many 
pieces of gum does Robin have all together? 

Robin has 6 packages of gum. There are 4 pieces 
of gum in each package. How many pieces of 
gum does Robin have all together? 

3 x 
4 

 6 
x 
4 

       

 
11 

15/3 or 
21/3 
quotative 

Tad had 15 guppies. He put 3 guppies in each 
jar. How many jars did Tad put guppies in? 

Tad had 21 guppies. He put 3 guppies in each jar. 
How many jars did Tad put guppies in? 

  21        

 
12 

4x10 Sandy has 4 packages of candy. There are 10 
pieces of candy in each package. How many 
pieces of candy does Sandy have all together? 

Corrine has 4 packages of baseball cards. There 
are 10 baseball cards in each package. How many 
baseball cards does Corrine have all together? 

          

13 32/10 
(36/10) 
(54/10) 

Susan had 32 marbles. She put 10 marbles in 
each bag. How many bags did Susan fill with 
10 marbles? Did she have any marbles left 
over? How many? 

 Ms. Suarez has 36 brownies to serve to her 
guests. She put 10 brownies on each plate. How 
many plates did she fill with 10 brownies. 
(AFTER SOLUTION ASK) Did she have any 
brownies left over? How many? 

  36 
/ 
10 

54 
/ 
10 

      

16 20/4 or 
24/4 

Mr. Gomez had 20 cupcakes. He put the 
cupcakes into 4 boxes so that there were the 
same number of cupcakes in each box. How 
many cupcakes did Mr. Gomez put in each 
box? 

24 children signed up to play baseball. The 
coaches divided the children into 4 teams with 
the same number on each team. How many 
children were on each team? 

20/ 
4 

 24 
/ 4 

       

28 19/5 19 children are going to the circus. 5 children 
can ride in each car. How many cars will be 
needed to get all 19 children to the circus? 

20 children are going on a picnic. 6 children can 
ride in each car. How many cars will be needed to 
get all 20 children to the picnic area? 

  20        

 
31 

3:8 
?:12 

Three candies cost 8 cents how much do 12 
candies cost? 

           

35 18/3 
(21/3) 
quotative 

Ms Bird had 18 flowers . She planted 3 
flowers in each pot. How many pots of plants 
did Ms. Bird plant? 

Aliza has 21 fish. She put 3 fish in each bowl. 
How many bowls did she use? 

  21        

40 24/4 part 
42/3 

24 children signed up to play baseball. The 
coaches divided the children up into 4 teams 
with the same number of children on each 
team. How many children were on each team? 

Josie has 42 stickers she wants to paste on three 
pages of her album, How many stickers did she 
past on each page if she pasted all of them and 
did so equally? 

          

53 6X24 Sandy has 6 boxes of candy. There are 24 
pieces in each box. How much candy does she 
have all together? 

Sandy has 12 boxes of candy. There are 24 pieces 
in each box. How much candy does she have all 
together? 

    6x24    12x 
24 

 

 59 6X7 

[mentally] 

Josh has 6 fish bowls. There are 7 fish in each 
bowl. How many fish does Josh have? 
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 64 604/10 A bricklayer was laying bricks to build a wall. 
He had 604 bricks to lay. He laid 10 in each 
row. How many rows could he make?  

           

 65 64/16 
quotative 

The teacher was packing pencils into boxes of 
16. She has 64 pencils. How many boxes can 
she make? 

           

 66 98/7 The florist has a shipment of 98 flowers. He is 
making them into bouquets of 7 flowers. How 
many can he make? 

           

 67 432/15 There are 432 children going to the zoo. Each 
small bus holds 15 children. How many buses 
will be needed to take the children to the zoo? 

           

 70 1:2:3 
 
 

Frankie has 3 fish, small, medium and large. 
The medium fish eats twice as much as the 
small. The large fish eats three times as much 
as the small. IF the small fish gets 1 pellet 
how much do the other fish fish get? If the 
fish grow and now the medium fish eats 4 
pellets how much do the other two fish eat 
each? 

           

 71 4 x 7 John went shopping and bought 4 new pairs of 
pants and 7 new shirts. How many different 
outfits can he make using the new clothes he 
bought? 

           

 72 12 x 18 Plums in a grocery store display are arranged 
in 12 rows. There are 18 plums in each row. 
How many plums are there? How do you 
know? 

           

 73 225/15 
 

A skyscraper has 225 windows on one side 
arranged in rows and columns. If there are 15 
columns of windows, how many rows are 
there?  

           

 74 AxBxC=24 
  

The Laura Secord store is making new boxes 
to sell 24 chocolates in. The boxes must have 
more than one layer of chocolates. Draw a 
picture of how many chocolates can be in each 
layer. Give at least two different solutions. 
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Appendix C: Selected Questions From Full Instrument and Possible Strategies in 
Students’ Solution Methods 

 

Note. Grade designations with an f indicate that the item was administered only in the fall of that year. 
Grade designations with an s indicate that the item was only administered in the spring of that year. 
Computations in brackets are associated with slight changes in the instrument for different grades. 
  

Question 
Pairs 

Calculation Sample Wording Possible Strategies Type and Grade 

 
#9 

 
 
 

#53 

 
3 x 4 or  

6 x 4 
 
 
 

6 x 24 or 
12 x 24 

 

Robin has 3 packages 
of gum. There are 4 
pieces of gum in each 
package. How many 
pieces of gum does 
Robin have all 
together? 
Sandy has 6 boxes of 
candy. There are 24 
pieces in each box. 
How much candy does 
she have all together? 

Represents groups and objects 
in the groups and counts by 
ones, Skip counting, Repeated 
addition, Doubling, Using 
partial products, Using familiar 
facts, Use of automatized facts 
 

Multiplication  
Multiple groups 
1, 2 
 
3, 4, 5 

#11 
 
 
 
 
 

#65 

15/3 or 21/3 
 
 
 
 
 

64/16 
 

Tad had 15 guppies. 
He put 3 guppies in 
each jar. How many 
jars did Tad put 
guppies in? 
 
 
The teacher was 
packing pencils into 
boxes of 16. She has 
64 pencils. How many 
boxes can she make? 

Dealing out or counting all, then 
counting the groups, Skip 
counting, Repeated addition or 
subtraction in a division context, 
Using the ten structure, 
Doubling, Using ten-times, 
Using partial products, Using 
partial quotients, Using familiar 
facts, Use of automatized facts 

Quotative 
Division 
Multiple groups 
1, 2, 3 
 
 
4, 5 

#12 
 
 
 
 
 

4 x10 
 
 
 
 
 

Sandy has 4 packages 
of candy. There are 10 
pieces of candy in 
each package. How 
many pieces of candy 
does Sandy have all 
together? 
 

Represents groups and objects 
in the groups and counts by 
ones, Skip counting, Repeated 
addition, Using the ten 
structure, Doubling, Doubling 
and halving, Using partial 
products, Using familiar facts, 
Use of automatized facts 

Multiplication 
Multiple groups 
1, 2, 3 
 
 

#59 6 x 7 
(mentally) 

Josh has 6 fish bowls. 
There are 7 fish in 
each bowl. How many 
fish does Josh have? 

Skip counting, Repeated 
addition, Doubling, Doubling 
and halving, Using partial 
products, Using familiar facts, 
Use of automatized facts 

Multiplication 
Multiple groups 

3, 4 
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Appendix D: A Priori Codes 
 

Code type a priori codes taken from the literature for initial coding 
Strategies Represents groups and objects in the groups and counts by ones; tries 

to make equal-sized groups through trial and error; dealing out or 
counting all, grouping, then counting the groups; skip counting; 
repeated addition; repeated addition or subtraction in division context; 
using the ten structure; doubling; doubling and halving; using partial 
products; using five-times; uses familiar facts; use of automatized 
facts; and, using partial quotients. 

Models models groups (i.e., concrete materials; tallies; fingers); models as 
repeated addition on an open numberline; models multiplicative 
situation as array; uses an open array; uses a t-chart or ratio table; 
uses money model in calculating 

Additional Codes correct; incorrect; incorrect but close; correct with help; 
multiplication context; division context 
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Appendix E: Models and Strategies Used by Students When Solving Multiplication 
Problems 

 

Name Explanation of model What that model looks like 
with 6 x 4 (6 packs of gum, 

4 pieces in each pack) 
Models   
Represents groups and 
objects in the groups 

With this model the student uses counters or 
tallies. One for each object and groups them 
into groups to help them keep track of the 
groups. 

 

Represents 1 group and 
the objects in that group 

With this model the student uses counters, 
tallies or fingers to represent one group and 
they use that representation to help them tally 
the total. 

 

Represents just the groups 
with fingers, tallies or 
counters. 

Here a student will skip count or rhythmically 
count in their heads, but they will use a 
counter, finger or tally to mark each group so 
that they can track the number of groups as 
they count. 

 

Rudimentary Ratio Table This is similar to the model above, but instead 
of using a tally, counter or finger to keep track 
of the groups, the student writes down the 
subtotal to help them track.  

4, 8, 12, 16, 20, 24 

Models the groups with 
number symbol 

With this model students mark out groups with 
rectangles or circles and write the composite 
numeral inside, or just adjacent to each group. 

 

Repeated Addition With this model students write out all iterations 
of the composite using numerals joined by an 
addition sign. 

4+4+4+4+4+4 

New Whole When using this model students write out all 
the iterations of the composite numeral all 
together without addition symbols or shapes 
defining a group. The grouped numerals 
together form the new whole. 

4 4 4 4 4 4 

Model the groups with the 
objects in subgroups 

When using this model students model out all 
the objects but they do so by grouping them in 
subgroups such as would be formed by 
decomposing or splitting the composite. This 
model was occasionally also done with 
numerals (see strategy of skip counting by a 
value less than composite below. 

6 x 7 used for this model  
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Name Explanation of model What that model looks like 
with 6 x 4 (6 packs of gum, 

4 pieces in each pack) 
Jottings A mental calculation with written work to help 

students keep track of some of the numbers 
during the calculation. 

lots of options, but the 
model doesn’t fit into 
another category 

Strategies   
Counting by ones Students count objects, tallies and occasionally 

fingers by ones beginning from one. 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 1, 17, 18, 
19, 20, 21, 22, 23, 24 

Counting On after the first 
set 

Students count objects, tallies or fingers but 
they start from after the first iteration of the 
composite. 

4,…, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 1, 17, 18, 19, 
20, 21, 22, 23, 24 

Rhythmic Counting Students use the composite to construct their 
counting rhythm. A small pause usually occurs 
at the end of each composite. Students can also 
begin after the first set (se counting on) but 
then continue with rhythmic counting. 

1, 2, 3, 4,…, 5, 6, 7, 8,…, 9, 
10, 11, 12,…, 13, 14, 15, 
16,…, 17, 18, 19, 20,…, 21, 
22, 23, 24 

Starting with a Doublet Both counting on and rhythmic counting can 
begin after the first doublet (the first two 
iterations of the composite; rhythmic counting 
depicted) 

Two groups is 8,…, 9, 10, 
11, 12,…, 13, 14, 15, 16,…, 
17, 18, 19, 20,…, 21, 22, 
23, 24 

Skip Counting Students navigate the counting sequence by the 
composite. 

4, 8, 12, 16, 20, 24 

Skip counting by a value 
less than the composite 

Students decompose the composite and use 
skip counting by a new value(s) to calculate 
the total (6 × 7 depicted). 

52 52 52 52 52 52  
5, 10, 15, 20, 25, 30, 32, 34, 
36, 38, 40, 42 

Doubling Students double the composite and then use the 
new doubled composite to determine the 
answer. They then can use repeated addition, 
or new whole to combine the new composites. 
The students have to track that each iteration of 
the double is two groups. 

Two 4s are 8. 
8 + 8 + 8 = 24 

Regrouping Students group together three or more 
composites to make a new composite that is 
then iterated. The students have to keep track 
of how many groups each new composite 
represents. 

Three 4s are 12. 
12 + 12 = 24 

Partial Products Students use the alternative algorithm labeled 
partial products by using two or more products 
to build to the total. 

4 × 4 = 16 
4 × 2 = 8 
16 + 8 = 24 
 

Repeated Doubling Students repeatedly double until they cannot 
double anymore. They may have to adjust by 
adding or subtracting composites. 

Two 4s are 8. 
Two 8s are 16. 
One more 4 is 20 and one 
more 4 is 24. 
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Appendix F: Models and Strategies Used by Students When Solving Division 
Problems 

Name Explanation of the Model What the model looks like with 15 ÷ 3 
(15 fish, 3 fish in each bowl, how many 
bowls) 

Adding up Models   
Trial number of empty 
groups 

With this model, the students 
first draw out shapes to identify 
each group. They guess at the 
number of groups they will 
need. Then they go back and 
fill in each group with the 
composite number of objects. 
Finally they tally the number of 
objects they have and then add 
or remove groups as required. 

Step 1  

Step 2  
Step 3

 
 

Trial number of composite-
filled groups 

This model is similar to the 
previous one except that the 
students fill the trial number of 
groups with the objects as they 
go not as two separate steps. 
Again they check their total 
and then add or remove groups 
as required 

Step 1 

 
Step 2 

 

Deals out composite groups 
tracking subtotals 

This model is similar to the 
previous model except that the 
students put out one group at a 
time and track the subtotals as 
they go so that they know 
exactly when they have to stop. 

 

Represents just the groups 
with fingers, tallies or 
counters. 

Here a student will skip count 
or rhythmically count in their 
heads, but they will use a 
counter, finger or tally to mark 
each group so that they can 
track the number of groups as 
they count. 

 

Repeated addition With this model students write 
out all iterations of the 
composite using numerals 
joined by an addition sign. 

4+4+4+4+4+4 

Symbolic Notation The students use standard 
notation to represent their 
thinking, but not using repeated 
addition or a traditional 
algorithm. 

4 + 4 = 8    8 + 8 = 16 
4 + 4 = 8    16 + 8 = 24 
4 + 4 = 8 

Jottings A mental calculation with 
written work to help students 
keep track of some of the 
numbers during the calculation. 

lots of options, but the model doesn’t fit 
into another category 

Rudimentary Ratio Table This is similar to the model 
where only the groups are 
represented, but instead of 
using a tally, counter or finger 
to keep track of the groups, the 

4, 8, 12, 16, 20, 24 
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student writes down the 
subtotal to help them track. 

Subtraction Models   
Repeated subtraction Here students begin with the 

dividend and removes the 
composite calculating the new 
remaining minuend each time. 

15 – 3 = 12, 12 – 3 = 9, 9 – 3 = 6, 6 – 3 = 
3, 3 – 3 = 0 

Partitioning Model   
Represents total number of 
objects, groups by 
composite 

With this model students 
represent the dividend with 
counters, tallies or fingers and 
then they group the objects 
with the composite number of 
objects in each group. 

Step 1               Step 2 

 
Represents total number of 
objects using ten structure, 
groups by composite 

This model is similar to the 
previous model except that the 
students use the ten structure to 
represent the dividend such as 
two ten sticks and one other 
cube to make 21. They may 
also use numerals such as 10, 
10, 10, 10, 10, 10, 4 for 64. 

Step 1 

 
Step 2 

 
Strategies   

Adding up model strategies are the same as the 
multiplication strategies. The composite is the 
divisor. When simultaneous tracking of groups 
occurs, the students have a double count where one 
number tracks the subtotal as with multiplication 
while the other tracks the number of groups totaled 
so far. 

 

Repeated Subtraction With this strategy the 
students begin with 
the dividend and 
repeatedly subtract the 
divisor using some 
method to track the 
number of 
subtractions (groups). 
With each subtraction 
they track the 
minuend that they use 
as their new total. 

15 – 3 = 12, 12 – 3 = 9, 9 – 3 = 6, 6 – 3 = 3, 3 – 3 = 0 

Rhythmically Counts 
back from dividend by 
composite 

With this strategy the 
students begin with 
the dividend and then 
they use counters, 
drawings or fingers to 
support them to count 
back by the divisor 
(composite) 

15, 14, 13,…12, 11, 10,… 9, 8, 7, … 6, 5, 4, … 3, 2, 
1 
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repeatedly. They also 
track the number of 
times they have 
removed the divisor. 

Counts by ones to the 
dividend, partitions 
groups 

With this strategy 
students use 
manipulatives or 
drawings and they 
count by ones up to 
the dividend. They 
then group the 
manipulatives in 
groups of the divisor 
(composite) 

Step 1               Step 2 
 

Builds to the dividend, 
makes groups 

With this strategy, 
students use known 
facts to build to the 
dividend instead of 
counting by ones. 

Step 1 

 
Step 2 

 
Decomposes the 
dividend 

With this strategy the 
dividend is 
decomposed and then 
restructured into 
groups the size of the 
composite. (64 ÷ 16 
used to demonstrate 
this strategy) 
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