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Abstract

Over the last decade, the switchable stiffness (SS) control strategy has seen renewed
academic interest due to the need for effective vibration control techniques. The SS control
strategy involves switching the system’s stiffness between at least two distinct states. The system
switches to a high stiffness state when the mass is moving away from the equilibrium and a low
stiffness state when the mass 1s moving towards the equilibrium. The SS strategy has been shown
to be both theoretically and experimentally effective for shock isolation and residual vibration
suppression. The research presented in this thesis investigates the theory and implementation of

the SS control.

An experimental apparatus with an electromagnet (EM) actuator as a switchable stiffness
spring i1s presented for the testing and implementation of the SS control. The non-linear
dynamics, properties, and parameters are characterized through experimental identification. A

detailed analytical dynamic model of the system is derived and verified.

A series of computer simulations reveal the mechanism, stability, and properties of the
SS strategy. It is shown that potential energy is dissipated from the system through stiffness
reduction. A relationship is developed between the stiffness ratio and the amplitude reduction.
The simulations also show a possible instability problem due to time delays. A novel delayed SS
strategy, involving the introduction of an intentional delay, is presented to overcome this

problem. Simulations verify the effectiveness and limitations of the delayed SS strategy.

The SS control strategy is implemented in real-time. The experiments verify the
instability due to time delays and the efficacy of the delayed SS strategies despite the system

non-linearities. The performance of the system is, however, shown to be severely limited by the
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dynamics of the EM. It is postulated that a SS actuator with low energy iput, high stiffness

variation, and fast-switching times will enhance the performance significantly.

The SS control strategy for 2DOF systems is investigated. A 2DOF system made up of
two SDOF systems coupled by a beam i1s introduced. The generalized 2DOF system equations
and models are derived. Preliminary simulations verify that the direct SS control strategy is
effective at suppressing the vibrations of linear and non-linear 2DOF systems. Simulations also
show that the delayed SS strategy is effective at suppressing vibrations for symmetrical 2DOF

systems with time delays.
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Chapter 1 — Introduction

1.1 Vibration Fundamentals

Free mechanical vibration is the natural oscillatory phenomenon of mechanical systems
as a result of the interplay between the kinetic and potential energies at the atomic level. Often,
excessive vibration can be undesirable; it can cause discomfort to humans via noise and
vibration, wear on industrial machinery, damage to sensitive equipment, and, in extreme cases,
even destruction of entire civil structures due to wind, earthquakes, or tsunamis. On the other
hand, mechanical vibrations can be desirable as well. Examples include music, the means of
verbal and auditory communication, base shakers, devices used in medical applications, sorters,
or vibratory conveyers for assembly lines [1]. Therefore, the study of vibrations, either the
elimination or suppression of undesirable vibrations or the generation of necessary and useful
vibrations, 1s crucial as technology and society becomes more sophisticated. In particular, the

study of vibration isolation and control will be examined in detail.

In general, there are two types of vibration isolation problems: (1) displacement
transmissibility problem where the vibrational source is in the base and isolation occurs between
the base and the mass (2) force transmissibility problem where the vibrational source is in the
mass and isolation occurs between the mass and the ground. The former is commonly referred to
as base 1solation and is concerned with the displacement transmitted from the base to the mass.
The latter is concerned with how much force is transmitted from the mass to the ground. A
popular example of the case (2) is the rotating unbalance problem [2]. The two systems are
shown in Figure 1.1. Standard notations are used throughout; m, k, and ¢ are the mass, stiffness,
and damping constant of the system. x(7), y(f), and F(¢), are the mass displacement, base

excitation, and applied force respectively.



x(t)

m

]

source of vibrations

F(1)

|

x(1)

m
source of
vibrations

|

vibration
1solator

(a)

vibration
1solator
L e L
y(t)

(b)

Figure 1.1 Spring mass damper model for (a) displacement transmissibility and (b) force transmissibility

Accompanying these two isolation problems are the concepts of transmissibility. The

transmissibility ratio, 7R, is defined as the ratio of system response amplitude (X) to base

excitation amplitude (Y) for case (a) and the ratio of the transmitted force amplitude (¥7) to the

applied force amplitude (Fp) for case (b). The frequency ratio is defined as » =@/ @, where w,

1s the un-damped natural frequency of the system and is the @ exciting frequency. The damping

ratio i1s defined as &=c/2+km . The displacement transmissibility and force transmissibility

equations are shown in equations (1.1) and (1.2) respectively.

X _ 1+(2¢7)
Yol (=) +(2¢r)

1+(2¢7)

L

ba | =

(1-) +(2¢ry

(1.1)

(1.2)

Equations (1.1) and (1.2) are plotted in Figure 1.2 as a function of the frequency ratio for

different damping ratios. Vibration amplification occurs when 7R is greater than 1. By contrast,

when 7R is less than 1, vibration isolation occurs because the system response amplitude is less

than the exciting frequency/force. Therefore, the isolator is said to attenuate vibrations and

2



belong in the isolation region if » > V2 or o>2 @, . From this concept, it should be noted that

a decrease in natural frequency will increase the isolation region [2].

7 etai=0.073
6 \‘/
’ eta=0.10
25
&
2
= 4
K eta=0.15
: /
g
F. / eta = 0.2
=4
= 2 //
) e eta=0.50 | eta$1.00 ¢ta=125
& ] ¥
e T ]
0

0 0.5 1 15 2 25 3 35 4 45 5
r - Frequency Ratio

Figure 1.2 Transmissibility plot for different damping ratios

The comparison of the different damping ratios in Figure 1.2 shows that although higher
damping is beneficial to the system at resonance, it is less effective at reducing the transmitted
force or displacement in the isolation region. Therefore, in general, the performance of the
vibration isolator can be improved by decreasing the natural frequency and its damping ratio [3].
Tuning the natural frequency can be accomplished indirectly by changing the system’s mass or
stiffness although the latter is more practical. A decrease in stiffness decreases the natural
frequency but increases the damping ratio and causes a larger static deflection. This method of
vibration suppression, by determining these properties, is known as passive vibration isolation

and design.

1.2 Vibration Control

As industry and technology develops exponentially to meet consumer demand, anti-

vibration technology has become ever more imperative. Commercial buildings, residential



appliances, consumer electronics, or industrial grade machines are constantly subject to shock
and vibration. To control these vibrations, there are, in general, three methods based on the
required energy input: passive control, active control, and semi-active control. The following

subsections will offer a brief overview of these methodologies.

1.2.1 Passive Control

Passive vibration control involves the design and tuning of the system’s inherent
parameters such as mass, damping, or stiffness to achieve vibration isolation. Tuned mass
dampers (TMD), vibration absorbers, and the methods discussed in Section 1.1 are examples of

passive vibration control. These methods, by nature, are stable and require minimal energy input.

Unpredictable external disturbances such as high winds or earthquakes implore the urge
for passive vibration absorbers, such as TMDs, to be adopted in skyscrapers, power lines, and
other civil or mechanical structures. Generally, the TMD i1s a mass attached to the structure via
spring and dashpot in order to absorb the vibrational energy of the primary structure through its
relative motion. These absorbers can be seen atop the CN Tower in Toronto, the Millennium
Bridge in London, and, the largest TMD, atop the Taipei 101. Through passive control, roughly
40% to 50% reduction in wind-induced response can be achieved [3]. However, the limitation of

this method 1s that it cannot suppress resonant frequencies without more active methods.

Some researchers have used passive control design methods to suppress vibrations in the
1solation region in conjunction with active control to suppress vibration at resonance. Zhou [4-5]
used passive control methods to optimize the configuration of an electromagnet-permanent
magnet spring mass damper assembly. The electromagnets were used in parallel to an existing
mechanical spring in order soften the system stiffness. As a result, Zhou was able to successfully
create a high static low dynamic stiffness (HSLDS) isolator for passive vibration control in the
1solation region. In addition, Zhou uses fuzzy neural network based active controllers to suppress
vibrations in the resonance region. Carrella and Kovacic [6-8] also apply different passive
control optimizations to the HSLDS isolator using different stiffness configurations to achieve

similar results.



1.2.2 Active Control

Without the use of more active control methods, passive vibration control systems,
despite its proven merits, are still vulnerable to external disturbances beyond the frequencies of
the isolation region. In cases, for example, where the disturbance frequency breaches into the
vibration amplification region, there is little that passive control can do to mitigate the
disturbance. Even with optimal design, passive control methods have significant limitation in
applications where uncertain broadband disturbances are often encountered [8]. Active vibration
control methods are able to compensate for these limitations. Active vibration control uses direct
control forces to counter the vibrational motion of the system through a control loop of
controllers, sensors, and actuators. Typically, there are two ways to construct these loops: open
loop and closed loop. Firstly, open-loop (feed forward) control is where the disturbance signal 1s
measured by sensors and fed through a controller which drives the actuators to suppress
vibrations [9]. In this case, the relationship between the system model and disturbance should be
well known and the disturbance input must be available to the sensor. The second category,
closed-loop (feedback) control, is where the system output control variables are measured by the
sensors and fed through a controller which drives the actuators to suppress vibrations. This type
of active control is often more appropriate in cases where disturbances and parameters are time

varying and uncertain. The two types of active control loops are illustrated in Figure 1.3.
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Figure 1.3 Schematic of (a) feed-forward active control (b) feedback active control



Active vibration control is an area of on-going research where novel and innovative ideas
are constantly developed. Exponential growth in the development of computers and software has
made active control development much more accessible to researchers. Coppola develops [10-
11] active control techniques in additional to lag compensation mechanisms. Ji uses adaptive
neural fuzzy controller techniques for active vibration suppression of 2DOF flexible structures
[12]. Other novel active vibration methods can be seen in [13]. The applications for active-
control are extensive. Some examples include active vibration control systems for aircraft, active

engine mounts for automobiles, and adaptive vibration control for washing machines.

1.2.3 Semi-Active Control

Semi-active vibration control is achieved by tuning passive parameters such as damping
and/or stiffness through a feedback system; it is the combination of both passive and active
control. As such, semi-active control takes advantage of the reliability and low power
consumption of passive systems with the broadband performance and versatility of active
systems. Variable stiffness gives the system the flexibility to navigate the isolation and resonance
regions by adapting to the sensor information and variable damping maximizes vibration
attenuation whether the system is at resonance or isolation [14, 15]. Some applications of semi-
active control include vehicle suspension (skyhook damper) and semi-active control devices for

building retrofits.
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Figure 1.4 Schematic of semi-active feedback control concept



Smart materials can be used in semi-active control to vary the system parameters, in
particular, the stiffness. Smart materials are materials with properties that are controllable
through external stimuli [16]. For example, magnetorheological fluids (MRF) or
magnetorheological elastomers (MRE) can effectively increase its viscosity or stiffness when
exposed to a magnetic field. By principle, magnetorheological materials contain polarizable
colloidal particles that are sensitive to magnetic stimuli. In sufficiently strong magnetic fields,
the particles realign along the magnetic field lines in chains causing changes to effective
viscosity or stiffness. Typically, MRFs are used with variable damping and MREs are used with
variable stiffness. Although, MRFs used in the damper of a spring mass damper Zener model can
change the effective stiffness [17-19]. A relatively new application of MRFs 1s the MR damper
found in semi active control of primary vehicle suspension systems. Additionally, shape memory
alloys (SMAs) are another smart structure used semi-active control. SMAs possess two primary
states, each with different material properties: a high temperature austenitic state and a low
temperature martensitic state. The change from martensitic to austenitic and back to martensitic
will restore the SMA shape; this is known as the shape memory effect (SME). When used as
actuators in a system, the heating and cooling of the SMAs between these two states allow the
stiffness and damping of the overall structure to be tuned [20]. Piezoelectric materials, another
smart material, exhibit strain when a voltage is applied. The reverse is also true. When used in a
shunted circuit as a piezoelectric actuator, the stiffness of the material can be effectively tuned

[21, 22].
1.3 Switchable Stiffness Control

This thesis focuses particularly on a type of variable stiffness semi-active vibration
control termed switchable stiffness (SS). The SS control strategy employs the switching between
at least two distinct stiffness states depending on the system position and velocity feedback in
order to dissipate potential energy from the system. This strategy is able to suppress significant
amounts of vibration simply by switching the stiffness [23]. The author is not aware of any other

switchable stiffness control algorithm under the same abbreviation.

In the last decade, the SS control strategy has seen renewed interest. The SS concept was

first pioneered in 1991 by Onoda [23-25]. Onoda suggested that the system should assume the



high stiffness state when it 1s moving away from the equilibrium position and a low stiffness
state when it 1s moving towards the equilibrium position. The control law, mechanism, and other
details are further elaborated in Section 3.1. Onoda demonstrates effective vibration attenuation
of a cantilevered truss structure shown in Figure 1.5 (a). The stiffness switching mechanism was

accomplished through a piezoelectric actuator that engaged or disengaged a member of the truss.

In 2002, Jabbari [26] explores the SS control strategy on a MDOF system using a
resettable stiffness device. An experimental study was conducted on a 3 story structure using a
pneumatic actuator as the resettable stiffness device. The results demonstrate excellent vibration

suppression at low energy costs.

More recently, in 2005, a study by Ramaratnam and Jalili explores the SS control using a
bi-helical spring with a mechanical arm that engages or disengages the spring coils [27-29] as
shown in Figure 1.5 (b). Additionally, this study also introduces the use of an output feedback

variable structure velocity observer developed in [30-31] for velocity measurements.

In 2011, Cunefare [32, 33] explored the idea of state switched semi-active vibration
absorbers on cantilever beams through piezoelectric actuators. Duerr [34] used the state switched
absorber strategy to develop a variable stiffness smart structure capable of mitigating seismic
loads. Additionally, Azadi [35] applies the SS strategy to a variable stiffness spring mount made
of piezoelectric actuators; the results show significant stiffness change in short times at low
energy costs. The mount is shown in Figure 1.5 (c¢). In the same year, Chatterjee [36] used the

inverted SS control to generate self-excited oscillations by parametric excitation [37].

One notable author, Ramirez, extensively explores the SS control for shock and residual
vibration isolation [38-42]. This research uses electromagnetic actuators as the switchable
stiffness spring as shown in Figure 1.5 (d) which is similar to the apparatus used in this Thesis.
The results show effective suppression of shock and residual vibrations. Contrary to [38-42], this

Thesis will also explore, in detail, the SS control for systems with significant time delays.
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1.4 Objectives

The main objective of the research in this thesis is to explore and realize the SS control

strategy. The specific objectives are as follows:

(1) To characterize the dynamics and properties of the proposed single degree of freedom
(SDOF) experimental apparatus through experimental identification.

(2) To explore and validate the control, stability, and mechanism of the SS strategy through
simulations.

(3) To explore the effects of inherent time delays and to propose a strategy to overcome these
effects.

(4) To explore and evaluate the electromagnets as a switchable stiffness spring.

(5) To explore and validate the SS control strategy through real-time implementation.

(6) To develop and explore the SS control strategy for a 2DOF system.

1.5 Thesis Outline

This thesis is structured in the following manner.

Chapter 2: the SDOF experimental apparatus and dynamic models for the SS control
implementation are presented. The dynamic models and system properties are characterized

through experimental identification.

Chapter 3: the mechanism, stability, and instability of the SS control strategy are investigated
through theory and simulations. The effect of inherent time delays and EM dynamics are also

examined. A novel method to overcome time-delays is presented.

Chapter 4: the performance of the SS and time-delay SS control strategies are investigated

through real-time experiments.

Chapter 5: a 2DOF model is presented and its equations of motion are derived. Simulations of

the SS control on the 2DOF system are presented.

Chapter 6: the conclusions are summarized and future works are discussed.

10



Chapter 2 — Modeling & Characterization

This chapter deals with the modeling and system characterization of SDOF experimental
apparatus used for the testing and development of the switchable stiffness (SS) control strategy.
Section 2.1 presents the experimental system components, parameters, and equivalent dynamic
model. Sections 2.2 to 2.7 characterize the dynamic models and relevant properties of the system

and its components through experimental identification.
2.1 Experimental Apparatus and Dynamic Model

The apparatus used in this study is a SDOF spring-mass system made up of four

components labeled in Figure 2.1: the permanent magnet (PM) block (1), the mechanical beam
(MB) (2), a set of electromagnets (EM) (3), and a set of steel cores (SC) (4).

Figure 2.1 (a) PM (1) and MB (2) (b) EM (3) and SC (4)
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The assembly of the system is shown in Figure 2.2. The PM block (1) acts as the system
mass. It 1s made up of two neodymium magnets clamped together at the center of the MB (2) by
its own magnetic force. The MB is a stainless steel ruler fixed at both ends to the rigid frame (5)
via nuts and bolts. The tension of the MB can be adjusted by turning the bolts at the ends (6).
The fixed-fixed MB acts as a mechanical (PM-MB) spring laterally. The EMs (3) are placed in
line with the PM block with their polarities setup to repel the PM. The EM cores, referred as the
steel cores (SC) (4), are low carbon steel rods. The core extensions are threaded and fastened to
the rigid frame. The gap distance between the EMs can be adjusted by sliding the core extensions
through the holes in the rigid frame. The interaction between the EMs and PM block constitutes
two springs: the magnetic (PM-SC) spring and the electromagnetic (PM-EM) spring. The PM-
SC spring 1s due to the magnetic attraction between the PM and SCs. The PM-EM spring occurs
when the EMs are energized. Table 2.1 lists the dimensions and parameters of the system

components.

Figure 2.2 CAD model of experimental apparatus
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Table 2.1 System Parameters

Symbol Description Value
Permanent Magnet (PM)

lpm Length of PM 25.4 mm
Wom Width of PM 25.4 mm
- Height of PM 29.0 mm
m Mass of the PM 0.13 kg
Mechanical Beam (MB)

Iy Length of MB 380.0 mm
wp Width of PM 0.5 mm
hy, Height of PM 16.0 mm
Electromagnet (EM) Set A

Tig Inner radius of EM coils 6.5 mm
od Outer radius of EM coils 23.3mm
leata Length of EM coils 88.0 mm
Iscq Length of steel cores 15.0 cm
dr» Diameter of the EM gauge 22 coil wire | 0.69 mm
Ny Number of turns of the EM coils 3565

R, Resistance of the EM coil 13.0Q
Electromagnet (EM) Set B

ig Inner radius of EM coils 13.5 mm
ToB Quter radius of EM coils 27.0 mm
levs Length of EM coils 60 mm
lscr Length of steel cores 16.0 cm
d; Diameter of the EM gauge 22 coil wire | 0.69 mm
Nz Number of turns of the EM coils 1210

Rz Resistance of the EM coil 82Q




Figure 2.3 represents the dynamic force model and equivalent stiffness model of the
experimental system. The mass of the system is denoted as m. The symbols Fj., Fpr and Fp
represent the magnetic (PM-SC) force, the electromagnetic (PM-EM) force, and the MB
restoring (PM-MB) force, respectively. These forces are functions of displacement and, thus, can
be modeled as the forces of three non-linear springs in parallel [43]. The stiffness of the
mechanical spring, magnetic spring, and electromagnetic spring are denoted as &, ke, and &y
respectively. Also, the stiffness of the combined electromagnetic (PM-SC-EM) spring and the
combined total system spring (PM-MB-SC-EM) are denoted as k,, and k; respectively. Fy
represents the system damping force due to internal friction forces of the MB. For simplicity, the
damping due to the induced back electromotive force (back EMF) of the EMs [44] and other
forms of non-linear damping are not considered. Non-linear damping is a topic for future work
and 1s beyond the scope of this Thesis. In this system, damping 1s modeled as viscous (directly
proportional to the mass’s velocity) with the damping constant denoted as ¢. The focus of the

following sections is to identify these dynamic properties.

x(1)

pe pr

(@) (b)

Figure 2.3 (a) combined system free body diagram (b) combined system equivalent stiffness and damping model
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2.2 Characterization of the Mechanical Spring

The mechanical spring was characterized through two experiments: the force-
displacement experiment and the free response experiment. From the force-displacement
relationship, the restoring force of the MB was determined. From the free response experiment,
the damping and natural frequency were determined. Two different MB tension cases were

considered: case 1 — low tension and case 2 — medium tension.

2.2.1 Dynamic Model of the Mechanical Spring

The MB imparts a restoring force that opposes the displacement of the PM block. This

dynamic restoring force can be modeled as a cubic polynomial:
F,=cx’ +cyx 2.1

where F} 1s the MB restoring force, x 1s the mass displacement, and ¢; and ¢, are the polynomial
fitting constants. Note that the quadratic and constant term was omitted from equation (2.1)
based on two assumptions: the MB has no lateral pre-bending and the beam is symmetrical about
the equilibrium position (when x = 0). The stiffness model, k5, was determined by differentiating
equation (2.1) with respect to x [45]. The MB stiffness equation is shown in equation (2.2).
k, :E’::&C‘lxz +c, (2.2)
The stiffness model of the MB constitutes two parts: a linear term characterized by c,,
and a non-linear term characterized by c¢;. The linear force is directly proportional to the
displacement of the PM block; this linear relationship is known as Hooke’s Law. When the force
1s differentiated with respect to the displacement, as shown in equation (2.2), ¢, becomes the
linear stiffness of the system at equilibrium. The non-linear coefficient, ¢;, introduces a stiffness
variation when the system is not at equilibrium. In some cases where the displacement is

sufficiently small, the non-linear term may be neglected.
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2.2.2 Experimental Identification of the Mechanical Spring

Figure 2.4 MB force-displacement experiment with (1) position sensor and (2) force sensor

A force-displacement experiment, as shown in Figure 2.4, was conducted to identify the
constants in equation (2.1). The PM block was attached to a force sensor (2) through a rigid rod.
The other end of the force sensor is threaded and was attached on the rigid frame through a set of
bolts. The force applied to the PM block was varied by sliding the force sensor through the rigid
frame via the bolts. The displacement was measured by the laser reflex sensor (1) while the
corresponding force was measured by the force sensor. The data was collected by a data
acquisition (DAQ) board (dSpace 1102). Control Desk (dSpace) and Matlab Simulink were used
to interface the experiment. This experiment was executed for the two different MB tension

<

cases. Matlab’s least-squares based polynomial fitting function, ‘polyfit’, was used to curve fit
equation (2.1) with the experimental data. Figure 2.5 plots the analytical equation (2.1) with the
experimental data. The fitting constants are listed in Table 2.2 for each tension case. In general, it
is observed that increasing the MB tension has a twofold effect: it directly increases the linear

stiffness (¢, term) and slightly increases the non-linearity of the spring (c; term).

Table 2.2 MB fitting constants

Case Cq ()
1 - Low tension 2.706 x 10’ 0915 x 10°
2 - Medium tension 2.878 x 10’ 1.647 x 10°
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2.2.3 Natural Frequency and Damping of the Mechanical Spring

A free response experiment, as shown in Figure 2.7, was conducted to determine the
natural frequency and damping characteristics of the mechanical spring. Free vibration of the
system was induced by tapping the PM block. The free responses were measured by the laser
reflex sensor. The signal from the sensor was collected by the DAQ system. Control Desk and

Matlab Simulink were used to interface the experiment.

Figure 2.7 MB free response experiment

Figure 2.8 shows a typical unfiltered free response signal for each of the two cases.
Applying Matlab’s built in fast Fourier transform (FFT) function, ‘ff#’, to the free response data,
the natural frequency of the system was found for each case. The natural frequency of each case
can be identified from the FFT peaks shown in Figure 2.9. As expected, an increase in the MB

tension will result in an increase in the natural frequency of the system.
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Figure 2.8 System free response: (a) case 1 — low tension (b) case 2 — medium tension
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The natural frequency of the PM block and mechanical spring system can be determined

o, :\]E (2.3)

where w,, 1s the natural frequency, m is the mass, and & is the linear stiffness. Note that equation

using the equation

(2.3) 1s only valid for a linear stiffness. In order to use equation (2.3), equation (2.2) is linearized
about the equilibrium position using the small displacement approximation (x = 0). The

linearized MB stiffness model is shown in equation (2.4).
k=c, (2.4

Table 2.3 lists the natural frequencies identified from the free response experiment and
calculated from equation (2.3) for the two MB tension cases. In general, the analytical and

experimental natural frequencies show good agreement with small discrepancies.

Table 2.3 Natural frequencies of the mechanical spring

Experimental Analytical
Case
o, (Hz) 0, (Hz)
1 — Low tension 13.18 13.35
2 — Medium tension 17.09 1791

The damping ratio of the PM block and MB system was estimated by applying the
logarithmic decrement method [2] to the free response data in Figure 2.8. The logarithmic
decrement is given by

so b, x(0)

In

n x(r+nT) 2-5)

where x(7) is the first displacement point, x(#+n7) is the second displacement point, T is the
period, and » is the number of periods between the first and second displacement points. The

amplitude peaks were chosen as displacement points. Several sets of displacement peaks were
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chosen to mitigate the effect of noise. The damping ratio was calculated using equation (2.6) and

the damping coefficient was estimated using equation (2.7) with the experimental w, values.

S
1+(2_7r] (2.6)
5
c=2{mo, (2.7)
sz 298

Table 2.4 lists the damping ratio and damping constant for each MB tension case. The
results show that higher MB tension corresponds to slightly lower damping. This observation is
consistent with the relationship between damping and stiffness shown in equation (2.8). In

addition, the overall damping values of the system are very low. Therefore, the system’s damped

natural frequency can be approximated as the natural frequency (@, =@, ).

Table 2.4 Experimental damping ratio for three initial beam tension cases

Damping Damping
Case
Ratio Constant
1 — Low tension 0.001822 0.03923
2 — Medium tension 0.001759 0.04910
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2.3 Characterization of the Magnetic Spring

2.3.1 Dynamic Model of the Magnetic Spring

There 1s a magnetic attraction force between the PM and the SC due to the magnetization
of the PM and the iron content of the SC. Inspired by Coulomb’s law [46], this magnetic force is
assumed to be

a
F =—1—
where F) 1s the attracting force and d 1s the air gap distance between the surface of the PM and

surface of the SC. a; and a, are the fitting constants to be determined.

Figure 2.10 illustrates the forces of the SC on the PM where F),; is the force of SC; on
the PM’s south pole and F},; is the force of SC, on the PM’s north pole. D is the gap distance
between the two EM surfaces and /4 is the thickness of the PM block. The PM block’s

equilibrium position (x = 0) 1s centered between the two SCs.
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Figure 2.10 PM-SC interaction
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Based on equation (2.9) and Figure 2.10, F); and Fj; are defined as:

= (2.10)
a (dl +azl)4 -
a
= 2.11)

2 (d, +ay)

where d; and d, are the distances between the surfaces of the respective SCs and PM. Without

loss of generality, d; and d, can be transformed in terms of the x coordinate.

g =2=" . 2.12)
2
g =2="_ (2.13)
2
The net force acting on the PM block is
a a
AF, =F,—Fy= - 1 (2.19)
(@2-x)  (an+x)
where ¢;; and ¢;, are defined as
D—h
n :T+azl (2.15)
D—h
G = +ay (2.16)

The net force in equation (2.14) can be considered as a restoring force exerted by the
magnetic spring. Note that Hooke’s requires a negative sign if the force is a restoring force.
Therefore, differentiating equation (2.14) with respect to displacement and applying Hooke’s law
sign convention yields the stiffness of the PM-SC spring:
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dAF

pc

_ A ay,

kpc_ - s T 5
dx {(Glz_x) (g +x) ]

(2.17)

In the special case where both steel cores are identical, the constants can be further simplified to

ay =04y =day (2.18)

(2.19)

(Sx4 + 10g12x2 + qf)

E (a2 -y

pc

(2.20)

2.3.2 Experimental Identification of the Magnetic Spring

An experiment was conducted to find the curve fitting constants, a;;, a;,, az;, and a,; in
equations (2.14). Figure 2.11 shows the experimental setup. The clamped PM-MB assembly was
detached from the rigid frame and attached to the force sensor (1) by the PM’s own magnetic
force. The MB was intentionally left between the magnet halves to include the influence of the
MB on the magnetic flux. The distance between the PM and SC (2) was varied incrementally and
the corresponding magnetic attraction force was measured by the force sensor. The distance
between the PM and SC was measured by a micro-caliper. The experiment was done for SC,

facing the south pole of the PM and SC; facing the north pole of the PM.
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The sequential simplex algorithm [4,47] was used to curve-fit the experimental data with
equations (2.10) and (2.11). Table 2.5 lists the obtained constants and Figure 2.12 compares the
experimental and analytical results. The data strongly confirms that SCs are identical. For
simplicity, equation (2.18) is applied for both SCs. The average of each fitting constant between

Figure 2.11 SC attraction force-displacement experiment

the two SCs is calculated and denoted a; and a, in accordance to equation (2.18).

Table 2.5 Experimental fitting constants for equation (2.10) and (2.11)

Constants EMl EMz EMaverage
a; (109 4.145 4227 4.186
a> (107) 1312 1.344 1.328

Figure 2.13 shows the magnetic spring stiffness determined by equation (2.20) for 60, 70,
80, and 90 mm SC gap distances. The negative parabolic-like curves indicate that the magnetic
spring has a negative stiffness; when placed in parallel within the system, this spring will reduce

the overall stiffness of the total system. For smaller SC gap distances, the non-linearity and

softening effects are much stronger.
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Figure 2.12 The SC attracting force for (a) Fp; of SC; on PM south (b) F,, of SC, on PM north (c) average of F;
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Figure 2.13 Analytical dynamic stiffness model of the PM-SC spring for different SC gap distances
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2.4 Characterization of the Combined Electromagnetic Spring

2.4.1 Dynamic Model of the Combined Electromagnetic Spring

The electromagnetic force of the EM on the PM block, Fyy, results from energizing the

EMs with current. This force can be modeled as [4]

b

F=sgn (i)(l — el )m

(221)

where sgn is the sign function, 7 is the EM current, and d is the distance between the surfaces of

the PM and EM. b,, b,, and b; are the fitting constants to be determined.

As the SC is permanently fixed to the EM, it i1s more realistic to experimentally
characterize the combined electromagnetic force of the PM-SC-EM. Therefore, the combined

electromagnetic force, 5., 1s modeled as
Fo=fomtotEy (2.22)
where £, 1s defined as
e =1=as]il (2.23)

Increasing the current magnitude in the EM reduces the relative permeability of the SC,
thereby reducing the effective PM-SC force, Fp [48]. feorr 1S Introduced in equation (2.22) to
model this effect. Thus, the combined electromagnetic force equation is given as

bl

Fro=(1=a,Ji) Fy, ~sgn(i)(1-¢ )2

(@+b) (2.24)
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Figure 2.14 PM-EM interaction

Figure 2.14 illustrates the combined EM-SC forces on the PM block. Fy,, is the force of
EM;-SC; on the PM’s south pole and Fpez 1s the force of EM,-SC; on the PM’s north pole. D is

the gap distance between the two EM surfaces and / is the width of the PM block. The PM
block’s equilibrium position (x = 0) is centered between the two EMs. Based on equation (2.21),

Fpe and Fp,; are defined as:

. . —Oaff b

Fo :(1_”31‘71‘)%«?1_Sg”(fl)(l_e Mﬁ')(dl +1;21)4 (2.25)
. . —bnaji b

Fopp = (1_032 ‘IZDFPCZ _38”(32)(1_8 bjh |) (d, J:szz)“ (2.:26)

where d; and d, are the distances between the surfaces of the respective EMs and PM. Without

loss of generality, d; and d, can be transformed in terms of the x coordinate:

d, = +x (2.27)

d, = x (2.28)
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The net force on the PM block 1s

AF,,=F,,—F,

pel
:(1_“32‘i2‘)ﬁ_387’ (fz)(l_e—%:lle)ﬁ (2.29)
B (1 4y ‘IlDﬁ +sgn (il)(l —e )((jliﬁ
where ¢,; and ¢, are defined as:
0 = D;h b, (2.30)
0 = D;’? b, 2.31)

Differentiating equation (2.29) with respect to displacement and applying Hooke’s law
sign convention yields the stiffness of the PM-SC-EM spring:

dAF
Koo =~ dxp‘Z :_4{(1_031"‘.1‘)L+(1ﬂ"BZFZDL]

5 5
q +X gy, — X
( 1 ) ( 12 ) (2-32)
bl b, o b
+4 Sgn(i ) 1 — ¢ Bobl 24 son (f ) 1— o 2 1
{ 2 ( )(qzz _x)s 1 ( )(Q'zler)S
In the special case where the EM current is the same (i = i; = i,), equation (2.32) becomes
o = | (1= ag, i) — 22— + (1-ay, i) — 22—
(@, —x) ¢y +x)
(2.33)
+4sgn (1)[(1 _ o ol )Lj 4 (1 _ ol )LS]
(922_-’:) (%1 +x)

In the special case where the EMs are identical, the constants can be simplified to
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bl = bll = blz

b, = b, =b,, (2.34)
a3 = a3 = ay
9 =qn = 49n
and equation (2.32) becomes
k,, =—4a, (1 B ‘il‘)(ql - x)s + (1 _5‘-'13 ‘iz‘)(ql + x)s
2 2
(" ")
| 5 | 5 (239)
sgn (f.'l)(l —e_b’|’1|)(q2 —x) +sgn (iz)(l —e_b’|"2|)(q2 +x)
1 (q22 _xz )5

If the current and EMs are both identical, then the stiffness model can be further simplified to

(53{4 +10g}x” + qf)

(4" =)

(53{4 +10g3x” + q;)

(422 -+")

kpe=-8(1-a;li|)ayq, +85gﬂ(f)(1—e‘b""')blgg (2.36)

2.4.2 Experimental Identification of the Combined Electromagnetic Spring

An experiment was conducted to find the constants as;, asz, b;;, by, by, byy In equations
(2.25) and (2.26). The same experiment was followed in Section 2.3.2 with an additional step. A
current was applied by a DC power supply unit (PSU) from -2 A to +2 A by increments of 0.2 A
at each displacement increment between the PM and EM. At each current increment, the force
was measured by the force sensor. The experiment was done for both EM; facing the south pole
of the PM block and EM, facing the north pole of the PM block. The sequential simplex
algorithm was used to curve fit the force-displacement data. The fitting constants are listed in
Table 2.6 and the analytical equation and experimental data are plotted in Figure 2.15. The data
strongly confirms that the EMs are identical. For simplicity, the average of each fitting constant
between the two EMs is calculated and denoted as b;, b,, a;, and ¢, in accordance with equation

(2.34).
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Table 2.6 Experimental fitting constants for Eq. 2.10, 2.11, 2.26, and 2.27

Constants EM; EM, EMverage
a; (10°) 4.145 4.227 4.186
a; (107 1.312 1.344 1.328
az (107 2.543 2.522 2.532
b; (107) 9.346 10.30 9.825
b, (107 3.596 3.706 3.651
b; (107 8.187 7.789 7.988

o Experimental

Force (N)

-%.005 0.01 0.015 0.02 0.025 0.03 0.035
Displacement (m)
(a)

60 I
o  Experimental

Analytical

Force (N)

-%9005 0.01 0.015 0.02 0.025 0.03 0.035
Displacement (m)
(®)

Figure 2.15 The EM force (the direction of increasing current is bottom to top) for (a) F,.; of EM; on PM south (b)
Fpez of EM, on PM north
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2.5 Characterization of the Combined System

2.5.1 Dynamic Model of the Combined System

The total force of the spring can be found by summing F, and Fpe. The resulting

analytical dynamic force and stiffness models are given in equation (2.37) and (2.38).

F,=F,+F,
x(ql2 + xz) _ X (qf + -’CZ) (2.37)
=cx’+c, — 8(1 —a, ‘i‘)alql —————— +8sgn (f)(l ool )blqz —
(') (0
k,=k,+k, = 3ex’ +e,
_ (5x* +10g7x* +¢/) _ o (5x* +10g;%* +g3) (2.38)
—8(1-a.li 8 1- b,
( as ‘!Dalql (9'12 - x2)5 + Sgn(l)( € ) 19> (qf - x2)5

2 D =80 mm
2 D =70 mm
g D =60 mm
Z Se—— D =50 mm

Current (A)

PM Displacement (m)
Figure 2.16 Total stiffness as a function of current and PM displacement for several fixed gap distances

Figure 2.16 shows the total system stiffness as a function of the EM current and PM
displacement for case 2 MB tension at 50, 60, 70, and 80 mm EM gap distances. In general, the
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total system stiffness as a function of PM displacement is quadratic in nature. For smaller gap
distances (D < 60 mm), the stiffness-displacement parabola is negative due to the emphasized
softening effect of the SC. This effect imposes a stability issue. A negative parabola implies that
for a sufficient PM mass displacement, the total restoring force will act to pull the PM block
away from its equilibrium position until the block either becomes stuck to an EM or is physically
limited by the MB. Increasing the MB stiffness can offset the negative stiffness from the SCs and
allow the system to be stable at smaller EM gap distances. When the EMs are energized, the
stiffness-displacement parabola shifts. Increasing the EM current increases the overall linear and

non-linear stiffness of the system while decreasing the EM current has the opposite effect.

2.5.2 Cubic polynomial Models for the Total Stiffness of the Combined System

Figure 2.17 shows the force-displacement curve for (a) the mechanical spring, (b) the
magnetic spring, (c) the electromagnetic spring, and (d) the combined system spring (found in
equation (2.37)) at a fixed gap distance of 80mm and a current of 1.5 A. Based on Figure 2.16
and Figure 2.17, two things are noted about the combined system spring: the dynamic force-
displacement model resembles a cubic polynomial and the dynamic stiffness-displacement model
resembles a quadratic polynomial. Therefore, like the characterization of the MB force, the total

system dynamic force can be approximated by
F, = Nx’ + Mx (2.39)

and the stiffness is given as

k,=3Nx>+M (2.40)
where N is the coefficient of the nonlinear term and M is the coefficient of the linear term.

The constants of equation (2.39) were determined using Matlab’s polynomial fitting
function, polyfit’, for both MB tension cases, 70 and 80 mm gap distances, and -1.5, 0, and 1.5
A current. The results are listed in Table 2.7. Increasing the MB tension increases the linear and
non-linear stiffness. Increasing the gap distance reduces the softening effect of the magnetic
spring thereby increasing the linear and non-linear stiffness. Similarly, increasing the EM current

increases the linear and non-linear stiffness.
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Figure 2.17 Force-displacement curves at 80 mm gap distance and 1.5 A current for (a) PM-MB spring F. (b) PM-
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Table 2.7 Linear and non-linear constants of equation (2.39) and (2.40) for different MB tensions, gap distances, and

EM currents

Case Gap Distance Current N (107) M (103)
-1.5 2.287 -0.454

70 0 2277 0.173

1.5 2.593 1.363

: -1.5 2.527 0.084
80 0 2.553 0.538

1.5 2.694 1.278

-1.5 2.459 0.278

70 0 2.449 0.905

1.5 2.765 2.095

? -1.5 2.699 0.815
80 0 2.725 1.270

1.5 2.866 2.010

2.5.3 Natural Frequency and Damping of the Combined System

A free response experiment was conducted to examine the natural frequency and
damping of the combined system. The experimental setup is shown in Figure 2.18. The EM gap
distance was configured for 70 and 80 mm and the EM current was set to -1.5, 0, and 1.5 A. At
each gap distance and current setting, a free response of the system was induced by tapping the
PM block. The free responses were measured by the optical reflex sensor and collected through
the DAQ board and computer. Control Desk and Matlab Simulink were used to interface the

experiment. This experiment was repeated for both the MB tension cases.
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Figure 2.18 Combined system free response experiment setup
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Figure 2.19 Typical free responses of the system for case 2 MB and 80 mm EM gap distance for different current
values: (a) -1.5A.(b)0O A, and (c) 1.5 A
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Figure 2.20 Typical FFT for case 2 MB and 80 mm EM gap distance for different current values: (a) -1.5 A, (b) 0 A,
and (c) 1.5 A

Figure 2.19 shows a typical unfiltered free response for the system configured at medium
tension and 80 mm gap distance with the current at (a) -1.5 A, (b) 0 A, and (¢) 1.5 A. Applying
Matlab’s built in fast Fourier transform function, ff#, to the free response data, the natural
frequency of the system was found for each case. The natural frequencies were identified from
the FFT peaks, similar to the peaks shown in Figure 2.20. The analytical model of the system’s
natural frequency can be determined by using equation (2.3). Using the small displacement

approximation (x = 0) in equation (2.38), the linear stiffness is given by

a o\ D,
k, :c2—8(l—a3 ‘i‘)—lerSSgﬁ (f)(l—e bj”)—l5 (2.41)
4 9>
and the analytical natural frequency becomes
@ =.|-+ (2.42)
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Table 2.8 shows the experimental and analytical natural frequencies of the system for
different gap distances, tension cases, and EM current. In general, there 1s good agreement
between the experimental results and analytical predictions except for cases where the predicted
natural frequency was less than 7 Hz. As expected, an increase in the MB tension, EM current, or
decreasing the gap distance all increased the system’s natural frequency. When the negative
stiffness was too strong (case 1, 70 mm gap distance, and -1.5 A EM current), the PM block was

unable to return to the equilibrium position.

Table 2.8 System experimental and analytical natural frequencies

Gap EM Experiment Analytic
Case Distance | . vent (A) | o, (Hz) ©n (Hz)
(mm)
-1.5 n/a n/a
70 0 830 547
15 16.11 16.24
1-Lo
W 15 8.79 3.4
80 0 10.74 10.19
15 15.14 15.77
15 7381 716
70 0 13.67 13.14
15 10.04 20.62
2 — Medi
edium 15 12.21 12.58
80 0 15.14 15.70
15 18.07 10.78

The damping ratio was calculated by applying the logarithmic decrement method
(equations (2.5) and (2.6)) to the measured free response data. The damping constant was
calculated using equation (2.7) with the corresponding experimental natural frequencies. The
results of the damping ratio { and the damping constant ¢ are shown in Table 2.9. In general,
increasing the MB tension, EM gap distance, and EM current will increase the overall stiffness
of the system. As a result, { will decrease as predicted by equation (2.8). Note that { will
decrease when the EM current increases in the positive direction and increase when the EM

current increases in the negative direction.

38



Table 2.9 System damping ratio results for different beam tension cases at different gap distances

EM Gap EM
Case Distance ¢ c
Current (A)
(mm)

-1.5 n/a n/a
70 0 0.0666 0.924
1 1.5 0.0236 0.634
-1.5 0.0446 0.655
80 0 0.0253 0.454
1.5 0.0123 0.310
-1.5 0.0418 0.546
70 0 0.0319 0.729
1.5 0.0214 0.680
2 -1.5 0.0143 0.291
80 0 0.0138 0.350
1.5 0.0113 0.342

2.6 Characterization of EMy

A second set of EMs, EM set B denoted as EMg, was characterized using an alternative

characterization method to the methods presented in Sections 2.3 and 2.4. When comparing the

two sets, the original EM pair presented in Section 2.1 will be denoted as EM set A or EMa.

For this method, three assumptions are made: the MB’s force model is symmetrical, the

two EMs are identical, and the system’s stiffness is linear about the equilibrium (x = 0). Based

on these assumptions, the dynamic models given in equations (2.2), (2.20), (2.36), and (2.38) are

linearized about the equilibrium position (x = 0):

ky=c,

k, = —8(1 —a, M)% +8sgn (i)(l — e_b3|i|)

1
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(2.43)

(2.44)

b

—s (2.45)

q>



b s 81 ) % () 1) 2

2.46
. P (2.46)

As a result of linearization, the following relationship between the stiffness and natural

frequency holds:
k=wm (2.47)

A series of experiments were conducted to identify the constants in equations (2.44) and
(2.45) for EMg. An accelerometer was mounted on the PM block by adhesive wax and connected
to the B&K charge amplifier and DAQ system. A dedicated computer running Pulse Labshop
measured the natural frequency using an online FFT. First, the MB natural frequency was
measured via induced free response. Second, the EMg set was added. Then, the EM gap
distances were varied from 0.015 m to 0.045 m with the PM block at the center. At each
increment, the current was varied from -2 A to 0 A by increments of 0.25 A. At each gap
distance and current increment, the natural frequency was measured via induced free response.
The stiffnesses of the mechanical, magnetic, and electromagnetic spring were calculated using
equation (2.47) and the measured natural frequencies. The fitting constants in equations (2.44)
and (2.45) were identified using the sequential simplex algorithm. The determined constants are
shown in Table 2.10. Figure 2.21 and Figure 2.22 compares the experimental data and analytical

model for the magnetic and combined electromagnetic spring.

Table 2.10 EMg, Fitting constants

Constants EMjg
a; (10°) 1.892
a, (107) 1.006
az (107) 1.606
b; (107 9.667
b, (107) 4.860
bs (107) 3.504
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Figure 2.21 Stiffness model of the PM-SC spring for EMg
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Figure 2.22 Stiffness model of the PM-SC-EM spring for EMy
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2.7 Identification of the System Time Delay

An experiment was conducted to determine the total system time delay 7. A step voltage
signal was sent from the computer to the EMs and the PM displacement was measured. Figure
2.23 shows the displacement step response. The time difference between the computer step
signal (dotted green) and the filtered response signal (solid blue) was measured for experimental

iterations. An average time-delay was determined to be approximately 12 ms.

0.6

02r

Normalized Displacement/Voltage

0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

Figure 2.23 Voltage step input (dotted green) and mass displacement response (blue)
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2.8 Characterization of the EM Dynamics

2.8.1 EM Inductance

Figure 2.24 EM circuit diagram

Figure 2.24 shows the EM circuit used to identify the EM inductance and equation (2.48)
shows the corresponding governing equation. L and R are the inductance and resistance of the
EM, R; and ¥ are the resistance and voltage of the 1 Q power resistor, V3, is the voltage from the

PSU, and i(?) 1s the current in the circuit.
Li(t)+(R+R,)i(t)=7, (2.48)

The general solution to this differential equation is [48]

174 ] R+R
i(1)= % [l—e L J (2.49)

where the inductance term can be rearrange to be

(R+R )t

hl(f(r)(R+Rs)] (2.50)

V

An experiment was conducted to determine the EM inductance in equation (2.50) for
EMa and EMg. A step voltage of 22 V from the PSU was applied to the circuit. The current in
the circuit was determined by measuring the voltage across the 1 Q power resistor and applying

Ohm’s law. The voltage step responses of EM, and EMg are shown in Figure 2.25.

43



Current (A)

0 02 04 0.6 08 1 12 14 18
Time (s)
(a)
3 T T T T T T T
—_— 2 r
<
B
=
(S} oy
_1 | I I I 1 | |
0 02 04 0.6 08 1 12 14 18
Time (s)
(®)

Figure 2.25 Voltage step response of (a) EM, and (b) EMg

A set of values was selected corresponding to half of the steady state current (7, i(#12))

from Figure 2.25. The selected points were substituted into (2.50) to solve for the inductance.

The inductance results are listed in Table 2.11.

Table 2.11 Experimental inductance

EM set L (H)
A 055
B 021

2.8.2 EM Back EMF

The motion of the PM block between the two SCs induces a changing magnetic field.
According to Faraday’s law of induction and Lenz’s law, the changing magnetic field induces a
current in the EM coil that opposes the motion of the PM block [49]. This back electromotive
force (back EMF) acts as a damping force that is proportional to the velocity of the mass. Based

44




on the experimental setup shown in Figure 2.14 and assuming that the EMs are identical, the

dynamics of the actuators are given as

Lii(t)+ Ri,(t)—V,,; =V,

_ ™ 2.51)
Liy (t)+Riy (1) +V,,;

Vir.-Z

Vg =k (2.52)

where V. 1s the induced voltage and 4, 1s the back EMF proportional constant. The numeric

subscripts denote the EM. The sign of Vs was determined by Lenz’s Law.

An experiment was conducted to determine %, based on equation (2.52). A 16 Hz
sinusoidal disturbance was input into EM; causing the PM to oscillate. The induced voltage was
measured across EM, directly through the DAQ board and computer. Control desk and Matlab
Simulink were used to interface the experiment. This experiment was repeated for EM and EMg
at 70 and 80 mm EM gap distances. A typical EMF voltage and velocity response is shown in
Figure 2.26. The peaks of the velocity and EMF voltage were used in equation (2.52) to identify
ky. Several peaks were chosen and the average was taken to eliminate any high frequency

distortion. The resulting &, are listed in Table 2.12.

Table 2.12 Experimental back EMF proportional constant

EM Gap Back EMF Constant
EM Set
Distance (mm) k, (Vs/m)

70 4.127
A

80 3.091

70 2.266
B

80 1.918
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Figure 2.26 Induced back EMF response
2.9 Conclusions

In this chapter, the experimental apparatus used for this study was illustrated. An
equivalent force and stiffness model were presented. An analytical model of each dynamic force
and stiffness was developed. The dynamic force models were identified through a series of force-
displacement experiments. The natural frequency and viscous damping constants were identified
from a series of free-response experiments. The results showed that the combined spring force
could be modeled as a cubic polynomial. A secondary set of EMs (EMg) was identified by
linearizing the dynamic models and conducting a series of free-response experiments. The EM
dynamics and system time delay were also identified. This characterization procedure was
necessary in order to conduct simulations for the prediction and development of the SS controller

presented in the following sections.
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Chapter 3 — SS Control & Simulation

This chapter presents a switchable stiffness (SS) control strategy [23] used to suppress
the free vibration of a simple mechanical system, idealized as a SDOF spring-mass system. This
control strategy 1s investigated through computer simulations based on the modeling and
characterization presented in Chapter 2. Section 3.1 presents the concept, stability and
mechanism of the SS control. Section 3.2 studies the effect of the inherent system time-delay and
proposes a novel method used to overcome possible instabilities. Finally, the conclusions are

presented in Section 3.4.

3.1 SS Control Strategy

3.1.1 SS Concept and Control Law

x(1)

m 4{

k(?)

Figure 3.1 Single degree of freedom (SDOF) vibrating system
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The SS control strategy aims to suppress the free vibration of a typical SDOF system.
The system under consideration 1s shown in Figure 3.1 where m and k() are the mass and
switchable stiffness of the system, respectively. The governing equation is given in equation

(2.1) where x(f), x(#), and x(r) are the acceleration, velocity, and displacement of the system,

respectively. The initial conditions are denoted as x(0) and x(0) .
mx(t)+k(t)x(1)=0, x(0) and %(0) (3.1)

The SS control achieves vibration suppression by actively switching k(7)) between two

distinct states based on the position and velocity feedback. The system assumes a high stiffness
state when the mass is moving away from its equilibrium and a low stiffness state when the mass
1s moving towards its equilibrium. Stiffness switching occurs when the mass changes direction

with respect to the equilibrium position. This control strategy can be expressed as

k()= {km for x(1)x(1)= 0 (32)

k for x(r)x(r) <0

low

where kg, 1s the high stiffness state and i, 1s the low stiffness state. Equation (3.2) can be

rewritten as [27]
k(t) =K, +K,sgn(xx) (3.3)
where sgn() 1s the sign function and the terms K; and K, are defined as

K = (khigh + k.’fm)

! 2

Kz (khigh 2_ ki‘ow )

(3.4)

From equation (3.3), it is observed that the state-feedback stiffness switching is only

dependent on the function sg7(XX) which can be interpreted as the direction of the mass with

respect to the equilibrium position. A positive Sgn(xx) implies that the mass is moving away
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from the equilibrium. A negative Sgn(n) implies that the mass is moving towards the

equilibrium. The switching is independent of the states’ magnitudes.

3.1.2 Closed Loop Stability Analysis

Lyapunov’s direct method [50] was used to prove the stability of the closed loop system
given in equations (2.1) and (3.3). For generality, viscous damping was added to the system

equation. The state variables are defined as

L)

and the state space 1s defined as

. X, B 0 1 X,
X:{XJ_{—]((I)MH —Cff?f:||:X2:| (3.6)

A Lyapunov candidate function was chosen to represent the energy of the system

1 1
V(X)= 2 KX+ omX,’ (.7)

The Lyapunov candidate function was differentiated with respect to time to yield
V(X)=-K|XX,|-cX; (3.8)
Without damping (¢ = 0), the derivative is given as

V(X)=-K,|X,X,| (3.9)

The resulting Lyapunov derivatives are negative semi-definite. Therefore, based on
equations (3.8) and (3.9) and LaSalle’s invariance theorem [50], the closed loop system (with or

without damping) 1s globally asymptotically stable.
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3.1.3 SS Control and Mechanism

Simulations were conducted to illustrate the control and mechanism of the SS strategy.
Matlab Simulink was used to simulate the model based on equations (3.1) and (3.3). The fixed
step Runge Katta (ode45) numerical solver was used. The stiffness values were chosen from the
linearized model based on medium MB tension and 80 mm EM gap distance. The initial
conditions were chosen arbitrarily. No damping was considered. The Simulink block diagram is

shown in Figure 3.2 and the relevant simulation parameters are shown in Table 3.1.

Table 3.1 Simulation parameters

Parameter | Configuration
¢ 0 [kg/s]
K high 2010 [N/m]
k,, 815 [N/m]
x(0) -3.4 [mm]
x(0) 0.31 [m/s]

Figure 3.2 Simulink block diagram of SS control on a simple model

Figure 3.3 shows the simulation results: (a) the system control response and (b) the
stiffness switching for the system under consideration. It is observed that the displacement and
velocity amplitudes decay rapidly; the free vibration of the system is being effectively
suppressed. Additionally, it is observed that the stiffness actively switches in accordance to the

control law in equation (3.2) and that this switching only occurs when the mass changes
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directions with respect to the equilibrium position. There are two cases where this change
happens. First, a direction change occurs when the mass crosses the equilibrium (the zeros of the
displacement curve). At this point, the stiffness switches from kjow t0 kign (stiffness addition).
Second, a direction change occurs when the mass reaches the oscillation peaks (the top or bottom
peaks of the displacement curve). At this pomt, the stiffness switches from &g, t0 &y, (stiffness

reduction).

/ stiffness reduction occurs at the top or bottom peaks

1 Fo, T T T T ]
o stiffness addition occurs at the zeros

Normalized
Dispalcement/Velocity

Time (s)
(a)
20000 @ M M M T = ; —
- ]
%; 1500F
£
@ 10001
0 0.05 0.1 0.15 02 0.25
Time (s)
®)
Figure 3.3 Simulated SS control response on undamped SDOF system (a) normalized displacement
x(t) . . _x(n) . -
—— (solid blue) and normalized velocity ———— (dashed green) response and (b) stiffness switching.
max‘x(t]‘ max‘x(t)‘

3.1.4 Energy Dissipation

For reference, Figure 3.4 (a) shows the system’s displacement response for a single
period. Additionally, Figure 3.5 shows the corresponding displacement and velocity phase plot.
The first peak, second peak, and third peak are labeled xp,, xp+72, and x,+7 with respect to the
period of the system 7. The subscript p implies that x is at a peak. Figure 3.4 (b) shows the
kinetic, potential, and total system energies corresponding to Figure 3.4 (a). The total energy of

the system is given as
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E=K+P (3.10)

where the kinetic energy K and the potential energy P are defined as
1 ., 1, ,
K=—mx P=—Fkx (3.11)
2 2

To illustrate how the SS control suppresses vibration, consider the two stiffness switching
cases and the system energies shown in Figure 3.4. During stiffness addition when x = 0, the

change in energy is given as
_ _ l 2 .2 l A 2
AE, =AK. +AP, = 2m(x ) [+ 2(,{.},@ K )0 (3.12)
The resulting change in energy at this instance 1s

AE. =0 (3.13)

It is observed that the stiffness addition at the zeros does not change the total energy of the

system. During stiffness reduction when x = xpeqt, the change in energy is given as
1 1
AE, . =AK, . +AP .= b m (0 - Ozﬂ + b(km - k,,,.g;,)xjm] (3.14)

The resulting change in energy at this instance is

1
AEpeak :_EAkximk (315)
where Ak is the change in stiffness defined as
Ak = k.‘righ - k!ow (3-16)
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Therefore, three conclusions can be made about the switchable stiffness mechanism.
First, stiffness addition at the zeros does not add energy to the system and only serves to reset the
stiffness to kun. Second, the stiffness reduction at the peaks removes energy from the system by
directly reducing potential energy. The result is energy dissipation at each peak. Third, the
amount of energy dissipated 1s directly proportional to the change in the stiffness A%.

3.1.5 Vibration Damping

The relationship between the stiffness switching and energy dissipation has been
established in equations (3.13) and (3.15). However, it is desirable to obtain a relationship

between the stiffness switching and the amount of vibration being suppressed.

The relationship between the stiffness switching and the amplitude reduction can be
determined by examining the displacement peaks and the energies of the system shown in Figure
3.4. First, consider the change in energy between the peaks x, and x,+7,. It has been previously
established that the change in energy is only caused by stiffness reduction at the peaks.
Therefore, the change in energy between x, and x,+7,> 1s equivalent to the stiffness reduction

occurring between these peaks. Therefore, the energy conservation equation is given as

1 2 1 R A
AE = E k?rfghxp+i“f'2 - 5 khighxp = _5 Akxp (3 - 1 ?)
Solving for x,.7,, yields
kfow
Xporpn =%, |77 (3.18)
khr‘gh

Equation (3.18) suggests that for each successive half period, the amplitude decays by a factor of
K1y  Kygy - Similarly, consider the change in energy between x, and xp-r.

1 2 1 2 _ ]' 2 2
Ekhighxpﬂ“ _Ekhighx __|:5Akx +5Akxp+ﬂ2 (319)

Substituting equation (3.18) into equation (3.19) yields
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khfgh

.
X, =%, (ﬂ] (3.20)

Equation (3.20) implies that for each successive period, the amplitude decays by a multiplicative

factor of kj,y/kiigh. A more generalized relationship is given as

- :\xp\[ Ki J 3.21)

_ khigh

where m 1s the number of successive periods which can be whole numbers or increments of %4.

Note that this equation is only valid for peaks and successive peaks. A stiffness ratio can be

defined as

K,

o= 3.22
khigh ( )

As the stiffness ratio is directly proportional to the amplitude ratio for m = 1, the
logarithmic decrement can be used to calculate an equivalent viscous damping ratio [41]. This

damping 1s due to the control law and not to be confused with the damping due to the internal

mechanical friction forces. The logarithmic decrement is given by

5=l (3.23)
(74

The damping ratio can be estimated using the relationship between viscous damping and the

logarithmic decrement [2]

~

s o

N .
T

Using equations (3.22), (3.23), and (3.24) for this system under consideration, the damping
ratio was found to be ¢ =0.142 . This value can be confirmed by applying x(7) and x(t+7) from

the simulation results in Figure 3.3 (a) to equations (2.5) and (2.6). The resulting damping ratio
was also found tobe £ =0.142.
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3.1.6 Inverted SS Control and the Instability Problem

The SS strategy can also be manipulated to excite the system [36]. To destabilize the
system, the opposite SS control algorithm is applied: the system will assume a low stiffness state
when the mass is moving away from equilibrium and a high stiffness state when the mass is

moving towards equilibrium. The inverted SS control law can be expressed as

k) = {kmgh for x(1)x() <0 (3.25)

k for x(r)x(1) = 0

low

Figure 3.6 shows the simulation results: (a) the system response, (b) the stiffness
switching, and (c) the energies for a system using the inverted control law. From (a) and (c), it
can be seen that the system is unbounded. From (b), it can be seen that the opposite stiffness
switching occurs. Stiffness reduction occurs at the zeros and only serves to reset the stiffness to
kiow. Stiffness addition occurs at the peaks and adds energy to the system through the potential
energy. This case reveals a possible instability issue for the SS control strategy. Inappropriate

stiffness switching due to time delays may reduce the effectiveness or destabilize the SS control.
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Figure 3.6 Simulated SS excitation response on undamped SDOF system (a) displacement (solid blue) and velocity
(dotted green) response, (b) stiffness switching, and (c) kinetic energy (blue), potential energy (green), and total
energy (red)

3.1.7 SS Control of a Non-Linear Dynamic System

Table 3.2 Simulation parameters

Parameter | Configuration
¢ 0.34 [kg/s]
V iigh 20 [V]
V.. -20 [V]
x(0) -3.4 [mm]
x(0) 0.31 [m/s]

A series of simulations were conducted based on the non-linear dynamic force and
stiffness models presented in Chapter 2. Arbitrary initial conditions were chosen. The dynamics

of the actuators were neglected. The MB tension was set to medium and the EM gap distance
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was set to 80 mm. The Simulink block diagrams are shown in Figure 3.7 and the configuration
parameters are shown in Table 3.2. The simulation results are shown in Figure 3.8. In general,
the results show that the system states decay quickly due to the appropriate stiffness switching. It
1s also noted that for non-linear stiffness systems, the natural frequency and period varies as a
function of the displacement. The period is expected to be shorter for larger vibration amplitudes

and longer for smaller vibration amplitudes.

h 4
1
1
h 4
h 4

h 4

(a)

'
A
L]
YYVvYYy

(©)

Figure 3.7 Simulink block diagram of SS control on a non-linear model (a) closed loop system (b) non-linear system

dynamics (c) stiffness switching mechanism
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Figure 3.8 Simulated SS control (blue) and no-control (green) responses on damped non-linear system (a)

displacement, (b) velocity, and (c) voltage

3.2 Delayed SS Control

3.2.1 System Time-Delay

Time delays are inherent in all real-time systems and pose one of the biggest challenges
for the implementation of active and semi-active control. These delays arise due to the speed
limit at which signals can be processed and transferred. In typical systems, these delays may be
made up of sensor, actuator, computer, and filter delays [51]. The total delay, which is the
summation of these delays, will cause an inappropriate application of the control signal. At

worst, these delays will destabilize the system.

A simulation was conducted to show the effects of delays on the closed loop SS control.
The same configuration was used in Section 3.2.1 with the addition of a delay added to the
position and velocity signals. A time delay of 12 ms was used based on the identification in

Section 2.7. As shown in Figure 3.9, an inherent time delay causes vibration amplification.
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Figure 3.9 Simulated SS control (blue) and no-control (green) responses on damped non-linear system with inherent

time delays (a) displacement, (b) velocity, and (c) voltage

To illustrate how delay can affect the system, consider the two idealized signals shown in
Figure 3.10 and Figure 3.11. These signals represent a typical sinusoidal free vibration
displacement response of the system. The delayed response (solid blue) is the response
interpreted by the controller and the original response (dotted green) is instantaneous response of
the system. Consider the state at point 4,. The signal at this point is delayed by 7; and is not
observed until point 4; A control signal sent at this point will not reach the system until point B,
(on the original response) or point By (on the delayed response). As a result, the control, which
was itended for 4,, was applied at B,. From Figure 3.11 (a), it 1s observed that if r; = %47, the
resulting SS control will be inverted. That is, the control signal for 4, is equivalent to the
opposite control signal at B,. The inverted control was shown to destabilize the system in Section
3.1.5. From Figure 3.11 (b), it is observed that if 7; = %7, the SS control will be applied correctly
due to the symmetry of the system. That is, the control signal for 4, is equivalent to the control
signal for B,. Of course, if 7; = T, the delayed and original signals will overlap and the SS control

will also be applied correctly.
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In general, assuming that the response is sinusoidal in nature, the following statements
can be made about the effects of time delay. (1) The SS control will be inverted and the closed

loop system will become unstable if
1
r,=h 1 T (3.26)

where / is an odd whole number. (2) The SS control will be applied correctly and the system will

become stable if

1
7, :nET 3.27)

where # is a whole number. Essentially, equation (3.25) lists all the possible values of z; in which
the control is inverted and unstable and equation (3.26) lists all the possible values of 7; in which

the control correct and stable.
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Figure 3.10 Actual signal and time-delayed signal comparison with (green) representing the real-time signal and
(blue) representing the observed delayed signal
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Figure 3.11 Actual signal and time-delayed signal comparison with (green) representing the real-time signal and
(blue) representing the observed delayed signal for (a) 1, = %7 and (b) 7, =T

3.2.2 Delayed SS Control Strategy
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Figure 3.12 Actual signal and time-delayed signal comparison with (green) representing the real-time signal and
(blue) representing the observed delayed signal for HP delayed SS control
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Two strategies are proposed to overcome the instability problem due to time delays.
These strategies involve the introduction of an intentional delay 7. so that the SS control will be

applied correctly and the system will be stable.

The first strategy, the half period (HP) delayed SS control, is illustrated in Figure 3.12.
For brevity, this strategy will be referred to as the HP delayed control. Given the state at point
Ag, it 1s impossible to control the original point 4,. A control signal based on 44 will be applied
incorrectly at B, on the original response. To overcome this error, an intentional delay 7. is
introduced such that the signal based on 4; will be applied half of a period later at C,. Recall
from Figure 3.11 that any multiple of a half of a period delay will result in the correct application
of the SS control law.

Therefore, based on equation (3.27) and the HP delayed control is given as

for x(1)x(r) =0

khigh
krvr)= {k,w for x(£)%() < 0 (3.28)

where the HP intentional delay is defined as
1
TCZHET_Q: 7,20 (3.29)

Note that » should be chosen such that 7. is minimized. The average period 1s used

T, high + jr;‘ow
2

T (3.30)

where T} 1s the period resulting from the high stiffness state and T}, is the period resulting

from the low stiffness state.
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Figure 3.13 Actual signal and time-delayed signal comparison with (green) representing the real-time signal and
(blue) representing the observed delayed signal for QP delayed inverted SS control

The second strategy, the quarter period (QP) inverted delayed SS control, is shown in
Figure 3.13. For brevity, this strategy will be referred to as the QP delayed control. An
intentional delay is introduced such that the signal based on 4, will be applied a quarter of a
period later at C,. Recall from Figure 3.11 that any odd multiple of a QP delay will result in the
opposite application of the SS control law and result in instability. Therefore, the inverted SS
control law 1s used. The opposite application of the inverted SS control law will result in the
correct application of the SS control law. Therefore, based on equation (3.26), the QP delayed SS

control is given as

k,. for x(r)x(r) <0
k(t = e
(t+7.) {kw for x()%(1) = 0 (3:31)
rczhif—rd, 7.>0 (3.32)

Note that /2 should be chosen such that 7. is minimized. In general, the control law for which . is

minimized should be chosen.
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3.2.3 Delayed SS Control Simulations

- - p.-. - p. > -
" - | - - Ll el Lt -
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Figure 3.14 Simulink block diagram of the closed-loop SS system with system delays and delay control

Simulations based on the QP and HP delayed control were conducted. The non-linear
stiffness system dynamics with arbitrary initial conditions were used. Ohm’s law was used in
place of the actuator dynamics. The MB tension was set to medium and the EM gap distance was

set to 80 mm. The damping was chosen based on the characterization in Section 2.5.3.

The simulation results for the QP delayed control are shown in Figure 3.15. In general,
the system was stable and the states decayed quickly. The QP delayed control strategy was
shown to be effective. However, two main sources of non-linearities in the system limit the
control performance. First, the stiffness switching introduces a stiffness variation and, thus, a
period variation. The high stiffness state corresponds to shorter periods and a low stiffness state
corresponds to longer periods. To compensate for this variation, the average period given in
equation (3.30) i1s used to determine the intentional delay. Second, the non-linear springs
introduce a stiffness variation as a function of mass displacement. This variation causes
difficulties in determining the intentional delay from equations (3.22) and (3.29). For larger

vibrations, the period is shorter and, therefore, 7. should be smaller.
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Figure 3.15 Simulated QP delayed inverted SS control (blue) and no-control (green) responses on damped non-

linear system (a) displacement, (b) velocity, and (c) voltage
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Figure 3.16 Simulated QP delayed inverted SS control for 2 ms (blue) and 3 ms (green) intentional delay
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Figure 3.16 shows the simulated QP delayed inverted SS control displacement responses
for two values of intentional time delays. The intentional delay based on the linear model (when
vibration is small) was calculated to be 3 ms. It can be seen that at larger vibration amplitudes,
the vibration suppression is better with 7. = 2 ms. When the vibration amplitudes are small, the

vibration suppression is slightly better with 7. = 3 ms.

Figure 3.17 compares the different HP and QP delayed control simulation results. In
general, the smaller the 7., the better the performance. Instability occurs if 7. is too large (n = 2
HP delayed control). For non-linear system, a large intentional delay may cause instability
problems due to the variation in period across different vibration amplitudes. In general, this

method is better suited for linear systems where the natural periods are relatively constant.
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Figure 3.17 Simulated QP control (blue) HP control (n=1) (green) and HP control (n=2)
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3.3 Dynamics of the EM Actuators

3.3.1 SS Control of the Non-Linear System with the EM Inductance

L

h 4

E—’ T

Figure 3.18 Simulink block diagram of the EM dynamics

A series of simulations based on the characterization in Section 2.8 were conducted to
examine the dynamics of the EM, in particular, the inductance. The non-linear stiffness system
dynamics with arbitrary initial conditions were used. The EM dynamics based on the circuit
shown in Figure 2.24 were used. The Simulink block diagram of the EM dynamics 1s shown in
Figure 3.18. The MB tension was set to medium and the EM gap distance was set to 80 mm. The

damping was chosen based on the characterization in Section 2.5.3.

The simulation results are shown in Figure 3.19. It can be seen that the system is stable
and, at best, decays slightly faster than the no-control case. It is evident that the inductance
significantly slows the EM current response; therefore, the stiffness switching is not
instantaneous. It is important to note that the frequency of stiffness switching is four times the
frequency of vibration based on the SS strategy. That is, the stiffness switches four times per
period of vibration. Therefore, any gradation in the stiffness switching is detrimental to the SS

control performance. This effect is especially true for high frequency systems. The current

68



response assumes a triangular waveform. The triangular peaks only reach -0.2 to 0.2 A. For
comparison, the incoming control voltages to the EMs switch from -20 to 20 V , which is a
maximum of -1.5 to 1.5 A based on Ohm’s law. Roughly, only 13% of the maximum current is
effectively used. A reduced EM current variation corresponds to a reduced stiffness variation.

The end result is a reduction in vibration suppression performance.
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Figure 3.19 Simulated SS control (blue) and no-control (green) responses on damped non-linear system with EM

dynamics (a) displacement, (b) velocity, and (c) voltage

3.3.2 Different Experimental Configurations

Different configurations of the experimental setup may increase the EM current variation,
and, therefore, improve the performance of the system. One way is to use a set of EM actuators
with low inductance. In general, however, an EM with low inductance may correspond to lower
EM strength. Another way is to decrease the EM gap distance and thereby increase the EM force
on the PM. Additionally, the MB tension may be reduced to increase the natural period. A long
natural period will allow more time for the EM to reach higher current magnitudes. However, a
longer natural period also means a lower frequency of stiffness switching. These ideas are

investigated in the following subsection.
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A series of simulations were conducted to investigate the effects of EM inductance using
different experimental configurations. The objective is to determine configurations that
maximize vibration suppression. The simulations were executed based on the setup in Section
3.3 with each simulation configured slightly differently. Figure 3.20 shows the SS control with
the SS spring configured to EMg. It is observed that the stiffness switching is slightly faster and
the current reaches slightly higher magnitudes (-0.6 A to 0.6 A). However, the relative EMg
strength is too to weak to show a significant improvement in amplitude reduction. Figure 3.21
shows the SS control with the EM gap distance configured to 70 mm. It is observed that there 1s
a slight improvement in amplitude reduction due to the increased force of the EMs on the PM.
The current variation remains the same. Figure 3.22 shows the SS with MB tension configured to
low. It 1s observed that the period is longer which allows time for the EM current variation to be
higher (-0.25 A to 0.25 A). In general, these changes create slight improvements to the overall
performance. The improvements are, however, not enough for the EM to be an effective SS
actuator. The EM inductance proves to be one of the biggest limitations of using EMs as the SS

actuator.

Therefore, an ideal SS actuator should have fast switching times, large stiffness variation,
and low energy costs. A piezoelectric actuator possesses these characteristics and may be a
possible choice [27]. Such an actuator can achieve effective vibration suppression (similar to
Figure 3.8). Other SS mechanisms are discussed in Section 1.2.3. The implementation of another

actuator device is beyond the scope of this thesis but may be an item for future work.
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Figure 3.20 EMg: simulated SS control (blue) and no-control (green) responses on damped non-linear system with

EM dynamics (a) displacement, (b) velocity, and (c) voltage
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Figure 3.21 EM gap distance 70 mm: simulated SS control (blue) and no-control (green) responses on damped non-
linear system with EM dynamics (a) displacement, (b) velocity, and (c) voltage
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Figure 3.22 Low MB tension: simulated SS control (blue) and no-control (green) responses on damped non-linear

system with EM dynamics (a) displacement, (b) velocity, and (c) voltage
3.4 Conclusions

In this chapter, the SS control, as presented in [23], was examined through theory and
simulations. The concept, control law, stability, and control were investigated. It was shown that
the SS control was effective at suppressing free vibration. From studying the SS mechanism, it
was observed that vibration suppression was achieved through the dissipation of potential energy
via stiffness reduction at the peaks of the mass displacements. Additionally, it was shown that

the inverted SS control had the opposite effect; it caused vibration amplification.

In addition, the impact of time delay was studied. Time delay caused the stiffness to
switch at inappropriate instances. However, it was shown that if the time delay was a multiple of
half of the period, the control effort would be applied correctly and the system would be stable.
On the other hand, if the time delay was an odd multiple of a QP, the control effort would be
inverted and the system would be unstable. Using these properties, an intentional time delay was
introduced to the existing system time delay such that the total time delay would be a multiple of

the half of the period. This method was referred to as the HP delayed SS control or HP delayed
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control for brevity. To achieve an even faster response, the SS was inverted and an intentional
time delay was introduced such that the total time delay equaled an odd multiple of a quarter of
the period. This method was referred to as the QP delayed inverted SS control or QP delayed
control for brevity. Through simulations, both of these methods proved to be effective at
overcoming the inherent time delay. One problem limited the performance of these methods.
Due to the non-linearity of the system, the constant intentional delay could not compensate for

the time delay of all amplitudes of vibration.

The effects of the dynamics of the EM actuators were also explored. It was shown that
the inductance of the EM significantly slowed the EM current change and, thus, stiffness
switching. Additionally, the EM inductance also reduced the effective current passing through
the EMs. This effect was a huge factor in debilitating the performance of the SS control.
Different configurations of the experimental setup were explored such as reducing the EM
inductance, reducing the EM gap distance, or reducing the MB tensions. These configurations
showed little improvement. In summary, this chapter laid the groundwork for the next step: the

real-time implementation of the SS control.
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Chapter 4 — Implementation of the SS

Control

This chapter aims to implement the SS control strategy using the SDOF experimental
apparatus characterized in Chapter 2. Section 4.1 presents the instrumentation, configuration,
interface, filter selection, and experimental procedure. Section 4.2 presents the modified SS
control laws for real-time implementation. Section 4.3 presents the experimental results for the
direct application of the SS control. Section 4.4 presents the experimental results for the delayed
control strategy and the effects of the EM dynamics. Section 4.5 presents the experimental
results for different configurations of the gap distance, EM sets, and MB tension. Finally, Section

4.6 presents the conclusions.

4.1 Experimental Setup

4.1.1 Instrumentation and Configuration

The primary instruments used for these experiments include the sensor, computer, DAQ
board, and power supplies. The position sensor is an optical reflex sensor (Wenglor CP24-
MHTS80) powered by an external power supply unit (PSU). The internal sensor filter setting was
disabled and the voltage calibration was determined through the sensor data chart. The sensor
was positioned at an angle to the mass. As a result, a correction factor was introduced to
compensate for the angle. The voltage signal from the sensor was collected by the DAQ board
(dSpace dS1102), which executes the analogue to digital conversion (ADC). The DAQ board i1s
the hub for which signals are sampled and transmitted via the computer. The computer is a
dedicated Pentium III PC used to interpret sensor signals and generate control signals. The

control signals or the voltages applied to the EMs were sent to two individual power supplies
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(Quanser UPM-2405) via the DAQ board which executes the digital to analogue conversion
(DAC). These instruments are shown in Figure 4.1.

(@
Figure 4.1 Experimental instruments (a) Wenglor optical reflex position sensor (b) dSpace dS1102 DAQ
board terminal block (c¢) dedicated PC (d) Quanser UPM 2405 PSU

4.1.2 Interface

The SS controller logic, sensor calibration, signal processing, and system parameters
were programmed using the Simulink block diagrams in Matlab. The experiment execution and
data collection were done through the custom graphical UI program, Control Desk. Simulink and
Control Desk were linked using Matlab’s Realtime Workshop. The sampling frequency used is
1000 Hz. A typical Control Desk program is shown in Figure 4.2 and the Simulink block
diagram is shown in Figure 4.3.
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Figure 4.3 Simulink block diagram for experiments
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4.1.3 Filter Selection

Noise, a random fluctuation in electrical signals, 1s present in all electronic circuits. Noise
may be due to thermal energy at non-zero temperatures, semi-conductor defects, or circuit
manufacturing quality [52]. In general, noise is undesirable as it may distort the feedback signals.
Signal distortion may lead to an unintended application of the control logic. To overcome this
issue, low pass filters are used to eliminate the noise above the low pass cutoff frequency.

Additionally, high pass filters are employed to remove the direct current (DC) bias.

The noise from the position signal in the experiment creates undesirable effects to the SS
control logic. Additionally, taking the derivative of the noisy signal (to determine velocity)
amplifies the noise. The sharp fluctuations in the velocity and position signal cause the
appearance of random high frequency vibration. The SS controller interprets the noisy signal as
rapid direction changes in the mass motion. As a result, the SS controller applies the

corresponding stiffness switching which invariably excites the system.

To deal with signal noise, a series of low pass and high pass filters were employed. The
signal filter block diagrams are shown in Figure 4.4. The position signal was filtered by a first
order low pass filter with a cut-off frequency of 70 Hz twice. The velocity signal was determined
by differentiating the once filtered position signal. The velocity signal was filtered again using a
first order low pass filter with a cut-off frequency of 70 Hz. Both the position and velocity
signals were filtered by a first order high pass filter with a cut-off frequency of 5 Hz to remove
any DC bias.

Figure 4.4 Signal filters

71



The high and low pass filters distorts the original signal in two ways. First, the signal
amplitudes are attenuated slightly (approximately 10% when the amplitudes are large). Since the
SS control logic 1s independent of the signal magnitudes, this distortion is not considered
relevant. Second, the filters introduce a phase lag and phase lead. The lead and lag partially
cancel each other. The net lag can be seen in Figure 4.5 which was determined to be

approximately 2 to 3 ms.

x 10
T T T T T T T
3t —— Unfiltered Position Signal H
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Figure 4.5 Comparison of filtered signal and unfiltered signal

4.1.4 General Experimental Procedure

The experimental procedure 1s as follows. Two separate opposing 16 Hz sinusoidal voltage
signals were sent to EM; and EM, through the amplifiers. As the signs of the currents applied to
the EMs were different, a sinusoidal force was exerted on the mass. The magnitude of the signals
was different for different configurations. After the mass vibration has reached steady state, the
sinusoidal signals were terminated. At this point, the SS control logic was implemented. The data
was collected to the computer for post processing. In all of the following experiments, a

sampling frequency of 1000 Hz was used. The resolution time was 1 ms.
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4.2 Modified SS Control Laws

4.2.1 Direct Control Law

An additional medium stiffness state, kyeq, 1 introduced to the SS control law presented in
Section 3.1.1. This state is activated when the position or velocity enters a small tolerance region
around the equilibrium. There are several reasons why this state is necessary for real-time
implementation. First, vibration theoretically never reaches zero via the SS control; the stiffness
switching will occur indefinitely. Introducing %,,.; allows the actuators to turn off when the
vibration is sufficiently low, thus, allowing the system to naturally decay. Using k., instead of
knign also conserves energy. Additionally, noise causes the SS control logic to randomly switch
when the vibrations are small enough to be disguised by noise. This effect may cause parametric

excitation. Introducing ks prevents this problem.

The modified SS control law 1s defined as

Kisgh for x(£)x(7) >0
k(t)=1k,, for x(¢)x(1) <0 (4.1)
k., forx(t)< ‘51‘ and x(7) < ‘82‘

where ¢; and ¢, are the saturation points for this control algorithm.

4.2.2 Delayed Control Laws

The modified HP delayed SS control law is defined as

Kisgh for x(#)x(t) > 0
k(t+7.)=1k,, for x(r)x(r) <0 (4.2)
Fpea  for x(t) <|&| and x(¥) <|g,|

where the HP intentional delay is defined as

T, :FI%T—Td, 7.>20 (4.3)

c
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The modified QP delayed inverted SS control is defined as

Kyugh for x(1)x(1) <0
kt+7.)=1k,, for x(1)x(t) > 0 4.9)
k., forx(r)< ‘81‘ and x(7) < ‘82‘

where the QP intentional delay is defined as

r,=h T =7, 7,20 (45)

4.3 Direct SS Control

An experiment was conducted according to the general procedure described in Section
4.1.4. The MB tension was tuned to medium and the EM gap distance was set to 80 mm. The
experimental results are shown in Figure 4.6. The states of the system are unbounded and the
system vibration is amplified. This observation is congruent with the simulation results in
Section 3.1.6. Inherent delays in the system cause inappropriate stiffness switching and,
therefore, instability. The direct application of the SS control is ineffective due to inherent delays

in the system.
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Figure 4.6 Experimental displacement (a). velocity (b), and voltage (c) response for direct control (blue) vs. no

control (green)

4.4 Delayed SS Control

4.4.1 Experimental Intentional Delay

A series of experiments were conducted to validate the delayed SS control strategies. The
procedure presented in Section 4.1.4 was followed. The MB tension was tuned to medium and
the EM gap distance was set to 80 mm. The experiment was repeated for several values of
intentional delay 7.. By finding the best amplitude reduction of the control responses, the
experimental 7, was determined. This procedure was repeated for both QP and HP delayed
control strategies. The estimated 7, and experimental 7, are summarized in Table 4.1. A typical
HP delayed control displacement response for different values of 7. are shown in Figure 4.7.
Note that for higher amplitude vibrations, a lower 7. is slightly more effective than the estimated
.. This effect is due to the dynamics of the non-linear stiffness. For lower amplitude vibrations,
the estimated 7. 1s optimal. In general, there is strong agreement between the estimated and

experimental 7.. This observation supports the delayed SS models.
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Table 4.1 Comparison of estimated and experimental intentional delays

Delay Strategy Estimated 7. (s) Experimental 7. (s)
HP SS Control 0.018 0.018
QP SS Control 0.003 0.002
3
4 z 10 T T I I
— 16 mis intentional delay
3.5¢ — 18 ms intentional delay -
20 ms intentional delay
3 - -

o
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Figure 4.7 Displacement response for HP delayed inverted SS control for different intentional delays
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4.4.2 Delayed SS Control Implementation

A series of simulations were conducted using the experimental 7. values for the delayed
SS control law. Figure 4.8 and Figure 4.9 show the response of the QP and HP delayed control
strategies, respectively. For convenience, the control response (shown in blue) is compared
against the no-control response (shown in green). In general, the faster the controller is able to
respond, the better the performance. The QP delayed control is better than the HP delayed
control. The overall performances of the SS control strategies, however, are poor compared to
the simulations in Section 3.2.3. In the best case, the delayed control strategies are stable and
decay the system response slightly faster than no-control case. It is expected, based on the

simulations in Section 3.3.1, that the EM dynamics are the limiting factor in the performance of

the SS control.
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Figure 4.8 Experimental displacement (a), velocity (b), and voltage (c) response for HP control (blue) vs. no control

(green)
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4.4.3 Effect of the EM Inductance

In order to study the effects of the EM inductance, a 1 Q power resistor was attached in
series to each EM. The current in the circuit was determined by measuring the power resistor
voltage and applying Ohm’s law (assuming that the inductance of the power resistor is
negligible). The voltage was measured directly by the DAQ system. The QP delayed control
experiment was repeated with the actual current measurements. The experimental results are
shown in Figure 4.10. Additionally, a comparison of the control signal and the measured current
1s shown in Figure 4.11. The results confirm a major problem with the EM actuators for the SS
control. The EM inductance causes the current to assume a triangular wave form and the stiffness
switching is not instantaneous. Additionally, the peaks of the waves reach roughly -0.2 to 0.2 A,
only 13% of the maximum predicted current of -1.5 to 1.5 A. The EM inductance effectively
limits the amount of current being applied to the EMs. In turn, this limits the stiffness variation
and, hence, the vibration suppression. These experimental results agree with the simulation

results in Section 3.3.1.
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Figure 4.10 Experimental displacement (a), velocity (b), and current (c) response for QP control (blue) vs. no control

(green)
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Figure 4.11 Comparison of actual measured current (blue) and expected current without inductance considerations

(green)
4.5 Control for Different Configurations

Essentially, the EM inductance inhibits the SS control performance by reducing the
effective stiffness variation A4%. In lieu of the EM dynamics, there are several ways to reconfigure
the system and increase the effective 4k. The EM actuators may be changed to a different set
with lower inductance. Additionally, the EM gap distance may be reduced to increase the
magnetic strength of the EM on the PM. Also, decreasing the MB tension may increase the
period, allowing the EM current more time to reach higher magnitudes. These configurations are

tested in the remaining subsections.

4.5.1 EM Gap Distance and MB Tension

The experiment in Section 4.4.3 was repeated for an EM gap distance of 70 mm. The
results are shown in Figure 4.12. It 1s observed that the amplitude reduction is slightly better for
a smaller gap distance. Decreasing the gap distance increases the softening effect of the magnetic
spring thereby decreasing the natural frequency. This allows the EM slightly more time to reach
higher currents. The EM current variation is, at the best, approximately 0.6 A (-0.3 A to 0.3 A),
more than the 0.4 A (-0.2 A to 0.2 A) current variation for the 80 mm EM gap distance
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experiment. Decreasing the gap distance also increases the magnetic force of the EMs.

Therefore, the current variation would be amplified at closer gap distances.

In general, decreasing the EM gap distance reduces the natural frequency via the
magnetic spring, allows more time for the current to reach higher values, and increases the
change 1n effective stiffness. However, decreasing the EM gap distance also increases the non-
linearity of the system and may not allow enough room for the mass to vibrate without physically

contacting the actuators.

Also, the experiment in Section 4.4.3 was repeated for the low MB tension case. The
results are shown in Figure 4.13. Reducing the MB tension directly reduces the stiffness and,
thus, increases the period. An increase in period will allow the EM more time to reach higher
current values. The EM current variation is, at best, approximately 0.7 A (-0.35 A to 0.35 A),
23% of the maximum current variation. It is observed that there is an improvement, however
small, in the response as compared to the medium MB tension case. Reducing the gap distance is

more effective, as it also increases the effective EM force on the PM.
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Figure 4.12 Experimental displacement (a), velocity (b), and current (c) response for QP control (blue) vs. no control

(green) at EM gap distance of 70 mm
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Figure 4.13 Experimental displacement (a), velocity (b), and current (c) response for QP control (blue) vs. no control

(green) using low MB tension
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45.2 EMSetB

The experiment in Section 4.4.4 was repeated for EMg. The results are shown in Figure
4.14. EMjg has an inductance value of 0.16 H, much lower than EM, inductance of 0.65 H. The
variation in current is roughly 2 A (-1 A to 1 A), 40% of the maximum current variation. Lower
inductance allows a significantly higher percentage of the EM strength to be applied. However,
there 1s a tradeoff to lower inductance. EMg has a weaker magnetic flux. Despite a larger
variation in current, the EMp current actually produces lower magnetic forces. Therefore, the

1deal EM actuator must have a low inductance and a strong magnetic flux.
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Figure 4.14 Experimental displacement (a), velocity (b), and current (c) response for QP control (blue) vs. no control

(green) using EMg
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4.6 Conclusions

In this chapter, the real time implementation of the SS control strategy was presented in
detail. The experimental setup and configuration were described and the SS control law was
modified for real time implementation. An off state, k.4, Was introduced to turn the control off
when the vibrations were below a threshold, allowing the system to naturally decay. This
modification also conserves power and prevents the SS control from misinterpreting static noise

as disturbances.

The direct application of the SS control was verified. As the simulations predicted, the SS
control was shown to be unstable due to the inherent time delays. Additionally, the SS delayed
control strategies were tested and verified. An experiment was conducted to find the most
appropriate 7. based on the amplitude reduction. It was shown that, in general, the experimental
and estimated 7. values agreed. However, due to the non-linearity of the system, 7. values slightly
lower than the estimated 7. worked better for larger vibration amplitudes. This was also
congruent with the predictions made in Section 3.2.3. Overall, the delayed SS control strategies
were verified experimentally. Unfortunately, the amplitude reduction was not as great as
expected. To understand why, the EM current was measured during the control. It was shown
that the EM inductance severely limited the effective current being applied to the EMs. This

limited the effective force of the EM and therefore the stiffness variation.

Different configurations were tested to increase the effectiveness of EM force on the PM
(in order to ultimately increase the effective stiffness variation). A series of experiments using
different configurations of the EM gap distance, EM sets, and MB tension were conducted.
Decreasing the natural frequency by decreasing the MB tension and EM gap distance showed
little improvement. Physically decreasing the natural frequency of the system for this effect is
not ideal in many real systems. The overall tradeoff between decreasing frequency and
increasing performance was shown to be poor. Lowering the EM inductance was shown to be a
better option, only if it was not at the expense of the EM flux. The ideal EM actuator was

postulated to have very low inductance but a large magnetic flux.
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Chapter S — SS Vibration Control of a 2DOF
System

Most real systems have more than one degree of freedom (DOF). Thus, it is desirable to
investigate the SS control strategy for 2DOF systems in order to extend the area of applications.
This chapter presents a preliminary investigation of the SS control for a 2DOF system. In Section
5.1, the dynamic models are introduced and the equations of motion are presented. In Section
5.2, the 2DOF version of the direct and delayed SS control law is presented. In Section 5.3,
simulations are conducted to examine the SS control on the linear, non-linear, and time delay

models. Finally, in Section 5.4, the conclusions are presented.

5.1 Dynamic Model of a 2DOF System

The 2DOF system under consideration is made up of two individual SDOF systems
coupled by a beam. The schematic of this system is shown in Figure 5.1 and the FBD is shown in
Figure 5.2. The symbols m, k, ¢, and / are the mass, stiffness, damping constant, and lengths
respectively. F; and F; are the generalized spring force and damping force, respectively. The
subscripts 7, 2, and b refer to the first system, second system, and beam. x;(7), xx(7), xg(7), and
0(r) are different coordinates for the translation of the first system, translation of the second
system, translation of the combined system at the center of gravity (C.G.), and the rotation of the

combined system at the C.G. with respect to the horizontal.
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Figure 5.2 Free body diagram (FBD) of 2DOF system

For the full derivation, refer to Appendix A. The equations of motion are

¥ =— Fs1 +F52 + F;n +P;,2 _ 11 (F;lll +Fa’111 _Fs2]2 _FdZZZ) (5.1)
o m, I '
i =— .P;1+P;2+Fdl+};;£2 + .IZ(P‘SIZI+F;121_P;212_Fd222) (5.2)
2 m, I, '

91



where m; and /; are defined as

m, = my +m, +m,

(5.3)
L=1+1I,
The moment of inertia, /g, 1s determined by
. Z m, _ myn +myr, + myt
CG
~ m, m, (5.4)
L= (Psw)+mp? +my?+ —r)
G = 12('r Wb) My Ty Tm, (xcc; ‘P}:)

where r;, r;, and 7 are the distances of the respective masses to the origin. If the origin is set at

my, thenr; =0,r; =1, and rp = /2.

Substituting viscous damping and a linear spring force, the equations of motion can be

written as
o ok eelh] [ kK K ki
X, _ m, I m, I, X, N m, I m, I, X (5.5)
% _&a , alh o ob L% K& | K kRl |
m, I m, I, m, I m, I

The equations can also be written for modal analysis (in terms of the translation and

rotation at the C.G.) as

0| |m, 0%, .| @ +c, Lo, —le || % N ky+k,  Lk,—Lk || x; s6
ol |o I || Le,—le, Le,+Ic | 6 Lk,— Lk DLk, +Ik | 6 (56)
In addition, equation (5.5) can be re-written in state space form. First, the state variables

are introduced as

h, = x,

= 5.7
hy =%, =h S
h,=x,=h,
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The state space of the system is given as

0 0 0
h, 0 0 0 1
h= Ah - }%2 |k KE _EJF% _a _al _iJr%
h, m, I; m, Ig m, I m, I
Wk KLk kL o ol o ol
| om, I m, I m, I m, I

5.2 SS Control Laws for a 2DOF System

(5.8)

Based on the control law introduced in Section 3.2.2., the SS control law for the 2DOF

system can be expressed in terms of the stiffness of the individual masses. Each SDOF system in

the 2DOF system 1s independently controlled by switching the stiffness based on the respective

position and velocity feedback. The SS control law focuses on the dissipating the energy from

the individual masses.

k(1) = {k for x,(1)%,(1) = 0

k., forx,(H)x(1)<0
() = kg forx,(6)x,(1) =0
2 ky,, forx,(t)x,(1)<0

(5.9)

The delayed SS control strategy presented Section 3.2.2. yields the following control law

for 2DOF systems. The HP delayed control is given in equation by

for x,(£)x,(1) = 0

k. for x, (1)x,(1) <0

liow

k,
h(r%g):{:m@

for x,(1)x,(1)=0

k,(t+1.)= Kan
2 ¢ k for x,()x,(t) <0

2low

where the 2DOF HP intentional delay is given as

rC:an—rd, 7,20
2
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The natural period 7 is determined by averaging the two natural periods.

L+1,
2

T = (5.12)
where 7; and 7> are the natural periods of the system. The natural periods can be determined
using modal analysis on the system. The stiffness of the 2DOF system (k/ and k) is calculated
from the averaged respective ki, and &y, values.

The 2DOF QP delayed control is given in equation by

b forx (05,0
k(t+7)= {I( for x, (1)x,(r) <0

Lhigh

(5.13)
for x,(1)x,(1)=0
bary ] o PEROBO
kypgn  Torx,(1)x,(r) <0
where the QP intentional delay is given as
rczhif—rd, 7,20 (5.14)

The natural period 7 is determined by equation (5.12).
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5.3 Simulations of SS Control for a 2DOF System

5.3.1 SS Control of a Linear 2DOF System

Figure 5.3 Simulink block diagram of linear model

A series of simulations were conducted through Matlab Simulink based on the linear
model presented in equation (5.5). An initial displacement of 6 mm was iput into the second
mass. The rest of the initial conditions were zero. For the free response, an average stiffness
value was used (k; = k> = 1500 N/m). The system mass, stiffness, and damping are symmetrical.

The simulation parameters are given in Table 5.1
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Table 5.1 Simulation parameters for symmetrical linear model

Parameters Values
kinigh 2000 [N/m]
k1iow 1000 [N/m]
kanigh 2000 [N/m]
k2tow 1000 [N/m]
c; 0 [kg/s]

1, 0 [kg/s]

mj 0.130 [kg]
m; 0.130 [kg]
mp 0.207 [kg]
I; 0.446 [m]

The free response of this system is shown in Figure 5.4. It is evident through each mass’s
displacement appears like beat, which indicates that there are two close frequencies present in
the responses [2]. Using modal analysis, the natural frequencies of the system were determined
to be 11.28 Hz (first mode) and 12.76 Hz (second mode). The modes of vibration are shown in
Figure 5.5. Unless the system is vibrating at its natural modes, it difficult to pin point the
frequency of each mass, as it is composed of more than a single frequency. Herein lies a problem
for using the delayed SS control strategy. The vibration profile of each mass depends on the

initial conditions and may vary [53].

The SS control simulation results are shown in Figure 5.6. In the ideal case, the SS

strategy 1s very effective at vibration suppression for 2DOF systems.
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5.3.2 SS Control of a Linear 2DOF System with Time Delay

A series of simulations were conducted to examine the effects of inherent time delays and
the efficacy of the delayed control strategies. The simulation parameters are given in Table 5.1
and are almost identical to the simulation procedure in Section 5.3.1 with one exception. A time
delay was added to the system states entering the controller. The time delay was 12 ms based on

the characterization in Section 2.7.

For the first set of simulations, the direct SS control law defined by equation (5.9) was
applied. The simulation results are shown in Figure 5.7. The simulations show that the system is

unstable due to the inappropriate stiffness switching.

The delayed control strategies presented in Section 3.2 may be used to overcome the
instabilities due to time delay. For the delayed SS control of a 2DOF system, complications arise
when predicting the natural period in order to calculate 7.. In the case where the system is
symmetrical (e.g. 1dentical mass, stiffness, and damping), the natural periods are very close as
shown in Figure 5.4 and Figure 5.5. Therefore, the average of the two natural periods is proposed

to determine ..

For the second set of simulations, the first set is repeated using the delayed SS strategy.
In this case, the QP delayed control law was employed as it yielded the minimum z.. The average
stiffness of each system (k;(kinigh, k1iow) and ka(kangn, kziow)) Was used for modal analysis to
determine the natural frequencies. The two natural frequencies of the system were determined to
be w; = 11.28 Hz and w, = 12.76 Hz and the average natural period was calculated to be 83 ms
(12.02 Hz). The QP intentional delay was calculated to be approximately 7. = 9 ms. The
simulation results are shown in Figure 5.8. It 1s observed that the delayed SS control strategy is

effective for the vibration suppression of a linear symmetrical 2DOF system with time delay.
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5.3.3 SS Control of a Non-Linear 2DOF System

A simulation was conducted based on the non-linear dynamic force and stiffness models
characterized in Chapter 2. The direct SS control in equation (5.9) was used. An initial
displacement of 6 mm was input into the second mass and the rest of the initial conditions were
zero. The dynamics of the EMs are neglected. The simulation setup and parameters are listed in
Table 5.2 and the Simulink block diagram is shown in Figure 5.9. The simulation results are
shown in Figure 5.10. It is observed that the SS control is effective on 2DOF systems regardless

of the system non-linearity.

YYVYY

YYVYY

. YVYVYY
L I I R B |

Figure 5.9 Simulink block diagram for non-linear model

Table 5.2 Simulation parameters for the non-linear model

Parameters Values

EM set A for both actuators
Medium MB tension for both MB

D 80 [mm]
Vihigh 20 [V]
V110w -20 [V]
Vanigh 20 [V]
Viow -20 [V]
1, ¢2 0 [kg/s]
my, m; 0.130 [kg]
ny 0.207 [kg]
IR 0.446 [m]
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stiffness switching, (c) m, displacement response, and (d) %, stiffness switching
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5.3.4 SS Control of a Non-Linear 2DOF System with Time Delay

A series of simulations were conducted to examine the effects of inherent time delays and
the efficacy of the delayed control strategy on the non-linear symmetrical 2DOF system. The
simulation parameters are given in Table 5.2. An inherent time delay of 12 ms was added to the
system states entering the controller. A 6 mm initial displacement was input into m, and the

remaining initial conditions were set to 0.

For the first set of simulations, the direct SS control law defined by equation (5.9) was
applied to the non-linear system. Similar to the direct SS control of a linear system with time
delay in Section 5.3.2, the inherent time delay causes parametric excitation. To overcome this

1ssue, the delayed SS control strategies can be used.

The second set of simulations investigates the delayed SS control for non-linear
symmetrical 2DOF systems with time delay. For this configuration, the QP delayed control
strategy was implemented as it minimizes 7.. First, the QP intentional delay was determined. The
analytical high and low stiffness values of the individual SDOF systems were calculated from
equation (2.8) in Section 2.5.1. The min and max current used in these equations are -1.5 A and
1.5 A corresponding to -20 V and 20 V. The stiffness values for each SDOF system were
determined to be k10w = kziow = 812.20 N/m and kipigh = konign = 2007.96 N/m. The mean stiffness
value for each SDOF system was calculated to be kpean = k7 = k> = 1410.08 N/m. The natural
frequencies of the system were determined from the modal analysis of equation to be w; = 10.93
Hz and @, = 12.37 Hz. As these frequencies are relatively close, the average natural frequency
and period was found to be approximately 11.65 Hz and 86 ms, respectively. The QP intentional

delay was calculated to be roughly 10 ms.

The QP delayed control simulation results are shown in Figure 5.11. The vibrations of
both masses are effectively suppressed. It 1s shown that the delayed SS control strategy is viable

for non-linear symmetrical 2DOF systems.
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5.3.5 Delayed SS Control of an Asymmetrical 2DOF Systems

A series of simulations were conducted to investigate the delayed SS control strategies
for an asymmetrical 2DOF system (e.g. different mass, stiffness, or damping properties). An
asymmetrical system is a more generalized and a more realistic representation of real-world
applications. Two sets of simulations are conducted. The first set is based on the linear 2DOF

system. The second set 1s based on the non-linear 2DOF system.

For the first simulation, the system configuration parameters are listed in Table 5.3. The
stiffness k; and k; values used in the modal system equations are calculated based on the average
kiow and kpgn values. The stiffness k; and &, were calculated to be 1500 N/m and 1000 N/m
respectively. Using modal analysis, the natural frequencies were found to be w; = 7.75 Hz and
@; = 11.89 Hz. The system asymmetry causes a larger variation in the natural frequencies. It 1s
expected that the large variation in the natural frequencies will reduce the effectiveness of the
delayed SS control. The average of the natural frequencies (9.82 Hz) was used to determine the
average natural period (102 ms). The QP intentional delay was calculated to be 13 ms. For
comparison, Figure 5.13 shows the direct SS control for the linear asymmetrical system without
delay. Figure 5.14 shows the delayed QP inverted SS control for the system with delay. It is
confirmed that the vibration suppression is poor compared to the system without time delay. For
my, the vibration appears to be amplified at certain times. Overall, however, the vibrations are

suppressed.
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Table 5.3 Simulation parameters for the asymmetrical linear model

Parameters Values
kinigh 2000 [N/m]
K1iow 1000 [N/m]
kanigh 1500 [N/m]
k210w 500 [N/m]
1, €2 0 [kg/s]

m; 0.130 [kg]
m; 0.260 [kg]
mp 0.207 [kg]
Iy 0.446 [m]

Table 5.4 Simulation parameters for the asymmetrical non-linear model

Parameters Values
EM set A for both systems
Medium MB tension for system 1
Low MB tension for system 2
D 80 [mm]

Vinigh 20 [V]
Viiow -20 [V]
Vanigh 20 [V]
Viow -20 [V]
¢y, €2 0 [kg/s]
mj 0.130 [kg]
) 0.260 [kg]
mp 0.207 [kg]
Iy 0.446 [m]
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Figure 5.13 Simulation of direct SS control of a linear asymmetrical 2DOF system (a) m; displacement response, (b)

k; stiffness switching, (c) m, displacement response, and (d) &, stiffness switching
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For the second simulation, the system configuration parameters are listed in Table 5.4.
The QP delayed control strategy was selected as it minimizes the intentional delay value. First,
the QP intentional delay was determined. The analytical high and low stiffness of the individual
SDOF systems were calculated from equation (2.8) in Section 2.5.1. The min and max current
used in these equations are -1.5 A and 1.5 A corresponding to -20 V and 20 V. The average of
the high and low stiffness states were used in the calculation of the natural frequencies of the
system. It can be seen that the two natural frequencies are not close (w; = 6.48 Hz and w; =
11.52 Hz). The average natural period was calculated to 111 ms and the QP intentional delay was

calculated to be 16 ms. The calculated values are shown in Table 5.5.

Table 5.5 Calculating QP Intentional Delay

Average Modal
Stiffness States Average QP Delay
N/m) Stiffness Analysis - Period (ms)
m requency/Perio ms
(N/m) (Hz) 1 y
k1iow = 811.60
k;=1410.20 w;=6.48

kinigh = 2008.79 Oag=9.00 Hz 16

k> =678.01 w,;=11.52

Fogn = 1276.34

For reference, Figure 5.15 shows the simulation results of the direct control of a non-
linear asymmetrical 2DOF system without time delay. Figure 5.16 shows the simulations results
of the QP delayed inverted SS control strategy for the non-linear asymmetrical 2DOF with time
delay. System 2 vibrates at a lower frequency than system 1. This is expected as system 2 has a
low MB tension and higher system mass. For the control without time delay, higher frequency
means more stiffness switching and, thus, more amplitude attenuation. For the control with time
delay, a higher frequency means larger errors and, thus, less effective control. The delayed SS
control strategy is able to reduce the overall vibration of the system, however not very

effectively.
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Figure 5.15 Simulation of direct SS control of a non-linear asymmetrical 2DOF system (a) m; displacement

response, (b) k; stiffness switching, (c) m, displacement response, and (d) k&, stiffness switching
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Figure 5.16 Simulation of QP delayed inverted SS control of a non-linear asymmetrical 2DOF system with 12 ms
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5.4 Conclusions

In this chapter, the SS control law was applied to a 2DOF system. The 2DOF system 1is
made up of two SDOF systems (1dentical to the system presented in Chapter 2) coupled together
by a beam. First, the 2DOF system schematic and FBD were presented and the equations of
motion were derived for the modal analysis, in terms of the coordinates for the individual
masses, and in state space form. Second, the SS control law and delayed SS control law was
reintroduced for the 2DOF system. Essentially, each mass is controlled individually by the SS

logic.

In addition, simulations were conducted based on the derived models. Simulations
demonstrated that the SS control strategy was effective at reducing vibrations of both linear and
non-linear 2DOF system. However, with the presence of a significant time delay, both linear and
non-linear models showed instability. The delayed SS control strategies were considered for
overcoming the inherent time delays in 2DOF systems. However, the challenge with this strategy
lies in determining the intentional delay. It was found that for symmetrical systems (identical
mass, stiffness, and damping characteristics), the system’s natural frequencies were very close
and the average period could be used for determining the intentional delays. Simulations of the
delayed SS control on the linear and non-linear systems showed effective vibration suppression.
The performance of the non-linear system was slightly weaker due to the variation in period as a
function of the vibration amplitudes. Additionally, asymmetrical systems were considered for the
delayed SS control. Simulations showed that a larger variation in the two natural frequencies of

the system made the delayed SS control considerably less effective.

Theoretical analysis for the stability, damping, and mechanism of this system is required.
Experimental work is also required to fully verify SS control for 2DOF systems. These areas are
beyond the scope of this thesis. However, this chapter has presented the preliminary ground work

for future research.
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Chapter 6 — Conclusions & Future Works

6.1 Summary

In this thesis, the SS control strategy was investigated. First, the fundamental concepts of
vibration control and the SS strategy were introduced. A brief literature survey of the SS control

research and development was conducted.

Second, an SDOF experimental apparatus with a SS spring (electromagnetic spring) was
constructed to test the SS strategy. The complete system dynamics and parameters of this
apparatus were characterized through experimental identification. A non-linear analytical model
for the dynamic forces and stiffness of the system was established. It was found that the
combined stiffness could be modeled as cubic polynomials for different configurations of the
MB tension, EM gap distance, and EM sets. For simplification, a linear model was also
presented for small vibrations. The system damping and natural frequencies were identified for
different configurations. The EM inductance and back EMF were also identified and

investigated.

Third, the SS control strategy was studied in detail via theory and computer simulations.
The simulations revealed the control mechanism of the SS strategy. It was found that vibration
suppression was achieved through the dissipation of potential energy via stiffness reduction at
the peaks of the mass displacements. The energy dissipation was found to be directly
proportional to the stiffness variation. It was also found that vibration amplification was achieved
through the inverted application of the SS control law. A mathematical relationship between the
stiffness ratio and amplitude suppression was established through energy analysis. Additionally,
simulations were conducted on the SS control with the effects of inherent time delays. The

results show that the system is stable if the inherent delay was equivalent to a multiple of half of
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the period and unstable if the delay was equivalent to an odd multiple of a quarter of the period.
A novel method was presented to improve the performance and avoid instability due to time
delays. This method involved introducing an intentional delay such that the SS control would be
applied correctly either a multiple of half of a period or an odd multiple of one quarter of a
period in the future. For the intentional delay making up the QP delayed control, the control was
inverted. A series of simulations were conducted to validate and evaluate this method.
Additionally, the effects of the EM dynamics were briefly explored. It was found that the EM

inductance reduced the effectiveness of the SS control strategy.

Fourth, the SS control strategy was implemented in real-time using the experimental
apparatus. The experimental studies validated the observations made with the simulation results.
Additionally, it was found that the non-linearity of the system limited the performance of the
delayed SS control methods at higher vibration amplitudes. It was also confirmed that the EM
inductance limited the amount of current driving the EMs. This effectively limited the stiffness
variation and therefore, severely limited the performance. This was the limitation of using EMs
as the switchable stiffness spring. Different EM sets, different EM gap distances, and different
MB tensions were investigated to further study the SS control. It was found that the stiffness
variation was better if the natural period was high, the inductance was low, or the gap EM gap

distance was small.

Fifth, preliminary investigations were conducted for the SS control strategy for a 2DOF
system. The system equations were derived for the 2DOF system. A series of simulations were
conducted based on a linear model. The simulations show that the SS control strategy is effective
at suppressing the vibrations of a 2DOF system. Another series of simulations were conducted
based on the non-linear dynamics force and stiffness models characterized in Chapter 2. The
simulations show the SS control strategy is effective at suppressing the vibrations of a non-linear
system. However, with the addition of an inherent system delay, the system was unbounded. The
delayed SS control strategy was investigated through simulations. An average period (of the
natural periods) was used to determine the intentional delay. The simulation results showed that
the delayed SS control strategy is effective for linear and non-linear 2DOF systems that are
symmetrical and have natural frequencies that are close together. For asymmetrical systems, the

delayed SS control is not as effective, but still viable.
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6.2 Main Contributions

The main contributions of this thesis are listed below.

(1) The non-linear and linear analytical dynamic force/stiffness models of the proposed
system were characterized.

(2) The control, stability, and mechanism of the SS strategy were validated through
simulations.

(3) A delayed SS control strategy to overcome inherent system time delays was developed
and verified.

(4) The strengths and limitations of an experimental EM switchable stiffness spring were
established.

(5) The delayed SS strategy was validated through real-time implementation.

(6) The SS control for 2DOF systems was validated through simulations. The delayed SS
control strategy was validated for symmetrical 2DOF systems through simulations.

6.3 Future Works

Based on the work done in this thesis, the author expresses interest in viable routes for

future research. The major areas for future work are listed as below.

(1) The system non-linearity causes the natural period to vary. As a result, the value of the
intentional delay will vary as a function of the displacement. To improve the delayed SS
control, it is suggested that a technique (fuzzy, adaptive, etc.) be implemented to update
the intentional delay either based on the amplitude of vibration or its natural frequency.

(2) Different switchable stiffness springs should be considered (piezoelectric, MRE, low
inductance EMs, etc.). Reducing the effect of EM inductance while maintaining the EM
strength should increase the control performance dramatically. An optimal actuator
should have large stiffness variation, fast switching times, no lag, and low energy cost.

(3) Implementing the SS control on 2DOF or MDOF systems may be beneficial to improve
the range of applications for this method. A detailed analysis of the stability, energy
dissipation mechanism, and coupling effect will be required. Figure 6.1 and Figure 6.2
show the CAD and photograph of a current 2DOF system constructed for the testing and
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development of this work. This system is not ideal for testing due to its weak aluminum
frame design. Vibration on such a system causes the frame to act as an additional degree
of freedom. Therefore, a new 2DOF system is proposed in Figure 6.3 for the testing and
implementation of the SS control strategies.

(4) Implementing the SS control strategy for base excitation. This will allow a more general

and systematic way of comparing the performances.
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Figure 6.2 Photograph of the current 2DOF system
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Figure 6.3 CAD of proposed 2DOF system
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Appendix A

Applying Newton’s second law to the body shown in Figure 5.2 yields the following

equations of motion:

ZFx =mXs=—F,—F,-F,-F, (A1)

ZMG = IGé =F,L + Fl, = F,l, - F,l, (A2)

In the above equations, the small motion assumption is made. It is desirable to transform these

coordinates into x; and x,. The following coordinate transformations are used

X, =x, —Il,sm@
_ - (A3)
X, =X, +1,smm8

Using the small angle ;31pproxima‘[icufl(Silll.'ﬁJ = 19) , the equations are linearized and simplify to

X, =x;—16 (Ad)
x, =x; +1,60
Solving equation (A4) for x and € yields
l .
Xg = ]—2 X, + ;_1 X,
t t ( AS)
9 — _ x_l + i
L1

Differentiating equation (AS) twice yields
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Xg = z—z.ifl +I—15:2
el (A6)
X X,
0=—"+—+=
L 1

Applying equation (A6) into the governing equations (Al) and (A2) eliminates x and &
and yields

L. L.
ZFX:"”f{f_le+I_1x2J:_F;1_P;2_F;H_Fd2 (A7)

't 1
X X
ZMG:IG _I_+I_ =F b+ Fyly - Fyl, - Fyl, (A8)
1 't
To simplify the process, let

p=—F,—F,-F,-F,

(A9)
B, =F h+F,l, —F,l, = F,,l,
Solving equations (A7) and (A8) yields
o P LB
xl m, I, (A10)
e P LA
X, — (A11)

Reintroducing the equations yields the generalized equations of motion in terms of x; and x,

¥ :_[P;l +F, + Fy +Fd2}_(zl (‘Fslzl +Enzl _‘E;zzz _‘E;fz]z)J
!

I, (A12)

m,
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¥, =— Fy+F, +Fy+ By ]+[12 (‘Fslzl +Fyyl — Fol, _Fdzzz)] (A13)
m, I
Assuming that the damping is viscous and the spring force is linear, the forces are given as
Fy=hkx
F,=kx
52 2 _ 2 (A14)
Fy=qx
F, =%,
Substituting equation (A14) into equations (A12) and (A13) yields the linear solution
) . , . i
[Ap ) . al +3,| -2+ bty +x, _h ki +x, K + kbl (A15)
m, I m, Iz m, I m, I
2 2
X, =X, —i+—c‘]‘I2 +X, _o _oh +x, —£+—k‘f‘l2 +x, kKl (A16)
m, I m, I m, I m, I
These equations can be re written as
a el _aelh] [k Kk kil
X m, 1 m I x m, I m I X
|:“l:|: t G t G2 |:_1:|+ t G t G2 |: l:| (Al?)
Wl et o of [nl' & Kk _kE %
m, I m, I m, I m, Ig
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