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Abstract

Lake Simcoe, Ontario, Canada, a large southern Ontario 

glacial lake, has been affected by multiple environmental 

stressors throughout its history. This study uses testate 

amoebae paleodistribution to reconstruct the environmental 

conditions of Lake Simcoe's fringe wetlands before and during 

the Anthropocene. 

Testate amoebae are unicellular shelled protists that 

inhabit almost every environment in the world from sandy 

marine beaches to all freshwater and terrestrial habitats. 

Their rapid asexual reproduction makes testate amoebae 

sensitive indicators of short-lived environmental change. 

Paleolimnological and paleoecological investigations using 

testate amoebae have been used to describe hydrology, pH, 

trophic status, land use, climate change, forest fires, oxygen

concentrations, metal contamination and other variables.

Using compound microscopy techniques, testate amoebae 

assemblages were identified and tabulated from processed 

sedimentary cores extracted from fringe wetlands in Lake 

Simcoe and Tub Lake, with the latter lake used as a reference 

to assess anthropogenic impact during the Anthropocene. One 

core, taken from the outlet area of Lake Simcoe, was used to 

reconstruct the past variability of the paleoenvironment while
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all four cores were used to reconstruct Anthropocene 

paleoenvironments.

Prior to European settlement three distinct testate 

amoebae communities inhabited the Victoria Point wetland area 

based on hydrologic variability: an arctic-like, oligotrophic 

testate amoebae community dominated by alkaline, lacustrine 

species; a CaCo
3
-based community dominated by mesotrophic 

calcipiles; and an “early fringe wetland community” dominated 

by aquatic and soil-based species.

The anthropogenic activities of the last ~200 years lead 

to a rapid paludification of the shoreline in all Lake Simcoe 

wetland locations. Anthropogenic activities have also produced

a constant state of disturbance along the shoreline where the 

mean rate of change in the testate amoebae community since ~AD

1300 (0.46) is greater than the rate of change in the 

preceding record (0.40). Some of this change is also 

attributable to recent climate change particularly in the 

winter and spring, and possibly to the introduction of the 

Zebra mussel in the mid 1990s.

While similarities in the response of testate amoebae 

assemblages across wetlands do exist, this study has also 

found that local activities have affected testate amoebae 

assemblage paleodistributions, species richness and diversity.
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Lay Summary

Testate amoebae were used as a proxy to reconstruct Lake 

Simcoe fringe wetland paleoenvironments with the objectives of

elucidating any possible changes to Lake Simcoe fringe wetland

biological communities over time and to provide an assessment 

of any long-term changes if found. This research contributed 

to greater knowledge of the use of testate amoebae as a proxy 

in fringe wetlands, the diversity of testate amoebae, and the 

distribution and abundance of testate amoebae across time and 

space. 

Testate amoebae were found to be a good proxy for fringe 

wetland environmental conditions, indicating both lacustrine 

and peat-based environments as well as changes in hydrology, 

pH, and temperature. The diversity and abundance of testate 

amoebae paleodistribution was found to increase through time 

at all locations commensurate with paludification and nutrient

enrichment of the sampling sites. Testate amoebae community 

distribution was also found to be sensitive to various and 

unique anthropogenic and natural perturbations including land 

clearance, water level stabilization, rapid increases in 

precipitation, nutrient enrichment, and climate change.
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Chapter 1. Introduction and Literature Review

1.1 Aquatic ecosystems and multiple stressors

1.1.1 Freshwater Lakes

Multiple stressors on freshwater ecosystems are having 

deleterious effects on global water availability and quality 

through changes in climate, land use, hydrology, nutrient 

cycling, pH, and biota (Heathwaite 2010; Davis et al. 2010; 

Kolar and Lodge 2000). By far, the accelerated nutrient 

enrichment of freshwater bodies through anthropogenic 

activities, termed cultural eutrophication, is the most 

ubiquitous effect with nearly 50% of the world's freshwater 

being found in a eutrophic state (Ansari et al. 2011). In 

addition to the major influence of changing nutrient cycles on

the health of freshwater bodies, cumulative impacts of 

multiple stressors are complex and unpredictable posing 

continuous challenges to research and management of these 

systems (Strayer 2010; Christensen et al. 2006; Schindler 

2001).

Canadian lakes, mainly in the highly populated 300km wide 

band that borders the United States, have been subjected to 

multiple anthropogenic stressors over the last ~200 years also

known as the “Anthropocene” (Crutzen 2002). They have been 

dammed, impounded, and diverted. Their biota and that of their
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watersheds have been exploited and they have been polluted by 

airborne contaminants, livestock, industrial and human waste, 

and agricultural fertilizers (Schindler 2001). With the 

addition of climate change, Canadian lakes are undergoing 

degradation “on a scale that was not comprehensible to the 

average Canadian at the end of the twentieth century” 

(Schindler 2001).

Much of the freshwater ecosystem degradation is a result 

of climate altered hydrology including increased water 

temperature and changing patterns of stratification, 

precipitation, evaporation, flow, snow-pack, ice-melt, and 

storm events (Schindler 2001; Yan et al. 1996). A decline in 

water flow, coupled with increased residence time, 

evaporation, diffuse nutrient loading, and thermal 

stratification is resulting in a rise in nutrient 

concentrations, exacerbating eutrophication and altering the 

frequency and magnitude of cyanobacterial blooms (Moss et al. 

2011; O'Neil et al. 2011; Schindler 2001). 

Climate change is also intensifying the effects of non-

native species on aquatic ecosystems. 75% of non-native 

species in the Great Lakes are of Ponto-Caspian origin giving 

them a distinct competitive advantage over native species as 

temperatures increase, and nutrient and precipitation cycles 
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are altered (EPA 2008; Rahel and Olden 2008; Schindler 2001). 

Climate change is also enabling rapid range expansion and 

large increases in the biomass of non-native species (EPA 

2008).

1.1.2 Freshwater wetlands and shallow lakes

Somewhat unique effects of multiple stressors are also 

being noted in wetlands and shallow lakes worldwide. The 

greatest concern for the health of these systems under climate

change scenarios are shifts in hydrological regimes leading to

altered geochemistry and ecological functioning (Hobbs et al. 

2012; Mortsch 1998; Cox and Campbell 1997; Mortsch and Quinn 

1996; Schindler et al. 1996). 

Under such stress, shallow lakes and wetlands can exhibit 

“catastrophic shifts” described by the alternative stable 

state theory (Bayley and Prather 2003; Gundersen 2000; May 

1977; Holling 1973). For shallow lakes, two alternative stable

states are understood to exist - one dominated by clear water 

and rooted macrophytes, and the other by turbid water and 

planktonic algae (Gundersen 2000). Transitions between the 

states are “thought to center around the interaction between 

submerged vegetation and turbidity” which is ultimately 

controlled by nutrient availability (Scheffer et. al 1993).  

Freshwater wetland stable states are also controlled by 
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nutrient availability where an increase in soil nutrient 

content is characterized by a shift in dominant emergent plant

species, usually following a disturbance (Gundersen 2000). 

Bayley and Prather (2003) noted that the stable state of 

shallow wetland lakes undisturbed by anthropogenic activities 

was controlled primarily by nutrient status but depth, surface

area and nitrogen concentrations may also play a role.    

1.1.3 Multiple stressors in Ontario,Canada

Recently, Hadley et al. (2012) sampled 53 lakes with 

variable anthropogenic disturbance, previously studied by Hall

and Smol (1996), to assess changes in 14 water quality 

variables between 1990-1992 and 2007-2008. The authors found 

that despite impacts of previous and ongoing anthropogenic 

stress to the south-central Ontario lakes (acidification and 

nutrient enrichment from industry and development), the 

overarching driver of diatom community change was climate-

related (longer ice-free season, longer growing season, and 

enhanced lake stratification).

 Ontario has a history of numerous aquatic invasions of 

non-native species, mainly in the Great Lakes Basin. As of 

2009, 186 non-native species were present in the basin (OMNR 

2013), a situation referred to as a “fish zoo” by Schindler 

(2001). The introduction or expansion of many species, such as

the smallmouth bass (Micropterus dolomieu), have had negative 
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impacts on native aquatic communities (Vander Zanden and Olden

2008; OMNR 2012). A recent invader, the Zebra Mussel 

(Dreissena polymorpha), was first discovered in Lake St. Clair

(42.445755,-82.654481) in 1988 and is thought to have 

originated from the ballast water of an ocean going ship (OMNR

2013). Since 1988, they have spread throughout the Great 

Lakes, the Trent Severn waterway, the Rideau Canal, and many 

other inland Ontario lakes and rivers (OMNR 2013). D. 

polymorpha is considered the most aggressive freshwater 

invader worldwide, rapidly colonizing and populating waters 

with biomass exceeding 10 times that of native invertebrates 

(GISD 2013). The impacts of D. polymorpha are extensive: it is

an “ecosystem engineer” that alters phytoplankton communities,

benthic communities, habitats, and invertebrate competition 

(GISD 2013). They are also responsible for threats to 

endangered species and significant economic costs are 

associated with their control (GISD 2013; OMNR 2013).

1.2 Study system: Lake Simcoe, Ontario

1.2.1 Lake and Watershed Properties

Lake Simcoe (44.440153,-79.358422) (Figure 1) is the sixth

largest inland lake in Ontario with a total watershed area of 

3634km2 (2912km2 terrestrial and 722km2 lake surface), a 

perimeter of 303km, and an approximate volume of 11 x 109 
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m3(Palmer et al. 2011; Stainsby et al. 2011; Eimers et al. 

2005). Part of the Trent-Severn waterway, Lake Simcoe is a 

hard-water, dimictic, and relatively shallow lake (mean depth 

16m)(Figure 2), with the nearshore zone (0-20m) covering 67% 

of the lake area (Ginn 2011). Rocky substrates predominate in 

shallow areas of the nearshore zone (<8-9m) but sandy areas 

and finer sediments occur as well (Ozersky et al. 2011). Soft 

sediments are found at littoral depths greater than 8-9m 

(Ozersky et al. 2011), as well as in the deeper zones of the 

lake (Todd et al. 2007). 

Overall, the lake is divided into three basins: the oligo-

mesotrophic main basin in the northeast (area 643km2, mean 

depth 14m, maximum depth 33m), mesotrophic Cook's Bay in the 

south (area 44km2, mean depth 13m, maximum depth 15m), and 

oligo-mesotrophic Kempenfelt Bay in the west (area 34km2, mean 

depth 20m, maximum depth 42m) (Palmer et al. 2011; Ozersky et 

al. 2011). 35 tributaries drain the terrestrial watershed, 

with five (Beaver, Black, Talbot, and Holland rivers and 

Pefferlaw Brook) contributing 60% of the total drainage area 

(Eimers et. al 2011). 
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deposits of undifferentiated till, glaciofluvial outwash, and 

glaciolacustrine sediments form a thin layer over the eastern 

and northern portions of the watershed and cover the bedrock 

in the western and southern portions (Todd et al. 2004; 

Johnson 1997).

Beneath the majority of glacial deposits lies Middle 

Ordovician limestone with a small northern portion of the 

watershed overlying Precambrian metasedimentary and gneissic 

rock characteristic of Canadian Shield geology directly to the

north of the watershed (Todd et al. 2004; Johnson 1997). The 

southern portion of the lake is bounded by the Oak-Ridges 

Moraine formed of glaciofluvial and glaciolacustrine deposits 

overlying drumlins created from Newmarket till deposited by 

the Ontario lobe of the Laurentian ice sheet (Barnett et al. 

1998; Gwynn and DiLabio 1973).

The in-lake sediments of Lake Simcoe are divided into four

seismostratigraphic sequences: post-glacial, late-glacial, 

glaciofluvial, and Newmarket Till (Todd and Lewis 2007). The 

most recent post-glacial (Holocene) sediments are up to 8m 

thick in some areas and do not extend over the entire lake. 

Underlying post-glacial sediments, late-glacial sediments of 

up to 30m thick extend over the entire lake and were likely 

deposited during the occupation of the basin by Lake 

9



Algonquin. Underlying late-glacial sediments are rapidly 

deposited glaciofluvial sediments. These sediments are 

widespread in the lake and are generally less than 10m thick. 

The final sequence, Newmarket Till, underlies the 

glaciofluvial sediments and is characterized by 10-30m high 

peaks which are also seen in drumlin fields mapped around Lake

Simcoe. The Newmarket Till layer was recorded in all lake 

areas except Cook's Bay and Kempenfelt Bay but this is likely 

due to the thickness of overlying sediment (Todd and Lewis 

2007).

1.2.3 Prehistoric use

The use of the Lake Simcoe watershed began approximately 

11,000 years ago in the Paleoindian time period (Table 1) by 

First Nation groups settling along tundra-like “glacial lake 

strand lines” after the formation of Lake Algonquin which 

encompassed the Lake Simcoe watershed from ~11,200 BP to 

~10,400 BP (Jackson et al. 2000; Storck 1984). Early 

settlements were situated to the east and south of the current

Lake Simcoe margins (Storck 1984). A large number of 

archaeological sites excavated in the eastern Simcoe Lowlands 

were found to be mostly small, seasonal settlements (Storck 

1984). A number of other sites of similar and larger size were

located in the vicinity of the Lower and Upper Holland River 
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(Stewart 2004).

As the Simcoe Lowlands drained due to reduced water levels

in Lake Algonquin, likely caused by the isostatic rebound of 

the lake's outlets, a new time period known as the Archaic 

began (Table 1) (Digging Ontario n.d.). Warming temperatures 

of the Archaic period in southern Ontario brought deciduous 

forests and an increasingly diverse flora and fauna to the 

region (OAS n.d.). Early and Middle Archaic sites (Table 1) 

were located near the Lower Holland River and in the south-

western portion of the watershed. The settlements mark the 

start of a shift in settlement location over time from 

southerly to north-westerly direction. The shift is thought to

be an artifact of changing shorelines as warming temperatures 

proceeded or a reduced reliance on wetland resources over time

(Stewart 2004). It was during the Late Archaic (Table 1) that 

the fish weirs at the Atherley Narrows (Lake Simcoe outlet) 

were constructed (OAS n.d.; Swayze 1983). 

The next time period, known as the Woodland, spanned from 

~3000 BP to European contact (Table 1). Rough population 

estimates for the hunter-gatherers of the Early/Middle 

Woodland time period in southern Ontario are between 2,000 to 

2,500 people (Warrick 1990). A greater number of 

archaeological sites dated (Table 1) to the Middle Woodland 
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period suggested that a population increase occurred from the 

Late Archaic to the Early and then Middle Woodland time 

periods. However, Warrick (1990) found no evidence of such a 

population increase. In the Simcoe area, just one band of 

approximately 450 people was clustered in the Eastern Lake 

Simcoe/Victoria County area.  

It was in the later part the Woodland period that the 

Wendat (Huron) peoples living in horticultural settlements 

inhabited Lake Simcoe's watershed in the area known as Wendake

(“the land surrounded by water”)(Ramsden 1996; Innisfil 

Library n.d.). Wendake was bounded by Georgian Bay to the 

west, Lake Simcoe to the east, Precambrian shield to the 

north, and the Oak Ridges Moraine to the south. While the 

construction of the Atherley Narrows fish weirs are attributed

to the Wendat peoples (Ontarioplaques.com n.d.), over a 

century of archaeological research has failed to uncover a 

Wendat settlement pre-dating ~ AD 1300 in Simcoe County 

(Warwick 2008,1990). The only Wendat village of the Uren Phase

(Table 1) of the Late Woodland period was located at the tip 

of Kempenfelt Bay. The village was 0.01km2 and roughly 

supported a population of 400-500 people (Warrick 2007; Sioui 

1999). 

The Middleport Phase (Table 1) of the Late Woodland period
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witnessed a Wendat population explosion from approximately 

11,000 to 29,000 people (Warrick 1990). Most of the increased 

population is believed to have occurred in Simcoe County 

around the initial Uren settlement. The presence of twelve 

villages, including the Uren settlement, have been confirmed 

(Warrick 1990). Villages in the Middleport period doubled in 

size from the Uren, holding approximately 1000 people each 

(Warrick 1990).

By the Late Contact period (AD 1475), Wendat populations 

stabilized to about 30,000 people and larger settlements of 

2,500 appeared (Warrick 1990). Settlements expanded throughout

western and northern Simcoe County with some northern 

settlements clustered between Bass Lake (44.60318,-79.509113) 

and Lake Simcoe (Warrick 1990). 

Between AD 1550 and 1625, Wendat populations remained 

stable at around 30,000 people. Unlike earlier times where 

individual populations were divided amongst various small and 

large settlements, Late Contact populations were aggregated 

into higher density regional settlements defended by natural 

and human-made barriers (Warrick 1990). 

Between AD 1634 and 1647, Wendat populations dropped to 

8,600 through the spread of European disease and possible 

settlement abandonment. In 1649, the Wendat burned and 
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abandoned their last 13 villages and the remaining population 

migrated to French held Christian Island. In 1650-51, after 

devastating starvation and disease on Christian Island, the 

surviving 600 Wendat migrated with the Jesuits to Quebec 

(Warrick 1990).

Table 1. Prehistoric time periods and land use/population. 

Time Period 14C 
dates 

Use of the 
watershed

Archaeological 
sites

Reference

Paleoindian 12000-
10000

concentrated
, 
small,possib
ly seasonal 
settlements 
in the 
southeastern
area

Draper, Prideaux
locality 14, 
Deavitt, 
Boyington, 
Cowieson, 
Cryderman, 
Perry, Sister, 
McMillan, 
Zander, Boag, 
Hunt, Udora, 
McDonald, 
Banting, Hussey,
Fowler,

Anderson 
2013;Carr
2012; 
Storck 
1982,1984
; Stewart
1984

Early Archaic 10000-
8000

small,possib
ly seasonal 
settlements 
in the south
and 
southwestern
area

Zander, Coates 
Creek, Muirhead,
Goodring, 
Verkalik, 
Kilmorlie-
McMillan, 
Leonard,Hodgins,
Sumerville

Anderson 
2013;
Storck 
1984,1982
,1978; 
Stewart 
1984; 

Middle Archaic 8000-
5000

small,possib
ly seasonal 
settlements 
in the south
and 
southwestern
area

Kilmorlie-
Fraser, Gooding,
Verkalik, Froud-
McGuire, Brown-
1, Leonard, Boag

Anderson 
2013; 
Stewart 
2004

Late Archaic 5000-
3000

small,possib
ly seasonal 
settlements 
in the south
and 

Atherley Narrows
fish weirs, 
Muirhead, 
Kilmorlie, 
McMillan, 

Anderson 
2013;OAS 
n.d.;
Stewart 
2004
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southwestern
area; 
meeting 
place

Aitchison, Boag

Early Woodland 3000-
1500

~450people Eastern Lake 
Simcoe /Victoria
County

Warrick 
1990

Middle Woodland 1500-
1000

~450people; 
meeting 
place

Eastern Lake 
Simcoe /Victoria
County; Atherley
Narrows

Warrick 
1990; 
Wright 
1972

Late 
Woodla
nd

Early 
Iroquoian

1000-
650

meeting 
place

Atherley Narrows Warrick 
2007; 
Wright 
1972

Uren 650-620 ~450 people Kempenfelt Bay Warrick 
2007,1990

Middleport 620-530 ~13000 
people

Barrie area Warrick 
2007,1990

Late 
contact

530-416 ~22000 
people

North & South 
Simcoe

Warrick 
2007,1990

1.2.4 Historic use

1.2.4.1 Initial European and Aboriginal settlement

Human use of the Simcoe area in the transition from 

prehistory to history after the eradication of the Wendat is 

not clear. There are reports that Algonkian speaking groups 

lived or may have lived in the Orillia area in the 17th century

(Hunter 1909; Ramsden 1988). Hunter (1904) describes 22 

occupation sites in Orillia of unknown, but supposed Algonkian

(Ojibwe), origin. These sites were never dated. Most of the 

sites are above the Narrows in the Couchiching basin but a few

are located in the Simcoe basin, namely at Shingle Bay, Smiths
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Bay, and the west Narrows peninsula (Hunter 1903; Wright 

1972). It is believed that the Ojibwe of Georgian Bay and 

farther north expanded into Southern Ontario in about AD 1701,

but there is no specific mention of the Simcoe area (Schmalz 

1991; Ontario Heritage Trust 2012). It is not until the naming

of the lake (Lake Simcoe) in 1793 by Lieutenant Governor 

Simcoe as well as the extension of Yonge St. to Holland 

Landing (1796) that the area reappears in the record (Hunter 

1909a). 

In 1818, a final treaty for the surrender of lands 

(644,261 ha) in the Georgian Bay/Simcoe area is signed between

several Ojibwe Chiefs and the Crown (Ontario Heritage Trust 

2012; Hunter 1909a). It is noted that after the treaty, the 

Ojibwe under Chief Yellowhead (Musquakie) continue to use 

their hunting grounds in the Simcoe watershed (Ontario 

Heritage Trust 2012).

The first wave of European settlers began to arrive to the

county in 1819 (Hunter 1909a) although there are indications 

of limited European occupation dating back to the original 

settler, a farmer named Smith, in 1794 (Wilson and Ryan 1988).

Additional early settlers were Mr. St. George who operated a 

trading post at the Atherley Narrows from 1802 until 1820, and

a “Soldier's Landing” in the east branch of the Holland River 
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during the war of 1812 (Hunter 1909a; Hunter 1909b). This 

Landing was the site of trade between “Indians” and fur 

traders and a small town arose from that in 1828 (Hunter 

1909b). Holland Landing itself (44.098434,-79.485839) began 

with a single residence/mill in 1821 and became a village in 

1835 (Hunter 1909b). The main settlers in 1819 were 

“fugitives” from Lord Selkirk's Red River Settlement in 

Manitoba who began the first community (Scotch Settlement at 

44.089743,-79.615529) in West Gwillimbury along the Holland 

River (Hunter 1909b). 

Settlement progressed quickly, expanding to New Tecumseth 

(44.152652,-79.858346), Adjala-Tosorontio (44.133928,-

79.92907), Innisfil (44.303704,-79.599481), Essa (44.28257,-

79.780018), and Penetanguishine (44.769771,-79.936033) in the 

1820s. (Hunter 1909b). Population statistics for New Tecumseth

indicate 546 people in 1829 (Hunter 1909b). Hunter (1909b) 

states that the northward spread of settlers was slow due to 

the “Big Swamp” that cut off communication and access to the 

south (Hunter 1909b). 

In 1820, the township of Oro (44.475931,-79.618707) was 

surveyed but settlement did not progress until the 1830s.  

Hunter (1909b) also mentions the intent of the Government in 

1819 to establish a “negro slave settlement” in Oro. This 
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settlement was eventually created in 1830 on the second line 

(Wilberforce Street) in Oro. By 1836, the community grew to 

about 100 residents (York University 2013).

It was also in 1830 that the current Lieutenant Governor, 

Sir John Colborne, established the Coldwater-Narrows Reserve 

(10,000 acre narrow strip between Orillia and Matchedash Bay 

along the old trading route ridge line (now Hwy. 12)) as 

exclusive lands for three First Nations groups under the 

leadership of Chief's Yellowhead, Snake, and Aisance (AANDC 

2010;  Hunter 1909a). Between 1830 and 1832, the bands under 

Chief's Yellowhead and Snake were settled at the Atherley 

Narrows while the band under Chief Aisance settled at 

Coldwater (AANDC 2010). Settlement by both Chief Yellowhead's 

band and European settlers in the 1830s was mainly north of 

the ridge line (Hwy. 12) on the shores of Lake Couchiching. It

is reported that a house for Chief Yellowhead was built in 

1831 on the lot now occupied by the St. James Anglican rectory

grounds on Front St. (St. James Anglican Church n.d.; Hunter 

1909a). The first European settlers were concentrated in the 

West St. & Colborne St. area, on the outskirts of the 

Aboriginal settlement.

In 1834, a few European settlers attempted to establish a 

town (Innisfallen) at a landing place on Shingle Bay. A few 
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cabins were built on the shoreline but did not expand beyond 

that (Hunter 1909b). 

In 1836, it is said that the three Chiefs surrendered the 

Coldwater-Narrows reserve (although this is disputed) and by 

1838 had moved to new and old lands on Beausoliel and Snake 

Islands and at Rama (Hunter 1909a; Ontario Heritage Trust 

2012; AADNC 2010). 

The town of Orillia remained contained within the North 

Orillia area (above King Street) until at least 1867 when the 

town became incorporated (Fowlie 1867). In 1871, the Northern 

Railway into Orillia was completed following along the 

shoreline.  By 1881, roads had been constructed below Kings 

Street throughout the South Orillia area (Macdonald 1881).

Settlement of the eastern side of the lake followed a 

similar trajectory with rare European occupation occurring 

prior to 1819 (Georgianmaps.ca n.d.), and initial settlement 

taking place between 1819 and the 1830s. Keswick, Sutton, 

Pefferlaw, Jackson's Point, Beaverton, and Brechin all 

experienced their first European settlers within this time 

period (Town of Georgina n.d.; BDCC 2010; Ramara Historical 

Society n.d.).

1.2.4.2 Agriculture, Livestock and Lumber

Agriculture was a major occupation of initial settlers in 
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all areas within Simcoe County from the very beginning (Hunter

1909b). Hunter (1909b) indicates that at least one farmer in 

the area, specifically West Gwillimbury, was progressive, 

utilizing newly patented mechanized equipment (McCormick 

Reaper) on his farm.

Wilson and Ryan (1988) describe three distinct clusters of

agricultural land use in the basin: 1801 to 1891(A), 1891-

1941(B), and 1941-1981(C). Total agricultural land in cluster 

A grew rapidly, so that by 1851 and 1881, the percentage of 

watershed transformed into farmland was 43 and 86% 

respectively. There was a slight decrease in unimproved 

farmland in 1891, dropping the total to just about 85%. 

Cluster B total agricultural land decreased slightly before 

climbing to it's maximum of 87.9% in 1941. There were 

decreases in improved farmland and cropland but increases in 

unimproved farmland during this time. During the cluster C 

stage, all types of farm land steadily decreased to a total of

~57% of the watershed in 1976. There was a slight increase 

(~59%) between 1976 and 1981 which is attributed to the switch

to corn agriculture in 1961. Within these agricultural totals,

specific subwatersheds account for much of the agricultural 

land use. Between 1891 and 1981, 55 to 70% of the Holland 

River area, and about 42 to 65% in the Black, Pefferlaw and 

Beaverton areas was utilized for agriculture (Wilson and Ryan 
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1988). The poor soils of Northern Lake Simcoe kept most 

agriculture within the southern area.

Throughout this same period (1801 to 1981), heads of 

livestock increased almost steadily to a maximum of ~82,000 in

1961 after which the only recorded decline to ~68,000 in 1981 

takes place. 

Alongside clearing activities for early agricultural use, 

the Simcoe basin was actively logged in the early years of 

settlement. Sawmills (Table 2) dotted the landscape beginning 

in ~ AD 1825. Between 1825 and ~1830, most sawmills were 

small, water-powered endeavours constructed in conjunction 

with grist mills (Hunter 1909b) suggesting local use by 

pioneer settlers and farmers. Hunter's (1909b) first specific 

mention of a commercial sawmill was one built by Mark Scanlon 

in 1832 on what is now known as Scanlon's Creek. Following his

commercial success, other entrepreneurs constructed four more 

mills along the creek (Hunter 1909b). Beginning in the 1850s 

with the opening of the Northern Railway in 1853 (Hunter 1893;

Cooper 2013), a 10 fold increase in logging by large 

commercial sawmills began (Hunter 1909a). Two of the largest 

sawmills in the southern Simcoe County were those located at 

Bradford and Bell Ewart. The mill at Bradford was capable of 

producing 150,000 board feet per day or 20 million per year 
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(Hunter 1893) and Bell Ewart 15 million per year (Hunter 

1909a). Logging did not reach great importance in north Lake 

Simcoe and beyond until the waning of timber resources in the 

south in the 1860s (Hunter 1893) and the extension of the 

railway to Orillia in 1871.  By 1893, most lumber activities 

had ceased in the watershed (Hunter 1893). 

Table 2. Location and dates of Sawmills in Simcoe County.

Area Location Date Quantity Reference

Midhurst “Oliver's 
Mills”

1825 1 Hunter 1909b

Coldwater ? ~1825 1 Hunter 1909b

Tollendal ? ~1829 1 Hunter 1909b

Big Bay Point ? 1830 1 Hunter 1909b

New Tecumseth a creek ~1832 1 Hunter 1909b

Lefroy ? ~1832 1 Hunter 1909b

Bradford Scanlon Creek 1832 6 Hunter 1909b

Vespra Wicken's Creek 1847 1 Hunter 1909b

Bradford Bradford 
bridge

1848 1 Hunter 1909b

Bell Ewart ? 1852 1 Hunter 1893,  
1909b

Lakeland ? ? 1 Hunter 1909b

Big Bay Point Hewson's creek 1852 1 Hunter 1909b

Marchmont ? >1852 1 Hunter 1909b

Washago Lake Couch. 1852 1 Hunter 1909b

Orillia ? >1852 2 Hunter 1909b

Alliston ? 1853 1 Hunter 1909b
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Angus ? 1854 1 Hunter 1909b

Bradford ? 1858 1 Hunter 1893

Ramara Atherley 1859 1 MacDonald 1909

Bradford Holland River 1869 1 Hunter 1909b

Ramara Longford 1869 1 Hale 1929

Morrison Severn >1870 ? Hunter 1909b

North Adjala ? 1878 1 Hunter 1909b

1.2.4.3 Population 

Statistics Canada census population data for Simcoe County

(Table 3) show an initial population in 1824 of 868 people. By

1830, the population had grown 174% to 2,301, and between 

1830-40, 402% to 11,572 people. Just before the opening of the

Northern Railway in 1853, the population of Simcoe County had 

swelled to 27,165 people.

Population statistics compiled by Wilson and Ryan (1988) 

from Census Canada data indicate that by 1881 there were 

approximately 60,000 people in Simcoe County, a population 

that persisted until 1941. After 1941, the population rapidly 

expanded to just under 110,000 in 1961 and by 1981 was over 

200,000. This period of rapid growth is attributed to an 

influx into the urban centres of Aurora, Barrie, Newmarket, 

and Orillia (Wilson and Ryan 1988).
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Table 3. Population of Simcoe County 1824-1861 (Queens U. 
2013;Wilson and Ryan 1988)

Population Date Growth(%) from previous

838 1824 0

926 1825 10.5

1117 1826 20.63

1378 1827 23.37

1716 1828 24.53

1790 1829 4.31

2301 1830 28.55

3451 1831 49.98

3429 1832 -0.64

5883 1833 71.57

7737 1834 31.51

7829 1835 1.19

10115 1836 29.2

10825 1837 7.02

9829 1838 -9.2

11246 1839 14.42

11572 1840 2.9

12778 1841 10.42

23050 1848 80.39

27165 1851-1852 17.85

44720 1860-1861 64.62

1.2.5 Current anthropogenic use

Current land use in the watershed (Figure 3 & Table 4) is 

predominantly agriculture and related activities (~65.1%). A 
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further ~25.11% of the landscape is a combination of 

wetlands(0.04%), woodlands and reforested areas (25%), and 

significant water courses (1%). The remaining watershed area 

is given over to urban development (6%), and the aggregate 

industry, aboriginal reserves, and unknown use (~1.3%). Within

the developed areas of the watershed exists a road network of 

5193.47km in length (all values calculated from OMNR 2010b). 

Included in the urban land use (population of 350,000 in 

2008), is the recreational use of the watershed by 

approximately 50,000 cottagers (LSRCA 2008). Lake Simcoe also 

has a substantial tourism industry centred around camping and 

fishing (Wilson 2008). Visitation to the lakes three 

provincial parks adds over 300,000 people to the watershed 

each year while visitation by anglers adds 144,000 people 

(Wilson 2008).

Table 4. Land use in the Lake Simcoe watershed.

Land Use Area (km2) Percentage of

Total (2823.29km2)

Wetland 14.02 0.04

Woodland & 

Reforested

730.05 25

Water 20.46 0.07

Urban 171.89 6

Agriculture 1832.95 65.1

Aggregate & other 37.39 1.3
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Road network 44.14 (5193.47km *

0.0085km)

1.5

Lake Simcoe is a part of the 386km long Trent-Severn 

waterway that connects Lake Ontario to Lake Huron via Georgian

Bay. The human-made waterway tracks an ancient transportation 

and migration route in use since ~11,0000BP, connecting 

natural waters by a series of locks and canals (Parks Canada 

2009). When finally completed  in 1920, commercial vessels 

were larger than the locks and canals could accommodate and 

most of the goods traffic to Southern Ontario had shifted to 

road and rail (PFTSW, 2007).  Accordingly, use of the waterway

shifted to recreational purposes with an average of ~151,000 

boats per year (1994-2007) traversing the waterway 

(TrentSevern.com n.d). The lock at Gamebridge (44.486762,-

79.149232) connecting Balsam Lake to Lake Simcoe was completed

in 1904 while the connection between Lake Simcoe's receiving 

waters, Lake Couchiching (44.661327,-79.379017), and Georgian 

Bay (44.808635,-79.826367) was completed in 1920. When the 

waterway was opened in 1920, water levels in Lake Simcoe rose 

3m, flooding the eastern portion of the lake along with the 

wild cranberry and wild rice fields vital to the Chippewa of 

Georgina Island (ABG 2007). The residents of Georgina Island 

report that prior to the opening of the waterway, the trek 
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1.3 Multiple stressors on Lake Simcoe

1.3.1 Glacial and post-glacial influences

As a glacial lake, Lake Simcoe has been influenced by many

climatic stressors since its formation by the oscillatory 

retreat of the Laurentide ice sheet. The margins of last 

glacial maximum (21,000-18,000 BP) stretched as far south as 

Chicago, Illinois (Lewis et al. 1994). Deglaciation between 

21,000 and 7,500 BP produced large proglacial lake 

impoundments from meltwater along the southern margins of the 

sheet. 

Initial exposure of the Lake Simcoe area occurred at 

13,200 BP during the Mackinaw interstade period (Lewis et al. 

1994). Ice-marginal meltwater flowed over south-central 

Ontario draining into Lake Iroquois in the area of Lake 

Ontario. Re-advance of the ice sheet covered Simcoe from 

13,000 to 12,000 BP. The return of glacial retreat around 

12,000 BP exposed the southern portion of the Simcoe area to 

the meltwaters of glacial Lake Schomberg along the margin of 

the retreating ice sheet. From ~11,900-11,200 BP (early 

Kirkfield Phase of Lake Algonquin), the entire Simcoe area was

once again exposed and flooded by marginal meltwaters that 

drained through Fenelon Falls and into Lake Iroquois. The 

transition into the main stage of Lake Algonquin (11,200-
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10,400 BP) is characterized by isostatic uplift of the Fenelon

Falls outlet, shifting drainage away from the Simcoe area.  

With the rapid lowering of Lake Algonquin leading to the 

formation of Lakes Stanley and Hough in about 10100BP, the 

entire Lake Simcoe terrestrial watershed was fully exposed 

(Lewis et al. 1994). The final collapse of the Laurentide Ice 

Sheet in ~8,000 BP removed any possibility of meltwater supply

to the Simcoe watershed, marking the transition to local water

sources. 

From ~7,900 to 7,500 BP, Lake Simcoe may have been a 

closed system with water levels much lower than today's depths

as evidenced by the hydrologic state of the Great Lakes at 

this time (Lewis et. al 2008; Edwards et. al 1996). Increasing

temperature and precipitation from ~7,500 to ~4,000 BP may 

have been the cause of modern lake levels but a direct link 

cannot be reliably inferred (Edwards et. al 1996). 

Precipitation and temperature declined after 4,000 BP, 

reaching present levels at ~1,500 BP, establishing the 

temperate climate of today (Edwards et. al 1996).

While no Lake Simcoe-specific research exists for its 

formative ecology (apart from terrestrial pollen 

reconstructions), recent investigations into limestone 

dominated Glacier Bay National Park and Reserve (Milner et. al
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2007) in southeastern Alaska provides an idea of the combined 

lake and landscape evolution following deglaciation. Although 

the description of formation and succession following 

deglaciation is specific to southeastern Alaska during the 

late Holocene, the general terrestrial species succession is 

mirrored well in both a core taken from Lake Simcoe (Todd and 

Lewis 2007), and a core from Graham Lake in southeastern 

Ontario (Fuller 1997). This suggests that a similar process of

lake succession may have occurred in the Lake Simcoe basin 

following the retreat of the Laurentide ice sheet although the

timing of succession may be very different as a result of 

climate during the Alaskan (1800s to present) and Laurentide 

retreats.

The first 5 years of lake and watershed formation in the 

National Park was dominated by physical processes - water 

accumulation and sedimentation. Within 5 to 15 years after 

deglaciation, terrestrial biological process took over as 

fine-grained carbonate-rich but nitrogen (N) limited, high pH 

terrestrial sediments were colonized by cyanobacteria, 

bryophytes, horsetail (Equisetum spp.), and lichens, forming 

the first soils. As the glacier continued its retreat, species

living along the previous glacial margins such as dwarf shrubs

(Dryas spp.), willows (Salix spp.), alders (Alnus spp.), and 

spruce (Picea spp.) began to colonize the new territory 
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(Milner et. al 2007; Fuller 1997). 

From 20 to 50 years after exposure, early communities 

began to influence subsequent colonization through 

facilitative and competitive interaction; for instance, dwarf 

shrub abundances reduced alder germination and early spruce 

seedling growth while enabling older spruce seedling growth. 

In this way, early non-vascular and vascular colonizers shaped

subsequent terrestrial successions (Milner et. al 2007).

Early lake ecology followed much the same path. Glacial 

lake sediments were high in pH (7.9 - 8.3) and low in N and 

dissolved organic carbon (DOC), limiting initial productivity 

to a few species of attached algae (Gyrosigma spp., Amphora 

spp., and Achnanthes spp.)(Milner et. al 2007). As lake water 

turbidity from glacial silts reduced and UV penetration 

increased, a few highly tolerant zooplankton (e.g. Daphnia 

spp., Cyclops spp.) colonized the lake. Many lakes remained 

fishless due to migration barriers or hydrologic isolation. As

the first 50 years after deglaciation progressed, linkages 

between terrestrial and aquatic ecosystems began. Increases in

terrestrial soil stabilization and productivity added to the 

organic matter of the lakes, providing the potential for 

enhanced aquatic food chains (Milner et. al 2007).

There was increasing biotic control over terrestrial and 
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aquatic ecosystems between 50 and 150 years after deglaciation

(Milner et. al 2007). On the terrestrial side, N
2
-fixation by 

alder lead to N accumulation in sediments which differentially

inhibited spruce growth and lead to a spruce forest of 

differing age, density and size. On the aquatic side, steady 

increases in lake water DOC and N were correlated to organic 

matter from the terrestrial environment, especially where 

early the terrestrial environment was dominated by alder. In 

high N lakes, benthic diatoms (Fragilaria spp.) increased in 

abundance. pH remained high, facilitating the colonization by 

alkaliphilous macrophytes (Potamogeton spp. and Chara spp.) 

which provided increased habitat for attached algae, 

cladocerans and other invertebrates (Milner et. al 2007).

Terrestrially, if N pools were sufficiently created by 

early alder colonization  then spruce forests continued to 

dominate the terrestrial environment for a time (Milner et. al

2007). On the flip side, limited N pools left spruce 

susceptible to disease and opened the landscape to 

recolonization by other species (e.g. Pinus spp.) (Milner et. 

al 2007; Fuller 1997). In the aquatic environment, pH began to

decline as DOC increased about 200 years after deglaciation. 

This was due to reduced ground water inputs that hardened 

sediments, limiting penetration of precipitation, and 
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increasing surface run-off. This chemical change altered the 

biologic communities such that acid tolerant diatom species 

(e.g. Cymbella spp., Aulacoseira spp.), and macrophytes (e.g. 

Nuphar spp., Menyanthes spp., Hippuris spp.) replaced the 

alkaliphilous species. Additionally, diversity of zooplankton 

increased during this time. Another significant change was the

reduction of benthic diatom species and the increase in 

planktonic species as N concentrations become stable (Milner 

et. al 2007). 

1.3.2 Prehistoric anthropogenic influences

For much of the history of the Lake Simcoe watershed, 

anthropogenic activities were related to hunting and 

gathering. The Holland Marsh area was the site of multiple 

occupations through the early Paleoindian to Woodland period 

(~12,000 to 416 BP) (Anderson 2013; Stewart 2004). This long 

occupation history is credited to the stable supply of 

resources offered by the marsh to early peoples as changing 

climactic conditions may have influenced flora, fauna and 

water resources elsewhere. 

Literature on the environmental impacts from North 

American hunter-gatherer land use is sparse. More attention is

paid to the reverse causal relationship in which the 

environment impacts hunter-gatherer social complexity 
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(Sassaman 2004). However, growing interest in the former 

relationship is producing evidence that suggests hunter-

gatherer activity is not as environmentally benign as once 

thought and may have had considerable impact through resource 

exploitation (Rick and Erlandson 2009). 

Specific research on the environmental impacts of hunter-

gatherers in the Holland Marsh area has yet to be conducted 

but Nicholas (2006a,2006b,1998a,1998b) indicates that 

prehistoric land use impacts in wetlands around the world may 

be determined by sedentary-like behaviour and socio-political 

organization. There are indications that hunter-gatherer 

mobility decreases as wetland productivity increases (Nicholas

2006b) though this is both spatially and temporally specific 

and may not be applicable to all wetland land use. Indicators 

of long-term occupation through socio-political organization 

include population size (numerous substantial structures, site

size), territoriality (weapons, barriers, or cemeteries), 

public works (mounds, canals and other earthworks), and social

differentiation (grave goods) (Nicholas 2006b). Longer hunter-

gatherer occupations are more likely to impact the surrounding

environment.

Unfortunately, no references to any material culture 

(apart from lithics) or site components are provided in the 
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Holland Marsh site reports summarized by Stewart (2004) nor in

the report on the Zander site which is the largest excavated 

site (Stewart 1984). Stewart (2004) does suggest via lithic 

frequencies that site sizes increased in the Middle Archaic 

period and that the marsh may have played a role in 

territoriality as a natural defence barrier. However, such 

limited evidence cannot be used to suggest resource 

exploitation or land use alterations by Holland Marsh hunter-

gatherers.

A little more certainty around the land use effects of 

later horticultural populations exists. Early maize 

horticultural practices (slash-and-burn) are thought to have 

had an impact on forest succession and lake health in southern

Ontario although this has been debated (Munoz and Gajewski 

2010; Clark and Royall 1995; Burden et al. 1986). Munoz and 

Gajewski (2010) looked at the pollen and charcoal histories of

20 sites in southern Ontario to assess the source of changes 

in forest abundances: prehistoric horticultural impacts or 

climate-related.  Five sites were found to have statistically 

significant (p < 0.10) impacts from horticultural land use 

between AD 1000 and 1600 showing a reduction in the abundances

of Acer spp. and Fagus spp. and an increase in Quercus spp. 

and Pinus spp. None of these significant sites were in the 

Simcoe watershed. Additionally, Lake Simcoe pollen diagrams 
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from Todd et al. (2004) do not display this genus shift during

prehistoric horticultural times. 

A diatom response to prehistoric horticultural land 

clearance activities was noted in cores retrieved from Second 

Lake in Awenda Provincial Park on the shores of Georgian Bay, 

(Burden et al. 1986). Abundances of Peridinium wisconsinense 

and Pediastrum increased from greater in nutrient input from 

erosion. Cores from recent paleolimnolgical studies of Lake 

Simcoe (Hawryshyn 2010; Rode 2009) did not reach depths 

sufficient to evaluate prehistoric impacts on the lake. 

The prehistoric anthropogenic influences on the Lake 

Simcoe watershed, if any exist, have yet to be elucidated. 

1.3.3 Historic and current anthropogenic influences

Anthropogenic influences since European colonization have 

received far greater attention than influences from previous 

periods. This may partially be a result of the climate change 

discourse begun in the 1970s that increasingly focused the 

attention of the scientific, governmental, media, and general 

public communities on the influences of industrialization on 

the biosphere (Risbey 2008; Keller 2012). 

The following sections outline research conducted thus far

on nutrient enrichment, non-native species introductions, and 

climate warming affecting Lake Simcoe.  
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1.3.3.1 Nutrient enrichment

As previously described (section 1.3.1), under non-

anthropogenic influence, lakes receive their nutrients 

primarily from overland drainage. Additional nutrients are 

also introduced via groundwater or atmospheric deposition.  

Under the influence of anthropogenic watershed use, culturally

derived nutrient inputs are also loaded into lakes.

Research by scientists involving whole-lake experiments in

the Experimental Lakes Area (ELA) of northwestern Ontario 

during the mid-1960s to early 1970s established the connection

between phosphorus (P) and increased algal growth, and a low 

N:P ratio and increased dominance of algal communities by 

cyanobacteria (Schindler 1974 and 1977).  The most influential

conclusion from his 1974 phosphorus paper was that P abatement

leading to a proportional abatement in phytoplankton blooms 

might “simply and swiftly”(p.898) solve symptoms of 

eutrophication. Schindler recommended that the first step in P

abatement would be to ban or greatly reduce phosphates in 

detergents. In 1970, the Canada Water Act called for the 

immediate reduction of phosphorus in detergents to 8.7% and to

2.2% by 1971 (Knud-Hansen 1994). Despite these significant 

measures, scientists soon discovered that there was far more 

involved in eutrophication than a single point-source of 

excess nutrients (Fee 1979) and that anthropogenic sources of 
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nutrients are many (Lee et al. 1978). The term “cultural 

eutrophication” has been used to describe these anthropogenic 

excess nutrient inputs from point and non-point sources such 

as untreated sewage and other effluents, urban and 

agricultural run-off and the atmosphere (Smol 2002).

Two studies (Johnson and Nicholls 1989; Wilson and Ryan 

1988) investigated sedimentation in the Simcoe basin from ~ AD

1800 to the early 1980s, elucidating the period prior to 

active lake monitoring programs. Wilson and Ryan (1988) 

collected available Canadian census data to evaluate 

agricultural land use changes and the potentially associated 

erosion using Trimble's erosive land use index (ELU) (Trimble 

1974). The authors found two general trends in erosive land 

use: a general erosive increase since 1880 and three distinct 

periods of change showing increases prior to 1901, decreases 

from 1911 to 1961, and further increases after 1961. Increases

prior to 1901 are attributed to increasing land use for 

agriculture and agricultural intensification. Decreases in the

ELU index from 1911-1961 are attributed to an increase in 

agricultural yields, a reduction in cropland, and an increase 

in pasture. After 1961, the ELU index value climbed to its 

maximum value as a result of cropland increases and the 

expansion of corn and soybean cultivation. While the authors 

made no causal link between erosive land use and nutrient 
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enrichment, erosion from agricultural lands has shown greater 

nutrient concentrations in eroded sediment than in remaining 

terrestrial soil stocks (Majaliwa et al. 2012) so there is a 

strong possibility that erosion from Simcoe agricultural lands

did impact nutrient availability in Lake Simcoe from 1800 to 

1981. 

The study by Johnson and Nicholls (1989) took 

sedimentation from accelerated erosion one step further by 

linking it to phosphorus loading through time. The authors 

estimated pre-settlement and present day sedimentation and P 

loads for four sub-basins and the total basin (Table 5).

Additionally, peak sedimentation rates were determined for

each sub-basin (Main = 1890-1901 AD; Cook's Bay & Outlet = 

1936; Kempenfelt = 1921), showing “delayed” sedimentation in

Table 5. Sedimentation and P loading from Johnson & Nicholls 
(1989)

Basins Pre-
1800's P 

(t y-1)

1986 P 

(t y-1)

Pre-1800's 
Sedimentation

(t y-1)

1986 
Sedimentation 

(t y-1)

Total 28.23 
(100%)

74.6 
(100%)

27669 (100%) 63896 (100%)

Outlet 1.47 (5%) 12.2 
(16.2%)

2102 (7.7%) 9669 (15.1%)

Kempenfelt 2.04 (7%) 3.0 
(4.1%)

1837 (6.7%) 2241 (3.5%)

Cook's Bay 1.5 (5%) 19.0 
(26.1%)

1680 (6.1%) 16834 (26.3%)
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Main 23.22 
(83%)

40.4 
(53.6%)

21699 (79.5%) 35152 (55.5%)

all but the Main sub-basin which is likely linked to the 

draining of the Holland Marsh in 1930 and increased 

urbanization. The results suggest that anthropogenic land use 

has increased sedimentation loads 130% and P loads 164% from 

pre-settlement to the mid-1980s. There has also been a shift 

in the sub-basin sources for these changes - sedimentation and

P in Cook's Bay and the lake Outlet have both increased 

substantially with a commensurate decrease in the Main and 

Kempenfelt sub-basins.  

The 1980s was the beginning of active monitoring and 

research of Lake Simcoe to determine the sources of excess 

phosphorus for abatement purposes related to cold-water 

fishery loss (Welch and Perkins 1979). The Lake Simcoe 

Environmental Management Strategy (LSMES) steering committee 

final report in 1985, outlined the current state of the basin 

and made recommendations about implementation of P abatement 

initiatives. 

Estimates of P loading in 1982, 1983, and 1984 were 

102.94, 67.54, and 81.56 t y-1 respectively (LSMES 1985). 

Percentage of total average 1982-1984 loadings of from 

tributary, septic, sewage effluent, stormwater runoff, and 
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atmospheric deposition were 64.1%, 3.7%, 13.8%, 2.6%, and 

15.7% respectively. It was thus determined that a target of 75

t y-1 of total phosphorus loading from all anthropogenic 

sources would achieve a 5mg L-1 end-of-summer hypolimnetic 

dissolved oxygen (DO) concentration that, while not ideal for 

cold-water fish, was a substantial improvement over previous 

DO concentrations that hovered between 0 and 1 mg L-1 in 1985 

(Ramkellawan et al. 2009; Snodgrass and Holubeshen 1993). 

Mean annual total phosphorus (TP) loadings from the late 

1980s to 2003 fluctuated between 51.74 and 113.06 t y-1 (Winter

et al. 2007b; Scott et al. 2001;Snodgrass and Holubeshen 1993)

with the 1998-2003 mean value at 67 t y-1  being mostly 

attributed to tributary reductions from LSEMS initiatives 

(Winter et al. 2007b). While 67 t y-1 of total phosphorus is 

well below the initial target of 75 t y-1, Winter et al. (2007)

note that DO concentrations (mean 4.3 mg L-1 ) still remain 

substantially below the 7 mg L-1 required for lake trout 

protection. Between 2004 and 2009, the mean annual TP loadings

rose to 84.6 t y-1 (O'Connor et al. 2013; O'Connor et al. 

2012).

In 2009, the Lake Simcoe Protection Plan created by the 

Government of Ontario threw its support behind the primary 

goal of P abatement for Lake Simcoe by ushering in a new total
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phosphorus target of 44 t y-1 to achieve hypolimnetic DO 

concentrations of 7 mg L-1 to restore the cold-water fishery in

Lake Simcoe (North et al. 2013). But as Marsden (1989) and 

others (e.g. Hupfer and Lewandowski 2008; Scheffer and van Nes

2007; Sondergaard et al. 2001; Schindler 2001;Jeppesen et al. 

1997; Fee 1979) have concluded, lake restoration is complex 

and reduction of external phosphorus loads is often not the 

only action needed.  

1.3.3.2 Non-native species 

Movement of species into new areas is a part of the 

dynamic nature of ecology (Milner et. al 2007). However, the 

modern era has experienced species movements as a direct 

result of globalization, climate change, and other 

anthropogenic influences (EPA 2008). Non-native (alien, exotic

or non-indigenous) species have the potential to become 

invasive (i.e. “likely to cause economic or environmental harm

or harm to human, animal, or plant health” (ISAC 2006)) when 

ecosystem conditions are optimal for their reproductive 

success. 

Multiple non-native species have been introduced into Lake

Simcoe over the last century including fish (common carp, 

rainbow smelt, black crappie, bluegill and round goby), 

invertebrates (zebra mussel, spiny water flea, quagga mussel, 

rusty crayfish and Eurasian amphipod), and aquatic plants 
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(Eurasian watermilfoil and curly-leaf pondweed) (Province of 

Ontario 2009; Ozerky et al. 2011). More than half of these 

introductions have occurred in the last two decades (Province 

of Ontario 2009).

A recent and very aggressive invader into Lake Simcoe, the

Zebra Mussel (Dreissena polymorpha), was likely introduced in 

1991 and was well established by 1996 (GISD 2013; Ozersky et 

al. 2011). Since then, D. polymorpha are suspected of 

decreasing algal biovolume, increasing transparency, 

increasing macrophyte biomass and production, and changing 

nutrient dynamics and benthic communities (Ozerky et al. 

2011). 

In 2006 to 2008, Ozersky et al. (2011) conducted a video-

based survey of the Main basin and Kempenfelt Bay, and a grab-

method survey of Cook's Bay to estimate D. polymorpha biomass 

and distribution in the lake.  Lake wide biomass was estimated

at 11,879 tonnes with Cook's Bay accounting for 3.5%. In 

Kempenfelt Bay and the Main basin, biomass was distributed 

along a depth gradient with 25.6% in 0-3.5m, 32.1% in 3.5-8m, 

and 0.1% at depths greater than 20m. Overall, D. polymorpha 

mean biomass was greatest at depths of ~5m in all surveyed 

areas. The authors attribute this distribution to disturbance 

by water movement in the very  shallow areas and incompatible 
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substrates at greater depths.

Ozersky (2010) also found through a before/after 

(1993/2008) study of littoral benthos in Lake Simcoe, that 

considerable change in the abundance and community composition

had occurred. The mean density in 1993 was 367.9 individuals/m3

compared to the 2008 density of 22,192.4 individuals/m3. A 

total of 60 and 85 taxa were identified in 1993 and 2008 

respectively. Ozersky found that the greatest change was an 

increase in the relative abundance of detritivores and 

omnivores and a decrease in native filter feeders. 

Other changes in Lake Simcoe since the invasion of D. 

polymorpha have been noted: the abundance of profundal benthos

has decreased (Jimenez et al. 2011), as well as phytoplankton 

volume (Eimers et al. 2005), and macrophyte biomass and areal 

coverage has increased in Cook's Bay (Dewpew et al. 2011; Ginn

2011). From a theoretical perspective, these changes are 

indicative of a what Hecky et al. (2004) call the “nearshore 

phosphorus shunt.”  The “nearshore phosphorus shunt” 

hypothesizes that Dreissenid mussels engineer their 

environment by increasing the retention and recycling of 

nutrients in the nearshore, causing eutrophication of the zone

while simultaneously depriving the pelagic zone of nutrients. 

This can be seen even when external phosphorus loads are 
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stable (reduced Lake Simcoe P loads in the 1990s may qualify 

here).  

1.3.3.3 Climate change

Climate change in the Great Lakes region is expected to be

considerable over the next century (Hayhoe 2010). Temperatures

are expected to rise 1.4ºC by 2039,  2.0 to 3.0ºC by 2069, and

3.0 to 5.0ºC by 2099 relative to 1961-1990 temperatures. These

increases in temperature may be more pronounced in the winter 

months until 2039, shifting to the summer months after 2039. 

Precipitation is expected to increase between 20 and 30% 

during the spring and winter seasons. Climate-related changes 

to the Great Lakes water levels, temperature and ice-cover are

also anticipated. Modelling of Lake Erie ice cover suggests 

that ice-free winters could be experienced by 2020. The 

effects of temperature and precipitation are likely to balance

each other out until the end of the century such that lake 

levels are not projected to drop significantly until then 

(Hayhoe 2010). Summer surface water temperatures in Lake 

Superior are expected to rise as much as  6.0ºC by the end of 

the century and maximum summer stratification by as much as 90

days (Trumpickas et al. 2009). 

A multi-impact study assessing end-of-century climate 

change and land use (Barlage et al. 2002) in a Great Lakes 

watershed has determined that the percentage of precipitation 
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that results in surface runoff will increase 4.3% based 

reference conditions (1994-2003), with 1.6% attributed to land

use change and 2.5% to climate change.  

Climate change projections have also been conducted on a 

Lake Simcoe watershed (Black River) to assess the overall 

change to hydrology and water quality  (Crossman et al. 2013).

By the end of the century, flows in the river are expected to 

increase in response to increases in winter temperature and 

precipitation which would be falling as rain rather than snow.

These precipitation increases (72 - 101% in January to March) 

are expected to have large corresponding increases in TP 

between 51 and 81%. Alternatively, the incidence of drought in

the summer months is expected to rise yet still produce an 

increase of 25% in TP concentrations. Overall, TP loads from 

the Black River are expected to increase between 14 and 32% by

the end of the century (Crossman et al. 2013). 

The implications of all these changes on Lake Simcoe are 

great. Warmer air and water temperatures, greater 

precipitation, shifts in the timing of these climate changes, 

longer growing seasons and stratification, and continued land 

use alterations could drastically exacerbate the already 

strained ecology and water quality of Lake Simcoe. 

Increased temperatures during the winter and spring months
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have been shown to have a substantial effect on spring 

phytoplankton blooms and zooplankton communities (Sommer and 

Lewandowaska 2011; Sommer and Lengfellner 2008). Warming 

conditions accelerate spring phytoplankton bloom peak by 1 day

ºC-1 , and decrease phytoplankton biomass and cell size. 

Sommer's recent study (2011) finds that these changes in 

phytoplankton under warming conditions are linked to the 

overwintering of zooplankton predators, mainly copepods, that 

at higher densities due to warm winters, are placing increased

grazing pressures on the phytoplankton communities. Such 

changes in primary productivity and herbivory could result in 

changes at higher trophic levels as well.

Of specific concern to Lake Simcoe is that of possible 

climate change effects on the already stressed cold-water fish

habitat. Fang et al. (2004) investigated the effects of 

climate change on cold-water fish in 209 shallow (Z
max
4m), 

medium (Z
max
13m), and deep (Z

max
24m) lakes of differing lake 

status (eutrophic, mesotrophic, and oligotrophic) in the US. 

Results for deep mesotrophic lakes show reductions in the mean

number of days providing a) good growth conditions (-16 days),

b)good-growth habitat (-2 days), and c) good-growth habitat 

lake water volume (-5 days) from reference conditions (1962-

1979). The number of deep mesotrophic lakes with the ability 
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to support cold-water fish populations is expected to drop by 

50% from the reference total of 148 under climate change 

scenarios. For Lake Simcoe, whose coldwater fishery has 

already collapsed, such predictions do not bode well for 

habitat recovery.  

1.4 Paleolimnology

One of the most common challenges faced by aquatic 

scientists is the lack of background and natural variability 

data on ecosystems of interest (Smol 2002). More often than 

not, active monitoring of an ecosystem does not begin until 

systems are already impaired. Lack of background data severely

limits the ability to determine the severity of degradation or

recovery, set realistic mitigation goals, or gauge the timing 

of impairment (Smol 2002). The use of paleolimnolgical 

techniques can provide the needed data on pre-disturbance 

conditions to ecosystem managers. 

Paleolimnology is a multidisciplinary science using lake 

sediment archives of past biological, chemical and geological 

events and processes to reconstruct environmental conditions 

(Cohen 2003; Smol 2002). The ideal location in an aquatic 

environment to conduct paleolimnological studies is in the 

“accumulation zone” of a lake (Smol 2002).  This zone, 

normally found in the deepest parts of a lake basin, is 
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characterized by little wind-driven turbulence and other 

factors that may hinder sedimentation (Smol 2002).  

Accumulation zones often provide the most complete, continuous

and reliable record of past environmental change. The 

fundamental attribute of accumulated sediments that make them 

ideal for environmental reconstruction is the geologic Law of 

Superposition which states that “for any undisturbed 

sedimentary sequence, the deepest deposits are the oldest, 

since these are progressively overlain by younger material” 

(Smol 2002).  

Wetlands are also considered “accumulation zones” where 

“sediment accumulation exceeds erosion, thereby providing the 

potential for the accumulation of long and nearly continuous 

depositional records” (Williams 2011).  Not only do wetlands 

have long depositional records, but they also hold a wealth of

bioindicators and geochemical indicators due to their 

productivity.  Macro remains, such as seeds, found in sediment

cores remain identifiable in deep deposits due to a wetland’s 

low-oxygen environment that preserves organics.  Preserved 

micro remains, usually made of siliceous material, are also 

abundant in wetlands provided the salinity concentration 

remains below 20g L-1 and carbonate concentration below 250 mg 

L-1 (Ryves et al. 2006).  Other factors affecting the 
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preservation of siliceous microfossils are bioturbation and 

other physical mixing within the soil; physical mixing of the 

sediment surface can result in the fragmentation of fossils.  

Despite the stated limitations of microfossil preservation, 

they still provide some of the “most detailed sources of 

information for environmental reconstruction available to the 

paleolimnologist” (Cohen 2003).  A fairly new microfossil 

proxy in paleolimnology is the testate amoebae.  

1.4.1 Testate amoebae in paleolimnology

Testate amoebae (also referred to as Thecamoebians, 

Arcellaceans, and Rhizopods) are a group of single celled 

organisms including lobose and filose amoebae (Beyens and 

Meisterfeld 2001; Charman 2001).  About 1900 species and 

subspecies have been described thus far. The lobose order 

Arcellinida is the largest group and contains about three-

quarters of all known species of testate amoebae. These 

amoebae are commonly referred to as “testate” because they 

form an exterior, decay resistant test made from metabolized 

silica, protein, calcium or an agglutinated matrix of 

siliceous material such as sand grains and diatom frustules.  

It is this test that is preserved in the sedimentary record 

and used to identify past specimens, in most cases to the 

species level.  Taxonomic identification is based on aperture 
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details and morphological characteristics of the chamber 

(Beyens and Meisterfeld 2001). 

Testate amoebae are found in almost every environment in 

the world from sandy marine beaches to all freshwater and 

terrestrial habitats (Beyens and Meisterfeld 2001). Many 

species are ubiquitous while others are habitat-specific. The 

same can be said for distribution: many are cosmopolitan while

others are geographically restricted. In terms of wetlands 

habitat, they are the most common protists with a biomass up 

to 1 g m-2.  Testate amoebae with siliceous tests are most 

abundant in wetlands and shallow water bodies (Beyens and 

Meisterfeld 2001) but specimens of all test types can be 

found. 

The biology and reproductive strategies of testate amoebae

make them ideal for use in paleolimnolgical research (Charman 

2001). Reproduction is mostly by asexual binary fission with 

sexual reproduction being rare. Rates of reproduction are 

rapid with field observations recording 10-27 generations per 

year and laboratory studies reporting population doubling in 2

to 3 days. Generation times are dependent on many factors such

as temperature, nutrient availability, and population density 

(Beyens and Meisterfeld 2001). This rapid asexual reproduction

makes testate amoebae sensitive indicators of short-lived 
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environmental change with the possibility of rapid 

morphological changes (Charman 2001;Beyens and Meisterfeld 

2001).  

Paleolimnological and paleoecological investigations using

testate amoebae have been used to describe hydrology, pH, 

trophic status, land use, climate change, forest fires, 

oxygen, metal contamination and other variables (Patterson et 

al. 2012; Beyens and Meisterfeld 2001). The most common 

freshwater paleoecological investigation locations that use 

testate amoebae are peatlands and lacustrine environments. 

In peatland environments, the major use of testate amoebae

is for the inference of moisture conditions.  Quantitative 

transfer functions have been developed that link water levels 

and testate amoebae assemblages.  For example, in 2002, Booth 

conducted a study investigating moisture levels and testate 

amoebae assemblages in 139 microsites located in 11 Michigan 

peatlands. Booth found that “depth to water table can be 

reconstructed from fossil data with a mean error of ±7.5 cm, 

although predictive ability deteriorates in extremely dry 

environments (<0.30 cm water table depth)” (Booth 2002).

A relatively new quantitative reconstruction is lacustrine

sedimentary phosphorus. Patterson et al. (2012) analyzed 73 

sediment-water interface samples from 33 urban and rural lakes
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in southern Ontario to assess the possibility of a link 

between water quality variables and testate amoebae 

assemblages. The authors found a strong correlation between 

testate amoebae and sedimentary phosphorus (Olsen P) and thus 

created a training set for the quantitative reconstruction of 

Olsen P in freshwater sediment fossil assemblages in southern 

Ontario. Comparison of the training set to a sediment core 

from Haynes Lake was able to link anthropogenic watershed use 

to sedimentary phosphorus concentrations throughout the last 

200 years. 

Far less often, testate amoebae are used in transition 

zones such as lacustrine fringe wetlands. In 2001, Booth 

investigated two Lake Superior coastal wetlands to assess 

their use as environmental and paleoenvironmental indicators 

and to determine if morphological variation was related to 

microenvironmental conditions. Like other wetland/peatland 

studies, Booth found that pH and substrate moisture were the 

main predictors of community assemblages. It is important to 

note that pH was the only chemical variable assessed in the 

study.

Previous studies reconstructing Holocene environments 

using testate amoebae have been carried out on lakes from 

northeastern Ontario (Boudreau et al. 2005), eastern Ontario 

(Elliott et al. 2012), northwestern Ontario (Warner and 
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Charman 1994), Newfoundland and Nova Scotia (McCarthy et al. 

1995), and Arctic Siberia (Muller et al. 2009) with a focus on

climate-related community changes. The multi-proxy study 

conducted by McCarthy et al. (1995) compared pollen succession

for temperature and precipitation reconstructions to testate 

amoebae assemblages from deglaciation to the present (McCarthy

et al. 1995). The authors found that arcellacean assemblages 

tracked well with pollen inferred climate changes throughout 

the last 13,000 BP and even responded to short-lived climactic

changes that were not recorded by pollen assemblages. 

Additional studies (e.g. Sonnenburg et al. 2013,2009; van 

der Linden et al. 2008; Patterson et al. 2002; Burbidge and 

Schroder-Adams 1998; Scott and Medioli 1983), at both the 

Holocene and Anthropocene timescales have focused on or 

included testate amoebae response to anthropogenic influences.

Finally, a recent study (Watchorn et al. 2013) focused on 

both climate-related and anthropogenic disturbances since 

deglaciation using testate amoebae assemblages to conclude 

that both climatic changes and European settlement activities 

impacted lake heath. In fact, European settlement activities 

had a greater impact on lake health (pH and trophy) than did 

the Hypsithermal Climatic Optimum.

1.4.2 Elemental and isotopic analysis

Carbon and nitrogen elemental and isotopic composition of 
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organic matter are useful proxies for reconstructing past 

environmental conditions, assessing climate change, and 

evaluating anthropogenic impacts on ecosystems by providing 

evidence of past productivity and organic matter origin (Koff 

2012; Meyers 2003). 

Plants are the dominant source of organic matter to lake 

or wetland sediments and can be divided into two geochemically

significant groups based on their biochemical composition 

(Meyers 2003). Group one consists of nitrogen-rich non-

vascular plants containing little to no cellulose or lignin 

such as phytoplankton (Meyers 2003). Group two are carbon-rich

vascular plants containing large proportions of woody tissues 

such as grasses, shrubs, trees and emergent macrophytes 

(Meyers 2003). Both groups retain their biochemical 

composition after deposition enabling the distinction of 

organic matter sources to the sediment even after microbial 

degradation (Meyers 2003).

The percentage of organic carbon (%C) contained in 

sediments is directly proportional to the abundance of organic

matter deposited (Koff 2012). Typical plant organic matter is 

composed of 40-50 %C (Koff 2012; Meyers 2003). An increase in 

%C can indicate increased organic matter input (autochthonous 

or allochthonous) while a decrease may indicate greater inputs

of inorganic matter or increased microbial degradation (Koff 

55



2012).

The molar carbon to nitrogen ratio (C:N) can be used to 

identify the proportions of algal and land plant matter 

composition of the sediment. Algae typically has a molar C:N 

value between 4 and 10 while land plants have ratios over 20. 

Intermediate levels of C:N values (~15) are typical of 

nearshore environments where a mix of terrestrial and aquatic 

derived organic matter is found (Koff 2012). An increase in 

sediment C:N ratios may be an indicator of increased land 

plant organic matter and land derived sediment from erosion 

after land clearing activity (Meyers 2003). Alternately, a 

drop in the C:N ratio may be an indicator of increased 

deposition from autochthonous algae and macrophyte growth.

Stable carbon isotopic composition (δ13C and δ15N) within 

sediments is useful for further differentiating the type of 

organic matter deposited and productivity (Meyers 2003). The 

ratio of 13C to 12C, commonly reported as δ13C, is affected by 

the concentration of 13C in the environment and the 

photoshynthetic pathway (C
3
, C

4
, CAM) of the plant (Koff 2012).

Phytoplankton and C
3 
land plants (mostly shrubs, trees and 

emergent macrophytes), have similar δ13C values (-25 to -30‰) 

wile C
4
 plants (mostly grasses in tropical and subtropical 

regions), have values up to -10‰ (Koff 2012). Taken alone, the
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δ13C present in lacustrine or wetland environments in temperate

regions does not provide evidence of the type of organic 

matter deposited. However, δ13C values considered in 

conjunction with C:N values and δ15N values can narrow down the

likely origin of the organic matter (Figure 4). 

Like δ13C , δ15N values represent a ratio of two different 

isotopes, 15N and 14N in this case. The use of  δ15N values alone

to interpret either organic matter origin or productivity is 

not widely used due to the complexity of the nitrogen cycle 

(Meyers 2003). However, some differences in the ratio are 

detectable. The δ15N available to plants in aquatic and 

terrestrial environments differ, providing a means to 

differentiate organic matter sources. The nitrogen commonly 

used by algae, NO
3
, has a 7-10‰ greater δ15N value that the 

atmospherically derived N
2
 used by land plants. Even so, there 

are many biological  processes within sediments and 

anthropogenic N inputs from agricultural and sewage sources 

that complicate the basic differences of aquatic and 

terrestrial δ15N values found in sediments. Increases in δ15N 

may indicate anthropogenic inputs or denitrification from 

anoxia. An abundance of cyanobacteria will reduce δ15N values 

(N-fixation). Combining δ13C and δ15N can assist with 

differentiation between organic matter sources (Figure 4). 
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Lake Simcoe (Province of Ontario 2011).

Considered part of Southern Ontario's “recreational 

heartland,” in 2008, 6.2 million people visited Simcoe county 

for tourism and recreation purposes, many of them 

participating in nature-based activities (OMNR 2012c). Total 

spending for recreational activities in 2008 was over $34 

million dollars with an economic impact of $630 million and 

8,000 jobs (OMNR 2012c). Scott et al. (2002) report that in 

1999, tourism across the entire “recreational heartland” 

(Muskoka, Bruce, Grey, Simcoe and Haliburton counties) 

contributed $814 million in economic impact and 26,000 full 

time jobs. Ontario residents seeking outdoor recreational 

experiences made up 93% of tourists (Scott et al. 2002).

In terms of natural resources, the watershed contains 

parts of the Oak Ridges Moraine and Greenbelt and is home to 

provincially significant wetlands, woodlands, prime 

agricultural areas, and aggregate resources (Province of 

Ontario 2009).

Over the last century, anthropogenic use of the 

watershed's natural resources has led to impairments to the 

lake's water quality and ecology. It is this impairment and 

the potential for increased impairment that threatens the 

continued enjoyment and economic benefits offered by the above
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ecosystem services. 

While an enormous amount of scientific research has been 

conducted on Lake Simcoe, there is a distinct gap in knowledge

about the changes experienced in the littoral areas of the 

lake. A number of studies (e.g. Ginn 2011; Ozersky et al. 

2011; Depew et al. 2011; Stantec 2007; Neil et al. 1985,1991; 

Millard and Veal 1971) have assessed changes in the nearshore 

environment within the active monitoring period (~1970 to 

present) but none of these assessed longer-term influences in 

this zone.    

In their 2005 publication, Eimers et al. highlighted the 

importance of long-term Lake Simcoe data sets to understand 

the drivers of water-quality variation and any relationships 

with multiple influences that might exist. Three 

paleolimnological studies were conducted between 2009 and 2011

using sedimentary diatoms, chironomids, and P fractions to 

elucidate long-term trends in Lake Simcoe water quality 

(Hiriart-Baer et al. 2011; Hawryshyn 2010; Rode 2009), however

none focused specifically on littoral areas. One very recent 

study (Danesh et al. 2013), assessed a number of proxies for a

response to water quality changes from a lacustrine sediment 

core taken in Cook's Bay, Lake Simcoe. Danesh et al. (2013) 

found that three distinct transitions occurred in the time 
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period investigated: initial European colonization (mid 

1800s), the start of intensive agriculture in the subwatershed

(AD 1920-1930), and the urbanization/industrialization of the 

subwatershed following World War II (AD 1950). The changes in 

non-pollen palynomorph assemblages are attributed to increased

nutrient loads to Lake Simcoe from anthropogenic activities 

(Danesh et al. 2013). 

Considering the large proportion of the basin under 20m 

(67%) water depth (Ginn 2011), the recent invasion of the 

littoral zone by D. polymorpha (Evans et al. 2011), increased 

biomass in shallow Cook's Bay (Ginn 2011), and recent 

quantification of internal P load (Nurnberg et al. 2013), a 

long term data set elucidating littoral changes prior to 

monitoring is needed  to inform any littoral management 

decisions. 

2.2 Study Objectives

Testate amoebae were used as 

paleolimnological/paleoecological indicators to reconstruct 

ecological changes to lacustrine wetland habitats from 

climate, nutrient, and non-native species influences. 

Sedimentary core analysis of fossil testate amoebae assemblage

composition was carried out at high resolution for the 

historic period (> AD 1800) and low-resolution for the 
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prehistoric period (< AD 1800) on three cores from fringe 

wetland locations in the south, east, and north shores of Lake

Simcoe. These locations were chosen based on historic and 

present subwatershed influences: the south core wetland is 

representative of areas of significant land use change and 

agricultural influence, the east core wetland is 

representative of provincially protected and minimal 

anthropogenic influence, and the north core wetland is 

representative of historic urban and whole-lake influence. A 

fourth core, taken from a private nature reserve just north of

Lake Simcoe, was also analyzed for testate amoebae to provide 

a minimally anthropogenic influenced reference for comparison.

This study was conducted to elucidate any possible changes

to Lake Simcoe fringe wetland biological communities over time

and to provide an assessment of any long-term changes under 

the following lines of inquiry: 

1) Have nearshore fringe wetland testate amoebae 

communities changed since European settlement?

2) If so, has there been a change in richness, a shift in

species abundance or community composition? 

3) Are any of these changes related to temporal trophic 

status, land use, climate, or non-native species 

introductions? 
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4) Are the changes unique to each wetland or are they 

lake-wide? 

5) Can a comparison with a reference wetland pin-point 

the source of these changes as anthropogenic? 

6) What is the past variability of the testate amoebae 

communities prior to European settlement? 

Site locations, and materials and methods are presented in

Chapter 3 and 4 respectively. The results of this study are 

presented in Chapter 5 and 6. Chapter 5 will address questions

1 through 5  using all four cores together with carbon and 

nitrogen elemental and isotopic analyses. Chapter 6 will 

address question 6 using the extended core extracted from the 

northern lake-outlet site. Chapter 7 will summarize the main 

findings of this thesis project. It is our hope that the 

results from this project shed some light on the ecological 

history of Lake Simcoe nearshore wetlands. 
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Chapter 3. Site Locations

The coring locations (Figure 5) were chosen based on 

prehistoric, historic and present subwatershed influences 

including First Nations settlement, urban development, whole-

lake nutrient impacts. Three cores from the fringe wetland 

locations in the south, east, and north shores of Lake Simcoe 

were extracted in the late autumn 2011, and in spring 2012. A 

fourth core was extracted from a private nature reserve just 

north of Lake Simcoe in late autumn 2011, to be used as 

reference wetland.

3.1 Victoria Point

The Victoria Point (VP) sediment core was extracted from a

fringe wetland located on the shoreline of Smith's Bay just 

south of the Atherley Narrows (44.593844,-79.386331) within 

the boundaries of urban Orillia. The core is representative of

prehistoric and historic land use change and whole-lake 

influence (lake outlet). Much of urban Orillia is contained 

within the Oro Creeks North subwatershed which drains into 

Shingle Bay, south of the coring site. The coring site itself 

is located in a wetland receiving waters only from Lake 

Simcoe.  

The prehistory of the area, presented in sections 1.2.3, 

1.3.1, and 1.3.2, details a climatic history beginning in 
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11,900 BP and anthropogenic history beginning in 4,600 BP. In 

summary, the area was one of the last areas of the Simcoe 

watershed to be exposed following glacial retreat. 

The main stage of Lake Algonquin formed glaciolacustrine 

deposits up to 2.5m thick around the outlet of Lake Simcoe. 

Archaeological surface surveys have noted a number of sites 

near the wetland, the closest just 500m north and the largest 

(~34 acres) just 4km northwest of the wetland. The Atherley 

Narrows Fish Weirs (1km northeast) have been dated to 4,600 

BP. Archaeological finds of stone stone and metal axes near 

the wetland suggest a long use history of the area. 

The history and present use of the area are presented in 

sections 1.2.4, 1.2.5, and 1.3.3. The early history of the 

Orillia area began in 1830 as First Nations and European 

settlers began inhabiting the shore of Lake Couchiching just 

above the Atherley Narrows. Settlement and land clearing 

progressed slowly, gaining momentum after the construction of 

the railway in 1871. By 1881, a road had been constructed 

along the coring site's peninsula (Macdonald 1881). Geologic 

surveys listed the coring site as a swamp of “mainly muck” 

(Deane 1950) and “muck and peat” Finamore and Bajc 1984). 

Population growth and the urbanization of the Orillia area 

continued at a steady pace, growing to ~30,000 people by 2011.
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3.2 Cook's Bay

The Cook's Bay (CB) sediment core was extracted from a 

fringe wetland located on the shoreline of Cook's Bay just 

outside the mouth of the Holland River (44.203097,-79.511711) 

in an area known as the “Simcoe Lowlands.” The core is 

representative of significant land use change, agricultural, 

and urban influences on the lake. 

Two subwatersheds drain into Lake Simcoe via The Holland 

River: The East  Holland (EHR) and West Holland River (WHR). 

The EHR is described as one of the most populated 

subwatersheds in the Simcoe basin including the towns of 

Aurora, King, Newmarket, East Gwillimbury, Georgina, 

Whitchurch-Stouffville, and Uxbridge which accounts for 17.3% 

of the subwatershed's land use. Agriculture accounts for an 

additional 30.7% of land use. The WHR is primarily an 

agricultural area with 57% attributed to that land use and 

only 3% to urban use. The agricultural area includes a portion

of “The Holland Marsh,” a large wetland area drained in 1920-

1930.

The prehistory of the area, presented in sections 1.2.3, 

1.3.1, and 1.3.2, details a climatic and anthropogenic history

beginning in 13,200 BP. In summary, the area currently defined

as the East and West Holland River subwatersheds was one of 
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the first areas of the Simcoe watershed to be exposed 

following glacial retreat. For thousands of years, the area 

was inundated with glacial meltwaters until post-glacial 

rebound altered the outlet location of Lake Algonquin, drawing

water away from the area. The area remained “wet” throughout 

the next 10,000 years (Karrow et al. 1975), providing valuable

resources for First Nations groups over the entire time 

period. 

 The history and present use of the area are presented in 

sections 1.2.4, 1.2.5, and 1.3.3. There are two interconnected

events in the history of the area that best define the 

subwatersheds. The first is The Holland Marsh drainage project

that created 7,000 acres of farmland from wetland space, 

drying the land through a series of man-made canals that also 

served to drain 64,300 acres of watershed area and maintain 

the Holland River at a constant water level to prevent floods.

The second event was the rapid urbanization of the EHR 

subwatershed that brought sewage effluent into Cook's Bay 

through the Holland Marsh canal system.

3.3 Duclos Point

The Duclos Point (DP) sediment core was extracted from a 

fringe wetland located on the shoreline of Duclos Point Nature

Reserve  (44.336833,-79.242289). The core is representative of
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agricultural land use and, as a Provincially Significant 

wetland in a Provincial Park, of minimal recent anthropogenic 

impact. 

The wetland is contained within one subwatershed:  The 

Pefferlaw River (PR). The PR is considered to be a rural 

watershed with just 5.5% of land being used in an urban 

context. 48% of the subwatershed is classified as 

rural/agricultural. The wetland sampled within the nature 

reserve is considered to contain a variety of provincially 

significant wetland communities representing Ontario's 

ecological and species diversity. There are very few 

permissible uses of the park and its resources. The head 

waters flowing into the wetland begin a short distance from 

Lake Simcoe in an area of rural/agricultural land use.

The prehistory of the Simcoe area, presented in sections 

1.2.3, 1.3.1, and 1.3.2, details a climatic history beginning 

sometime between 13,200 BP and 11,900 BP. Like Victoria Point,

the terrestrial area of Duclos Point was flooded by the main 

stage of Lake Algonquin indicating a glacial history similar 

to Victoria Point. The Ontario Ministry of Natural Resources 

(2007) reports that artifacts and burial grounds have been 

discovered in the nearby area but not in the nature reserve 

itself. There has been no other indication of First Nations 

69



land use prior to the historic period.

 The history and present use of the Simcoe area are 

presented in sections 1.2.4, 1.2.5, and 1.3.3. There is very 

little detailed information regarding the early history of the

area (Georgina, ON). What is known is that settlement followed

a similar land clearing and agricultural trajectory to the 

Cook's Bay area from 1819 to the 1830s  (Town of Georgina 

n.d.; BDCC 2010; Ramara Historical Society n.d.). The nature 

reserve was a significant First Nations site used as a camping

and hunting ground for the Chippewas of Georgina Island First 

Nation (OMNR 2007). 

3.4 Tub Lake

The Tub Lake (TL) sediment core was extracted from a 

fringe wetland located on the shoreline of Tub Lake in a 

privately owned nature reserve (44.8632,-79.008075), just 

north of the Queen Elizabeth II Wildlands Provincial Park. The

core is representative of early land clearing activities 

followed by no anthropogenic use beyond minimal hunting and 

fishing activities. 

The Longford Reserve is 45,000 acres in size and contains 

22 lakes all draining into the Black River which merges with 

the Severn River, forming the Black-Severn watershed (Steve 

Clark, personal communication).  The land was given as grant 
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to the British-Canadian Land and Emigration Company for timber

harvesting in the 1860s and was actively logged until the 

1890s (Hale 1929; Steve Clark, personal communication). The 

land was purchased in 1920 by the current owners. At the time 

of purchase, the area was barren of any vegetation following 

the earlier logging activity and two forest fires, the last 

one occurring in 1918 (Steve Clark, personal communication). 

Upon purchase, the new owners declared the area for recreation

purposes only. The first recreational cabins were built in the

north end of the reserve near the Town of Vankoughnet in the 

District of Muskoka. In the 1960s, a group from Toronto built 

18 primitive cabins on Logan Lake near Tub Lake. These two 

“settlements” and the dirt roads that connect them to the 

surrounding lands are the extent of anthropogenic use of the 

area since land clearing in the late 1800s (Steve Clark, 

personal communication). 

Chapter 4. Materials and Methods

4.1 Field and laboratory methods

A 2.8m sediment core from a hummock/hollow interface zone 

(De Vleeschouwer et al. 2010) was obtained from Victoria Point

(VP) wetland in November 2011. Three other cores no less than 

1m were extracted from wetlands at Cook's Bay (CB), Duclos 

Point (DP), and Tub Lake (TL) between November 2011 and May 
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2012. The upper 30cm of each core from VP and DP were 

extracted as a 20x20x30cm monolith using a simple galvanized 

steel cutting box based on Cuttle and Malcolm (1979). The 

lower 1-2.5m of the cores were extracted using a 50x5cm “D” 

corer (Russian Peat corer/borer) with extension rods (EPA 

1999; De Vleeschouwer et al. 2010). The sediment compaction at

CB and TL prevented use of the “D” corer so the length of both

cores were extracted as monoliths in 30cm increments.

The “D” sediment cores were covered in 6mm polyethylene 

plastic, placed in 50cm long, 5cm diameter ABS half-tube 

cradles and wrapped with plastic stretch film. The monoliths 

were gravity extruded from the steel box, covered with the 

same 6mm plastic and securely wrapped with stretch film (De 

Vleeschouwer et al. 2010). In the laboratory, the monoliths 

and cores were refrigerated at ~4ºC until subsampled.

With regard to the Victoria Point core, high resolution 

photographs were taken of the core sections immediately after 

extraction to document oxidation sensitive colour and 

stratigraphy (De Vleeschouwer et al. 2010). Lithology via 

photography and subsampling was assessed using a digital 

version of the Munsell Book of Color (Irtel n.d.) with display

colour set to North America General Purpose 2, and the LRC 

lacustrine sediment classification scheme (Schnurrenberger et 
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al. 2003). Sediments were also assessed for the presence of 

carbonates using the dilute hydrochloric acid field method 

(USDA n.d.) and classified based on the FAO classification 

scheme (2006) reproduced in Table 6. Due to the qualitative 

nature of the classification scheme, the scheme was 

supplemented with a video-captured “extreme” reaction used as 

a reference point (Harter 2011). 

Two hundred and ten sediment samples were subsampled at 

1cm intervals in the top 30cm and at 4cm intervals in the 

bottom of the cores. The subsamples were 1-2cc in volume and 

were stored in small plastic self-locking bags and 

refrigerated at ~4ºC until processed. 

Table 6. FAO (2006) classification scheme for soil carbonate 
concentrations.

% Category Category Name Description

0 N Non-calcareous No detectable visible or 
audible effervescence 

0 to 2 SL Slightly 
calcareous

Audible effervescence but
not visible

2 to 10 MO Moderately 
calcareous

Visible effervescence

10 to 
25

ST Strongly 
calcareous

Strong visible 
effervescence. Bubbles 
form a low foam. 

>25 EX Extremely 
calcareous

Extremely strong 
reaction. Thick foam 
forms quickly.
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Subsamples for micropaleontological analysis of testate 

amoebae were first spiked with one Lycopodium clavatum tablet 

(Lund 2011) to calculate absolute concentrations (Stockmarr 

1971). Subsamples were then treated following preparation A 

(Hendon and Charman 1997) in which the spiked subsamples, 

contained in 15ml centrifuge tubes and submerged in deionized 

water, were placed in a boiling water bath for 10 minutes, 

followed by 300µm and 15µm nylon mesh sieving to remove coarse

and fine fractions respectively. Residues retained by the 15µm

mesh were washed into 15ml centrifuge tubes and spun at 

2,500rpm for 5 minutes to remove excess water. Course 

fractions were washed into 4 dram vials for analysis of macro 

remains where refinement of core events was necessary.

Extracts of the subsamples were mounted on glass slides in

a glycerin medium for identification under a generic 

trinocular biological microscope with infinity plan achromatic

objectives at x200 and x400 magnification. A minimum of 150 

tests were counted where possible (Payne and Mitchell 2009). 

Micrographs (Appendix A) were obtained using a 3 megapixel 

CMOS trinocular digital camera with ToupView® software.  

Testate amoebae identification to species level followed 

keys, descriptions, illustrations, and micrographs found in 

Siemensma (2013), Booth and Sullivan (2007), McAndrews et al. 
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(2005), Charman et. al (2000), Kumar and Dalby (1998), Ogden 

and Headley (1980), and Corbet (1973).  Multiple keys were 

used due to the presence of both lacustrine and peat-based 

testate amoebae in the cores. Species abbreviations are 

provided beginning on page xviii of this thesis.

A total of seventeen samples from the VP core were shipped

to MyCore Scientific Ltd., Deep River, Ontario, for age 

determination using alpha spectrometry to detect polonium-210 

(210Po) concentrations as a proxy for lead-210 (210Pb) 

concentrations under the assumption of isotope secular 

equilibrium (Edgington and Robbins 1975). Prior to shipment, 

samples were dried at ~60ºC to a constant weight, ground with 

a mortar and pestle to a fine powder, and stored in glass 

vials.

Two separate shipments were sent to MyCore Scientific Ltd.

Samples for the first shipment, selected for greatest 

resolution of initial European settlement and recent events, 

were every centimetre from 0-4cm and from 27-29cm, and every 

second centimetre in between. Samples for the second shipment 

were selected from lower sediments to refine background 210Pb 

measurements.  

The Constant Rate of Supply Model (CRS) was used to date 

the 210Pb sediment measurements. The CRS assumes 1) a constant 
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rate of unsupported 210Pb (atmospherically derived) is supplied

to sediments through time, 2) the initial 210Pb concentration 

is variable, and 3) the influx rate of sediment is variable 

(Noller 2000; Appleby and Oldfield 1983, 1978). The CRS model 

provides a 95% confidence interval of 1-20 years proportional 

to the inferred age (Binford 1990). 

Ambrosia pollen abundances, commonly and reliably used as 

an anthropogenic marker to support 210Pb dates (Blais et al. 

1995), were identified in the VP core using testate amoebae 

extracts to assess the most likely depth related to European 

land clearing. Ambrosia pollen abundances were also identified

for the CB, DP, and TL cores to enable coarse comparison of 

all cores. Extrapolation of 210Pb dates down-core for VP was 

not possible due to a lack of dates near background (~150 

years before sediment extraction) and a highly variable 

sedimentation rate (Noller 2000). 

4.2 Statistical methods

Quantitative microfossil analysis was conducted on sixty-

three samples (every 2cm) from the top 30cm of each core 

(monoliths) and on forty samples beneath 30cm at intervals of 

lithologic interest prior to European settlement (VP) and at 

progressively lower resolutions down each core (CB,DP and TL) 

for the Anthropocene timescale. Specific sample depths for 
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each core are recorded in the Appendix B.

To obtain taxa abundances for comparison across samples, 

absolute abundance values of testate amoebae counts ( AATA ) 

as tests/cm3 were calculated using 

       AATA=( Lt∗∑ TA

∑ L s )/V              (1)

where Lt is equal to the number of Lycopodium spores added to 

each sample (i.e. 20848  1546), TA is the total number of 

tests counted on each slide, Ls is the total number of 

Lycopodium spores counted on each slide, and V is the volume 

in cm3 of the sample processed for testate amoebae analysis 

(Taylor et al. 2012). 

To assure the statistical reliability of quantitative 

assessment (Payne and Mitchell 2009; Patterson and Fishbein 

1989), samples and the taxa within each sample were analyzed 

to assess the statistical significance of the population 

counts obtained during microscopic analysis. 

Statistical significance of each sample (SSP) was judged 

to be true if the total count for each taxon was greater than 

the probable error (pe), calculated by
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pe=1.96( s

√X i
)              (2)

where s is the standard deviation of the all taxa counts in 

the sample, and X i  is the total sample count (Boudreau et 

al. 2005). Where pe was greater than the total count for each 

taxon, the sample was not included in subsequent analysis.

Statistical significance of each species within each 

sample (SSPS) was assessed by first calculating the relative 

fractional abundance (F i)  of each taxon in each sample using

F i=
C i

N i

              (3)

where C i is the taxon count and N i  is the sum of all taxa 

counts in the sample. The fractional abundance was then used 

to calculate the standard error (S F i) of each taxon using

S F i=1.96√ F i(1−F i)N i

   (4)

where F i is the fractional abundance of the taxon, and N i

is the sum of all taxa counts.

Taxa were deemed to be significant if the fractional 

abundance was greater than the standard error (Boudreau et al.
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2005) and included in subsequent analysis. All calculations 

were conducted using R open source software (R Core Team 

2013).

Five samples, VP230, VP242, TL54, TL62, and TL90 were void

of testate amoebae and were removed from further analysis. SSP

analysis indicated that sample TL4 was not significant. 

Examination revealed a large dominance by one taxon (P. 

acropodia at 84.86%) with other taxa representing 5% each. 

Additional counts of testate amoebae in TL4 (increasing the 

total count from 162 to 284) did not change fractional 

abundances or species richness. Despite the non-significance 

determined by SSP analysis, the sample was included in further

analysis as single species dominance appears to be a 

characteristic of the sample rather than a sampling error.

Analysis of all taxa in each sample yielded statistically 

significant populations of testate amoebae in more than one 

sample so no taxa were excluded from subsequent multivariate 

analysis (Patterson et al. 2012).

4.2.1 Bicluster analysis

Bicluster (aka cocluster or two-way cluster) analysis, 

used to define any biofacies present in the cores and to 

compare assemblages and distribution across cores, was 

conducted on relative frequencies of AATA  counts. 
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Biclustering is a two-dimensional grouping of matrix 

interactions of similar activity under similar conditions 

commonly used in gene expression research (Madeira and 

Oliveira 2004) and successfully used in paleolimnological 

research to elucidate similar species assemblages in core 

samples regardless of stratigraphic position (Patterson et al.

2013; Boudreau 2005). 

R-mode (for taxa grouping) and Q-mode (for sample 

grouping) hierarchical cluster analyses via Ward's Minimum 

Variance method using euclidean distance were combined to form

an ordered matrices of fractional species abundances in R (R 

Core Team 2013; Boudreau 2005). 

The resulting data sets are displayed as heatmaps using 

the R-packages lattice (Sarkar 2008) and latticeExtra (Sarkar 

and Andrews 2013) and Adobe® Illustrator® CS, version 5.5, for

placement of cluster division lines based on euclidean 

distance.

With regard to the Anthropocene timescale, initial 

attempts at biclustering analysis using data from all cores 

simultaneously, constructed six biofacies with one group 

distinct from all others. The distinct group consisted of VP 

samples (214 to 90cm) and a TL sample (78cm). The VP samples 

are characterized by Charophyte encrustations and high 
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abundances of C. aerophila. Similar macro and micro fossils 

were also observed in the TL78 sample (and in no other TL 

sample) suggesting a pre-1800 origin for the Tub Lake 

sediment. Thus, the VP samples from 274 to 90cm and the TL 

sample at 78cm were removed from further Anthropocene 

timescale analysis to enable comparison of only recent 

deposits.

4.2.2 Species Richness and Diversity

Diversity was calculated using AATA  counts and Hill's 

family of diversity numbers for effective number of species 

(Hill 1973) 

N0=S             (5)

where S is the total number of species,

N1=eH
'

            (6)

where H' is Shannon's Diversity index (Shannon 1948), and

N2=1 /λ         (7)

where λ is Simpson's Diversity index (Simpson 1949). The

N̄1 : N0  ratio was also calculated to assess species rarity 

related to ecosystem stress (Odum 1985). Calculations for

N1  and N2  were completed using functions from the vegan 

and rioja R packages respectively (Oksanan et. al 2013; 
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Juggins 2012). 

4.2.3 Stratigraphic displays

Testate amoebae fractional abundances based on bicluster 

analysis, Hill's diversity, sample absolute abundances, 

bicluster divisions, and age-depth data are plotted 

stratigraphically for each core using the rioja R package 

(Juggins 2012). 

4.3 Statistical methods specific to Anthropocene 

analysis

4.3.1 Ordination-based rate of change

Detrended Correspondence analysis (DCA) with downweighting

of rare species was conducted on untransformed testate amoebae

data ( AATA ) from all four cores to summarize major patterns 

of assemblage variation (Birks 2010) using the decorana() 

function from the vegan R package (Oksanen et al. 2013).

Ordination-based rate of change using the scores from axis

one, two, and three of the DCA analysis was conducted on all 

cores by first interpolating species data along the length of 

each core to every 0.5cm using the interp.dataset() function 

(spline method) in the rioja R package, and extracting the 

off-diagonal values from the distance matrix of the DCA scores

(Simpson 2013; Birks 2012). Rate of change was plotted against

depth for all cores. Summary statistics for rate of change 
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after European settlement depths were also calculated for each

core to assess the stability of testate amoebae communities 

since initial land clearing.

4.3.2 Environmental records

Long term climate records were available for the region 

from Environment Canada (2013). Records of air temperature and

precipitation were collected from climate stations near to 

Lake Simcoe from 1866 to 2011 (Table 7). As a continuous 

record of air temperature and precipitation was not available 

from a single climate station, climate data was retrieved from

multiple stations no further than 50km from the lake centre 

(44.4367, -79.3392) to construct a nearly continuous record.

Table 7. Environment Canada climate station locations and 
dates used.

Climate Station Years Coordinates

Barrie 1866-1873; 1877-1887; 
1893-1900; 1909-
1917;1919-1921; 1931-
1935;1954-1957

44.4, -79.683333 

Sutton West 1874; 1905 44.316667, -79.3 

Orillia 1875; 1901-1902; 1904; 
1906-1907;1918; 1926-
1927;1929-1930;1936-1946;
1949-1952

44.616667, -79.4 

Newmarket 1876 44.066667, 
-79.433333 

Coldwater 1888-1892;1903; 1908 44.033333, 
-79.666667 
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Beeton 1922-1925;1928;1947 44.1, -79.783333

Midhurst 1948;1953;1958-1962;1964-
1972

44.45, -79.766667 

EssaOntHydro 1963 44.35, -79.816667 

Shanty Bay 1973-2011 44.399444, 
-79.632778

Non-continuous lake-ice records were available from 

various sources (IceWatch Canada 2013; Environment Canada and 

Lake Simcoe Fisheries Assessment Unit data as cited in 

Stainsby and MacRitchie 2011; Youtube videos) for the years 

1853 to 2011. Data obtained from Stainsby (2011) from 1970 to 

2008 was supplemented with IceWatch data recorded at 

Kempenfelt Bay (1853-1969) by volunteers, and Youtube videos 

documenting ice freeze and thaw in southern Lake Simcoe (2009-

2011). 

Trend analyses on climate and lake-ice data were completed

using linear regression models: ordinary least squares, 

generalized least squares, and generalized linear model, 

depending on the parametric assumptions violated by the data 

being analyzed. Annual and seasonal means for maximum, 

minimum, and mean air temperatures as well as total rainfall, 

snowfall, and precipitation were assessed for trends. 

Total phosphorus load data (kg yr-1) from ~ AD 1850 was 

also retrieved from multiple sources (O'Connor et al. 

84



2013,2012; Peat and Waiters 1994; Scott and Winter 2006; 

Snodgrass and Holubeshen 1992; Scott et al. 2001; Wilson 1986)

for use with Victoria Point testate amoebae assemblage 

variation. The data arises as a result of both statistical 

estimation and direct measurement. Total phosphorus load for 

the entire lake was chosen based on the available data and the

location of Victoria Point at the outlet of the lake. 

Phosphorus measurements specific to the Orillia area did not 

begin until the late 1990s while total lake phosphorus has 

been estimated for as far back as 1782.

4.3.3 Elemental and Isotopic analysis

Dried and ground samples of every other cm (0 to 28cm) 

from Victoria Point, Cook's Bay, and Tub Lake were sent to MBL

Stable Isotope Laboratory in Wood's Hole, MA for analysis of 

the percentage of carbon (%C) and Nitrogen (%N), and δ13C and 

δ15N isotopes for the determination of changes to the abundance

and origin of deposited organic matter. 

4.3.4 Climatic and nutrient analysis

As 210Pb dating was conducted on sediments only from the 

Victoria Point core, additional statistical analyses were 

conducted on the core to assess the influence of measured and 

estimated environmental variables on testate amoebae 

distribution since ~ AD 1850. 
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Principle component analysis (PCA) using testate amoebae 

assemblage, air temperature, total rainfall, snowfall, 

precipitation, and  phosphorus load data was used to assess 

correlations between environmental variables and testate 

amoebae assemblages using the prcomp() function with the 

correlation matrix option in R (R Core Team 2013). PCA scores 

from axes one to three were plotted in an interactive three 

dimensional biplot using the rgl:3D visualization device 

system (Adler et al. 2013) graphics package in R. Screenshots 

of various angles of the plot are presented.

PCA was also conducted on only testate amoebae assemblages

for comparison of PCA assemblage scores from axis one, two and

three to environmental variables using Pearson correlation 

analysis. Correlations were also run on the fractional 

abundances of dominant taxa identified through bicluster 

analysis. 

Chapter 5. Lake Simcoe's shoreline during the 

Anthropocene

5.1 Results

5.1.1 Age-Depth modelling

Results from 210Pb analysis (Table 8) of the Victoria Point

core indicate supported 210Pb background lies within the 36 - 

44cm depth profile range. Ambrosia pollen abundances (Figure 
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19) within the span provide a depth of 42cm as a likely 

candidate for the year 1871 when railway construction was 

completed in the vicinity of the sampling site (Hunter 1893).

Table 8. 210Pb analysis results using the CRS model.

Depth (cm) Age (AD) Sediment Accumulation
Rate (cm y-1)

0 2011.8  0 1.1

1 2010.9  0.1 1.3

2 2010.1  0.1 0.94

3 2009.1  0.1 0.65

4 2007.5  0.2 0.83

5 2006.3  0.1 0.54

6 2004.4  0.4 0.5

7 2002.5  0.2 0.51

9 1999  0.7 0.4

10 1996  0.3 0.51

12 1992  1.0 0.76

13 1991  0.4 0.37

15 1985  1.4 0.3

16 1982  0.6 0.03

18 1976  2.3 0.39

19 1973  0.9 0.44

21 1969  2.7 0.53

22 1967  1.2 0.57

24 1963  3.8 0.43

25 1961  1.6 0.45
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27 1957  4.8 0.59

28 1955  2.1 0.57

29 1953  5.4 1.02

30 1952  2.7 0.23

35 1931  9.8 0.11

36 1922  10 0.12

44 <1861

5.1.2 Environmental records

Trend analysis of annual climate variables shows a rise in

mean, maximum, and minimum annual air temperatures from 1866 

to 2011 with the greatest increase in minimum temperatures 

(2°C, R2=0.23, p < 1x10-8) (Figure 6). Total annual 

precipitation shows a positive trend (R2=0.25 and 0.21) 

resulting in a 248.6mm increase since 1866 with most of the 

contribution coming in the form of rain (200.1mm). Annual 

total snowfall also increased though not as conclusively 

(44.4mm, R2=0.03) (Figure 7).

Air temperature trends show increases in both mean and 

minimum values across all seasons (Figures 8,10,12,14). Mean 

temperatures rose significantly in the winter and spring by 

1.3°C (p = 0.0123) and 2.5°C (p < 1x10-5) respectively. The 

change in minimum temperatures for winter (2.6°C) (p < 1x10-4) 

and spring (2.8°C) (p < 1x10-7) were also highly significant.
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Maximum temperatures have both slightly decreased (winter and 

summer) and increased (spring and autumn) with spring showing 

the largest increase at 1.7°C. 

Total precipitation (Figures 9,11,13,15) has increased in 

all seasons. More specifically, rainfall and snowfall have 

increased throughout the seasons with the exception of spring 

snowfall, which has decreased slightly by 6.88mm and summer 

snowfall which remains unchanged (no snow). The greatest 

seasonal rainfall increase are the spring rains, increasing by

64.59mm since 1866. Winter snowfall showed the largest 

increase of 50.13mm.

Lake-ice trends (lake water freeze and thaw dates) 

indicate an increase of 22.88 days to the ice-free season 

(Figure 16). 

5.1.3 Lake Simcoe-wide testate amoebae assemblages 

Preservation of testate amoebae tests was very good 

throughout the cores with very few broken tests and 

representatives present from each  test type: proteinaceous 

(e.g. Hyalospheniidae, Arcellidae), agglutinated (e.g. 

Centropyxidae, Difflugiidae), siliceous (e.g. Euglyphidae, 

Trinematiidae), and calcareous (e.g. Paraquadrulidae). Mean 

test counts in the top 30cm were 208 per sample and 71 per 

downcore sample due to decreased test density. 
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acropodia, reaching 100% abundance in one sample. Fractional 

abundance ranges of the taxa characterizing each Biofacies 

from Assemblage I are shown in Table 9. 

Assemblage II: This assemblage of less abundant taxa 

reveals a similar pattern to the distribution of Assemblage I:

subtle changes are evident between Biofacies I and II while 

greater distinction exists in  Biofacies III and IV. The sum 

of fractional abundances of the taxa found in each Biofacies 

from Assemblage II are shown in Table 10.

Table 9. Fractional abundances of taxa characteristic of 
biofacies in Assemblage I. See page xviii for taxa 
abbreviations.

Biofacies Taxa Minimum Abundance
(%)

Maximum Abundance 
(%)

I P. cymbalum 0 55.57

C. spinosa 0 42.95

P. acropodia 0 36.63

C. platystoma 0 21.86

II C. platystoma 8.33 43.9

C. spinosa 0 40

P. acropodia 4.54 23.98

III C. delicatula 43.16 71.26

C. platystoma 0 50

IV P. acropodia 41.61 100
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Table 10. Sum of fractional abundances of taxa characteristic 
of biofacies in Assemblage II. See page xviii for taxa 
abbreviations.

Assemblage II Taxa

Biofacies CAE CAC PF DGL CK HE CO ADI AA CDI

I 157.4 68.8 128.1 28.4 41 108.4 16.2 50.42 10.85 39.3

II 112.1 69.4 22.7 107.8 93.4 59.8 73.4 101.1 54.6 89.1

III 0 60.2 9.6 42.06 1.37 0 0 1.37 0 8.23

IV 245.1 0 5.9 0 34.5 0 93.8 0 0 0

5.1.4 Testate amoebae assemblages by core

5.1.4.1 Victoria Point 

Bicluster analysis of the Victoria Point profile 

identified three Q-mode clusters (Figure 19) of species 

included in both assemblages identified in the main bicluster 

analysis (see 5.1.3). The three clusters are separated into 

six zones showing assemblage change at 70cm, 46cm, 42cm (AD 

1871), and 10cm (AD 1996). Biofacies I is characterized 

primarily by the dominance of P. cymbalum (36.04 ≥ F i  ≤ 

55.57) followed by P. acropodia (9.06 ≥ F i  ≤ 19.76). In 

Biofacies II, primary dominance shifts from P. cymbalum (20.00

≥ F i  ≤ 37.41) to C. spinosa(aculeata strain)(24.29 ≥ F i  ≤ 

35.78) although dominance is near equal.  Biofacies III 

located at the top and bottom of the profile, is dominated by 

P. acropodia (1.37 ≥ F i  ≤ 36.63), followed by C. platystoma 
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(8.43 ≥ F i  ≤ 26.66), and C. aerophila(soil type) (0 ≥ F i  ≤

17.82).  

5.1.4.2 Cook's Bay 

Three Q-mode clusters (Figure 20) of species included in 

both assemblages identified in the main bicluster analysis 

were also identified in the Cook's Bay core profile. The three

clusters are separated into eight zones showing assemblage 

change at 50cm (~ AD 1830), 46cm, 42cm, 30cm, 26cm, and 24cm.

Biofacies I is defined at three separate core locations  

characterized primarily by the dominance of C. platystoma 

(6.25 ≥ F i  ≤ 42.86) followed by P. acropodia (4.54 ≥ F i  ≤ 

51.38). Biofacies II is dominated by a single species, P. 

fulva with a fractional abundance of 52.65. Like Biofacies I, 

Biofacies III is interspersed throughout the core (86-62cm, 

46cm, 30-28cm, and 24cm). P. cymbalum (13.99 ≥ F i  ≤ 45.86) 

is closely followed by C. spinosa(aculeata strain) (11.11 ≥

F i  ≤ 42.95) in dominance of this zone. 

5.1.4.3 Duclos Point 

The Duclos Point core was also composed of three separate 

Q-mode clusters (Figure 21) of species included in both 

assemblages identified in the main bicluster analysis. The 

three clusters are separated into twelve zones showing 

assemblage change at 62cm, 38cm (~ AD 1830), 34cm, 30cm, 28cm,
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26cm, 20cm, 18cm, 16cm, and 14cm.

Biofacies I, defined at five separate core locations, is 

characterized primarily by the dominance of C. platystoma 

(18.98 ≥ F i  ≤ 50.00) followed by C. delicatula (0 ≥ F i  ≤ 

50.00). Biofacies II (four  separate zones) is dominated by C.

spinosa(aculeata strain) (12.12 ≥ F i  ≤ 40.00), C. platystoma

(0 ≥ F i  ≤ 27.96), and P. acropodia (8.33 ≥ F i  ≤ 23.98). 

Biofacies III (three separate zones) is dominated most 

strongly by C. delicatula (18.98 ≥ F i  ≤ 60.00).

5.1.4.4 Tub Lake 

Bicluster analysis defined two Q-mode clusters in the Tub 

Lake core (Figure 22) of species included in both assemblages 

identified in the main bicluster analysis. The two clusters 

are separated into six zones showing assemblage change at 

42cm, 34cm, 28cm, 6cm, and 2cm.  Biofacies I and II are 

defined at three separate core locations each (I: 42cm,28-8cm,

and 2-0cm; II:50cm, 34-30cm, and 6-4cm) (Figure 22). 

Additionally, both Biofacies are characterized primarily by 

the dominance of P. acropodia which is more abundant in 

Biofacies I (81.36 ≥ F i  ≤ 100.00) than Biofacies II (41.61 ≥

F i  ≤ 71.27). The second most dominant species in both 

biofacies is C. aerophila(soil type) with abundances of  0 ≥
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F i  ≤ 17.37 and  0 ≥ F i  ≤ 31.79 for Biofacies I and II 

respectively.

5.1.5 Species richness and diversity

The following descriptions of Hill's family of diversity 

results focus on results from one sample prior to Ambrosia-

based background in each core. Complete results are displayed 

graphically in the stratigraphic plot for each core (Figures 

19-22). 

5.1.5.1 Victoria Point

Simple species richness ( N0 ) ranged from 6 to 26 with 

the maximum richness at 4cm, and minimum richness at 46cm. 

Species richness increased to ≥ 20 at 26,16,12,6,4,2, and 0cm.

Species diversity, in terms of Hill's N1  (abundant 

effective species), increased up the core, with greatest 

diversity between 8 and 2cm deep. N2  diversity (very 

abundant effective species) also increased up-core but was 

more subtle than N1 , ranging from 2.6 (46cm) to 8.377 

(4cm). The lowest N1:N0 ratio was recorded at 26cm deep (0.26)

while the highest was at 34cm (0.77). The mean N1:N0 ratio was

0.49. 
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5.1.5.2 Cook's Bay

Simple species richness ( N0 ) ranged from 4 to 23 with 

the maximum richness at 1cm, and minimum richness at 42cm. 

Species richness increased to ≥ 20 at 8, and 0cm. Species 

diversity, in terms of Hill's  N1  (abundant effective 

species), increased up the core, with  maximum values at 10cm 

(10.1) and 0cm (14.2) deep. N2 diversity (very abundant 

effective species) also increased up-core but was more subtle 

than N1 , ranging from 2.7 (42cm) to 9.76 (0cm). The lowest 

N1:N0 ratio was recorded at 18cm deep (0.52) while the highest

was at 62cm (0.94). The mean N1:N0 ratio was 0.66. 

5.1.5.3 Duclos Point

Simple species richness ( N0 ) ranged from 4 to 18 with 

the maximum richness at 1cm, and minimum richness at 34cm. 

Species richness consistently increased to ≥ 10 between 14 and

0cm. Hill's N1  (abundant effective species) diversity 

increased up the core, with maximum values at 12, 6, and 0cm 

(10.2-10.3) deep. N2 diversity (very abundant effective 

species) also increased up-core but was more subtle than N1

, ranging from 3.0 (34cm) to 9.3 (12cm). The lowest N1:N0 

ratio was recorded at 0cm deep (0.57) while the highest was at

38cm (0.96). The mean N1:N0 ratio was 0.76. 
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5.1.5.4 Tub Lake

Simple species richness ( N0 ) ranged from 2 to 12 with 

maximum richness at 18 and 20cm and minimum richness at 30 and

34cm. Species richness increased up the core, reaching ≥ 10 

from 22 to 18, and againat 14cm deep before declining to 4 by 

0cm. Hill's N1  (abundant effective species) diversity 

fluctuated between 1.45 (30cm) and 6.12 (18cm), averaging 3.18

for the core. N2 diversity (very abundant effective species)

was similar to N1 but with a mean of 2.35 with the greatest 

reductions at 18 and 20cm. The lowest N1:N0 ratio was recorded

at 4cm deep (0.31) while the highest was at 50cm (1.0) with a 

mean of 0.60. 

5.1.6 Ordination-based rate of change

Rate of change analysis shows increases of change near 

Ambrosia-based background date estimates (Figure 23,24). 

Cook's Bay has a substantial delayed rate of change following 

initial Ambrosia abundances from settlement. 

The greatest rate of change associated with European 

settlement in any core, 0.88, is found in the Duclos Point 

core at 34.5cm. The mean rate of change following settlement 

range from 0.069 to 0.086 (VP and DP). All three Simcoe cores 

show increased rates of change within the upper 6cm; the rate 

of change peak in Victoria Point beginning in ~AD 2000 (8cm) 
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is the greatest change since the late Holocene began at ~82cm.

Change in Tub Lake was fairly stable between land clearing and

~8cm where change peaks to 0cm come close to the levels of 

change associated with land clearance.  

Rate of change summary statistics (Figure 25) of post-

settlement samples confirm that Duclos Point has experienced 

the greatest rates of change in all aspects (minimum, maximum,

median, mean and the quartiles).   

5.1.7 Elemental and Isotopic analysis

The %C measured by MBL Stable Isotope Laboratory differed 

between the Tub Lake sample and the Lake Simcoe samples 

(Figure 26). The TL %C measurements exhibited an general 

decline from the highest value (45%) at 26cm to the lowest 

values of 7.4 and 8.1% at 18 and 0cm respectively. A peak of 

31.7% at 8cm was also measured. In contrast, %C measurements 

in VP and CB remained fairly stable with a range of 

measurements from 37.8 to 48.5. Stability of %C increased in 

the CB core from 14 to 0cm and in the VP core from 8 to 0cm. 

The TL %N measurements followed a similar trajectory to %C, 

falling from 2.31% at 26cm to a low of 0.48% at 18cm and 0cm, 

with an additional peak at 8cm of 2.09% (Figure 30). The %N 

measurements at CB also followed %C  fluctuations until 18cm 

at which point %N became stable until 8cm. %N then increased 
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followed by an increase to 21.77 at 24cm. From 24 to10cm, the 

CB C:N ratio had a mean of 21.24 and a range of 19.63 to 

22.98. At 8cm there is a large decline from 22.06 (10cm) to 

16.8. Between 8 and 0cm, there is a steady decrease in the 

ratio, ending at 14.78. The C:N ratio of Victoria Point is 

fairly stable from 28cm to 10cm with a mean of 18.27.  From 8 

to 0cm is again stable at a mean of 19.99 with the exception 

of a large peak at 2cm of 27.15. 

The δ13C and δ15N values in the TL core are fairly stable 

with a general decline towards 0cm (Figure 26). Values range 

between -26.1 and -27.5 (δ13C) and 1.2 and 3.4 (δ15N). There is 

a peak of δ13C from 24 to 22cm and a δ15N decline at 2cm. The 

δ13C and δ15N values of VP also remain fairly stable until 8cm 

where there is a decline in both isotopes (δ13C = -27.8 to 

-28.9, δ15N = 1.2 to -0.1) , increasing again towards 2cm. CB 

shows a unique isotope signature with a general increase in 

δ15N beginning at 18cm followed by a sharp increase at 10cm 

ending in a measurement of 7.9 at 0cm. For δ13C there is a near

opposing profile as δ13C declines throughout the core beginning

it's sharp decrease at 10cm followed by a slight recovery from

4 to 0cm.

5.1.8 Climatic and nutrient analysis

Exploratory Pearson correlation analysis of numerous 
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environmental variables - annual and seasonal minimum, 

maximum, and mean air temperatures, annual and seasonal total 

rain, snow, and precipitation, the number of ice-free days, 

C:N ratios, and phosphorus loads - indicated strong 

correlations (e.g. r=0.88 at p<0.000001) between a number of 

similar variables (e.g. minimum and maximum temperatures to 

mean temperatures). Therefore, seasonal maximum and minimum 

temperatures, and total precipitation were removed from 

further analysis. Additionally, C:N ratio and ice-free days 

data were incomplete for the time period (AD 1871-2011) and 

were removed from principle component analysis involving both 

assemblage and environmental data. 

While annual variables did not consistently show 

significant correlations to seasonal variables, studies 

suggest a strong seasonal growth pattern for testate amoebae 

(Davidova and Vailev 2013; Warner et al. 2007; Gilbert et al. 

2003; Velho et al. 1999), thus, all annual variables (maximum,

minimum, and mean temperatures, and total rain, snow, and 

precipitation) were removed from principle component analysis 

and Pearson correlation analyses.   

Principle component analysis of Victoria Point testate 

amoebae assemblages and the remaining environmental variables 

returned a 0.47 cumulative proportion of variance for the 
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first three components  (Figures 27-30 showing various angles 

of the PCA results). Additionally, all three components 

accounted for >0.1 of the proportion of variance 

(PC1=0.21,PC2=0.14,PC3=0.13). Application of Horn's Parallel 

Analysis (Horn 1965) using the paran() function in the paran R

package (Dinno 2012) retained the first three components as 

relevant. 

Visualization of PCA sample variation in three dimensions 

showed most variation is associated with quadrants four and 

three (Figure 31). Three samples with increased variation 

appear at the extremes of quadrant eight (0cm depth), quadrant

five (26cm depth), and quadrant six(4cm depth). Five of twelve

environmental variables plotted with directionality show 

direct positive and negative associations with a number of 

samples(Table 11).

Pairwise Pearson correlations of PCA components one, two, 

three, with fourteen environmental variables including C:N 

ratios and ice-free days (Table 12) show strong significant 

correlations with variables from all seasons. Component one is

negatively correlated to mean temperatures during the spring, 

summer, and autumn seasons, and positively correlated to 

spring snowfall. Component two is negatively correlated to 

lake-wide phosphorus loads and component three is positively 
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Figure 27. Three dimensional plot of Principal Component 
Analysis. 3D points are VP samples - numbers correspond with 
the top depth (cm) of each sample, i.e. 26 = 26cm deep. Lines 
emanating from the axes center correspond to environmental 
variables where 1=winter mean temp., 2=winter rain, 3=winter 
snow, 4=spring mean temp.,5=spring rain, 6=spring snow, 
7=summer mean temp, 8=summer precipitation/rain, 9=autumn mean
temp., 10=autumn rain, 11=autumn snow, 12=phosphorus. 

correlated to winter mean temperature and rainfall and 

negatively correlated to winter snowfall. Weaker positive 

associations also exist for spring mean temperatures and 

summer rainfall. Pairwise Pearson correlations of Assemblage I

122



Figure 28. Three dimensional plot of Principal Component 
Analysis. Point and line information is presented with Figure 
27.

taxa identified in bicluster analysis and environmental 

variables (Table 13) shows a strong significant, consistent, 

negative 

correlation with spring snowfall in four of five highly 

abundant species. Positive correlations at p<0.05 exist for 
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Figure 29. Three dimensional plot of Principal Component 
Analysis. Point and line information is presented with Figure 
27.

spring (P. acropodia), summer, and autumn (C. delicatula) mean

temperatures, and phosphorus loading (P. cymbalum and C. 

platystoma). Other less significant correlations indicate a 
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Figure 30. Three dimensional plot of Principal Component 
Analysis. Point and line information is presented with Figure 
27.

relationship mainly with seasonal precipitation. Pairwise 

Pearson correlations of Assemblage II taxa with environmental 

variables (Table 14) resulted in variable correlations by 

species. C. aculeata, and P. fulva are the most highly 

correlated species. P.fulva is positively correlated to 
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Figure 31.Three dimensional PCA quadrants and associated 
components/axes (PC1 = principal component 1;PC2 = principal 
component 2;PC3 = principal component 3).

phosphorus loading and negatively correlated to winter and 

summer mean temperatures, summer rainfall, and C:N ratios. C. 

aculeata is positively correlated to spring, summer, autumn, 

and winter mean temperatures, and ice-free days and negatively
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Table 11. Direct correlations of PCA analysis of combined 
testate amoebae assemblage and environmental variables

Plot 
number

3D plot 
quadrant

Environmental 
variable

Samples: 
positive 
associations
(cm)

Samples: 
negative 
associations
(cm)

1 5 Winter mean temp.

2 1 Winter total rain

3 5 Winter total snow 4

4 5 Spring mean temp. 24

5 6 Spring total rain

6 3|4 Spring total snow 18,28,34,38,
42

7 5 Summer mean temp.

8 8 Summer total rain

9 5 Autumn mean temp.

10 5 Autumn total rain

11 1 Autumn total snow 10

12 3 Phosphorus loads ~20,22,24 8,14

correlated to spring snowfall. Two other species also show 

significant correlations: H. elegans is positively correlated 

with winter rainfall while A. arenaria is negatively 

Table 12. Pairwise Pearson correlations of PCA scores with 
environmental variables.  r coefficients denoted with * 
indicate p<0.1, ** p<0.05, *** p<0.005, **** p<0.0005. See 
page xviii for taxa abbreviations. 

PCA comp. 1 PCA comp. 2 PCA comp. 3

Winter mean 
temp.

-0.34 -0.34 0.55**
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Winter total 
rain

0.03 0.1 0.69***

Winter total 
snow

-0.14 -0.07 -0.68***

Spring mean 
temp.

-0.57** 0.40* 0.34

Spring total 
rain

-0.34 -0.08 0.29

Spring total 
snow

0.66** -0.02 -0.32

Summer mean 
temp.

-0.54** 0.22 0.43

Summer total 
rain

-0.2 0.48* -0.14

Autumn mean 
temp.

-0.54** 0.37 0.26

Autumn total 
rain

-0.33 0.11 0.37

Autumn total 
snow

0.29 0.36 0.01

Phosphorus loads 0.11 -0.57** -0.04

correlated with spring snowfall and positively with autumn 

mean temperatures. As with Assemblage I species, less 

significant correlations indicate relationships mainly with 

seasonal precipitation although five out of the seven species 

in Assemblage II show correlations with mean summer 

temperatures as well.   
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Table 13. Pairwise Pearson correlations of fractional 
abundances with environmental variables in Assemblage I. r 
coefficients denoted with * indicate p<0.1, ** p<0.05, *** 
p<0.005. See page xviii for taxa abbreviations. 

Assemblage I taxa

PC CS PA CP CD

Winter mean temp. -0.25 0.19 0.1 0.24 0.26

Winter total rain 0.06 -0.06 -0.17 0.11 -0.17

Winter total snow -0.02 -0.04 -0.06 -0.39 -0.06

Spring mean temp. -0.3 0.34 0.48** 0.29 0.46*

Spring total rain 0.07 0.2 0.31 0.21 0.26

Spring total snow -0.02 -0.7*** -0.57** -0.67*** -0.51**

Summer mean temp. -0.26 0.24 0.33 0.15 0.51**

Summer total rain -0.41* -0.09 0.19 -0.4 0.19

Autumn mean temp. -0.44* 0.27 0.32 0.26 0.51**

Autumn total rain 0.03 0.4* 0.35 0.41* 0.22

Autumn total snow -0.33 -0.41* -0.22 -0.37 -0.26

Ice free days -0.05 0.02 0.07 0.24 0.04

C:N ratio -0.38 -0.21 -0.12 -0.38 0.13

Phosphorus loads 0.55** 0.37 0.11 0.52** -0.2

Table 14.  Pairwise Pearson correlations of fractional 
abundances with environmental variables in Assemblage II. r 
coefficients denoted with * indicate p<0.1, ** p<0.05, *** 
p<0.005, **** p<0.0005. See page xviii for taxa abbreviations.

Assemblage II taxa

CAE CAC PF CK HE CO AA CDI

Winter mean
temp.

0.25 0.62** -0.46* 0.15 0.28 0.23 0.33 0.09

Winter 
total rain

0.28 0.32 -0.29 0.44* 0.55** 0.45* -0.09 -0.15

Winter 
total snow

-0.22 -0.41* 0.11 -0.25 -0.37 -0.22 0.01 0.17
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Spring mean
temp.

0.32 0.74**

**

-0.39 -0.06 0.01 0.09 0.6 0.17

Spring 
total rain

0.41* 0.46* -0.26 0.09 0.3 -0.07 0.12 0.15

Spring 
total snow

-0.6 -

0.52**

-0.01 -0.24 -0.14 -0.01 -

0.53**

-0.29

Summer mean
temp.

0.46* 0.57** -0.45* 0.002 0.26 0.33 0.42* 0.46*

Summer 
total rain

0.01 0.19 -0.45* -0.22 -0.27 -0.04 0.41* 0.14

Autumn mean
temp.

0.28 0.65**

*

-0.34 -0.12 -0.13 0.01 0.52** 0.24

Autumn 
total rain

0.34 0.17 -0.06 0.28 0.21 0.22 0.31 0.12

Autumn 
total snow

-0.32 0.15 -0.06 -0.12 -0.2 -0.06 -0.22 -0.32

Ice free 
days

0.21 0.62** -0.21 0.29 0.34 -0.03 0.14 -0.21

C:N ratio -0.001 0.15 -0.41* -0.03 -0.07 -0.14 0.09 0.03

Phosphorus 
loads

0.17 -0.25 0.75**

**

0.39 0.24 -0.14 -0.36 -0.19

5.2 Discussion

5.2.1 Lake Simcoe-wide testate amoebae trends

Results from bicluster analysis show some consistency in 

lake-wide testate amoebae assemblages. All three cores from 

Lake Simcoe show strong abundances of C. spinosa(aculeata 

strain) and C. aerophila(soil type) after initial logging 

activity in the early 1800s.  

In general, centropyxids are found in wet, well developed 
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soils and mosses, commonly Sphagnum (Flagstad 2007). They are 

also known to be opportunistic and highly tolerant (Holcova 

2008; Scott et. al 2004; Patterson et al. 2002; Kihlman and 

Kauuppila 2010), allowing them to colonize and thrive in 

unstable environments. The presence of C. spinosa (aculeata 

strain) and C. aerophila(soil type) in all cores confirms that

all three locations have been fringe wetlands since the early 

1800s.  

In particular, C. spinosa(aculeata strain), a strain of C.

aculeata, is commonly considered an opportunistic (Burbidge 

and Schroder-Adams 1998) and highly tolerant taxa of elevated 

levels of conductivity (Dallimore et al. 2000, Patterson et 

al. 1985), low temperatures (Boudreau et al. 2005; Dallimore 

et al. 2000), and low trophy (Burbidge and Schroder-Adams 

1998). C. spinosa(aculeata strain) has been reported to 

inhabit submerged plants during the dry season of The Pantanal

wetland in South America (Heckman 1998). Such a habitat 

preference may explain the difference seen between test 

morphology of C. aculeata (xenogenous) and C. spinosa(aculeata

strain) (autogenous) through access, or lack thereof, to the 

raw materials needed for agglutination.

 C. aerophila(soil type) is commonly found in well aerated

wetland soils and has been found in both alkaline and acidic 
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conditions (Couteaux 1969; Smith and Headland 1983). The 

species is highly variable in both geography and ecology 

(Chardez 1979). 

The distinction between Biofacies I and II is established 

by the abundances of P. cymbalum to Biofacies I and C. 

platystoma in Biofacies II. Biofacies I represents all but two

VP samples (82 and 4cm), and early CB samples. Biofacies II 

contains the remainder of the CB samples (except 42cm) and the

mid to upper DP samples. Together, the Biofacies represent all

but one post-land clearing sample. 

Although the literature on P. cymbalum is nearly non-

existent (one study records that P. cymbalum is exclusively 

associated with aquatic macrophyte habitat (Lansac-Toha et al.

2000)), ecological investigations on another member of the 

genus, P. operculata, offer insight into the nature of the 

genus. An ecological investigation by Jax (1985) suggests that

like C. aculeata, P. operculata is an early colonizer (R-

selected species), living most successfully on submerged 

aquatic vegetation and consuming diatoms, green algae, 

bacteria, and detritus.  Jax (1985) also found that abundances

of P. operculata plummeted in mature systems as a result of 

competition. Abundances of  P. cymbalum seem to follow this 

general successional trajectory in both VP and CB cores, 
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populations reducing through time. However, the finding that 

P. operculata is an early colonizer does not translate to the 

histories of P. cymbalum in Lake Simcoe where the species has 

been highly abundant for hundreds of years. An alternate 

explanation for the decline in  P. cymbalum in both locations 

from about 26cm is a reduction in habitat in the coring 

locations as a function of increasing peat depth and 

vegetation change. 

As with all centropyxids, C. platystoma is a cosmopolitan 

species. There is not much known of the ecological preferences

of this species but like C. spinosa(aculeata strain), it was 

found inhabiting submerged wetland plants of The Pantanal 

wetland in South America (Heckman 1998), submerged plants in 

glacial South American lakes (Grabandt n.d.), marl lakes in 

Ontario and also minerotrophic waters (Legg 2009). 

In contrast to the Lake Simcoe Biofacies of post-land 

clearing, Biofacies III, containing all pre-land clearing DP 

samples and the VP sample at 82cm, is dominated mainly by C. 

delicatula. Only three studies of modern identification exist:

Andrews (2012) and Davidova (2012,2013). Andrews (2013) did 

little else than identify and describe the species. Davidova 

(2011,2012) identified just two individuals in newly built 

(1996) mesotrophic Ovcharitsa reservoir in southeastern 
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Bulgaria from shoreline vegetation (<1m) and the sediment-

water interface between 5 and 10m depths. In contrast, C. 

delicatula was found to be a dominant species in littoral 

(0.5-1m water depth) samples from Durankulak Lake, 

northeastern Bulgaria (Davidova 2013) with a late summer 

seasonal relative abundance of 77%. Durankulak Lake is 

described as a shallow, natural reservoir with eutrophic to 

hypereutrophic nutrient status and a strongly seasonal 

hydrologic regime (high-water in Spring, low in 

Summer/Autumn). 

Despite the differences between abundant species from VP, 

CB, and DP, the general trend of testate amoebae communities 

across the lake since land clearing indicates a dominance by 

species preferring submerged vegetation habitat, well-

developed wetland soils, unstable ecological conditions, and 

possibly oligotrophic to mesotrophic nutrient concentrations. 

In CB and VP, these conditions were present in varying degrees

prior to European settlement, while in DP, a complete 

ecosystem shift occurred after land clearing. This extreme 

shift is evident through the DCA based rate of change analysis

showing a large peak of change associated with land clearing 

(Figure 23,24) and a change in dominance from C. delicatula to

C. platystoma. 
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5.2.2 Victoria Point

Overall, Victoria Point wetland exhibits a shift from a 

shallow, possibly seasonally flooded shoreline with neutral to

slightly acidic pH, and mesotrophic to eutrophic nutrient 

concentrations (82 to 62cm) to a deeper shoreline inhabited by

submerged aquatic vegetation from 62 to 42cm. Following that, 

an environment with increasing peat depths, and reduced open 

water in the coring area pervades. These transitions are 

highlighted by Q-mode divisions of testate amoebae assemblages

with shifting abundances of dominant species.

5.2.2.1 Shallow shoreline - 82 to 62cm

 At depths between 82 and 62cm (Zones III & II) a 

seasonally flooded wetland transitions into a deeper shoreline

with reduced hydrologic fluctuations. 

The sample at 82cm deep is dominated by C. delicatula, a 

species with a strong late summer growth pattern. It is 

indicative of shallow (0.5-1m), mesotrophic to eutrophic 

littoral zones (Davidova 2013). The less abundant C. 

discoides(aculeata strain) (~10%) is associated with high 

moisture content (95% commonly), stressed environments, pH of 

~4.5-6.5 (Charman et al. 2007; Parent et al. 2009; Booth 2001)

and seasonal high water periods (Heckman 1998).

Also present, though far less abundant (~10% each), are C.
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platystoma, and P. fulva. As stated earlier, C. platystoma is 

a known inhabitant of submerged vegetation and its abundance 

at less than 10% suggests submerged vegetation was limited at 

the time. P. fulva is known to be both an aquatic and soil 

species, preferentially inhabiting soil depths between 3 and 

10cm (Vincke et al. 2006). They are also known to inhabit 

nutrient rich, pH neutral environments with high moisture 

content (87% commonly) (Charman et al. 2007; Booth & Zygmunt 

2005). 

5.2.2.2 Deeper water shoreline - 62 to 42cm

From 62 to 42cm, encompassing Zones I and II (Figure 19), 

the abundances of P. cymbalum, C. spinosa(aculeata strain) and

P. acropodia define the time period ending with the clearing 

of land by European settlers. Based on the abundances and 

habitat preferences of P. cymbalum and C. spinosa(aculeata 

strain), submerged aquatic vegetation likely increased 

throughout the zones. The increase in dominance of P. 

acropodia beginning at 62cm, may be a indication of increasing

paludification (peat formation), and nutrient enrichment along

the shoreline.   Ecologically, P. acropodia dwells most 

successfully at the soil-litter interface, feeding on fungi 

spores and bacteria (Ogden and Pitta 1990). The species is 

quantitatively described as preferring a moist habitat with a 

near neutral pH range (Booth 2008; Payne et al. 2006), and has
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been shown to thrive in high nutrient environments (Mitchell 

2004). 

A rapid increase in P. cymbalum at 46cm, dated just prior 

to European settlement, along with a slight decrease in P. 

acropodia, and small showing of D. globulosa, may reflect a 

brief episode of high nutrient concentrations, possibly from 

an erosional episode. As stated previously, P. operculata is 

believed to be an opportunistic species of disturbed habitats 

- a characteristic that may also define P. cymbalum, which 

shows a brief increase in abundance. This characteristic 

combined with P. acropodia's preference for a leaf-litter, 

soil based habitat, and D. globulosa preference for an 

alkaline (pH 8.0 to 8.1), lacustrine habitat (Qin et al. 

2013), suggests that erosion of the shoreline wetland and 

inputs from calcareous sediments likely occurred at this time.

There is evidence of Ambrosia pollen (though in limited 

abundance) at this time as well. Species richness dropped to 

its lowest value (6) in any sample during the late Holocene, 

which may be a result of increased water input into the 

wetland (Tsyganov et al. 2013). 

Whether the erosion is from a brief climatic event or from

the occupation of “Mount Slaven,” an Algonkian and possibly 

Wendat settlement of ~34 acres situated approximately 4km 
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Northwest from the coring site (Hunter 1904), cannot be 

determined as no 14C date exists for the archaeological site.

The sample at 42cm is marked by changes in testate amoebae

assemblage and an increase in Ambrosia abundance.  Assemblages

indicate a reduction in the submerged vegetation preferred by 

P. cymbalum, an increase in ecosystem instability (C. 

spinosa(aculeata strain)), a change in hydrologic regime (C. 

delicatula and C. discoides), and a decrease in nutrient 

concentrations (C. spinosa(aculeata strain)). These results 

are consistent with a disturbed habitat likely caused by 

European settlement of the area.

5.2.2.3 Peat dominated shoreline - 38 to 0cm

Following the disturbances at 46 and 42cm, Zone I persists

until ~10cm in depth, with increasing absolute abundances, 

species richness and diversity. Declines in P. cymbalum and C.

spinosa(aculeata strain) (aquatic habitat), along with 

increases of P. acropodia,  C. aerophila, and P. fulva (soil 

habitat) suggest the recommencement of paludification, and 

increased stability. 

Following the decrease of C. spinosa(aculeata strain), the

species abundance quickly stabilized for the remainder of the 

core (~ AD 1904-2011). This stabilization appears to be a 

strong indicator of anthropogenic influence on the lake 
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through reduced water level fluctuations. 

As previously stated, C. spinosa(aculeata strain) is an 

early colonizer of disturbed environments, and preferentially 

inhabits low trophy environments. The opening of the Trent-

Severn waterway in AD 1920 and the subsequent regulation of 

water levels has removed hydrologic fluctuation from the lake.

Testate amoebae analysis of an artificially inundated kettle 

hole mire shows increases in C. aculeata abundances following 

two inundation events (Lamentowicz and Obremska 2010), 

suggesting water level fluctuations are needed by the species 

to thrive. 

The disturbances at 46 and 42cm may have increased erosion

and nutrient input to the coring site location, kick-starting 

paludification and contributing to the decline of C. 

spinosa(aculeata strain).

The final Zone (III) from 10cm to 0cm sees the complete 

disappearance of P. cymbalum, an increase in C. aerophila and 

the reintroduction of C. delicatula. Anecdotal evidence from 

observations during 2009, 2010, and 2011 suggests that 

seasonal fluctuations in water levels along the shoreline 

(~1.5m early spring depth to ~15cm late fall depth) in 

conjunction with peat depth are providing the necessary 

environment for C. delicatula growth. 
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5.2.2.4 Elemental and isotopic analysis

Overall, elemental and isotopic values from the top 28cm 

of the VP core indicate that organic matter is derived from 

both autochthonous and allochthonous sources which is 

consistent with fringe wetland locations (Koff 2012). 

Minor fluctuations of organic and inorganic inputs into 

the shoreline are evident until 10cm. C:N values, hovering 

between 17.5 and 18.5, together with δ13C values, about -28, 

indicate a mix of autochthonous and allochthonous organic 

matter (OM) inputs (Koff 2012).  δ13C and δ15N values begin a 

decline at 14cm as C:N increases >20, indicating a possible 

increase in terrestrial derived OM (Torres et al. 2012). From 

8 to 6cm δ13C and δ15N increase slightly while C:N decreases - a

sign of decreased allochthonous OM. At 4cm a spike in C:N 

(19.02 to 27.15) suggests a large influx of terrestrial 

derived OM.

5.2.3 Cook's Bay

Overall, the testate amoebae communities of Cook's Bay 

wetland suggest an unstable environment throughout most of the

core. Species rise and fall quickly, responding to hydrologic 

and nutrient disturbances. An environment with relative 

stability and reduced disturbance is prevalent beginning 22-

18cm. 
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5.2.3.1 Unstable environment - 86 to 24cm

The rise and fall of C. spinosa(aculeata strain) on 

multiple occasions from 86 to 24cm indicates that an unstable 

hydrologic regime and nutrient concentration existed 

throughout the time period (Lamentowicz and Obremska 2010). 

This is supported by abundances of the late summer species C. 

delicatula, the wet indicator, Hyalosphenia elegans 

(Lamentowicz et al. 2006), and by C. platystoma, associated 

with environmental conditions similar to C. spinosa(aculeata 

strain) (Heckman 1998).

Q-mode cluster analysis highlighted the sample at 50cm 

deep as the only representative of Biofacies II in this core. 

The sample is dominated by P. fulva at 52.63%, an aquatic and 

soil species,  preferentially inhabiting soil depths between 3

and 10cm (Vincke et al. 2006) in nutrient rich, pH neutral, 

high moisture content environments (Charman et al. 2007; Booth

& Zygmunt 2005). Its presence at over 50% abundance suggests 

an influx of sediment and nutrients. A situation that repeated

at 38cm though to a lesser extent.

The variability and general decline of the P. cymbalum 

population suggests a reduction in its submerged vegetation 

habitat. Since P. acropodia is most successful in high 

nutrient environments at the litter-soil interface (Mitchell 

2004; Ogden and Pitta 1990), the large spike in P. acropodia 
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abundance beginning at 46cm indicates a continuation of high 

nutrient loading. The N1:N0 ratio of 0.86 indicating limited 

species richness and high dominance, supports an inference of 

a stressed ecosystem (Odum 1985). 

5.2.3.2 Relatively stable environment - 22 to 0cm

Following the instability between 82 to 24cm, Zone I 

stability from 22 to 0cm reflects a reduction in stress and 

hydrologic change, and an increase in nutrient concentrations 

(C. spinosa(aculeata strain)) with moderate water table depths

(H. elegans). A strong submerged aquatic component (C. 

platystoma) rose replacing the community once dominated by P. 

cymbalum.  A well-developed, nutrient rich, well-drained soil 

environment developed (P. acropodia, C. aerophila). 

Beginning at 34cm, a new species, Cyclopyxis kahli, forms 

part of the Assemblage II structure. C. kahli is reportedly a 

terrestrial species commonly found in soils and forest litter 

that can be transported into water bodies through erosion (Roe

and Patterson 2006). The presence of C. kahli indicates that 

sediments and nutrients continue to enter the system even 

during times of greater stability. 

5.2.3.3 Anthropogenic impacts

While no geochronological analysis was conducted on the 

core, a similar study (Danesh et al. 2013) was conducted on a 

core from inner Cook's Bay in 2013, provides a sediment 
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chronology very similar to the Ambrosia estimate determined 

here (Figure 20), with mid-1800s land clearing at ~75cm.  

Danesh et al. (2013) place the Holland Marsh canal 

construction between ~55 and 42cm, and the 1950s urbanization 

boom at  ~28cm. These chronological depths are consistent with

the changes to testate amoebae communities, Q-mode zonation, 

and increases in Ambrosia pollen in the Cook's Bay core. 

Therefore, the instability from 50 to 24cm and increased 

stabilization beginning at 22cm, may be a result of numerous 

dated factors including the Holland Marsh drainage and canal 

construction from 1924 to 1930, increased urbanization 

(starting in the 1950s), the flood event of Hurricane Hazel 

(1954), the dramatic rise of corn as a crop (~1960), the 

diversion of sewage effluent in the 1980s, and the 

introduction of the Zebra mussel in the mid-1990s.

The Holland Marsh project (~50cm sample) created 7,000 

acres of farmland from wetland space, draining the land 

through a series of human-made canals that also served to 

redirect the Schomberg Branch of the Holland River to flow 

around the farmland.  The canals were also designed to drain 

64,300 acres of watershed area, which now includes the urban 

areas of several townships. A pump system was installed to 

maintain the river at 2.5m below the level of Lake Simcoe 

(OMAFRA 2010). 
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After 1941, the population of Simcoe County rapidly 

expanded to just under 110,000 in 1961 and by 1981 was over 

200,000 (~34 to 20cm samples) . This period of rapid growth is

attributed to an influx into the urban centres of Aurora, 

Barrie, Newmarket, and Orillia (Wilson and Ryan 1988). Both 

Newmarket and Aurora discharged their sewage effluent into the

East Branch of the Holland River until 1984 (LSEMS 1985).

Hurricane Hazel swept through the Holland Marsh area in 

October of 1954 (~38cm sample), flooding drainage canals and 

agricultural land (OMAFRA 2010). An increase in Ambrosia 

pollen and P. fulva abundance, and a substantial decrease in 

P. acropodia may indicate erosion at the core location.

Beginning in about 1961, Wilson and Ryan (1988) report a 

large increase in corn as a crop in the watershed. In 1961, 

corn occupied ~2% of all cropland but by 1981 it accounted for

35%. Corn crops (row crop) leave the ground between the rows 

bare and unprotected from rain and snowmelt enabling the 

erosion of soil. The rise in corn crops almost doubled the 

erosive land use index from 1961 to 1981 (Wilson and Ryan 

1988). The shift to Zone III and subsequent reappearance of P.

acropodia around this time may indicate increased nutrient 

inputs as a result. 

The Zebra Mussel (Dreissena polymorpha), likely introduced
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in 1991 and well established by 1996 (GISD 2013; Ozersky et 

al. 2011), are suspected of decreasing algal biovolume, 

increasing transparency, increasing macrophyte biomass and 

production, and changing nutrient dynamics and benthic 

communities (Ozerky et al. 2011). A before/after study 

(Ozersky 2010) of littoral benthos in Lake Simcoe found that 

D. polymorpha mean density increased from 367.9 individuals/m2 

in 1993 to 22,192.4 individuals/m2 in 2008. The reappearance of

P. fulva at 10cm may indicate nutrient enrichment of the 

shoreline by D. polymorpha in a process known as the 

“nearshore phosphorus shunt” (Hecky et al. 2004).

An increase in nutrient input from the above sources and 

the anthropogenic stabilization of water levels in the Holland

River may be responsible for the instability of the testate 

amoebae community from 50 to 24cm and the enriched stability 

above 24cm in depth.

5.2.3.4 Elemental and isotopic analysis

Elemental and isotopic values from the top 28cm of the CB 

core indicate that organic matter was derived from a mix of 

autochthonous and allochthonous sources for most of the time 

period with C:N ratios ranging between 14.78 and 22.98. δ13C 

and δ15N values support a phytoplankton origin for the 

autochthonous OM from 28 to 12cm (Keough et al. 1996). From 10
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to 0cm, a large increase in δ15N combined with a small decrease

in δ13C points towards a progressive change from phytoplankton 

OM to emergent vascular OM possibly from a progressive 

increase in Typha spp. (Cloern et al. 2002). 

The increase in Typha spp. may signal a shift to an 

alternative stable state, i.e. the ecosystem resilience 

threshold was surpassed, in the wetland (Gunderson 2000). 

Alternative stable states for freshwater wetlands are 

controlled by nutrient availability such that an increase in 

soil nutrient content is characterized by a shift in dominant 

emergent plant species (Gundersen 2000). Koster et al. (2005) 

report similar trends in δ13C and δ15N (decline vs. increase) 

lake sediment measurements, attributing the shift to greater 

nutrient supply from land clearing. The possible increase in 

Typha spp. abundances since 1930 agrees with an assessment of 

increased nutrient supply leading to the δ13C and δ15N shift for

this core. Both T. latifolia and T. angustifolia are known to 

prefer disturbed environments with greater nutrient 

availability (Thiebaut 2008) and stable hydrologic regimes 

(Vaccaro 2005).

5.2.4 Duclos Point

Similar to Cook's Bay, Q-mode divisions in Duclos Point 

highlight rapid shifts in testate amoebae communities over 
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time resulting in great instability. The change to Duclos 

point wetland testate amoebae communities induced by land 

clearing activities resulted in an ecosystem shift from a 

seasonal hydrologically variable environment to an unstable 

deep water, alkaline, environment with both submerged aquatic 

and emergent wetland communities.

5.2.4.1 Seasonal wetland - 86 to 42cm

Beginning at 86cm, C. delicatula is the dominant species 

representing between 50 and 71.43% of Zone III and I 

assemblages. As in both VP and CB, C. delicatula is indicative

of seasonal hydrologic regimes, reaching maximum abundances in

late summer (Davidova 2013) when nutrient concentrations 

increase due to decreasing water levels. Seasonal periods of 

higher water levels are likely responsible for the variable 

increases in the hygrophilic species, D. globulosa, C. 

platystoma, C. spinosa(aculeata strain), C. aculeata, and P. 

cymbalum until 42cm.

5.2.4.2 Deeper water wetland - 42 to 0cm

From 42 to 16cm, testate amoebae communities fluctuate 

rapidly between Biofacies I, II, and III dominated by C. 

platystoma, C. spinosa(aculeata strain) and C. delicatula 

respectively, resulting in a consistently stressed 

environment. Following land clearance at ~38cm, P. acropodia, 

D. globulosa, and Arcella discoides are established with 
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moderate abundance indicating consistently high nutrient 

status and water levels (Charman et al. 2007). Absolute 

abundance calculations pinpoint this period as highly suitable

for rapid population growth. However, high population counts 

decline after 26cm, not reaching similar abundances until 6cm 

in depth.

Some consistency in testate amoebae assemblage is evident 

in the final Zone (II) from 14 to 0cm. Species richness is 

consistently above 10 species with decreasing dominance (0.57 

≥ H1:H0 ≤ 0.86). Limited seasonal fluctuations returned (C. 

delicatula) and C. spinosa(aculeata strain) and C. platystoma 

have mostly stable populations showing a decrease in ecosystem

stress.   

5.2.5 Tub Lake

Overall, Tub Lake wetland shows very little change in 

testate amoebae assemblage. Land clearing activities 

introduced additional species to the community, both short and

long-term, but did not have a long term effect on the primary 

species in the soil community. 

5.2.5.1 Pre-land clearing - 50 - 30cm

P. acropodia is most successful testate amoebae throughout

the core, but during pre-disturbance times, the species 

reached a maximum of 100% abundance. It's great abundance 
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indicates high litter deposition and soil nutrient 

concentrations (Mitchell 2004; Ogden and Pitta 1990). Variable

declines in P. acropodia are mirrored by increased abundances 

in C. platystoma suggesting brief periods of higher water 

levels with increased submerged aquatic vegetation. 

5.2.5.2 Post-land clearing 30 - 0cm

Ambrosia abundances pinpoint 30cm deep as the most likely 

depth of land clearing from logging activities (~ AD 1880). 

There is a general reduction in C. platystoma and associated 

habitat, along with an introduction of C. aerophila and C. 

orbicularis in the post-distrubance record. 

C. orbicularis has been reported from small stream 

environments with positive correlations to fine organic debris

in low flow water columns (Holcova 2008). C. orbicularis is 

also known to be a grassland species inhabiting water-filled 

crevice microenvironments and increasing in abundance with 

greater water availability (Esteban et al. 2006; Finlay et al.

2000). The opposing abundance of this species to C. 

aerophila(soil type), common to well aerated soils (Couteaux 

1969; Smith and Headland 1983), suggests that the area was 

subject to wet and dry episodic events with possible erosion 

acting as a transport mechanism of these non-aquatic species 

(Roe and Patterson 2006).
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As area vegetation patterns matured and erosional episodes

decreased, C. orbicularis disappeared from the record and P. 

acropodia reestablished its dominance (>80%) by 4cm. The 

persistence of C. aerophila might be attributed to the 

persistence of dry grassland conditions still in evidence 

today around the wetland. The appearance of P. fulva and C. 

kahli in the upper 2cm of the core indicate a recent 

environment of nutrient rich, moist, deep soils with 

increasing encroachment by terrestrial plant cover or 

erosional episodes (Charman et al. 2007; Vincke et al. 2006; 

Roe and Patterson 2006; Booth & Zygmunt 2005). 

5.2.5.3 Elemental and isotopic analysis

C:N values support an influx of terrestrial based OM from 

28 to 26cm (C. orbicularis peak) followed by a mixed aquatic 

and terrestrial derived OM from 24 to 6cm. The top three 

samples show an increase in terrestrial OM. 

δ13C and δ15N values are very consistent throughout the 

core, indicating both phytoplankton and terrestrial derived 

OM. There is a brief increase in δ13C values following land 

clearing that might be attributable to an increase in 

terrestrial based OM during early succession (Wang and Woller 

2006).
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5.2.6 Climatic and nutrient analysis

The testate amoebae communities of Victoria Point have 

suggested that following land clearance and water level 

stabilization activities, increasing peat depths and reduced 

open water were quickly established. This paludification 

resulted in the loss or reduction of species reliant on 

submerged aquatic vegetation and hydrologic fluctuations for 

success.

Principle component analysis of variability in both 

assemblage and environmental measurements through time 

(PCAone) indicates that increases in spring snowfall and 

phosphorus loading measurements have the largest direct effect

on assemblage variation.

Compression of only assemblage variation through PCA 

(PCAtwo) and subsequent association through Pearson 

correlation analyses reveals that 20% of variation is 

positively correlated to spring snowfall and negatively 

correlated to spring, summer, and autumn mean temperatures. 

14% of PCA variation is negatively correlated to lake-wide 

phosphorus loading and an additional 13% is negatively 

correlated to winter snow and positively to winter rain and 

mean temperatures.
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5.2.6.1 Phosphorus loading

Samples from 20,22, and 24cm (P
samples

) are most highly 

correlated to changes in phosphorus loads to the lake, with 

the 22cm sample at the closest distance (PCAone). These 

samples are dated from 1965 to 1970 and show a reduction in 

species richness from 26 at 26cm to 13-15 between 20 and 24cm.

The N1:N0 ratio also increases for these samples from 0.27 at 

26cm to 0.45-0.54. Phosphorus loads at this time were 

estimated and measured at 132,500 and 144,100 kg yr-1 for 1960 

and 1972AD. These values represented the largest loads to the 

lake since AD 1800. The other minor influence on these samples

was a moderate winter snowfall (182.3mm), more typical of the 

Lake Simcoe area prior to European settlement than snowfall 

from 2000 to 2011 (213mm). 

The relative abundances of three species were strongly and

positively correlated to increasing phosphorus load values to 

the lake: P. cymbalum (P
samples 

range=26.46-40.97%, overall 

mean=24.29%), C. platystoma (P
samples

 range=12.32-15.95%, overall

mean=11.86%), and P. fulva (P
samples

 range=5.43-5.84%, overall 

mean=2.33%).  

All three are known inhabitants of lacustrine environments

with P. cymbalum and C. platystoma associated with submerged 

vegetation.  Submerged vegetation monitored in Cook's Bay has 
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shown a substantial increase since 1984 (1.2 to 3.1 kg m-2), 

attributed to increased phosphorus concentrations and water 

clarity (LSRCA 2011). Of particular interest is steady 

increase in the eutrophic indicator (Nichols and Shaw 1986) 

Myriophylum spicatum representing 11.9 to 60.7% of the 

community between 1984 and 2008 respectively. The increase in 

submerged vegetation biomass in conjunction with the increase 

in eutrophic M. spicatum supports the assessment that positive

correlations between  P. cymbalum and C. platystoma, 

associated with submerged vegetation habitat, are indirect 

indicators of increased phosphorus concentrations in the lake.

As P. fulva is known to inhabit both aquatic and soil 

environments, its strong correlation (r = 0.75 at p<0.0005) 

may be linked to increases in either soil or water based 

phosphorus concentrations. The presence and distribution of 

the species in the core, directly after land clearing, and 

during high phosphorus loading time of the 1960s-1970 and mid 

to late 1990s suggests that nutrient loading to the lake water

itself rather than a build-up of phosphorus in peat is the 

likely factor affecting species distribution.  

The samples at 8cm (AD 2000) and 14cm (AD 1988) were 

exclusively negatively correlated to lake-wide phosphorus 

loads. Mean phosphorus loads for time periods were the lowest 
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since European settlement in the mid 1800s (67,375 and 70,613 

kg yr-1).

5.2.6.2 Climatic influences

From PCA component one (PCAtwo), the most strongly 

correlated variable is total spring snowfall (r=0.66 at 

p=0.002). Samples associated with this variable include 

18,28,34,38,42cm with 28cm (AD 1957) resulting in the 

strongest correlation (PCAone). These samples are dated from 

1871 to 1957 and 1977. Species richness for these samples 

range from 9 to 19 with a mean of 13.8. N1:N0 ratio is between

0.36 and 0.77 with a mean of 0.53. The mean snowfall for 

correlated samples is 55.9mm and 39.9mm for uncorrelated 

samples. While no significant correlation between spring 

snowfall and the number of ice-free days exists for all 

samples, the mean number of ice-free days for the correlated 

samples is 250 and 264 for uncorrelated samples. 

Interestingly, there exists no positive correlation 

between spring snowfall and any of the abundant species from 

Assemblage I or II, defined as representative of the samples 

through bicluster analysis. There are, however, six species 

with negative correlations >0.51: C. spinosa(aculeata strain),

C. platystoma, C. delicatula, C. aerophila, C. aculeata, P. 

acropodia, and A. arenaria. The largest negative correlation 

is among the centropyxids. No literature exists that directly 
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discusses snow cover and testate amoebae abundance or ecology.

However, with general knowledge of centropyxid and snow cover 

ecology, inferences can be made regarding the correlation.

Centropyxids are highly tolerant R-strategists that thrive

on disturbance, particularly hydrologic disturbance, and low 

nutrient concentrations. Snow is a thermal insulator that 

maintains moderate soil temperatures (0ºC at 50cm snow depth) 

preventing deep freezing of the soil and reducing disturbance 

at the soil-snow interface (Callaghan et al. 2011).  Snow 

cover also allows microbial processes to continue over the 

cold season, increasing nutrient availability.  Increased soil

temperatures provide greater opportunities for infiltration of

water and nutrients during the spring thaw (Jones and Pomeroy 

n.d.). Therefore, greater snow cover depth fosters a rich, 

stable the soil environment which may rob centropyxids of the 

necessary microenvironment for population maintenance. Soil 

stability may also enhance competitor success, which could 

account for the overall positive correlation.

Correlations with PCA axis three (PCAtwo) contains two 

strong correlations - a negative correlation with winter snow 

fall, and a positive correlation with winter rainfall. No 

specific samples were definitively associated with these 

variables in PCA analysis (PCAone). A plot of PCAtwo results 
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(not shown) indicates that samples 2,4,and 6 all fall within 

the axis space of the negative winter snow correlation with 

the remainder of samples in the axis space of the positive 

winter rain and mean temperature correlations. The mean winter

snow in negatively correlated samples is 52mm greater than in 

non-correlated samples. 

Ordination-based rate of change analysis indicate large 

magnitudes of change within the upper 10cm of all cores. 

Victoria Point change is larger than that recorded during land

clearing activities. These changes were only visible with the 

addition of the third axis of DCA, included based on Horn's 

Parallel analysis results. The relationship of the third axis 

to winter climate variables suggests that climate change, 

particularly winter climate change, is the main driver behind 

the recent change in all four wetlands.

The recent diatom-based paleolimnological study by 

Hawryshyn et al. (2012) found that increased air temperatures 

and reduced ice cover from the 1950s to the 1970s produced a 

lake-wide algal community shift. This change in community is 

not recorded in the testate amoebae record likely as a result 

of substrate moisture and water chemistry being the dominant 

controls on species distribution and abundance (Booth 2002).

5.2.6.3 Summary of nutrient and climate impacts

Changes in spring climate measurements since the mid 1800s
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had the greatest impact on testate amoebae assemblage 

variation from 1871 to 1957 and again in 1977. Greater levels 

of spring snowfall created a stable environment that reduced 

disturbance and the abundance of centropyxid community members

and may increased favourable conditions for other species. 

From 1965 to 1970, increased in phosphorus loading to the 

lake negatively impacted the community, decreasing species 

richness and increasing dominance. Those testate amoebae that 

inhabit submerged aquatic vegetation increased in abundance 

likely as an indirect result of increased habitat 

availability. The reappearance of P. fulva in the mid to late 

1990s may be a response to increases in lake-wide phosphorus 

loading or an increase in phosphorus concentrations as a 

result of the “nearshore phosphorus shunt” following the 

establishment of the Zebra mussel.

Variation in the remainder of the samples is not strongly 

linked to specific environmental variables or phosphorus 

loading to the lake. There is an indication that samples from 

2004 to 2011 are linked to an increase in winter snowfall.  

5.2.7 Lake Simcoe and Tub Lake comparison

Testate amoebae species composition of the reference 

wetland included many of the same cosmopolitan species 

identified in Lake Simcoe wetlands (P. acropodia, C. 
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platystoma, C. aerophila, P. fulva, C. kahli, and C. 

orbicularis). Land clearing activities in Lake Simcoe and the 

reference wetland introduced C. aerophila and C. orbicularis 

into each community.  C. orbicularis is a grassland species 

likely transported to the lacustrine systems through erosive 

rains (Holcova 2008; Esteban et al. 2006; Finlay et al. 2000) 

while C. aerophila(soil type) is common to well aerated soils 

(Couteaux 1969; Smith and Headland 1983). 

The presence of C. orbicularis in all wetlands, though in 

differing abundances and paleodistributions, after land 

clearing activities suggests its use as an indicator of 

community succession following landscape disturbance. In Tub 

Lake, this species is present in decreasing abundances from 28

to 14cm (~30cm = land clearing) suggesting that Tub Lake has 

recovered from the disturbance, progressing past the 

successional community. This is not the case in Lake Simcoe.

Victoria Point records the species 8cm after land clearing

(~70 years) and again in the most recent sediments.  Duclos 

Point also records the species 8cm after land clearing but 

abundances continue to the present with one small 

disappearance during a disturbance event. Finally, Cook's Bay 

fails to record the species until the top sample. The 

continued presence of the species, or initial appearance, 
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indicates that the ecosystems surrounding Lake Simcoe wetlands

have not fully recovered from land clearing and have been in a

continued state of disturbance for the last ~200 years. 

The testate amoebae community of Tub Lake also shows a 

strong primary species continuity along the length of the core

- a feature not seen in any of the Lake Simcoe cores. Just 

prior to disturbance, the relative abundance of P. acropodia 

was ~88%, dropping to ~41% during the post-land clearing 

recovery period. By 4cm in depth, P. acropodia had recovered 

to ~84%.

The primary species in Victoria Point and Cook's Bay 

wetland (P. cymbalum) prior to land clearing held abundances 

of ~38% and ~47% respectively. Its abundance has diminished to

~6% in Cook's Bay and has disappeared completely from Victoria

Point wetland. The same holds true for Duclos Point - C. 

delicatula diminished from ~71% to ~4%, recovering slightly in

the top sediment.

Despite Tub Lake's recovery from initial anthropogenic 

disturbance, a new stressor may be impacting the ecosystem, as

seen in the change marked by Q-mode cluster Zone I of the top 

2cm and presence of P. fulva, not seen in the core previously.

The change is mirrored in the Lake Simcoe cores but is more 

subtle than other disturbances and therefore not marked by 
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cluster analysis. PCA analysis (PCAone) of the Victoria Point 

core isolated the 0 and 4cm samples as being completely unique

and without precedence in the core. PCAtwo analysis suggests 

that these two extremes are in some way related to climate - 

4cm to increased winter snowfall, and 0cm increased spring, 

summer, and fall temperatures. Thus, climate change may be 

responsible for the recent changes recorded in all wetlands 

studied regardless of previous disturbance.

5.3 Conclusion

The paleoenvironmental record of four wetlands in Central 

Ontario were reconstructed using testate amoebae and organic 

geochemistry as environmental proxies. To refine dating 

estimates and constrain analysis to the time period of 

interest, Ambrosia pollen was conducted on the core. The 

paleodistribution of testate amoebae were influenced by 

hydrology, sediment composition, climate, and anthropogenic 

activities.

All three Lake Simcoe wetlands show some similarity in 

post-settlement assemblage composition. Cook's Bay and Duclos 

Point show similarity in the rates of assemblage change 

following land clearing activities. Despite these 

similarities, each wetland started as a unique ecosystem and 

responded to unique stressors based on the anthropogenic 
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influences in their catchments.

The control wetland, Tub Lake, records a similar response 

to initial anthropogenic disturbance but differs in its lack 

of continued disturbance indicators which may be a result of 

the cessation of anthropogenic activity in its catchment. 

All four wetlands responded to land clearing activities 

through a diminishment in primary species abundance, and the 

introduction or abundance increase of disturbance indicating 

species. The hydrologic variability and influx of sediment and

nutrients through erosion changed Lake Simcoe wetlands from 

shallow aquatic, seasonally enriched environments dominated by

submerged aquatic vegetation to environments defined by 

paludification and enriched sediments.  Land clearing 

disturbance altered Tub Lake wetland through an influx of 

sediment and nutrients through erosion but did not have a 

long-term effect on primary species abundance.

Prior to European settlement and land clearing activities,

Victoria Point was in the early stages of fringe wetland 

development, shifting from a shallow water, seasonally 

nutrient rich shoreline to one of greater water depth, 

decreasing trophy, and increasing submerged vegetation. After 

European settlement, the wetland shifted to a peat-dominated 

system with progressive declines in submerged vegetation and 
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increased nutrient concentrations. The opening of the Trent-

Severn waterway in 1920 and subsequent lake water level 

regulation may be partly responsible for the stability 

recorded in recent sediments and for the disappearance of P. 

cymbalum, the primary species prior to European settlement. In

2007, the greatest rate of change linked to an increase in 

winter snowfall occurred in the wetland.

The testate amoebae record of Cook's Bay is a record of 

continual disturbance. The great depth of initial disturbance 

(~78cm) provides very little background testate amoebae data 

with which to assess the extent of wetland disturbance 

relative to itself. In the single pre-disturbance sample, 

Cook's Bay wetland reflected much the same environment as that

found in Victoria point - an early stage, shallow water, 

seasonally nutrient rich fringe wetland. Post land clearing 

events unique to the catchment kept the wetland in a continual

state of disturbance; the drainage of the Holland Marsh and 

subsequent land use change to commercial farming, canal 

construction that altered hydrology and became a conduit for 

urban sewage effluent, the flooding of the Marsh by Hurricane 

Hazel, the eventual diversion of the same urban effluent, and 

the introduction of the Zebra mussel all caused great 

instability in the wetland. In the last 30 years, a modicum of
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stability has returned to the wetland though there is very 

little similarity to the wetland that existed prior to 

European settlement. 

Land clearing in the area of Duclos Point wetland produced

the largest rate of change of any wetland in this study. Prior

to land clearing, Duclos point was a strongly seasonal wetland

with periods of high and low water levels, resulting in low 

and high levels of nutrient concentrations respectively. After

land clearing, the wetland was an unstable deep water, 

alkaline, environment with both submerged aquatic and peat-

based wetland testate amoebae communities. As with both other 

Lake Simcoe wetlands, some stability returned to the wetland 

in recent times but did not return to pre-disturbance 

conditions. 

Signs of a new stressor impacting all four ecosystems are 

recorded in the upper ~10cm of each core. Despite the lack of 

anthropogenic influence on Tub Lake, Q-mode cluster analysis 

and ordination-based rate of change analysis, indicate a 

magnitude of wetland change nearly on par with the land 

clearing activities of the late 1800s. A similar change spike 

is also recorded in the upper 10cm of all Lake Simcoe wetland 

cores. These changes were only visible with the addition of 

the third axis of DCA. The PCA derived relationship of the 
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third axis to winter climate variables suggests that climate 

change, particularly winter climate change, is the main driver

behind the recent instability in all four wetlands.

Chapter 6. Past variability of Lake Simcoe's 

shoreline 

6.1 Results

6.1.1 Lithology

Sedimentary units are shown in detail in Figure 32. There 

are three main units consisting, generally, of peat (0-85cm), 

carbonate mud (85-220cm), and sapropel (“gyttja”) (220-280cm).

Carbonate tests (Table 15) based on the FAO classification

scheme (2006) (Table 6) shows an increase in carbonate 

concentrations up core within the carbonate mud unit (85-

220cm) and no carbonate content within the sapropel or peat 

units aside from moderate concentrations at 242cm deep.

The lower-most thick-bedded, biogenic section is composed 

almost entirely of brown sapropel with a single woody fragment

at 257cm.  Microscopic analysis of the carbonate mud facies 

between 202-90cm indicate the presence of Charophyte 

encrustations, therefore encrustations have been indicated 

throughout the main carbonate unit. Within the carbonate unit,

diffuse to sharp transitions occur frequently via changes to 
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Figure 32.Lithology of the Victoria Point sediment core. 
(Created using Adobe 2013.)

colour or inclusions. Very thin laminated carbonate sediments 

defined by differing Munsell colour values occur in two 

different sections: 212-207cm and 180-165cm. There are also 

three distinct sections (165-156, 153-139, and 96-85cm) 

composed of carbonate mud, encrustations, gastropod shells, 

and fragmented organics. From 139-96cm smooth carbonate is 

randomly interspersed with very small fragmented organics 

while similar carbonate deposits at 207-180cm are void of 

organics.
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The upper-most biogenic section is indistinctly separated 

between Typha dominated, brown fragmental granular peat and 

herbaceous peat at ~35cm.

Table 15. Carbonate classification of the Victoria Point 
sediment core.

Sample
number

Categor
y

Concentration 
(%)

Sample
number

Categor
y

Concentration 
(%)

0 N 0 50 N 0

2 N 0 62 N 0

4 N 0 70 N 0

6 N 0 82 N 0

8 N 0 90 ST 10 to 25 (~10)

10 N 0 106 EX >25

12 N 0 122 EX >25

14 N 0 142 EX >25

16 N 0 146 ST-EX 10 to 25 (~25)

18 N 0 170 ST-EX 10 to 25 (~25)

20 N 0 190 ST-EX 10 to 25 (~25)

22 N 0 202 ST 10 to 25 (~15)

24 N 0 214 ST 10 to 25 (~10)

26 N 0 222 ST 10 to 25 (~10)

28 N 0 226 N 0

30 N 0 230 N 0

34 N 0 242 MO 2 to 10 (~2)

38 N 0 258 N 0

42 N 0 274 N 0

46 N 0
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6.1.2 Testate amoebae assemblages

As with the upper portions of the VP core, preservation of

the tests was very good (very few broken tests and a variety 

of test types). Mean test counts were 65 per downcore sample 

(34 to 274cm). Only ten tests were recorded at 190 and 258cm 

depths. Despite such low numbers, SSP analysis of both samples

assigned statistical significance to the samples due to low 

diversity. 

Simple species richness (N0) ranged from 3 to 19 with 

minimum counts at 202 and 190cm, and the maximum count at 

38cm. Generally, species counts remained <10 at ≤ 90cm and ≥10

at ≥80cm (the carbonate/peat transition). Species diversity, 

in terms of Hill's N1  (abundant effective species), 

increased up the core, with greatest diversity at 34cm deep. 

N2 diversity (very abundant effective species) also increased 

up-core but was more subtle than N1 , ranging from 2.04 

(274cm) to 7.87 (34cm). Detailed richness and diversity 

results are displayed stratigraphically (Figure 34).   

Although seventy-five taxa of testate amoebae were 

included, bicluster analysis indicated that only ten taxa 

significantly influence the assemblage composition in four, 

mostly distinct, Biofacies (Figure 8): Centropyxis platystoma,

Centropyxis constricta, Centropyxis aerophila(lacustrine 
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type), Centropyxis spinosa(aculeata strain), Centropyxis 

discoides(aculeata strain), Centropyxis delicatula, 

Phryganella acropodia, Pyxidicula cymbalum, Difflugia 

globulosa, and Paraquadrulla irregularis.

Biofacies I, seen mostly in the upper 38cm of the core, 

has a N̄1 : N0  ratio of 0.54. It is characterized by C. 

platystoma (0.0 ≥ F i  ≤ 27.25), P. acropodia (1.19 ≥ F i  ≤ 

36.81), C. spinosa(aculeata strain) (0.0 ≥ F i  ≤ 24.39), and 

P. cymbalum (0.0 ≥ F i  ≤ 37.83), with P. acropodia and P. 

cymbalum dominating.

 Biofacies II, located mostly between 42 and 62cm deep, is

characterized by the same species found in I but with a change

in dominance to C. spinosa(aculeata strain) and P. cymbalum. 

The N̄1 : N0  ratio is 0.57 for this group.

While Biofacies I and II are composed of similar species 

with differing abundances, Biofacies III and IV, differ 

distinctly in the presence/absence of calcareous P. 

irregularis. However, connections do exist through C. 

aerophila(lacustrine type) which abundantly spans both facies.

The species present in Biofacies III, found at various 

locations ≥ 90cm, contains C. constricta (0.0 ≥ F i  ≤ 26.67),

D. globulosa (14.29 ≥ F i  ≤ 50.00), C. delicatula (0 ≥ F i  ≤
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12.50), C. discoides (aculeata strain) (0.0 ≥ F i  ≤ 42.86), 

and C. aerophila(lacustrine type) (33.34 ≥ F i  ≤ 42.86) taxa 

with C. aerophila(lacustrine type) , D. globulosa and C. 

discoides (aculeata strain) as the dominant taxa. The

N̄1: N0  ratio is 0.86.

Finally, Biofacies IV, between 106 and 170cm deep, is 

characterized by C. aerophila(lacustrine type) (30.44 ≥ F i  ≤

42.86) and P. irregularis (28.69 ≥ F i  ≤ 55.07) with a

N̄1: N0  ratio of 0.62.

6.2 Discussion

The earliest phase of the shoreline environment (274 to 

~220cm), characterized lithologically by a diffuse transition 

from sapropel to carbonate sediments, shows a strong initial 

dominance by C. spinosa(aculeata strain).  At 258cm depth, C. 

spinosa(aculeata strain) was replaced by P. cymballum, C. 

delicatula, and C. discoides. This species change suggests 

that a hydrologic transition was underway at the coring 

location at that time. 

As a hydrologic disturbance-based species with high 

tolerances for elevated levels of conductivity (Dallimore et 

al. 2000, Patterson et al. 1985), low temperatures (Boudreau 

et al. 2005; Dallimore et al. 2000), and low trophy (Burbidge 
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and Schroder-Adams 1998), C. spinosa(aculeata strain) 

dominance and disappearance suggests that the wetland may have

been undergoing a transition from hydrologic inundations and 

nutrient-poor waters to stabilized hydrology and increased 

nutrient  concentrations. This is supported by the appearance 

of seasonal low-water indicator C. delicatula (Davidova 2013),

and seasonal high-water indicator C. discoides (Heckman 1998) 

as well as an increase in P. cymballum a high-nutrient, 

submerged vegetation indicator (see Chapter 5). There is also 

an increase in high-nutrient, soil-dwelling (Mitchell 2004; 

Ogden and Pitta 1990) P. acropodia abundance at 258cm. 

The samples examined at 242 and 230cm were devoid of 

testate amoebae, a possible result of extended unfavourable 

environmental conditions although no acnanthamoebae cysts 

(resistant to temperature and pH fluctuations) were found as 

was the case in Elliott et al. (2011).  Analysis of the pollen

grain morphology within the samples  found most grains to be 

either crumpled and broken. These preservation characteristics

are the result of dry sediments, sediment compaction, and/or 

pollen abrasion during transport (Davis 2012). Therefore, the 

lack of tests within the samples may be a result of 

unfavourable dry conditions in the area rather than 

temperature or pH changes. 
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Although testate amoebae did not return to the record 

until 214cm, the lithological shift at ~220cm to a strong 

carbonate concentration within the sediment (Table 15) 

indicates a return of wet conditions to the area (Dean and 

Fouch 1983). Carbonate sediments in a nearshore environment 

are typically deposited via diurnal and seasonal induced 

inorganic precipitation and bio-induced precipitation by algae

and other aquatic vegetation (Dean and Fouch 1983).  Dean and 

Fouch (1983) indicate that CaCO
3
 precipitation is greater in a 

lake's littoral zone due to increased water temperatures and 

the greater presence of precipitating vegetation. The first 

observations of Charophyte encrustations at 202cm as well as a

strong concentration of CaCO
3 
(Table 15) at that depth suggests

that CaCO
3  
deposits were initially driven by inorganic 

precipitation followed by bio-induced precipitation as aquatic

vegetation slowly became established following the dry period.

Additionally, samples from 212 to 207cm reveal laminations

characteristic of annual or seasonal deposits suggesting 

reduced hydrologic perturbations and a supersaturation of 

carbonates in the water column (Anderson and Dean 1988). 

The reemergence of testate amoebae along the shoreline at 

214cm is observed in an assemblage dominated by agglutinated 

centropyxids and difflugids (Figure 32) namely, C. 
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aerophila(lacustrine type) , D. globulosa and C. discoides 

(aculeata strain) (Biofacies III). C. discoides(aculeata 

strain) and D. globulosa are often found to be the dominant 

species in many modern Arctic lakes (Collins et al. 1990; 

Bobrov et al. 2003) while C. aerophila(lacustrine type), with 

a preference for dry, low trophy conditions, has been 

identified as a dominant species at both the Pleistocene and 

Holocene timescales in a permafrost environment (Bobrov et al.

2003; Beyens and Chardez 1987; Beyens et al. 1986). 

Additionally, centropyxids and difflugids are known to be 

opportunistic, highly tolerant genus' (Kihlman and Kauuppila 

2010; Holcova 2008; Scott et. al 2004; Patterson et al. 2002),

reinforcing the inference of a newly formed aquatic 

environment. 

Although Charophyte encrustations were not observed until 

202cm, a band of indistinct blue-green coloured laminated 

deposit is found from 200-196cm. This colouring was lost 

shortly after core extraction suggesting increased primary 

production through the presence of chlorophyll or derivatives 

(Kowalewska and Szymczak 2001; Laevastu 1958) at this time. 

By 190cm, observed increases in Charophyte abundances 

coincide in an increase in sediment CaCO
3
 concentrations, an 

abrupt decline in C. discoides(aculeata strain), a moderate 
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Figure 34.Stratigraphic plot of Biofacies assemblage 
relative frequencies & zones, 210Pb & Ambrosia dates, 
richness & diversity, lithology, & Ambrosia abundances.
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decline in C. aerophila (lacustrine type), and a substantial 

increase in D. globulosa. A sharp increase in Ambrosia pollen 

abundance is also found at this depth indicating terrestrial 

change was also underway.

The testate amoebae assemblage change may be related to 

lowering lake levels and further carbonate saturation of the 

water column. Qin et. al (2013) noted that D. globulosa was 

most abundant in alkaline lakes ranging from pH 8.0 to 8.1 

while certain species of Charophytes (e.g. Chara contraria, C.

vulgaris, C. globularis , C. halina) are well documented in 

low trophy, calcium rich waters   (Pelechaty et al 2013; 

Apolinarska et al. 2011; Garcia 1994). Morphological analysis 

of a non-calcified Charophyte oospore at 106cm, suggests that 

C. globularis (Garcia 2013) may have been the species 

inhabiting Lake Simcoe acting to precipitate calcium through 

photosynthesis. The dramatic decrease in C. discoides(aculeata

strain) may be attributable to a pH optima of ~4.5-6.5 for 

this species type (Parent et al. 2009; Booth 2001). 

Following the community instability and limited 

biodiversity ( N̄1 =  = 3.63, N̄1 : N0  = 0.86) characteristic 

of stressed environments (Patterson et. al 2002; Magurran 

1988) from 220-190cm, a complete shift in composition and 

dominance is seen as the assemblage of Biofacies IV (C. 
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aerophila(lacustrine type) and P. irregularis) enters the 

record at 170cm, and previously dominant species (C. 

discoides(aculeata strain) and D. globulosa) no longer define 

the community. 

The assemblage of Biofacies IV is characteristic of 

alkaline, mesotrophic waterbodies (Beyens et. al 1991,1986).  

P. irregularis abundances rose dramatically from 0 to 55.07% 

of the assemblage between 190cm and 170cm depth. P. 

irregularis is a calciphile that forms an idiosomic calcareous

test of rectangular calcite plates. Reports of the ecology of 

P. irregularis place this species in both lacustrine (Beyens 

et al. 1986) and peatland deposits(Opravilova and Hajek 2006; 

Muller et al. 2009), and all authors agree on its rarity in 

both live and fossil samples. In lacustrine habitats the 

species is highly indicative of mesotrophic, alkaline waters 

with high conductivity (Beyens et al. 1986) and in peatlands, 

it was found to be an indicator of calcareous fens, 

exclusively inhabiting bryophyte tufts (Opravilova and Hajek 

2006), although it has been shown to also inhabit mosses 

(Nguyen-Viet et al. 2004). A study of calcium-rich Lake 

Lautrey in eastern France (Wall et al. 2010) noted a strong 

dominance by P. irregularis during warm climatic phases.  

Commensurate with the peak in P. irregularis is an 
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increase in the  agglomeration of sediments suggesting an 

increase in Charophyte carbonate precipitation activity. 

Lithologically, a greenish-yellow laminated unit with mm sized

vascular organics records increased lacustrine primary 

productivity and shoreline terrestrial productivity from 180-

165cm, encompassing the P. irregularis peak.

From 165-139cm, a lithologic shift to large organic 

inclusions and small gastropod shells surrounded by reddish-

grey to dark-grey carbonate mud deposits occurs. A brief 

survey of the course fractions from 154cm, show numerous 

mollusc species including Pisidium spp. (Pea clams), Amnicola 

limosa (Ordinary Spire snails), Gyraulus circumstriatus 

(Flatly Coiled Gyraulus), Gyraulus deflectus (Irregular 

Gyraulus), and Bakerilymnaea dalli (Small Pond snail)

(identifications via Clarke 1981). Benthic analysis of the 

organically rich sediment-water interface of Victoria Point 

wetland from 2009-2010 (Kanavillil and O'Connor, unpublished) 

recorded all of these species in the mollusc communities 

during those years. The presence of G. deflectus (Clarke 1981)

and the mollusc community itself may indicate a shift to a 

higher trophic status along the shoreline (Dillon Jr. 2004). 

Anecdotal assessment of Pisidium dominance in this sample 

suggests that waters were calm, shallow (0.25-0.36m) and warm 
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(13.5-19.7ºC) with carbonate concentrations ranging from 55-89

mg CaCO
3
 l-1 based on Pisidium abundances >100 and >300 m-2 

(Dillon Jr. 2004; Kilgour and Mackie 1991).

Declines in P. irregularis from 122cm to 90cm revealed a 

drop in its relative abundance from 43.48 to 6.67% 

respectively, disappearing entirely by 82cm. The similar but 

more abrupt disappearance C. aerophila(lacustrine type) 

between 90 and 82cm (36.67% to 0%) coincides with the 

disappearance of Charophyte encrustations by 82cm. At the same

time, diatoms become visible in the testate amoebae slides and

the coarse macro fractions show a greatly reduced mollusc 

community. 

Changes to water chemistry from precipitation induced 

rising lake water levels may have produced the biotic changes 

seen in the 90/82cm carbonate/peat transition. P. irregularis,

Pisidium, and Charophytes are all calciphiles (calcicoles) 

suggesting a reduction in alkalinity in the water column.  

Investigations into P. irregularis at “city sites” by 

Nguyen-Viet et al. (2004) proposed a link between the Ca2+ 

leaching effects of NO
2
 concentrations on the test and the 

absence of the species from atmospherically NO
2  
polluted 

sites. Lambert and Davy (2011) found that the Charophyte, C. 

globularis (identified in level 106cm), was extremely 
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sensitive to increases in Nitrate-N in both field and 

laboratory experiments, with concentrations of ≥2mg l-1 

negatively affecting growth rates. And finally, Hornbach and 

Cox (1987) as cited in Dillon Jr. (2004) found that 

populations of Pisidium exhibited optimal growth in naturally 

hard waters with laboratory experiments describing an optimal 

CaCO
3
 concentration of 160mg l-1. 

Whole-lake experiments by Schindler et al. (1985) from 

1971 to 1976 to test the effects of ammonium (NH
4
+) inputs on 

lake water chemistry offer significant findings related to the

disappearance and reductions of  calciphiles from the 

nearshore of Lake Simcoe.  The authors found that the addition

of ammonium + phosphorus rapidly acidifies lake waters through

biological uptake (likely by phytoplankton), reducing pH 

values as low as 4.75 from a background of 6.95. Marked 

decreases in alkalinity were also observed .  

The natural introduction of inorganic nitrogen into lakes 

takes place through nitrogen fixation, precipitation, 

groundwater flow, and surface run-off (Lambert and Sommer 

2010). Certain microorganisms have the ability to transform 

organic atmospheric nitrogen to bioavailable inorganic forms 

(NO
3
-,NH

3
, and NH

4
+)(Lampert and Sommer 2010). In precipitation,

ammonium is the second most important cation constituting 12-

179



25% of all protolytic cations (Schindler et al. 1985). Studies

of streams and watersheds have found a strong retention of 

inorganic nitrogen by forests which is released upon 

decomposition and made available for transport to lakes via 

run-off and groundwater flow (Lambert and Sommer 2010; 

Gundersen and Bashkin 1994; Schindler et al. 1985). 

Therefore, experimental evidence from various sources 

supports the hypothesis that increased precipitation likely 

played a major role in the acidification of Lake Simcoe by 

increasing inorganic N inputs which lead to the disappearance 

or reduction of calciphile species whose growth rates and 

surviorships are negatively correlated to increases in 

nitrogen. 

The disappearance of C. aerophila(lacustrine type), a 

dominant species throughout the carbonate facies, may also be 

linked to acidification through a possible symbiotic 

relationship with Charophytes that may supply the raw 

materials for its agglomerated test construction, as well as 

an ecological preference for alkaline waters. Both the 

appearance and disappearance of C. aerophila(lacustrine type) 

are timed precisely with Charophyte growth. RDA analysis of 

environmental variables and modern testate amoebae assemblages

recorded a positive correlation between pH (positively 
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correlated to alkalinity (Schindler et al. 1985)) and C. 

aerophila(lacustrine type) (Patterson et al. 2013). 

Additionally, a reconstruction of lakes in the Temagami region

of northeastern Ontario, found C. aerophila(lacustrine type) 

in association with Charophytes (Boudreau et al. 2005). 

Within this same time frame of lake water alkalinity 

reduction, water level increases, and higher trophy lies the 

third largest testate amoebae abundance (48939 cm-3), surpassed

only by recent climate correlated abundances in AD 1961 and 

2011 (see Chapter 5). 

Following the loss of calciphiles, lithology and testate 

amoebae assemblages are characterized by an increasingly 

terrestrial environment along the nearshore in the form of a 

fringe fen. From 85 to 40cm, there is an alternation from 

Biofacies I to Biofacies II assemblages. Connected to fen 

formation is a dramatic increase in rare species as shown by 

the N1:N0 ratios of 0.544 (Biofacies I) and 0.579 (Biofacies 

II) as opposed to 0.86 for the preceding Biofacies (III). Mean

N1 values also record increases in biodiversity - 8.68, 5.18, 

3.63 for Biofacies I, II, and III respectively. 

While not included in the Biofacies I assemblage by 

bicluster analysis, C. delicatula is the most dominant species

(44.19% at 80cm) in the early formation of the fen. As 
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described in section 5.2.1, C. delicatula has a late August 

distribution in shallow (0.5-1m), nutrient enriched 

(mesotrophic to hypereutrophic) waters. Less abundant species 

found in this sample include C. platystoma, P. fulva, and C. 

discoides(aculeata strain) (9.55%,9.55%,8.36% respectively). 

Optima, tolerances and habitat for all three taxa are provided

in Table 16.

Table 16. Optima, tolerances and habitat for C. platystoma, P.
fulva, and C. discoides(aculeata strain).

Taxa Water table 
depth (cm) 
(low-common-
high)

Moisture 
(%)

Habitat Reference

C. 
platystoma

2.5-5-12.5 87.5-92-95 mosses, 
mineral 
rich, 
alkaline

Charman et 
al. 2007; 
Lamentowicz
2010

P. fulva 0-8-16 81-87-94 mosses,
nutrient 
rich, 
neutral

Charman et 
al. 2007; 
Booth & 
Zygmunt 
2005

C. 
discoides 
(aculeata 
strain)

-2-4-12 93-95-97 mosses,
stressed 
environmen
ts, pH: 
~4.5-6.5

Charman et 
al. 2007; 
Parent et 
al. 2009; 
Booth 2001

Based on the ecological preferences of C. delicatula and 

the less abundant taxa, early fen formation is characterized 

by an unstable environment with hydrologic fluctuations, 
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increased organic content, and high productivity. 

The final assemblage prior to European settlement, 

Biofacies II from 65 to ~40cm (~ AD 1890), is dominated first 

by C. spinosa(aculeata strain) followed by P. cymbalum. 

Together, these species indicate an initially stressed, 

oligotrophic environment with increasing sumberged aquatic 

vegetation and nutrient concentrations (Farooqui et al. 2012; 

Patterson and Kumar 2002; Dallimore et al. 2000). 

  

6.3 Conclusion

The paleoenvironmental record of Victoria Point wetland 

prior to European settlement was reconstructed using testate 

amoebae as an environmental proxy. To enrich interpretations 

and refine dating estimates, lithology and select pollen and 

macro analyses were conducted on the core. The 

paleodistribution of testate amoebae were influenced water 

quality (pH, trophic status, temperature), water quantity 

(inundation, drought and precipitation events), and sediment 

composition (carbonates, organics).

The earliest phase of Victoria Point wetland was 

characterized by hydrologic fluctuations and reductions which 

eventually lead to the disappearance of all testate amoebae at

the location. 
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The return of wet conditions brought with it testate 

amoebae assemblages common in Arctic, oligotrophic, alkaline 

lakes and increased dissolved CaCO
3
 within the water column. 

Decreasing water depths and further carbonate saturation 

of the lake waters increased alkalinity and nutrient 

concentrations leading to testate amoebae assemblages 

dominated by alkaline D. globulosa and the colonization of the

area by Charophytes. A change in the terrestrial ecosystem of 

the area was also underway, increasing disturbance related 

Ambrosia pollen abundances.

As carbonate concentrations in the sediment reached 

greater than 25%, the appearance of P. irregularis, a 

mesotrophic calciphile, marked a new phase in the history of 

the location that lasted until the commencement of fringe 

wetland formation began at ~82cm.

The decline of the calciphiles (P. irregularis, D. 

globulosa, C. aerophilia, and Charophytes) was brought on by 

increasing water levels and lake acidification through an 

influx of nitrogen and phosphorus from precipitation, surface 

run-off, and possibly biotic sources. 

Fringe wetland fen formation began under continual 

hydrologic disturbance leading to the gradual increase in 

submerged, and emergent aquatic vegetation along the 
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shoreline. 

Chapter 7. Synthesis and Summary

7.1 Synthesis

The health of Lake Simcoe has been extensively studied 

since excessive aquatic growth was first reported in the 

1970's by shoreline residents. Most of this research has 

focused on elucidating, monitoring and controlling nutrient 

sources to reduce phosphorus loads to the limnetic zone of the

lake to counteract the detrimental affects to the cold-water 

fishery.  Some research has been conducted on the littoral 

zone of the lake though none, until very recently (Danesh et 

al. 2013), have attempted to understand the historic effects 

of stressors on littoral biological communities. The history 

of the Lake Simcoe fringe wetland communities have not been 

the focus of any study prior to the one presented here. My 

testate amoebae based paleolimnolgical/paleoecological study 

addresses the gap in knowledge surrounding the effects of 

multiple stressors on Lake Simcoe's fringe wetland communities

at Anthropocene time scale with additional data from past 

variability. 

Prior to the Anthropocene, Lake Simcoe's north shoreline 

(Victoria Point) exhibited five distinct shifts in the 
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paleoenvironment evidenced by a testate amoebae response to 

changes in  water quality (pH, trophic status, temperature), 

water quantity (inundation, drought, precipitation events), 

and sediment composition (carbonates, organics). 

Proxy data indicate that Lake Simcoe's early shoreline 

lacustrine environment was similar to the environment found 

just prior to the start of the Anthropocene. Hydrologic 

perturbations encouraged the dominance of C. spinosa(aculeata 

strain) while soil and aquatic communities maintained a 

presence in the area. 

A period of low water input to the area desiccated pollen 

grains and proved too unfavourable for continued testate 

amoebae growth. 

The return of wet conditions brought with it a testate 

amoebae community similar to that found in arctic oligotrophic

lakes where C. discoides(aculeata strain), D. globulosa and C.

aerophila(lacustrine type) dominate. 

The reduction of hydrologic disturbance and increased 

alkalinity as indicated by an increase in D. globulosa, and 

the introduction of Chara spp. (alkalinity & CaCo
3
 indicators).

A unique shift in Lake Simcoe's paleoenvironment is marked

by further increases to CaCo
3 
concentrations as well as 
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terrestrial and aquatic productivity. The shift is evident in 

the dramatic appearance and dominance of the calciphile P. 

irregularis, a pronounced increase in Charophyte 

encrustations, and the appearance/preservation of vascular 

terrestrial detritus. 

Increasing water levels from precipitation reduced CaCo
3
 

concentrations and acidified and enriched the lake waters 

(Lambert and Sommer 2010; Schindler et al. 1985) leading to 

the disappearance of the previously dominant calciphiles and 

the recommencement of a fringe wetland environment with 

increased abundances of submerged aquatic vegetation and 

organic matter. 

Paludification of the shoreline is indicated by decreasing

abundances of testate amoebae associated with submerged 

aquatic vegetation (C. spinosa(acueleata strain)) and 

increasing abundances  of species that dwell at the soil-

litter interface (P. acropodia). 

A detailed investigation at the Anthropocene timescale of 

Victoria Point and two other Lake Simcoe wetlands (Cook's Bay 

and Duclos Point) shows a clear response to initial land 

clearing activities. All three wetlands exhibited a 

diminishment of primary species abundance, an introduction or 

abundance increase of disturbance indicating species, and an 
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increase in species richness and diversity. 

Duclos Point showed the greatest rate of change associated

with ~AD 1830 land clearing activities, changing from a 

stable, strongly seasonal shallow wetland indicated by C. 

delicatula, to an unstable, deeper, slightly alkaline wetland 

with submerged aquatic vegetation and enriched soil 

components. 

Initial land clearing (~AD 1830) did not have the same 

pronounced affect on the environment of Cook's Bay wetland. It

was not until the drainage of the Holland Marsh and canal 

construction (~AD 1920-1930) that a strong environmental 

response is recorded. Land use change to commercial farming 

along with water level regulation of the canal and its use as 

a receiving water for urban sewage effluent lead to a rapid 

increase in soil-based testate amoebae that thrive in high 

nutrient environments. The flood event of Hurricane Hazel 

(1954), the dramatic rise of corn as a crop (~1960) and the 

diversion of sewage effluent in the 1980's further changed the

testate amoebae, shifting primary abundance to a submerged 

aquatic community (C. platystoma).  

Just prior to European land clearing Victoria Point shows 

a clear change in proxy assemblage along with the presence of 

Ambrosia pollen.  At 46cm, an increase in submerged aquatic 
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vegetation, alkalinity and soil enrichment records an 

erosional disturbance event that may be related to First 

Nations land clearing in the area or to a localized climatic 

event.  

The land clearing activity of ~AD 1871, produced a marked 

but moderate change to the wetland, resulting in a gradual 

decrease of submerged aquatic vegetation and increase in soil-

based testate amoebae that thrive in high nutrient 

environments.  The opening of the Trent-Severn waterway in 

1920 and subsequent lake water level regulation may be partly 

responsible for the stability recorded in recent sediments and

for the disappearance of P. cymbalum, the primary species 

prior to European settlement. 

An increase in phosphorus loads to the lake from  1965 to 

1970 reduced species richness in the wetland while increasing 

or maintaining the dominance of species associated with 

submerged aquatic vegetation (P. cymbalum, P. fulva, and C. 

platystoma) positively correlated to phosphorus.

Changes in spring climate measurements since the mid 1800s

had the greatest impact on testate amoebae assemblage 

variation from 1871 to 1957 and again in 1977. Greater levels 

of spring snowfall created a stable environment that reduced 

disturbance and the abundance of centropyxid community members
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and may have increased favourable conditions for other species

to thrive. 

Land clearing disturbance altered the Tub Lake reference 

wetland through an influx of sediment and nutrients from 

erosion but did not have a long-term effect on primary species

abundance. 

A change in the testate amoebae communities from ~10 to 

0cm is evident in all four wetlands despite a complete lack of

anthropogenic influence on Tub Lake.  Q-mode cluster analysis 

and ordination-based rate of change analysis, indicate a 

magnitude of wetland change nearly on par with the land 

clearing activities of the late 1800s in Tub Lake and a larger

magnitude than land clearing in Victoria Point. A similar 

change spike is also recorded in the upper 10cm of Cook's Bay 

and Duclos Point wetland cores. These changes are linked to 

winter climate variables suggesting that climate change, 

particularly winter climate change, is the main driver behind 

the recent instability in all four wetlands. However, the 

addition of the Zebra mussel invasion of Lake Simcoe may also 

be influencing recent wetland change through an increase in 

nutrients via the “nearshore phosphorus shunt” hypothesis 

(Hecky et al. 2004).
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7.2 Summary

Testate amoebae were used as 

paleolimnological/paleoecological indicators to reconstruct 

paleoenvironmental changes to Lake Simcoe lacustrine fringe 

wetlands from climate, nutrient, and non-native species 

influences under the following lines of inquiry:

1) How have nearshore testate amoebae communities 

developed since deglaciation?   

An arctic-like, oligotrophic, neutral pH testate amoebae 

community became established soon after deglaciation. The

withdrawl of Lake Algonquin and the subsequent water 

level low-stand changed testate community dominance to 

mesotrophic calciphiles. The main Hypsithermal acidified 

and enriched lake waters enabling the establishment of 

slightly acidic to neutral testate amoebae typically 

found in wetland environments.

2) Have nearshore fringe wetland testate amoebae 

communities changed since European settlement?

Testate communities have shown a diminishment in the 

abundance of pre-settlement species and an introduction 

or abundance increase in disturbance indicating species. 

3) If so, has there been a change in richness, a shift in

species abundance or community composition? 
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Species richness has increased in all three Lake Simcoe 

wetlands up-core from the point of European settlement. 

The largest change in species richness began in the mid-

1990s, increasing the richness of all three wetlands to a

mean of 17.3 species where the mean prior to European 

settlement was 6.8.  

There has been a clear shift in both abundance and 

community composition since European settlement across 

all cores. There has been a 224% (DP), 262% (CB), and 

281% (VP) mean increase in testate amoebae abundance 

since land clearing. All three communities have 

experienced a change in community composition such that 

pre-settlement species have been severely diminished or 

have disappeared entirely to be replaced by species 

either highly tolerant increased nutrient concentrations 

and disturbance or having a preferential affinity for 

such an environment.

4) Are any of these changes related to temporal trophic 

status, land use, climate, or non-native species 

introductions? 

All three wetlands show a testate amoebae community 

change in relation to increased nutrient inputs from 

changes in land use around the watershed. The estimated 
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chronology of Cook's Bay land use change associated with 

the drainage of the Holland Marsh and construction of the

canal system shows a strong qualitative relationship to 

testate amoebae community change. There is also a strong 

qualitative relationship between initial land clearing 

activities in Duclos Point and community change. The 

dated core extracted from Victoria Point provides 

evidence of community change associated with known dates 

of changes in land use, climate and non-native species. 

In Victoria Point, there are qualitative community 

changes associated with possible First Nations and 

European land clearing activities in ~AD 1306 and ~1871 

respectively. Quantitatively, community change is 

correlated to increases in lake-wide phosphorus loading 

from 1965 to 1970, increases in spring snowfall between 

1871 to 1957 and again in 1977, increases in winter 

snowfall between 2007 to 2010, and increases in winter 

rainfall for the remainder of the samples. Attributing 

community change to the introduction of Zebra mussels is 

difficult based on the co-occurrence of the introduction 

with climate change and lake-wide phosphorus increases. 

However, one species (P. fulva) has shown a consistent 

increase in abundance in relation to the influx of 

nutrients following land clearing activities and also 
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shows a very strong quantitative positive correlation to 

lake-wide phosphorus loading. With this in mind, its 

presence within the upper 10cm of both Cook's Bay and 

Victoria Point wetlands (~AD 1996 to 2011) may indicate 

an increase in nutrient concentrations to the wetlands as

a result of the “nearshore phosphorus shunt” following 

the establishment of the Zebra mussel in Lake Simcoe in 

the mid-1990s and increased anthropogenic inputs.      

5) Are the changes unique to each wetland or are they 

lake-wide? 

The strongest lake-wide change is the paludification of 

the nearshore areas studied. Prior to land clearing 

activities, the areas were primarily aquatic environments

with strong to moderate seasonally driven hydrologic 

regimes and fluctuating  nutrient concentrations. After 

land clearing, the areas became increasingly dominated by

the build up of organic matter and associated flora and 

fauna.     

6) Can a comparison with a reference wetland pin-point 

the source of these changes as anthropogenic? 

While the reference wetland lies within Canadian Shield 

geology and thus lacks species associated with the hard-

water of Lake Simcoe, its history of community change can

194



still be compared to testate amoebae communities 

distributed over time in Lake Simcoe. The Tub Lake 

community shows great continuity across time with regard 

to its primary species which retained dominance 

throughout the entire core. After land clearing activity,

the community succession indicator (C. orbicularis) 

reduced in abundance before finally disappearing 

suggesting that Tub Lake has recovered from the initial 

disturbance. This is not the case in Lake Simcoe where 

the primary species has changed a number of times 

throughout the length of each core and C. orbicularis 

continues its presence. The lack of anthropogenic 

influence on Tub Lake since ~AD 1890 and its community 

stability suggests that the factor affecting community 

instability within each of the Lake Simcoe wetlands is 

anthropogenic in origin.

7) What is the past variability of the testate amoebae 

communities prior to European settlement?

Prior to European settlement there were three distinct 

testate amoebae communities in Victoria Point wetland: 

1)An “early fringe wetland community” dominated by 

aquatic and soil-based species; 2)An arctic-like, 

oligotrophic testate amoebae community dominated by 
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alkaline, lacustrine species; and 3)A CaCo
3
-based 

community dominated by mesotrophic calcipiles.

In closing, the results of my testate amoebae based 

paleolimnolgical/paleoecological study have provided insight 

into the paleoenvironments of Lake Simcoe's shoreline with 

regard to past variability and Anthropogenic influences. Lake 

Simcoe's shoreline has undergone changes in hydrology, trophic

status, pH, and biological community composition mainly as a 

result of hydrologic changes.  The acidification and nutrient 

enrichment of Lake Simcoe that instigated the paludification 

of the location was compounded by the anthropogenic activities

of the last ~200 years quickly enriching the water and 

sediment of the shoreline. The mean rate of change in the 

testate amoebae community since ~AD 1300 (0.46) is greater 

than the rate of change in the preceding record (0.40).

It is my hope that the results of this study will provide 

Lake Simcoe stakeholders with the information necessary to 

make informed decisions regarding any future management or 

restoration efforts of the Lake Simcoe shoreline. I also hope 

that my use of testate amoebae supports the growing body of 

evidence showing its usefulness as a paleoenvironmental proxy 

for land use change, hydrology, climate, and nutrient 
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enrichment inferences.

Future research is required to fully understand the 

complexity of multiple stressors on testate amoebae 

communities as seen in the most recent samples of this study. 

Long-term seasonal monitoring of testate amoebae community 

composition with regard to physical and chemical environmental

factors may provide the resolution needed to tease apart the 

effects of multiple stressors on the community. Additional 

research to evaluate the efficacy of using individual fringe 

wetland testate amoebae species as indicators of environmental

change or disturbance may enable the creation of a protocol 

for rapid assessment of Lake Simcoe wetland health.
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Appendix A - Testate amoebae & Chara micrographs
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A. arenaria
C. aerophila (lacustrine 

type)

C. aerophila (soil type) C. aculeata
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C. delicatula

C. discoides (aculeata 

strain)

C. orbicularis

C. constricta
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C. platystoma
C. spinosa (aculeata 

strain)

Chara globularis oogonia 
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D. globulosa

Chara spp. encrustation H. elegans

C. kahli
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P. cymbalumP. fulva

P. irregularis P. acropodia
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Site Top Bottom Lyc. TA Sum Ambrosia AS AA AAT AC ACR AD ADI AE AG AH AI
VP 0 1 24 342 677 3 3 2
VP 2 3 148 291 0 2 2 2 2
VP 4 5 148 254 9
VP 6 7 170 267 0 2 2
VP 8 9 128 247 3 5
VP 10 11 88 253 504 2
VP 12 13 60 253 2 5
VP 14 15 49 254 0 2 7
VP 16 17 70 246 2
VP 18 19 78 253 0 2
VP 20 21 48 257
VP 22 23 39 349 0
VP 24 25 43 256 425 3
VP 26 27 58 515 336 2
VP 28 29 77 256 587
VP 34 33 199 133 212
VP 38 37 631 341 347 3
VP 42 41 682 112 395
VP 46 45 527 81 61
VP 50 49 423 109 153 2 3
VP 62 61 224 123 161 3 3
VP 70 69 139 68 199 2 2
VP 82 81 219 144 0 5 2
VP 90 89 63 51 0
VP 106 105 162 207 0
VP 122 121 182 78 0
VP 142 141 401 179 0
VP 146 145 95 77 0
VP 170 169 82 117 0 2
VP 190 189 245 10 2336
VP 202 201 66 12 0
VP 214 213 179 41 716 2
VP 230 229 56 0 225
VP 242 241 116 0 799
VP 258 257 116 10 0
VP 274 273 175 41 0
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Site Top Bott. AME AR AV CE CL CM CAC CAE CCO CD CDI CEC CO CP CS
VP 0 1 2 7 31 7 48 7 29 36
VP 2 3 2 12 41 9 5 32 43
VP 4 5 12 27 3 9 7 68 31
VP 6 7 2 29 36 7 15 2 41 12
VP 8 9 22 44 7 2 27 29
VP 10 11 2 31 2 2 26 36
VP 12 13 5 17 3 41 32
VP 14 15 2 3 14 22 19
VP 16 17 2 2 12 5 2 27 27
VP 18 19 2 14 5 2 36 24
VP 20 21 2 3 19 2 41 27
VP 22 23 2 24 3 5 2 43 36
VP 24 25 2 2 7 7 41 27
VP 26 27 3 2 2 48 12 3 41 32
VP 28 29 5 9 32 24
VP 34 35 15 2 9 12 12 19
VP 38 39 2 3 20 2 2 10 19 63
VP 42 43 2 2 2 7 9 3 37
VP 46 47 2 20
VP 50 51 2 2 2 10 31
VP 62 63 3 2 5 2 7 44
VP 70 71 3 15 9 17
VP 82 83 5 63 12 14 3
VP 90 91 19 14 7
VP 106 107 80 10 5
VP 122 132 24 7
VP 142 143 77 2
VP 146 147 32 5
VP 170 171 37 3 3
VP 190 191 3 2
VP 202 203 5 5
VP 214 215 14 5 7
VP 230 231
VP 242 243
VP 258 259 2 2 2
VP 274 275 2 27
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Site Top Bott. CEU CK CI COV CSPPCSA CCR DSPPDA DB DBR DG DGL DL DLI
VP 0 1 2
VP 2 3 15 2
VP 4 5 3 7 7 3 3
VP 6 7 9 3
VP 8 9 9
VP 10 11 12 7 2
VP 12 13 5 2 2 3
VP 14 15 3 5
VP 16 17 3 2 9 2
VP 18 19 3
VP 20 21 2 3
VP 22 23 10
VP 24 25 3 2
VP 26 27 10 3 2
VP 28 29 3
VP 34 35
VP 38 39 9
VP 42 43
VP 46 47 2
VP 50 51
VP 62 63 2 2
VP 70 71 2
VP 82 83 2 5 2 3
VP 90 91 9
VP 106 107 43
VP 122 132 14
VP 142 143 14 27
VP 146 147 5
VP 170 171 7
VP 190 191 5
VP 202 203 2
VP 214 215 12
VP 230 231
VP 242 243
VP 258 259
VP 274 275
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Site Top Bott. DLU DLIT DO DPU DR DS DY DV EC EF EL ER ES ET HE
VP 0 1 3 14
VP 2 3 2 9 5
VP 4 5 3 5 5
VP 6 7 2 2 10 2
VP 8 9 7 2
VP 10 11 9 2
VP 12 13 3 3
VP 14 15 5 2
VP 16 17 2 2
VP 18 19 3 2
VP 20 21 7
VP 22 23 3 2
VP 24 25 2
VP 26 27 2 2 2 5
VP 28 29
VP 34 35 2
VP 38 39 2 5 2 2
VP 42 43 2
VP 46 47 3
VP 50 51
VP 62 63 2
VP 70 71 2
VP 82 83 2
VP 90 91
VP 106 107
VP 122 132
VP 142 143 2
VP 146 147
VP 170 171
VP 190 191
VP 202 203
VP 214 215
VP 230 231
VP 242 243
VP 258 259
VP 274 275
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Site Top Bott. HP HS HPU HPE HPA HSP LV LE LM LS NB NC NG NGR NO
VP 0 1 5 2 2 3
VP 2 3 3 2
VP 4 5 2 2 2 2
VP 6 7 2 2
VP 8 9 2
VP 10 11 2 3 3
VP 12 13 3
VP 14 15 2
VP 16 17 2 2
VP 18 19
VP 20 21
VP 22 23 5
VP 24 25 2
VP 26 27 2 2 2 2
VP 28 29
VP 34 35 7 2
VP 38 39 10 2
VP 42 43 2 2
VP 46 47
VP 50 51 5
VP 62 63
VP 70 71
VP 82 83
VP 90 91
VP 106 107
VP 122 132
VP 142 143 2
VP 146 147 2
VP 170 171
VP 190 191
VP 202 203
VP 214 215
VP 230 231
VP 242 243
VP 258 259
VP 274 275
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Site Top Bott. PSPPPF PC PO PP PA PI PG PASPPQS SL TE TL TA TD
VP 0 1 126 7 5
VP 2 3 7 9 10 71 7
VP 4 5 7 9 5 19 2 3
VP 6 7 19 63 9
VP 8 9 5 20 51 7 5
VP 10 11 5 37 71 2
VP 12 13 5 65 3 48 3 2
VP 14 15 77 7 77 5 2 2
VP 16 17 78 7 2 60
VP 18 19 15 63 2 80 2
VP 20 21 15 68 66 2
VP 22 23 20 143 51
VP 24 25 14 93 51 2
VP 26 27 9 262 68
VP 28 29 19 113 2 49
VP 34 35 7 31 17
VP 38 39 3 152 31
VP 42 43 29 2 14 2
VP 46 47 45 9
VP 50 51 39 14
VP 62 63 46 2
VP 70 71 14 2 2
VP 82 83 14 5 7 2
VP 90 91 3
VP 106 107 5 5 60
VP 122 132 34
VP 142 143 56
VP 146 147 32
VP 170 171 65
VP 190 191
VP 202 203
VP 214 215 2
VP 230 231
VP 242 243
VP 258 259 3 2
VP 274 275 7 5
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Site Top Bottom Lyc. TA Sum Ambrosia AS AA AAT AC ACR AD ADI AE AG AH AI
CB 0 1 22 199 2482 2 5 11
CB 2 3 54 335 772 8 7
CB 4 5 39 256
CB 6 7 50 329 955 16
CB 8 9 52 424 3 5
CB 10 11 57 297 539 2
CB 12 13 73 195 298 3
CB 14 15 149 183 0 4
CB 16 17 59 232 3
CB 18 19 31 192 931 2
CB 20 21 34 154
CB 22 23 43 147 428
CB 24 25 86 150
CB 26 27 61 187 0
CB 28 29 163 135 212 3 8
CB 30 31 127 94 0 6
CB 34 33 156 41 0
CB 38 39 702 89 338
CB 42 43 261 37 0
CB 46 47 323 48 235 2
CB 50 51 406 38 174
CB 62 53 514 32 0
CB 70 71 382 52 138
CB 78 79 149 24 619
CB 86 87 264 72 0 4
DP 0 1 124 281 267 25 2 22
DP 2 3 104 122 0 8 2
DP 4 5 125 146 3
DP 6 7 108 108 0 5 6
DP 8 9 213 68 4 2
DP 10 11 174 94 336 2 3
DP 12 13 128 66 4
DP 14 15 188 102 148 4
DP 16 17 111 38 4 5
DP 18 19 129 123 2036
DP 20 21 472 32 3
DP 22 23 151 86 1209 2 7
DP 24 25 1877 31 892 3
DP 26 27 1499 56 1793 5 7
DP 28 29 936 36 2935 2
DP 30 31 1416 60 4731 2 6
DP 34 33 546 12 178
DP 38 37 716 21 152 3
DP 42 41 518 7 0
DP 50 49 329 5 120
DP 62 61 1103 6 16
DP 78 77 467 19 80
DP 86 85 347 5 0
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Site Top Bottom AME AR AV CE CL CM CAC CAE CCO CD CDI CEC CO CP CS
CB 0 1 24 5 5 2 47 13
CB 2 3 25 49 8 122 11
CB 4 5 32 15 7 73 10
CB 6 7 11 14 3 137 11
CB 8 9 21 31 21 4 119 5
CB 10 11 14 42 85 27
CB 12 13 5 3 66 22
CB 14 15 6 13 38 35
CB 16 17 6 8 76 21
CB 18 19 2 2 47 20
CB 20 21 3 6 66 18
CB 22 23 22 46 24
CB 24 25 3 5 27 47
CB 26 27 3 10 60 34
CB 28 29 5 4 58
CB 30 31 12 34
CB 34 33 2 3 3 8 7
CB 38 39 3 17 11
CB 42 43 10 6
CB 46 47 9 3 12
CB 50 51 3 6 2
CB 62 53 2 7 7
CB 70 71 5 6 15
CB 78 79 3 4
CB 86 87 2 10 5 8
DP 0 1 4 40 32 2 34 65
DP 2 3 3 4 11 8 32 30
DP 4 5 3 5 6 8 6 34 25
DP 6 7 2 4 5 6 8 20 25
DP 8 9 3 4 5 19 13
DP 10 11 2 4 5 5 17 19
DP 12 13 7 6 2 5 2 8
DP 14 15 2 7 5 22 30
DP 16 17 5 2 13 3
DP 18 19 3 7 5 29 27
DP 20 21 3 14
DP 22 23 5 3 23 21
DP 24 25 1 2 7 11
DP 26 27 8 4 6 11
DP 28 29 4 12 6
DP 30 31 2 7 4 5 24
DP 34 33 2 6 2 2
DP 38 37 2 4 4
DP 42 41 5
DP 50 49 2 3
DP 62 61 3 3
DP 78 77 10 2 4
DP 86 85 3
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Site Top Bottom CEU CK CI COV CSPP CSA CCR DSPP DA DB DBR DG DGL DL DLI
CB 0 1 2
CB 2 3 3
CB 4 5 15 3
CB 6 7 24 4
CB 8 9 42 5 3
CB 10 11 17 6
CB 12 13 18 5
CB 14 15 7 8
CB 16 17 27 7
CB 18 19 17 4
CB 20 21 11 5
CB 22 23 9 2
CB 24 25 3 10
CB 26 27 7 6
CB 28 29 2 10
CB 30 31 3
CB 34 33 2
CB 38 39
CB 42 43
CB 46 47
CB 50 51
CB 62 53
CB 70 71
CB 78 79
CB 86 87
DP 0 1 2 5
DP 2 3 3
DP 4 5 2 8
DP 6 7 3
DP 8 9 4
DP 10 11 5 8
DP 12 13 3 10
DP 14 15 2 5
DP 16 17 1 3
DP 18 19 10 8
DP 20 21 7
DP 22 23 3 4
DP 24 25
DP 26 27 4
DP 28 29 7
DP 30 31 5
DP 34 33
DP 38 37
DP 42 41
DP 50 49
DP 62 61
DP 78 77
DP 86 85 2
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Site Top Bottom HP HS HPU HPE HPA HSP LV LE LM LS NB NC NG NGR NO
CB 0 1 2 2
CB 2 3 8 5
CB 4 5 2
CB 6 7 3
CB 8 9 5 5
CB 10 11 8 3 3
CB 12 13 9
CB 14 15 2
CB 16 17 11
CB 18 19 6 2
CB 20 21 2
CB 22 23 7
CB 24 25 2
CB 26 27
CB 28 29
CB 30 31
CB 34 33
CB 38 39 2
CB 42 43
CB 46 47
CB 50 51
CB 62 53
CB 70 71
CB 78 79
CB 86 87
DP 0 1
DP 2 3
DP 4 5 3
DP 6 7 2
DP 8 9
DP 10 11
DP 12 13
DP 14 15
DP 16 17
DP 18 19 2
DP 20 21
DP 22 23
DP 24 25
DP 26 27
DP 28 29
DP 30 31
DP 34 33
DP 38 37
DP 42 41
DP 50 49
DP 62 61
DP 78 77
DP 86 85
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Site Top Bottom PSPP PF PC PO PP PA PI PG PASPPQS SL TE TL TA TD
CB 0 1 17 11 17 9 2 2 3
CB 2 3 16 30 24 4 3
CB 4 5 12 15 50
CB 6 7 16 35
CB 8 9 4 40 79 3
CB 10 11 11 27 30 2
CB 12 13 9 31 8
CB 14 15 13 36
CB 16 17 10 48
CB 18 19 7 2 60 9
CB 20 21 11 7 5
CB 22 23 11 11 2
CB 24 25 21 17
CB 26 27 23 31
CB 28 29 33 4
CB 30 31 25 3
CB 34 33 7 5
CB 38 39 17 17 15 5
CB 42 43 2 19
CB 46 47 10 12
CB 50 51 20 5 2
CB 62 53 6 5
CB 70 71 12 3
CB 78 79 11 3
CB 86 87 32 2
DP 0 1 2 3 24 11 2
DP 2 3 21
DP 4 5 4 35
DP 6 7 4 14 4
DP 8 9 10 4
DP 10 11 19 3
DP 12 13 11 6
DP 14 15 3 20
DP 16 17 2
DP 18 19 27 3
DP 20 21 5
DP 22 23 13 5
DP 24 25 4
DP 26 27 2 9
DP 28 29 5
DP 30 31 5
DP 34 33
DP 38 37 3 5
DP 42 41 2
DP 50 49
DP 62 61
DP 78 77 3
DP 86 85
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Site Top Bottom Lyc. TA Sum Ambrosia AV CAE CCO CO CP CEU CK EL ET HS
TL 0 1 325 300 0 55 29 36
TL 2 3 40 170 203 18 20 30
TL 4 5 37 284 16 3 15 4
TL 6 7 151 236 0 41
TL 8 9 204 326 232 77 3 8 15
TL 10 11 129 378 3 103 41 26 5
TL 12 13 168 350 71 3 30
TL 14 15 135 346 117 110 5 21 19 17
TL 16 17 94 342 53 52 23 5
TL 18 19 145 341 1042 44 4 40 18 28 2
TL 20 21 62 218 21 3 24 4 27 2 2 11
TL 22 23 111 295 235 15 43 8 7 4
TL 24 25 290 44 0 11 3
TL 26 27 241 188 648 18 16 8 9
TL 28 29 75 75 0 20
TL 30 31 80 40 765 5
TL 34 35 120 265 0 40
TL 42 41 105 45 0 10
TL 50 49 255 5 873
TL 54 53 0 0 0
TL 62 63 0 0 0
TL 78 79 22 5 0 5
TL 90 91 0 0 0

Site Top Bottom Lyc. TA Sum Ambrosia HPE NB PF PA PG PASPP SL TA TD
TL 0 1 325 300 0 180
TL 2 3 40 170 203 10 92
TL 4 5 37 284 5 241
TL 6 7 151 236 0 3 192
TL 8 9 204 326 232 215 8
TL 10 11 129 378 6 188 6
TL 12 13 168 350 3 235 3 5
TL 14 15 135 346 117 3 144 10 3 14
TL 16 17 94 342 3 180 3 4 19
TL 18 19 145 341 1042 2 2 146 21 3 31
TL 20 21 62 218 2 110 2 10
TL 22 23 111 295 235 3 175 3 33 4
TL 24 25 290 44 0 30
TL 26 27 241 188 648 134 3
TL 28 29 75 75 0 50 5
TL 30 31 80 40 765 35
TL 34 35 120 265 0 225
TL 42 41 105 45 0 30 5
TL 50 49 255 5 873 5
TL 54 53 0 0 0
TL 62 63 0 0 0
TL 78 79 22 5 0
TL 90 91 0 0 0
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