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Abstract

Semantic segmentation is a fundamental component of modern computer vision applications. Al-
though supervised learning models have achieved state-of-the-art performance in this domain, they
rely heavily on large volumes of labeled data, which is an expensive and time-consuming require-
ment. Thus, this research aims to develop enhanced supervised semantic segmentation models that
balance accuracy and data efficiency for visual perception tasks in autonomous driving environ-
ments. To achieve this, the thesis is organized into two distinct phases. The first phase investigates
a dual-network architecture, in which an auxiliary boundary detection network is incorporated into
the primary segmentation framework to mitigate pixelation artifacts at object boundaries in multi-
class segmentation of complex scenes. The experimental findings demonstrate the importance of
designing unified segmentation models that take advantage of architectural enhancements capable
of extracting richer feature representations for improved performance. The second phase lever-
ages insights from the previous stage and focuses on the development of an efficient deep learmning
model with attention mechanisms and multi-scale feature refinement. The proposed method in-
troduces a novel depth-wise, point-wise feature pyramid module that extracts information-rich
spatio-semantic context from early and deep feature representations, improving model efficacy.
Exhaustive experimental studies conducted on widely used benchmark datasets validate the effec-
tiveness of the proposed models, which achieve competitive performance while offering improved
computational efficiency relative to baseline approaches. The findings highlight that strategically
balancing resource utilization with architectural innovation can yield strong performance while
minimizing annotation demands and environmental impact. This research sets a valuable precedent

for building competitive, resource-aware vision systems suited to constrained application settings.
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Chapter 1

Introduction

1.1 Thesis Overview

Table 1.1: The thesis road map consisting of two progressive stages

- Research
Research Phase Research Aim
Outcome
To explore the f:EﬂSlblllt}’ of two networks worlfmg in Thesis Chapter 3,
i tandem to ameliorate performance, demonstrating how .
A Dual-Network . . . Publication #1 —
multi-model feature extraction can improve performance .
Model and emphasizing the need for a more robust lightweight Springer Nature
prasizing ghnwels RTIP2R 2024
approach.
' To leverage ms:ghtg from Phase 1 .am:l advanced strategies | .o Cha pler 4,
An Efficient and |to refine the supervised segmentation approach, achieving .
. . . Publication #2 —
Robust Model |competitive performance without the added complexity of
IEEE ISIE 2025
dual-network methods.

Table 1.1 outlines the research phases of the thesis. The phases are carried out pragmatically,
first establishing a foundational understanding of supervised deep learning for semantic segmen-
tation before progressing toward achieving the thesis’s core objective: the development of an op-
timized lightweight model. Given the inherent complexity of semantic segmentation in computer
vision, this phase examines existing models to elucidate key theoretical and practical aspects of
the field. Building on the insights of the initial phase, the second phase introduces an efficient and
sustainable segmentation framework designed to reinforce deep learning-based image segmenta-
tion principles, enhancing model efficiency through rigorously validated methodologies, thereby

contributing robust and scalable solutions.



1.2 Motivation

1.2.1 Quest for High Efficiency and Performance in Semantic Segmentation

Semantic segmentation is a cornerstone in computer vision, enabling pixel-level understanding in
critical applications, viz., medical imaging, autonomous driving, and satellite image analysis. Al-
though supervised deep learning remains the gold standard for achieving high accuracy, its reliance
on large-scale, meticulously labeled datasets poses significant challenges. In medical diagnos-
tics, for instance, expert annotations of pathologies or anatomical structures are costly and time-
consuming. Similarly, autonomous driving systems demand pixel-perfect labeling of diverse road
elements—a process that is labor-intensive and prone to human error. As real-world applications
increasingly require real-time processing and scalability, there is a pressing need to improve model
efficiency without sacrificing segmentation quality. Current architectures often trade off computa-
tional complexity for marginal accuracy gains, limiting their deployment in resource-constrained
environments. This motivates the exploration of supervised methods that optimize both structure
(e.g., through lightweight yet expressive networks) and training efficiency (e.g., via improved data
utilization or learning strategies). By refining these aspects, we can push the boundaries of what
supervised segmentation can achieve, particularly in scenarios where labeled data is limited but

high precision remains non-negotiable.

1.2.2 Limitations in the Existing Research

This thesis explores supervised learning approaches that strike a balance between computational
efficiency and segmentation performance. By investigating architectural innovations and training
methodologies tailored specifically for semantic segmentation, the aim is to advance models that
maintain high accuracy but remain computationally tractable for real-world deployment. Such
advancements are particularly crucial for applications like real-time segmentation, where both pre-
cision and speed are critical, or large-scale satellite imagery analysis, where processing efficiency

directly impacts environmental monitoring capabilities.



This research is driven by the recognition that, despite the growing interest in semi-supervised
and self-supervised methods, supervised learning remains a fundamental baseline. It provides re-
producibility, well-delineated segmentation boundaries, and more direct optimization pathways.
By exploring the potential of supervised approaches with limited resources, this study aims to
establish new efficiency-performance trade-offs that can benefit both academic research and in-

dustrial applications.

1.3 Taxonomy of Semantic Segmentation Methods

Semantic segmentation algorithms are broadly divided into two categories: traditional feature-
based classification and clustering approaches, and machine/deep learning (ML/DL) methods, as
depicted in Fig. 1.1. Traditional methods are limited by the reliance on hand-engineered feature
extraction methods that require extensive expertise and can be biased by the distribution of data.
Moreover, complex scenes may contain objects with limited representations. As a result, deep
learning-based methods have been popularized as they exhibit strong adaptability and generaliza-
tion capabilities, allowing them to adapt to different scenarios and data characteristics. Moreover,

in DL, the feature extraction process is automated and does not require domain expertise for opti-

Semantic
Segmentation
Methods

[Traditional Methud,g] " Deep Learning Methods

mization.

- : -~ . I
g M "
- -
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Figure 1.1: A categorization of semantic segmentation: traditional vs deep learning approaches.



1.4 Technical Approach

This thesis advances supervised semantic segmentation research by leveraging deep neural net-
works with attention mechanisms to develop practical and lightweight solutions for automated
scene segmentation. The research is structured into two distinct phases, each building upon the

insights and outcomes of the previous phase:

* Phase 1: Exploring Dual-Network Architectures: The first phase investigates the feasi-
bility of a feature enrichment strategy via a dual-network structure. While the multi-model
approach is not included in the final system, this exploration provided critical insights into
addressing challenges associated with small and under-represented objects in complex envi-
ronments. The findings from this phase directly informed the development of the optimized
supervised learning framework presented in Chapter 4. This phase served as a method-
ological probe to assess and understand the challenges associated with multi-class semantic

segmentation in complex environments like urban scene segmentation (cf. Chapter 3).

* Phase 2: Refining and Evaluating a Lightweight Model: The second phase builds upon
the insights from Phase 1 that revealed explicit edge detail at multiple levels improved fea-
ture representations and recovery but at the cost of increased computational overhead due
to the auxiliary network. This raised the question of whether multi-scale feature refinement
could preserve and propagate edge detail effectively within a unified framework, driving the
transition to a single, lightweight model. To this affect, this phase focuses on optimizing a
supervised single-model architecture by integrating advanced techniques such as attention
mechanisms, dilated separable convolutions, atrous spatial pyramid pooling, and feature
pyramids. The refined model is rigorously tested on three benchmark datasets, CamVid,
Cityscapes, and LoveDA, achieving competitive performance and better efficiency than cur-
rent state-of-the-art methods. This phase demonstrates the feasibility of a streamlined ap-
proach, providing a practical and deployable solution tailored to real-world conditions while

highlighting the potential of sustainable approaches (Chapter 4).



This structured approach tackles the shortcomings of current systems while establishing a
strong base for future progress. By focusing on real-world applicability and scalability, it connects
academic research with practical implementation. The following section outlines foundational
concepts in machine leaming, computer vision, and deep leamning to contextualize the solutions

proposed in this thesis.

1.5 Machine Learning for Computer Vision Automation

% Scope Clarification: This thesis builds upon intersectional concepts in machine learning, com-
puter vision, and deep learning. To maintain focus on the core contributions, condensed overviews
of these foundational elements are presented rather than comprehensive explanations to offer the

necessary context for understanding the work presented in this thesis.

1.5.1 The Foundation of ML Automation

Automation refers to the process of using systems, often powered by algorithms and data, to per-
form tasks with minimal or no human intervention. At the core of modern automation is ML, a
scientific discipline that focuses on developing algorithms capable of learning patterns from data
to solve specific problems or extract actionable insights. ML has been foundational for many
automated systems across diverse fields, as it enables machines to improve performance adap-
tively based on data-driven feedback. ML tasks are typically categorized on the basis of the type
of reasoning needed to understand and interpret input data. For instance, classification involves
predicting discrete labels or categories based on image/text data, such as determining whether a
news article is fake or not. A regression problem involves predicting continuous values based on
learned relationships, like ascertaining blood sugar levels based on diet, exercise, age, and body
mass index. Clustering focuses on grouping data points into ‘clusters’ based on similarity, which
is useful in applications where a thematic grouping of items or objects is required. Association
tasks involve mining frequent patterns by extracting statistically significant correlations, or simply

put, identifying relationships between variables in datasets. Forexample, it is useful in market bas-



ket analysis to discover items frequently purchased together. Machine learning has evolved into a
versatile toolset, and based on the nature of the input data and the specific end objectives, ML has
given rise to several specialized subfields—each addressing distinct challenges, data modalities, and
domain-specific nuances. These paradigms have matured into specialized research areas, tailored
to process and learn from particular types of data for targeted outcomes. Table 1.2 summarizes

major ML domains and their unique characteristics.

Table 1.2: Key application domain of machine learning and their characteristics

Domain | Type of Data | Process | Application
Natural Language T Linguistic analysis Sentiment analysis,
Processing (NLP) e and synthesis language translation
T Images, Visual data Object 1:!etectic-n, facial n_amgnition,
Videos interpretation Image segmentation
Speech Recognition  Audio/ Spoken language Voice-controlled systems,
and Processing Speech interpretation transcription, accessibility tools

This thesis addresses a specific task within computer vision (CV). To better understand its role
and significance, an overview of various CV tasks is discussed here. These tasks differ primarily

in their objectives: classifying, localizing, or segmenting the contents of an image.

1.5.2 The Three Basic Computer Vision Tasks

The computer vision paradigm has evolved from basic image classification to more complex tasks

such as object detection and semantic segmentation, as illustrated in Fig. 1.2.

* Image Classification: It categorizes an entire image into predefined classes, for instance,

determining whether an image contains a cat or a dog.

* Object Detection: It aims to identify objects within an image and localizes them using

bounding boxes, like locating where a cat is present in an image.

* Semantic Segmentation: An extension of a classification and object detection problem,
which involves identifying pixel regions within an image through pixel-wise classification.

For example, segmenting the region of pixels corresponding to a cat in a picture.

6



Since image segmentation is the central focus of this thesis, it necessitates a deeper explo-
ration of the intersection between machine learning and computer vision. To develop effective
solutions for these tasks, various learning paradigms have been introduced—-each tailored to dif-
ferent levels of data availability, task complexity, and computational demands. Deep leaming, a
specialized branch of machine learning, plays a central role in this context. It enables automatic
feature extraction and end-to-end prediction, significantly reducing the need for manual interven-
tion and domain-specific feature engineering. The following section outlines the primary deep
learning paradigms used in this domain, ranging from label-independent unsupervised approaches
to label-dependent fully supervised methods, with intermediate strategies like semi-supervised and

self-supervised learning offering a balance between the two.

Label: Cat

Figure 1.2: An overview of basic computer vision tasks with different objectives.



1.6 Deep Learning-driven Computer Vision

Deep Leaming (DL) is a subset of machine learning that employs neural networks with multiple
layers to model complex patterns in large datasets. Neural networks are inspired by the structure
and functionality of brains, and these networks work on the principle of transforming raw sensor
inputs (e.g., LIDAR, cameras) into progressively abstract representations, eliminating the need for
manual feature engineering [2-4]. Segmentation models, a critical application of DL, are used for
pixel- or point-wise scene parsing, which in the context of autonomous vehicles, involves partition-
ing road scenes into drivable areas, pedestrians, vehicles, and obstacles to inform decision-making
for unmanned vehicles [5]. In remote sensing, it involves analyzing aerial imagery to categorize
regions based on land cover classes such as buildings, vegetation, water bodies, barren land, etc.,
supporting tasks like urban planning, environmental monitoring, and disaster management [6, 7].
A key strength of DL in such applications is its ability to generalize patterns from data, even when
correlations are non-intuitive to human designers. However, performance hinges on the quality of
large, diverse datasets representative of real-world conditions. Insufficient data risks overfitting,
where models fail in unseen scenarios (e.g., adverse weather, rare edge cases). For instance, a
model trained primarily on urban daytime data may underperform in rural nighttime settings or
fail to detect obscured pedestrians. This underscores the need for datasets encompassing varied
geographies, lighting, and occlusion scenarios.

DL models are trained by minimizing loss functions that penalize misclassifications (e.g., false
negatives). Through backpropagation and gradient descent, parameters are optimized iteratively.
To mitigate overfitting, datasets are split into training and validation subsets, with the latter as-
sessing generalization. However, robust validation performance alone cannot guarantee real-world
safety without exposure to corner cases (e.g., jaywalking pedestrians, construction zones, dense
cloud cover). With comprehensive datasets, DL architectures achieve state-of-the-art results in se-
mantic segmentation. Their scalability, combined with techniques like hyperparameter tuning and
multi-sensor fusion (e.g., camera-LiDAR), enables precise environmental perception—critical for

the safety and reliability of autonomous systems [8, 9].



Despite these capabilities, the effectiveness of DL models remains closely tied to the availabil-
ity and quality of annotated training data. Consequently, deep learning approaches are broadly
categorized based on their dependence on labeled data. The following subsections outline these
paradigms, ranging from fully label-independent to fully label-dependent, highlighting their dif-

fering strategies for tackling computer vision tasks.

1.6.1 Unsupervised Learning

Unsupervised learning involves training models on unlabeled datasets, allowing them to discover
patterns, structures, or relationships within the data without the need for explicit labels [10, 11].
These methods leverage techniques such as clustering based on similarities, generative models, or
domain adaptation to discover meaningful pixel-level representations. While unsupervised meth-
ods reduce annotation dependency, they typically achieve lower accuracy than supervised coun-
terparts and face challenges in handling fine-grained class distinctions. In addition, the absence
of labeled data poses challenges in evaluating unsupervised models, as there is no explicit ground
truth to measure performance. However, they are still able to establish some results where only

unlabeled data is available to uncover insights that guide further analysis.

1.6.2 Self Supervised Learning

Self-supervised learning paradigm aims to reduce dependency on manual annotations by lever-
aging unlabeled data to learn meaningful representations through pretext tasks [12]. Common
approaches include contrastive learning [13], where models discriminate between similar and dis-
similar image regions, and generative methods that reconstruct masked or perturbed input patches.
Techniques like clustering-based pseudo-labeling and vision transformer-based pretraining further
enhance feature learning. Recent advancements explore cross-modal supervision (e.g., text-image
alignment [14] and dynamic pretext tasks to improve transferability. While self-supervised meth-
ods achieve competitive performance with limited labeled data, challenges remain in closing the

gap with fully supervised models, particularly in fine-grained segmentation tasks.



1.6.3 Semi and Weakly Supervised Learning

Semi-supervised and weakly supervised approaches in semantic segmentation aim to reduce the re-
liance on large-scale pixel-level annotations [3, 15], by leveraging alternative forms of supervision,
such as image-level labels, bounding boxes, or sparse annotations. These methods often employ
techniques like consistency regularization, pseudo-labeling, or attention mechanisms to propagate
supervision signals from limited labeled data to unlabeled or weakly labeled samples. While sig-
nificantly reducing annotation costs, such approaches typically trade off some accuracy compared
to fully supervised methods. Recent advancements explore self-training, contrastive learning, and

multi-task frameworks to bridge this performance gap.

1.6.4 Supervised Learning

Supervised learning is fully reliant on labeled data, where models are trained on input samples,
each paired with a known output. This approach is commonly used in segmentation systems to
classify pixels in a scene based on labeled examples. The model learns patterns by minimizing
the error between its predictions and the provided labels, enabling it to generalize to new, unseen
data [3]. A significant challenge in supervised learning is the need for large, diverse, and high-
quality labeled datasets. Annotating such datasets is labor-intensive and costly, particularly where
expert knowledge is often required, like medical image segmentation [16—18]. Despite these chal-
lenges, supervised models excel in scenarios where comprehensive datasets are available, achiev-
ing high accuracy by associating new inputs with patterns learned during training. The following

section highlights prominent supervised models for segmentation-related tasks.

1.7 Supervised DL Architectures for Semantic Segmentation

DL models can be used to address various domain-specific challenges. The following section high-

lights the most common architectures, particularly relevant to semantic segmentation solutions.
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1.7.1 2D Convolutional Architectures

2D Convolutional Neural Networks (2D CNNs) are a specialized type of supervised deep leaming
models designed to analyze spatial information in images or video frames for tasks like seman-
tic segmentation (e.g., FCN [2]). Unlike 3D CNNs, which process volumetric or temporal data,
2D CNNS focus on extracting hierarchical spatial information, making them effective for pixel-
level classification tasks where contextual understanding within a single frame is critical. The
core operation in a 2D CNN is the 2D convolution, where filters slide across the height and width
of an image to generate feature maps. These features are progressively refined through successive
convolution layers, pooling, and non-linear activations like ReLU, successively reducing spatial di-
mensionality while preserving discriminative information for precise pixel-wise predictions. Early
layers encode low-level features like local patterns (e.g., edges, textures, etc.), while deeper lay-
ers aggregate global context and semantic features. Broadly, 2D CNNS—especially when adapted
for segmentation—are considered the gold standard for spatial feature extraction, outperforming

traditional computer vision methods in tasks requiring fine-grained localization.

1.7.2 Encoder-Decoder Architectures

Building on the strengths of 2D CNNs for hierarchical feature extraction, the encoder-decoder
architecture enhances spatial recovery by adding a precise localization pathway. The process
of hierarchical feature extraction inherently loses spatial resolution as the network progresses to
deeper layers, which can be problematic for segmentation tasks that rely on precise localization at
the pixel-level. Encoder-Decoder architectures solve this by pairing the 2D CNN encoder with a
learnable upsampling decoder that employs transpose convolutions or interpolation to reconstruct
spatial details from the abstract representations extracted by the encoder. One such model, is the
U-Net [3] architecture. Originally developed for medical image segmentation, it has demonstrated
versatility across domains, leading to its widespread success. Ongoing research continues to refine

its architecture, some of which are discussed later in this work.
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1.7.3 Transformer Architectures

Transformers are a deep learning architecture originally developed for natural language process-
ing (NLP) [19] that have since been adapted to tasks in computer vision and time-series analysis.
Transformers rely on attention mechanisms to process entire sequences simultaneously. This de-
sign enables Transformers to effectively capture long-range dependencies and dynamic relation-
ships within data [20, 21]. By capturing scene-wide spatial and contextual dependencies, Trans-
formers excel in demanding semantic segmentation tasks. Furthermore, their attention mechanisms
can help with selective focus on relevant objects, such as pedestrians and vehicles, and their spatial
interactions to improve segmentation accuracy for critical road elements. However, their computa-
tional complexity and large parameter count can pose challenges for real-time deployment despite
achieving great performance. Although not directly employed in this thesis, the attention mech-
anisms at the core of transformers offer valuable insights and techniques that can be exploited to
improve other DL models. Attention mechanisms allow models to dynamically prioritize critical
features, improving robustness against occlusions or background distractions. In summary, among
various models, 2D CNNs and encoder-decoder architectures show strong promise for semantic
segmentation and remain the most practical choice, offering an efficient accuracy trade-off. With
appropriate enhancements, they effectively parse complex scenes without the heavy computational

cost of transformers.

1.8 Loss Functions and Evaluation Metrics

Loss functions define the training objective by quantifying the discrepancy between model pre-
dictions and ground truth, guiding parameter updates through iterative refinement to minimize
prediction errors. On the other hand, evaluation metrics assess model performance by quantifying
model outcomes based on the specific task. The chosen loss functions and evaluation metrics were
selected for their simplicity, ease of implementation, and widespread use in CNN-based leaming
for semantic segmentation and edge detection. Categorical cross-entropy loss and binary cross-

entropy are well-established choices that effectively handle multi-class segmentation and binary
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edge segmentation without unnecessary complexity in interpreting training dynamics and opti-
mization behavior. Similarly, mloU, accuracy, and recall provide straightforward measures of
performance. They are the most commonly reported metrics for segmentation and edge detection
tasks, making them the obvious choice for effective comparative analysis. The efficiency metric
used in this work normalizes performance gains relative to a baseline, aligning with the thesis fo-
cus on improving existing architectures rather than developing a novel model. Furthermore, the
choice of CCE maintains consistency with mloU, as both inherently treat classes equally. While
weighted loss functions may marginally improve rare class predictions, the overall mloU is still
calculated as the average of per-class loUs without weighting based on class frequency, potentially
diminishing the practical value of incorporating more complex loss functions. Additionally, while
weighted CCE or focal loss penalize rare classes more heavily, they do not alter the underlying data
distribution and may over-penalize classes that become more prevalent due to the applied augmen-
tation strategies. Since the augmentations used in this work alter both geometric and photometric
properties, the model’s perception of class rarity may shift, complicating the calibration of class
weights. Thus, the simple, unweighted CCE was chosen to maintain consistency across training
and evaluation, avoiding unnecessary hyperparameters that could obscure the focus on architec-
tural contributions. Exploring more complex loss functions and their effects on training behavior,
as well as studying their interaction with augmentation strategies, was considered beyond the scope

of this work. The loss function and metrics used in this work are outlined below.

1.8.1 Loss Functions
Categorical Cross-Entropy (CCE)

An objective function that is used in multi-class classification problems. It is computed as:
1 N
&@=—sz:;ﬂij'lﬂg{yﬁ): (1.1)

where n represents the batch size, y;; denotes the actual probability of class i and 4j;; is the predicted

probability of class i for sample j.
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Binary Cross-Entropy (BCE)

An objective function for a single class problem such as edge detection. Here, a pixel classified as

positive represents an edge pixel. It is defined as:

Lace(y.9) = — [y - log(d) + (1 — ) - log(1 — 4)] 12)

where y € {0, 1} is the true binary label, §j € [0, 1] is the predicted probability of the positive class.

Similarly, for a batch of N samples, the averaged BCE loss becomes:

1

N
Lace = —5 D | log(@) + (1 — %) log(1 - %)) (1.3)

i=1

where y; and j; are the ground truth label and the predicted probability for the i** pixel.

1.8.2 Evaluation Metrics
Accuracy (Acc)

Accuracy computes the ratio between the number of correctly segmented pixels and the total num-

ber of pixels in the input image as given in Equation (1.4).

Acc — Sum of correctly segmented pixels
N Total number of pixels

= 100. (1.4)

However, Acc can be unreliable in the presence of class imbalance.

Mean Intersection over Union (mlolU)

It measures the degree of overlap between the prediction and the ground truth, as defined in Equa-
tion (1.5).

Area of Intersection 1 & |P; NGy
Iol = = 4 1.5
me Area of Union N ; PUG| (13)
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where N, F,, and G, represent the total number of semantic segmentation classes, the predicted

segmentation mask for class 4, and the ground truth segmentation mask for class i, respectively.

Recall

Binary segmentation of boundaries/edges is evaluated using recall, which is computed as:

True Positives
Recall = True Positives + False Negatives x 100, (1.6)

where true positives refer to correct edge pixel predictions, and false negatives refer to missed edge

pixel predictions, effectively measuring the completeness of edge pixel prediction.

Efficiency

To quantitatively assess the trade-off between segmentation performance and model complexity, a

model efficiency metric is introduced:

AmloU
Efficiency — 100 1.7
RNy = ro(Params) x GFLOPS ~ 00% (-0

where AmloU is the gain in mloU between the respective model and the baseline, GFLOPS is
giga floating point operations per second, and Params is the number of trainable parameters of
the model. This formulation enables a fair comparison by normalizing performance improvements

against the increase in both computational complexity and model size.

1.9 Thesis Contribution

This thesis advances supervised semantic segmentation through the development of a robust, ef-
ficient lightweight architecture that maximizes neural capacity via multiscale feature mixing and
targeted architectural innovations. Unlike methods relying on semi-supervised learning or syn-
thetic data, this framework demonstrates how carefully designed supervised models can achieve

competitive performance while remaining deployable in resource-constrained environments. The
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work bridges critical gaps between computational efficiency and segmentation accuracy through

these key contributions:

* Insights from a Multi-Model Learning Approach: This thesis investigates a dual-network
architecture that introduces feature enrichment via a supplementary network. While this ap-
proach does not feature in the final framework, its exploration provided invaluable insights
into addressing limitations imposed by large architectures. These findings informed the
development of a streamlined and efficient approach that enables robust semantic segmenta-
tion. The dual-network model also serves as a foundational strategy for future researchers to

improve feature representation with constrained datasets.

* Comprehensive Data Augmentation Techniques: This thesis provides an in-depth ex-
ploration of data preprocessing methods, including strategies for improving data variation,

normalizing data, and introducing perturbations to mirror real-world diverse scenarios.

* Optimizing Framework Performance: Through extensive experimentation and sanity anal-
ysis of architectural components, the study minimizes architectural redundancies while op-
timizing performance. The final proposed framework significantly improves the efficiency
and accuracy of image segmentation tasks, showcasing notable advancements with reduced

network complexity.

* Robustness Across Diverse Datasets and Critical Comparative Analysis: Several bench-
mark datasets were used for model evaluation to validate the performance. Furthermore,
the effectiveness of the proposed framework is rigorously evaluated through comparative

analyses, highlighting the framework’s improvements over existing methods.

These contributions seek to advance research in this domain by establishing robust methodolo-
gies and frameworks that optimize neural network capacity, enhancing performance and efficiency.
In addition, they provide scalable and precise modeling strategies to support the development of

sustainable and resilient deep learning systems.
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Chapter 2

Literature Review

2.1 Chapter Overview

This chapter provides a comprehensive review of the evolution of semantic segmentation method-
ologies, emphasizing their application to urban scene understanding and autonomous driving. The
discussion traces the field’s progression from classical techniques reliant on handcrafted features
(e.g., HOG, CRFs) to modern deep learning methods, highlighting pivotal architectural innova-
tions such as FCNs, U-Nets, and transformer-based models (e.g., SegFormer, KMaX-DeepLab).
Critical challenges were identified, including trade-offs in feature extraction, computational ineffi-
ciency in resource-intensive architectures that hinder real-time deployment, and data dependency
of state-of-the-art models that often require large labeled datasets or synthetic data augmentation
to achieve optimal performance gains.

The review further examined auxiliary strategies like data augmentation and semi-supervised
learning, underscoring their role in improving generalization while acknowledging their limitations
in fully replacing supervised training. Thus, by identifying critical gaps in current research, this

chapter lays the groundwork for the novel contributions of this study.
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2.1.1 The Shift from Conventional to Deep Learning Models

Prior to the advent of deep learning, conventional image segmentation relied on hand-engineered
feature descriptors and classical machine learning techniques. Approaches such as Histogram of
Oriented Gradients (HOG) [22], textons [23], and dominant color vectors [24] were employed to
encode local texture and appearance characteristics, while classifiers, viz., Support Vector Ma-
chines (SVM) [22], Conditional Random Fields (CRF) [25], and Random Forests [26] provided
structured pixel- or region-wise labeling. Unsupervised methods, including K-means clustering
and mean-shift segmentation, grouped pixels based on low-level feature similarity [27]. Hybnd
pipelines often combined these techniques—for instance, CRFs refined SVM outputs using spatial
smoothness constraints or clustering initialized region-based classifiers. However, these methods
faced fundamental limitations. Handcrafted features lacked the representational power to capture
high-level semantic concepts, struggling with complex textures and intra-class variations. Classi-
fier performance plateaued due to shallow architectures and linear decision boundaries, and was
biased by data distribution. Clustering often produced over-segmented or under-segmented regions
without semantic meaning. The entire pipeline from feature descriptor engineering to segmented
maps required meticulous, task-specific tuning of hyperparameters (e.g., cluster counts, CRF edge
potentials), limiting generalizability across diverse datasets.

Moreover, traditional segmentation pipelines were further constrained in complex scenarios
characterized by high density of objects, varying object scales, and substantial variability in object
appearances. Handcrafted features like HOG or textons, were effective for simpler segmentation
tasks but exhibited performance degradation when confronted with urban scenes due to the limited
feature representational capacity of the various objects and their appearances in such scenes. For
example, in an urban scene, vehicles under different lighting and weather conditions, pedestrians
with varying attire, etc., often exceed the descriptive power of traditional feature descriptors. As
a result, segmentation performance suffers as these methods fail to distinguish semantically sim-
ilar but visually distinct objects. These constraints necessitated the shift toward data-driven deep

learning paradigms capable of hierarchical feature learning.
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2.1.2 Image Segmentation Methods: A Dive into Semantic Segmentation

Image segmentation represents a computationally intensive task that extends beyond conventional
image classification by generating pixel-level annotations to partition an image into semantically
meaningful regions. This fine-grained approach enables the extraction of intricate spatial details,
rendering it indispensable for advanced computer vision applications where precise localization is
paramount. Supervised image segmentation remains the gold standard for achieving state-of-the-
art performance despite the growing interest in alternative learning paradigms. While the chal-
lenges of annotation cost and scalability are well documented, the bottom line remains that when
sufficient high-quality labeled data is available, supervised methods consistently outperform other
methods in terms of accuracy and reliability. The key challenge, therefore, shifts to optimizing
performance by extracting the maximum predictive value from the available labeled data through
intelligent architectural design and training strategies.

Modern approaches leverage several critical insights from deep learning research to achieve
this efficiency, including architectural innovations, advanced regularization techniques to prevent
overfitting to limited training samples, and label-efficient architectures that minimize information
loss. Instead of abandoning supervised techniques due to data constraints, the path forward lies
in making them more annotation-efficient through smart strategies that maximize information ex-
traction to minimize reliance on large amounts of labeled data. The right strategies depend on the
type of image segmentation task as well, which are broadly categorized into three types: instance,
semantic, and panoptic segmentation.

Figure 2.1 illustrates the difference between the types of segmentation. Instance segmentation
focuses on segmenting individual object instances within an image, i.e., segmenting the different
instances of the same class [28-30]. Semantic segmentation involves the classification of pixels
into different object categories such that the image is segmented into its constituent elements that
make up the scene [5, 31, 32]. Panoptic segmentation combines semantic and instance segmenta-
tion to simultaneously classify each pixel into a semantic category while also detecting instances of
different objects within the scene [29, 30, 33], thus providing a comprehensive description of object

identities and their spatial occurrences. Semantic segmentation has gained significant momentum
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(&) Instance Segmentation: Instance-Level

(b) Panoptic Segmentation;
Pixel and Instance-Level

Input Image

(c) Semantic Segmentation: Pixel-Level

Figure 2.1: Image segmentation types: (a) Instance segmentation w/t per-object mask and class
label; (c) Semantic segmentation w/t per-pixel class labels, and (b) Panoptic segmentation w/t

per-pixel class and instance-level labels. Image credit: https://ieeexplore.ieee.org/document/8953237.

in many domains, including precision agriculture and autonomous transportation [5]. Semantic
segmentation in the context of driving and urban scenes is explored in depth within the scope of

this thesis, with the following section delving into relevant literature in the field.
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2.1.3 The Developments Trends in Semantic Segmentation
Advancements with Convolutional Neural Networks

Deep learning methods automated the feature extraction process and reduced reliance on traditional
feature engineering. The evolution of semantic segmentation architectures for autonomous driving
has been fundamentally shaped by progressively sophisticated approaches to hierarchical feature
extraction. The field began with fully convolutional networks (FCNs) [2], which established the
paradigm of end-to-end learnable segmentation systems by replacing dense layers with convo-
lutional operations. While groundbreaking, FCNs exhibited significant limitations in autonomous
driving applications due to their reliance on single-scale feature maps and naive upsampling, result-
ing in poor boundary delineation, a critical shortcoming for tasks like drivable area segmentation
and obstacle detection. The core challenge in hierarchical feature learning lies in balancing spatial
precision against levels of abstraction.

The subsequent development of U-Net [3] introduced a symmetric encoder-decoder architec-
ture with skip connections, enabling precise localization through multi-scale feature fusion. Given
its success in medical image segmentation, many modifications have been made to the U-Net for
driving scene parsing, resulting in its successful adaptation to Cityscapes [34, 35]. However, U-
Net still struggles with satisfactory dilineation of rare object classes. SegNet [36] addressed this
through its innovative use of max-pooling indices for decoder upsampling, reducing memory con-
sumption compared to U-Net while maintaining competitive accuracy on road scene datasets.

Meanwhile, models like the Mask R-CNN [37, 38], which extends the Faster R-CNN frame-
work to perform image segmentation, combines object detection and semantic segmentation into
one unified task framework on the basis that both tasks share common feature dependencies to
enable a synergistic improvement for both task outcomes. However, the arrangement requires
significant computational resources due to its two-stage architecture (region proposal network +
mask prediction), making it slower and more memory-consuming compared to other models and
a less practical solution for real-time deployment. The field witnessed transformative progress

with the integration of powerful backbone networks into segmentation frameworks. The intro-
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duction of HRNet [39] achieved significant improvement by maintaining high-resolution repre-
sentations throughout the network rather than recovering them in the decoder. This approach
proved particularly valuable for autonomous driving, where preserving fine details in complex
urban scenes is crucial. HRNet’s parallel multi-resolution subnetworks and repeated information
exchange achieved state-of-the-art performance on the Cityscapes and PASCALContext datasets
at the time, with particular improvements in small object segmentation.

Similarly, the Deeplab series [4, 40-42] introduced several innovations critical for autonomous
driving, including Atrous Spatial Pyramid Pooling (ASPP), which enabled multi-scale feature ex-
traction without resolution reduction or computational overhead by using dilated convolutions [43]
(cf. Fig. 2.2a-b). The ASPP module improved feature extraction efficiency by aggregating con-
textual information from backbone features. This was particularly useful for handling objects at
varying distances in driving scenes.

Meanwhile, powerful backbones like Residual Networks (ResNet) [44], introduced residual
skip connections (cf. Fig. 2.2c) to address the issue of vanishing gradients. Gradients can flow
through these connections as a shortcut, which makes it possible to train incredibly deep networks.
Several versions of ResNet exist, varying primarily in depth through the number of stacked residual
blocks. Key architectures include ResNet-50, ResNet-101, and ResNet-152, etc., where the suffix

denotes the number of layers.

ia) Standard 3x3 Conv (h) Dilated 3x3 Conv (rate=2) ic) Residual block

Figure 2.2: (a) - (b) Comparison of standard and dilated 3x3 convolutions on a 5x5 feature map.
Both use 9 sampling points, but dilation increases the receptive field. (c) Residual block.
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The adoption of ResNet [44] backbones allowed for more complex feature hierarchies that

proved particularly beneficial for fine-grained segmentation as it allowed for simultaneous recog-

nition of diverse object classes at multiple scales. However, despite their success, its sequential

bottleneck design creates depth-induced latency, as each additional block linearly increases its

floating operations per second while offering diminishing retumns in accuracy. As a result, many

emerging alternatives address the issues of popular but bulky backbones by introducing dynamic

routing, i.e., switchable networks and neural architecture search [43, 46], and attention-based fea-

ture selection [21]. A summary of key CNN-based models and backbone-optimized models devel-

oped for urban scene segmentation is provided in Table 2.1, along with their performance in the

Cityscapes [47] benchmark dataset for comparison.

Table 2.1: A summary of key CNN-based models adapted for urban scene segmentation

Ref. Methodology Limitations Metric
Replaces fully connected layers with Detailed spatial information is lost from shallow
[2, 36] : : : . . . 65.30%
convolutional layers for dense pixel-wise layers due to pooling operations and is not
2014 - . : - . mloU
prediction using deconvolutions. recovered during deconvolutions.
An encoder—decoder architecture that utilizes The Baﬂkb?m encoder Hnereases complexity and
[36] S struggles with understanding long-range 57.00%
max-pooling indices from the encoder for . . . .
2015 cise upsampline in the decoder dependencies resulting in poor inference time,  mloU
PIECISE Upsamping ’ and poor accuracy for larger objects.
Maintains high-resolution feature Multiple parallel branches and frequent fusion of
[39] representations throughout the network by using high-level information causing high parameter 1.6
2015 parallel branches at different resolutions which count (70.3M params) and computational load Dnt val
are fused across these branches to preserve fine (1206.3 GFLOPS), making it impractical for ’
details and capture multi-scale context. real-time deployment.
Atrous Spatial Pyramid Pooling module to
ageregate features at multiple receptive fields
[41] . .. . Bulky because of ResNet101 backbone and uses 78.50%
2017 and avoids an explicit decoder and instead additional training data. on val.

directly produces high-quality segmentation
maps from deep feature layers by interpolation.

An enhanced U-Net architecture that leverages
[34, 39] series of nested, dense skip pathways in
2018 addition to the traditional U-Net's
encoder-decoder arrangement.

ResNet101 backbone and nested skip connections
significantly increase the number of parameters  75.50%
(59.5M) and memory usage (748.5 GFLOPS).

[42]
2018

Builds on DeepLabv3 by adding a decoder
module for better spatial detail recovery.

Uses a Dilated-Xception-71 backbone making it

resource intensive due to high parameter count  79.55%
with only marginal improvement in performance, on val.
also trained on extra data.
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Transformer-based Pioneers

The success of self-attention mechanisms in NLP [19, 48] led to their adaptation in vision trans-
formers (ViTs) [21]. Models like SegFormer [20], VLTSeg [49], and SERNet-Former [50] demon-
strate superior performance in capturing long-range dependencies and achieve exemplary results
in urban scene segmentation. The KMaX-DeepLab [30] approach combined transformer strengths
with CNN efficiency, achieving state-of-the-art results on Cityscapes without the need for ad-
ditional data. Despite achieving impressive accuracy, these models remain constrained by their
network size, computational demands, and reliance on large quantities of labeled data to attain
optimal performance, often necessitating the incorporation of additional training data. Conversely,
the success of transformers has popularized the use of attention mechanisms [51-53] in computer
vision tasks, and numerous models have demonstrated strong performance [17, 18, 54] without
incurring the substantial computational overhead typically associated with transformer-based ar-
chitectures. Table 2.2 summarizes the review of transformer-based models in the recent literature,

along with their performance in Cityscapes, the urban scenes dataset.

Table 2.2: A summary of key Transformer-based models in urban scene segmentation

Ref. Methodology Limitations Metric

Introduces a positional ing-free, Uses additional coarse data to achieve optimal

[20] 2021 :“.'“’"‘"“t.““] Transformer encoder and a performance and large GFLOPS (1447.6) make it - ¢
ightweight MLP decoder for ared_u::ed impractical for real-time performance (2.5 FPS) on test.
complexity approach to segmentation. mp pe ) ’
Despite not using additional training data, model
Intepgrates k-means clustering and size is extremely bulky with large backbone 83,54
[30] 2022 transformer-based attention mechanism to  (232M params) and computationally complex ontval
produce refined segmentation. {1673 GFLOPS), which significantly affect ’
inference speed (3.1 FPS).
Leverages the Vision Transformer by dividing
an image into fixed-size patches and Large model size (304M params) and data R6.50,
[49] 2023 processing them with transformer layers to  hungry, uses 2 additional synthetic training
capture long-range dependencies and global datasets. on test
context using self-attention mechanisms.
Hybrid model that combines the strengths of Uses a large backbone (44.2M params) requiring R4.8
[50] 2024 encoder-decoder architectures and vision additional training data to achieve optimal nntlest

transformers. performance.
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Beyond Architectural Innovations

In addition to architectural innovations, data augmentation is widely adopted in deep learning toen-
hance model generalization and robustness [53, 56]. By pragmatically applying photometric (e.g.,
color jitter, noise injection) and geometric (e.g., rotation, elastic deformations) perturbations to
training samples, augmentation artificially expands the effective dataset diversity (cf. Figure 2.3).
This approach addresses two fundamental challenges: mitigating data scarcity—particularly crit-
ical in domains with expensive annotations, and improving out-of-distribution generalization by
forcing models to learn invariant features beyond superficial appearances. Advanced variants like
RandAugment [57] automate perturbation selection, while adversarial augmentation exposes mod-
els to worst-case distortions. The technique’s universality is evidenced by its adoption across
tasks—from classification (via simple crops/flips) to self-supervised learning (where augmenta-
tions define pretext tasks). However, task-agnostic augmentation risks disrupting critical features
(e.g., occluding key anatomical structures in X-rays), necessitating domain-aware policies. As
deep learning increasingly prioritizes data efficiency, augmentation’s role evolves beyond mere

preprocessing to become integral to loss design, and many models adopt augmentation strategies

(a) Original i(b) Rotation

(d) Zoom Out (e) Darken (f) Shear + Rotate

Figure 2.3: Examples of data augmentations applied to an image.
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to leverage its benefits. Many of the models discussed in the literature review apply task-specific

augmentations for this reason.

The Limitations of Reducing Label Reliance

Reducing reliance on labeled data for training has become a highly pursued area of research due
to the substantial cost and time associated with large data annotation. As a result, semi-supervised
and unsupervised approaches have become integral to the discussion of achieving high-fidelity
segmentation; however, the performance degradation associated with reducing labeled train data
prevents such models from achieving the performance benchmarks met by fully supervised mod-
els [38, 59]. Table 2.3 summarizes well-known semi-supervised and unsupervised methods on
Cityscapes.

Table 2.3: Literature summary of semi-supervised and unsupervised learning methods on
Cityscapes

Ref. Methodology Limitations Metric

Semi-supervised approach leveraging a knowledge
graph derived from a large-scale text corpus to capture  Reduced labeled data prevents the generator 70.60%
semantic consistencies across categories to generate from adapting the static knowledge base to  on val

[59]

2019 synthetic images from unlabeled data to reveal the true data distribution, causing biased {with
underlying structural information, while incorporating a pseudo-labels that misalign with the image 1/4
pyramid architecture in the discriminator to capture features, degrading performance. train).

multi-scale contextual information for improved parsing.

Semi-supervised learning method that reduces feature 65.50%

discrepancies between labeled and unlabeled data using Reducing labeled data leads to noisier initial un; val
[58] cross-set region-level aupmentation and pixel-wise pseudo-labels which can propagate and (with
2022 contrastive learning. Stabilizes training with dynamic  amplify errors causing performance to lag /4
confidence region selection to focus on high-confidence behind supervised contemporaries. train)
areas for loss calculation. )
Unsupervised method that leverages a spectral technique Reliance on color affinity and spectral
that provides both semantic and structural cues by clustering fail on objects with complex
constructing an eipenbasis from a semantic similarity  appearances or lighting variations. The 22.1%.
matrix of deep image features, combined with color dependence on imperfect pseudo-labels lead
affinity information, to learn object-level representations. to error accumulation, reducing accuracy.

Using scene flow and depth cues for

Unsupervised method that combines visual pseudo-labels assumes motion coherence
[60] representations, depth, and motion cues for pseudo-label perfectly aligns with object boundaries, 26.80%
2025 training and a panoptic self-training strategy to eliminate which fails for non-rigid objects, occlusions, on val.

the need for object-centric training data. or dynamic backgrounds limiting semantic

groupings and generalization.

[11]
2024
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2.2 Chapter Summary

The discussion in this chapter has illuminated key trends and challenges in the field of semantic
segmentation, particularly in the context of autonomous systems and urban scene understanding.
While deep learning has revolutionized segmentation tasks, enabling impressive advancements in
performance, it has also brought forward critical issues related to computational efficiency and
data dependence. The comparative analysis between CNN-based and transformer-based models
has shown that although transformers offer state-of-the-art results, they often come with substantial
computational costs.

Furthermore, the reliance on large labeled datasets remains a significant hurdle, despite efforts
like semi-supervised learning and data augmentation to mitigate the issue. This points to a critical
gap between achieving high accuracy and maintaining efficiency, especially in real-time applica-
tions. As the demand for Al-driven systems grows, addressing this gap becomes even more urgent,
particularly in resource-constrained environments.

This critique sets the stage for the subsequent chapters, which examine model design through
two key lenses: accuracy and efficiency. The next chapter investigates a model that prioritizes
accuracy, exploring methods to improve segmentation performance by addressing a key challenge
in the field. While not constrained by efficiency considerations, this exploration aims to deepen
understanding of architectural contributions. The subsequent chapter then translates these insights
into a model that reflects the thesis’s core objective, and proposes a lightweight, efficient archi-
tecture designed to reconcile accuracy with computational efficiency. By focusing on optimizing
architectures for real-time deployment and addressing the environmental concerns of large-scale
training, this work contributes to the ongoing effort to make Al more efficient, scalable, and sus-

tainable for practical applications.
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Chapter 3

Developing a Dual-Network Multi-Class
Segmentation Model

3.1 Overview

Deep learning-based methods have driven significant advances in semantic segmentation in recent
years. However, complex scenarios and diverse environmental conditions continue to pose chal-
lenges, particularly when objects exhibit highly variable shapes and appearances across different
scenes. This chapter introduces a novel approach to improving segmentation accuracy by system-
atically integrating a complementary pair of convolutional neural networks designed to classify
pixels for semantic segmentation.

The proposed methodology harnesses a primary multi-class segmentation network and a sec-
ondary binary-segmentation boundary network in a supervised learning setting to mitigate the
limitations and biases of the former, presenting a balanced solution for improved segmentation
outcomes. The effectiveness of this approach is demonstrated through ablation studies conducted
on the CamVid benchmark dataset [1], setting a foundation for advancements in this area.

The rationale for integrating these complementary models stems from their distinct yet syn-
ergistic capabilities in addressing fundamental limitations of segmentation architectures. While

conventional segmentation models often exhibit reduced performance in precisely delineating fine
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object boundaries and capturing small or thin structures, specialized binary segmentation net-
works trained explicitly for edge reconstruction can provide critical high-frequency spatial in-
formation. This approach leverages the fine-grained semantic understanding of the primary seg-
mentation model while augmenting it with the boundary-specific refinement capacity of the binary
segmentation network. The combined framework is designed to enhance overall segmentation ac-
curacy while mitigating classification errors, a crucial advancement for applications demanding
high-precision segmentation, such as autonomous driving or medical imaging, where topological
accuracy is paramount.

This chapter investigates the feasibility of a two-model segmentation approach, systemati-
cally evaluating whether augmenting a primary segmentation model with a supplementary net-
work yields significant improvements in feature representation and boundary delineation compared
to standalone architectures. A positive empirical outcome would not only validate the proposed
methodology but also establish a foundation for future research into more sophisticated synergetic

frameworks that achieve robust multi-class semantic segmentation.

3.2 The Challenge in Urban Scene Segmentation

Urban driving scenes are characterized by high visual complexity, dynamic elements, and frequent
occlusions. Existing datasets often exhibit significant class imbalance, where dominant categories
such as roads and sky appear far more frequently than rare but critical classes like pedestrians and
traffic signs. Additionally, improving accuracy with supervised learning can lead to increasingly
complex models, which can hinder real-time performance essential for autonomous systems.

At the same time, the supervised methods rely on end-to-end training with fully annotated
datasets, achieving strong results in homogeneous regions but often struggling with boundary am-
biguity, class imbalance, and sensitivity to object scale. This can result in blurred or smoothed
boundaries, misclassification of underrepresented objects, and inconsistent segmentation of small
or thin structures. These limitations arise from a range of architectural challenges, including the

loss of spatial and structural cues in favor of high-level semantic features, weak long-range feature
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retention, information loss during pooling operations, inadequate global context integration, and
architectural redundancies.

Therefore, effective segmentation in this context requires a careful trade-off between model
capacity—-to accurately capture fine details and rare classes—and computational efficiency. The
proposed methodology addresses these challenges by integrating targeted strategies, discussed in

the following sections, to mitigate the limitations of existing supervised approaches.

3.2.1 Edge Context in Semantic Segmentation

Recent advancements in semantic segmentation have increasingly emphasized the integration of
multi-source information to enhance feature discrimination and localization accuracy. Among
these, the fusion of edge-aware features with semantic representations has emerged as a partic-
ularly effective strategy, demonstrating significant improvements in segmentation performance,
especially in fine-grained boundary delineation [61].

The explicit incorporation of boundary information serves as a structural prior, guiding the
segmentation network toward more precise classifications at object boundaries. Studies, such as
[62] and [63], have demonstrated that edge-aware feature learning mitigates the common issue
of blurred boundaries in segmentation outputs, particularly in complex scenes with occlusions or
fine/thin structures. By leveraging an auxiliary edge detection network, these approaches extract
high-frequency spatial details that are often lost in deep convolutional networks due to successive
pooling and strided operations. The extracted edge features are then fused with multi-level se-
mantic features, either through skip connections, attention mechanisms, or feature concatenation,
thereby enriching the hierarchical representation with explicit boundary constraints. This fusion
strategy not only refines segmentation masks along object contours but also enhances the model’s
ability to disambiguate between adjacent regions of similar appearance. For instance, the work [64]
employs a module to strengthen the propagation of same segment region features which are iso-
lated by learned boundaries, effectively minimizing misclassifications at edges. Liu et al. [65]
introduces a multi-branch architecture where edge predictions are iteratively refined alongside se-

mantic features. Such methods underscore the importance of boundary guidance as a means to
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enforce geometric consistency in segmentation outputs. By explicitly modeling edge-semantic
interactions, these approaches achieve sharper transitions between classes, reducing reliance on
post-processing refinement modules. In summary, the integration of edge information into seman-
tic segmentation frameworks provides a principled way to encode structural constraints, leading
to improved robustness and accuracy. This proposed model aims to achieve this by exploring
a feature-enrichment approach to leverage nuanced feature recovery for improved segmentation

outcomes.

3.2.2 Attention Mechanisms in Semantic Segmentation

The advent of attention mechanisms in deep neural networks (DNNs), coupled with their successful
application in natural language processing (NLP) [19, 54], has significantly advanced research
in deep learning-based semantic segmentation. The attention mechanism can model long-range
dependencies and correlations to enhance task-specific contextual information while hiding less
pertinent features. Several types of attention mechanisms highlight distinct aspects of feature maps.
A spatial attention block aims to boost the spatial regions that contain the most relevant information
in a feature map and can be expressed mathematically as (3.1).
A=o((W,-X)-(W,-Y)"),and

(3.1)
Z=A-(W,-Y),
where A is the attention score computed for the two input feature maps to the attention module, X
and Y, and Z is the attention-refined output feature map. Hence, W, Wi, and W, are learnable
weight matrices used to determine query, key, and value representations, respectively, obtained by
computing dot products with the input feature maps. The attention score is computed by applying
the sigmoid activation function (o = H%} to the dot product of the query (W, - X) and the trans-
posed key (W - Y)T. The attention scores A are then used to weight the values (W, -Y') to produce
refined output feature maps, Z, emphasizing the important clues. The attention-refined output

feature maps are then integrated back into the network and forward propagated, thus achieving
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the necessary emphasis on relevant regions in the input image. Spatial attention can be useful to
resolve ambiguities in cluttered regions, small objects, and enhances boundary localization by em-
phasizing high-gradient areas. In this way, to ameliorate image segmentation performance, Ozan et
al. [54] introduced an Attention U-Net (Att U-Net) that focuses on relevant regions of the input im-
age with varying levels of weightage during training. This approach has shown great improvement
in biomedical applications [17, 18, 54] and is continued to be adapted for other domains. In theory,
a full attention strategy enhances focus on relevant features at each decoding layer. However, this
approach risks propagating noise through the network, potentially complicating the model with-
out significant gains. Thus, this paper investigates a modified attention-gating strategy, offering a
simpler yet more effective alternative to the multi-level attention commonly employed in existing
models. The goal is to achieve comparable, if not superior, results with reduced complexity by

reducing architectural redundancies.

3.2.3 Atrous Spatial Pyramid Pooling (ASPP)

While the U-Net architecture inherently enables multi-scale feature fusion through its skip connec-
tions, the standard convolution operations used in U-Net do not fully exploit multi-scale feature
extraction, as they lack the ability to capture context at varying receptive fields [66]. The ASPP
introduced in DeepLabv?2 [40] addressed this through parallel dilated convolutions at various rates.
The large receptive fields improved global context understanding, and atrous convolutions mini-
mized information loss typically caused by max-pooling operations, resulting in enhanced perfor-

mandce.

3.3 Methodology

A detailed overview of the proposed model consisting of two networks is provided in Figure 3.1.
The model consists of three main components:
(i) Edge Network (ENet): This network is a U-Net-like encoder-decoder architecture that is

is pre-trained to generate Sobel edge features from the input RGB images. It is trained on the
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Figure 3.1: Proposed architecture and network details describing the interactions between the
networks, as well as the overall pipeline from input to segmentation maps. Top: SNet,
Segmentation Network. Bottom: ENet, Edge Network.

CamVid train set and shares boundary related features with the encoder and decoder layers of the
second network designed for semantic segmentation.

(i1) Segmentation Network (SNet): This network is also a U-Net-like encoder-decoder archi-
tecture with subtle differences from the ENet—the incorporation of an ASPP module.

(ii1) Strategic Feature Fusion: Feature sharing is enabled through strategically placed feature

fusion sites to leverage the collaboration of both networks for unified decision-making.
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3.3.1 Model Architectures

Edge Network (ENet)

Table 3.1 provides the layer-wise architectural detail of the ENets’s encoding sub-net. It receives
a mini-batch of 8 RGB images of size 384 x 512, and it is trained to detect Sobel edges from
the CamVid benchmark dataset by minimizing a Binary Cross-Entropy loss (Equation (1.2)) using
the hyperparameter settings summarized in Table 3.2. The encoder pathway consists of successive
3 x 3 convolutions for feature extraction, each followed by maxpool layers that progressively halve
the spatial resolution until reaching 1/16th of the original size, culminating in 1024 feature maps

at the deepest layer. Residual features from before each maxpooling operation are stored as skip

connections (L2, L5, L8, L11) for the decoding process.

Table 3.1: ENet: Encoding Sub-Network Architecture

Layer ID Layer Type A(k, s) Output Shape [b, D, H, W] Input
Input Input Layer b, 3, 384, 512] mini-batch
L1 Conv(3,1)=BN—ReLU [b, 64, 384, 512] Input
L2 Conv(3,1)—=ReLU [b, 64, 384, 512] L1
L3 Maxpool(2,2) [b, 64, 192, 256] L2
L4 Conv(3,1)=BN—ReLU [b, 128,192, 256) L3
L5 Conv(3,1)—=ReLU [b, 128,192, 256) L4
L6 Maxpool(2,2) [b, 128, 96, 128] L5
L7 Conv(3,1)=BN—ReLU [b, 256, 96, 128] L6
L8 Conv(3,1)—=ReLU [b, 256, 96, 128] L5
L9 Maxpool(2,2) [b, 256, 48, 64] L8
L10 Conv(3,1)=BN—ReLU [b, 512, 48, 64] L9
L11 Conv(3,1)—=ReLU [b, 512, 48, 64] L7
L12 Maxpool(2,2) [b, 512, 24, 32] L11
L13 Conv(3,1)=BN—ReLU [b, 1024, 24, 32] Li12
Li14 Conv(3,1)—=ReLU [b, 1024, 24, 32] L13
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Table 3.2: Training Hyperparameter of the ENet

Hyperparameter Value

Learning rate 0.001

Optimizer Adam

# of Epochs 100

Batch size 8

Loss Function Binary Cross-Entropy Loss

The decoding process occurs in two distinct phases. Table 3.3 on page 36 summarizes the
layer-wise detail of the decoding pathway, which produces the class-wise probability distribu-
tion. First, the attention-based sub-net upsamples the features by factor 2, combining them with
attention-weighted skip connections (L20, L29) and halving the number of feature maps via 3 x 3
convolutions after each upsampling step. Next, the full decoding sub-net repeats this process but
without attention weighting the skip connections from the encoding layers (L2, L5). By the end
of the decoder pathway, the resolution is restored to 384 x 512, and a final convolutional layer
acts as the classifier to produce the edge mask (L41). Figure 3.2 illustrates the ENet’s training
and validation progress over 100 epochs, the 90th epoch is where it achieved optimal recall (cf.

Equation (1.6)) and minimized loss.

Train and Validation Loss Train and Validation Recall

—— Training Loss
— Walidatios LOSS 95

BCE Loss
Recall

LER

—— Trainieg Recall
= ‘alidation Recall

PEL LR BRI RPHIE TR D PSR P 5 P PhLRLPER ST PIPO PG PSP
Epoch Epoch

r

Figure 3.2: Training progress of the ENet for 100 epochs.
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Table 3.3: Layer-wise Connectivity Pattern of the Decoding Pathway of the ENet

Layer ID  Layer Type A(k, s) Output Shape [b, D, H, W] Input
Decoding Sub-Net with Attention
L15 Upsampling Block [b, 512, 48, 64] L14
Lie Conv(1,1)—=BN [b, 256, 48, 64] L15
L17 Conv(1,1)—=BN [b, 256, 48, 64] L11
L18 Add—ReLU [b, 256, 48, 64] L11,L15
L19 Conv(1,1)»BN—Sigmoid [b, 1, 48, 64] L18
L20 Multiply [b,512, 48, 64] L18,L11
L21 Concat [b, 1024, 48, 64] L20, L15
L22 Conv(3,1)-BN—ReLU [b,512, 48, 64] L21
L23 Conv(3,1)—ReLU [b,512, 48, 64] L22
L24 Upsampling Block [b, 256, 96, 128] L23
L25 Conv(1,1)—=BN [b, 256, 96, 128] L23
L26 Conv(1,1)—=BN [b, 256, 96, 128] L8
L27 Add—ReLU [b, 256, 96, 128] L8, L23
L28 Conv(1,1)»BN—Sigmoid [b, 1, 96, 128] L27
L29 Multiply [b, 256, 96, 128] L27,L8
L30 Concat [b, 512, 96, 128] L8, L23
L31 Conv(3,1)-BN—ReLU [b, 256, 96, 128] L30
L32 Conv(3,1)—ReLU [b, 256, 96, 128] L31
Decoding Sub-Net w/o Attention
L33 Upsampling Block [b, 128, 192, 256] L32
L34 Concat [b, 256, 192, 256] L33,L5
L35 Conv(3,1)-BN—ReLU [b, 128,192, 256] L34
L36 Conv(3,1)—ReLU [b, 128,192, 256] L35
L37 Upsampling Block [b, 64, 384, 512] L36
L38 Concat [b, 128, 384, 512] L36, L2
L39 Conv(3,1)-BN—ReLU [b,64, 384, 512] L38
L40 Conv(3,1)—ReLU [b,64, 384, 512] L39
L41 Conv(1,1)—f(-) [b, 1,384, 512 L40

Total number of trainable parameters: 34,846,853

Note: A(-) - Operation type, k - Kernel size, s - stride rate, b - batch size,
D, H, W - depth, height, and width of the feature map, BN - Batch Normalization,
Upsampling Block - Upsample(2,2)—Conv(3,1)—+BN—ReLU, f(-) - Classifier (Sigmoid)
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Segmentation Network (SNet)

The segmentation network receives a mini-batch of 4 RGB images as input data simultaneously
as the ENet and operates as the primary multi-class label predictor. It is trained on CamVid train
samples to minimize Categorical Cross-Entropy loss between predicted and target pixel classes
given by Equation (1.1) and evaluated using mloU and accuracy metrics (Equations (1.5), (1.4),
respectively). The hyperparameter settings are summarized in Table 3.6. Also designed using the
U-Net as inspiration, it is almost identical to the edge network except for one key structural differ-
ence. An ASPP module is incorporated at the bottleneck to perform multi-scale feature processing
to leverage high-dimensional feature maps enriched with edge information to improve delineated
segmentation. The layer-wise details of the ASPP module are provided in Table 3.4. It involves
four parallel 3x3 Convolution (Conv) kernels with atrous rates of 1, 6, 2, and 18, respectively, for

feature extraction.

Table 3.4: SNet: ASPP Module Architecture

Layer ID  Layer Type A(k, s,d) Output Shape [b,C, H, W] Input
SNet: ASPP Module Architecture
Input Previous Layer [b, 1024, 24, 32] P22
Al Conv(1,1)-»BN—ReLU [b, 512, 24, 32] Input
A2 Conv(3,1,6)=BN—ReLU [b, 512, 24, 32] Input
A3 Conv(3,1,12)=BN—ReLU [b, 512, 24, 32] Input
A4 Conv(3,1,18)=BN—ReLU [b, 512,24, 32 Input
A5 AdaptiveAvgPool2d(1) [b,1024,1,1] Input
A6 Conv(1,1)-»BN—ReLU [b,512,1,1] A5
AT Upsample(’bilinear’) [b, 512,24, 32] A6
A8 Concat [b, 2560, H, W] Al A2 A3 A4, AT
ASPP Output Conv(1,1)+BN—ReLU [b, 1024, 24, 32] A8

Note: A(-) - Operation type, k - Kemnel size, s - stride rate, b - batch size,
D, H, W - depth, height, and width of the feature map, BN - Batch Normalization.

Batch normalization (BN) and ReL.U activation are applied at the end of parallel dilated con-
volutions, and the outputs are finally spliced with an adaptive average pooling output of the input
feature map. A 1 x 1 Conv is used to resize the channel dimensions of the resulting ASPP feature

maps to that of the ASPP block Input and is passed to the decoding pathway.
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Table 3.5: SNet: Encoding Sub-Network Architecture

Layver Type Output Shape
Layer ID A(k, s) [b, D, H, W] Input
SNet: Encoding Sub-Net Architecture
Input Input Layer [b, 3,384, 512] mini-batch
P1 Conv(3,1)»BN—RelLU [b, 64,384, 512] Input
P2 Conv(3,1)—=RelLU [b, 64,384, 512] P1
P3 Maxpool(2,2) [b, 64,192, 256] P2
P4 Concat [b, 128, 192, 256] P3,L3
P5 Conv(1,1) [b, 64,192, 256] P4
P6 Conv(3,1)»BN—RelLU [b, 128, 192, 256] P5
P7 Conv(3,1)—=RelLU [b, 128, 192, 256] P6
P8 Maxpool(2,2) [b, 128,96, 128] P7
P9 Concat [b, 256, 96, 128] P8, L6
P10 Conv(1,1) [b, 128,96, 128] P9
P11 Conv(3,1)»BN—RelLU [b, 256, 96, 128] P10
P12 Conv(3,1)—=RelLU [b, 256, 96, 128] P11
P13 Maxpool(2,2) [b, 256, 48, 64] P12
P14 Concat [b, 512,48, 64] P13,L9
P15 Conv(1,1) [b, 256, 48, 64] P14
Pl6 Conv(3,1)»BN—RelLU [b, 512,48, 64] P15
P17 Conv(3,1)—=RelLU [b, 512,48, 64] Pl6
P18 Maxpool(2,2) [b, 512,24, 32] P17
P19 Concat [b, 1024, 24, 32] P18,L12
P20 Conv(1,1) [b, 512,24, 32] P19
P21 Conv(3,1)»BN—RelLU [b, 1024, 24, 32] P20
P22 Conv(3,1)—=RelLU [b, 1024, 24, 32] P21

Note: A(-) - Operation type, k - Kernel size, s - stride rate, b - batch size,
D, H,W - depth, height, and width of the feature map, BN - Batch Normalization.

Table 3.5 summarizes the layer-wise detail of the Segmentation network’s encoding sub-net
developed in this work. While the SNet works similarly to the ENet, it receives specific intermedi-
ate outputs from the ENet as edge signals, which are propagated through the network at different
stages. For example, the SNet’s encoding sub-net propagates the skip connections from the ENet’s
encoding sub-net (L3, L6, L9, L12) along with its own subsampled features (P3, P7, P12, P17)
through concatenation and convolution. Similarly, the decoding process is divided into two phases
like the ENet, but it involves upsampling combined features from both the networks’ skip connec-

tions. By the end of the decoder pathway, the resolution is restored to 384 x 512, and a final convo-
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lutional layer acts as the classifier to produce the semantic class probability map (Out). Table 3.7
on page 40 summarizes the layers used to build the decoding pathway. The detailed description of
the feature fusion strategies used to enable feature sharing between the ENet and SNet is provided
in the next Section 3.3.1. Figure 3.3 illustrates the SNet’s training and validation progress over 150

epochs, the 110th epoch is where it achieved optimal recall and minimized loss.
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Figure 3.3: Training progress of the SNet for 150 epochs.

Table 3.6: Training Hyperparameter of the SNet

Hyperparameter Value

Learning rate 0.001

Optimizer Adam

# of Epochs 150

Batch size 4

Loss Function Categorical Cross-Entropy Loss
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Table 3.7: Layer-wise Connectivity Pattern of Decoding Pathway of the SNet

Layer 1D Layer Type Output Shape Input
Decoding Sub-Net with Attention
P23 Previous Layer [b, 1024, 24, 32] ASPP Output
P24 Upsampling Block [b, 512, 48, 64] P23
P25 Conv(1,1)—+BN [b, 256, 48, 64] P24
P26 Conv(1,1)—+BN [b, 256, 48, 64] P17
P27 Add—ReLU [b, 256, 48, 64] P26, P25
P28 Conv(1,1)—+BN—Sigmoid [b, 1,48, 64] P27
P29 Multiply [b,512, 48, 64] L28,P17
P30 Concat [b, 1536, 48, 64] P29, P24, L11
P31 Conv(3,1)-BN—ReLU [b,512, 48, 64] P30
P32 Conv(3,1)—ReLU [b,512, 48, 64] P32
P33 Upsampling Block [b, 256, 96, 128] LP32
P34 Conv(1,1)—+BN [b, 256, 96, 128] P33
P35 Conv(1,1)—+BN [b, 256, 96, 128] P12
P36 Add—ReLU [b, 256, 96, 128] P35, P34
P37 Conv(1,1)—+BN—Sigmoid [b,1,96,128] P36
P38 Multiply [b, 256, 96, 128] P37, P12
P39 Concat [b, T68, 96, 128] P38, P33, L8
P40 Conv(3,1)-BN—ReLU [b, 256, 96, 128] P39
P41 Conv(3,1)—ReLU [b, 256, 96, 128] P40
Decoding Sub-Net w/o Attention
P42 Upsampling Block [b, 128, 192, 256] P41
P43 Concat [b, 384, 192, 256] P42, P7,L5
P44 Conv(3,1)-BN—ReLU [b, 128, 192, 256] P43
P45 Conv(3,1)—ReLU [b, 128, 192, 256] P44
P46 Upsampling Block [b, 64, 384, 512] P45
P47 Concat [b, 192, 384, 512] P46, P2,1.2
P48 Conv(3,1)-BN—ReLU [b, 64, 384, 512] P47
P49 Conv(3,1)—ReLU [b, 64, 384, 512] P48
Out Conv(1,1)—f(-) [b,12, 384, 512] LA40

Total number of trainable parameters: 56,514,832

Note: A(-) - Operation type, k - Kernel size, s - stride rate, b - batch size,
D, H, W - depth, height, and width of the feature map, BN - Batch Normalization,
Upsampling Block - Upsample(2,2)—Conv(3,1)=+BN—ReLU, f(-) - Softmax Classifier

Feature Fusion Strategy

The edge features from the encoding pathway of the ENet, are fused with the encoder block outputs

of the SNet using simple depth-wise concatenation and 1 x 1 Conv to resize the feature maps to
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the required size. The decoder pathway of the SNet receives features from the SNet’s encoder
pathway as well as the ENet’s encoder pathway. Figure 3.4 demonstrates the feature fusion and

skip connection strategy that facilitates feature sharing from the ENet to the SNet.

Input Image
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Figure 3.4: The feature fusion and skip connection locations employed between the two subnets.

3.3.2 Network Justification

In order to determine the ideal architectural arrangement of the dual network that enables optimal
feature sharing, a methodical sanity analysis is conducted to develop the final architecture. To start,
the baseline, i.e. the basic U-Net [3], and an Att U-Net [54] were trained from scratch. It was found
that the Att U-Net performed better than the basic U-Net with a 2.00% mloU improvement. This
prompted further analysis by incrementally adding one attention block at a time, starting from the
deepest encoder layer (with the smallest spatial dimension) and progressing outward to the bottom
layer (with the largest spatial dimension), to determine the optimal number of attention blocks.

This revealed that the addition of the 3rd and 4th attention blocks had negligible improvement
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since the deeper feature maps are more information-rich. Reducing the attention blocks to two
at the deepest encoding layers also reduced the number of trainable parameters while achieving
almost the same mloU. The full-attention strategy achieved a mloU of 64.55%, while the two-
attention-block approach (abbr. 2-Att) delivered a comparable yet marginally improved mloU of
64.63%.

Subsequently, to reach an optimal fusion model using the ENet and the SNet, systematic exper-
iments were performed as tabulated in Table 3.8. First, the pooled edge features from the ENet’s
encoder pathway were fused with the features of the SNet’s encoder pathway (Expl: M1). Then,
the bottleneck feature maps were fused in addition to the encoder-pooled outputs (Exp2: M2).
Then, the ENet’s decoder block outputs were also fused with the SNet’s decoder block outputs
(Exp3: M3). Later, the encoder pathway was unfused, leaving only the bottleneck feature maps
and decoder block outputs fused between the subnets (Exp4: M4), and finally, the bottleneck was
unfused, resulting in only the decoder block outputs between the networks remaining fused (Exp3:
M5).

Table 3.8: Sanity analysis of the feature fusion strategies used to build the proposed model. %

change is w.r.t the baseline U-Net

Model Feature Fusion Strategy mloU (%) # of Tr. Params % Change

Baseline  No strategy 63.20 39,391,244 -

Expl: M1 Encoder layers 1, 2, 3, 4 65.43 35,544,848 +3.38
Exp2: M2 Encoder layers 1, 2, 3, 4; Bottleneck 64.80 37,643,024 +2.52

] Encoder layers 1, 2, 3, 4; Bottleneck,

Exp3: M3 Decoder layers 1, 2, 3, 4 64.99 38,340,304 +2.69
Exp4: M4 Decoder layers 1, 2, 3, 4; Bottleneck 63.73 37,643,024 +0.70
Exp5: M5 Decoder layers 1, 2, 3, 4 63.67 35,544,848 +0.60

Note: Models M1 - M5 represent different strategies described in the above paragraph.

Table 3.8 shows the layers that were fused between the SNet and ENet, their performance in
terms of mloU, and complexity in terms of the number of trainable parameters. The results con-
cluded that feature fusion along the encoder pathway omitting the fusion of bottleneck feature maps
(M1), produced the best results at 65.43% mloU without adding much computational complexity.

At this stage, the ENet was unfrozen to explore whether fine-tuning could improve performance.
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While this nearly doubled the trainable parameters to 70,391,701, the added complexity led to only
a marginal improvement of 0.69%, from 65.43% to 65.88%. As a result, the ENet was kept frozen
in subsequent experiments.

In the next step, the ASPP module’s viability was tested at the bottleneck (abbr. ASPP-B)
of the SNet. This module was omitted in the ENet because the existing configuration, which
achieved 93% recall (computed using Equation (1.6)), did not require the additional complexity
for acceptable edge detection. Finally, the skip connections from the ENet were concatenated with
the skip connections of the SNet along the decoder pathway (proposed model, ECASeg) with the
rationale that edge context might also guide the upsampling process. Table 3.9 summarizes the test

outcomes of the systematic addition of each architectural enhancement after sanity analysis.

Table 3.9: Ablation study of modifications made to achieve the final proposed model, ECASeg

Model Enhancement mloU (%) # of Tr. Params
Baseline No enhancement 63.29 39,301,244
2-Att Two-Attention-Strategy in Layer 3, 4 64.63 34,847,568
M1 Feature Fusion in Encoder blocks 65.43 35,544 848
ASPP-B ASPP module in Bottleneck 66.23 53,381,392
ECASeg ENet and SNet Skip Concatenation 66.53 56,514,832

3.3.3 Environment

The proposed model is developed using Python 3.10 and its open-source native libraries, along
with the PyTorch framework. Model development, training, and evaluation are conducted on a
node within the Compute Canada Beluga Cluster. The system is equipped with an Intel Gold 6148
Skylake CPU running at 2.4 GHz, with a memory allocation of 64 GB RAM. Training is performed
on a single NVIDIA Tesla V100 GPU, connected via NVLink, with 16 GB memory.

3.3.4 Dataset

The publicly available CamVid Database [1] is employed to train and evaluate the proposed model.

It contains collections of high-quality 30Hz driving scene video sequences with dense per-frame
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annotations. The dataset includes over ten minutes of footage, with semantic labels provided at 1Hz
(and partially at 15Hz). There are 701 frames of size 720 x 960 annotated for 11 object classes.
The dataset is divided into train, validation, and test sets, subsuming 369, 100, and 231 samples.
The samples are resized, retaining their aspect ratio to have a spatial dimension of 384 x 512, and

their pixel values are normalized to [0, 1]. No augmentations are applied during preprocessing.

Table 3.10: Summary of CamVid Database [1]

Column Sign
Class Label | Sky | Building | Pole | Road | Sidewalk | Tree | Symbol | Fence | Car | Pedestrian | Bicyclist
e Pixel
Occurrence | 18.04 | 20.79 1.04 |2598| 669 1076 | 017 0.87 [4.15 0.56 0.30

Table 3.10 shows the distribution of the 11 label classes for all labeled data present in the
dataset. The class distribution exhibits significant imbalance, reflecting real-world driving sce-
narios where roads dominate pixel coverage compared to sparse classes like bicycles. Despite its
moderate size, the dataset’s diverse scenes and comprehensive annotations make it particularly

suitable for evaluating urban scene understanding tasks.

3.3.5 Quantitative Analysis

For a fair comparison, all the models were trained from scratch with the same conditions as the
proposed model, and their performance was tested on the CamVid holdout test set. The baseline
U-Net [3] achieved test accuracy of 90.82%, and mloU of 63.29%. The Att U-Net [54] performed
better than the baseline U-Net, reaching overall test accuracy of 91.21%, and mloU of 64.55%.
However, the proposed model outperforms both prior models with a test accuracy of 91.86%, and
mloU of 66.53%, enhancing the segmentation results by 5.12 percentage improvement compared
to the baseline U-Net. Table 3.11 provides a comparison of the proposed model’s performance
against existing models’ performances with respect to test accuracy and mloU. The respective
% change in ECASeg’s mloU from its counterparts is also included. The quantitative analysis
demonstrates positive findings, yet its effectiveness is to be validated across a broader range of

real-world scenarios.



Table 3.11: Quantitative analysis summary. The % change is calculated w.r.t test mloU between

the proposed model and the respective model in comparison

U-Net SegNet | FCN | LargeFOV | Cyclic | GSAUNet ECASeg
Baseline | Att | [36] |[36][2]| [36][40] |Net[67] [31] (this work)
Acc (%) |90.82 01.21| 84.00 | 83.90 85.95 01.38 01.44 91.86
mloU (%) | 63.29 64.55 | 46.30 | 45.00 50.18 62.98 65.47 66.53
% Change [+5.12 | 43.07 | +43.69 | +47.84| +32.58 +5.64 +1.62 -

Model

3.3.6 Qualitative Analysis

Figure 3.5 on page 46 provides a few samples of the proposed ECASeg’s predictions on the test
set, demonstrating that even difficult object classes like pedestrians, cyclists, and poles are captured
satisfactorily despite varying lighting conditions and degrees of occlusion. Even with the reduction
of attention blocks, the proposed model sufficiently captures relevant fine-grain details in the final
segmentation masks. Upon further observation, it still exhibits poor object boundary resolution for
underrepresented classes and objects with intricate shapes. Besides, the ENet subnet, which was
trained to detect Sobel edges, may have introduced noise into the feature maps as Sobel edges are
not always effective in isolating precise object boundaries. This can be addressed by leveraging
sophisticated learning-based edge detection methods or advanced boundary-aware algorithms that
focus on isolating object semantic boundaries rather than merely detecting gradient variations. The
under-utilization of the generated edge maps also points to an area for further exploration, where
late-fusion strategies and edge-based confidence scores can be employed to guide final pixel-wise

predictions.

3.4 Chapter Summary and Findings

This chapter demonstrates the effectiveness of a dual-network framework combining a specialized
Sobel edge network and a specialized segmentation network for multi-class segmentation. The
experimental results validate the hypothesis that augmenting feature representations with boundary

constraints and attention strategies can improve performance over individual models. The proposed
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Figure 3.5: Prediction samples of the model on CamVid test. Row # 1 - 3: Input images, ground

i

truths, and predicted segmentation maps. The image IDs are provided for reproducibility.

approach achieves a 5.12% improvement over the baseline U-Net and a 3.07% improvement over
the baseline Attention U-Net.

Qualitative analysis highlights the strengths of the framework by delineating thin structures
like poles as well as distant pedestrians. However, object boundaries are still smoothened slightly,
which points to a major limitation. Employing transformation techniques or a late fusion approach
could better integrate edge information with semantic features, potentially leading to more re-
fined segmentation results. Given the critical importance of accurate segmentation in applications
such as autonomous driving, improving the model’s ability to precisely distinguish object bound-
aries is essential for ensuring safety and reliability. The architectural enhancements introduced
in this methodology are promising, but there is ample opportunity for further refinement. While
the model’s success could be attributed to explicitly preserving and propagating multi-scale edge

features, a unified architecture leveraging advanced multi-scale mechanisms may similarly achieve
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edge-aware feature retention without separate edge detection networks. There is also significant
potential in exploring transfer learning in domains like remote sensing or indoor positioning, where
the model’s adaptability to different visual contexts can be tested. In parallel, addressing the per-
sistent challenges of minority class segmentation, improving boundary accuracy, and optimizing
the model to reduce computational overhead and inference time remain key research objectives.
This phase of the research addresses the initial hypothesis that integrating supplementary features
improves overall feature representation, and a complimentary network can augment the perfor-
mance of a primary network under the same hyperparameter conditions. The insights gained from

this exploration guide the next approach towards achieving the goals outlined in this thesis.
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Chapter 4

An Efficient Network with Smart Scaling

4.1 Overview

Transformer-based supervised semantic segmentation approaches have achieved many state-of-
the-art (SOTA) performances across several domains. However, such models tend to be large and
computationally complex and need large amounts of labeled data for fine-tuning to achieve optimal
performance. As we advance in a rapidly evolving Al-driven era, there is a growing responsibility
to develop computationally efficient approaches that aspire toward SOTA results while operat-
ing within the constraints of finite resources. Interestingly, increasing model size alone does not
guarantee better performance [68] as intricate patterns in the data may still be poorly captured,
and overfitting becomes more imminent. In this regard, this research focuses on improving the
performance of low-complexity models via architectural innovations and additions as opposed to
implementing larger CNNs. Enriched architectures exhibit the potential to perform competitively
with fewer training samples than Transformer-based counterparts by overcoming limitations such
as loss of spatial information, poor global context, and weak feature representation that typically
plague CNN approaches. Therefore, this chapter aims to find an efficient and lightweight architec-
ture whose latent abilities can be unlocked by reevaluating the efficiency of each of its components
and the incorporation of additional methods like channel and spatial attention, depth-wise separa-

ble convolution (DS Conv), and multi-scale feature modules.
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4.2 Feature Pyramid Networks

Multi-scale feature modules like Feature Pyramid Networks (FPNs) [69] have significantly ad-
vanced semantic segmentation by addressing the inherent challenges of scale variation in pixel-
level classification. Traditional convolutional networks suffer from a fundamental limitation: As
features propagate deeper into the network, high-resolution spatial details are progressively lost
due to pooling and strided convolutions, making small object segmentation particularly difficult.
FPNs mitigate this by constructing a hierarchical feature pyramid that combines high-level se-
mantic information from deep layers with fine-grained spatial details from shallow layers. The
top-down pathway with lateral connections upsamples high-level semantically rich feature maps
and merges them with spatially rich low-level features via lateral skip connections. This retains
the fine details necessary for segmentation intricate object boundaries and delicate structures.
Moreover, similar to how backbones extract hierarchical features, FPNs generate multi-resolution

feature maps that capture object information at multiple scales, which is beneficial when there are
large-scale variations of the same objects in a dataset. By maintaining high-resolution feature maps
at multiple levels, FPNs help preserve gradients for small objects, preventing their features from
being “washed out” in deep layers. This is crucial for long-range feature propagation, where tra-
ditional CNNs fail to retain small object details. Since its introduction, several enhanced FPNs
have been constructed to exploit these characteristics. For example, PSPNet [70] appends a pyra-
mid pooling layer to an FPN to capture multi-region context. The EfficientDet framework [71]
employs a Bidirectional Feature Pyramid Network (BiFPN) which introduces a combined top-
down and bottom-up pathway that preserves low-level details and reinforces them in deeper lay-
ers. A learnable feature weighting mechanism dynamically balances contributions across scales
to prevent larger objects from dominating the feature space, and efficient cross-scale connections
improve gradient flow. The bidirectional design not only strengthens feature reuse but also cre-
ates more direct gradient propagation paths, leading to improved optimization during training and

improved sensitivity to detail.
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4.3 Advanced Attention Mechanisms

Attention mechanisms operate on the principle of modeling long-range dependencies and correla-
tions to enhance task-specific contextual cues while hiding less pertinent features. For example,
in the previous chapter, spatial attention was investigated to boost edge-semantic relationships.
On the other hand, SENet [72] introduced channel attention by using global average pooling and
fully connected layers with nonlinear activations to enhance important channel-wise feature rep-
resentations. Similarly, the spatial attention module in [51] uses global average and max pooling
to highlight important spatial regions and suppress irrelevant features. This work applies both
channel and spatial attention to improve segmentation. Spatial attention is computed by applying

depth-wise average and max pooling over the channel dimension, as follows.

c

Fug(h,w) = 3" E(h, ), @.1)
e=1

Frax(h,w) = max, F.(h,w), (4.2)

where F.(h,w) is the feature at spatial location (h,w) and channel ¢; and C' is the number of
channels. The average and max pooled features are concatenated along the channel dimension to

form a combined feature map:
Far = concat(Fiyg, Fax) € RPHW, (4.3)

where H and W are the height and width of the input feature map. Then, a convolution (Conv)

with a kernel (K) of size 7 x 7 is applied to the concatenated feature map:
M,=0(K*Fx), and F'=M,®F, (4.4)

where # is the Conv operation and o(-) is a sigmoid activation. The resulting spatial attention
weights M, are applied to the original feature map by element-wise multiplication to produce F”,

the refined feature map.
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The channel attention mechanism is applied in parallel and begins with a squeeze operation
by aggregating global spatial information using both adaptive average and adaptive max pooling

across the spatial dimensions for a given feature map F' € R©*H>W:
fng = AdptAvgPool(F), and fuy = AdptMaxPooly(F), 4.5)

where foq, fnax € RE*1™! are pooled feature vectors. Each pooled vector is passed through a

shared multi-layer perceptron with 2 fully connected layers and ReLLU activation:
frve = WoReLU(Wifyg), and  fr, = WoReLU(Wifimy), (4.6)

where W, and W are learnable weight matrices. The channel attention map is computed by

summing the two excitation outputs and applying the sigmoid function:
M. =o0(fq, + fny), and F'=M.GOF, 4.7

where M, € R®*1*! is the channel attention mask. The original feature map is reweighted using
element-wise multiplication with the channel attention map to produce F”, the refined feature map.
The outputs of the spatial and channel attention modules are combined using a learnable weight-

based fusion mechanism called fast normalized fusion, introduced in [71]:

. (4.8)

where wq, ws are learnable fusion weights and w + ReLU(w), ensuring a dynamic balance
between spatial and channel attention outputs. € is a small positive constant to prevent division
by zero, and Fppa is the refined feature map that combines spatial (F5) and channel (F¢) attention
refined outputs. This fusion strategy adaptively emphasizes the most relevant features, enhanc-
ing the representation power of the network. The resulting module is named the Dual Attention
Refinement (DAR) Module.
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4.4 Methodology

The contributions of the proposed methodology are summarized as follows: (i) Reducing model
complexity with a lightweight backbone and enhancing traditional Deeplabv3 capabilities with
the strategic addition of attention mechanisms to highlight important features, (ii) introducing a
depth-wise and point-wise feature pyramid module for capturing spatial and semantic context, and
(ii1) employing two complementary modules to extract distinct types of multiscale information to
fortify the decoding pathway using a strategic feature fusion. Figure 4.1 illustrates an overview of

the proposed semantic segmentation model.
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Figure 4.1: An architectural overview of the proposed model.

4.4.1 The Backbone Network

Traditional implementations of the DeepLabv3 setup involve highly complex and computation-
ally heavy backbones which can make fine-tuning the architecture challenging. In this work, a
lightweight CNN-EfficientNet-v2(Tiny }-pre-trained on ImageNet-1k is considered as the back-
bone. It has fewer parameters and a quicker training time than the popular ResNet and Xception

implementations.
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4.4.2 The Improved ASPP Network

The ASPP network includes a DAR module (Section 4.3) and a depth-wise separable convolution
(DS Conv) to condense DAR-refined features. The ASPP module uses global average pooling and
3 x 3 Conv with dilation rates of 6, 12, and 18, each followed by batch normalization and RelLU,
to extract semantic context, which is further refined by the DAR module. The output is reshaped
using DS Conv and upsampled 4x. In the decoder, a depth-wise point-wise feature pyramid (DPFP)
captures multi-scale semantic and spatial information from different stages in the backbone. These

features are fused with ASPP outputs via skip connection and channel-wise concatenation.

4.4.3 The Depth-wise Point-wise Feature Pyramid (DPFP) Module

Backbone
Features

Upsample @ Fast Normalized Fusion
== Maxpool =3 Data Flow
= DS Convolution = Feature Extraction

Figure 4.2: Design specifications of the Depth-wise Point-wise Feature Pyramid (DPFP) module.

The backbone extracts hierarchical information in 5 stages, where each stage progressively
halves the spatial resolution while increasing the number of channels. Features extracted by the
last layer of the backbone (Fs) are passed to the improved ASPP, while feature outputs from the four
later layers of the backbone, F to Fs, are fed to the DPFP module. The DPFP module aligns fea-
tures from a feature pyramid constructed using the last three backbone features, F3 to Fs, through a

series of depth-wise separable (DS) convolutions, upsampling/ downsampling operations, and fast
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normalized fusion of features at the same scale. The aligned features are concatenated with 1 x 1

convolved F; along the channel dimension as depicted in Figure 4.2.

4.4.4 A Smart Scaling for Multi-level Feature Learning

The resulting features from the multi-scale modules, DPFP and ASPP, are stacked channel-wise
again and are followed by a 3 x 3 convolution, BN, and ReLU activation function before being
upsampled by a factor of 4 using bilinear interpolation to restore the segmentation predictions to
the input image size. A Softmax classifier refines the output to produce a semantic class probability
map representing the objects found in the input image. In this approach, the ASPP and DPFP act
as two complementary modules to extract distinct types of multiscale information.

The first module utilizes multiple atrous rates applied to the deepest backbone layer, which
are inherently rich in semantic information. The varying atrous rates enable the capture of long-
range dependencies within these semantically rich features at multiple spatial scales, enhancing
global context understanding. The second module captures multi-scale information by integrating
features from multiple backbone layers, which contain both spatial and semantic information at
different levels of abstraction. This integration is performed through fast normalized fusion, facil-
itating the effective distillation of spatial and semantic features across different stages of feature
extraction. As a result, spatial information is preserved and propagated over longer ranges when
passed as skip connections during the decoding process.

The fusion of these two feature representations introduces a trade-off between different multi-
scale information sources. The extracted features vary not only in terms of spatial scales—defined
by receptive field variations—but also in terms of localization and semantic content. The latter
includes both detailed object characteristics and the contextual relationships between objects and
their spatial positioning within the image. Through this process, the network leamns to adaptively
balance and propagate these features, resulting in a “smart scaling” mechanism that dynamically
adjusts the interaction between early and deep feature representations. This approach enhances
both spatial consistency and semantic coherence throughout the network, leading to improved

segmentation performance.
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4.4.5 Environment

The model is implemented in Python 3.10 using open-source libraries and the PyTorch framework.
Development, training, and evaluation are performed on Compute Canada’s Beluga, Narval, and
Mist clusters. Beluga features an Intel Gold 6148 CPU (2.4GHz) and 4x NVIDIA Tesla V100
GPUs (16GB). Narval uses an AMD CPU (2.65GHz) and 4:x NVIDIA A100SXM4 GPUs (40GB).
Mist is equipped with an IBM Power9 SMT4 CPU and 4 x NVIDIA V100 Volta GPUs (32GB).

4.4.6 Datasets
Cityscapes [47]

It contains diverse daytime urban driving scenes throughout several seasons with varied weather
conditions. There are 5,000 finely annotated images of size 1024 x 2048 and divided into training,
validation, and test sets, which contain 2975, 500, and 1525 samples, respectively. Although there
are 30 semantic classes, only 19 are considered in the evaluation. Images are resized to 768 x 1536
for training. Since the test ground truths are not available publicly, the validation set is used as a
holdout set in this work. A small subset of the train data (275 samples) without overlap is used as
a validation set to track train progress. Inference is performed on non-augmented images that are
only resized and normalized. Also, for preliminary experimentation and ablation study, a miniset
comprising 1000 training samples and 275 non-overlapping validation samples from the training
set was created, with the original validation set used in its entirety as a holdout. All other protocols

for the miniset remain consistent with those applied to the full set.

CamVid [1]

For cross-validation, the CamVid database is also utilized. Dataset details are described in Sec-
tion 3.3.4. The images are resized to 704 x 960 and all other preprocessing steps and inference
protocols followed for the Cityscapes dataset are applied to the CamVid dataset as well. A batch

size of 4 is used for training baseline and proposed models.
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LoveDA [6]

For cross-domain validation, the Land-cOVEr Domain Adaptive semantic segmentation dataset is
utilized. It contains high spatial resolution remote sensing images of size 1024 x 1024, captured
in Nanjing, Changzhou, and Wuhan. [t contains 2713 urban scenes and 3274 rural scenes that
were collected from 18 spatially independent areas using advanced ArcGIS geo-spatial software.
The dataset of 5987 images is split into train, validation, and test sets with 2522, 1669, and 1796
images, respectively. Evaluation of 7 semantic land-cover classes—background, building, road,
water, barren, forest, agriculture—can be conducted using the publicly available validation set or
submitted to the evaluation server for test results since the test ground truths are private. The
images are not resized, but all other preprocessing steps and inference protocols followed for the
Cityscapes dataset are applied to the LoveDA dataset as well.

Figure 4.3 shows a sample input image and its corresponding ground truth mask from each

dataset used in this work.

Cityscapes LoveDA

—

Masks

Figure 4.3: A sample input image and its corresponding ground truth mask across datasets used

in this work.
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4.4.7 Data Preprocessing: An Online Data Augmentation Strategy

To ensure the model learns robust feature representations that are invariant to perspective shifts
and changes in photometric appearance [55, 57], a range of color and geometric augmentations
are applied. These include color jitter, random noise, blur, horizontal flip, shear, random rotation,
and crop. These augmentations are applied only to the training data and are generated on the fly
during data loading with a random probability. Also note that inputs are normalized based on

ImageNet-1k normalization for better convergence and generalization [44].

4.4.8 Model Training

The miniset is utilized to run preliminary experiments, with the best-performing configurations
then applied during the full training of the proposed model. The train hyperparameters (cf. Ta-
ble 4.1) remain consistent across all experiments and are maintained in the final training phase
described in the following paragraph. However, due to the reduced size of the miniset, the ‘mini’
experiments are conducted for only 50 epochs. The impact of key enhancements incorporated
into the final training phase is assessed through ablation with the miniset. Figure 4.4 presents the

validation progress over 50 epochs of the ablation experiments discussed in Section 4.4.9.

Table 4.1: Train Hyperparameters of the Proposed Method on Cityscapes

Hyperparameter Value
Learning rate 0.0001
Optimizer Adam
# of Epochs 100
Batch size 4

Loss Function Categorical Cross-entropy Loss

For the final training phase, the proposed model is trained from scratch using Adam opti-
mizer [73] with a leaming rate of 0.0001, minimizing the categorical cross-entropy objective
function and other hyperparameters outlined in Table 4.1. The objective function is defined in
Equation (1.1) and evaluation is done using mloU and efficiency metrics (Equations (1.5), (1.7),

respectively). Figure 4.5 illustrates the training and validation progress over 100 epochs; the model
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Figure 4.4: Training progress plots of the ablation experiments on Cityscapes miniset.

is first trained for 95 epochs with the train (2700 samples) and validation subsets (275 samples),
followed by 5 epochs using the complete train set (2975 samples). The model achieved optimal
mloU and minimal loss at the 98th epoch.

4.4.9 Comparative Study

Initially, several lightweight backbones were tested in a DeepLabv3 setup. The EfficientNetv2
pre-trained on ImageNetlk in tiny and small configurations produced the best results. Still, the
tiny configuration was chosen because the latter only performed marginally better for a significant
parameter increase. This model forms the baseline for a meaningful analysis of the effectiveness
of the enhancements introduced in the proposed method. Table 4.2 summarizes the ablation study
of the key components in the proposed framework. The ablation process begins with training the

baseline model on the train miniset while monitoring validation loss to mitigate overfitting, fol-
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Figure 4.5: Training progress plot of the proposed podel for 100 epochs on Cityscapes.

lowed by sequentially incorporating the improved ASPP, the DPFP module with standard ASPP,
and finally, both the DPFP module and the improved ASPP. For a fair comparison across experi-
ments, the best mloU achieved by each configuration and the corresponding epoch at which it was
obtained are reported. The results demonstrate that the proposed configuration achieves 67.44%

mloU on the Cityscapes validation set, surpassing all intermediate versions.

Table 4.2: Ablation Study on Cityscapes Miniset

Experiment mlolU (%) Epoch
Baseline 62.75 46
Baseline + Improved ASPP 63.44 46
Baseline + DPEP 66.87 46

Baseline + DPFP + Improved ASPP 67.44 41

Thus, for the final training phase, the baseline and proposed models were trained from scratch
on the full train set. The proposed model achieved 73.78% mloU and the baseline achieved 67.55%

on the Cityscapes validation dataset. Table 4.3 shows an improvement across almost all classes by
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the proposed method. The proposed model has a very slight increase in Params and GFLOPS after

the architectural additions, achieving an increase of 6.23 percentage points in mloU%.

Table 4.3: Class-wise performance comparison in Cityscapes Validation Set

Performance (mloU %) w.r.t Semantic Segmentation Classes

V] = =
0 g a 5 & S
Method | & .5 v £ = g 5 5 o 5
& 3 gz & £ 5 3%‘5#@5%%'5%5?
5 8 &4 S £ 2 L£8 &LE & £ E 8 F

Baseline |0.64 0.90 0.71 0.93 0.57 0.42 0.70 0.38 0.49 0.97 0.82 0.90 0.57 0.53 0.66 0.61 0.66 0.90 0.47
Proposed 0.72 0.91 0.83 0.94 0.58 0.59 0.77 0.53 0.54 0.96 0.77 0.93 0.61 0.62 0.72 (.76 0.80 0.91 0.50

Table 4.4: Quantitative analysis on Cityscapes. Change is calculated w.r.t mloU of the baseline

mloU Params GFLOPS Change Efficiency

Model 1 M | t %) 1
Baseline 67.55 14.0 84.3 — —
SwiftNetRN-18 [74] 635.30 11.8 52 -2.25 —
GSAUNet [31] 71.92 NA NA +4.37 —
KMaX DeepLab with ResNet50 [30] 79.70 56 434 +12.15 1.60
Panoptic-DeepLab with Xception-71 [29] 80.50 47 548 +12.95 1.41
SegFormer with MiT-B5 [20] 22.40 83 1460 +14.85 0.53
KMaX DeepLab with ConvNeXt-L [30] 83.50 232 1673 +15.95 0.40
SS-DeepSeg (this work) T3.78 15.6 110.2 +6.23 474

1 - Lower is better, T - Higher is better
‘NA’ denotes that the information is not available in the literature.

Table 4.4 summarizes the comparative analysis on Cityscapes, in which only methods that do
not use extra training data and test-time augmentation are considered for a fair comparison. It is
evident that while the proposed model does not achieve the highest segmentation mloU, it demon-
strates superior efficiency at 4.74%, i.e. achieves greater performance gains relative to the addi-
tional computational cost incurred. Cross-validating the approach on the second dataset, CamVid,
the proposed model achieves a test mloU of 76.96% after 119 epochs when training from scratch
with only the CamVid train set. The pretraining on the Cityscapes train set first, demonstrated an

increase in test mloU at 77.22%. The test results on CamVid compared against competitive models

are summarized in Table 4.5.



Table 4.5: Performance of various models on CamVid Test

Model mloU(%)
GSAUNet [31] 65.47
SwiftNetRN-18 [74] 65.70
CyclicNet [67] 62.98
VideoGCREF [75] 67.00
TVideoGCRF [75] 75.20
SS5-DeepSeg (this work) 76.96
158-DeepSeg (this work) 77.22

T: Pretrained on additional data, i.e. Cityscapes train set.

Validating the model’s performance on LoveDA, the proposed model achieves a competitive
test mloU of 51.71% after training from scratch for 33 epochs. The state-of-the-art results are
57.36% mloU achieved using an ensemble model that combines three UNet architectures whose
individual performances are also included for comparison alongside contemporary models in Ta-
ble 4.6. While the proposed approach does not achieve SOTA, ensemble techniques are often
bulky and computationally expensive. The ensemble technique does not report its parameters or
GFLOPS and demonstrates only marginal improvement in performance over its individual compo-

nents, failing to justify the increased size and complexity of a multi-transformer approach.

Table 4.6: Performance of various models on LoveDA Test

Per-class ToU (%) mloU

Background Building Road Water Barren Forest Agricolture (%)

DeepLabV 3+ (ResNet30) [6] 42.97 50.88 52.02 7436 10.40 44.21 38.53 47.62
UNet++ (ResNet50) [6] 42.85 52.58 52.82 7451 1142 4442 5880 43.20
HRNet (W32) [6] 44.61 5534 5742 7396 11.07 4525 60.88  49.79
UNetFormer (ResNet18) [76] 45.70 58.80 54.90 79.60 20.10 46.00 6250  52.40
{UNet (ConvFormer-M36) [7] 45.17 60.81 58.00 81.48 28.27 4690 6296  54.80

Method

{UNet(EfficientNet-B7) [7] 45.88 57.57 5892 80.69 28.24 4738  66.31 35.07
TUNet (MaxViT-5) [7] 48.59 6047 6340 81.17 27.02 48.10 6440 56.16
*UNet Ensembile [7] 49.09 61.12 63.71 8236 30.15 49.29 6582 57.36
55-DeepSeg (this work) 44.41 51.53 5349 76.62 23.96 4465 6414 5171

*: Ensemble with models denaoted by 1 symbol.
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4.4.10 Qualitative Analysis

munster_ DOBOSS_000013_lnftmgdket. prg

lindaa_DOD0OT_DO0018_lafimgshit.prg

Images Ground Truth Masks Baseline Predictions 55-DeepSeg Predictions

Figure 4.6: Sample of predictions on Cityscapes validation set. Col. # 1 - 4: Input images,

ground truths, baseline predictions, and proposed model predictions, respectively.

The strengths of the proposed approach are evident in the qualitative results. The predic-
tions on the Cityscapes validation set are shown in Figure 4.6. Here, challenging scenes from the
Cityscapes validation set are used to compare performance. The selected images (IDs are provided
for reproducibility) include variations in illumination, low-light conditions, high object density,
occlusions, and distant small objects. It is immediately apparent that the baseline model struggles
with severe boundary smoothing, a limitation commonly seen in DeepLab-based models, leading
to imprecise segmentation. In contrast, the proposed model demonstrates robustness to illumina-
tion changes, improved performance on small objects, and superior boundary delineation. Notably,
it effectively segments thin structures such as poles, highlighting its ability to capture fine-grained
details. The proposed model’s strengths can be attributed to its hierarchical feature balancing and

attention-guided refinement that effectively leverage multi-scale spatio-semantic features. Unlike
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the baseline, which primarily relies on a global context aggregation mechanism, the proposed ap-
proach incorporates a specialized weighting mechanism designed to preserve and propagate vital
spatial details (DPFP module) throughout the pipeline while attentively emphasizing contextual
relationships (improved ASPP with DAR module). This targeted design enhances fine-grained
segmentation, particularly in regions where the baseline struggles to capture delicate details.
Predictions of the proposed approach on the CamVid test set are illustrated in Figure 4.7. The
model demonstrates robust performance across most scenes, even under varying lighting condi-
tions. It effectively captures thin structures like poles and accurately identifies intricate object
classes like pedestrians, even when they are at considerable distances. However, some limitations
persist, object boundaries appear slightly eroded and there are misclassifications between visually

similar categories, such as wall/building, road/sidewalk, pedestrian/bicyclist.
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Figure 4.7: Predictions on the CamVid Test set, IDs provided for reproducibility.

Predictions on the LoveDA validation set are shown in Figure 4.8. LoveDA contains challeng-
ing urban and rural scenes and the relatively low mloU value substantiates the level of difficulty.

From observation, the model segments water bodies (blue) well which is supported by the high

63



class mloU. However, boundary erosion of varying degrees is in evident across all classes. Forests
and agricultural areas (green and beige, respectively) are difficult to differentiate, possibly due to
their spectral similarities. Small and intricate objects like building clusters (red) and sparse trees
(green) are particularly challenging leading to missed classifications, and background class (white)

exhibits high intra-class variance resulting in false positives.
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Figure 4.8: Proposed method’s predictions on the LoveDA validation set. Image IDs provided for
reproducibility.
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4.5 Chapter Summary

This work presents a lightweight segmentation model that achieves improved performance com-
pared to the baseline while maintaining efficiency in terms of computational cost and parameters.
Despite not reaching SOTA performance, the model demonstrates a promising trade-off between
accuracy and efficiency, particularly when contrasted with transformer-based models that require
significantly higher FLOPs and parameter counts. From the analysis, small architectural modifica-
tions, i.e., 0.7M additional parameters, can yield notable performance improvements while over-
coming certain network limitations. Additionally, qualitative evaluation highlights that the model
effectively delineates most objects; however, challenges persist in poorly represented classes and
complex structures, an inherent issue in driving datasets. To address these limitations, future re-
search avenues include exploring data-centric strategies such as advanced angmentation strategies
to increase the occurrence of underrepresented samples. These include techniques like gener-
ative adversarial networks or diffusion-based synthesis of realistic rare-class samples. Another
method is dynamic adaptive upsampling of rare classes during dataloading to unsure a more bal-
anced exposure during training. Class-aware augmentation methods like CutMix can be adapted to
strategically insert rare-class regions into images, thereby increasing the rare-class instances during
training. Additionally, architectural refinements like neural architecture search-optimized decod-
ing and training optimization techniques such as pre-text task training and self-supervised leaming
are possible strategies to enhance generalization. By incorporating such strategies to diversify
training data, and further refining architectural choices, the proposed approach can be enhanced to

bridge the gap between efficiency and accuracy in real-world segmentation applications.
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Chapter 5

Conclusion

This thesis methodologically investigated two approaches: a multi-model and a lightweight label-
efficient solution to addressing key challenges in complex scene semantic segmentation. Through
effective model design and iterative improvements, the proposed approaches achieve improved
accuracy-complexity trade-offs.

The contributions of this thesis include the development of novel architectural components,
namely the DPFP module and DAR module, and the systematic application of augmentation strate-
gies to improve label efficiency. The experimental analysis on benchmark datasets shows that the
proposed strategies can lead to real-time performance on edge devices for autonomous systems
while maintaining accurate segmentation results. However, the performance in rare classes remains
suboptimal due to dataset bias, which points to the need for more advanced sampling and augmen-
tation strategies to boost representation for rare classes. Building upon this research, several critical
avenues emerge as future directions to advance efficient and sustainable visual perception systems.

First, developing adaptive class imbalance strategies, such as learned loss weighting and con-
strained diffusion-based synthesis, will maximize the utility of labeled data while addressing scene
heterogeneity.

Second, the fundamental challenge of scaling lightweight architectures requires innovations
in dynamic capacity allocation, potentially through gated modular networks combined with task-

aware distillation protocols that preserve model efficiency during domain transfer. In tandem,



Neural Architecture Search can play a pivotal role in identifying optimal gating structures and
modular pathways, thus, acting as a complimentary tool that enables optimal configuration of
dynamic capacity allocation ensuring that lightweight models maintain robustness across domains.

Most crucially, the field’s transition to 3D perception (LiDAR) demands a shift toward sustain-
able point cloud processing, where techniques like hardware-aw are sparse convolutions, geometric-
fidelity preserving compression, and carbon-accounted training regimens must co-evolve with
emerging sensor technologies. This necessitates new benchmarking frameworks that jointly quan-
tify accuracy, latency, and energy expenditure across the model life cycle, from training algorithms
to deployment-aware quantization schemes. Realizing this vision will require tight integration of
architectural innovations, spatiotemporal representation learning, and environmentally conscious
design principles, ultimately enabling high-performance yet sustainable perception systems for

next-generation vision systems.
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