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Abstract 

Ectotherms' ecological performance is directly linked to their thermal environment, many 

of which are warming due to climate change. If predator and prey thermal niches differ, 

warming may impact the intensity of predator-prey interactions, with subsequent effects 

on their populations. To determine how warming may impact predator-prey interactions, I 

fit and compared maximum swim speed thermal performance curves (TPCs) of 

Dytiscidae predaceous diving beetles (Tribe Agabini) and their prey, Wood Frog 

(Lithobates sylvaticus) and Eastern Gray Treefrog (Dryophytes versicolor) tadpoles. I 

then used climate change projections and measures of pond water temperature to 

determine how relative swim speeds of predators and prey may change in the future. Due 

to a lack of predicted future water temperature data, I established an air-water 

temperature relationship by fitting a generalized linear model (GLM) to 2024 air and 

water temperatures from 5 sites north of Thunder Bay, Ontario. I then used predicted air 

temperature data for 2025-2100 and my GLMs to get predicted water temperatures for 

the next 75 years. TPC comparisons between Agabini predators and tadpole prey revealed 

that predators have a performance advantage over D. versicolor tadpoles at warmer 

temperatures, but not L. sylvaticus tadpoles. Agabini beetle thermal optimum (Topt) (28.6 

± 1.6 ºC) was also significantly greater than D. versicolor (24.2 ± 0.9 ºC, p = 0.025), but 

not significantly different from L. sylvaticus (25.7 ± 3.2 ºC, p =  0.163). Agabini beetle 

80% thermal tolerance breadth (Tbr(80%)) (13.5 ± 0.9) was significantly narrower than D. 

versicolor (18.1 ± 0.9, p = 0.040) but not significantly different from L. sylvaticus (19.1 ± 

2.7, p = 0.162). Predictions showed that pond temperatures will increase through time, 

giving Agabini beetle predators an increasing performance advantage over D. versicolor 



iii 

over the next 75 years. However, due to similar performance measures between L. 

sylvaticus and the predators, their interaction will not be impacted by temperature 

changes over the next 75 years. These results show variability between predator-prey 

pairs in the same environment. When the predator's performance advantage over their 

prey increases, it may result in increased predation pressure and reduced prey 

populations, while other predator-prey interactions will be unaffected. Thus, as climate 

change alters thermal regimes, predator-prey interactions will be altered, but not between 

all predator-prey pairs. 
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1 Introduction 

1.1 Background 

Climate change is among the strongest drivers of physiological and geographical 

change seen in flora and fauna worldwide (Deutsch et al. 2008; Parmesan & Yohe 2003; 

Poloczanska et al. 2013). Species are thermally vulnerable to climate change when they 

become exposed to thermal regimes outside of their thermal niche, i.e. the range of body 

temperatures in which population growth is above zero (Gvoždík 2018). Thermal 

extremes cause stress to organisms and result in a range of consequences, from 

temporarily decreased performance to death (Buckley & Huey 2016). A substantial body 

of research has focused on assessing direct impacts of future climate change on species' 

thermal vulnerability (Buckley et al. 2022; Deutsch et al. 2008; Huey & Kingsolver 

2019; Sunday et al. 2014). Such studies can be useful in determining how individual 

species may respond to abiotic changes. However, less is known about how climate 

change will impact the complex network of interactions between and within species in a 

region (Montoya & Raffaelli 2010). It is important to understand how biotic interactions 

are affected by climate change because of their ecological importance; for example, 

‘connectance’, the proportion of realized trophic interactions among all potential 

interactions, influences population stability and community dynamics (Petchey et al. 

2010). Thus, it is vital to deepen our ecological understanding of how climate change will 

affect biotic interactions, and the consequences of these effects on individuals, 

populations, species, communities, and ecosystems. 
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While measuring the direct effect of climate change on organisms is useful, 

measuring the indirect effects of altered biotic interactions is also key to understanding 

the full effects of climate change (Gilman et al. 2010). Climate change will affect 

ecological networks, altering the strength of biotic interactions within communities and 

likely create new interactions as ranges shift (Montoya & Raffaelli 2010). As organisms 

shift their ranges to track climate change, they may also face increased competition and 

predation or limited availability of mutualists, making colonization difficult (Eck et al. 

2014; HilleRisLambers et al. 2013; Nagano et al. 2023). The strength of biotic 

interactions may also change due to thermal mismatches between actors. Differences in 

thermal tolerances of interacting species results in different performance capabilities and 

behaviours, potentially benefiting or hurting one or both species (Bideault et al. 2021; 

Meehan & Lindo 2023; Pintanel et al. 2021). Groups at particular risk to climate change 

include reptiles, amphibians, and polar invertebrates as they have limited physiological 

plasticity, restricted latitudinal ranges, and long generation times (Morley et al. 2019). 

These vulnerable species are all ectotherms, which have also been found to have limited 

ability to acclimate to increased temperatures (Morley et al. 2019), further increasing 

their vulnerability to climate change. 

Climate change will alter biotic interactions between organisms with differing 

thermal tolerances and thermal performance. Ectothermic organisms are exceptionally 

impacted by climate change because they cannot maintain their body temperatures 

through metabolic heat production and instead rely on external sources of heat (Angilletta 

2009; Guderley 2004). For this reason, ectotherm physiological processes, performance 

capabilities, and behaviours, are highly dependent on their thermal environment. For 
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example, tadpole oxygen consumption (Kern et al. 2015) and predatory fish swim 

performance increase with temperature (Öhlund et al. 2015), and aphids leave their host 

plants to avoid heat stress (Ma et al. 2018). Because biotic interactions involve two 

actors, then there is the potential for them to respond differently to changing temperature. 

For example, if predators have a higher heat tolerance than their prey, or have greater 

performance at warmer temperatures, climate warming could result in increased 

predation pressure (Allan et al. 2015). Thus, comparing interacting organisms thermal 

performance or thermal tolerance can give insight into how their interactions may change 

through time (Pintanel et al. 2021; but see Sinclair et al. 2016). 

1.2 Ectotherm thermal physiology  

Internal body temperature is pivotal in an organism’s physiological processes, 

including metabolic reactions, growth, development, and ecological performance 

(Beachy et al. 1999; Cano & Nicieza 2006; Ge et al. 2022). For all living organisms, 

acquired energy is used for biosynthesis (e.g. growth), maintenance (e.g. circulation or 

respiration), or external work (e.g. locomotion) and then dissipated from their bodies 

(Careau et al. 2014). Ectothermic organisms cannot maintain their body temperatures via 

metabolic heat production and instead rely on external sources of heat (Angilletta 2009; 

Guderley 2004). Ectotherms acquire heat through their skin from solar radiation or 

conduction from warm surfaces, and lose heat through convection with the air or water or 

latent heat loss (Gates 1980; Tracy 1976). In water, conduction and convection are the 

main pathways of heat exchange between organisms and their environment, except in the 

case that they receive direct warming from solar radiation near the water’s surface 

(McDiarmid & Altig 1999). In general, the rate of bodily processes increases with body 
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temperature, increasing energetic demands and allowing for improved physical 

performance (Rezende & Bozinovic 2019), until the point of protein denaturation 

triggering a decline in performance.   

Body temperature directly impacts ectotherms' performance (Kern et al. 2015). This 

relationship can be represented using thermal performance curves (TPCs), which quantify 

how performance (e.g. swim speed, oxygen consumption, digestive rate) varies with body 

temperature (Sinclair et al. 2016). TPCs provide key information on the thermal niche, 

including thermal optimum (Topt, the temperature of maximum performance), critical 

thermal limits (CTmin and CTmax, the minimum and maximum temperatures when 

organisms lose motor control), and 80% tolerance breadth (Tbr(80%), the range of 

temperatures in which performance is greater than or equal to 80% of the maximal 

performance); (Figure 1.1). TPCs can be used to predict species vulnerability to climate 

change (Luhring & DeLong 2016; Payne et al. 2016) but should be used with caution as 

TPCs are often variable throughout ontogeny, acclimation, geographic position, and even 

between difference performance traits (Sinclair et al. 2016). 
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Figure 1.1. Generalized thermal performance curves showing key features. CTmin and 
CTmax are the minimum and maximum temperatures that individuals can withstand before 
they lose bodily control, Topt is the temperature at which the maximum performance 
occurs, and 80% thermal tolerance breadth (TBr(80%)) is the range of temperatures where 
performance is greater than or equal to 80% of the maximal performance. 

 
In the face of climate change, aquatic and terrestrial environments are experiencing 

increasing temperatures, putting thermal stress on the organisms living within them 

(Häder & Barnes 2019). For example, some organisms in both terrestrial and aquatic 

environments have limited warming tolerances – a measure of the tolerable temperature 

increase before reaching their upper thermal limits – that makes them more vulnerable to 

warming (Morley et al. 2019), although definitions and methods between studies are 

inconsistent (Clusella-Trullas et al. 2021). In environments with unfavourable 

temperatures, organisms can use behavioural thermoregulation, which involves an 

organism changing its’ actions or habitat use to restrict or increase its’ exposure to 

radiation (Ma et al. 2018), to help control its body temperature. Thermal heterogeneity in 

terrestrial and aquatic environments provides a temporary escape from thermal extremes, 
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however not without consequences. For example, aphids will drop off of their host plant 

to avoid thermal extremes and take up residency on plants in cooler microhabitats, but 

this decreases their chances of survival and reproduction (Ma et al. 2018). To help reduce 

the physical harm from exposure to nonoptimal temperatures, individuals can also make 

physiological adjustments to maximize their performance, for example, acclimatization. 

Acclimatization is any, usually, reversible physiological adjustment in an organism 

caused by an altered environment (Lagerspetz 2006). Thermal acclimatization alters the 

shape and or position of the TPC allowing organisms to achieve higher levels of 

performance than would be otherwise possible. 

1.3 Predator-prey thermal mismatch 

Biotic interactions within and across trophic levels affect individual fitness and 

population dynamics (Bideault et al. 2021). Thus, temperature-induced changes in 

interaction intensity could have broader ecological and biogeographical consequences, 

though we still have limited understanding of what these may be. Predator-prey 

interactions have direct impacts on species’ population size, distribution, and fitness 

(Meehan & Lindo 2023), making them an important branch of ecological research. There 

are different stages of a predator-prey interaction; detection, capture, and handling; and 

‘body velocity’ is a major factor in determining the efficacy and efficiency of each stage 

(Dell et al. 2014). In aquatic systems, swim and burst speeds are often chosen as a 

measure of thermal performance between predators and prey as they quantify the 

‘capture’ part of their interaction (Allan et al. 2015; Grigaltchik et al. 2012; Gvoždík & 

Smolinský 2015). Other methods of measuring predator-prey interaction strength 

includes direct consumption of prey biomass (Davidson et al. 2021), proportion of prey 
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eaten over a given timeframe (Anderson et al. 2001), metabolic rate (Freitas et al. 2007), 

or predator attack rate (Öhlund et al. 2015). Some predatory species have been found to 

benefit from warming, experiencing increased maximum swim speeds, capture success, 

and predation rates (Allan et al. 2015; Grigaltchik et al. 2012; Öhlund et al. 2015). 

However, not all predator-prey pairs will be affected in this way. For example, active 

(Backswimmers) and ambush (damselfly larvae) predators both experienced an increased 

prey (Daphnia) encounter rate as environmental temperatures increase, but, due to faster 

prey swim speeds, the active predator could not capture the prey but the ambush predator 

could (Twardochleb et al. 2020).  

Predator-prey interactions depend on the relative performance of both actors and if 

their responses to the environmental changes are different, this could lead to altered 

predation rates and population dynamics. Thermal physiology could differ between 

predators and prey due to varying methods of energy acquisition, food quality, behaviour, 

and energy demands (Freitas et al. 2007), or varying thermal tolerances (Katzenberger et 

al. 2021; Pintanel et al. 2021). Predator energetic efficiency, the ratio between energy 

inputs (food intake) and energy outputs (metabolism), is temperature dependent and can 

be visualized using TPCs (Sentis et al. 2012). Ectotherms may occupy various trophic 

levels, and trophic interactions involving only ectothermic organisms will be especially 

influenced by changes to their thermal environment. Ectotherms, even ones living in the 

same area, have interspecific variability in thermal tolerances (Savva et al. 2018) and 

may respond differently to the same temperature fluctuations in their environment 

(Broitman et al. 2009). If ectotherms in different trophic levels or niches are responding 

differently to the same temperature changes, this could impact their biotic interactions 
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and could have broader impacts on predation rates, prey population density, and species 

ranges (Pintanel et al. 2021).  

The relative difference between prey and predator performance at different 

temperatures can be determined by comparing their TPCs (Figure 1.2). The advantage of 

the predator at a given temperature (T) can be determined by the difference between prey 

and predator performance, where predator performance advantage (∆VT) is equal to:  

∆VT = VT, pred – VT, prey 

Where VT, pred and VT, prey are the performance of the predator and prey at temperature 

T, respectively. Evaluating changes in ∆VT can provide insight into how potential 

predation pressure may be affected by temperature changes through time (e.g. due to 

climate change), or space (e.g. along environmental gradients). 
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Figure 1.2. Example of how thermal performance curves of organism swim speeds at 
various temperatures can be used to calculate predator performance advantage (∆VT) and 
infer changes in predator-prey interactions. T1 represents the current environmental mean 
temperature and T2 represents warmer future conditions. Vprey,T1 and Vprey,T2 are prey 
performances at current and future temperatures, respectively. Vpred,T1 and Vpred,T2 are 
predator performances at current and future temperatures, respectively. ∆VT1 and ∆VT2 
are predator advantages at current and future temperatures, respectively. 

1.4 Biology of small freshwater ponds 

Aquatic environments are vulnerable to climate change because their hydrology 

depends on precipitation, temperature, ground and surface water resources, evaporation, 

transpiration, and their physical and biotic features (Leibowitz & Brooks 2007). Climate 

change will affect almost all those aspects, having a strong influence on aquatic 

environments and the organisms living in them. A general warming trend has been 

observed in large water bodies across North America (Schindler 1998), but whether there 

is a trend for small ephemeral ponds is unknown. However, as climate change is expected 

to increase summer temperatures, and decrease summer precipitation, ephemeral ponds 

Body Temperature (ºC)  
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are likely to experience shorter hydroperiods, and warmer water temperatures, causing 

substantial ecological impacts (Brooks 2004, 2005; Brooks & Hayashi 2002; Cartwright 

et al. 2021; Leibowitz & Brooks 2007). 

Ectothermic organisms that inhabit small and/or ephemeral ponds, such as tadpoles, 

larval salamanders, and fully- or semi-aquatic invertebrates are sensitive to changes in 

their thermal environment (Ohba 2011; Relyea 2001). Tadpoles make an excellent study 

specimen for thermal physiology studies as they are practically isothermal with their 

environment, all physiological processes are influenced by temperature, and they are 

unaffected by confounding processes like dehydration as they are fully aquatic 

(Lutterschmidt & Hutchison 1997). Tadpole thermal performance has been used to 

measure developmental rates (Seebacher & Grigalchik 2015), organismal response to 

climate change (Beltran 2019; Perotti et al. 2018), and heritability of traits (Xu et al. 

2024).  

There are a range of aquatic invertebrates that inhabit small ponds and predate 

tadpoles, such as adult and larval predaceous diving beetles (Dysticidae), larval dragon 

and damselflies (Odonata), and giant water bugs (Belostomatidae; Dodd 2023; Ohba 

2011; Relyea 2001). These predator-prey relationships, involving only ectothermic 

organisms, have the potential to be heavily influenced by pond water temperatures. 

Methods of predation in this environment vary; some larval diving beetles are ambush 

predators, while adult diving beetles are more active and chase their prey (Campbell 

1969; Culler et al. 2014). As adults chase their prey, their swim performance is directly 

related to their ability to successfully capture prey. Past work has found that insect 

predators have higher thermal maximums than anuran prey (Katzenberger et al. 2021; 
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Sunday et al. 2014), and that predation rates increase with temperature (De Mira-Mendes 

et al. 2019). Given the dependence of this interaction on swim speed, predators should be 

able to outperform prey and increase predation rates in warming conditions. 

Understanding the thermal sensitivity of predator and prey swim speed is a key step to 

predicting how predation intensity will be impacted by future climate change. 

1.5 Hypotheses 

In this thesis, I aim to compare swim speed thermal performance curves of two 

tadpole prey species (Eastern Gray Treefrogs and Wood Frogs) and their Dytiscidae 

predators (Tribe: Agabini), measure predator performance advantage (∆VT), predict 

future pond water temperatures using predicted climate data and a model of air and water 

temperatures from 2024, and determine how ∆VT will change over the next 75 years.  

I tested the following hypotheses: 

Hypothesis 1: Predators have a performance advantage over their prey at warmer 

temperatures.  

Rationale: Past work has found that insect predators have a higher CTmax than amphibian 

prey, fish predators swim faster than prey at warmer temperatures, and predation rates 

increase at warmer temperatures (Allan et al. 2015; De Mira-Mendes et al. 2019). 

Prediction: Predator performance, swim speed (m/s), will be greater than prey at warmer 

temperatures and predators will have a higher Topt and CTmax than their prey. 

Hypothesis 2: As environmental temperatures increase over the next 75 years, predators 

will have an increasing performance advantage over their prey.  
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Rationale: Predators with a performance advantage over prey at warmer temperatures 

will be benefitted by increasing environmental temperatures over the next 75 years as 

they will be able to out-perform their prey.  

Prediction: Predator performance advantage (∆VT) will significantly increase over the 

next 75 years. 
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2 Methods 

2.1 Study region 

 
Figure 2.1. Locations of study sites. Yellow pins show sites used in final analysis, white 
pins show sites with insufficient data collected to be used in analysis, purple pin shows a 
site that was only used in one portion of the analysis. Red circles are the location of cities 
and townships. and the white circles shows lakes. 

 
Field work was done along a 180 km S–N transect, to the west of Thunder Bay, 

Ontario, Canada. Pond water temperature (surface and bottom) and air temperature were 

recorded at 11 sites (Figure 2.1); the transect started just north of the USA border and ran 
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north to west of Lake Nipigon. In June, average air temperatures of Upsala (just west of 

this transect) and Thunder Bay (just east) were 21 °C and 19 °C, respectively. The 

transect ran through the Lake Nipigon (3W) and Pigeon River (4W) ecoregions (Crins et 

al. 2009). These regions have a mean summer rainfall of 231–298 mm and 674–838 mm, 

respectively (Crins et al. 2009). Their forests are primarily mixed (deciduous and 

coniferous) and they are also both classified as well-drained, with all waterways 

eventually leading to Lake Superior (Crins et al. 2009).   

 Study ponds were fishless semi-permanent and permanent ponds in the Thunder 

Bay region. These ponds could have been formed by man-made activities (i.e. ditches, 

trenches, or excavated lands), beavers, or natural seasonal flooding. Ponds ranged from 

48 º to 49.6 º latitude. Surface area ranged from 33.5 m2 to 3740.7 m2, canopy cover 

ranged from 12 % to 68 %, and spring (May) depth ranged from 30 cm to 100 cm, 

whereas late summer (August) depth ranged from 14 cm to 92 cm. All sites were possible 

breeding sites for L. sylvaticus, D. versicolor, and Agabini beetles and were near forested 

land.  

Table 2.1 Study Pond physical characteristics. Ponds with an * were kept in the analysis. 
Depth measurements were taken in May and August, 2024. Canopy closure, perimeter, 
and area measurements were taken in August 2024. 
Pond ID Latitude Longitude Depth Canopy Closure Perimeter Area 
Devrd1 48.05588 -89.73008 80 cm, 86 cm 67.8 % 318.3 m 3117.0 m2 
Cedarsites 48.23453 -89.90860 89 cm, 64 cm 22.7 % 109.2 m 662.2 m2 
Adrianlakerdpond 48.45271 -89.80561 100 cm, 89.5 cm 12.4 % 199.9 m 1963.6 m2 
Sunshinecabin * 48.55647 -89.74841 83.5 cm, 16 cm 61.3 % 22.2 m 33.5 m2  
Block3 * 48.79389 -89.87875 75 cm, 35 cm 61.4 % 58.1 m 182.8 m2 
DRT4 * 48.99677 -89.96132 30 cm, 92 cm 23.7 % 265.9 m 3740.7 m2 
DRT15 * 49.18415 -89.90292 56.5 cm, 22 cm 15.5 % 37.6 m 53.9 m2 
DRT20 * 49.26201 -89.82332 68.5 cm, 29.5 cm 48.1 % 102.8 m 279.1 m2 
DRT32 49.42664 -89.61480 42.5 cm, 14 cm 39.8 % 75.1 m 246.8 m2 
HW811.1 * 49.48179 -89.61594 70 cm, 71.5 cm 53.1 % 133.2 m 992.7 m2 
HW811.3b 49.64802 -89.88254 52 cm, 21.5 cm 44.1 % 94.2 m 318.7 m2 
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2.2 Study species 

In the boreal region of northwestern Ontario (Thunder Bay District), there are 

eight frog species that may use fishless ponds for breeding: Spring Peepers (Pseudacris 

crucifer, Hylidae), Boreal Chorus Frogs (Pseudacris maculata, Hylidae), Wood Frogs 

(Lithobates sylvaticus, Ranidae), American Toads (Anaxyrus americanus, Bufonidae), 

Green Frogs (Lithobates clamitans, Ranidae), Eastern Gray Treefrogs (Dryophytes 

versicolor, Hylidae), Mink Frogs (Lithobates septentrionalis, Hylidae), and Northern 

Leopard Frogs (Lithobates pipiens, Ranidae) (Harding & Mifsud 2017). Early spring 

breeders include Spring Peepers, Boreal Chorus Frogs, and Wood Frogs;  species 

breeding later in the spring/summer include Eastern Gray Treefrogs, American Toads, 

Green Frogs, Mink Frogs, and Northern Leopard frogs (Dodd 2023).  

 I focused on Lithobates sylvaticus and Dryophytes versicolor. L. sylvaticus 

generally start breeding in northwestern Ontario in early–mid April. Females lay 300–

2000 eggs in a cluster, usually attached to floating vegetation, and eggs take 1–3 weeks to 

hatch, and larvae take an additional 6–12 weeks to metamorphosize into adults, 

depending on water temperature (Dodd 2023). L. sylvaticus tadpoles are mostly 

herbivorous but may resort to cannibalism when resources are depleted (Jefferson et al. 

2014).  

 D. versicolor start breeding (predominantly) in fishless pools in northwestern 

Ontario in late May. Eggs are typically deposited within the first two weeks of calling, 

but oviposition has been seen in August in the southern parts of their range (Dodd 2023). 

Eggs take from 2–3 weeks to hatch, and larvae take an additional 40–60 days to 
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metamorphose, depending on environmental temperatures. D. versicolor tadpoles are 

herbivorous and feed on algae and detritus (Harding & Mifsud 2017). 

Tadpoles are prey for vertebrates and invertebrates, including birds, snakes, larger 

frogs, dragonflies and damselflies, predaceous beetles, and giant water bugs (Dodd 2023; 

Hocking & Semlitsch 2008). Both D. versicolor and L. sylvaticus tadpoles exhibit 

developmental and behavioural changes in response to predators. Tadpoles grow deeper 

and longer tails and adopt a more dormant lifestyle in the presence of predators (Relyea 

2024; Shaffery & Relyea 2016; Trembath & Anholt 2001), and D. versicolor tadpoles 

also develop bright red colouring and black spots on their tails to attract a predator’s 

attention away from their body (Bragg 1957). Tadpoles are capable of behavioural 

thermoregulation, and since they are practically isothermal with their environments, they 

can take advantage of pond thermal stratification to maintain a preferred body 

temperature (Lutterschmidt & Hutchison 1997), though such opportunities may be 

limited if pools are thermally homogeneous (Beltran 2019). 
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Figure 2.2. (Left) Distribution map of Dryophytes versicolor (Eastern Gray Treefrog) 
modified from Dodd (2023). The blue shaded region represents the Thunder Bay District, 
ON, Canada. (Right) Distribution map of Lithobates sylvaticus (Wood Frog) modified 
from Schock, 2009. The blue shaded region represents the Thunder Bay District, ON, 
Canada. 

  

Invertebrate predators, specifically predaceous diving beetles (Dytiscidae), prey 

on many tadpole species. Both adult and larval forms of Dytiscidae are predaceous and 

may use different methods of prey capture, including ambush tactics and active chase 

(Culler et al. 2014). Within Dysticidae, the Agabini tribe consists of 9 genera. Animals 

used in my study could be from Agabus and/or Ilybius, which can only be reliably 

differentiated by taxonomic experts. Life cycle and breeding phenology vary across the 

Agabini tribe, however, any Agabus spp. collected in this study would likely have a Type 

3 life cycle as described in Hilsenhoff (1993). In this type of life cycle, eggs overwinter 

in aquatic environments, and remnant adults (those that did not reproduce the previous 

summer) overwinter in terrestrial environments (Hilsenhoff 1993). Eggs hatch in early 

spring and larvae mature into adults by June, and most adults mate in the summer. In 

colder habitats, some adults may not emerge or mate until late summer, which pushes 

oviposition to the following spring instead of in their emergent summer (Hilsenhoff 
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1993). Any Ilybius spp. collected in this study would likely have a Type 1 life cycle from 

Hilsenhoff (1993). In this type of life cycle larvae overwinter in aquatic environments 

and mature into adults the following spring (Hilsenhoff 1993). Almost all adults mate by 

July and die shortly after. In colder habitats, it is possible for adults to overwinter in 

terrestrial habitats and mate the following spring (Hilsenhoff 1993). In the Thunder Bay 

region, adult Agabini phenologically overlap with L. sylvaticus tadpoles from at least 

mid-May and D. versicolor tadpoles from Late May – July (A. Algar, personal 

observation), making these species a likely prey choice. Agabini are widely distributed 

around North America (N.A.), most species are found in central N.A. (Manitoba–Ontario, 

southward to Tennessee and the Carolinas) (Hilsenhoff 1993). Dytiscidae hunting 

methods vary with ontogeny as larvae use powerful mandibles to grasp prey much larger 

than them, inject digestive enzymes into it, and suck the mixture back out through the 

mandible. Adults grasp prey and bite pieces off with their mouthparts, making them more 

gape-limited than larval dytiscids (Culler et al. 2014). 

2.3 Pond and air temperature monitoring  

I recorded water temperatures of 11 ponds from May 8, 2024, until September 18, 

2024, along a 180 km S–N transect (Figure 2.1). Surface and substrate temperatures were 

recorded every hour using HOBO MX2201(Onset) data loggers (Figure 2.3). A data 

logger was secured in place at the bottom of each pond using a tall wooden stake; a 

surface logger was attached loosely to each stake so that it could rise and fall with water 

level. Summer (May–August) pond characteristics were also recorded for each pond 

including depth at temperature loggers (m), total pond surface area (m2), pond perimeter 

(m), substrate type, canopy closure (%) at cardinal edges (north, east, south, west) and at 
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the pond centre, tree heights (m) at cardinal edges, and surrounding forest type. The 

‘track’ function on a Garmin GPSMAP 67i was used to measure pond perimeter. Tracks, 

saved as FIIT files, were transformed into GPX files, uploaded into QGIS-LTR version 

3.40.5-Bratislava (QGIS Development Team 2025) and pond perimeters and areas were 

calculated. Due to the accuracy of the GPS, which is 3 m, one site (‘Sunshinecabin’) was 

very difficult to accurately measure so I used Google Earth Pro version 7.3.6.10201 to get 

perimeter and area estimates for this site. For two other sites, ‘DRT20’ and ‘HW811.3b’, 

GPS tracks appeared inaccurate and difficult to interpret, perhaps because of their small 

size and surrounding, heavy, forest which could have caused satellite interference. These 

two sites were also too heavily forested and too small to be visible on Google Earth Pro; 

so, their GPS track-based measurements are less reliable than the others (Table 2.1). 

Canopy closure was measured using a convex spherical densitometer. Densiometers may 

overestimate canopy closure, relative to hemispherical photography) (Fiala et al. 2006). 

To account for this, I followed the corrections outlined by Strickler (1959) that restricts 

the sample area on the densiometer to reduce overlap of measurements. Tree heights were 

measured using a Nikon Forestry Pro II Laser Rangefinder. Pond perimeter and area, 

canopy cover, and tree heights were measured on August 12, 2024. 

 Air temperatures were recorded every hour from May until September 2024, at 

each study pond using HOBO MX2201 data loggers (Figure 2.4). Air temperature loggers 

were attached to nearby trees at each pond at ~1.3m. Each temperature logger was 

encased in a radiation shield, constructed following Holden et al. (2013), to reduce 

overestimation of air temperature by blocking the direct input of solar radiation on the 

logger.  
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Figure 2.3. Equipment setup to record pond surface and bottom water temperatures in 
each study pond. 

 

 
Figure 2.4. Setup to record air temperature at study ponds. The silver and white plastic 
rectangle is a radiation shield for the thermal logger (HOBO MX2201). 

 

2.4 Animal collection  

L. sylvaticus tadpoles were collected from a pond near Mapleward Road 

(48.407336°, -89.353178°) in Thunder Bay, Ontario, on May 15, 2024. Tadpoles were 

collected by agitating hatching egg masses until tadpoles swam out and into a net. 

Tadpoles were circa Gosner stage 21 at time of collection. Tadpoles were placed in a 

bucket of pond water and promptly transported to Lakehead University, counted, and 

placed into tanks in the Biology Aquatics Facility (BAF) for further development and 
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acclimation. Animals were placed into five 75 L tanks, with 25 individuals per tank, 

while the remaining individuals were put into a separate tank and used for feeding 

predators. Tanks were connected to a single recirculating filtration system and water 

quality parameters were checked daily. Agabini beetles were collected by hand that same 

day and placed into predator cages in the BAF tanks to provide predator-cues during 

tadpole development (Relyea 2024; Schoeppner & Relyea 2009). Tadpoles were fed algal 

wafers daily and predators were fed 5 mechanically euthanized tadpoles every 3 days. 

Tadpoles were held at 15 ºC for 7 days before experiments started. 

D. versicolor eggs were collected from two amplectic pairs on the evening of June 

1, 2024, captured in a breeding pond located at the Kamview Nordic Centre (48.330595°, 

-89.365565°). Each pair was transferred  to a 5-gallon bucket filled with leaves, sticks, 

and pond water. Buckets were placed under tree cover (to avoid overheating after sun-

up), left for 10 hours overnight and checked every two hours the following morning until 

oviposition finished. Adults were then released back into the breeding ponds and the 

buckets of eggs were brought to Lakehead University and added to rearing ponds, 

following Relyea (2018). Rearing ponds were plastic pools with a pond liner filled with 

350 L of dechlorinated water, 10L of river water to introduce natural bacteria and 

microorganisms, 350g of leaf litter, and 15 g of Purina rabbit chow for food and covered 

with 50% shade cloth. Eggs were monitored daily for development and by June 10, 2024, 

372 Gosner stage 20 tadpoles had been moved into the Lakehead University BAF for 

further development and acclimation. Animals were placed into five 75L tanks with 25 

individuals per tank, as per L. sylvaticus. Agabini beetles were collected by hand that 

same day and placed into predator cages in the BAF tanks to give predator-cues during 
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tadpole development. Tadpoles were fed algal wafers daily and predators were fed 5 

euthanized tadpoles every 3 days. Tadpoles were held at 15ºC for 7 days before 

experiments started. 

Predaceous diving beetles (Family: Dytiscidae, Tribe Agabini) were collected 

from 3 different ponds located in the Thunder Bay city limits: Mapleward road 

(48.407336°, -89.353178°), Kamview Nordic Centre (48.330595°, -89.365565°, and 

Loch Lomond (48.295427°,-89.350891°). Bottle traps were deployed at edges of ponds 

and baited with raw meats on June 6, 2024. Traps were checked daily for 10 days and a 

total of 214 Agabini beetles were transported in individual containers to Lakehead 

University over this time. Agabini beetles were provided fresh dechlorinated water, a 

rock to hide under, and 10–15 bloodworms (Chironomidae) for food. Beetles were held in 

individual containers in large fridges set to 15 ºC for at least 5 days before being used in 

any experiments and they received fresh food and water every 3 days. The night before 

swim experiments, beetles were transported down and placed into individual cups in the 

tanks in the BAF to continue acclimating at 15ºC and be more accessible for experiments 

the following day.  

2.5 Critical thermal maxima experiments (CTmin and CTmax) 

L. sylvaticus and D. versicolor tadpole critical thermal maxima were measured 

using established methods (Lutterschmidt & Hutchison 1997). For L. sylvaticus, tadpoles 

were Gosner stage 27/28 and for D. versicolor, stage 25. For each species, I measured the 

CTmax of 10 tadpoles, 2 from each tank to account for potential tank effects, then repeated 

this process for CTmin. Each individual was placed into an individual cup filled with 

200mL of dechlorinated water which was placed in a 15°C water bath for 30 minutes 
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before heating or cooling began. Water was heated (or cooled) at a mean rate of 0.25 ± 

0.12 ºC/min. During trials, tadpoles were gently prodded every 2 minutes with a pipette 

to check for responsiveness until the temperature reached 5 ºC from their anticipated 

thermal limit, at which point the tadpoles were prodded every 30 seconds. 

Heating/cooling continued until individuals did not respond to mechanical stimulation 

(Lutterschmidt & Hutchison 1997; Pintanel et al. 2022). I could not determine the CTmin 

for the L. sylvaticus tadpoles as I was only able to cool water to 4.4 °C and they showed 

no sign of being near their CTmin at this temperature. Once animals reached their critical 

thermal limits, they were immediately placed in 15 ºC water to recover. Animals were 

then euthanized using a neutral solution of Tricaine Methanesulfonate (TMS) and fixed in 

10% formalin for morphological measurements.  

I attempted to measure CTmax for Agabini beetles but could not identify consistent 

cues as to when an individual had reached its’ thermal limit for 3 trial animals and thus, 

for ethical reasons, I did not continue with the thermal limit experiments for Agabini 

beetles.  

2.6 Swim performance experiments  

Swim speed experiments started the day after the critical thermal maxima 

experiments (Table 2.2). Again, to avoid confounding tank effects, two individual 

tadpoles were selected from each of the 5 experimental tanks (n = 10 for each 

temperature). Due to the small number of Agabini beetles captured and high mortality 

rates during acclimation, I tested only 5 beetles at each temperature. To measure swim 

speed, the same procedure was followed for tadpoles and beetles. Animals were placed 

individually into small cups filled with dechlorinated water and suspended in a water 
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bath. The water temperature was then either increased or decreased to the required swim 

speed test temperature at a mean  rate of 0.25 ± 0.12 ºC/min. For L. sylvaticus, swim 

temperatures were 5 ºC, 10 ºC, 15 ºC, 20 ºC, 25 ºC, 29 ºC, 33 ºC, and 35 ºC. D. versicolor 

swim temperatures were 10 ºC, 15 ºC, 20 ºC, 25 ºC, 29 ºC, 31 ºC, 33 ºC, and 35 ºC. 

Beetle swim temperatures were 6.4 ºC, 10 ºC, 15 ºC, 20 ºC, 25 ºC, 29 ºC, 31 ºC, 33 ºC, 

and 35 ºC. 6.4 ºC was chosen as our lowest temperature for the Agabini beetles because 

this was the laboratory determined CTmin for D. versicolor and I wanted to better compare 

their performance at this temperature since we could not determine the CTmin or CTmax 

for the beetles. Due to time limitations because of the rate at which water could be heated 

and cooled, it was not feasible to randomize the treatment order, so the 4 coldest 

temperatures were measured on day 1 and the 4 warmest on day 2. Treatment order is 

unlikely to bias my results as independent sets of tadpoles were used for each temperature 

and developmental changes across 24 hours at 15 °C were expected to be slight. After the 

water bath reached the target temperature, animals were held in the bath for 30 minutes. 

After 30 minutes, each animal was placed in a 50 cm swim track filled with dechlorinated 

water at the target temperature. Animals were prodded gently with a pipette to initiate 3 

different swim events. All swims were recorded using a GoPro Hero 11 in linear mode at 

4K resolution and at 120 frames per second. After swimming, animals were immediately 

moved to a recovery cup filled with 15 ºC water. Animals were then euthanized and fixed 

in 10% formalin (tadpoles) or placed in 70% ethanol (beetles). 
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Table 2.2 Dates and timing of experiments and estimated Gosner stage (for tadpoles) at 
time of experiment. 

Organism Experiment type Date Gosner Stage 
L. sylvaticus CTmin May 23, 2024 (morning) 26 
 CTmax May 23, 2024 (afternoon) 26 
 Swim speed (Temperatures:  

5ºC, 10ºC, 15ºC, and 20ºC) 
May 24, 2024  27 

 Swim speed (Temperatures:  
25ºC, 29ºC, 33ºC, and 35ºC) 

May 25, 2024 28 

D. versicolor CTmin June 17, 2024 (morning) 24 
 CTmax June 17, 2024 (afternoon) 24 
 Swim speed (Temperatures:  

10ºC, 15ºC, 20ºC, 25ºC, and 29ºC) 
June 18, 2024  25 

 Swim speed (Temperatures:  
31ºC, 33ºC, and 35ºC) 

June 19, 2024 25 

Agabini Beetles CTmin N/A N/A 
 CTmax N/A N/A 
 Swim speed (Temperatures:  

6.4ºC, 10ºC, 15ºC, 20ºC, and 25ºC) 
June 25, 2024 N/A 

 Swim speed (Temperatures:  
29ºC, 31ºC, 33ºC, and 35ºC) 

June 26, 2024 N/A 

 

2.7 Swim speed analysis 

I extracted maximum swim speed for each individual using the software Tracker 

(version 6.2.0; Brown et al. 2025). I analyzed the first 5 seconds of each swim event. 

Because tadpole heads move laterally when they swim, I measured swim speed by 

recording the distance travelled, in Tracker, every 0.1 seconds to better capture forward 

movement. Swim videos were analyzed blind (i.e. I did not know which 

treatment/temperature I was analyzing at the time) by randomizing file names to avoid 

unconscious bias. In total, I analyzed 198 videos (77 L. sylvaticus tadpoles, 78 D. 

versicolor tadpoles, and 43 Agabini beetles). Some swim trials were omitted: the camera 

overheated and did not record 2 of the L. sylvaticus swims; 1 of the D. versicolor tadpoles 

was injured and could not swim well. Also 2 of the beetles died overnight and thus 

sample sizes for temperatures 10 ºC and 25 ºC were 4 instead of 5.  
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2.8 Morphological measurements  

I took photographs of tadpoles and beetles using an Olympus Tough TG-6 4K 

camera and a Leica EZ 4W A microscope. Body length (BL), tail length (TL), and tail 

height (TH) and body width (BW) were measured from the photos using ImageJ version 

1.53 (Schneider et al. 2012). Tadpole total length was also calculated as the sum of body 

length (BL) and tail length (TL). Tadpoles were staged in water to allow a natural 

position of the tail fin for accurate tail height measurements as well as on their sides 

under the microscope for capturing the full body. Beetles were staged on their dorsal and 

ventral surfaces to provide detailed images of appendages (Figure 2.5).  

 
Figure 2.5. (A) L. sylvaticus tadpole positioned in water to show full tail fin. (B) L. 
sylvaticus tadpole positioned flat under microscope for length measurement. (C) 
Dytiscidae diving beetle showing ventral surface for body length and width. All 
measurements taken are shown with red lines. TH = tail fine height, TL = Tail length, BL 
= Body length, BW = Body width. 

 

TH 

TL 

BH 

BW 

BL 

BH 

A 

B 

C 



27 

2.9 Fitting thermal performance curves 

I used model averaging to obtain a thermal performance curve for each species. 

Thermal performance curves were fit using the rTPC package (version 1.0.4; Padfield & 

O'Sullivan 2023) in R 4.5.1 (R Core Team 2025). I fit 17 models to the L. sylvaticus data 

(Table 2.3). then used corrected Akaike weights to obtain a weighted average curve 

across all models. I repeated this using 16 models for D. versicolor and 15 models for 

Agabini beetles (Table 2.3). I used bootstrapping to estimate 95% confidence intervals for 

each curve. To do this, I randomly sampled, with replacement, the data in each 

temperature treatment and then refit the models to this data, calculated AICcs, found the 

weighted average model, and repeated this for 250 iterations. I then calculated the 

minimum and maximum predicted value from 237 of the 250 iterations (95%) at 0.1ºC 

increments to outline the 95% confidence intervals.  
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Table 2.3. Available models (at the time of my analysis) in the rTPC package (Padfield & O’Sullivan 
2023). A checkmark marks models used for different organisms. Models without checkmarks were not 
used for those organisms.   
Model name Formula  Used for  Reason for exclusion: 

D. versicolor L. sylvaticus Agabini 
beetles 

"beta_2012"   

𝑟𝑎𝑡𝑒 =
𝑎(
𝑡𝑒𝑚𝑝 − 𝑏 + 𝑐(𝑑 − 1)

𝑑 + 𝑒 − 2
𝑐 )!"# ⋅ (1 −

𝑡𝑒𝑚𝑝 − 𝑏 + 𝑐(𝑑 − 1)
𝑑 + 𝑒 − 2

𝑐 )$"#

( 𝑑 − 1
𝑑 + 𝑒 − 2)

!"# ⋅ ( 𝑒 − 1
𝑑 + 𝑒 − 2)

$"#
 

✓ ✓ ✓  

"boatman_2017"           𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ (𝑠𝑖𝑛(𝜋(
𝑡𝑒𝑚𝑝 − 𝑡%()
𝑡%&' − 𝑡%()

)&))* ✓ ✓  Curve shape changes 
with every attempt, 
unreliable and not 
repeatable (beetles) 

"briere2_1999"           𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 𝑡𝑒𝑚𝑝 ⋅ (𝑡𝑒𝑚𝑝 − 𝑡%()) ⋅ (𝑡%&' − 𝑡𝑒𝑚𝑝)
#
* ✓ ✓ ✓  

"delong_2017"           
𝑟𝑎𝑡𝑒 = 𝑐 ⋅ 𝑒𝑥𝑝

−(𝑒! − (𝑒"(1 −
𝑡𝑒𝑚𝑝 + 273.15

𝑡# ) + 𝑒$% ⋅ ((𝑡𝑒𝑚𝑝 + 273.15) − 𝑡# − (𝑡𝑒𝑚𝑝 + 273.15) ⋅ 𝑙𝑛(
𝑡𝑒𝑚𝑝 + 273.15

𝑡# ))))

𝑘 ⋅ (𝑡𝑒𝑚𝑝 + 273.15)  
   Starting values could not 

be calculated 
"deutsch_2008"           if  𝑡𝑒𝑚𝑝 < 𝑡BCD: 𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ 𝑒𝑥𝑝"(

D$%C"D!"#
E& )$ 

if  𝑡𝑒𝑚𝑝 > 𝑡BCD: 𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ (1 − (
𝑡𝑒𝑚𝑝 − 𝑡BCD
𝑡BCD − 𝑐𝑡%&'

)E) 

✓ ✓ ✓  

"flinn_1991"             𝑟𝑎𝑡𝑒 =
1

1 + 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝 + 𝑐 ⋅ 𝑡𝑒𝑚𝑝E
   ✓ Curve shape changes 

with every attempt, 
unreliable and not 
repeatable (tadpoles) 

"gaussian_1987"          𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ 𝑒𝑥𝑝("F.G(
|D$%C"D!"#|

& )$)    Will only fit 
symmetrical curves 

"hinshelwood_1947"      𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 𝑒𝑥𝑝
"$

I⋅(D$%CJEKL.#G) − 𝑏 ⋅ 𝑒𝑥𝑝
"$%

I⋅(D$%CJEKL.#G)    Curve shape changes 
with every attempt, 
unreliable and not 
repeatable 

"joehnk_2008"            𝑟𝑎𝑡𝑒 = 𝑟%&'(1 + 𝑎((𝑏D$%C"D!"# − 1) −
𝑙𝑛(𝑏)
𝑙𝑛(𝑐)

(𝑐D$%C"D!"# − 1))) ✓ ✓ ✓  

"johnsonlewin_1946"      
𝑟𝑎𝑡𝑒 =

𝑟F ⋅ 𝑒𝑥𝑝
"$

I⋅(D$%CJEKL.#G)

1 + 𝑒𝑥𝑝"
$%"(

$%
(D!"#JEKL.#G)

JI⋅M)( $
$%"$

))⋅(D$%CJEKL.#G)

I⋅(D$%CJEKL.#G)

 
✓ ✓  Starting values could not 

be calculated (beetles) 

"kamykowski_1985"        𝑟𝑎𝑡𝑒 = 𝑎 ⋅ (1 − 𝑒𝑥𝑝"*⋅(D$%C"D&'()) ⋅ (1 − 𝑒𝑥𝑝"N⋅(D&)*"D$%C)) ✓ ✓ ✓  
"lactin2_1995"          𝑟𝑎𝑡𝑒 == 𝑒𝑥𝑝&⋅D$%C − 𝑒𝑥𝑝&⋅D&)*"(

D&)*"D$%C
O#

) + 𝑏 ✓ ✓ ✓  

"lrf_1991"               
𝑟𝑎𝑡𝑒 = 𝑟𝑚𝑎𝑥 ⋅ (1 −

(𝑡𝑒𝑚𝑝 − 𝑡𝑜𝑝𝑡)E)
(𝑡𝑒𝑚𝑝 − 𝑡𝑜𝑝𝑡)E + 𝑡𝑒𝑚𝑝 ⋅ (𝑡𝑚𝑎𝑥 + 𝑡𝑚𝑖𝑛 − 𝑡𝑒𝑚𝑝) − 𝑡𝑚𝑎𝑥 ⋅ 𝑡𝑚𝑖𝑛

 
 ✓ ✓ Curve shape changes 

with every attempt, 
unreliable and not 
repeatable (D. 
versicolor) 

"modifiedgaussian_2
006” 𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ exp	[−0.5(

|𝑡𝑒𝑚𝑝 − 𝑡BCD|
𝑎

)*]    Does not fit a smooth 
curve, only fits 2 
mirrored exponential 
lines 

"oneill_1972"            
𝑟𝑎𝑡𝑒 = 𝑟%&' ⋅ (

𝑐𝑡%&' − 𝑡𝑒𝑚𝑝
𝑐𝑡%&' − 𝑡BCD

)' ⋅ 𝑒𝑥𝑝
'⋅
D$%C"D!"#
ND&)*"D!"# 

𝑤ℎ𝑒𝑟𝑒: 𝑥 =
𝑤E

400
⋅ (1 +I1 +

40
𝑤
)E 

𝑎𝑛𝑑: 𝑤 = (𝑞#F − 1) ⋅ (𝑐𝑡%&' − 𝑡BCD) 

✓ ✓ ✓  

"pawar_2018” 
𝑟𝑎𝑡𝑒 =

𝑟DP$Q ⋅ 𝑒𝑥𝑝
"$
I (

#
D$%CJEKL.#G"

#
D+,-JEKL.#G

)

1 + ( 𝑒
𝑒ℎ − 𝑒) ⋅ 𝑒𝑥𝑝

$%
I (

#
D!CDJEKL.#G

" #
D$%CJEKL.#G)

 
✓ ✓  Starting values could not 

be calculated (beetles) 

"quadratic_2008"         𝑟𝑎𝑡𝑒 = 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝 + 𝑐 ⋅ 𝑡𝑒𝑚𝑝E    Will only fit 
symmetrical curves 

"ratkowsky_1983"         𝑟𝑎𝑡𝑒 = (𝑎 ⋅ (𝑡𝑒𝑚𝑝 − 𝑡%()))E ⋅ (1 − 𝑒𝑥𝑝(𝑏 ⋅ (𝑡𝑒𝑚𝑝 − 𝑡%&')))E ✓ ✓ ✓  
"rezende_2019" 

if  𝑡𝑒𝑚𝑝 < 𝑏: 𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 10

RST./	(V./)
( #F
D$%C)  

if  𝑡𝑒𝑚𝑝 > 𝑏: 𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 10

RST./	(V./)
( #F
D$%C) ⋅ (1 − 𝑐 ⋅ (𝑏 − 𝑡𝑒𝑚𝑝)E) 

✓ ✓ ✓  

"sharpeschoolfull_19
81" 𝑟𝑎𝑡𝑒 =

𝑟DP$Q ⋅ 𝑒𝑥𝑝
"$
I (

#
D$%CJEKL.#G"

#
D+,-JEKL.#G

)

1 + 𝑒𝑥𝑝
$0
I (
#
D0
" #
D$%CJEKL.#G) + 𝑒𝑥𝑝

$%
I (

#
D%
" #
D$%CJEKL.#G)

 
   Not all parameters could 

be estimate from my 
data 

"sharpeschoolhigh_1
981" 𝑟𝑎𝑡𝑒 =

𝑟DP$Q ⋅ 𝑒𝑥𝑝
"$
I (

#
D$%CJEKL.#G"

#
D+,-JEKL.#G

)

1 + 𝑒𝑥𝑝
$%
I (

#
D%
" #
D$%CJEKL.#G)

 
✓ ✓  Starting values could not 

be calculated (beetles) 

"sharpeschoollow_19
81"   𝑟𝑎𝑡𝑒 =

𝑟DP$Q ⋅ 𝑒𝑥𝑝
"$
I (

#
D$%CJEKL.#G"

#
D+,-JEKL.#G

)

1 + 𝑒𝑥𝑝
$0
I (
#
D0
" #
D$%CJEKL.#G)

 
   Not all parameters could 

be estimate from my 
data 

"spain_1982"             𝑟𝑎𝑡𝑒 = 𝑟F ⋅ 𝑒𝑥𝑝&⋅D$%C ⋅ (1 − 𝑏 ⋅ 𝑒𝑥𝑝N⋅D$%C) ✓ ✓ ✓  
"thomas_2012"           𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 𝑒𝑥𝑝*⋅D$%C(1 − (

𝑡𝑒𝑚𝑝 − 𝑡P$Q
𝑐/2

)E) ✓ ✓ ✓  

"thomas_2017"            𝑟𝑎𝑡𝑒 = 𝑎 ⋅ 𝑒𝑥𝑝*⋅D$%C − (𝑐 + 𝑑 ⋅ 𝑒𝑥𝑝$⋅D$%C)   ✓ Curve shape changes 
with every attempt, 
unreliable and not 
repeatable (tadpoles) 

"weibull_1995" 
𝑟𝑎𝑡𝑒 = 𝑎 ⋅ (

𝑐 − 1
𝑐

)
#"N
N (
𝑡𝑒𝑚𝑝 − 𝑡BCD

𝑏
+ (

𝑐 − 1
𝑐

)
#
N)N"#𝑒𝑥𝑝"(

D$%C"D!"#
* J(N"#N )

.
1)1 +

𝑐 − 1
𝑐
 ✓ ✓ ✓  
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2.10 Comparing predator and prey thermal performance curves (TPCs) 

I compared parameters of the predator (beetle) and prey (L. sylvaticus or D. 

versicolor) TPCs: thermal optima (Topt), thermal breadth (Tbr) and performance at warm 

(35 °C) and cold (6.4 °C for L. sylvaticus, 10 °C for D. versicolor) temperatures. To test if 

these differed significantly among predators and prey, I used randomization tests. For each 

predator-prey pair, I randomly assigned swim speed estimates at each temperature to 

predator or prey (maintaining sample sizes) and refit model-averaged TPCs. I then 

calculated TPC parameters from each randomized curve and computed the difference 

between predator and prey values. I repeated this process 1000 times to obtain a null 

distribution of expected differences between predator and prey for each parameter. I used 

this distribution to calculate a two-tailed P-value (following Ruxton & Neuhäuser 2013) 

for the observed difference from the real predator and prey curves. The model ‘beta_2012’ 

had to be removed from the randomizations of L. sylvaticus and Agabini beetles because 

reliable fits could not be obtained for most of the iterations. Similarly, the model 

‘rezende_2019’ was removed from the D. versicolor and beetle randomizations.  

2.11 Projecting future pond temperatures 
 

There are no existing projections of pond temperatures under future climate change 

for my study region (or any other similar one for which I am aware). Thus, I estimated 

future pond temperatures using my field data on air and pond temperature and existing 

climate change projections. First, I determined the relationship between air temperature 

and pond surface temperature using daily data from June 2024 for six of the 11 study 

ponds along my transect. I excluded 4 ponds (Table 2.1) because of missing data loggers 

(e.g. through interference by moose). One additional pond (Table 2.1) was excluded 
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because it was too close to another and thus they fell within the same grid cell of the raster 

of future climate projections. I determined the relationship between surface water 

temperature and substrate water temperature for only 5 of the 11 sites; 1 additional site 

(DRT 15) was removed from this portion of the analysis because the substrate data logger 

was missing (potentially stolen by an animal). Prior to model fitting, I tested if daily pond 

surface temperature (mean, minimum and maximum) from June 1 to July 31 varied with 

latitude by fitting linear mixed effects models with latitude as a fixed effect and date as a 

random effect. I found a statistically detectable increase in pond surface temperature with 

latitude, but this relationship was very weak, explaining only 3% of the variance in pond 

temperature (Figure 2.6). I repeated the above with pond bottom temperature and found 

similar results (marginal R2 < 0.02 in all cases; Figure 2.6). 

The slight increase in water temperature with latitude could be due to pond depth 

and canopy closure. The 2 southern-most sites had a more closed canopy (61% closure) 

than the rest of the northern sites, and they were also deeper at the start of the season than 

the more northern sites (Table 2.1). This could have made these ponds colder than the 

more open, shallower, northern ponds. Also, ‘Block 3’ (latitude 48.8) was especially cold 

as it was very deep, had a very dense canopy, was full of vegetation, and did not dry up by 

the end of the season (suggesting ground water input); all leading to a colder temperature 

throughout the season (Table 2.1). The slight increase in temperature with latitude is 

highly likely to be due to the physical characteristics of my study sites instead of air 

temperature. 
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Figure 2.6. Relationship between daily surface water temperature (left) or bottom water 
temperature (right) with latitude in June across 5 study ponds. Lines connect 
measurements on the same date (June and July 2024). Marginal R2 (R2m) values give 
variance explained by latitude (fixed effects) based on a linear mixed effects model with 
latitude as a fixed effect and date as a random effect. 

 
Since there was only a very weak relationship with latitude, I did not consider it 

further and treated my ponds as replicates to determine the relationship between pond 

surface temperature and air temperature during June. I averaged air and water temperature 

data across sites by date and then fit a gamma generalized linear model with a square-root 

link and daily average pond surface temperature as the response and daily average air 

temperature as the predictor. I fit additional models for daily minimum and daily 

maximum temperatures. I then fit a gamma generalized linear model with a logarithmic 
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link and daily average pond surface temperature as the response and daily average air 

temperature as the predictor. I repeated this for the daily minimum data but then fit a 

gamma generalized linear model with a square-root link and daily maximum pond surface 

temperature as the response and daily maximum air temperature as the predictor. I used 

different links for different data types to appropriately match the distribution of my 

response variables for each model. To test the assumptions of each model and ensure that 

they fit appropriately I used the R package ‘DHARMa’ to perform assumption tests 

(Hartig 2024).  

I projected future pond temperatures using air temperatures from climate change 

scenarios and my gamma GLMs linking water and air temperature. I obtained projected 

daily summer (June and July) climate data (CanDCS-M6) from the Climate Scenarios 

Canada (Government of Canada, 2025b) for 2025–2100, for the nearest grid cells to each 

of my study sites. I considered four climate change scenarios: SSP1 (low emissions), SSP2 

(moderate emissions), SSP3 (high emissions), SSP5 (extremely high emissions). I used my 

GLM for daily average surface temperature to predict pond surface temperature at each of 

my study pond locations for each scenario. I repeated this for daily minimum and 

maximum and for pond bottom temperatures. Climate data were organized in R using the 

package ‘ncdf4’ (Pierce 2025). 

2.12 Quantifying relative predator-prey performance under climate change 

To quantify the relative performance of predator and prey, I computed ΔVT for my 

range of tested temperatures. To project how ΔVT will respond to future climate change, I 

computed ΔVT for the average June and July minimum, maximum and mean temperature 

for each year for each scenario. To test whether changes in ΔV were significant, I used t-
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tests to compare ‘current’ values (2025–2035) to ‘future’ values (2085–2095). I did not use 

regression because of non-independence among climate among years. 

3 Results 

3.1 Impact of body size on swim speed  

Significant growth occurred for D. versicolor between the swim speed experiments; 

day 2 tadpoles had longer bodies and taller tail fins than those on day 1, but no significant 

growth of their tail length or total length (Table 3.1). L. sylvaticus had significant growth 

between experimental days, with all measurements being significantly larger on day 2 

(Table 3.1). However, there was no significant correlation between L. sylvaticus total 

length and swim speed (p = 0.84, r = 0.023) (Figure 3.1), nor was there a correlation 

between Agabini body length and swim speed (p = 0.64, r = 0.074) (Figure 3.1). There was 

a significant correlation between D. versicolor totally body length and swim speed (p = 

0.0052, r = 0.22) (Figure 3.1), however, since there was no correlation between total 

length and treatment (p = 0.74, r = 0.026), I did not consider body size to influence the 

TPC results. 
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Table 3.1. Differences in morphological traits between testing days. Significant 
differences are bolded. ‘Total length’ is the sum of body length and tail length. Eastern 
Gray Treefrog (D. versicolor) tadpoles were tested on June 18, 2024 (n = 49) and June 19, 
2024 (n = 29). Wood Frog (L. sylvaticus) tadpoles were tested on May 24, 2024 (n = 40) 
and May 25, 2024 (n = 40). Agabini Beetles were tested on June 25, 2024 (n = 23) and 
June 26, 2024 (n = 20). 

Species Trait Test statistic df P-value 
D. versicolor Body length (BL) t = -3.901 124.8 <0.001 
 Tail length (TL) t = 1.519 80.76 0.133 
 Tail height (TH) t = -2.239 98.73 0.027 
 Total length t = -0.236 89.18 0.81 
L. sylvaticus Body length (BL) t = -6.575 138.9 <0.001 
 Tail length (TL) t = -3.931 131.9 <0.001 
 Tail height (TH) t = -6.660 141.7 <0.001 
 Total length t = -5.187 130.3 <0.001 
Agabini beetles Body length (BL) t = 0.296 39.90 0.76 
 Body width (BW) t = 1.850 39.42 0.0718 
 
 
 
 

 
Figure 3.1. (A) correlation between Agabini adult beetle body length and their maximum 
swim speed (p = 0.64, r = 0.074). (B) correlation between L. sylvaticus tadpole body 
length (length of their tail + length of their body) and their maximum swim speed (p = 
0.84, r = 0.023). (C) correlation between D. versicolor tadpole body length (length of their 
tail + length of their body) and their maximum swim speed (p = 0.05, r = 0.22). 
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3.2 Critical Thermal Limits (CTmin and CTmax) 

Table 3.2. Eastern Gray Treefrog tadpoles (D. versicolor), Wood Frog tadpoles (L. 
sylvaticus), and Agabini beetle thermal performance parameters: critical thermal minimum 
(CTmin), critical thermal maximum (CTmax), thermal optimum (Topt), 80% thermal breadth 
(Tbr(80%)), i.e. the span of temperatures where performance is ≥80% of maximum, and 
maximum swim speed (swim speed at Topt). CTmin and CTmax were measured directly; 
Topt and Tbr(80%) were inferred from model-averaged thermal performance curves. Variation 
around the mean are standard deviations.  

Species CTmin CTmax  Topt Tbr(80%) Max speed 

D. versicolor 6.4  ± 1.0 ºC 37.7 ± 2.2 ºC 24.2 ± 0.9 ºC 18.1 ± 0.9  0.122 ± 0.01 m/s 

L. sylvaticus - 37.2 ± 0.5 ºC 25.7 ± 3.2 ºC 19.1 ± 2.7  0.159 ± 0.02 m/s 
Agabini - - 28.6 ± 1.6 ºC 13.5 ± 0.9  0.168 ± 0.01 m/s 
 

3.3 Thermal performance curves 

For D. versicolor, their performance was the lowest at the coldest tested temperature of 

10 ºC and gradually increased to the Topt, at 24.2 ºC, before gradually declining again until 

the warmest tested temperature of 35 ºC (Figure 3.2). The curve is relatively flat, with not 

much change in performance over the tested temperatures, and a wide Tbr(80%) of 18.1 ± 

0.9. Across all tested temperatures, D. versicolor swim speed ranged from 0.0725– 0.122 

m/s. 
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Figure 3.2. Eastern Gray Treefrog (D. versicolor) tadpole swim speed thermal 
performance curve (TPC). Black line dipicts the weighted mean curve composed of 16 
different models from the “rTPC” package weighted by Akaike weights. Grey shaded area 
represents a boottsrapped 95% confidence interval made from refitting 244 iterations of 
randomized data (bootstrapping) and randomly selecting 95% of them (n =231). 

 
 

 
Figure 3.3. All 16 models fit to Eastern Gray Treefrog (D. versicolor) tadpole swim 
speed. Models used from the ‘rTPC’ package (version 1.0.4; Padfield &, O'Sullivan, 
2023) in R 4.5.1 (R Core Team 2025). 
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Table 3.3. Estimators of model fits for D. versicolor swim speed from the ‘rTPC’ package 
(version 1.0.4; Padfield &, O'Sullivan, 2023) in R 4.5.1 (R Core Team 2025). Rank shows 
the best to worst fitting model based off AICc values. Models with the same rank number 
are equivalent. 
Model name AICc ∆AICc Akaike weight (w) Rank 
beta_2012 -333.32 2.56 0.03 8 
boatman_2017 -333.08 2.80 0.03 10 
briere2_1999 -333.25 2.62 0.03 9 
deutsch_2008 -335.46 0.42 0.10 4 
joehnk_2008 -332.65 3.23 0.02 13 
johnsonlewin_1946 -335.04 0.84 0.08 6 
kamykowski_1985 -332.85 3.02 0.03 12 
lactin2_1995 -334.58 1.30 0.06 7 
oneill_1972 -335.58 0.30 0.11 3 
pawar_2018 -335.88 0.00 0.12 1 
ratkowsky_1983 -329.97 5.91 0.01 15 
rezende_2019 -332.95 2.93 0.03 11 
sharpeschoolhigh_1981 -335.88 0.00 0.12 1 
spain_1982 -331.81 4.07 0.02 14 
thomas_2012 -335.20 0.68 0.09 5 
weibull_1995 -335.61 0.27 0.11 2 

 

For L. sylvaticus, their performance was the lowest at the warmest tested 

temperature of 35 ºC, since they were very close to their CTmax. Their performance was the 

second lowest at the coldest tested temperature of 5 ºC and gradually increased to the Topt, 

25.7 ºC, and stayed relatively high before sharply declining after 33–35 ºC (Figure 3.4). 

The curve is relatively flat throughout most tested temperatures but shows a sharp decline 

after 33 ºC and a wide Tbr(80%) of 19.1 ± 2.7. Across all tested temperatures, L. sylvaticus 

swim speed ranged from 0.005– 0.159 m/s.  
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Figure 3.4. Wood Frog (L. sylvaticus) tadpole swim speed thermal performance curve 
(TPC). Black line dipicts the weighted mean curve composed of 17 different models from 
the “rTPC” package. Grey shaded area represents a bootstrapped 95% confidence interval 
made from refitting 250 iterations of randomized data (bootstrapping) and randomly 
selecting 95% of them (n =237). 

 
Figure 3.5. All 17 models fit to Wood Frog (L. sylvaticus) tadpole swim speed. Models 
used from the ‘rTPC’ package (version 1.0.4; Padfield &, O'Sullivan, 2023) in R 4.5.1 (R 
Core Team 2025). 
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Table 3.4. Estimators of model fits for L. sylvaticus swim speed from the ‘rTPC’ package 
(version 1.0.4; Padfield &, O'Sullivan, 2023) in R 4.5.1 (R Core Team 2025). Rank shows 
the best to worst fitting model based off AICc values. Models with the same rank number 
are equivalent. 

 

For Agabini beetles, their performance was the lowest at the coldest tested 

temperature of 6.4 ºC and continuously increased to the Topt, at 28.6 ºC, before sharply 

declining again until the warmest tested temperature of 35 ºC (Figure 3.6). The curve 

follows a characteristic shape and has a narrow Tbr(80%) of 13.5 ± 0.9. Across all tested 

temperatures, Agabini swim speed ranged from 0.0658–0.168 m/s.  

 

Model name AICc ∆AICc Akaike weight (w) Rank 
beta_2012 -325.88 0.12 0.35 2 
boatman_2017 -325.99 0.00 0.37 1 
briere2_1999 -270.36 55.63 3.10 x 10-13 14 
deutsch_2008 -321.11 4.88 0.033 5 
joehnk_2008 -315.40 10.60 0.002 8 
johnsonlewin_1946 -309.91 16.08 0.00012 9 
kamykowski_1985 -324.48 1.52 0.175 3 
lactin2_1995 -317.28 8.71 0.0048 7 
lrf_1991 -320.40 5.60 0.023 6 
oneill_1972 -321.35 4.65 0.037 4 
pawar_2018 -309.91 16.08 0.00012 9 
ratkowsky_1983 -268.10 57.90 1.00 x 10-13 15 
rezende_2019 -308.68 17.31 6.50 x 10-5 10 
sharpeschoolhigh_1981 -309.91 16.08 0.00012 9 
spain_1982 -293.21 32.79 2.84 x 10-8 12 
thomas_2012 -306.35 19.64 2.03 x 10-5 11 
weibull_1995 -284.02 41.97 2.87 x 10-10 13 
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Figure 3.6. Agabini beetle (Family: Dytiscidae) swim speed thermal performance curve 
(TPC). Black line dipicts the weighted mean curve composed of 15 different models from 
the “rTPC” package. Grey shaded area represents a 95% confidence interval made from 
refitting 250 iterations of randomized data (bootstrapping) and randomly selecting 95% of 
them (n=237). 

 

 
Figure 3.7. All 15 models fit to Agabini (Family: Dytiscidae) adult swim speed. Models 
used from the ‘rTPC’ package (version 1.0.4; Padfield &, O'Sullivan, 2023) in R 4.5.1 (R 
Core Team 2025).  
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Table 3.5. Estimators of model fits for adult Agabini (Family: Dytiscidae) swim speed 
from the ‘rTPC’ package (version 1.0.4; Padfield &, O'Sullivan, 2023) in R 4.5.1 (R Core 
Team 2025). Rank shows the best to worst fitting model based off AICc values. Models 
with the same rank number are equivalent. 

 

3.4 Thermal Performance Curve comparisons 

There were no significant differences found between L. sylvaticus tadpoles and 

Agabini beetles TPCs and there was major overlap between the two curves (Figure 3.8). 

However, for D. versicolor and Agabini beetles, the beetles had a clear performance 

advantage at warmer temperatures (Figure 3.9). Predator thermal optimum (Topt) was 4.4 

ºC greater than D. versicolor Topt (p = 0.025) (Figure 3.10A) and was not significantly 

different from L. sylvaticus Topt (p = 0.163) (Figure 3.11A). Predator thermal tolerance 

breadth (Tbr(80%)) was narrower than D. versicolor prey (p = 0.040) (Figure 3.10B) and not 

significantly different from L. sylvaticus prey (p = 0.162) (Figure 3.11B).  

Model name AICc ∆AICc Akaike weight (w) Rank 
beta_2012 -179.61 2.73 0.035 8 
briere2_1999 -165.99 16.35 3.86 x 10-5 12 
deutsch_2008 -182.24 0.11 0.13 3 
flinn_1991 -176.97 5.37 0.0093 11 
joehnk_2008 -179.66 2.68 0.036 7 
kamykowski_1985 -178.03 4.31 0.016 9 
lactin2_1995 -182.28 0.06 0.13 2 
lrf_1991 -182.24 0.10 0.13 3 
oneill_1972 -182.34 0.00 0.14 1 
ratkowsky_1983 -165.81 16.53 3.52 x 10-5 13 
rezende_2019 -182.20 0.14 0.13 4 
spain_1982 -181.91 0.43 0.11 5 
thomas_2012 -181.38 0.96 0.085 6 
thomas_2017 -179.66 2.68 0.036 7 
weibull_1995 -178.00 4.34 0.016 10 
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Figure 3.8. Wood Frog, L. sylvaticus, (blue) and Agabini beetle (red) thermal performance 
curves. Coloured lines show the respective curve for each organism, coloured shaded 
regions depict the 95% confidence intervals for each curve generated from bootstrapping. 

 

 
Figure 3.9. Eastern Gray Treefrog, D. versicolor, (blue) and Agabini beetle (red) thermal 
performance curves. Coloured lines show the respective curve for each organism, coloured 
shaded regions depict the 95% confidence intervals for each curve generated from 
bootstrapping. 
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Figure 3.10. (A) ∆Topt, Agabini beetle Topt – D. versicolor Topt, (red line) compared to the 
distribution of ∆Topt values (histogram) from a null model analysis. (B) ∆Tbr(80%), Agabini 
beetle Tbr(80%) – D. versicolor Tbr(80%), (red line) compared to the distribution of ∆ Tbr(80%) 
values (histogram) from a null model analysis. Results from 1038 randomizations of 
performance data. Solid lines show values that differed significantly from the null 
expectation (i.e. p < 0.05). 

 

 
Figure 3.11. (A) ∆Topt, Agabini beetle Topt – L. sylvaticus Topt, (red line) compared to the 
distribution of ∆Topt values (histogram) from a null model analysis. (B) ∆Tbr(80%), Agabini 
beetle Tbr(80%) – L. sylvaticus Tbr(80%), (red line) compared to the distribution of ∆ Tbr(80%) 
values (histogram) from a null model analysis. Results from 1038 randomizations of 
performance data. Solid lines show values that differed significantly from the null 
expectation (i.e. p < 0.05), striped lines did not differ from the null expectation (i.e. p > 
0.05).  

 

3.5 Pond temperatures in June and July 2024 

Minimum, maximum, and average daily air temperature at my study sites was 

closely related to the corresponding daily surface water temperatures in June and July, 

2024 (Figure 3.12). Surface water temperature was also fairly closely related to bottom 

water temperatures in June and July, 2024 (Figure 3.13).  

A B 

A B 
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Table 3.6. Range of daily average, minimum, and maximum air and pond temperatures 
across June and July 2024.  
Daily Temp  Air temperature Pond surface temperature Pond bottom temperature 
Average 10.5 – 24.1 ºC 14.7 – 24.0 ºC 12.0 – 18.1 ºC 
Minimum 0.9 – 19.0 ºC 10.8 – 21.2 ºC 11.8 – 17.7 ºC 
Maximum 12.9 – 31.2 ºC 16.1 – 31.4 ºC 12.4 – 18.5 ºC 
 
 

 
Figure 3.12. (A) Gamma family generalized linear model (GLM) with a square-root link 
of daily average air temperature and daily average surface water temperature in June & 
July, 2024. (B) Gamma family GLM with a square-root link of daily minimum air 
temperature and daily minimum surface water temperature in June & July, 2024. (C) 
Gamma family GLM with a square-root link of daily maximum air temperature and daily 
maximum surface water temperature in June & July, 2024. The blue line depicts the GLM 
and the grey shaded area shows the 95% confidence interval. 

 

R2 = 0.83  R2 = 0.77  R2 = 0.76  

A B C 
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Figure 3.13. (A) Gamma family generalized linear model (GLM) with a log link of daily 
average surface water temperature and daily average bottom water temperature in June & 
July, 2024. (B) Gamma family GLM with a log link of daily minimum air temperature and 
daily minimum surface water temperature and daily minimum bottom water temperature in 
June & July, 2024. (C) Gamma family GLM with a square-root link of daily maximum 
surface water temperature and daily maximum bottom water temperature in June & July, 
2024. The blue line depicts the GLM and the grey shaded area shows the 95% confidence 
interval. 

 
Table 3.7. Gamma family generalized linear model (log or square-root links) equations for 
modelling environmental data from 2024. Gamma generalized linear model equations are 
back transformed to the response variable. 

Model Data Model equation 
glm(surface temp ~ air temp), Gamma (link = sqrt) Daily avg Tsurface = (3.142 + 0.077 * Tair)² 
glm(surface temp ~ air temp), Gamma (link = sqrt) Daily min Tsurface = (3.218 + 0.069 * Tair)² 
glm(surface temp ~ air temp), Gamma (link = sqrt) Daily max Tsurface = (3.196 + 0.082 * Tair)² 
glm(bottom temp ~ surface temp) Gamma (link = log) Daily avg Tbottom = exp(1.96 + 0.037 * Tsurface) 
glm(bottom temp ~ surface temp) Gamma (link = log) Daily min Tbottom = exp(2.03 + 0.040 * Tsurface) 
glm(bottom temp ~ surface temp) Gamma (link = sqrt) Daily max Tbottom = exp(2.23 + 0.018 * Tsurface) 
 

3.6 Predicted pond temperatures 

Future pond surface water (Table 3.8) and bottom water (Table 3.9) temperatures were 

predicted to increase significantly through time for all scenarios (Figure 3.14 and Figure 

3.15). 

 

 

R2 = 0.62  R2 = 0.70  R2 = 0.32  

A B C 
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Table 3.8. Change in daily temperature estimates (daily average, daily minimum, and daily 
maximum) surface water temperature (Tsurface) through time based off predicted climate 
data for 2025-2100. Climate scenarios are SSP1 = low emissions, SSP2 = moderate 
emissions, SSP3 = high emissions, and SSP5 = extremely high emissions. ‘2025’ is the 
predicted daily surface water temperature from June & July 2025, ‘2100’ is the predicted 
daily surface water temperature from June & July 2100. The slope represents the change in 
daily temperature per year. ‘Corrected p-value’ is the Bonferonni corrected p-values from 
t-tests comparing predicted temperatures between ‘current’ (2025-2035) to ‘future’ (2085-
2095) June & July daily temperatures. Significant p-values are bolded. 
Daily Temperature Climate scenario 2025 2100 Slope Corrected p-value 
Average Tsurface SSP1 20.0 ºC 20.3 ºC +0.004 ºC/year 0.0168 
 SSP2 20.0 ºC 21.4 ºC +0.019 ºC/year 3.08 x 10-7 

 SSP3 20.3 ºC 23.0 ºC +0.036 ºC/year 8.19 x 10-9 

 SSP5 19.8 ºC 24.7 ºC +0.065 ºC/year 8.06 x 10-11 

Minimum Tsurface SSP1 15.6 ºC 16.0 ºC +0.005 ºC/year 7.90 x 10-5 
 SSP2 15.6 ºC 17.1 ºC +0.02 ºC/year 2.90 x 10-11 

 SSP3 15.6 ºC 18.2 ºC +0.035 ºC/year 3.09 x 10-12 

 SSP5 15.5 ºC 19.2 ºC +0.049 ºC/year 1.59 x 10-12 

Maximum Tsurface SSP1 26.9 ºC 27.3 ºC +0.005 ºC/year 0.00572 
 SSP2 26.9 ºC 29.3 ºC +0.32 ºC/year 3.47 x 10-9 

 SSP3 26.8 ºC 30.7 ºC +0.052 ºC/year 1.83 x 10-10 

 SSP5 26.7 ºC 32.8 ºC +0.081 ºC/year 1.41 x 10-10 

 
 

 
Figure 3.14. Projected change in June & July surface temperature (Tsurface) of a 
representative pond for 2025-2100. (A) Mean daily temperature; (B) daily minimum 
temperature, (C) daily maximum temperature. Each coloured line represents a different 
climate scenario (SSP1 = low emissions, SSP2 = moderate emissions, SSP3 = high 
emissions, and SSP5 = extremely high emissions) and the grey shaded regions show the 
95% confidence interval for each line. 
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Table 3.9. Change in daily temperature estimates (daily average, daily minimum, and daily 
maximum) bottom water temperature (Tbottom) through time based off predicted climate 
data for 2025-2100. Climate scenarios are SSP1 = low emissions, SSP2 = moderate 
emissions, SSP3 = high emissions, and SSP5 = extremely high emissions. ‘2025’ is the 
predicted daily surface water temperature from June & July 2025, ‘2100’ is the predicted 
daily surface water temperature from June & July 2100. The slope represents the change in 
daily temperature per year. ‘Corrected p-value’ is the Bonferonni corrected p-values from 
t-tests comparing predicted temperatures between ‘current’ (2025-2035) to ‘future’ (2085-
2095) June & July daily temperatures. Significant p-values are bolded. 
Daily Temperature Climate scenario 2025 2100 Slope Corrected p-value 
Average Tbottom SSP1 14.6 ºC 14.7 ºC +0.0013 ºC/year 0.0161 
 SSP2 14.6 ºC 15.5 ºC +0.012 ºC/year 3.6 x 10-7 

 SSP3 14.8 ºC 16.4 ºC +0.021 ºC/year 1.11 x 10-8 
 SSP5 14.5 ºC 17.6 ºC +0.041 ºC/year 1.48 x 10-10 
Minimum Tbottom SSP1 14.0 ºC 14.3 ºC +0.004 ºC/year 7.17 x 10-5 
 SSP2 14.0 ºC 15.0 ºC +0.013 ºC/year 3.18 x 10-11 
 SSP3 14.0 ºC 15.7 ºC +0.023 ºC/year 4.08 x 10-12 
 SSP5 14.0 ºC 16.4 ºC +0.032 ºC/year 2.24 x 10-12 
Maximum Tbottom SSP1 14.9 ºC 15.6 ºC +0.0093 ºC/year 0.00528 
 SSP2 14.9 ºC 15.7 ºC +0.011 ºC/year 3.73 x 10-9 
 SSP3 14.9 ºC 16.1 ºC +0.016 ºC/year 2.04 x 10-10 
 SSP5 14.8 ºC 16.8 ºC +0.027 ºC/year 1.93 x 10-10 
 

 

 
Figure 3.15. Projected change in June & July bottom temperature (Tbottom) of a 
representative pond for 2025-2100. (A) Mean daily temperature; (B) daily minimum 
temperature, (C) daily maximum temperature. Each coloured line represents a different 
climate scenario (SSP1 = low emissions, SSP2 = moderate emissions, SSP3 = high 
emissions, and SSP5 = extremely high emissions) and the grey shaded regions show the 
95% confidence interval for each line. 
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3.7 Projected ∆VT at the pond's surface  

For daily average and minimum surface temperatures, ∆VT significantly increased 

through time (p <0.001) for all climate scenarios (Table 3.11). Increases in average ∆VT 

between 2025 and 2100 varied from 0.0035 for SSP1 to 0.018 for SSP5, i.e. as expected, 

they were greatest for the highest emission scenarios (Table 3.10). Increases in minimum 

∆VT between 2025 and 2100 varied from 0.0004 for SSP1 to 0.0063 for SSP5, i.e. as 

expected, they were greatest for the highest emission scenarios (Table 3.10).  

Daily maximum ∆VT showed a different pattern and increased for SSP1-SSP5, with 

increases of 0.0014, 0.0064, and 0.0076 between 2025 and 2100 for each scenario, 

respectively (Table 3.10). However, for SSP5, ∆VT peaked shortly after 2060 (Figure 

3.16C), and then declined, resulting in a net change between 2025 and 2100 of -0.0048. 

This is the only scenario where ∆VT was found to decrease by 2100 (Table 3.10). 

 

Table 3.10. Change in ∆VT at daily average, daily minimum, and daily maximum surface 
water temperatures from 2025-2100. Climate scenarios are SSP1 = low emissions, SSP2 = 
moderate emissions, SSP3 = high emissions, and SSP5 = extremely high emissions. ‘2025’ 
is average ∆V from June & July 2025, ‘2100’ is average ∆V from June & July 2100. The 
slope represents the change in ∆VT per year. N/A is in place of maximum SSP5 because it 
was best fit by a quadratic model and does not have a single slope estimate. 
Daily ∆VT (surface) Climate scenario 2025 2100 Slope 
Average SSP1 0.0195 0.0203 +1.07 x 10-5  ∆VT/year 
 SSP2 0.0195 0.0238 +5.73 x 10-5  ∆VT/year 
 SSP3 0.0203 0.0298 +1.27 x 10-4  ∆VT/year 
 SSP5 0.0189 0.0369 +2.40 x 10-4  ∆VT/year 
Minimum SSP1 0.0112 0.0116 +5.33 x 10-6  ∆VT/year 
 SSP2 0.0112 0.0131 +2.53 x 10-5  ∆VT/year 
 SSP3 0.0112 0.0151 +5.20 x 10-5  ∆VT/year 
 SSP5 0.0111 0.0174 +8.40 x 10-5  ∆VT/year 
Maximum SSP1 0.0459 0.0473 +1.87 x 10-5  ∆VT/year 
 SSP2 0.0463 0.0527 +8.53 x 10-5  ∆VT/year 
 SSP3 0.0455 0.0531 +1.01 x 10-4  ∆VT/year 
 SSP5 0.0451 0.0403 N/A 
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Table 3.11. Results from t-test between ‘current’ (2025-2035) and ‘future’ (2085-2095) 
June & July ∆VT at the water’s surface. ‘Corrected p-value’ is the Bonferonni corrected p-
values from t-tests. Significant p-values are bolded. 
Daily ∆VT (surface) Climate scenario df t-stat Corrected p-value 
Average SSP1 10 -3.4094 0.020 
 SSP2 10 -12.666 5.26 x 10-7 

 SSP3 10 -18.44 1.42 x 10-8 
 SSP5 10 -26.533 4.00 x 10-10 
Minimum SSP1 10 -7.6133 5.44 x 10-5 
 SSP2 10 -35.681 2.13 x 10-11 
 SSP3 10 -31.672 6.95 x 10-11 
 SSP5 10 -40.167 6.57 x 10-11 
Maximum SSP1 10 -3.8351 0.0099 
 SSP2 10 -23.424 1.37 x 10-9 
 SSP3 10 -24.258 9.69 x 10-10 
 SSP5 10 -1.3878 0.0586 

 

 

 

 
Figure 3.16. (A) corresponding ∆VT values to predicted average daily June & July surface 
water temperatures from 2025–2100. (B) corresponding ∆VT values to predicted minimum 
daily June & July surface water temperatures from 2025–2100. (C) corresponding ∆VT 
values to predicted maximum daily June & July surface water temperatures from 2025–
2100. Each coloured line represents a different climate scenario and the grey shaded 
regions show the 95% confidence interval for each line. 
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3.8 Projected ∆VT at the bottom of the pond 

For daily average, minimum, and maximum bottom temperatures, ∆VT 

significantly increased through time (p <0.001) for all climate scenarios (Table 3.13). 

Increases in average ∆VT between 2025 and 2100 varied from 0.0001 for SSP1 to 0.0038 

for SSP5, i.e. as expected, they were greatest for the highest emission scenarios (Table 

3.12). Increases in minimum ∆VT between 2025 and 2100 varied from 0.00015 for SSP1 

to 0.00215 for SSP5, i.e. as expected, they were greatest for the highest emission scenarios 

(Table 3.12). Increases in maximum ∆VT between 2025 and 2100 varied from 0.0001 for 

SSP1 to 0.0022 for SSP5, i.e. as expected, they were greatest for the highest emission 

scenarios (Table 3.12).  

 

Table 3.12. Change in ∆VT at daily average, daily minimum, and daily maximum bottom 
water temperatures from 2025-2100. Climate scenarios are SSP1 = low emissions, SSP2 = 
moderate emissions, SSP3 = high emissions, and SSP5 = extremely high emissions. ‘2025’ 
is average ∆V from June & July 2025, ‘2100’ is average ∆VT from June & July 2100. The 
slope represents the change in ∆VT per year. 
Daily ∆VT (bottom) Climate scenario 2025 2100 Slope 
Average SSP1 0.0103 0.0104 1.33 x 10-6 ∆VT/year 

 SSP2 0.0103 0.0111 1.07 x 10-5 ∆VT/year 
 SSP3 0.0105 0.0121 2.13 x 10-5 ∆VT/year 
 SSP5 0.0102 0.0140 5.07 x 10-5 ∆VT/year 
Minimum SSP1 0.00995 0.0101 2.00 x 10-6 ∆VT/year 
 SSP2 0.00995 0.0106 8.67 x 10-6 ∆VT/year 
 SSP3 0.00995 0.0113 1.80 x 10-5 ∆VT/year 
 SSP5 0.00995 0.0121 2.87 x 10-5 ∆VT/year 
Maximum SSP1 0.0105 0.0106 1.33 x 10-6 ∆VT/year 
 SSP2 0.0105 0.0113 1.07 x 10-5 ∆VT/year 
 SSP3 0.0105 0.0117 1.60 x 10-5 ∆VT/year 
 SSP5 0.0105 0.0127 2.93 x 10-5 ∆VT/year 
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Table 3.13. Results from t-test between ‘current’ (2025-2035) and ‘future’ (2085-2095) 
June & July ∆VT at the water’s surface. ‘Corrected p-value’ is the Bonferonni corrected p-
values from t-tests. Significant p-values are bolded. 
Daily temp. estimate Climate scenario df t-stat Corrected p-value 
Average SSP1 10 -3.4243 0.0195 
 SSP2 10 -12.034 8.54 x 10-7 
 SSP3 10 -16.199 5.00 x 10-8 
 SSP5 10 -22.656 1.9 x 10-9 
Minimum SSP1 10 -6.414 2.31 x 10-4 
 SSP2 10 -30.71 9.43 x 10-11 
 SSP3 10 -30.165 1.13 x 10-10 
 SSP5 10 -31.562 7.19 x 10-11 
Maximum SSP1 10 -6.414 0.00453 
 SSP2 10 -19.708 7.43 x 10-9 
 SSP3 10 -23.058 1.6 x 10-9 
 SSP5 10 -21.496 3.18 x 10-9 

 
 
 

 
Figure 3.17. (A) corresponding ∆VT values to predicted average daily June & July bottom 
water temperatures from 2025-2100. (B) corresponding ∆VT values to predicted minimum 
daily June & July bottom water temperatures from 2025-2100. (C) corresponding ∆VT 
values to predicted maximum daily June & July bottom water temperatures from 2025-
2100. Each coloured line represents a different climate scenario and the grey shaded 
regions show the 95% confidence interval for each line. 
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4 Discussion 

4.1 Summary 

 In this study, I compared thermal performance curves (TPCs) for predaceous 

Agabini beetles and two of their potential prey species: D. versicolor tadpoles, and L. 

sylvaticus tadpoles. Comparisons of these curves revealed that predators had a 

performance advantage at warmer temperatures over D. versicolor tadpoles but not L. 

sylvaticus tadpoles. Agabini beetles had a higher Topt and narrower Tbr(80%) than D. 

versicolor, but no significant differences compared to L. sylvaticus. Pond temperatures are 

predicted to increase with ongoing climate change over the next 75 years, magnifying the 

predator performance advantage (∆VT) between Agabini beetles and D. versicolor. 

However, the lack of performance differences between predators and L. sylvaticus suggests 

that neither predators nor prey will gain any performance advantages with climate 

warming.    

4.2 Predation pressure may increase for D. versicolor but not L. sylvaticus 

For D. versicolor, predator performance advantage, ∆VT, is predicted to increase 

through time under all climate scenarios for both surface and bottom water temperatures. 

Not only do Agabini beetle predators have a performance advantage over D. versicolor 

prey at warm temperatures, but this advantage becomes relatively greater as temperatures 

approach the beetles Topt. Apart from maximum surface temperatures under the most 

extreme emissions scenario, climate warming will further advantage predators, with 

greater impacts at higher emission scenarios.  
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Relatively greater predator performance could influence the intensity of predator-

prey interactions in multiple, direct and indirect, ways. Predation events are composed of 

three stages: detection, capture, and handling (Dell et al. 2014). Of these, increases in 

relative swim speed differences between Agabini beetles and D. versicolor tadpoles are 

most likely to impact the 'capture' stage. Adult predaceous diving beetles actively chase 

their prey (Campbell 1969; Culler et al. 2014); so, increased relative swim speed should 

allow predators to catch tadpoles more easily, despite tadpoles also being able to swim 

faster at higher temperatures. While less obvious than the impact of predator performance 

advantage on capture success, increases in absolute (rather than relative) predator swim 

speed could also increase detection of prey by predators. As predator swim speed 

increases, they will be able to patrol the pond faster and thus have greater chance of 

detecting tadpoles. This effect may be compounded by the higher absolute swim speed of 

prey that will also accompany warming. If both predator and prey cover more distance per 

unit time, then, under an assumption of random movement, they will be more likely to 

encounter each other, increasing predation opportunities (Dell et al. 2014). While I 

focused on 'burst' swimming to mimic predator escape, unpublished data suggest that 

higher temperatures can also increase cruising speeds of American Toad (Anaxyrus 

americanus) tadpoles (Bosch and Algar, unpublished data), so it is possible that D. 

versicolor tadpoles may swim faster in warmer water generally, rather than just when 

fleeing predators. Lastly, if TPCs for swim speed are representative of organism's 

functional ability more generally (Bennett 1990), then higher temperatures could also 

reduce prey handling times which could increase predation rates (Dell et al. 2014), though 
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given the small size of Gosner stage 24/25 D. versicolor tadpoles, such impacts are likely 

to be small.   

Increases in body temperature induced by higher pond temperatures may also 

indirectly influence predator-prey interactions, independently of swim speed. As metabolic 

rate increases with body temperature (Brown et al. 2004), both predators and prey require 

greater food intake to meet energetic demands, thus increasing predation events. For 

example, experiments on fish have shown increasing attack rates of predators on prey at 

warmer temperatures (Öhlund et al. 2015), consistent with increased predation due to 

higher metabolic demands. Predation risk may be further impacted by the increased 

metabolic demands of tadpoles, for whom the act of foraging for more food resources 

comes with increased risk of being detected by a predator. These effects may be 

exacerbated by faster growth rates of tadpoles at higher temperatures (Seebacher & 

Grigaltchik 2014; Zhao et al. 2014), which may further increase energetic demands. 

However, these impacts could be lessened if D. versicolor tadpole food resources, i.e. 

periphyton, become more abundant with warming pond temperatures. 

Increased predator performance advantage may also impact D. versicolor tadpoles 

through a 'landscape of fear'. The ‘landscape of fear’ concept describes how predation risk 

spreads across environments and influences predator and prey behaviours (Hammerschlag 

et al. 2015). In my system, as temperature increases, risk of predation also increases, 

potentially influencing prey behaviour. Tadpoles facing increased predation risk have been 

found to decrease their activity and consequently decrease their time spent feeding (Horat 

& Semlitsch 1994). Therefore, as environmental temperatures increase, metabolic demand 

increases, and predation risk increases, tadpoles will face a difficult tradeoff, where they 
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can either decrease activity levels to avoid predation and risk not meeting their metabolic 

demand or increase activity to meet metabolic demand but risk being predated. 

My results suggest that predation pressure will increase on D. versicolor tadpoles 

as pond temperatures warm. By comparing performance capabilities at various 

temperatures, one can infer how their interactions will play out (Luhring & DeLong 2016; 

Payne et al. 2016; but see Sinclair et al. 2016), but it is possible that results from a direct 

predation rate study would come to different conclusions. However, findings from 

experimental microcosms suggest that warmer temperatures can lower population sizes of 

tadpoles from increased predation. For example, De Mira-Mendes et al. (2019) found that 

tadpole mortality of a South American toad (Rhinella jimi), due to predation by scavenger 

beetles (Hydrophilus) increased with warmer water temperatures. Similar results have 

been found for Green Frogs (Lithobates clamitans) and larval dragonfly (Odonata) 

predation (Eck et al. 2014), though the impact varied among predator species. 

Nonetheless, this set of results indicate that tadpoles may face increased predation from a 

range of insect predators, not just predaceous diving beetles (Dytiscidae). These mesocosm 

results suggest that effects of enhanced predator performance, and increased predation 

rate, as temperature increases could scale to the population level and cause prey population 

declines or local extinctions, though tests are still required to determine if these 

experimental results transfer to natural systems.  

The impacts of warming on predator performance advantage varies among prey 

species. In contrast to the increases in ΔVT for D. versicolor, for L. sylvaticus, ∆VT, will 

not increase or decrease through time as their performance was very similar to predators 

across all temperatures. Although I predict no change in relative swim speed and thus no 
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effect on the ability of Agabini to pursue L. sylvaticus tadpoles, or the ability of the latter 

to escape, warming could still have impacts through enhancing detection rates or increased 

metabolic demands as described for D. versicolor. Further study is needed to determine 

whether these mechanisms, even when predator and prey performance are thermally 

aligned, are strong enough to have broader impacts on prey populations. 

The differences in TPCs, and thus ΔVT, between L. sylvaticus and D. versicolor could 

reflect different adaptations to temperature in two species that are in different families 

(Ranidae and Hylidae, respectively) that themselves are not closely related (Portik et al. 

2023) but it could also reflect ontogenetic changes. I tested swim speeds of L. sylvaticus 

tadpoles at Gosner stage 27/28, but D. versicolor at Gosner stage 25. As tadpoles grow, 

their swim speed should increase, which may explain why L. sylvaticus could match 

Agabini swim speeds, but D. versicolor tadpoles could not. In addition to average swim 

speed, the shape of the TPC may also shift as tadpoles develop. For example, L. sylvaticus 

tadpole CTmax increases as they develop from stages 27-39 and once they reach early 

metamorphosis (Gosner stage 40), CTmax decreases again (Cupp 1980), likewise as in 

Rana temporaria (Ruthsatz et al. 2022).  

Differences in ΔVT among species and developmental stages could induce changes in 

predator behaviour and have impacts on the strength of top-down effects of predators 

across communities. Prey species with low ΔVT, like L. sylvaticus, are a relatively costly 

prey type to pursue as they can match the pace of the predator, increasing the energy used 

in pursuit and decreasing the chance of success. Thus, as temperatures warm, predators 

may switch to prey, like D. versicolor, where ΔVT has increased, rendering pursuit of these 

species less costly. Predators may also be more likely to switch to prey at earlier 
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developmental stages as warming increases. While there is little evidence in beetle-tadpole 

systems, prey switching can have important implications for broader scales in other taxa; 

for example, prey switching is predicted to enhance persistence of Canada lynx (Lynx 

canadensis) at their southern range edge (Peers et al. 2014). Prey switching may also be 

exacerbated by differential phenological shifts in predators and prey (e.g. predator-prey 

mismatch, (Damien & Tougeron 2019) which alter the range of ΔVT values of prey 

available to a predator. Direct shifts between L. sylvaticus and D. versicolor at the Gosner 

stages studied here are unlikely as these two species are not phenologically aligned (L. 

sylvaticus breed much earlier in the year than D. versicolor). However, tadpoles of both 

species develop in multi-species communities. In my study region, Spring Peepers 

(Pseudacris crucifer) and Boreal Chorus Frogs (Pseudacris maculata) breed at similar 

times as L. sylvaticus, followed by Northern Leopard Frogs (Lithobates pipiens). American 

Toads (Anaxyrus americanus) breed in the same period as D. versicolor, followed by 

Green Frogs (Lithobates clamitans) and Mink Frogs (Lithobates septentrionalis) (Dodd 

2023). Thus, there is the potential for warming induced changes in ΔVT to alter the relative 

strength of predation on these prey species, though this hypothesis needs to be formally 

tested.  

4.3 Thermal performance curve comparisons 

I found that D. versicolor's CTmax (37.7 ºC ± 2.2) was lower than values reported in the 

literature: 40.03 ºC ± 0.1 (Katzenberger et al. 2021), 41.7 ºC ± 0.1 (Katzenberger et al. 

2018), and 41.78 ºC ± 0.1 (Katzenberger et al. 2014). This  could be due to an ensemble of 

differences: tadpoles were acclimated at different temperatures, were at different 

developmental stages, and were collected from different parts of their geographic range. 
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My tadpoles were acclimated at 15 ºC whereas in Katzenberger et al's (2014, 2018, 2021) 

studies they were acclimated at 20 ºC. Acclimation impacts species thermal performance 

as it triggers a shift in their thermal physiology, signaling at which temperatures to 

optimize performance (Lagerspetz 2006).  Acclimation temperature has also been found to 

affect individuals' critical thermal limits, with both CTmin and CTmax increasing with 

increased acclimation temperatures (Fan et al. 2021). My tadpoles were also only at 

Gosner stage 25, whereas tadpoles in Katzenberger et al.'s studies  were above stage 25 

(Katzenberger et al. 2021), stage 34 (Katzenberger et al. 2018), and stage 38 

(Katzenberger et al. 2014). Developmental stage has been found to significantly affect 

CTmin and CTmax in Rana temporaria (Ruthsatz et al. 2022), with earlier life stages having 

a much narrower range of tolerable temperatures (distance between lower and upper 

thermal limits). Thus, as my tadpoles were younger than tadpoles in other studies, it is 

possible that their developmental stage was a key reason why their CTmax was lower than 

reference studies. Finally, tadpoles in this study were collected from a latitude of 48.3º in 

Thunder Bay, Ontario, Canada, while Katzenberger et al.'s animals were collected from 

and tested at a latitude of 40.4º in Pittsburgh, Pennsylvania, USA. Thunder Bay is close to 

the northern range edge of D. versicolor and has a colder climate than Pennsylvania – with 

average July temperatures reaching 29 ºC (US Department of Commerce, National 

Weather Service 2025), the centre of D. versicolor’s range (Figure 2.2). Latitude can have 

variable relationships with intraspecific variation of critical thermal limits. Some species' 

critical thermal limits increase with latitude, e.g. the Four-eyed Frog, Pleurodema thaul 

(Barria & Bacigalupe 2017), while in others do not, e.g. the Porcelain Crab, Petrolisthes 

violaceus (Gaitán-Espitia et al. 2014). However, an effect of latitude on D. versicolor 
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critical thermal limits has yet to be explored, so I can only speculate that latitude plays a 

role in explaining why the CTmax in this study is lower than other literature. To my 

knowledge, mine is the first reported measure of CTmin for D. versicolor tadpoles, so 

comparisons are not possible. The only literature value for Topt and 95% thermal breadth 

(Tbr(95%)) of D. versicolor tadpoles are 32.5 ± 0.5 ºC and 14.29, respectively (Katzenberger 

et al. 2014). D. versicolor in my study had a Topt of 24.2 ± 0.9 ºC, 7.3ºC lower than 

Katzenberger et al. (2014), and a Tbr(95%) of 8.7 ± 0.9, 5.59 narrower than  Katzenberger et 

al. (2014). However, again due to the differences in acclimation, ontogeny, and geographic 

origin, differences between my results and literature values are not surprising.  

For L. sylvaticus tadpoles, I experimentally determined that their CTmax was 37.2 

ºC ± 0.5, a value comparable to other literature values: ~36.5 ºC (Manis & Claussen 1986), 

38.2 ºC ± 0.1 (Katzenberger et al. 2021), and ~ 37.5 ºC (Cupp 1980). L. sylvaticus CTmin 

could not be experimentally determined in this study because we could not cool water 

sufficiently. The only published CTmin of larval L. sylvaticus is ~ 4.5 ºC from individuals 

collected in Minnesota, USA, which were acclimated at 15 ºC (Manis & Claussen 1986). 

During my experiment, the water temperature reached 3.0 ºC, but tadpoles showed no 

signs of being near their thermal limit. This suggests that my tadpoles had a much lower 

thermal limit than what Manis & Claussen (1986) found. The reason for this difference 

could be ontogeny as the tadpoles in their study were Gosner stage 33-36 and mine were 

only stage 28. However, this contradicts previous work that found that CTmin decreased 

with increasing age (Ruthsatz et al. 2022). The only other difference between my study 

and Manis & Claussen (1986) is that they used a ramping rate of 0.7 ºC/min whereas I 

used a rate of 0.25 ± 0.12 ºC/min. Since my ramping rate was slower than Manis & 
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Claussen (1986), the tadpoles could have had more time to physiologically adjust (partial 

acclimation) to the decreasing temperature, thus lowering their CTmin, though variable 

(including opposite) effects of ramping rate on critical thermal limits have been 

documented (Vinagre et al. 2015). My ramping rate was, however, comparable with other 

studies (Cheng et al. 2023; Gutiérrez‐Pesquera et al. 2016; Pintanel et al. 2020, 2022). To 

my knowledge, there are no published estimates of Topt or Tbr(80%) for L. sylvaticus 

tadpoles, making my study the first to directly test and report these values.  

With respect to the predators, my study is the first, to my knowledge, to directly 

measure TPCs of Dytiscidae. No other studies have been done on beetle thermal 

performance, but some have been done on thermal limits of Dytiscidae beetles in southern 

Australia (Jones et al. 2021), southern Africa (Hidalgo-Galiana et al. 2021), and Spain 

(Calosi et al. 2008). Jones et al. (2021) tested 5 species and found CTmaxs ranging from 

38.2 ± 0.2 ºC –  44.5 ± 0.5 ºC, Hidalgo-Galiana et al. (2021) tested 6 species and found 

CTmaxs ranging from approximately 40.0 ºC – 44.5 ºC and CTmins ranging from 

approximately 4.0 ºC – 11.5 ºC, and Calosi et al. (2008) tested 4 species and found CTmaxs 

ranging from approximately 44.0 ºC – 46.0 ºC and CTmins ranging from approximately -

6.5 ºC – -9.0 ºC. Since I was unable to determine CTmax or CTmin for Agabini beetles in my 

study, comparisons with the other species from these studies is not possible. .  

Predator Topt was significantly greater than D. versicolor's Topt, but not different 

from L. sylvaticus's. Thus, greater heat adaptation of invertebrate predators than their prey 

is not a general pattern.  Predator Tbr(80%) was significantly narrower than both prey 

species, suggesting that this predator is more of a thermal specialist, and the prey are 

thermal generalists. Thermal specialists are organisms whose performance is enhanced at a 
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narrow range of body temperatures, whereas generalists have moderate performance over 

a broader range of temperatures (Gilchrist 1995). If beetle predators are heat specialists, 

then climate change will benefit them by raising average environmental temperatures. 

However, I also found that maximum daily temperatures exceeded the predator’s Topt and 

caused performance and ΔVT declines, so there is a limit of acceptable environmental 

warming before predators are negatively affected. 

 Because CTmin and CTmax could not be experimentally determined for the beetle 

predators, comparisons between predators and prey could not be made. Future research 

should aim to experimentally determine CTmin and CTmax for these Agabini beetles and 

aim to better identify when they have reached their critical thermal limits. Likewise with 

the tadpoles, since I could not experimentally determine the thermal limits for predators, 

the prey thermal limits were not used to fit TPCs. However, including thermal limits in the 

dataset when fitting TPCs could help anchor the curves, though the sensitivity of critical 

thermal limits to ramping rates (Kovacevic et al. 2019) could also lead to inaccuracies, as 

could the fact that they measure responses to temperature over shorter periods than swim 

experiments. 

4.4 Field data and future climate predictions 

The close relationship between surface water temperature in ponds and air 

temperature (Figure 3.12) means that as air temperatures continue to rise through time due 

to climate change, so will water temperatures. Daily minimum, maximum, and average 

water temperatures are predicted to increase with time, but differences between surface 

and bottom water temperatures offer more complex thermal environments, providing 

opportunities for behavioural thermoregulation. Since the bottom of the pond is colder 
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than the surface, tadpoles may be able to hide in the cooler water to avoid active predators, 

however, this comes with trade-offs as there may be limited food resources and growth 

rates are slower in colder temperatures (Seebacher & Grigaltchik 2014; Zhao et al. 2014). 

However, if tadpoles remain in warmer water near the surface of the pond they optimize 

growth and might outgrow the beetle predators but risk being predated while they are still 

developing.  

Finally, pond temperatures are predicted to increase significantly through time 

(Figure 3.14 and Figure 3.15), and D. versicolor prey actually gain an advantage at the 

extremely high temperatures of the highest emissions scenario (Figure 3.16). However, 

such high temperatures may occur over only very short periods. It is also maybe that the 

hottest temperatures predicted by my model may be physically impossible due to 

evaporation. Evapotranspiration from the pond surface and nearby vegetation is the major 

pathway of water loss from ponds and is highly influenced by temperature (Brooks 2004, 

2005). As water warms, it undergoes more evaporative cooling, which means that water 

molecules leave as gas and take energy (heat) with them (Harman 2005). So, as pond 

temperatures increase, evaporative cooling will take effect and decrease the temperature, 

setting an upper limit of the possible temperatures and causing ponds to dry up faster. This 

could have dual impacts on tadpoles; warming may increase predation risk for some 

species, while faster drying may prevent them from reaching metamorphosis resulting in 

mortality of the whole clutch (Newman 1992), or metamorphosizing sooner, at smaller 

size, potentially reducing adult fitness (Francesco Ficetola & De Bernardi 2006).  
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4.5 Conclusions 

In summary, Agabini beetle predators were more heat adapted than D. versicolor 

tadpoles but not L. sylvaticus tadpoles, showing variability between predator-prey pairs in 

the same environment. Predators having a performance advantage over their prey may 

result in increased predation pressure and could reduce prey populations. As climate 

change increases future air temperatures, pond water temperatures will also increase. This 

change in thermal regime will alter predator-prey interactions, but not between all 

predator-prey pairs. Further research should aim to develop better measures of Dytiscidae 

(tribe: Agabini) critical thermal limits. Also, more investigation into how ontogeny 

influences these predator-prey interactions is required to fully understand how climate 

warming will affect the vulnerable species in these small, but complex, aquatic 

environments. 
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6 Appendix 

Appendix A – 2024 Pond temperatures 

 
Figure 6.1. (Top) Daily average pond temperatures for June and July 2024. (Middle) Daily 
minimum pond temperatures for June and July 2024. (Bottom) Daily maximum pond 
temperatures for June and July 2024. Black line shows the surface water temperatures and 
grey line shows the temperature of the bottom of the pond. 

 



72 

Appendix B – Generalized linear model assumptions tests 

 
Table 6.1. Results from DHARMa GLM assumptions tests (Hartig 2024). To pass the 
assumption test, p-values should not be <0.05.  
 DHARMa tests 
Model Quantiles Uniformity Dispersion Outliers 
glm(Avg surface temp ~ Avg air temp) 
Gamma, link = sqrt 

p = 0.7296 p = 0.9997 p = 0.832 0 / 61 

glm(Min surface temp ~ Min air temp) 
Gamma, link = sqrt 

p = 0.8914 p = 0.8599 p = 0.984 0 / 61 

glm(Max surface temp ~ Max air temp) 
Gamma, link = sqrt 

p = 0.08506 p = 0.2343 p = 0.68 0 / 61 

glm(Avg bottom temp ~ Avg surface temp) 
Gamma, link = log 

p = 0.5332 p = 0.9461 p = 0.936 0 / 61 

glm(Min bottom temp ~ Min surface temp) 
Gamma, link = log 

p = 0.6055 p = 0.5326 p = 0.856 0 / 61 

glm(Max bottom temp ~ Max surface temp) 
Gamma, link = sqrt 

p = 0.06876 p = 0.8772 p = 0.768 0 / 61 

 

 

 

 

 


