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Abstract

With the growing capabilities of intelligent robots in object recognition and manipu-

lation, the ability to sense and interpret physical contact through touch has become a

crucial component to enabling effective interaction with the physical world. Although

tactile texture classification on flat surfaces has been broadly studied in recent years,

uneven surfaces pose additional challenges due to variations in contact geometry and

surface normals. To address these challenges, this study introduces a new tactile tex-

ture dataset comprising both flat surfaces and several distinct uneven surfaces, and

proposes a soft voting-based classification system built on deep neural networks, which

combines predictions from multiple temporal window sizes to improve robustness.

The dataset is collected using a compliant tactile sensor mounted on the end ef-

fector of a UFactory Lite6 robotic arm that combines MARG and barometric data

for capturing dynamic contact interactions. The dataset includes six types of uneven

surfaces, each including a variety of textures to create diverse and challenging contact

conditions. To improve classification robustness and enable multi-scale analysis, the

time-series data are segmented using a sliding window approach with varying window

sizes. Multiple model architectures are trained on the windowed segments, includ-

ing 1D Convolutional Neural Networks (1D-CNNs), Bidirectional Long Short-Term

Memory (BiLSTM) networks, hybrid 1D-CNN–BiLSTM models, self-attention-based
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networks, and hybrid 1D-CNN–self-attention models. Their predictions are combined

using a soft voting strategy to enhance overall classification accuracy.

Experimental results based on 5-fold cross-validation demonstrate that self-attention-

based models consistently outperform other individual architectures across all window

sizes. Moreover, the proposed voting system, which combines predictions from differ-

ent window sizes, further improves classification performance for all model types by

leveraging complementary temporal features.

This study demonstrates that combining deep neural networks with a soft voting

mechanism across multiple window sizes enables accurate tactile texture classification

on various types of uneven surfaces, contributing toward more robust and adaptable

robotic perception in complex environments.
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Chapter 1

Introduction

In recent decades, robotic systems have made significant progress in perceiving and

interacting with the physical world, primarily driven by advancements in computer

vision, manipulation, and artificial intelligence [3, 4]. These developments have en-

abled robots to perform increasingly complex tasks in structured environments such

as manufacturing, logistics, and medical applications. However, true physical in-

teraction remains an open challenge, particularly in unstructured or unpredictable

environments. One critical yet underdeveloped component enabling such interaction

is tactile perception, the ability of robots to sense and interpret physical contact with

objects or surfaces [5].

Biological systems, particularly humans, rely extensively on tactile information

for object recognition, surface exploration, and manipulation [6]. This sense provides

complementary feedback to vision, especially in scenarios where visual cues are oc-

cluded, ambiguous, or absent. In robotics, tactile perception bridges the gap between

sensing and action, playing an essential role in manipulation tasks such as grasping,

insertion, and surface following. Without touch, robotic systems are essentially blind

to the details of contact dynamics, force distribution, and material properties.
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1.1 From Sensing to Perception: The Role of Tactile Sensors

Tactile sensing in robotics involves transduction mechanisms that convert physical

interactions—such as pressure, vibration, or shear—into electrical signals. Numerous

tactile sensors have been developed, including capacitive, piezoresistive, optical, and

barometric types, each with varying resolution, compliance, sensitivity, and integra-

tion feasibility [3, 1]. These technologies form the foundation for tactile perception

by providing the raw measurements needed for higher-level interpretation.

In this work, a compliant tactile sensor is employed that combines barometric

pressure sensing and inertial measurement (IMU) data. This setup is lightweight,

low-cost, and easily integrated into the end-effector of a robotic manipulator. The

barometric sensor captures static and dynamic pressure variations during contact,

while the IMU provides six-axis motion data, including linear acceleration and angular

velocity. Together, they offer a rich, multi-modal representation of dynamic tactile

interactions.

This configuration builds upon prior work by Marzani et al., who used the same

sensing setup to classify textures on flat surfaces [7]. The present approach extends

this to more challenging uneven surfaces, which more closely resemble real-world

contact conditions where surface normals, contact forces, and motion patterns are

irregular.

1.2 Point Collection and Interaction Strategy

Tactile data collection in robotic systems must be controlled and reproducible. In

our setup, a robotic manipulator equipped with the tactile sensor follows a prede-

fined trajectory to probe the surface of interest. A surface reconstruction pipeline
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generates probing points—each associated with a 3D position and local surface nor-

mal—ensuring consistent contact across the texture.

Each probing point serves as a local site for dynamic contact. The robot first

moves to a hover position above the target, then descends along the surface normal

until contact is made. During this descent and subsequent contact phase, time-series

data from the barometric and inertial sensors are recorded at approximately 130 Hz.

The robot then retracts and moves to the next point, repeating this process across

the surface.

This point-wise probing strategy provides spatial coverage while preserving lo-

calized temporal patterns of tactile interaction, enabling downstream segmentation,

analysis, and learning.

1.3 Tactile Data Collection on Uneven Surfaces

Unlike flat surfaces, uneven surfaces introduce significant variability in contact dy-

namics. Changes in curvature, slope, and material compliance result in varying pres-

sure distributions and motion signatures [8]. To address this complexity, a dataset

was designed comprising one flat and five custom uneven surfaces, each covered with

twelve distinct textures ranging from fabrics and polymers to woods and leathers.

For each texture–surface combination, the robot performs multiple probing se-

quences, recording barometric and IMU data at each point. These recordings are

synchronized and stored as ROS 2 bag files, later processed to extract normalized

time-series data. The resulting dataset is one of the first to systematically capture

dynamic tactile interactions over irregular geometries with labeled texture annota-

tions.
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1.4 From Tactile Signals to Perception and Classification

Raw sensor signals alone do not constitute perception. The challenge lies in interpret-

ing these time-series data streams to infer meaningful semantic labels—such as texture

class—across a range of surfaces. Traditional texture classification approaches have

relied on hand-crafted features, such as statistical descriptors or frequency-domain

analyses, which often lack robustness to complex, real-world contact scenarios [4].

Deep learning methods, by contrast, can automatically learn discriminative represen-

tations from raw data, enabling improved generalization.

In this thesis, deep neural networks are trained on fixed-length windows of tactile

data, capturing temporal segments of the contact interaction. To improve robustness,

multiple window sizes—short (128 samples), medium (256), and long (512)—are used,

each feeding into a separate neural network. Predictions from these models are com-

bined via a soft voting strategy, yielding a more reliable classification outcome.

1.5 Challenges in Texture Recognition on Uneven Surfaces

Texture classification on flat surfaces has been extensively studied [9], but uneven

surfaces pose additional challenges. Varying surface normals alter how the sensor en-

gages with the material, while differences in compliance and local geometry influence

signal evolution. Barometric readings may exhibit nonlinear or multi-peaked pro-

files, and IMU signals may contain oscillatory patterns or noise. These factors make

signal interpretation more difficult, reducing classification accuracy if not properly

addressed.

The proposed method mitigates these challenges by capturing diverse signal pat-

terns at multiple temporal resolutions and combining model outputs through a voting
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scheme.

1.6 Research Objectives

The primary objective of this research is to develop a robust tactile texture classifica-

tion system that generalizes across flat and uneven surfaces. This involves designing

a comprehensive data collection protocol, developing deep learning models capable of

learning temporal patterns, and implementing a voting mechanism to fuse multiple

temporal resolutions. The approach is validated through a comparative analysis of

single-window and multi-window systems across all surface types in the dataset.

1.7 Contributions

The main contributions of this thesis are as follows:

• Tactile dataset: Development of a novel tactile dataset collected using the

BioIn-Tacto sensing module, which combines barometric pressure and inertial

measurement data. The dataset covers six different surfaces (one flat and five

uneven) and twelve different textures.

• Single-window classifier: Design and implementation of a neural network

classifier based on an attention-based architecture, trained on fixed-length time-

series windows extracted from tactile interaction sequences.

• Multi-resolution voting framework: Introduction of a soft voting system

that integrates predictions from multiple temporal resolutions (128, 256, and 512

samples) to improve classification robustness, particularly on uneven surfaces.
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• Data acquisition and processing pipeline: Development of a reproducible

ROS2-based pipeline for tactile data acquisition, surface probing, signal nor-

malization, and dataset preparation.

• Experimental evaluation: Comparative analysis of single-window models

and the proposed voting system, demonstrating improved accuracy and robust-

ness in texture classification across both flat and uneven surfaces.

1.8 Thesis Organization

Chapter 2 reviews tactile sensing, texture classification, and relevant machine learning

methods. Chapter 3 describes the hardware, surface design, data collection protocol,

and model training process. Chapter 4 presents experimental results and comparative

analyses. Chapter 5 summarizes findings and outlines future research directions in

robotic tactile perception.
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Chapter 2

Literature Review

Tactile texture recognition is a fundamental component of robotic perception, en-

abling robots to interpret and interact with their surroundings through direct phys-

ical contact. This chapter surveys the literature on tactile sensing and perception,

highlighting the importance of touch in robotics, sensor technologies, tactile feedback

in object recognition and manipulation, and algorithmic approaches to surface and

texture understanding. We review prior research on object recognition through touch,

surface characterization, and dynamic contact profile classification, noting both the

potential and limitations of these methods for robust texture recognition. Particular

attention is given to works employing the BioIn-Tacto sensing module, including its

use in tactile texture classification on flat surfaces and other applications such as

object recognition and manipulation. Finally, we outline the progression from early

tactile sensing systems to modern deep learning and ensemble-based methods, identi-

fying key challenges such as handling uneven surfaces and variable contact conditions

that motivate the contributions of this thesis.
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2.1 Tactile Sensing and Perception in Robotics

Tactile sensing provides robots with physical awareness akin to human touch, playing

a vital role in object recognition, manipulation, and interaction in unstructured envi-

ronments. Compared to vision-based systems, tactile sensors offer reliable, contact-

based information, particularly in scenarios involving occlusions, poor lighting, or

fragile object handling [6, 5, 3, 4]. Foundational studies have examined tactile sens-

ing as a multi-dimensional process involving pressure, vibration, deformation, and

proprioception.

These early efforts informed the development of tactile-enabled prosthetic sys-

tems [10], haptic teleoperation hands [11], and robotic systems capable of adjusting

manipulation in real time based on tactile feedback [12]. More recent works empha-

size tactile perception as a critical requirement in healthcare, manufacturing, and

assistive robotics.

Touch sensing for humanoid robots [13] further emphasizes the role of tactile

perception in humanoid platforms. The past decade has seen rapid advances in tactile

sensor design. Multimodal and bioinspired sensors such as BioIn-Tacto [14, 1] provide

high-fidelity pressure and motion data via MARG and barometric sensing. Leveraging

compliant tactile perception for haptic blind surface reconstruction [15] illustrates

the benefits of end-effector flexibilization for enhanced tactile interaction. Other

designs include flexible triboelectric systems [16], magnetorheological elastomer-based

sensors [17], and self-healing, multi-material sensors. Fingerpad-inspired skins [18]

and dual-inductive sensors [19] reflect the trend toward mimicking biological tactile

capabilities.

These advances have improved spatial resolution, robustness under deformation,
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and multimodal data capture. Recent designs also integrate tactile perception with

proprioception and visual-tactile fusion [20, 21].

2.2 Robotic Manipulation and Tactile Feedback

Exploring tactile temporal features for object pose estimation [12], extraction of non-

regular pegs using tactile sensing and reinforcement learning [22], grasp approach un-

der positional uncertainty [23], and fuzzy controlled object manipulation [24] demon-

strate the importance of tactile sensing in manipulation strategies.

Computational intelligence and mechatronics solutions for robotic tactile object

recognition [25] detail methods for object identification using tactile data. Estimat-

ing the orientation of objects from tactile sensing data using machine learning meth-

ods [26] connects surface geometry analysis to downstream texture classification.

Data-driven analysis of kinaesthetic and tactile information for shape classifica-

tion [27] and tactile profile classification using a multimodal MEMs-based sensing

module [28] illustrate dynamic contact profile analysis, but also highlight that such

profiles alone are insufficient for robust texture classification due to inconsistent con-

tact.

2.3 The BioIn-Tacto Sensing Module in Research

Tactile object recognition in early phases of grasping using underactuated robotic

hands [29] demonstrates BioIn-Tacto’s ability to contribute to early-stage grasp plan-

ning.
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Dynamic tactile exploration for texture classification [30], classification of tex-

tures using a tactile-enabled finger [31], and a multimodal tactile dataset for dy-

namic texture classification [32] show BioIn-Tacto’s utility for planar surface texture

recognition. Heart rate detection using a multimodal tactile sensor [33, 34] extends

BioIn-Tacto’s applications to physiological monitoring.

2.4 From Flat to Uneven Surfaces

While tactile texture recognition on flat, planar surfaces has been extensively stud-

ied [30, 31, 32, 35, 36], real-world applications often involve contact with curved or

irregular geometries where the contact patch, surface normal, and applied force vary

continuously during exploration. These variations introduce additional challenges,

including non-uniform deformation of the sensing surface, inconsistent contact forces,

and signal distortions caused by local curvature.

Early work with the BioIn-Tacto sensor focused on flat surfaces, establishing base-

lines for dynamic tactile texture recognition [30, 31]. More recent studies have sought

to bridge this gap by extending tactile perception to uneven or non-planar environ-

ments. Marzani et al. [37] presented deep learning approaches for texture recognition

on concave–convex surfaces, demonstrating the feasibility of classification despite sig-

nificant contact variability. Cheret et al. [38] further explored this problem by inte-

grating haptic surface reconstruction with reinforcement learning to enhance texture

recognition performance, highlighting the benefits of adaptive trajectory planning for

complex geometries.

Khatibi et al. [39] developed self-attention-based neural networks tailored for un-

even surface data, addressing challenges related to long-range temporal dependencies
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and noisy contact patterns. In parallel, Khatibi et al. [40] introduced a multi-scale

voting framework, which combines predictions across different temporal resolutions

to improve robustness to irregular contact dynamics.

Despite these advancements, texture recognition on uneven surfaces remains rel-

atively underexplored compared to flat-surface studies. In particular, there is a need

for larger and more diverse datasets, improved handling of non-uniform contact me-

chanics, and modeling strategies that can adapt to varying interaction conditions

without overfitting to specific geometries. These limitations continue to motivate

further research in this area.

2.5 Tactile Data Collection and Benchmarking

Creating high-quality tactile datasets is essential for benchmarking classification sys-

tems. Many datasets [41, 35] focus on planar surfaces and rely on fixed-length time-

series signals. Recently, researchers have begun addressing the complexities of un-

even geometries. Marzani et al. [7] introduced one of the first datasets collected over

concave-convex surfaces, incorporating 12 textures and multimodal sensing (pressure

+ MARG). Similar works explore dynamic texture classification [32] and peg-based

tactile benchmarks [42].

To ensure generalizability, researchers increasingly prevent data leakage by assign-

ing entire experiments to training or validation folds. Standard preprocessing now

includes sensor alignment, normalization, and contact filtering during sliding data

collection.
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2.6 Deep Learning and Temporal Modeling for Tactile Data

Deep learning has transformed tactile signal processing in recent years. Early meth-

ods relied on 1D CNNs or LSTM architectures [43], but these models often struggled

with noise, long-range dependencies, and generalization. More advanced models in-

corporate attention mechanisms and transformers [44, 45, 46], enabling both local

and global temporal pattern extraction from noisy tactile signals. Self-attention-

based models, such as the approach in [39], have demonstrated strong performance

on tactile datasets collected from uneven surfaces, improving classification robustness

against contact variability.

Cao et al. [47] proposed spatio-temporal attention models, while others introduced

hybrid CNN–BiLSTM architectures for multi-scale analysis. Informer-based classi-

fiers and self-attention mechanisms have shown improved accuracy on long tactile

sequences, particularly for textures with similar microstructures.

2.7 Texture Recognition on Uneven Surfaces

While progress on flat surfaces is significant [35, 36], texture recognition on uneven

surfaces remains underexplored. Key challenges include non-uniform contact, sen-

sor noise from varying curvature, and inconsistent force distribution. Some stud-

ies [48, 49, 37] attempt hierarchical and multimodal fusion, while others leverage

reinforcement learning for enhancing tactile texture recognition from haptic surface

reconstruction [38]. However, few works address dynamic texture recognition on ir-

regular geometries with robust modeling approaches.
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Recent approaches combine trajectory planning, surface reconstruction, and tac-

tile sensing [14]. Previous works proposed deep learning pipelines for texture clas-

sification after adaptive trajectory execution, yet fixed-length models often fail to

capture the variability of real tactile interactions.

2.8 Ensemble Learning for Robust Tactile Classification

Multi-resolution learning offers a promising strategy for handling variability in tactile

signals. Voting-based systems combine predictions from models trained on differ-

ent temporal window sizes (e.g., 128, 256, 512 samples), capturing both short- and

long-term features. The multi-scale voting system proposed in [40] soft-averages the

outputs from these models, mitigating the limitations of single-scale approaches and

improving classification performance on uneven textures. Such ensembles have been

shown to outperform the best single model by more than 2% accuracy. The weighting

of each temporal resolution can be manually assigned or tuned for optimal balance.

2.9 Summary and Research Gaps

The reviewed literature highlights:

• Major progress in tactile sensor design, dataset creation, and modeling tech-

niques.

• Limited exploration of texture recognition on uneven surfaces and the use of

multi-scale learning.

• Few implementations of ensemble methods for combining predictions across

temporal resolutions.
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The present study addresses these gaps by:

• Extending tactile datasets to include diverse and complex surface geometries.

• Introducing a multi-scale voting-based ensemble that surpasses fixed-window

classifiers in accuracy.

• Combining transformer-based and CNN architectures to capture both local and

global temporal features.

This work lies at the intersection of tactile sensing innovation, advanced time-

series modeling, and ensemble classification, aiming to overcome key limitations in

current tactile perception systems.
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Chapter 3

Methodology

This chapter outlines the methodology used to collect, process, and analyze tactile

data for texture classification on uneven surfaces.

3.1 Robotic Setup and Tactile Sensor

This section presents the hardware configuration used for probing textured surfaces

and collecting tactile data. It comprises a robotic manipulator for executing contact

motions and a multimodal sensor mounted on its end-effector.

3.1.1 Robotic Arm

The UFactory Lite6, a 6-degree-of-freedom (6-DOF) collaborative robotic arm, was

used for executing surface probing and contact trajectories. The 6-DOF configuration

provides full spatial positioning and orientation control of the end-effector, which

is critical for maintaining a consistent contact normal when scanning surfaces with

varying curvature. The arm offers a repeatability of ±0.1 mm, a maximum payload of

600 g, and a reach of 440 mm, delivering both dexterity and precision for the controlled

tactile exploration required in this study. It is fully programmable through ROS 2,
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enabling precise motion control along Cartesian paths and seamless integration with

sensing and data acquisition modules.

During experimentation, the robot executed structured movement sequences to

scan or probe textured regions across flat, convex, concave, and mixed geometries.

The contact direction was maintained predominantly orthogonal to the surfaces,

achieved through calibration and the use of computed surface normals during path

planning.

Figure 3.1: Experimental setup showing the UFactory Lite6 robotic arm with the
tactile sensor mounted on the end-effector from two different angles.

3.1.2 Tactile Sensing Module

The tactile sensing module used in this work is the BioIn-Tacto sensor [1], a compliant

and flexible multi-modal tactile sensing device designed for robotic applications. It

combines a deformable contact surface with two sensing elements:

• MARG (Magnetic, Angular Rate, and Gravity) System: A 9-axis IMU that

provides 3-axis acceleration, 3-axis gyroscopic angular velocity, and 3-axis ori-

entation (quaternion).

• Barometric Pressure Sensor: A sealed pressure sensor housed within a soft

dome, used to capture force-related pressure changes during contact.
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This configuration offers a unique package of capabilities: a compliant and flexible

sensing interface, high-fidelity orientation measurement, and direct pressure sensing

from barometric data. The fusion of barometric pressure with IMU-derived orienta-

tion enables accurate, real-time computation of local surface normals during contact.

Such combined functionality is particularly advantageous for exploring uneven sur-

faces while maintaining controlled approach angles and contact conditions.

In contrast, existing tactile sensing technologies—such as capacitive arrays, re-

sistive sheets, optical tactile sensors, and vision-based tactile systems—can provide

detailed pressure or deformation patterns, but none currently offer this exact combina-

tion of compliance, orientation sensing, and direct barometric pressure measurement

in a single integrated module. These alternative sensors typically require additional

estimation algorithms or external sensing modalities to approximate surface normals,

introducing extra complexity and potential sources of error. All sensor streams are

recorded through ROS 2 topics at an average rate of approximately 145 Hz.

Figure 3.2: TheBioIn-Tacto tactile sensing module comprises three primary compo-
nents: (1) a MARG system, (2) a compliant structure, and (3) a barome-
ter [1]. The entire module is encapsulated within a flexible structure [2].
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3.1.3 Sensor Mounting and Configuration

The sensor is mounted using a rigid coupler aligned with the robot’s end-effector tool

frame. The orientation ensures that the sensing surface remains perpendicular to the

contact direction. This configuration simplifies robot-sensor calibration and enables

consistent probing geometry across all experiments.

Sensor wiring is secured along the robotic links to prevent disturbances, and data

acquisition is fully synchronized within the ROS 2 data pipeline.

3.2 Surface Reconstruction

To facilitate consistent tactile data collection across complex and curved surfaces, a

surface reconstruction phase is conducted prior to texture probing. This step enables

the robot to build a sparse but structured map of the surface geometry using contact-

based probing, which is later used to guide the data collection process in a consistent

and controlled manner.

3.2.1 Contact Point Generation

For each surface-texture combination, the robot executes a predefined probing tra-

jectory arranged in a 2D grid across the surface. At each probing location, the end-

effector descends vertically until contact is detected based on a significant drop in the

barometric pressure signal. The robot then records the 3D pose of the end-effector

at the time of contact as a discrete surface point.

As shown in Figure 3.3(a), the robot approaches the surface with its end-effector

aligned vertically. This consistent approach direction simplifies contact geometry

and ensures the resulting contact point reflects a meaningful interaction between the
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sensor and the surface.

3.2.2 Surface Normal Estimation

Once a sufficient number of contact points are collected, local surface normals are

estimated through planar fitting. For each point, a neighborhood is selected, and a

best-fit plane is computed using least-squares regression. The normal vector to this

plane is stored as the estimated normal for that contact point.

As illustrated in Figure 3.3(b), when the sensor contacts the surface, slight de-

formation occurs in the compliant structure. This deformation confirms the sensor

has made physical contact, and the associated normal is used to orient the sensor

appropriately in the texture probing phase.

This strategy enables adaptive motion planning where the robot can align the

sensing surface orthogonally to the local geometry, improving consistency and tactile

signal quality.

3.2.3 Reconstruction Workflow

The reconstruction procedure is deterministic and repeatable. Each probing motion

is executed at a fixed vertical velocity, with real-time monitoring of pressure data for

contact detection. Once contact is detected, the robot holds briefly, retracts upward,

and moves to the next planned point in the grid.

Figure 3.3(c) shows this full probing sequence in operation. By following this ap-

proach, a structured and repeatable point cloud with associated normals is obtained,

which is then used to generate the desired poses for tactile data collection.

The computed surface normals, as illustrated in Figure 3.4, play a crucial role
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a) b) c)
Figure 3.3: a–c) illustrate a robot equipped with a tactile sensing module probing a

surface while maintaining the end-effector’s approach angle normal to the
horizontal plane. (a) shows the initial descent; (b) highlights the slight
deformation upon contact; (c) depicts the sequence of probing movements
over the surface.

in ensuring that the tactile sensing module maintains the desired contact orienta-

tion during data collection. By aligning the end-effector with the extracted normals,

the robot can consistently achieve orthogonal contact across varied surface geome-

tries, improving repeatability and signal quality. This information is also used in the

trajectory planning stage to generate poses for subsequent tactile data acquisition.

3.3 Data Collection Procedure

After surface reconstruction, the robot proceeds to collect tactile data for texture

classification. The objective is to capture consistent and high-resolution multimodal

signals that reflect the physical interaction between the compliant sensor and a variety
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Figure 3.4: Visualization of surface normals extracted by the UFactory Lite6 during
the reconstruction phase. Each arrow represents the computed local sur-
face normal at a probing point, derived from the reconstructed contact
geometry.

of textured surfaces.

3.3.1 Surface and Texture Set

The dataset includes six distinct base surfaces: five with varying degrees of curva-

ture and one flat control surface. Each surface is covered with 12 different textures,

including a range of materials such as fabrics (e.g., brocade, mesh cotton), leathers,

polymers, and rigid textures like embossed plastics.

These textures were chosen to ensure diversity in key tactile properties including

stiffness, roughness, pattern regularity, and friction. The aim was to generate a

dataset representative of real-world variability encountered in robotic tactile sensing.
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3.3.2 Contact Strategy and Probing Motions

For each surface-texture pair, the robot performs 25 separate exploration sequences.

Each sequence involves a horizontal trajectory subdivided into multiple vertical prob-

ing contacts. At each probing point, the robot:

1. Moves to a predefined hover pose above the surface.

2. Descends vertically until a contact is detected via pressure signal drop.

3. Applies a small over-travel to ensure sensor deformation.

4. Retracts upward and moves to the next contact location.

This probing pattern is guided by the reconstructed contact points and surface

normals obtained during the reconstruction phase. The consistency of approach angle

and contact depth improves repeatability across textures and surfaces.

Figure 3.5 shows the robotic system in different phases of a typical exploration

path—beginning, midpoint, and end—demonstrating the systematic motion strategy

over uneven terrain.

3.3.3 Recorded Data Streams and Synchronization

During each probing contact, two synchronized data streams are recorded via ROS 2:

• Barometric Pressure: Measures internal air pressure variation inside the sensor’s

soft chamber, reflecting the force applied during surface contact.

• IMU Signals: Includes 3-axis accelerometer, 3-axis gyroscope, and 3-axis ori-

entation (quaternion), enabling the system to capture the dynamic response of

the sensor during contact and release.
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Figure 3.5: Overview of the OpenManipulatorX robotic arm with the sensing module
mounted, collecting data on an uneven surface with a textured material:
(a) the robot at the beginning of the exploration path; (b) the robot at
the midpoint of the path; (c) the robot at the end of the exploration path.

All signals are recorded at approximately 145 Hz and are timestamped for syn-

chronization. Each trial produces a time-series recording of multi-modal sensor data,

stored in a structured directory hierarchy organized by surface, texture, and trial

index. These recordings form the raw input for downstream preprocessing and model

training.

3.4 Data Preprocessing Pipeline

Raw sensor data collected during tactile probing is preprocessed through a struc-

tured multi-step pipeline to prepare it for classification. The goal is to extract clean,

normalized, and properly segmented time-series windows suitable for training deep

learning models. Each step in the pipeline is implemented using modular Python

scripts and applied consistently across all experimental trials.
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3.4.1 Trimming and Cropping

Due to slight delays in robot motion or pauses before contact, the beginning and end of

each recorded time series often contain idle data with no meaningful contact. These

segments are trimmed using a threshold-based method applied to the barometric

pressure signal. A JSON file stores the detected start and end indices for each trial,

ensuring consistent and reproducible cropping across the dataset.

3.4.2 Sensor Data Merging

Barometric and IMU data are initially recorded as separate ROS 2 topics. These

streams are synchronized and merged into a unified CSV format based on times-

tamps. The merged data includes all nine IMU features (acceleration, gyroscope, and

orientation) and the barometric pressure value, resulting in a 10-dimensional time

series per sample.

To avoid introducing artificial correlations, no forward or backward filling is ap-

plied; only timestamps common to both streams are preserved.

3.4.3 Normalization

After merging, each sensor signal is normalized individually using min-max scaling.

The minimum and maximum values are computed per channel across all training sam-

ples and stored for consistent normalization of validation and test data. This scaling

ensures balanced feature ranges and improves model convergence during training.

Normalization is applied only after trimming and merging to ensure clean and

aligned data.
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Figure 3.6 shows an example of a normalized IMU time series segment after trim-

ming and alignment. Figure 3.7 presents a normalized barometric pressure signal

from a typical probing interaction.

Figure 3.6: Preprocessed IMU data after trimming, merging, and normalization. The
plot shows acceleration, gyroscope, and orientation (quaternion) values
across time.

3.4.4 Windowing and Labeling

To enable training of temporal models, the continuous time-series data is segmented

into fixed-length overlapping windows. Three different window sizes are used in this

work: 128, 256, and 512 time steps. Each window is saved as an independent training

example, with its corresponding texture label inherited from the trial folder.
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Figure 3.7: Preprocessed barometric pressure data from a single trial. The signal
reflects surface contact and deformation dynamics after normalization.

Overlapping windows (e.g., with 50% overlap) increase dataset size and improve

model robustness to minor temporal shifts. Each window is saved as a separate ‘.csv‘

file and then converted to ‘.npy‘ format for faster loading during model training.

3.4.5 Directory Organization

The entire preprocessing pipeline maintains a consistent directory structure. For each

surface and texture, preprocessed files are saved under folders named by texture ID,

window size, and processing stage (e.g., ‘4-Normalized‘, ‘5-Windowed‘, ‘6-Reindexed‘,

‘7-NPY‘). This hierarchy enables efficient access to data subsets for experiments and
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reproducibility across runs.

3.5 Classification Models

To classify tactile textures from preprocessed sensor signals, five deep learning models

are designed and trained. Each model operates on a specific window size (128, 256,

or 512 samples) and takes as input a 10-dimensional multivariate time series. The

models fall into two main categories: baseline architectures and self-attention-based

architectures.

3.5.1 Baseline Architectures

1D CNN model: Convolutional layers are effective at capturing local temporal pat-

terns in sequential tactile data by applying learnable filters over short time spans.

These filters act as feature extractors, identifying repetitive structures such as vibra-

tion signatures, micro-texture patterns, or transient force variations. Pooling layers

reduce temporal resolution while retaining dominant features, and batch normaliza-

tion improves training stability. The use of ReLU activation ensures non-linear feature

learning, and fully connected layers at the end combine extracted patterns for final

classification. Figure 3.8 shows the architecture of the 1D CNN model.

BiLSTM model: Long Short-Term Memory (LSTM) units are designed to capture

temporal dependencies by selectively remembering and forgetting past information.

Using a bidirectional configuration allows the model to learn from both past and

future contexts within each window, which is important in tactile sequences where

motion direction or contact history influences the signal. This is especially useful

for capturing the progression of texture-induced patterns over time. The BiLSTM
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Figure 3.8: Architecture of the 1D CNN model used for tactile texture classification.

architecture is shown in Figure 3.9.
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Figure 3.9: Architecture of the BiLSTM model, which models temporal dependencies
bidirectionally.

Hybrid 1D CNN–BiLSTM model: This architecture leverages the strengths of

both components: convolutional layers first extract short-range temporal features

from raw tactile data, reducing noise and emphasizing local patterns, while BiLSTM

layers model the longer-range temporal structure that emerges over a full contact se-

quence. This combination allows the network to learn both fine-grained textural cues
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and global sequence-level relationships, which is especially valuable for uneven sur-

faces where local and global dynamics interact. The hybrid architecture is illustrated

in Figure 3.10.
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Figure 3.10: Architecture of the hybrid model combining 1D CNN and BiLSTM lay-
ers.

3.5.2 Self-Attention-Based Architectures

Self-attention mechanism: Self-attention enables the model to learn non-local rela-

tionships by allowing each time step in the tactile sequence to selectively attend to

other relevant time steps. This is particularly useful when texture characteristics man-

ifest over long temporal spans or when uneven surfaces introduce irregular spacing of

distinctive events. Unlike recurrence, attention mechanisms compute dependencies in

parallel, improving efficiency and allowing flexible context modeling.

Hybrid 1D CNN–self-attention model: This approach combines convolutional lay-

ers for initial local feature extraction with multi-head self-attention layers for model-

ing long-range dependencies. The CNN front-end filters and condenses the raw signal

into high-level feature maps, while the attention block identifies relationships between

distant points in time, enabling the model to reason about distributed patterns that

may occur in different parts of the contact sequence. This balance of local sensitivity
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and global reasoning makes it effective for challenging, geometry-dependent tactile

recognition tasks. The architecture is shown in Figure 3.11.

Figure 3.11: Architecture of the hybrid model combining 1D CNN and self-attention
layers.

3.5.3 Training Setup

All models are trained using categorical cross-entropy loss with the Adam optimizer.

The initial learning rate is set to 1e−3 and decayed based on validation performance.

Training is conducted for up to 50 epochs with early stopping to prevent overfitting.

Batch sizes range from 32 to 64 depending on the model and input length. In-

stead of a fixed train/validation/test split, we use five-fold cross-validation to evaluate

model performance. The dataset is divided into five folds, and each model is trained

and validated five times using a different held-out fold for testing in each round.

This strategy ensures a more reliable and unbiased estimate of performance across

textures and surfaces. The implementation is done in TensorFlow, and all training

is performed on GPU-accelerated systems. Detailed results and fold-wise evaluation

metrics will be presented in the next chapter.

In total, these distinct model architectures are used: 1D CNN, BiLSTM, hybrid

1D CNN–BiLSTM, and hybrid 1D CNN–self-attention.
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3.6 Voting-Based Ensemble System

3.6.1 Motivation for Model Combination

Each input window size (128, 256, or 512 samples) captures a different temporal

resolution of the tactile signal. Shorter windows are more sensitive to transient contact

features and local variations, while longer windows are better at modeling global

temporal patterns and contact evolution over time.

Instead of choosing a single window size arbitrarily, the proposed approach com-

bines the predictive power of all three. This allows the model to leverage fine-grained,

mid-range, and long-term features simultaneously, increasing robustness to surface

shape, contact duration, and signal shifts.

3.6.2 Soft Voting Mechanism

The ensemble system uses a weighted soft voting strategy to combine the predictions

from three independently trained models. Each model is trained using the same

architecture (for example, CNN or self-attention-based) but on a different window

size (128, 256, or 512). During inference, the same input signal is segmented into all

three window lengths and passed to its respective model.

Each model outputs a probability distribution over the 12 texture classes. These

three vectors are then combined using a weighted average, where the weights deter-

mine the contribution of each window size to the final decision. The class with the

highest combined probability is selected as the predicted label.
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3.6.3 Weight Selection via Grid Search

The weights for the 128, 256, and 512 models are determined through a grid search

procedure. Candidate weight combinations are evaluated using five-fold cross-validation

on the training set. The combination that achieves the highest mean validation accu-

racy is selected for the final evaluation. This ensures that the voting system balances

contributions from different temporal resolutions in a data-driven manner rather than

using equal weights by default.

3.6.4 Comparison Strategy

To ensure fair evaluation, the voting-based ensemble is constructed separately for each

architecture type. For example, three CNNs trained on 128, 256, and 512 samples

form one ensemble, and the same holds for BiLSTM and attention-based models.

This allows for direct comparison between ensemble models and their individ-

ual single-window counterparts. Performance metrics such as classification accuracy

are averaged over five-fold cross-validation, as will be detailed in the next chapter.

This setup also helps assess how ensembling affects robustness across flat and uneven

surfaces.

3.7 Dataset Description

To support the development and evaluation of tactile texture classification models, we

collected a comprehensive dataset using the robotic system and tactile sensing module

described earlier. The dataset captures sensor responses across a wide range of surface

geometries and material textures, enabling controlled experiments on generalization,

invariance, and classification performance.
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3.7.1 Surface Types

The dataset includes six distinct surface configurations, each designed to introduce

specific contact geometries.

The flat surface serves as a baseline with no curvature, providing a uniform contact

plane ideal for isolating texture effects.

The concave surface presents a uniformly inward-curving geometry.

Figure 3.12: Concave surface configuration.

The convex surface features a uniformly outward curvature.

Figure 3.13: Convex surface configuration.

The concave-convex surface combines both inward and outward curvature in a

continuous profile.

The concave-convex-concave surface has concave regions enclosing a central convex

section, creating a more dynamic interaction profile.

The convex-concave-convex surface is the reverse, with convex outer sections sur-

rounding a concave center.
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Figure 3.14: Concave-Convex composite surface.

Figure 3.15: ConcaveConvexConcave surface pattern.

3.7.2 Texture Set

Each surface was overlaid with 12 distinct textures selected to span a broad range of

material types, compliance, surface roughness, and pattern complexity. The textures

include materials such as brocade fabric, honeycomb fabric, silicone mesh, wood, and

several leather and polymer-based textures. This variety ensures meaningful signal

variation across textures under different contact conditions.

Figure 3.18 provides a visual example of how a single texture is adapted across

all six surface geometries in the dataset. This highlights the diversity of contact

Figure 3.16: ConvexConcaveConvex surface pattern.
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Figure 3.17: The 12 textures used in the experiments. a) brocade fabric; b) open
weave cotton; c) tight weave cotton; d) mesh cotton; e) honeycomb
fabric; f) embossed plastic; g) wood; h) silicone mesh; i) reptile-patterned
leather; j) ridged polymer; k) mesh leather; l) carpet wool.

conditions encountered, even when the surface material remains the same. Such

variation is essential for evaluating a model’s ability to generalize across changes in

surface shape while maintaining consistent texture recognition.

3.7.3 Dataset Variants

To assess different generalization scenarios, the dataset was organized into six exper-

imental variants.
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Figure 3.18: Illustration of a single example texture applied to all six surface geome-
tries: flat, concave, convex, concave–convex, concave–convex–concave,
and convex–concave–convex. This demonstrates how the same texture
interacts with different contact geometries during data collection.

The Different Textures, Different Shapes (DTDS) configuration pairs each surface

with a unique subset of textures. This setup simulates varied and unstructured real-

world environments. For example, the concave surface was used with textures T1,

T6, and T11; the convex surface with T2, T7, and T12; and so on.

The Different Textures, Same Shape (DTSS) variant applies all 12 textures to

a single surface shape. This isolates the influence of texture under fixed geometric

conditions.

The Same Textures, Different Shapes (STDS) variant uses a fixed subset of tex-

tures (T1 to T5) across all six surface types, enabling evaluation of shape generaliza-

tion with consistent tactile content.

The Flat All Textures (FAT) variant applies all textures on the flat surface. This

baseline configuration is particularly useful for comparing performance under minimal

geometric variation.

The Flat and Concave/Convex All Textures (FCCAT) variant involves the flat,
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Table 3.1: Surfaces and textures used in each dataset variant.

Dataset Variant Surfaces Used Textures Used
DTDS All six surfaces Different subset of 3 textures per

surface
DTSS One surface All 12 textures
STDS All six surfaces Same subset of 5 textures
FAT Flat surface All 12 textures
FCCAT Flat, concave, convex All 12 textures
MS All six surfaces All 12 textures

concave, and convex surfaces each with all 12 textures. This provides an intermediate

level of shape complexity.

The Mixed Scenarios (MS) variant aggregates all surface and texture combinations

to create a comprehensive and challenging testbed that reflects realistic variability.

A summary of the surfaces and textures used in each dataset variant is provided

in Table 3.1. This tabular view clarifies the design of each configuration and will be

referenced in the results chapter.
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Chapter 4

Results and Discussion

This chapter presents and analyzes the experimental results obtained from the five

deep learning models described in Chapter 3. The evaluation is conducted on the

tactile dataset using five-fold cross-validation, and performance is measured using

classification accuracy, along with additional metrics and visualizations where rele-

vant.

4.1 Evaluation Protocol

All model evaluations are based on five-fold cross-validation. For each model archi-

tecture and window size, the dataset is divided into five folds of equal size. In each

iteration, one fold is used for testing, and the remaining four folds are used for train-

ing and validation. The process is repeated five times so that each fold serves as the

test set once.

This procedure is applied consistently across all five model architectures and across

the three temporal window sizes (128, 256, 512). For each combination, the average

classification accuracy across the five folds is reported.

To ensure comparability, the same fold divisions are used across all models. The
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same five-fold protocol is also applied when evaluating the voting-based ensemble

systems. In this case, three independently trained models (one per window size)

produce predictions, which are combined via soft voting as described in Section 3.6.

In subsequent sections, we present and compare results for single models, voting-

based ensembles, and different surface types (flat vs. uneven), and we analyze confu-

sion matrices to better understand model behavior.

4.2 Single Model Performance

To evaluate the classification capability of each model, we trained all five architectures

described in Chapter 3 on six datasets, each corresponding to a different surface

type. For each dataset-model combination, three different temporal window sizes

(128, 256, and 512) were used, resulting in a total of 90 trained models. Every model

was evaluated using five-fold cross-validation, and a confusion matrix was generated

based on the predictions across all folds.

Each confusion matrix visualizes the distribution of predicted versus true texture

labels, offering insight into common misclassifications, class separability, and overall

performance.

In the subsections below, we present and analyze the results for each dataset

individually. For every dataset, we show the confusion matrices of all five model

architectures across three window sizes.
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4.3 Single Model Performance Evaluation

This section presents the performance of all five model architectures across six datasets.

Each model was trained and evaluated using 5-fold cross-validation and three differ-

ent temporal window sizes: 128, 256, and 512. The evaluation is visualized using

confusion matrices, which show classification accuracy and error distribution across

the 12 texture classes.

We begin with the first dataset configuration: Different Textures, Different Shapes.

4.3.1 Results on Dataset: Different Textures, Different Shapes

This configuration evaluates each model’s ability to distinguish textures when both

the shape and texture vary across samples. The presence of geometric complexity

makes this dataset one of the most challenging cases.

1D CNN The 1D CNN model performs moderately across window sizes, with no-

ticeable improvement as the temporal window increases. At window size 128, several

classes are misclassified due to insufficient temporal context. At 256 and especially at

512, some of these confusions reduce, indicating the importance of longer sequences

for capturing distinctive features.

BiLSTM The BiLSTM model shows improved accuracy compared to 1D CNN,

particularly at 256 and 512 window sizes. The recurrent structure helps model the

sequence better, reducing confusion in several texture groups. However, performance

is still affected by surface variation, and some minor misclassifications persist.
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Figure 4.1: Confusion matrix for 1D CNN on Different Textures, Different Shapes
with window size 128.
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Figure 4.2: Confusion matrix for 1D CNN on Different Textures, Different Shapes
with window size 256.
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Figure 4.3: Confusion matrix for 1D CNN on Different Textures, Different Shapes
with window size 512.
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Figure 4.4: Confusion matrix for BiLSTM on Different Textures, Different Shapes
with window size 128.
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Figure 4.5: Confusion matrix for BiLSTM on Different Textures, Different Shapes
with window size 256.
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Figure 4.6: Confusion matrix for BiLSTM on Different Textures, Different Shapes
with window size 512.
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Hybrid CNN-BiLSTM Combining convolutional feature extraction with tempo-

ral modeling leads to stronger results. The hybrid model consistently outperforms

both individual baselines. It leverages both local spatial features and sequential

context, especially evident at window size 512, where several misclassifications are

resolved.

Self-Attention-Based The self-attention-based model shows promising performance,

particularly at window size 512. Attention mechanisms appear to better capture long-

range dependencies across the time-series input. While the model still faces challenges

at short windows like 128, its high resolution at larger sizes demonstrates its capacity

to encode global tactile context.

Hybrid CNN + Self-Attention This model achieves the best performance on this

dataset. Across all window sizes, it maintains high classification accuracy and low

confusion. The synergy between convolutional and attention-based layers allows the

model to robustly extract texture-relevant information even under shape variability.

In this dataset, models that combine both spatial and temporal processing capabil-

ities—especially those using attention—outperform simpler baselines. Larger window

sizes (particularly 512) consistently lead to better results across all architectures.

4.3.2 Other Dataset Results

In addition to the ”Different Textures, Different Shapes” configuration, the same eval-

uation process was conducted on five other dataset variants: Different Textures, Same

Shape; Same Textures, Different Shapes; Flat All Textures; Flat and Concave/Convex

All Textures; and Mixed Scenarios.
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Figure 4.7: Confusion matrix for Hybrid CNN-BiLSTM on Different Textures, Dif-
ferent Shapes with window size 128.
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Figure 4.8: Confusion matrix for Hybrid CNN-BiLSTM on Different Textures, Dif-
ferent Shapes with window size 256.
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Figure 4.9: Confusion matrix for Hybrid CNN-BiLSTM on Different Textures, Dif-
ferent Shapes with window size 512.
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Figure 4.10: Confusion matrix for Self-Attention-Based model on Different Textures,
Different Shapes with window size 128.
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Figure 4.11: Confusion matrix for Self-Attention-Based model on Different Textures,
Different Shapes with window size 256.
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Figure 4.12: Confusion matrix for Self-Attention-Based model on Different Textures,
Different Shapes with window size 512.
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Figure 4.13: Confusion matrix for Hybrid CNN + Self-Attention on Different Tex-
tures, Different Shapes with window size 128.
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Figure 4.14: Confusion matrix for Hybrid CNN + Self-Attention on Different Tex-
tures, Different Shapes with window size 256.
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Figure 4.15: Confusion matrix for Hybrid CNN + Self-Attention on Different Tex-
tures, Different Shapes with window size 512.
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Each configuration was designed to isolate specific challenges in tactile classifi-

cation, such as shape invariance, texture consistency, or combined variability. All

five model architectures—1D CNN, BiLSTM, Hybrid CNN-BiLSTM, Self-Attention-

Based, and Hybrid CNN + Self-Attention—were evaluated across window sizes of

128, 256, and 512 using 5-fold cross-validation.

The confusion matrices for all 90 model runs (six datasets, five models, three

window sizes) are included in this chapter and follow the same layout used for the

initial dataset. The results demonstrate consistent performance trends: hybrid and

attention-based models generally outperform the simpler baselines, and longer tem-

poral windows lead to higher classification accuracy.

Across all evaluations, the Mixed Scenarios dataset posed the greatest challenge

to the models, likely due to its higher variability in both geometry and texture. In

contrast, the Flat All Textures configuration was the easiest, highlighting the role of

geometric complexity in tactile texture recognition tasks.

4.3.3 Best Model Summary

To summarize the strongest performers across datasets, Table 4.1 lists the best model

configuration for each dataset variant based on validation accuracy. In all six cases,

the Hybrid CNN + Self-Attention architecture with a window size of 512 achieved

the highest performance. This consistent result supports the idea that combining

convolutional feature extraction with attention-based temporal modeling provides a

robust and generalizable approach to tactile texture classification, particularly when

longer temporal sequences are available.

The accuracies range between 94.0% and 95.8%, with the highest result observed
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on the Flat All Textures dataset and the lowest on the Mixed Scenarios dataset.

This reinforces the observation that geometric variability in surface shape presents a

substantial challenge for tactile learning systems.

Table 4.1: Best Model Performance Across Datasets (Validation Accuracy)

Dataset Best Model Accuracy (%)

Different Textures, Same
Shape

Hybrid CNN + Self-Attention
(512)

97.8

Flat All Textures Hybrid CNN + Self-Attention
(512)

99.2

Concave/Convex All Tex-
tures

Hybrid CNN + Self-Attention
(512)

95.2

Mixed Scenarios Hybrid CNN + Self-Attention
(512)

94.0

4.3.4 Voting-Based Ensemble Results

To enhance robustness and performance, a soft voting-based ensemble was introduced

by combining the outputs of three models trained on different temporal window sizes

(128, 256, and 512). As shown in the corresponding confusion matrices, the voting

system consistently outperforms the best-performing individual model (Hybrid CNN

+ Self-Attention with window size 512) across all datasets.

The voting mechanism effectively reduces misclassifications by leveraging comple-

mentary temporal information captured at different scales. In several texture classes

that were frequently confused in the single-model runs—especially in datasets with

high shape variability such as Mixed Scenarios and Flat and Concave/Convex All

Textures—the ensemble approach improves the class-wise recall and yields cleaner

confusion matrices with fewer off-diagonal elements.

Furthermore, voting introduces a stabilizing effect: rather than relying on the
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predictions of a single window size, it aggregates the confidence of all three, which

helps mitigate the cases where one model might overfit to specific texture patterns or

exhibit sensitivity to surface deformations.

This performance gain confirms the value of multi-scale temporal modeling for

tactile texture classification and highlights ensemble learning as a powerful strategy

in situations where individual models show slightly different strengths across input

conditions.
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Figure 4.16: Confusion matrix for the voting-based ensemble model on the Same
Textures- Different Shapes dataset. The ensemble combines predictions
from models trained on window sizes 128, 256, and 512.
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Chapter 5

Conclusion

Tactile perception plays a crucial role in enabling robots to interact meaningfully

with their environments, particularly in scenarios involving object recognition and

manipulation through contact. While significant progress has been made in classify-

ing textures on flat surfaces, tactile understanding over uneven and complex geome-

tries remains a challenging and underexplored problem. This thesis addressed this

gap by developing a novel dataset, designing a classification pipeline, and proposing

an ensemble-based approach to improve robustness and accuracy in tactile texture

recognition under such conditions.

The primary contributions of this work are fourfold. First, a new dataset was col-

lected using a compliant barometric–IMU tactile sensor mounted on a robotic arm,

covering five types of uneven surfaces and one flat baseline, each textured with twelve

distinct materials. Second, a structured point collection strategy was implemented

based on reconstructed surface normals, allowing systematic contact interactions be-

tween the end effector and target surface. Third, we investigated multiple deep learn-

ing architectures, including self-attention-based models, to classify temporal tactile
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signals acquired from the sensor. Finally, we proposed a voting-based ensemble sys-

tem that aggregates predictions across three temporal window sizes (128, 256, 512),

leading to consistent accuracy gains over any single-window approach and outper-

forming the baseline models from prior work.

Experimental results demonstrate that the proposed voting ensemble is not only

more accurate but also more robust to variations in contact geometry and temporal

signal distortion caused by the surface curvature. Compared to previous studies

focused on flat surfaces, this work establishes a pipeline that generalizes better to

real-world uneven conditions—closer to what robots may encounter in unstructured

environments.

Despite these achievements, several limitations remain. The dataset, although

diverse, is still constrained in terms of surface variety and interaction patterns. In

addition, the models were trained offline, and real-time inference or continuous learn-

ing were not explored. These aspects leave room for further research.

Future directions include expanding the dataset to cover more complex surfaces

and contact conditions, integrating additional sensing modalities such as tactile im-

ages or force-torque data, and developing models capable of online learning and real-

time deployment. Another promising avenue is the incorporation of contact dynamics

and proprioceptive feedback into the classification pipeline to further improve perfor-

mance under more naturalistic interaction scenarios.

In summary, this thesis contributes both a valuable dataset and an effective clas-

sification method for tactile texture recognition on uneven surfaces, taking a step

closer to enabling intelligent tactile perception in real-world robotic systems.
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