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Abstract

Deep learning has emerged as a prominent approach in traditional machine learning
paradigms due to its superior capability for deep-level feature extraction. This, in turn,
demonstrates that the efficiency, depth, and richness of feature extraction have a profound
impact on model performance. Features serve as key characteristics for distinguishing
objects and represent dimensionality-reduced representations of data. This paper proposes
two effective models applied to EEG emotion recognition and NL2SQL tasks, respectively,
which enhance model performance through optimized feature extraction.

In previous models for processing EEG signals, researchers have typically focused
on only partial features of EEG while rarely integrating these features comprehensively.
To address this limitation, we designed a multi-feature extraction method that improves
performance by extracting and combining frequency, spatial, temporal, and global features
from EEG signals. We conducted extensive experiments on the SEED and DEAP datasets,
generating confusion matrices, t-SNE distributions, and brain region activation heatmaps
to demonstrate the effectiveness of our model. Additionally, our method incorporates an
adaptive GCN that eliminates the requirement for pre-defined adjacency matrices.

For the NL2SQL task, unlike traditional models that train from scratch, we designed a
framework based on fine-tuning pre-trained BERT and conducted experiments on the Wik-
iSQL, Academic, and Spider datasets. The results demonstrate that our model achieves
superior performance compared to traditional models in clause prediction and exhibits
stronger generalization capabilities, indicating that the prior knowledge embedded in pre-
trained models also benefits the model’s feature extraction capacity.
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1.1 Overview

Improving model performance remains a central concern in machine learning research,
with feature extraction being a critical factor. Features serve as the key information for
distinguishing between entities and must possess discriminability, expressiveness, and ro-
bustness. Discriminability enables accurate classification across different categories, ex-
pressiveness enhances the model’s ability to capture high-level semantic representations,
and robustness ensures stability and effectiveness under noise, perturbations, or domain
shifts. Unlike traditional machine learning methods that rely heavily on handcrafted fea-
tures, deep learning enables models to automatically learn feature representations from
data, thus reducing the constraints of human prior knowledge. Despite its capacity to
learn complex and hierarchical features, deep learning still faces challenges in effectively
extracting and utilizing these representations. To address this, a wide range of architec-
tures and mechanisms have been proposed. Recurrent Neural Networks (RNNs) model
sequential dependencies[37]; Long Short-Term Memory (LSTM) networks introduce gat-
ing mechanisms to capture long-range dependencies[47]; Convolutional Neural Networks
(CNNs) extract spatial features through local receptive fields[62]; and Transformers lever-
age self-attention to capture global contextual relationships[107]. More recently, large
language models (LLMs), such as ChatGPT[20], have demonstrated impressive gener-
alization and understanding capabilities, highlighting the vast potential of deep learning
in feature extraction. This thesis investigates the impact of feature extraction on deep
learning model performance, focusing on EEG-based emotion recognition and NL2SQL
tasks, and explores performance improvements through multi-granular feature extraction
and pretraining-finetuning strategies.

1.2 Background

1.2.1 Machine Learning and Deep Learning

Artificial Intelligence (AI) is a long-standing dream of humanity. It refers to enabling ma-
chines to possess human-like intelligence, such as the ability to learn and solve problems
autonomously without specific programming. Humans have conducted extensive explo-
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ration in the field of AI. As early as the 1950s, Alan Turing proposed the concept of the
Turing Test to determine whether a machine possesses intelligence. In the Turing Test,
a human evaluator is asked to engage in a conversation and determine whether the other
party is a machine or a human. If the evaluator cannot tell the difference, the machine is
considered to have passed the Turing Test and is deemed to possess human-level intelli-
gence. The Turing Test is widely regarded as a foundational concept of artificial intelli-
gence. Machine learning is an important path toward achieving artificial intelligence. In
order to enable machines to learn, a great deal of research has been conducted, leading
to remarkable achievements. Deep learning, a subfield of machine learning, significantly
increases the depth of neural networks. The relationship among AI, machine learning, and
deep learning is shown in Fig. 1.1.

Deep Learning

Machine Learning

Artificial Intelligence

Figure 1.1: Relationship of AI, machine learning and deep learning

Machine learning encompasses various categories, including supervised learning, un-
supervised learning, semi-supervised learning, and reinforcement learning. Supervised
learning involves training models on datasets composed of input data and correspond-
ing labels, enabling tasks such as classification, prediction, and regression. Unsupervised
learning, on the other hand, utilizes unlabeled data to perform tasks such as clustering, di-
mensionality reduction, and association analysis. Semi-supervised learning combines both
supervised and unsupervised learning. Reinforcement learning optimizes training strate-
gies by interacting with an environment and learning from the feedback received through
rewards or penalties.

As the major branch of supervised learning and the core of deep learning, neural net-
works trace their origins to the perceptron, which was first introduced by Rosenblatt in
the 1950s. He established the foundational rules and proved the convergence of the al-
gorithm [92]. In 1970, Linnainmaa, in his master’s thesis, introduced a reverse mode of
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automatic differentiation, which is now regarded as a precursor to the backpropagation
algorithm [74]. Subsequently, through the continued efforts of researchers such as Wer-
bos, Rumelhart, Hinton, and Williams, the multi-layer perceptron (MLP) was proposed,
and the backpropagation algorithm was successfully applied to MLPs, enabling effective
training [52]. The advancement of MLPs laid the essential groundwork for modern neural
networks.

With the significant advancement in computational power—particularly the emergence
of GPU computing—deep learning, a subfield of machine learning, has gradually become
one of the most prominent research directions. Deep neural networks typically consist of a
large number of layers, where lower layers are capable of extracting low-level and simple
features from data, while higher layers can capture more complex and abstract represen-
tations. This hierarchical feature extraction endows deep learning with a representational
power that far exceeds that of traditional machine learning approaches [121].

Over the past three decades, deep learning has experienced remarkable development,
leading to the emergence of numerous influential models such as Recurrent Neural Net-
works (RNNs) [37], Convolutional Neural Networks (CNNs) [62], Long Short-Term Mem-
ory Networks (LSTMs) [47], Deep Belief Networks (DBNs) [46], Residual Neural Net-
works (ResNets) [45], Autoencoders [56], and the Transformer [107]. Deep learning has
also been extensively applied to a wide range of tasks, including Natural Language Pro-
cessing (NLP), Computer Vision (CV), autonomous driving, emotion recognition, social
relationship modeling, image generation, and text generation [98]. This thesis is likewise
grounded in deep learning as the primary methodological framework.

1.2.2 EEG Emotion Recognition

Understanding human emotions is a fundamental topic in psychological science, and ex-
tensive research has been conducted in this area [16, 29, 89]. A wide range of data sources
contain information relevant to human emotions, such as body movements, facial expres-
sions, text, speech, and gaze patterns. Although these signals are often intuitive and acces-
sible, they are typically indirect and frequently contaminated by noise unrelated to emo-
tional states. In contrast, biosignals generated by human physiological activities offer a
more reliable means of emotion recognition [101]. These biosignals include electrocar-
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diogram (ECG), heart rate (HR), blood pressure, respiration rate, electromyogram (EMG),
and electroencephalogram (EEG). When neurons in the brain are active, the transmission of
neurotransmitters induces postsynaptic potentials, which in turn generate electromagnetic
waves. These weak electrical signals, once they pass through the skull, can be captured
and recorded as EEG signals.

Electroencephalography (EEG) signals were first introduced into the field of neuro-
science by Geoffrey et al. [3]. Due to their high temporal and spatial resolution, ease of
analysis, low acquisition complexity, and the relatively low cost of electrophysiological
recording systems, EEG signals have been widely adopted and applied in various domains
[78]. With the rise of deep learning, several researchers have explored the integration of
deep learning techniques with EEG data, yielding promising results [25].

EEG signals can be categorized into five frequency bands: delta (β: 1–4Hz), theta
(θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 14–30 Hz), and gamma (γ: 30–80 Hz). The
analysis of features derived from these frequency bands provides a fundamental reference
for EEG-based research [68]. In addition to this, researchers have also quantified emotional
states by extracting features such as the power spectral density (PSD) of each band [9],
functional connectivity between different brain regions (e.g., coherence and phase-locking
value) [123], and hemispheric asymmetry (e.g., frontal alpha asymmetry, which has been
associated with emotional tendencies) [23].

1.2.3 Natural Language to SQL

With the widespread adoption of computers and the Internet, digitalization has perme-
ated all sectors of society, leading to an increasing demand for data storage. Against this
backdrop, database technology emerged and evolved. Among various types of databases,
relational databases have become the predominant paradigm, and their management is con-
ducted through a specialized language known as Structured Query Language (SQL).

However, the widespread adoption of database applications has created a disconnect
with the reality that the majority of users are not trained in computer science. The learn-
ing curve associated with Structured Query Language (SQL) presents a barrier to effective
database access. This challenge has motivated research into techniques that translate nat-
ural language (NL) into SQL queries—a technology commonly referred to as the Natural
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Language Interface to Databases (NLIDB).

The construction of Natural Language Interfaces to Databases (NLIDB), specifically
the task of translating natural language to SQL (NL2SQL), has traditionally relied on
users providing well-structured and semantically clear natural language queries. Moreover,
users were often required to have a considerable understanding of the underlying database
schema [4]. However, with the continuous advancements of deep learning in the field
of natural language processing (NLP) [84], researchers have increasingly turned to deep
neural networks for NL2SQL implementation. A growing body of work based on deep
learning has demonstrated that deep neural networks possess superior capabilities in cap-
turing deep semantic representations and exhibit enhanced generalization performance[33,
111, 118, 128]. These models can effectively handle complex, ambiguous natural language
queries without the need for extensive manual feature engineering.

The implementation approaches for NL2SQL can be broadly categorized into four main
types:

1. Rule-Based Methods: These approaches rely on manually crafted rules and typi-
cally require strict syntactic constraints. Traditional implementations of NL2SQL
primarily fall into this category [53, 54, 65].

2. Neural Network-Based Methods: These methods employ neural networks to trans-
late natural language questions into SQL queries, commonly using a sequence-to-
sequence framework.

3. Pretrained Language Model-Based Methods: Following the introduction of the trans-
former architecture [107], pretrained models such as BERT [30] and T5 [91] have
emerged and achieved state-of-the-art performance in NL2SQL tasks [67, 96]. This
thesis adopts an approach based on this category.

4. Large Language Model (LLM)-Based Methods: The advent of models like ChatGPT
[1] has brought transformative changes to the field of natural language processing.
Consequently, LLM-based methods for NL2SQL have seen a significant rise in pop-
ularity.
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1.3 Related Work

1.3.1 Activation Function

Activation functions play a crucial role in neural network training, as they introduce es-
sential nonlinearity to neural networks. Without activation functions, multi-layer neural
networks would be equivalent to single-layer neural networks, since the composition of
multiple linear transformations is equivalent to a single linear transformation [26]. The
following provides an introduction to several commonly used activation functions.

ReLU

The Rectified Linear Unit (ReLU) is the most commonly used activation function due to
its computational simplicity, straightforward differentiation, and ability to reduce compu-
tational costs. ReLU is defined as:

ReLU(x) = max(0, x)

where x represents the input value. ReLU essentially converts all negative values to
zero. However, a limitation arises when neurons consistently produce negative outputs,
causing the activation function to always output zero, which prevents gradient updates
from occurring.

ReLU has a variant called Leaky ReLU, defined as:

LeakyReLU(x) = max(αx, x)

where x is the input value and α is typically a small positive constant. Compared
to ReLU, Leaky ReLU preserves negative values, thereby addressing the gradient update
problem.
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Sigmoid

The sigmoid function is commonly used in binary classification problems and is defined as
follows:

sigmoid(x) = σ(x) =
1

1 + e−x

where x represents the input value. Notably, the sigmoid function is frequently denoted
as σ. In contrast to simple linear functions such as ReLU, the sigmoid function maps
outputs to the range (0, 1), effectively transforming numerical values into probability dis-
tributions, while maintaining smooth numerical transitions. However, it suffers from the
vanishing gradient problem when the absolute values of neural network outputs become
excessively large. Additionally, the function is centered around 1

2 rather than 0, which may
result in all inputs to the subsequent layer being either positive or negative, potentially
leading to bias shift during training.

Softmax

Softmax shares certain similarities with sigmoid but is commonly used for multi-class
classification problems. It is defined as follows:

softmax(x) =
exi

n∑
j=1

ex j

, where xi ∈ x

Here,x = [x1, x2, . . . , xn] represents a vector composed of multiple input values. In
contrast to sigmoid, which accepts only a single input value, softmax can map the multi-
dimensional numerical outputs of neurons into a probability distribution that sums to 1,
thereby representing the probability of belonging to each class. However, similar to sig-
moid, softmax also suffers from gradient vanishing and bias shift problems, and involves
more complex computations.
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Tanh

The hyperbolic tangent function, denoted as tanh, is defined as follows:

tanh(x) =
ex − e−x

ex + e−x

where x represents the input value. Similar to sigmoid and softmax functions, tanh
employs exponential functions with the natural constant e as the base to achieve numeri-
cal smoothing, mapping values to the range (-1, 1) and thereby accomplishing numerical
normalization. In contrast to these functions, tanh possesses the distinctive characteris-
tic of being zero-centered, which mitigates the bias shift problem. Consequently, tanh
demonstrates superior convergence performance and enhanced training stability in numer-
ous deep learning applications, establishing itself as a widely adopted activation function
in contemporary machine learning frameworks[36].

1.3.2 Pooling

Pooling layers are a ubiquitous and fundamental component in deep neural networks [41].
By downsampling the output from the preceding layer, they substantially compress the
information from the previous layer and reduce the spatial dimensions of feature maps,
thereby significantly reducing computational costs and markedly alleviating overfitting.

There are three basic types of pooling layers: average pooling, max pooling, and global
pooling. Each will be introduced in the following sections.

(a) (b)

(c)

Figure 1.2: Average Pooling, Max Pooling and Global Pooling
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Average Pooling

As illustrated in Fig. 1.2(a), the pooling operation employs a rectangular window named
a filter that is applied to the input matrix. The values within the window are computed to
derive their collective average. The window slides across the input matrix with a specified
stride, and an average calculation is performed within the window after each sliding step.
Upon completing the traversal of the entire input matrix through this sliding process, the
computed averages form an output matrix as the result. In Fig. 1.2(a), the input matrix has
dimensions of 4 × 4, the filter size is 2 × 2, the stride is (2, 2), and the resulting output
matrix dimensions are 2 × 2.

Max Pooling

As illustrated in Fig. 1.2(b), max pooling and average pooling are highly similar operations,
with the key distinction being that average pooling computes the mean value within the
filter window, whereas max pooling computes the maximum value.

Global Pooling

As illustrated in Fig. 1.2(c), global pooling can be categorized into two types: global av-
erage pooling and global max pooling. Global average pooling computes the mean value
of all elements across the entire input matrix, whereas global max pooling determines the
maximum value among all elements in the entire input matrix.

In addition to the three most common and fundamental pooling methods mentioned
above, there exist several other approaches, including Spatial Pyramid Pooling [61], Stochas-
tic Pooling [120], Region of Interest Pooling [42], Mixed Pooling [117], and Lp Pooling
[97], among others.

1.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent one of the most fundamental and im-
portant classes of networks in deep learning. CNNs were first introduced by LeCun et al.
and applied to image recognition[62], subsequently achieving remarkable breakthroughs



12

in both computer vision and natural language processing domains, garnering widespread
attention from the academic community. In general, CNNs are neural networks for pro-
cessing data that has a known grid-like topology. A typical layer of a convolutional network
consists of three stages (also referred as three layers): convolution stage (Affine transform),
detector stage (nonlinearity) and pooling stage.

Figure 1.3: Single Convolutional kernel on a single layer to produce a feature map

The most basic convolution operation in a CNN is illustrated in Fig. 1.3, where a
grayscale image with a single channel measuring 5 × 5 pixels is processed using a sin-
gle 3 × 3 convolutional kernel. The convolutional kernel serves as a movable data window
containing trainable weight parameters, with the region of the image covered by the kernel
window referred to as the receptive field. During the convolution process, the image is
padded with zeros around its perimeter to facilitate boundary processing, after which the
convolutional kernel performs element-wise multiplication between the image data within
its window and its corresponding weights, followed by summation to produce a single
scalar output. The kernel then traverses the image systematically from the upper-left cor-
ner to the lower-right corner with a fixed stride, repeating the multiplication and summation
operation at each position. The stride represents the spatial displacement of the convolu-
tional kernel in both dimensions during each movement iteration and is typically fixed and
predetermined as a hyperparameter by the practitioner during model design. The collection
of scalar outputs generated at each kernel position forms a two-dimensional matrix known
as a feature map, which in the example depicted in Figure X maintains dimensions of 5×5.

However, real-world scenarios are often more complex than the aforementioned exam-
ple. This is because the majority of images used in machine learning are color images,
which typically contain three primary color channels: RGB (Red, Green, Blue). More-
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5×5

5×5

5×5×2

Figure 1.4: Multiple Convolutional kernels on a multi-channel image

over, to extract features as comprehensively as possible, multiple convolutional kernels are
often employed rather than just one. As illustrated in Fig. 1.4, the padded image data has
dimensions of 7 × 7 × 3, with two convolutional kernels being utilized. Each convolu-
tional kernel contains a number of trainable weight matrices equal to the number of image
channels—three in the case of Figure Y. Each weight matrix performs convolution with its
corresponding channel in the image, and the results from these weight matrix convolutions
are subsequently summed to produce the output feature map. The feature maps gener-
ated by all convolutional kernels are then stacked together to form a multi-channel output
tensor, which serves as the output of the convolutional layer.

1.3.4 Graph Convolutional Network

Graph data represents an important data structure. However, the spatial distribution of
graph data is non-Euclidean, meaning that the local structure around each node may vary,
thus lacking translational invariance in the data structure. This renders traditional CNN,
which operate on regular grids, no longer applicable. Consequently, graph convolutional
networks (GCNs), which are capable of performing convolution operations on graphs, have
become a primary research objective for researchers in this field.

Graph Neural Networks (GNNs) serve as the prototype for Graph Convolutional Net-
works (GCNs), originally proposed by Gori et al. [44] and subsequently developed by
Scarselli [94]. Their research introduced the fundamental concept of Neighborhood Ag-
gregation in GNNs. A node in the graph aggregates information from its neighboring
nodes and the edges connecting to these neighbors to update its own state. For a node v in
a graph, where u represents its neighboring nodes and e denotes the edge connecting v and
u, the state update of v and the corresponding output are governed by the following two
equations:
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sv = f (xv, xe, xu, su)

ov = g(sv, xv)

Here, f is the local state transition function, and g is the local output function. s·
represents the features of node v, node u, and edge e, while s· represents the states of nodes
v and u. Through the stacking of multiple such neighborhood aggregation layers, GNNs
enable information exchange among all nodes, thereby extracting deep-level features of
the entire graph.

GCN successfully inherits the fundamental concepts of GNNs[57]. Given a graph with
adjacency matrix A, degree matrix D, n nodes, and feature vector x for a particular node,
GCN applies the following convolution formula at that node:

Θ ∗ x = UΘ(Λ)UT x

Θ(Λ) =
K−1∑
k=0

θkTk(L̃)

L̃ =
2
λmaxL

− In

L = D − A

Where ∗ represents the convolution operation in the graph, and Θ denotes the convolu-
tion kernel. L is the Laplacian matrix of the graph. L̃ is the normalized Laplacian matrix,
that is, the normalized L. λ represents the eigenvalues of the Laplacian matrix. In denotes
the n-dimensional identity matrix. Tk represents the k-th order Chebyshev polynomial, θk is
the coefficient value of Tk, and K is the approximation order of the Chebyshev polynomial
selected by the practitioner. U is the matrix composed of eigenvectors of the normalized
Laplacian matrix L̃. Λ is the diagonal matrix formed by the eigenvalues of the graph Lapla-
cian matrix L. Through such convolution operations, GCNs can effectively achieve local
information aggregation and propagation over graph structures, thereby capturing com-
plex associative relationships between nodes in the graph and enabling deep-level feature
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extraction from graph data.

1.3.5 Transformer

The Transformer framework was initially proposed by the Google Brain team to address
the long-term dependency problem in sequences [107], and subsequently demonstrated
powerful performance in natural language processing [27, 116] and computer vision [34],
exerting tremendous impact on the AI field and garnering widespread attention from re-
searchers. The transformer framework proposed in the paper is illustrated in Fig. 1.5. The
Transformer primarily consists of an encoder and a decoder, both of which contain multi-
ple layers. The encoder takes the input text after word embedding, while the decoder takes
the target text after word embedding. Within each layer of both the encoder and decoder,
there exists a multi-head attention module, a feed-forward neural network, as well as nor-
malization layers and residual connections. However, the decoder contains an additional
masked multi-head self-attention module compared to the encoder, which serves to mask
the unpredicted portions of the target text, thereby preventing data leakage.

Add & Norm

Feed Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Feed Forward

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Input 
Embedding

Output 
Embedding

Positional
Encoding

Positional
Encoding

N×
Encoder

N×
Decoder

Figure 1.5: Overall Structure of Transformer

The core functionality of the Transformer lies in its multi-head self-attention mecha-
nism. For each attention head, the input tensor is multiplied by trainable weight matrices
WQ, WK , and WV to obtain the query (Q), key (K), and value (V) matrices. Subsequently,
the Q, K, and V matrices undergo computation according to the following formula:
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SelfAttention(Q,K,V) = softmax(
QKT

√
d

)V

where d represents the embedding dimension, which has a value of 512 in the original
paper.

In multi-head attention, the matrices WQ, WK , and WV with shape d×d are typically
partitioned into multiple submatrices of shape dhead size according to the number of
heads. As illustrated in Fig. 1.6, Wq is a submatrix of WQ with shape dhead size, where
head size = d

head number . Given an input word vector x from the text matrix with length d, the
output is computed as x′ = xWq. Since Wq is a submatrix of WQ, it remains trainable. The
same operations apply to WK and WV . In the paper, the headnumber is set to 8, resulting in
head size = dq = dk = dv = dmodel =

512
8 = 64.

embedding
size

heads

𝑊𝑞𝑥

ℎ𝑒𝑎𝑑𝑖
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output
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Figure 1.6: Process of Multi-Head Attention

At the conclusion of multi-head attention, the outputs from each head are concatenated
and multiplied by a trainable weight matrix WO to fuse the multi-head information and
generate the final result, as illustrated in the following formula:

MultiHead(X) = Concat(head1, head2, . . . , headh)WO

where X represents the text matrix after embedding, with dimensions of sequence length×
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d, h denotes the number of heads, and headi {i = 1, 2, . . . , h} represents the output of each
individual head, with the self-attention computation of each head on X having been de-
scribed in the preceding section.

1.3.6 BERT

Context understanding is crucial in NLP and can even be considered one of the core tasks
in natural language processing. In the past, researchers commonly employed Recurrent
Neural Networks (RNNs) and LSTM models. However, these models suffer from limi-
tations such as difficulty in capturing long-term dependencies and inability to effectively
leverage the parallel processing advantages of modern hardware, thereby constraining both
model expressiveness and computational efficiency. The introduction of the Transformer
architecture has significantly improved these issues[107]. The self-attention mechanism,
combined with the encoder-decoder framework, enables the model to globally attend to
complex relationships between words throughout the entire text, achieving deep modeling
capabilities for long-range contexts. Due to the typically large scale of Transformer mod-
els, they are commonly employed for transfer learning, specifically through pre-training
and fine-tuning paradigms. The model first undergoes large-scale training on a general
foundational task (pre-training), followed by small-scale, task-specific retraining (fine-
tuning). This methodology liberates researchers from the isolated learning paradigm of
training from scratch, dramatically improving training efficiency while enhancing model
generalization and accuracy[93].

The advent of Pre-trained Transformers has ushered in a new era for Large Language
Models (LLMs). This has given rise to a series of prominent models, including Transformer-
XL [27], Generative Pre-Training (GPT) [90], Cross-Lingual Language Model (XLM)
[60], and XLNet[116], among others, with Bidirectional Encoder Representations from
Transformers (BERT) being one of the notable representatives in this family.

BERT was proposed by Devlin et al. [30], with multiple layers of Transformer encoders
connected in series as its main structure, as shown in Fig. 1.7. The training of BERT
consists of two stages: the first stage is pre-training based on large-scale corpora, and the
second stage is fine-tuning based on specific tasks.

The pre-training inspiration for BERT is derived from the Cloze task [103], employing
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Figure 1.7: Main Structure of BERT

a masked language model (MLM) approach that randomly masks a portion of tokens in
the input, enabling BERT to learn to predict the masked tokens through the remaining text.
Unlike the left-to-right sequential prediction of Transformers, BERT can perform token
prediction from arbitrary directions and positions, thus BERT is referred to as a bidirec-
tional Transformer. Due to this unsupervised training design, the construction of training
dataset of BERT can eliminate substantial manual annotation costs, thereby making pre-
training on large-scale corpora feasible, such as BookCorpus [130]. During the fine-tuning
phase following pre-training completion, practitioners can incorporate additional output
layers to conduct supervised training on the BERT model, leveraging the extensive foun-
dational knowledge acquired through pre-training to efficiently accomplish specific NLP
tasks.

BERT comprises two model variants: BERT-base and BERT-large. BERT-base consists
of 12 Transformer encoder layers with a hidden size (token embedding dimension) of 768,
12 multi-head self-attention heads, and a total of 110 million parameters. BERT-large, in
contrast, employs 24 encoder layers, a hidden size of 1024, 16 attention heads, and contains
a total of 340 million parameters.
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1.4 Research Objective

Deep learning, a branch of machine learning, has experienced remarkably rapid develop-
ment over the past two decades. This advancement can be attributed not only to the rapid
enhancement of computational power in chips (particularly the widespread adoption of
GPU-based training), which has made deeper and larger deep learning models feasible,
but more importantly to the advantages that deep learning possesses over traditional ma-
chine learning approaches that are difficult to match. Specifically, deep learning can extract
complex, deep-level features from data, thereby acquiring powerful representational capa-
bilities and achieving remarkable results across various tasks [25, 34, 84]. The emergence
of large-scale models represents yet another manifestation of deep learning’s potential.
Through deeper network architectures, larger parameter scales, and training on massive
datasets, these models have not only further enhanced their capacity to model complex
features but have also demonstrated unprecedented generalizability and versatility [20, 45].
All of these developments indicate that the performance of deep learning models primarily
depends on their feature extraction capabilities.

Building upon the aforementioned perspectives, our research aims to enhance model
performance through more diverse and efficient feature extraction strategies. For EEG-
based emotion recognition tasks, many existing EEG models focus primarily on extracting
temporal and spatial features [6, 8, 25]. In our study, we attempt to extract as compre-
hensive a range of features as possible to augment the model’s representational capacity.
For Natural Language to SQL (NL2SQL) tasks, in contrast to training from scratch, our
research endeavors to leverage the extensive knowledge embedded in pre-trained models
to improve the model’s text comprehension capabilities.

1.5 Contribution

In this thesis, we propose an optimization method based on multi-feature extraction to pro-
cess multi-channel EEG signal data in two-dimensional shape format for emotion classifi-
cation. We conducted extensive experiments on the SEED and DEAP datasets, obtaining
diverse results with comprehensive analysis. Furthermore, based on the concept of pre-
training, we applied the BERT model to the NL2SQL task and proposed a framework that
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combines pre-trained BERT with fixed template generation.

1. We propose an EEG emotion recognition method based on multi-feature extraction
and neural network with adaptive mechanisms (MENNA). The model achieves su-
perior performance compared to mainstream approaches on both SEED and DEAP
datasets, attaining 95.87% accuracy on SEED dataset and 94.42% (valence dimen-
sion) and 93.67% (arousal dimension) on DEAP dataset.

2. For MENNA, we conducted extensive experiments on the SEED and DEAP datasets,
generating t-SNE visualizations and brain activation heatmap topographies. The ex-
perimental results demonstrate that different EEG features contribute variably to the
model performance, with temporal and spatial features exhibiting the most substan-
tial contributions. Moreover, distinct patterns of brain region activation were ob-
served across different emotional states in participants.

3. In the proposed MENNA, the graph convolution in the spatial feature extraction
module employs a trainable adjacency matrix, enabling the model to autonomously
learn the spatial distribution of channels. This approach eliminates the require-
ment for practitioners to provide prior knowledge of electrode spatial configurations,
thereby reducing training prerequisites and enhancing the model’s adaptability.

4. We propose a fine-tuning framework based on pre-trained BERT with fixed templates
(BERT with template, BERTwT) for translating natural language questions to SQL
queries. We conducted experiments on the WikiSQL, Academic, and Spider datasets,
comparing against the well-known SQLNet and Seq2SQL models. Our approach
achieved superior performance in both accuracy and generalization capability.

5. Our research demonstrates the significant importance of feature extraction for model
performance from two perspectives: multi-feature fusion and pre-training fine-tuning.
This provides valuable inspiration for further researches.

1.6 Organization of Thesis

This section was all about introduction and rest of the thesis proceeds as follows,
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Chapter 2 introduces our proposed EEG Emotion Recognition method Based on Multi-
Feature Extraction and Neural Network with Adaptive (MENNA) approach, and presents
the experimental results on the SEED and DEAP datasets.

Chapter 3 introduces our proposed fine-tuning framework based on pre-trained BERT
with fixed templates (BERT with template, BERTwT), and presents the experimental re-
sults on the WikiSQL, Academic, and Spider datasets.

Chapter 4 is the last chapter in this thesis, which concludes the whole work done in this
thesis and further explains the future prospects of our studies.



Chapter 2

EEG Emotion Recognition Based on
Multi-Feature Extraction and Neural
Network with Adaptive Encoder

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Related Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Channel-wise Attention . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Renormalization of GCNs . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Self-Attention Mechanism . . . . . . . . . . . . . . . . . . . . . 28

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Overview of the framework . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Frequency Feature Extraction . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Spatial Feature Extraction . . . . . . . . . . . . . . . . . . . . . 33

2.3.5 Temporal Feature Extraction . . . . . . . . . . . . . . . . . . . . 35

22



23

2.3.6 Global Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Introduction of Datasets . . . . . . . . . . . . . . . . . . . . . . 38

SEED Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

DEAP Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Experiment for SEED Dataset . . . . . . . . . . . . . . . . . . . 41

2.4.4 Experiment for DEAP Dataset . . . . . . . . . . . . . . . . . . . 45

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



24

2.1 Introduction

Emotion, as a basic and unique element in human psychological activity, plays a central
role in various mental and behavioral processes such as cognition, decision making, and
social interaction. Therefore, emotion analysis can help researchers better understand the
subjective experiences and response mechanisms of individuals in different contexts, pro-
viding more data, materials, and theoretical support for many fields such as psychology
[48], medicine [8] and human-computer interaction [19]. There are many ways to de-
tect human emotions, which can be categorized into physiological and non-physiological
signals at the signal level. Non-physiological signals include facial expressions, speech
features, body movements, eye movements, and many more, while physiological signals
include respiration rate, electrocardiogram (ECG), electromyogram (EMG) and electroen-
cephalogram (EEG) [6].

Postsynaptic potentials of cortical neurons, particularly synchronous firing of pyrami-
dal cells, generate weak electrical currents that pass through brain tissue, skull, and scalp,
resulting in detectable voltage fluctuations on the scalp surface with amplitudes ranging
from approximately 10 − 100 µV [82, 83]. Electroencephalography (EEG) records these
voltage signals using non-invasive electrode devices, making it a relatively convenient and
low-cost method for acquiring physiological signals. As such, it has been widely employed
in various emotion analysis tasks [25].

EEG signals contain a lot of feature information that can be extracted for classifica-
tion or prediction tasks. In the classical EEG signal analysis workflow, researchers man-
ually perform feature extraction to generate training data, followed by training traditional
machine learning algorithms on the dataset. Therefore, the accuracy of results in such
frameworks mainly depend on the design of the feature extraction method. The majority
of research has focused on frequency domain features (FDFs) and time- frequency domain
features (TFDFs) [85]. For example, in frequency based feature extraction, Li et al. pro-
posed a frequency band searching method and found that the gamma band is particularly
effective for emotion classification [68]. Al-Fahoum et al. computed the Power Spectral
Density (PSD) across the four main frequency bands using the Fast Fourier Transforma-
tion (FFT) [5]. Duan et al. adopted Differential Entropy (DE) as a feature, demonstrating
its better performance compared to traditional features [35]. In time-frequency feature ex-
traction, Albaqami et al. used Wavelet Packet Decomposition (WPD) techniques to divide
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multi-channel EEG recordings into different frequency sub-bands. From these sub-bands,
6 statistical features were extracted and aggregated, followed by classification using vari-
ous frameworks of the Gradient Boosting Decision Tree (GBDT) [7].

With the advancement of computational power, the emergence and development of
deep learning have demonstrated its superior capability in extracting and representing
higher-level features [25, 49, 51]. Consequently, an increasing number of researchers have
begun to explore various forms of end-to-end deep learning models for decoding EEG sig-
nals. Schirrmeister et al. investigated a range of deep ConvNet architectures, showing
that convolutional neural networks (CNNs) can achieve superior performance compared to
traditional machine learning methods without the need for handcrafted feature extraction,
thereby highlighting the potential of deep learning models [95]. Yang et al. constructed
3D EEG data cubes and integrated differential entropy (DE) features across multiple fre-
quency bands using continuous convolutional networks, achieving an accuracy of 90.24%
for arousal labels and 89.45% for valence labels [113]. In addition to CNNs, memory-
based deep learning models such as recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks have been employed to capture time-dependent information in
EEG signals, leading to further performance improvements [100, 104]. Furthermore, due
to the spatial configuration of electrodes on the human scalp during EEG signal acquisi-
tion—reflecting the functional specialization of different brain regions [73]—the extraction
of spatial features has also gained increasing attention. For instance, graph convolutional
networks (GCNs) have been introduced to capture spatial location information, yielding
promising results across multiple datasets [39, 102].

Traditional machine learning methods heavily rely on handcrafted features, which in-
evitably incorporate prior human knowledge and biases, thereby imposing limitations on
current scientific research [88]. In contrast, approaches that do not impose prior assump-
tions—allowing models to autonomously update their parameters and learn informative
patterns directly from the data—are more reasonable. Moreover, EEG signals contain a
wide range of diverse information, each contributing to the final predictive accuracy to
varying degrees. However, many existing deep learning models tend to focus on learning
only a subset of this information [25]. Therefore, leveraging as many relevant features
as possible is particularly crucial for further enhancing the representational capacity and
overall performance of the model.
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Our contributions can be summarized as follows:

1. We propose an adaptive deep learning model, MENNA, which extracts multi-level
features using multiple sub-models. Specifically, MENNA employs channel-wise at-
tention to extract frequency features, a graph convolutional network (GCN) to extract
spatial features, a convolutional neural network (CNN) to extract temporal features,
and a self-attention mechanism to capture global features. The extracted features are
ultimately fed into a multi-layer perceptron (MLP) for classification and prediction.

2. We conduct extensive experiments on the SEED and DEAP datasets. MENNA
achieves a mean accuracy of 95.87% on the SEED dataset. On the DEAP dataset, it
obtains a mean accuracy of 94.42% for the valence labels and 93.67% for the arousal
labels.

3. To evaluate the contribution of each feature modality, we perform ablation studies
by individually removing the frequency, spatial, temporal, and global modules from
MENNA, resulting in four variant models. We compare their performance with the
full MENNA model to analyze the individual impact of each feature component.

4. We visualize the experimental results to better understand the model behavior. We
utilize the t-distributed stochastic neighbor embedding (t-SNE) algorithm to illus-
trate the distribution of encoded features. Furthermore, we apply gradient-weighted
class activation mapping (Grad-CAM) to generate topographic maps, highlighting
the model’s attention across different brain regions under various emotional states.

The rest of this chapter is organized as follows: Section 2.2 reviews related work.
Section 2.3 introduces the proposed method, including the overall architecture of MENNA
and the details of each module. Section 2.4 presents the experimental results. Section 2.5
discusses our findings, and Section 2.6 concludes this chapter.
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2.2 Related Techniques

2.2.1 Channel-wise Attention

The attention mechanism plays a crucial role in deep learning [18]. After its significance
was recognized [13], continued exploration and expansion of attention mechanisms re-
vealed their applicability beyond traditional contexts [79]. In particular, within computer
vision tasks, attention can be effectively applied to the channel-wise information of images,
a mechanism known as channel-wise attention. Chen et al. [22] highlighted the limitations
of prior models that focused solely on spatial properties. By introducing channel-wise at-
tention—assigning weights to each layer in a multi-layer feature map—and using a CNN
as the backbone, their proposed SCA-CNN achieved state-of-the-art performance. This
idea was further advanced by Hu et al. [50], who introduced the Squeeze-and-Excitation
(SE) block. This block utilizes global average pooling to compress all data within each
channel into a single representative value, thereby capturing global channel information.
Their work achieved excellent results and has had a broad impact on the field.

Given that different frequency bands of the human brain are associated with distinct
functional roles [59], and these bands collectively contribute to the formation of the com-
plete EEG signal, it is reasonable to regard the various frequency bands in EEG data as
analogous to different channels in an image. Accordingly, channel-wise attention can be
applied to effectively extract frequency-specific information.

2.2.2 Renormalization of GCNs

Graphs are a fundamental concept in mathematics and are widely applied in computer
science. Representing real-world data in the form of graphs often proves to be highly
efficient [12, 69, 129]. As a relatively complex data structure, one common approach to
constructing graphs is through graph embedding [15]. However, graph embeddings often
struggle to capture the deeper and more intricate patterns underlying the graph structure.
Moreover, when dealing with large-scale datasets, graphs tend to contain an enormous
number of nodes and edges, which poses significant computational challenges.

CNN has demonstrated exceptional capabilities in processing grid-structured data within
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the field of deep learning [40, 43], which has inspired researchers to explore the integration
of graph processing with CNN architectures. However, graphs are inherently irregular data
structures, making the definition and implementation of convolution operations on graphs
a significant challenge. To address this issue, Thomas N. Kipf and Max Welling intro-
duced the concept of Graph Convolution in their seminal work [57]. They approximated
spectral graph convolution using Chebyshev polynomials, thereby simplifying complex
spectral operations into linear transformations involving the adjacency matrix. Each con-
volutional layer aggregates information only from a node’s immediate (i.e., first-order)
neighbors. By stacking K such layers, the model becomes capable of capturing features
from neighbors up to K hops away. Additionally, they proposed a renormalization trick
to alleviate the issues of vanishing and exploding gradients, enabling the construction of
deeper Graph Convolutional Networks (GCNs) and enhancing model scalability. Their ap-
proach achieved significantly better performance compared to traditional methods, along
with substantial improvements in computational efficiency.

Considering that EEG data is typically collected using caps that adhere to international
standards, where electrodes are arranged in a spatially structured and consistent manner,
and given that different regions of the human brain are functionally specialized [10], GCN
can be effectively applied to EEG signals to capture and model spatial dependencies.

2.2.3 Self-Attention Mechanism

The self-attention mechanism was first introduced in the seminal 2017 paper alongside the
Transformer architecture [107]. This work has had a profound impact, with the Trans-
former being widely adopted across tasks in natural language processing (NLP) [27, 30,
116] and computer vision (CV) [34, 77], achieving state-of-the-art performance. More-
over, most contemporary large language models (LLMs) are built upon the Transformer
framework [90].

At the heart of the Transformer lies the self-attention mechanism, which simultane-
ously considers all tokens in a sequence [49]. After applying sinusoidal positional encod-
ing, the encoded token matrix is projected into key and query matrices, enabling key-value
querying to compute an attention score matrix. This matrix captures the pairwise relation-
ships between each token and all others through attention weights. Meanwhile, the encoded
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token matrix is also projected into a value matrix, which is then multiplied by the normal-
ized attention scores. This yields a new token representation, which is a weighted sum of
the original token and all other tokens in the sequence. As the self-attention mechanism
computes interactions among all tokens, it is inherently capable of modeling long-range
dependencies.

To leverage the benefits of self-attention, several studies have adopted Transformer-
based architectures as their backbone [63, 99], demonstrating promising results. Inspired
by these works, we incorporate the self-attention mechanism into our model to explore
more distant and implicit dependencies among EEG samples.

2.3 Method

2.3.1 Overview of the framework

The performance of a model is often significantly influenced by the efficiency with which it
utilizes various features present in the data. In this paper, we propose a deep learning model
for multi-feature extraction from EEG signals, named MENNA. This model leverages
channel, spatial, temporal, and self-attention mechanisms to extract multi-dimensional in-
formation from EEG signals for the purpose of emotion classification. The end-to-end
workflow of the proposed model is illustrated in Fig. 2.1. First, raw EEG signals are seg-
mented into multiple slices, which are then divided into training and testing sets. Subse-
quently, the data undergo standard normalization preprocessing. After preprocessing, the
data are fed into the model, which sequentially extracts frequency, spatial, temporal, and
global features. Finally, a multilayer perceptron is employed to output the classification re-
sults, and model parameters are updated via backpropagation. To evaluate the performance
of the proposed model, classification accuracy on the test dataset is used as the evaluation
metric.

2.3.2 Preprocessing

The raw signal data can generally be represented as Xraw ∈ Rch×sp, where ch represents the
number of electrodes used to receive EEG signals, and sp represents the total number of
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Figure 2.1: Overview of the framework of our proposed method

sampling points in a single trial.

We first apply basic band-pass filtering to the signal, specifically performing standard
score normalization, as shown below:

X̄out =
Xraw − µ

σ

where X̄out denotes the normalized signal data, µ is the mean of the signal values, and σ is
the standard deviation. This normalization helps to remove noise at various frequencies.

Next, we further filter the signal into five frequency bands based on existing research
[14]: delta, theta, alpha, beta, and gamma. These correspond to different mental activity
states, including sleep, deep relaxation, relaxation, active, and highly active states, respec-
tively. The filtered signal data are represented as:

[Xδ, Xθ, Xα, Xβ, Xγ]
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where Xb ∈ Rch×sp
b , b ∈ δ, θ, α, β, γ.

Subsequently, we segment the raw data using a sliding window approach, and the seg-
mented data can be represented as:

[XT
1 , X

T
2 , . . . , X

T
n ], XT

i ∈ Rch×t

where XT
i represents a slice of data, and t denotes the number of sampling points within a

slice. Based on previous research and for training efficiency, the time window in this study
is set to 1 second.

2.3.3 Frequency Feature Extraction

After preprocessing, EEG signals are typically decomposed into multiple frequency bands
(five bands) each corresponding to distinct brain wave ranges. Since the distribution of
brain wave activity varies with different emotional states, capturing features across these
frequency bands is crucial for effective emotion recognition. To enhance model accuracy,
it is important for the model to not only extract features from each band but also to learn
how to adaptively focus on the most informative frequency bands by allocating appropriate
attention.

To address this, we introduce a Channel Attention (CA) mechanism, as illustrated in Fig
2.2. Originally proposed by Hu et al. [50], Channel Attention enhances the representational
capacity of convolutional neural networks (CNNs) by enabling the network to adaptively
weigh the importance of different channels. In our context, this mechanism allows the
model to focus more effectively on the most informative frequency bands during feature
extraction.

The original Channel Attention mechanism creatively incorporated RGB color channel
information into the training process of convolutional neural networks, enhancing feature
representation in image data. This approach gained popularity and was widely adopted
across various computer vision (CV) tasks. Similarly, just as a color image consists of
three distinct color channels (red, green, and blue), EEG signals can be viewed as being
composed of five frequency bands as illustrated below:



32

FC FC
squeeze

Global
AvgPool

LeakyReLU Softmax

𝑊1, 𝑏1 𝑊2, 𝑏2

M
a

tM
u

l

frequency feature map learned feature map

Original Signal Data
Encoded Data

Figure 2.2: Frequency Feature Extraction

XT = [XT
δ , XT

θ , XT
α , XT

β , XT
γ ]

Here, XT ∈ Rchannel×time×band represents a single slice of EEG signal and XT
i ∈ Rchannel×time (i =

δ, θ, α, β, γ) represents data under each frequency band.

First, we pass each frequency band of XT through a global average pool and a sigmoid
function to obtain the normalized squeezed information N.

N = σ(GlobalAveragePool(XT ))

= [σ(
1

channel × time

∑
channel

∑
time

XT
δ ), ...,

σ(
1

channel × time

∑
channel

∑
time

XT
γ )]

Then, to capture band-wise dependencies, we employ a Fully-Connected (FC) layer to
N and use residual connections to obtain the weight parameter vector s for different bands:

s = ChannelAttention(XT )

= softmax(W2 · LeakyReLU(W1 · N + b1) + b2) + N

where W1 and W2 are the weights of the first and second fully connected layers, respec-
tively, and b1 and b2 are their corresponding biases. The activation functions used are
LeakyReLU and softmax. Finally, by multiplying the original data with the weight vector
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s, we obtain:
XT

s = WeightS cale(XT , s) = s · XT

where XT
s represents the signal data with attention weights.

In the entire process described above, global average pooling ensures that all infor-
mation within a band is considered and compressed. The sigmoid function normalizes
the pooled values to facilitate subsequent processing in the fully-connected layers. The
LeakyReLU activation function in the first fully-connected layer enhances the non-linear
representation capability of the band feature extraction module, while the softmax activa-
tion function in the second fully-connected layer ensures that the sum of attention weights
across layers is 1. Additionally, residual connections are introduced to further enhance the
representation capability of the model.

2.3.4 Spatial Feature Extraction

EEG signals contain a huge amount of spatial information. This is because when an elec-
trode cap is placed on the scalp to collect EEG signals, multiple electrodes, that is, channels
in EEG signals, form a three-dimensional spatial relationship. According to the Brodmann
area system, different regions of the cerebral cortex have distinct functions. For instance,
BA17-BA19 areas are responsible for processing visual information, while BA41-BA42
areas are involved in auditory processing. Human emotions are a complex integration of
multiple brain functions. Therefore, fully extracting and utilizing this spatial information
is crucial for understanding human emotions.

To represent the spatial relationships between channels, an EEG signal sample can be
viewed as a graph. Nodes in the graph represent individual channels, where the node val-
ues correspond to the voltage recorded by each channel at a given moment, while edges
represent the spatial relationships between the nodes. Since different channels correspond
to electrodes that measure electrical activity in different brain regions, the edges also in-
directly reflect the relationships between brain regions. In graph data, edges are typically
represented by an adjacency matrix A, which in this study is defined as A ∈ Rchannel×channel.

Graph Convolutional Networks (GCNs) have demonstrated strong performance in han-
dling graph-structured data, and some EEG-based emotion recognition studies have adopted
this approach. In some of these studies, researchers often predefine an adjacency matrix
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Figure 2.3: Spatial Feature Extraction

before model training based on prior knowledge, such as the three-dimensional coordi-
nates of electrodes, the importance of electrode regions, and symmetrical relationships
between electrodes. However, this approach may introduce limitations from prior knowl-
edge, potentially reducing the model’s representation capability. Therefore, we introduce
an adaptation mechanism to construct an adaptive graph convolution layer, allowing the
model to learn the adjacency matrix autonomously and avoid the aforementioned issues.

Compared to the original definition of graph convolution, to reduce computation cost,
the convolution process of a polynomial-approximation-based GCN can be expressed as

X =
K−1∑
k=0

θkTk(L̃)X

Tn(x) = 2xTn−1(x) − Tn−2(x)

T1(x) = x, T0(x) = 1

In the equations above, T (·) is the Chebyshev polynomial, K is the polynomial order,
and L̃ is the normalized Laplacian matrix, which can be given by:

L̃ =
2
λmax

L − IN

L = D − A
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Here, L is the Laplacian matrix, A is the adjacency matrix, and D is the degree matrix.
The parameter λ represents the eigenvalues of the Laplacian matrix, and θ are the learnable
parameters.

However, the above method requires using a predefined adjacency matrix A, whereas
this module employs an adaptive learning approach. Therefore, in this module, we set A

as a trainable weight. Since D can be derived from A, and L can be computed from D and
A, we treat the entire L̃ as a learnable weight, denoted as Ã. The original equation then
simplifies to:

X =
K−1∑
k=0

θkTk(L̃)X =
K−1∑
k=0

θkTk(Ã)X

In general, to improve training efficiency, we set θk = 1 and K = 3. The equation can
then be further simplified as:

X =
2∑

k=0

Tk(Ã)X

= (T0(Ã) + T1(Ã) + T2(Ã))X

= (1 + Ã + 2Ã2 − 1)X

= 2Ã2X + ÃX

As shown in Fig 2.3, after passing the input data X ∈ Rchannel×time×band through the
adaptive GCN, its spatial features are extracted and represented, producing an output X ∈

Rchannel×time×band.

2.3.5 Temporal Feature Extraction

Convolutional Neural Networks (CNNs) are frequently used in recognition and forecasting
tasks, demonstrating their ability to represent temporal features. For the task of EEG emo-
tion recognition, inspired by the approaches in related research, we adopt CNNs directly
to extract temporal information.

As depicted in Fig 2.4, we apply convolution operations along the temporal dimension
of the signal data using kernels with a size of (Kt, 1) and a stride of (1, 1).
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Figure 2.4: Temporal Feature Extraction

To reduce the computational complexity of subsequent modules and compress the in-
formation, we apply Average Pooling along both the spatial and temporal dimensions. The
total kernel size is set to (KP1,KP2), with a step of (1, 1), transforming the data into patches.

The above process can be represented as:

X = C ∗ X

X = AvgPooling(X)

where C denotes the convolution operation applied to the input X, and AvgPooling repre-
sents the average pooling operation.

2.3.6 Global Feature Extraction

The self-attention mechanism proposed in Transformer possesses a global attention mech-
anism, which enables it to effectively extract global features. In the previous three feature
extraction modules, we focused only on local information in the data while neglecting long-
range dependencies. Therefore, this module utilizes multi-head self-attention (MHSA) to
further learn from the temporally and spatially encoded and compressed data.

As illustrated in Fig 2.5, this module consists of KS A layers of Transformer Encoder,
where each layer contains three learnable weight matrices: WQ, WK , and WV .

First, each patch in the compressed data X obtained from the previous steps is treated
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Figure 2.5: Global Feature Extraction

as a token. Then, the matrices WQ, WK and WV are multiplied with the input data X to
obtain the query (Q), key (K), and value (V) matrices.

Next, Q is multiplied by K, resulting in the correlation between each token and all other
tokens. Finally, the product is scaled, multiplied with V , and passed through a softmax
function to obtain the attention score matrix. This process is called self-attention (S A())
and is defined as follows:

S A(X) = S o f tmax(
QKT

√
dk

)V

= S o f tmax(
(WQX)(WKX)T

√
dk

)(WV X)

= S o f tmax(
WQXXT WT

K
√

dk
)(WV X)

where dk represents the dimension of the embedding for each token, which in this case
corresponds to the length of each patch along the band dimension.

This module also adopts the multi-head attention mechanism (MH), which is defined
as follows:

MH(Q,K,V) = Concat(S AH0, ..., S AHh)
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where
S AHi = S A(Qi,Ki,Vi),

i = 0, 1, . . . , h

Through multi-head attention, this module can represent data from multiple perspec-
tives, thereby further enhancing the performance of the model.

The model employs a fully connected layer to classify the encoded data. The classified
data is then passed through a softmax function, producing an N-dimensional vector as
output. This output represents the probability distribution of the model’s predictions. The
process is formulated as follows:

Ypred = S o f tmax(Wclassi f icationX + Bclassi f ication)

Finally, the predicted result Ypred is compared with the true label Ylabel using the cross-
entropy loss function:

L = −
∑

i

Pi(Ylabel) log(PiYpred)

where Pi(·) represents the probability distribution of either the predicted or true label. The
cross-entropy loss quantifies the discrepancy between the model’s predictions and the ac-
tual labels.

2.4 Experiments

2.4.1 Introduction of Datasets

SEED Dataset

The SEED dataset was created by the Brain-like Computing & Machine Intelligence (BCMI)
laboratory at Shanghai Jiao Tong University [35, 124]. In the experiment for dataset con-
struction, 15 carefully selected movie clips, each approximately 4 minutes long and with
strong emotional appeal, were presented to 15 subjects for viewing.

For each subject, three experimental sessions were conducted, with each session oc-
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curring on different days. Within a session, the subject was required to watch all 15 movie
clips. The process of a subject watching a complete movie clip is referred to as a “trial.”
Before each trial, there was a 5-second hint period and after the movie clip ended, the
subject was given 45 seconds for self-assessment and 15 seconds for rest. After watching
the movie, the subject was required to immediately fill out a questionnaire to provide feed-
back. Additionally, two movie clips with the same emotional category were never shown
consecutively. This design ensures that the emotional states elicited by each movie clip re-
main as independent as possible, minimizing interference between them. The experimental
procedure is illustrated in the figure.

At the hardware level, the experiment employed an ESI NeuroScan System consisting
of 62 AgCl electrodes, following the international 10-20 system, with an EEG signal sam-
pling rate of 1000 Hz. The electrode impedance was maintained below 5 kΩ, and the scalp
electrode distribution is shown in the figure.

The final EEG dataset consists of three folders: “EEG raw”, ”Preprocessed EEG” and
“ExtractedFeatures”. The “EEG raw” folder contains EEG signals collected directly from
the electrodes in .cnt format, with a sampling rate of 1000 Hz. The “Preprocessed EEG”
folder contains EEG signal data for 15 subjects, with each subject having 3 sessions, re-
sulting in a total of 45 sessions. The signals were downsampled to 200 Hz. The data
for each session is stored as a .mat file, which can be opened and read using MATLAB.
Each .mat file contains 15 matrices, with each matrix representing the data from a sin-
gle trial. The shape of each matrix is 62 × Ds, where 62 corresponds to the number of
electrodes (i.e., 62 channels), and Ds represents the total number of data samples obtained
through downsampling for a given trial. The “ExtractedFeatures” folder contains signal
data with extracted features, including differential entropy (DE) features, power spectral
density (PSD) features, differential asymmetry (DASM) features, and rational asymmetry
(RASM) features.

DEAP Dataset

The DEAP dataset, formally known as the Database for Emotion Analysis using Physio-
logical Signals, was developed by a research team at Queen Mary University of London
in collaboration with researchers from several other universities [58]. DEAP is a multi-
modal dataset designed for the analysis of human emotions. The researchers recruited 32
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healthy adult participants, each of whom was asked to watch 40 one-minute-long music
video clips. These clips served as emotional stimuli intended to elicit affective responses.
To mitigate potential order effects, the presentation sequence of the videos was randomized
for each participant.

In the experiment, EEG signals were recorded using the Biosemi ActiveTwo system,
employing 32 active Ag/AgCl electrodes positioned according to the international 10-20
system standard, with a sampling rate of 512 Hz. At the beginning of the session, a 2-
minute baseline recording was collected from each participant, which is typically used as a
reference for subsequent data processing or baseline correction. Following this, each par-
ticipant completed 40 trials. Each trial consisted of a 2-second informing phase, a 5-second
baseline recording, a 1-minute video stimulus presentation, and a self-assessment phase.
During the self-assessment phase, participants rated their emotional responses along four
dimensions: arousal, valence, dominance, and liking. These ratings were discrete and
provided on a 9-point scale, where higher values indicated greater intensity of the corre-
sponding emotional dimension. Valence reflects the degree of pleasure, arousal represents
the level of physiological activation, dominance refers to the sense of control, and liking
indicates the degree of fondness or preference [80, 81].

After the experiment, the original data were downsampled to 128 Hz and band-pass fil-
tered within the range of 4.0 to 45.0 Hz. Each trial contains a total of 63 seconds of signal
data: the first 3 seconds correspond to the baseline recording, while the remaining 60 sec-
onds capture the physiological responses during the music video presentation. The DEAP
dataset is provided in two formats: a .dat format compatible with Python and a .mat format
for use with MATLAB. Additional information, such as the sources of the video stimuli
and participants’ demographic details, is stored in the accompanying metadata folder.

2.4.2 Experiment Settings

To verify the effectiveness of the proposed method, extensive experiments were conducted
on two benchmark datasets, namely SEED and DEAP. To demonstrate the validity of
the multi-feature extraction strategy and evaluate the contribution of each feature type to
the overall model performance, we further designed four ablation models, each remov-
ing one specific feature extraction module from MENNA. As shown in the table, these
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variants are: MENNAwF (MENNA without the frequency feature), which removes the
frequency feature extraction module and retains only the GCN, CNN, and self-attention
components; MENNAwS (MENNA without the spatial feature), which excludes the spa-
tial feature extraction module and keeps channel attention, CNN, and self-attention; MEN-
NAwT (MENNA without the temporal feature), which eliminates the temporal feature ex-
traction module while preserving channel attention, GCN, and self-attention; and MEN-
NAwG (MENNA without the global feature), which removes the global feature extraction
module and retains channel attention, GCN, and CNN. In addition, we compared the pro-
posed MENNA model against several traditional machine learning methods and recent
deep learning approaches to further highlight its superior performance.

Our method is implemented with PyTorch framework in Python 3.12.0 on a NVIDIA
GeForce RTX 4090 GPU, with 24 GB video memory (VRAM). We apply the Adam opti-
mizer to train the model with the learning rate being set to 0.0001 and dropout rate being
set to 0.5. The adjacency matrix in the spatial feature extraction module is randomly ini-
tialized. The convolutional kernel size in the temporal feature extraction module is 1 × 30
for the SEED dataset and 1×20 for the DEAP dataset, and the kernel number is set to 16.
The pooling is an average 2D pooling, with the size of 1×75 and stride of 1 × 15. In the
global feature extraction module, the number of heads h is set to 8.

2.4.3 Experiment for SEED Dataset

For the SEED dataset, we adopt a five-fold cross-validation strategy. Specifically, the
signal data is divided into five equally sized subsets. In each fold, one subset is used as
the test set, while the remaining four subsets will serve as the training set. This process
is repeated five times, with each subset used exactly once as the test set. The final test
accuracy is reported as the average accuracy across all five folds. In addition, we perform
subject-independent cross-session evaluation. In this setting, experiments are conducted
separately for each individual. The signal data from multiple sessions of the same subject
are shuffled and evenly split into training and testing sets, ensuring that the evaluation
remains subject-independent.

For the raw EEG signal data of a single trial, we apply a sliding window approach to
extract segments of 1-second duration along the trial, forming the training samples. The
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sliding window has a step size of 1 second. Given that the sampling rate of the SEED
dataset is 200 Hz, each resulting sample Xi ∈ R62×200 (i = 1, 2, . . . ,N), where N represents
the number of seconds in the recording of the trial.

We selected 15 different methods, including both traditional machine learning methods
and deep learning models: 1) Support Vector Machine (SVM) [28]; 2) Extreme Learning
Machine (ELM) [28]; 3) Logistic Regression (LR) [28]; 4) Deep Belief Networks (DBNs)
[124]; 5) Adaptive Subspace Feature Matching (ASFM) [21]; 6) Dynamical Convolu-
tional Neural Networks (DGCNN) [102]; 7) Bimodal Deep AutoEncoder (BDAE) [75]; 8)
Graph Regularized Extreme Learning Machine (GELM) [125]; 9) Hierarchical Network
with Subnetwork Nodes (HNSN) [115]; 10) Group Sparse Canonical Correlation Analysis
(GSCCA) [126]; 11) Spatial–Temporal Recurrent Neural Network (STRNN) [122]; 12) Bi-
hemispheres Domain Adversarial Neural Network (BiDANN) [71]; 13) Bi-Hemispheric
Discrepancy Model (Bi-HDM) [70]; 14) Spatial and Temporal Neural Network models
with Regional to Global hierarchy [72]; 15) Regularized Graph Neural Networks (RGNN)
[127].

Table 2.1 presents the average accuracy of our proposed method on the three-class
emotion classification task, including positive, neutral, and negative categories. The re-
sults demonstrate that each feature extraction module contributes to the overall accuracy
of the model. Specifically, frequency-domain features contributed 4.44%, spatial features
contributed 6.97%, temporal features contributed 11.34%, and global features contributed
3.07%. The complete model achieved an average accuracy of 95.87%. Compared with
deep learning models, it outperformed the second-best model, RGNN, by 1.63%. Fur-
thermore, it achieved significantly better performance than traditional machine learning
methods.

Fig. 2.6 presents the confusion matrices illustrating the experimental results of MENNA
and four additional models on the SEED dataset. Within these matrices, deeper shades of
blue in the grid cells indicate higher values, while lighter shades indicate lower values.
Analysis of these confusion matrices shows the following observations:

• Overall, MENNA demonstrates balanced performance across the three emotion cate-
gories. This suggests that multi-level feature extraction enables the model to achieve
stable recognition performance for different emotion categories, indicating the model
has robust feature integration capability.
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Methods Mean
SVM [28] 89.99
ELM [28] 82.92
LR [28] 82.70
DBNs [124] 86.08
ASFM [21] 83.51
DGCNN [102] 90.40
BDAE [75] 91.01
GELM [125] 91.07
HNSN [115] 91.51
GSCCA [126] 83.72
STRNN [122] 89.50
BiDANN [71] 83.28
Bi-HDM [70] 93.12
R2G-STNN [72] 93.38
RGNN [127] 94.24
MENNAwF 91.43
MENNAwS 88.90
MENNAwT 84.53
MENNAwG 92.80
OURS 95.87

Table 2.1: Mean Accuracy of Subject Dependent Cross Session Test on SEED dataset

• Specifically, MENNA exhibits its best performance for the positive emotion class,
while its performance for the negative class is the worst. This result is also observed
in the majority of the four additional models. The reason is likely to be that the
positive emotions have more distinctive characteristics, while the negative emotions
are more confusing.

• Notably, MENNAwS is the least effective in recognizing neutral emotions. This find-
ing indicates that spatial features play an important role in the accurate recognition
of neutral emotions.

Next, we visualize the results using the t-SNE algorithm to illustrate the feature distri-
bution of the data after processing by the model. In the visualization, grey represents the
positive emotional category, orange denotes neutral, and red denotes negative. As shown
in Fig. 2.7, after processing by the model, the features corresponding to different emotional
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Figure 2.6: The confusion matrix of our proposed method on SEED

categories shows clear separability. Among the models, MENNA, MENNAwG, and MEN-
NAwF demonstrate better performance, with features distributed farther apart, indicating
better recognition ability. However, the features from MENNAwS and MENNAwT are
relatively close to each other, suggesting weaker separability.

Finally, we employed the Gradient-weighted Class Activation Mapping (Grad-CAM)
algorithm to visualize the model’s representation of brain signals under different emotional
states. By projecting the electrode distribution topographically, we generated heatmaps in
which deeper red regions indicate higher gradient-weighted activations, while deeper blue
regions indicate lower activations. As shown in Fig. 2.8, the activation patterns across
different electrode positions vary depending on the emotional category. This suggests that
the model attends to different brain regions when recognizing different emotions, further
supporting the notion that distinct brain areas are functionally specialized for processing
different emotional states.
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Figure 2.7: The t-SNE feature distribution of our proposed method on SEED

2.4.4 Experiment for DEAP Dataset

To evaluate the model’s performance under different data shapes and label types, we con-
ducted experiments on the DEAP dataset. The labels in the dataset are categorized into
three dimensions: Valence, Arousal, and Dominance. Participants were asked to watch
40 one-minute music video clips intended to elicit emotional responses, after which they
rated their experiences on a discrete 9-point scale. In our experiments, we focused on the
Valence and Arousal dimensions. A subject-independent training strategy was adopted,
meaning that training was conducted separately for each individual. Furthermore, for each
subject, we employed a cross-validation approach to generate five train/test splits.

We chose 7 different methods, to compare with our proposed method: 1) Multilayer
Perceptron (MLP) [113]; 2) Support Vector Machine (SVM) [76]; 3) Multi-Column Con-
volutional Neural Network (Multi-column CNN) [112]; 4) Convolutional Neural Network
and Recurrent Neural Network (CNN-RNN) [114]; 5) Continuous Convolutional Neu-
ral Network (Conti-CNN) [113]; 6) Stack AutoEncoder with Long Short-Term Memory
(SAE-LSTM) [110]; 7) requency Band Correlation Convolutional Neural Network (FBC-
CNN) [86].

Table 2.2 presents the results of our experiments. The findings indicate that, for the Va-
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Figure 2.8: Topography of EEG signal from our proposed method on SEED

lence label, the frequency features contributed 2.6%, spatial features contributed 12.42%,
temporal features contributed 8.37%, and global features contributed 3.4%. For the Arousal
label, the contributions were 1.72% for frequency features, 13.52% for spatial features,
11.02% for temporal features, and 3.62% for global features. Compared to the second-best
performing model, the Multi-column CNN, our proposed method achieved an improve-
ment of 4.41% on the Valence label and 3.02% on the Arousal label.

We plotted the confusion matrices based on the experimental results. In Fig. 2.9 and
Fig. 2.10, the depth of the blue color in each grid cell represents the magnitude of the
corresponding value—darker shades indicate higher values. From these matrices, we can
observe that:

• In both valence and arousal labels, the model demonstrates comparable performance
across low and high emotional levels. However, the recognition accuracy for low-
level emotions is slightly higher than that for high-level emotions. This may be
attributed to the criterion used to distinguish between low and high levels: ratings
greater than 5 were classified as high, while ratings less than or equal to 5 were
classified as low. Given that the DEAP dataset employs a 9-point scale, the high-
level category encompasses only four points (6–9), whereas the low-level category
includes five points (1–5). The broader range of values in the low-level category may
increase the likelihood of the model recognizing low-level emotions.

• Our model’s performance on the valence label exhibited only a marginal improve-
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Methods Mean (Valence) Mean (Arousal)

MLP [113] 87.82 88.68
SVM [76] 88.65 89.07
Multi-column CNN [112] 90.01 90.65
CNN-RNN [114] 89.92 90.81
Conti-CNN [113] 89.45 90.24
SAE-LSTM [110] 81.10 74.38
FBCCNN [86] 90.26 88.90
MENNAwF 91.82 91.95
MENNAwS 82.00 80.15
MENNAwT 86.05 82.65
MENNAwG 91.02 90.05
OURS 94.42 93.67

Table 2.2: Mean Accuracy of Subject Dependent Cross Session Test on DEAP dataset

ment of 0.75% in mean accuracy compared to that on the arousal label. This indi-
cates that the model demonstrates generalizability and stability in cross-label emo-
tion recognition tasks.

• The models MENNAwS and MENNAwF exhibit the lowest mean accuracy, indicat-
ing that spatial and temporal features constitute the most critical information in EEG
signals. Moreover, the substantial discrepancy in accuracy between the low- and
high-level features within MENNAwS suggests that spatial features play a signifi-
cant role in reducing the variance of recognition outcomes and enhancing the overall
stability of emotion recognition performance.

In addition, we employed the t-SNE algorithm to visualize the data features processed
by MENNA. In Fig. 2.11 and Fig. 2.12, the red dots represent high-level emotional states,
while the gray dots indicate low-level emotional states. It can be observed that there re-
mains a certain degree of overlap between the feature distributions of MENNAwS and
MENNAwT, with red regions noticeably intruding into gray regions, and samples of the
same class appearing relatively sparse. In contrast, the feature representations of MENNA,
MENNAwF, and MENNAwG demonstrate better separation between classes. Data sam-
ples within the same class are more densely clustered, exhibiting enhanced connectivity
and compactness.
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Figure 2.9: The confusion matrix of our proposed method on valence label of DEAP

Based on the topographic maps generated using Grad-CAM, as shown in Fig. 2.13,
which illustrate the EEG signal activations at corresponding electrode locations, we ob-
serve that for both valence and arousal emotional dimensions, the heatmaps tend to ap-
pear predominantly blue under low emotional states, indicating lower levels of cortical
activation. In contrast, during high emotional states, the maps exhibit more intense and
widespread red regions, suggesting increased neural activity and broader engagement of
brain areas. Notably, heightened emotional activation is often associated with increased
activity in the prefrontal cortex—an area well recognized for its critical role in emotional
processing [31].

2.5 Discussion

Understanding human emotions is one of the fundamental tasks in psychological science.
To investigate brain activity, collecting and analyzing electroencephalogram (EEG) sig-
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Figure 2.10: The confusion matrix of our proposed method on arousal label of DEAP

nals has become a widely adopted approach [66]. Traditional machine learning methods
often struggle to extract high-level features and typically rely on hand-crafted feature en-
gineering, which may introduce biases and limitations stemming from the researchers’
prior knowledge. In recent years, the advent of deep learning has transformed this land-
scape. Deep learning models are capable of hierarchically integrating low-level features
into high-level representations and can automatically update parameters during training.
However, EEG signals are inherently rich in multi-dimensional information, while many
existing studies have focused on only a subset of this information[73, 95, 100, 104, 113].
In response to this, we propose MENNA, a method designed to fully exploit the multi-level
and multi-dimensional characteristics of EEG signals.

In our proposed method, we designed four distinct modules for feature extraction: the
frequency feature extraction module, spatial feature extraction module, temporal feature
extraction module, and global feature extraction module. The EEG signal data is sequen-
tially passed through these modules, which encode and extract relevant features at each
stage. The resulting representations are subsequently fed into a multilayer perceptron for
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Figure 2.11: The t-SNE feature distribution of our proposed method valence label of DEAP

classification and prediction. We conducted experiments on both the SEED and DEAP
datasets using 5-fold cross-validation. The experimental results demonstrate that the model
achieves stable performance, with the spatial and temporal modules contributing most sig-
nificantly to its effectiveness. Specifically, as shown in Figure X for the SEED dataset,
the model attends to different brain regions depending on the emotional category. In sum-
mary, the integration of multiple feature types greatly enhances the model’s performance
by capturing complementary aspects of EEG signals.

2.6 Conclusion

This chapter proposes a deep learning model for EEG-based emotion recognition that
leverages multi-feature extraction. The model integrates channel-wise attention, graph
convolutional networks (GCN), convolutional neural networks (CNN), and self-attention
mechanisms. It achieves a mean accuracy of 95.87% on the SEED dataset, and mean accu-
racies of 94.42% and 93.67% on the valence and arousal labels, respectively, of the DEAP
dataset. Overall, the proposed method demonstrates advantages in EEG-based emotion
recognition tasks.
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Figure 2.12: The t-SNE feature distribution of our proposed method on arousal label of
DEAP
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Figure 2.13: Topography of EEG signal from our proposed method on DEAP
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A Pre-trained BERT-based Fine-tuning
method for Natural Language to SQL
Query Translation
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3.1 Introduction

In today’s internet era, the exponential growth of data has made it a pressing issue to
quickly and accurately obtain the required information from these datasets. Since Edgar
Frank Codd proposed relational databases in 1970 [24], they have become the mainstream
data storage model covering various aspects of society, including government, healthcare,
education, business, and academia.

In the storage, query, and modification operations of relational databases, structured
query language (SQL) is used as the most mainstream method. However, SQL requires
users to possess certain computer and database knowledge, making it difficult for ordinary
users to learn. In contrast, natural language is the most familiar and widely used language
among people. Therefore, researching natural language-to-SQL technology and imple-
menting a natural language interface to databases (NLIDB) can enable non-professionals
to query databases using natural language, thereby resolving the SQL language barrier and
having significant practical significance and application value.

In fact, as early as the 1970s [11], Affolter, Stockinger et al. [2] have summarized
a series of rule-based methods for generating database query languages. However, con-
sidering the fuzziness of natural language concepts and grammar as well as the structural
complexity of database query languages, these rule-based methods are often only applica-
ble to limited and fixed domains with rigid table structures [17], making it difficult to adapt
to today’s increasingly broad and complex application scenarios.

In recent years, with the rapid development of deep learning technology, more and
more people have noticed its potential in NLIDB. For example, M Uma, V Sneha [106]
proposed the idea of implementing NLIDB using natural language processing (NLP) tech-
niques in the field of natural language query. Therefore, with the emergence of more deep
learning models and the continuous development and improvement of NLP technology, the
implementation of NLIDB based on deep learning has gradually become a hot topic and
research area.

The main content of our research is the study of database natural language interface
technology based on deep learning, and a method for database natural language interface
technology is proposed using BERT models and fixed template generation query sentences.
More specifically, this paper draws inspiration from SQLNet’s generation method based
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on fixed templates, and builds upon the basis of WHERE clause generation provided by
SQLNet to use the pre-trained BERT language model to encode the input sequence, then
through a fully connected layer and softmax, obtain the normalized probability distribution
of each column aggregation function, and predict the SELECT statement. By combining
the SELECT statement with the WHERE sentence provided by SQLNet, the SQL query is
obtained.

Therefore, the main work of our research focuses on generating the SELECT statement,
which is achieved through fine-tuning BERT and training a fully connected layer in the
model. We call our proposed method as BERT with Template. In general, the working
flow process proposed in this paper can be viewed as a sequence tagging problem for
each column in the database table (Sequence Tagging), where the label tag is the label of
the aggregation function chosen for that column, thereby achieving joint prediction of the
selected columns and aggregation functions in the SELECT statement.

Our contributions can be summarized as follows:

1. We propose a fine-tuning training method based on pre-trained BERT that integrates
a fixed template-based generation approach, and conducted experiments on the Wik-
iSQL, Academic, and Spider datasets. The prediction accuracy for SELECT state-
ments achieved 85.82%, 84.34%, and 54.48% respectively.

2. Our proposed method also demonstrates good generalizability, indicating that the
pre-training fine-tuning approach enables the model to leverage extensive knowledge
acquired during pre-training, thereby enhancing the model’s adaptability.

The rest of this chapter is organized as follows: Section 3.2 reviews some related tech-
niques. Section 3.3 introduces the proposed method with details. Section 3.4 presents the
experimental results. Section 3.5 discusses our research, and Section 3.6 makes a conclu-
sion.

3.2 Related Techniques

Based on deep learning, NLIDB technology has undergone rapid development and has
now emerged many advanced models. Below are 2 deep learning models highly relevant
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to this research that implement database natural language interface technology and a brief
introduction to each.

3.2.1 SQLNet

The SQLNet model proposed in 2017 [111] presented a unique solution that fundamen-
tally addressed the problem of sequence sensitivity in traditional sequence-to-sequence
architectures. The model utilized a technique based on fixed templates, which included a
dependency relation network. This allowed for individual predictions to be made by only
considering the dependencies on previous predictions. By integrating these unique strate-
gies, the authors demonstrated that SQLNet’s performance surpassed that of the state-of-
the-art SQL generation models at the time, with improvements ranging from 9% to 13%.

Below is a brief introduction to SQLNet.

Template-Based Query Generation

SELECT 
COLUMN

SELECT 
AGGREGATE
FUNCTION

COLUMN1

OPERATOR1

VALUE1

COLUMNn

OPERATORn

VALUEn

Natural Language 
Question

· · ·

SELECT WHERE

Figure 3.1: Dependencies between parts of a template

As shown in Figure Fig. 3.1, each empty space in the template corresponding to a
value to be predicted is represented by a box, and directed edges indicate the dependency
relationship between each empty space and its dependent item. Therefore, it can be viewed
as a graph model that treats query generation as a problem of graph-based reasoning. In
this way, techniques in SQLNet can completely solve the sequence problem in sequence-
to-sequence models.
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Column Attention-Based Sequence-to-Set Prediction

Intuitively, in a WHERE clause, the column names appearing represent a subset of all col-
umn names in the database. Therefore, the focus can be placed on predicting which column
names will appear in this subset. The paper achieves this through an LSTM network, com-
puting the column probability distribution Pwherecol(col | Q) using column attention, where
col is the column name and Q is the query.

Training Details of SQLNet

Predicting WHERE clause - Column Prediction:
In the generation of the WHERE clause part, SQLNet needs to determine which columns
should be included in the WHERE clause. The paper establishes an upper limit N for
selecting the number of columns and formulates the problem of predicting column numbers
as a (N-1) classification problem (from 0 to N).

Predicting WHERE clause - Operator Prediction:
Predicting the operators between columns and values in the WHERE clause, the paper
proposes that this prediction can be taken as a three-class form, selecting one from {=, >, <}

as the predicted result. Then, based on the encoding vectors E(Q | col) and Ecol computed in
previous steps, it is possible to implement a three-class operator prediction using column
attention.

Predicting WHERE clause - Value Prediction:
The paper points out that predicting values is essentially predicting substrings from natural
language query strings. Therefore, a bidirectional LSTM is used, with the decoder set to
compute the probability distribution of the next token using a pointer network [108].

Predicting SELECT clause:
The SELECT clause includes predicting aggregate function operators and selecting columns.
In this part, predicting column names in the SELECT clause is similar to that in the
WHERE clause. Therefore, the paper computes the probability distribution of each col-
umn based on query Q using PSELECT col(i | Q) and selects the column with the highest
probability as the selected column.
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Statement Parsing:
The paper uses the Stanford CoreNLP tokenizer to achieve this. To implement this, they
use GloVe word embeddings [87] to represent each token as a one-hot vector.

3.2.2 Seq2SQL

Seq2SQL [128] is a deep learning model that can convert natural language queries into
various SQL queries. The model utilizes the structural properties of SQL to construct
query statements, thereby achieving significant performance improvements, increasing the
state-of-the-art execution accuracy from 53.3% to 59.4%.

The model is based on the Sequence-to-SQL [32] idea and consists of three independent
sentence generation modules: Aggregate Function Operators (AFO), SELECT Clause, and
WHERE Clause.

AGGREGATION
First, calculate the scalar attention score, and then normalize it. Next, use multiple cal-
culations of attention weights to obtain the probability distribution of aggregate function
operators. Finally, perform a softmax operation on the probability distribution to obtain
the normalized distribution.

SELECT
First, use LSTM to encode each column in the database table. Then, construct another
representation for the hidden columns in the query using united weights parameters. Next,
pass the column representations through a multi-layer perceptron (MLP) to compute the
attention score for each column. Finally, apply a softmax function to obtain the normalized
probability distribution of predicted columns.

WHERE
To avoid mismatched queries, the model uses reinforcement learning to learn an optimal
policy that maximizes rewards and minimizes errors. The model returns different scores
based on the validity and correctness of the parsed SQL statement, and declares a loss
function to optimize the reward values.
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3.3 Method

3.3.1 Task Description and Analysis

Given that SQL is fundamentally distinct from natural language, possessing stronger struc-
tural characteristics and higher grammatical requirements compared to the inherent am-
biguity of natural language, direct application of simple sequence-to-sequence machine
translation models is not feasible for model selection. Instead, the structural properties of
SQL must be taken into consideration. Based on the aforementioned analysis, a template-
based generation approach is adopted, which involves decomposing an SQL statement into
the linguistic templates, as shown in Fig. 3.2.

S QL Query



S ELECT


S ELECT
AGGREGAT E FUNCT ION
COLUMN

WHERE



WHERE − CLAUS E


COLUMN
OPERATOR
VALUE

AND/OR OPERATOR
WHERE − CLAUS E
...

Figure 3.2: SQL syntax structure

In Fig. 3.2, a SQL query statement can be decomposed into two primary components:
the SELECT statement and the WHERE statement. The SELECT statement can be further
decomposed into three constituent parts: the fixed SELECT keyword, aggregation func-
tions, and selected columns. The WHERE statement, on the other hand, can be decom-
posed into multiple WHERE clauses, which are interconnected through logical operators
such as AND or OR. Each individual WHERE clause can be further decomposed into its
component elements: the selected column, operators (such as ==, >, <, etc.), and values.
The example Fig. 3.3 illustrates this decomposition.

From Fig. 3.3, it can be observed that for a relatively complex natural language query,
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name book price
John book1 19
John book2 30
Lisa book3 12
John book4 15
Mike book5 50
John book6 6

Natural Language Question:
How many books with price between 10 and 20 does John has?

SQL Query:
SELECT COUNT(book)
WHERE price < 20 AND price > 10 AND name == ”John”

RESULT:
2

Figure 3.3: A simple database and its query example

the corresponding SQL statement is often equally complex, which poses a significant chal-
lenge for deep learning models. However, if a template-based generation approach is
adopted that fully considers and leverages the highly structured characteristics inherent
in SQL statements, complex structures can be decomposed into relatively simple compo-
nents, thereby enabling effective handling of complex statements through the sequential
generation of these simpler structures.

3.3.2 Framework Description

Based on the overall approach proposed in the above problem analysis, the model will
primarily be divided into two components: SELECT statement generation and WHERE
statement generation. For WHERE statement generation, this model will adopt the SQL-
Net model to generate WHERE statements. The primary contribution of this model lies in
improving the generation of SELECT statements. The overall architecture of the model is
illustrated in Fig. 3.4.
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Natural Language QuestionCLS SEP Table HeaderCLS SEP Table HeaderCLS SEP···

Pre-Trained BERT

···

SQLNet
WHERE clause Generator

Linear Layer

Softmax argmax

WHERE clause predicted column
&

aggregate function

Figure 3.4: Main Structure of Our Proposed Method

Based on the task requirements, namely the design for generating SELECT statements,
it is evident that the model’s primary task can be divided into the following three stages:

1. Transform the input sequence by encoding it to obtain the encoded results.

2. Process the encoded results and extract information from the processed outcomes,
where the information should be capable of characterizing the two essential ele-
ments of SELECT statements: first, the selected columns, and second, the aggregate
functions employed.

3. Compare the predicted results with the ground truth, calculate the loss function, and
compute the accuracy rate.

It can be observed that one of the most critical steps is how to encode the input se-
quence. Given that the input sequence must necessarily include natural language question
sequences, and considering that natural language sequences contain substantial informa-
tion related to column selection and aggregation functions, as demonstrated in the example
shown in Fig. 3.3, it is therefore necessary, based on the core principles of Transformer
models [107], to have a model that can comprehensively extract global attention informa-
tion from the input sequence.
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Therefore, the BERT model will be employed to process the input sequences. Since
the BERT model [30] is constructed based on the Transformer architecture, it can build
self-attention information for the entire input sequence, thereby fully capturing the con-
textual relationships within the input sequence. This capability is particularly crucial for
understanding natural language questions in the input sequences.

Another important reason is that BERT, as a pre-trained model, provides readily avail-
able models for use [105]. For development purposes, it is only necessary to fine-tune the
BERT model, which can significantly reduce the time required for model training.

3.3.3 Procedure of Our Proposed Method

Input Sequences

Based on the example in Fig. 3.3, the model’s input sequence should not consist solely
of natural language queries, but should also incorporate the corresponding database table
header information. This is because the association between natural language queries and
header information is highly correlated, and this correlation can directly determine the
predictive information of the output SELECT statements.

Therefore, the following formula is adopted to construct the input:

xin = [CLS], xQ, [SEP], [CLS], xH
1 , [SEP], ..., [CLS], xH

NH , [SEP]

In the above formula Section 3.3.3, xin represents the input sequence to the model,
which is formed by concatenating a sentence sequence with several header sequences.
Each sequence is enclosed by BERT’s special tokens [30] CLS and SEP.

Furthermore, where xQ represents the natural language question sequence, expressed
in the following form:

xQ = xQ
1 , x

Q
2 , · · · , x

Q
Nq

where xQ
i denotes the i-th token in the question after tokenization using a BERT-based

tokenizer, and Nq represents the total number of tokens after tokenization.

For the sequence composed of table headers, xH
i represents the i-th header sequence of

the database table corresponding to the natural language question, while NH denotes the
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total number of headers. For any given header sequence xH:

xH = xH
1 , x

H
2 , ..., x

H
Nh

Each xH
i represents the i-th token after tokenization of a header using the BERT-based

tokenizer, and Nh represents the total number of tokens within a header.

Intermediate Sequences

Based on the above, the intermediate sequence refers to the BERT output sequence. After
inputting the input sequence x into the BERT model, we obtain the intermediate sequence
xenc that has been encoded by the BERT model:

xenc = [CLS]enc, xQenc
, [SEP]enc, [CLS]enc, xH

1
enc
, [SEP]enc, ..., [CLS]enc, xH

NH
enc
, [SEP]enc

The structure of the intermediate sequence is essentially consistent with that of the
input sequence, where for any token in the input sequence x, the corresponding token after
BERT encoding is denoted as tokenenc.

Output Sequences

After obtaining the aforementioned intermediate sequence, we aim to process the interme-
diate sequence into the following output sequence y:

y = yH
1 , ..., y

H
NH

Here, yH
i represents the token corresponding to the i-th table header, and NH denotes

the total number of table headers. However, it is important to note that for the purpose
of facilitating the extraction of key information from the output sequence, yH differs from
the header sequence represented by xH, and is merely a single tokenenc. Nevertheless, yH

must be capable of representing the complete information contained within a table header
sequence xH.



65

For each yH, we have:

yH = [P(agg1), P(agg2), · · · , P(aggNagg)]

Where Nagg = total number of aggregation functions + 2. Generally, this value is 7,
consisting of 5 aggregation functions (COUNT, SUM, MAX, MIN, AVG), 1 option for no
aggregation function applied to the column, and 1 option indicating that the column is not
selected.

Summary

In the above discussion, we mentioned three sequences in the model execution pipeline: the
input sequence x, the intermediate sequence xenc, and the output sequence y. Among these,
the transformation from x to xenc is accomplished by BERT, while our primary contribution
lies in the conversion from xenc to y. Here, we will provide a summary and further elaborate
on the technical details.

First, it is necessary to ensure that each yH serves as a tokenenc while simultaneously
representing the complete information of a table header. Therefore, leveraging the signif-
icance of the [CLS] token as a special classification marker in BERT models, we select
the [CLS] token that precedes each encoded header sequence xHenc. Specifically, for a
sequence [CLS]enc, xHenc

, [SEP]enc, we have yH = [CLS]enc.

Subsequently, it is necessary to extract the following two pieces of information from y:

1. The selected column col

2. The aggregation function applied to column col

Therefore, according to the form of yH in equation Section 3.3.3, the argmax function
is employed to obtain the index of the maximum aggregation function probability P(agg)
within each yH. There are seven indices in total, representing five distinct aggregation
function options, one option for column selection without aggregation function usage, and
one option indicating that the column is not selected. Through this approach, the extraction
of both types of information mentioned above can be accomplished simultaneously.
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However, considering that the [CLS]enc tokens corresponding to each header sequence
in BERT’s output sequence xenc are not directly equivalent to yH, since for a given token,
BERT’s encoded output is a word vector with dimensions equal to BERT’s last hidden
layer size (typically 768), while yH is a 7-dimensional vector where each value represents
the probability of the corresponding indexed aggregation function. Therefore, an additional
fully connected layer is required to map the vector from last hidden layer dimensions to 7
dimensions, which can be formulated as follows:

yH = FullConnection([CLS]enc)

FullConnectionin = last hidden layer, FullConnectionout = 7
(3.1)

After performing the fully connected layer, in order to ensure the range of output val-
ues, a softmax function is appended following the fully connected layer; finally, an argmax
function is employed to extract the predicted aggregation function index.

3.3.4 Loss Function

For the model’s loss function, considering that the model’s prediction results are generated
using a sequence labeling approach—specifically, generating probability distributions over
7 aggregation function labels for each table header, while in reality each header has a
unique and deterministic aggregation function label—the loss function will be computed
using Sparse Categorical Cross Entropy. The formula for the loss function calculation is
as follows:

loss = −

C∑
i=1

yi log(ŷi)

losstotal = lossselect + losswhere

Where C denotes the number of classes, y represents the ground truth class label vec-
tor, and ŷ denotes the predicted class probability vector output by the model. In sparse
categorical cross-entropy, y is a vector containing only one non-zero element, indicating
the true class of the sample, while ŷ is a vector of length C, where each element repre-
sents the probability that the sample belongs to the corresponding class. Finally, losstotal
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represents the total loss, lossselect denotes the prediction loss for SELECT statements cal-
culated according to the aforementioned formula, and losswhere represents the prediction
loss for WHERE statements. During model training, by minimizing the sparse categorical
cross-entropy, the model learns to correctly predict the class of samples.

3.3.5 Summary

In summary, the operational workflow of the model is summarized as follows:

1. Natural language queries and table headers are tokenized to obtain their respective
sequences. Each sequence is then enclosed with BERT’s special tokens [CLS] and
[SEP], and subsequently concatenated to form the input sequence.

2. From the BERT-encoded intermediate sequence, the encoded [CLS] tokens corre-
sponding to each table header are extracted.

3. Each table header’s [CLS] token is fed into a fully connected layer (linear layer) to
obtain the prediction values for aggregation functions corresponding to each header.

4. The output from the linear layer is processed through a Softmax function for nor-
malization.

5. The normalized values are input into an argmax function to obtain the index of the
aggregation function with the highest prediction probability.

6. Through the aforementioned steps, the selected columns and their corresponding
aggregation functions are extracted and identified.

3.4 Experiments

3.4.1 Introduction of Datasets

Considering the characteristics of our proposed method and the respective features of dif-
ferent datasets, three datasets are employed in this study: WiKiSQL Dataset [128], Aca-
demic Dataset [64], Spider Dataset [119].
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Among these datasets, WikiSQL is a dataset with relatively simple structure that spans
multiple domains and contains multiple database tables. The SELECT statements only
select a single column, and the conditional statements contain only one or more simple
WHERE clauses. This dataset will serve as the primary dataset for model training and
fundamental testing.

The Academic dataset will serve as the dataset for extended testing of the model. Al-
though the Academic dataset has a simpler structure and utilizes only a single database
table, it provides query statements that are relatively favorable for template-based SQL
generation approaches. Given the limited availability of cross-domain datasets [55], it
can serve as a relatively straightforward examination of the model’s predictive capabilities
across different datasets. The preprocessing approach for the Academic dataset is rela-
tively straightforward. Considering that the dataset employs JSON data format, we utilize
Python’s json module [38] for importing and regular expressions for processing, decom-
posing SQL query statements into the format described above for the WikiSQL dataset,
consisting of SELECT column indices, WHERE condition statement lists, and aggrega-
tion function indices.

Regarding the Spider dataset, the examples in the Spider dataset exhibit high complex-
ity, with natural language questions and SQL query statements being more complex and
varied in form, spanning multiple databases and domains. However, considering the com-
plexity of the Spider dataset and the fact that SQL queries contain structures not supported
by the model (such as ORDER BY, JOIN, etc.), it is necessary to remove unsupported
structures during preprocessing. Furthermore, when evaluating model performance, we
will exclude the prediction of WHERE clauses from consideration.

In summary, the WikiSQL dataset will be utilized for model training and testing, while
both Academic and Spider will serve as test sets, providing evaluations of varying difficulty
levels.

3.4.2 Experiment Settings

In this experiment, we choose Seq2SQL and SQLNet as the baseline model. We partition
the WikiSQL dataset into training, validation, and test sets following a 7:1:2 ratio. For
the Academic and Spider datasets, we preprocess them to conform to the format of the
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WikiSQL dataset.

For the evaluation metrics of experimental results, this experiment will adopt two evalu-
ation indicators: query-match accuracy and execution accuracy. This is because the model
employs a generation method based on fixed templates, and therefore, if an evaluation
metric based on exact string matching between generated results and original SQL query
statements were adopted, it would inevitably result in a loss of accuracy. For example, in
the example presented in Fig. 3.3, the WHERE clauses WHERE price < 20 AND price >
10 AND name == ”John” and WHERE price > 10 AND price < 20 AND name ==
”John” are both correct.

For query matching accuracy (hereinafter referred to as qm acc), it is further catego-
rized into two types: SELECT statement query matching accuracy (hereinafter referred
to as qm accsel) and WHERE statement query matching accuracy (hereinafter referred to
as qm accwhere). Let correctx denote the number of correctly matched predicted x clauses,
and numsql represent the total number of SQL statements in the dataset. The term ”correct
match” is defined as the model’s predicted column corresponding to the table header index,
aggregation function index, operators in WHERE statements, logical connectors, and val-
ues that are consistent with those in the ground truth query statements (where table header
indices, aggregation function indices, etc., are generated during dataset preprocessing).
Therefore, we have:

qm accsel =
correctselect

numsql

qm accwhere =
correctwhere

numsql

For execution matching accuracy (hereinafter referred to as exec acc), let correctexec

represent the total number of statements generated by the model that yield correct results
when executed as SQL queries, then we have:

correctexec =
correctexec

numsql

Specifically, in the Spider test set, we no longer employ exec acc as an evaluation
metric, retaining only qm acc as the evaluation criterion. Furthermore, in the second part
of the Spider test set, which is exclusively designed for testing the prediction accuracy of
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SELECT statements, we have qm acc = qm accsel.

Regarding the hyperparameters, we set the number of epochs to 16, batch size to 64,
and learning rate to 10−4. For model implementation, we primarily utilized PyTorch 0.4.1
under Python 3.6, with CUDA version 9.0 and cuDNN version 7.6.4. Additionally, our
model incorporated the BertModel and BertTokenizer modules from the transformers li-
brary (version 4.6.0) developed by Hugging Face, which served as the BERT model and
BERT-based tokenizer, respectively [109]. For the hardware infrastructure used in model
training, we employed an NVIDIA GeForce RTX 4090 GPU with 24 GB of video memory
(VRAM).

3.4.3 Experiment for WikiSQL Dataset

In the experiments, we compare our proposed method with Seq2SQL and SQLNet, where
Seq2SQL is configured without reinforcement learning (RL).

The accuracy of SELECT clause prediction for the proposed model during training,
showing the variation across training epochs on both the training set and validation set, is
illustrated in Fig. 3.5.

Figure 3.5: Accuracy of our proposed method on train and validation dataset of WiKiSQL

As illustrated in Fig. 3.5, it can be observed that the model’s performance achieves
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convergence within 16 epochs. The model demonstrates exceptional performance, attain-
ing approximately 85% accuracy on SELECT statement generation. Moreover, the model
exhibits strong generalization capabilities, as evidenced in the figure, where the accuracy
on the training set and validation set shows virtually no discrepancy, indicating that the
model exhibits minimal overfitting phenomena.

Since our proposed method uses the SQLNet model for WHERE clause prediction,
we aim to examine the impact of other parts in our method (such as the SELECT clause
prediction part) on WHERE clause prediction. Therefore, we compared our results with
the SQLNet model and generated Figure Fig. 3.6.

Figure 3.6: Accuracy of our proposed method and SQLNet on WHERE clause prediction

As shown in Fig. 3.6, it can be observed that the performance curves for WHERE
clause prediction between the proposed model and the SQLNet model exhibit minimal
differences. This indicates that the modifications made to the SELECT clause prediction
module in the paper do not affect the performance of the WHERE clause prediction mod-
ule. The underlying reason for this phenomenon is likely attributed to the fact that both the
proposed model and the SQLNet model employ a loss computation method that linearly
combines lossselect and losswhere. Consequently, changes in the SELECT clause prediction
module have minimal impact on the gradient descent and parameter optimization processes
of the WHERE clause prediction module.
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The comparsion of the result of our proposed method with the baseline models is shown
in Table 3.1.

qm accselect qm accwhere qm accexec

Seq2SQL (no RL) 88.93% 60.36% 57.12%
SQLNet 90.24% 67.18% 68.03%
OURS 91.57% 68.12% 68.24%

Table 3.1: Result compare on WiKiSQL dataset

According to Table 3.1, our method demonstrates improvements over SQLNet, achiev-
ing a 1.33% enhancement in SELECT clause prediction, a 0.94% improvement in WHERE
clause prediction, and a 0.21% increase in execution accuracy. Compared to the Seq2SQL
model, our method exhibits substantially greater improvements, with a 2.64% enhance-
ment in SELECT clause prediction, a 7.76% improvement in WHERE clause prediction,
and a 11.12% increase in execution accuracy.

3.4.4 Experiment on Academic & Spider Dataset

We conducted experiment on the Academic dataset, and the result is shown in Table 3.2.

qm accselect qm accwhere qm accexec

Seq2SQL (no RL) 76.25% 45.76% 43.68%
SQLNet 84.31% 59.36% 57.46%
OURS 89.47% 57.86% 56.68%

Table 3.2: Result compare on Academic dataset

The performance of our method and the baseline models decreased on the Academic.
But our method still made 5.16% improvement compared to SQLNet and 13.22% improve-
ment compared to Seq2SQL on the prediction of SELECT clause on the Academic dataset.

Since the Spider dataset is complex and highly challenging, we conducted experiments
only on SELECT clause prediction, with results shown in Table 3.3.

The performace of our method and the baseline models declines a lot on the Spider
dataset. But our method made 7.37% improvement compared to SQLNet and 20.7%
improvement compared to Seq2SQL on the prediction of SELECT clause on the Spider
dataset.
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qm accselect

Seq2SQL (no RL) 33.86%
SQLNet 47.19%
OURS 54.56%

Table 3.3: Result compare on Spider dataset

3.5 Discussion

The method proposed in this chapter demonstrates good generalization capabilities and
performs well in SELECT clause generation, indicating that fine-tuning approaches based
on pre-trained models are effective. However, several areas for improvement remain:
WHERE clause generation still relies on SQLNet; template-based generation methods
have inherent limitations; our approach has not yet addressed one of the most challeng-
ing problems in NL2SQL—the generation of conditional statements. Additionally, due
to the large size of the BERT model, the costs associated with training and deployment
remain relatively high.

3.6 Conclusion

The experimental results in this chapter demonstrate that the model exhibits excellent gen-
eralization capabilities, achieving superior performance in SELECT statement prediction.
When confronted with more complex datasets, the model shows relatively smaller perfor-
mance degradation compared to baseline models. Therefore, this paper provides a novel
approach for SQL statement prediction: leveraging pre-training and fine-tuning techniques,
such as BERT models, can enhance the model’s generalization ability, enabling it to bet-
ter adapt to the intricate and complex natural language queries encountered in real-world
applications.
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4.1 Overview

In Chapter 2 and Chapter 3, we presented our proposed approach. We performed com-
prehensive experiments to validate our model. Our research may also provide insights for
future investigations of related tasks. Additionally, there remains scope for further refine-
ment of our methodology.

4.2 Main Contributions

We validated the importance of feature extraction for improving model performance from
two perspectives. In Chapter 2, we extracted frequency, spatial, temporal, and global fea-
tures from EEG signals; in Chapter 3, we leveraged pre-trained models to understand tex-
tual content. Both approaches achieved favorable results.

There are several key contributions of this thesis:

1. In the EEG-based emotion recognition task, unlike many studies that focus solely
on extracting spatial and temporal features, we propose a multi-feature extraction
approach called MENNA (Multi-Feature Neural Network Architecture), which ex-
tracts frequency, spatial, temporal, and global features. Our method achieves 95.87%
accuracy on the SEED dataset, 94.42% accuracy on the valence dimension of the
DEAP dataset, and 93.67% accuracy on the arousal dimension.

2. We conducted extensive experiments with our proposed MENNA on the SEED and
DEAP datasets. The experimental results demonstrate that different EEG features
contribute varying degrees of information, with spatial and temporal features be-
ing the most significant contributors. We generated confusion matrices, t-SNE fea-
ture distributions, and Grad-CAM brain region activation heatmaps for comprehen-
sive analysis. The results indicate that while the model exhibits stable performance
across different emotion categories overall, there remain notable variations in accu-
racy among different emotional states. Furthermore, distinct patterns of brain region
activation were observed across different emotional conditions.

3. Our proposed MENNA employs an adaptive GCN approach. In contrast to tra-
ditional GCNs where the adjacency matrix requires manual pre-configuration, our
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proposed adaptive GCN can autonomously learn graph-related parameters, thereby
eliminating manual intervention and enhancing the model’s generalizability.

4. We propose a method that combines pre-trained BERT with fixed template-based
generation, termed BERT with Template, to address the NL2SQL task. We achieve
results of 85.82%, 84.34%, and 54.48% on SELECT statement generation across
the WikiSQL, Academic, and Spider datasets, respectively. Furthermore, the model
demonstrates considerable potential in terms of generalizability.

4.3 Future Work

In the future, we still have a lot of work to do to improve our methods.

1. We can explore whether EEG signals contain additional extractable features through
more extensive literature review. Furthermore, we can apply our methodology to
multi-modal data to further validate the effectiveness of our approach.

2. Consider applying distillation or other model optimization techniques to pre-trained
models to reduce training costs during model fine-tuning, such as GPU memory
consumption and other related issues.

3. Consider more advanced SQL generation methodologies, such as syntax tree-based
generation approaches and other sophisticated techniques.

4. Consider the generation of more complex SQL statements, such as the generation of
conditional IF clauses.

4.4 Conclusion

In this thesis, our research can be summarized as follows:

1. For multi-channel EEG signals, beyond spatial and temporal features, frequency and
global features can also be extracted. Through multi-feature extraction, both the
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accuracy and robustness of the model are enhanced. This approach can be applied to
deep learning tasks involving other types of signal data.

2. When designing models, the advantages of deep learning can be leveraged to de-
velop adaptive models that enable autonomous learning of key parameters, thereby
reducing manual intervention and enhancing model usability.

3. Pre-trained models can be integrated with traditional methods, thereby enhancing the
model’s capability to extract deep-level features and improving the model’s accuracy
and generalization performance.



Appendix A

List of Abbreviations

AI Artificial Intelligence
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
CNN Convolutional Neural Network
LLM Large Language Model
GPT Generative Pretrained Transformer
SQL Structured Query Language
NL Natural Language
NL2SQL Natural Language to Structured Query Language
NLIDB Natural Language Interface to DataBases
MLP Multi-Layer Perceptron
GPU Graphics Processing Unit
DBN Deep Belief Network
ResNet Residual Network
NLP Natural Language Processing
CV Computer Vision
ECG Electrocardiography
HR Heart Rate
EMG Electromyography
EEG Electroencephalogram
PSD Power Spectral Density
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GNN Graph Neural Network
GCN Graph Convolutional Network
BERT Bidirectional Encoder Representations from Transformers
XML Cross-Lingual Language Model
MLM Masked Language Model
FDFs Frequency Domain Features
TFDFs Time Frequency Domain Features
FFT Fast Fourier Transformation
DE Differential Entropy
WPD Wavelet Packet Decomposition
GBDT Gradient Boosting Decision Tree
t-SNE t-distributed Stochastic Neighbor Embedding
Grad-CAM Gradient-weighted Class Activation Mapping
SE Squeeze-and-Excitation
CA Channel Attention
FC Fully-Connected
MA Multi-head Attention
SVM Support Vector Machine
ELM Extreme Learning Machine
LR Logistic Regression
ASFM Adaptive Subspace Feature Matching
DGCNN Dynamical Convolutional Neural Networks
BDAE Bimodal Deep AutoEncoder
GELM Graph Regularized Extreme Learning Machine
HNSN Hierarchical Network with Subnetwork Nodes
GSCCA Group Sparse Canonical Correlation Analysis
STRNN Spatial–Temporal Recurrent Neural Network
BiDANN Bi-hemispheres Domain Adversarial Neural Network
Bi-HDM Bi-Hemispheric Discrepancy Model
RGNN Regularized Graph Neural Networks
AFO Aggregate Function Operators
RL Reinforcement Learning



Appendix B

Software Used

The followings are the python modules we mainly used.

numpy
A famous and basic python library for scientific computing, which sup-
ports large-scale array and matrix computing.

pytorch
A famous open-source machine learning library, we use it to build
MENNA.

scikit-learn
This is a toolbox for traditional machine learning and statistical learn-
ing, we use it to process results.

matplotlib
This is a plotting library in Python, we use it to draw figures.

keras
A high level deep learning model builder, we use it to build BERT with
Template.
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transformers
A package offered by huggingface to help users quickly train and infer
Transformer models. We use it to fine-tune BERT.

The followings are the software or tools we mainly used.

VSCode
An IDE for coding, with various plugins to improve user expeience. We
use it to code.

Windows Remote Destop
A Windows built-in software to help users to connect and manipulate
another computer. We use it to connect to server.

hugginggface
A large AI community aiming to provide service of computing, model
and dataset storage, etc. We use it to store some datasets.

github
A famous code hosting platform. We search open-source models on it.

matlab
A famous software environment for proprietary multi-paradigm pro-
gramming language and numeric computing, we use it to preprocess
some data.



Appendix C

Values of Properties

System Properties Value

System Windows 11 Pro

Processor Intel i9-14900K

Random Access Memory (RAM) 64 GB

System Type 64-bit OS, x64-based processor

GPU NVIDIA GeForce RTX 4090

Graphic Memory 24 GB

Table C.1: The System Properties for all Experiments

82



Bibliography

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. A comparative survey of
recent natural language interfaces for databases. The VLDB Journal, 28(5):793–819,
2019.

[3] Geoffrey L Ahern and Gary E Schwartz. Differential lateralization for positive and
negative emotion in the human brain: Eeg spectral analysis. Neuropsychologia,
23(6):745–755, 1985.

[4] Karam Ahkouk, Machkour Mustapha, Majhadi Khadija, and Mama Rachid. A re-
view of the text to sql frameworks. In Proceedings of the 4th International Confer-

ence on Networking, Information Systems & Security, pages 1–6, 2021.

[5] Amjed S Al-Fahoum and Ausilah A Al-Fraihat. Methods of eeg signal features
extraction using linear analysis in frequency and time-frequency domains. Interna-

tional Scholarly Research Notices, 2014(1):730218, 2014.

[6] Soraia M Alarcao and Manuel J Fonseca. Emotions recognition using eeg signals:
A survey. IEEE transactions on affective computing, 10(3):374–393, 2017.

[7] Hezam Albaqami, Ghulam Mubashar Hassan, Abdulhamit Subasi, and Amitava
Datta. Automatic detection of abnormal eeg signals using wavelet feature extrac-
tion and gradient boosting decision tree. Biomedical Signal Processing and Control,
70:102957, 2021.

83



84

[8] Mouhannad Ali, Ahmad Haj Mosa, Fadi Al Machot, and Kyandoghere Kyamakya.
Eeg-based emotion recognition approach for e-healthcare applications. In 2016

eighth international conference on ubiquitous and future networks (ICUFN), pages
946–950. IEEE, 2016.

[9] Anis Ameera, A Saidatul, and Zunaidi Ibrahim. Analysis of eeg spectrum bands
using power spectral density for pleasure and displeasure state. In IOP conference

series: Materials science and engineering, volume 557, page 012030. IOP Publish-
ing, 2019.

[10] Michael L Anderson, Josh Kinnison, and Luiz Pessoa. Describing functional diver-
sity of brain regions and brain networks. Neuroimage, 73:50–58, 2013.

[11] Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language
interfaces to databases–an introduction. Natural language engineering, 1(1):29–81,
1995.

[12] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and rec-
ommending links in social networks. In Proceedings of the fourth ACM interna-

tional conference on Web search and data mining, pages 635–644, 2011.

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.
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