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ABSTRACT 

Amphibians are among the most rapidly declining vertebrate groups worldwide, with 

habitat modification and climate change driving widespread population declines. Much work on 

amphibian vulnerability focuses on gradual shifts of climate change. While in many landscapes, 

habitat-altering disturbances such as clearcutting introduce sudden shifts in thermal and hydric 

environments on timescales far shorter than those of potential local adaptation and potentially 

removing critical microhabitat refugia. Such changes may be particularly relevant for 

amphibians, whose behaviour and ecological performance is linked to both body temperature and 

dehydration status. However, predicting the impacts of harvesting on amphibian hydrothermal 

physiology is not straightforward as higher temperatures (up to thermal optima) may increase 

performance, while dehydration will decrease it. To untangle these effects, I compared 

hydrothermal performance curves for Dryophytes versicolor with water loss rates and operative 

temperatures of replica frogs in harvested, edge, and unharvested boreal forest across four time-

since-cut stages. Replica frog water loss was significantly correlated with real frog water loss 

(R2 = 0.86). I found performance declines past 15-20% dehydration and that baseline 

performance was lower at cooler temperatures and higher dehydrations. Clearcut environments 

reduced performance for gray treefrogs during overnight activity periods, particularly in 

uncovered microhabitats, across all time-since-cut groups, indicating that the increased 

hydrothermal vulnerability from harvesting is maintained through succession. By examining the 

relationship between performance, hydration, and temperature, we can begin to understand how 

removal or alteration of key microhabitats may impact individual fitness and population 

persistence within disturbed landscapes. 
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 1 

1 INTRODUCTION 1 

Amphibians are among the most rapidly declining vertebrate groups worldwide, with 2 

habitat modification and climate change driving widespread population declines (Hof et al., 3 

2011; Luedtke et al., 2023; Stuart et al., 2004). Most work on anuran climate sensitivity assumes 4 

gradual change under shifting climate regimes (see Scheffers et al., 2013). However, in many 5 

landscapes, habitat-altering disturbances such as clearcutting introduce sudden and often extreme 6 

shifts in thermal and hydric environments (Franklin et al., 2002; Gardner et al., 2007; R. D. 7 

Semlitsch et al., 2009) on timescales far shorter than those of potential local adaptation (De 8 

Frenne et al., 2019), and potentially removing critical microhabitat refugia (Tuff et al., 2016). 9 

These rapid, localized, changes can fundamentally alter habitat quality by degrading or removing 10 

the microhabitats used for thermoregulation, hydration, and refuge. 11 

Among the most critical factors influencing amphibian survival and performance are 12 

temperature and water availability, which together shape their metabolic processes, behavior, and 13 

overall fitness (Anderson & Andrade, 2017; Greenberg & Palen, 2021; Lertzman-Lepofsky et al., 14 

2020; Rozen-Rechels et al., 2019). Ectothermic organisms, such as amphibians, are especially 15 

vulnerable to shifting climate because they rely on external environmental conditions to regulate 16 

their body temperature and hydration and maintain physiological function (Hillman et al., 2008; 17 

Huey et al., 2012; Wells, 2010). While the effects of temperature on amphibian function have 18 

been well studied (Cossins, 2012; Deutsch, 2008; Huey & Kingsolver, 1989; Pottier et al., 2025; 19 

Rollins-Smith & Le Sage, 2023; Sunday et al., 2014), dehydration also imposes considerable 20 

physiological costs, influencing locomotor capacity, metabolic efficiency, predator escape, and 21 

foraging success (Anderson & Andrade, 2017; Gatten, 1987; Rogowitz et al., 1999; Shoemaker 22 

et al., 1992).     23 



 2 

To navigate the potential challenges of extreme hydrothermal habitat conditions, many 24 

ectotherms depend on specific microhabitats—such as shaded refuges, moist substrates, or 25 

hydrothermally preferable retreats—that offer opportunities for thermoregulation and hydration 26 

(Klinges et al., 2024). Microclimatic refuges may thus be essential for daily and seasonal 27 

survival and for long-term persistence. However, the availability and quality of these spaces are 28 

increasingly threatened by the rapid pace of habitat disturbance, land-use change, and the 29 

accelerating impacts of climate change, including rising temperatures and intensified drought 30 

(Luedtke et al., 2023; Zhang et al., 2021). Moreover, long-term dependence on retreats under 31 

increased thermal and hydric vulnerability comes with a cost as it can reduce available activity 32 

hours (Huey & Stevenson, 1979).  Reduced activity time constrains essential behaviors such as 33 

foraging, mating, and dispersal, ultimately limiting energy acquisition and reproductive output 34 

(Rittenhouse et al., 2008; Spotila et al., 1992). Over time, these limitations can lead to reduced 35 

recruitment and population growth, and reliance on retreat sites has been shown to predict 36 

population-level declines under warming scenarios (Duarte et al., 2012; Sinervo et al., 2010). 37 

While the effects of both temperature and hydration have been considered separately, few 38 

studies have jointly considered temperature and hydration in the context of real-world 39 

environmental conditions, despite evidence that these factors interact to shape behavior, 40 

distribution, and fitness (Anderson & Andrade, 2017; Greenberg & Palen, 2021; Lertzman-41 

Lepofsky et al., 2020; Rozen-Rechels et al., 2019; Shoemaker & Nagy, 1977). Further, many 42 

microclimate studies rely on sampling at a single location and point in time or presence/absence 43 

data (Janin et al., 2011; Robinson et al., 2023) which fail to capture the effects of prolonged 44 

exposure or the consequences of chronic thermal stress, especially under fluctuating 45 

environmental conditions. Moreover, most eco-physiological models are diurnally biased, 46 
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underrepresenting the nocturnal activity patterns of amphibians (Kearney & Porter, 2004; 47 

Kearney & Predavec, 2000; Klinges et al., 2024; Rutschmann et al., 2024) and potentially 48 

resulting in misleading conclusions about species abilities to cope with environmental change.  49 

In this thesis, I assess how rapid changes in microhabitats post-clearcutting affect the 50 

physiological capacities that are attainable for Eastern Gray Treefrogs (Dryophytes versicolor, 51 

Hylidae) within regenerating habitats. By examining these conditions across different stages of 52 

forest succession, I estimate how habitat quality shifts throughout 20-years of forest regrowth 53 

post-clearcut and evaluate the potential for forest-dwelling amphibians to persist under altered 54 

hydrothermal regimes. 55 

1.1 Background  56 

 57 
Forest harvesting reconfigures the ecological structure and function of North American 58 

forest ecosystems (Weber & Flannigan, 1997; Wolf et al., 2021). Many plant species possess 59 

adaptive mechanisms (e.g. shade tolerant birch and aspen) either to survive or to quickly 60 

recolonise cleared areas, and differences in recolonisation regimes amongst species post-61 

disturbance results in a diversity of vegetational composition trajectories (Dawe et al., 2022; 62 

Grandpré et al., 1993). Over the past 50 years, forest harvesting has rapidly altered the structure 63 

and composition of the boreal forest primarily through removal of canopy, mid story, and 64 

understory vegetation cover  (Bergeron & Fenton, 2012; Dupuch & Fortin, 2013; Keenan & 65 

Kimmins, 1993). Combined with favourable temperature conditions due to global climate 66 

warming, clearcutting regimes are expected to shift Boreal Forest composition towards forests 67 

dominated by broadleaf deciduous tree species, which regenerate quickly in full sunlight 68 

(Anyomi et al., 2022; Carleton & Maclellan, 1994; Dawe et al., 2022; Larocque et al., 2024).  69 
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Forest harvesting has both positive and negative effects on forest dwelling species, 70 

depending partially on vegetational composition during post-cut forest succession (Harper et al., 71 

2015; Hocking & Semlitsch, 2008; Popescu & Hunter, 2011; Semlitsch et al., 2009; Todd et al., 72 

2014). The effects of harvesting vary depending on pre-harvest stand composition and 73 

topography, the extent of canopy, debris, and vegetation removal, post-harvest management, and 74 

pre- and post-harvest climate and topography (Keenan & Kimmins, 1993; Carleton & Maclellan, 75 

1994). More intensive cutting regimes that undergo multiple disturbance are more prone to 76 

overall forest composition shifts than single less intensive disturbances (Larocque et al., 2024).  77 

Forestry companies in Northwestern Ontario currently implement removal strategies that (cl)aim 78 

to simulate the effects of natural disturbances on forest composition (Natural Resources & 79 

Forestry, 2001). The dominant approach in this region is intensive even-aged management which 80 

leaves some retention trees or small patches of forest upon the landscape (Natural Resources & 81 

Forestry, 2023). However, clearcut cycles are relatively short compared to cycles of natural 82 

disturbance (Jõgiste et al., 2017; Kuuluvainen et al., 2021; Larocque et al., 2024), resulting in 83 

multiple overlapping disturbances over shorter-time periods, shifts in forest composition, and 84 

altered ecosystem stability (Jõgiste et al., 2017).  85 

Clearcutting significantly alters forest macrohabitat structure by removing canopy cover 86 

and fragmenting continuous forest into smaller, disconnected, patches. This fragmentation 87 

increases the density of forest edges and open-canopy areas with limited shade, thereby reducing 88 

connectivity between remnant forest patches (Tuff et al., 2016). The resulting landscape is a 89 

mosaic of forest interior, edge, and open (cut) areas, each exhibiting distinct environmental 90 

characteristics (Bergeron & Fenton, 2012; Boucher et al., 2011; Remmel et al., 2023). Forest 91 

interiors generally exhibit greater heat storage capacity than open or edge environments due to 92 
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their dense vegetation, enclosed air space, and higher humidity levels, which result from reduced 93 

direct solar radiation (Geiger et al., 1965). In contrast, clearcuts and forest edges are subject to 94 

more extreme climatic fluctuations, often experiencing higher temperatures, lower humidity, and 95 

increased wind exposure (Chen et al., 1993; Murcia, 1995). Even-aged management practices, 96 

commonly associated with clearcutting, also influence long-term forest regeneration and 97 

structural complexity by simplifying age and species composition across regenerating stands 98 

(Bergeron et al., 1999; Fenton et al., 2009).  99 

1.2 Modifications of microclimate from forestry practices 100 

 101 
Macrohabitat modifications often lead to pronounced shifts in forest microclimates. 102 

Microclimates refer to localized variations in physical conditions—such as temperature, 103 

humidity, light, and wind—that occur at small spatial scales within a larger habitat (Chen, 1999; 104 

Chen et al., 1993; Geiger et al., 1965). These fine-scale environmental conditions are shaped by 105 

structural features like vegetation density, canopy cover, and species composition, and they play 106 

a critical role in influencing species distributions and ecosystem dynamics under habitat change 107 

(Chen, 1999; De Frenne et al., 2019; Dobrowski, 2011; Keppel et al., 2017; Máliš et al., 2023). 108 

Within forests, microhabitat variability occurs along both horizontal (edge-to-interior) 109 

and vertical (canopy-to-ground) gradients. Wind speed decreases with height due to surface 110 

friction; the ground absorbs solar radiation during the day and emits infrared radiation at night, 111 

contributing to daily microclimatic variation (Geiger et al., 1965). Canopy and ground vegetation 112 

play essential roles in moderating temperature and humidity through shading, evaporative 113 

cooling, and insulating ground heat at night (Burrow et al., 2023; Wolf et al., 2021). As one 114 

moves toward the forest floor, air temperature typically decreases while relative humidity 115 
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increases (Geiger et al., 1965). Together, canopy and ground vegetation help create more 116 

thermally stable forest microclimates (Burrow et al., 2023).  117 

Microhabitat conditions may differ substantially between clear, partially cleared, edge, 118 

and forested plots (Chen et al., 1993; Geiger et al., 1965). Changes to ground level vegetation 119 

and woody debris (providing damp and shaded spaces), as well as mid-story foliage and canopy 120 

cover can modify the conditions of various microclimates by simultaneously altering incident 121 

solar radiation, albedo (surface reflectance), wind speed, decreased humidity, and resulting vapor 122 

pressure deficits (Campbell & Norman, 1998; Geiger et al., 1965; Lindenmayer et al., 2020; 123 

Murcia, 1995; Wolf et al., 2021). Canopy and understory layers regulate solar exposure by direct 124 

interception and through reflection from leaf surfaces, helping buffer extreme temperatures and 125 

reduce moisture loss through evaporative cooling (Wolf et al., 2021). Ground level vegetation 126 

further stabilizes temperatures by reducing evening temperature declines through insolation of 127 

ground radiation and retaining radiant heat (Geiger et al., 1965). Clearcuts are more spatially 128 

homogenous than unharvested areas due to the absence of layered vegetation and canopy 129 

structure (Lundmark et al., 2017; Rittenhouse et al., 2008). Yet, these open environments may 130 

experience greater diurnal variation, with sharper temperature drops at night and higher thermal 131 

extremes during the day compared to forested areas (Geiger et al., 1965). 132 

1.3 Hydrothermal impacts on organismal performance 133 

 134 
To successfully occupy a habitat and obtain energy needed for growth, maintenance, and 135 

reproduction, organisms must maintain a positive energy balance between themselves and their 136 

environment (Spotila et al., 1992; Tracy et al., 2010). Organisms exchange energy between 137 

themselves and their environments in the form of heat and water in multiple ways, including 138 

absorbed and emitted radiation, convection (through the surrounding air), conduction (through 139 
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surfaces), evaporation (Spotila et al., 1992). In ectotherms, where metabolic heat is minimal, the 140 

outcome of these exchanges determines body temperature and hydration status, both of which 141 

have high ecological relevance as individuals cannot maintain long-term activity in habitats 142 

where their body temperature surpasses critical limits or their daily water loss exceeds their daily 143 

water uptake (Spotila et al., 1992). Thus, the suitability of an environment for an organism is, in 144 

part, determined by the time in which it can remain active before reaching its maximum tolerable 145 

body temperature and dehydration level (Campbell & Norman, 1998). Altered microclimatic 146 

conditions can impact heat and water exchange processes and subsequent energy balances, 147 

thereby influencing the physiological suitability of the given environment for a particular 148 

organism.  149 

Among ectotherms, amphibians may be particularly sensitive to microclimate 150 

modifications because they have permeable skin. The easy movement of water across their skin 151 

means that amphibians can substantially lower their body temperatures through evaporative 152 

cooling in environments where thermal conditions approach thermal limits, however this 153 

mechanism comes with a trade-off via increased vulnerability to desiccation (Spotila et al., 1992; 154 

Tracy, 1976). Vegetation loss, particularly of canopy and ground cover, exposes amphibians to 155 

increased solar radiation and higher vapor pressure deficits, which accelerate water loss and 156 

reduce soil and atmospheric moisture availability (Geiger et al., 1965; Wolf et al., 2021). 157 

Elevated wind speeds in disturbed forests can further dehydrate microhabitats by thinning 158 

boundary layers and displacing humid air, compounding stress on moisture-dependent species 159 

(Spotila et al., 1992).  160 

Amphibian physiological performance is strongly shaped by body temperature and 161 

hydration state (Huey et al., 2012). Many key functions, including locomotion, respiration, and 162 
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growth, are sensitive to changes in temperature (Deutsch, 2008; Huey & Kingsolver, 1989), and 163 

dehydration can further constrain performance across these systems (Anderson & Andrade, 164 

2017; Gatten, 1987; Greenberg & Palen, 2021; Preest & Pough, 1989; Rogowitz et al., 1999). 165 

Among these, locomotion provides an especially informative measure of performance because it 166 

integrates neuromuscular, metabolic, and behavioral responses to environmental stressors and is 167 

affected by organisms’ hydrothermal state (Navas et al., 2008). Locomotion is necessary for 168 

processes affecting amphibian survival including reproductive efforts, predator avoidance, 169 

predation, and dispersal between habitats (Gatten et al., 1992). The relationship between 170 

performance and temperature is commonly represented as a thermal performance curve (TPC). 171 

TPCs generally show performance initially increasing slowly a maximum at the thermal 172 

optimum, then rapidly declining (Angilletta, 2009) (Figure 1.1.1). TPCs are not fixed and can be 173 

modified by an individual’s acclimatization to previous or current environmental experiences 174 

(Schulte et al., 2011). 175 
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 176 

Figure 1.1.1 Hypothetical thermal performance curve including critical thermal minimum 177 
(CTmin), critical thermal maximum (CTmax), thermal optimum (Topt), performance breadth, and 178 
tolerance range. 179 

Dehydration can also alter thermal performance curves by shifting thermal optima 180 

downward (Anderson & Andrade, 2017; A. Mitchell & Bergmann, 2016; Preest & Pough, 1989), 181 

and narrowing the temperature range over which amphibians maintain high physiological 182 

function (i.e. performance breadth). While mild dehydration may have limited effects, 183 

performance declines sharply beyond this threshold, with frogs exhibiting reduced peak 184 

capacities and narrower thermal windows under moderate to severe dehydration (Anderson & 185 

Andrade, 2017; A. Mitchell & Bergmann, 2016). Therefore, thermal and hydric effects on 186 

performance are not independent and impacts of temperature on performance tend to be greater 187 

when animals are dehydrated (Greenberg & Palen, 2021). The combined effects of temperature 188 

and hydration state can be represented by a hydrothermal performance curve (HTPC). Multiple 189 

hydrothermal performance curves can be combined into a hydrothermal performance surface 190 

(HTPS).   191 
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Hydrothermal stress impairs amphibian performance by disrupting key physiological 192 

systems involved in locomotion,  muscle function, and energy production (Anderson & Andrade, 193 

2017; Greenberg & Palen, 2021; Moore & Gatten Jr, 1989; Rome et al., 1992). Amphibians can 194 

move in a variety of different ways for various tasks (e.g. reproduction, foraging, predator 195 

avoidance) through different types of muscle contractions, muscle fiber recruitment, and aerobic 196 

and anaerobic activity pathways (Rome et al., 1992). Aerobic capacity determines muscular 197 

endurance and controls activation and relaxation of muscles during sustained movement, while 198 

ATP and phosphocreatine stores are used for short-burst locomotion and maximal mechanical 199 

power output (Moore & Gatten Jr, 1989; Rome et al., 1992). Hydrothermal stress and desiccation 200 

impair aerobic function and deplete ATP stores, increasing reliance on less efficient anaerobic 201 

metabolism (Gatten et al., 1992; Preest & Pough, 1989). Cardiovascular performance declines 202 

with reduced heart rate, blood flow, and oxygen transport (Gatten, 1987; Gatten et al., 1992; 203 

Hillman, 1978). Dehydration-induced hyperosmolality draws water from muscles and the brain, 204 

accelerating fatigue (Hillman, 1978; Moore & Gatten Jr, 1989; Pough et al., 1983; Rogowitz et 205 

al., 1999; Senzano & Andrade, 2018). Reduced oxygen and hydration impair muscle fiber 206 

recruitment and timing of contractions (Rome et al., 1992), shifting metabolic activity towards 207 

less efficient anaerobic pathways. Although anaerobic pathways may sustain brief locomotion 208 

under stress, they yield less ATP and cause lactate buildup, accelerating time to fatigue (Gatten, 209 

1987; Moore & Gatten Jr, 1989). In amphibians, intracellular ATP stores are sufficient to sustain 210 

maximal muscular effort for only 1–3 seconds, after which energy must be supplied by 211 

phosphocreatine and anaerobic glycolysis (Bennett, 1978). Consequently, anaerobic capacity can 212 

typically support intense activity for 30–60 seconds before fatigue sets in. Anaerobic capacity 213 

may be unaffected by small amounts of short-term dehydration and may allow individuals to 214 
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sustain brief periods of locomotion under hydrothermally stressful conditions. However, it 215 

remains unclear how ATP use and anaerobic locomotor capacities will be affected in amphibians 216 

experiencing frequent hydrothermally stressful conditions. The short-term limitations on 217 

anaerobic activity and the effects on aerobic metabolic pathways may be partially responsible for 218 

the reduction in locomotor capacities of dehydrated frogs (Gatten, 1987; Moore & Gatten Jr, 219 

1989; Rogowitz et al., 1999).  220 

1.4 Interspecific variations in hydrothermal tolerance 221 

 222 
Individuals in different habitats experiencing changing hydrothermal conditions must 223 

balance their physiological tolerance margins with resource habitat preferences (Köhler et al., 224 

2011). Because amphibians are often exposed to fluctuating microclimates, they routinely 225 

operate under varying hydration states and temperatures (Anderson & Andrade, 2017; Greenberg 226 

& Palen, 2021; Lertzman-Lepofsky et al., 2020; A. Mitchell & Bergmann, 2016; Navas et al., 227 

2008). Environmental trade-offs can thus arise, where selecting optimal temperatures may 228 

increase desiccation risk and vice-a-versa. The nature and severity of these trade-offs vary across 229 

species and habitats, and the degree to which individuals can buffer hydrothermal microhabitat 230 

fluctuations depends partially on physiological traits like cutaneous resistance, body size, skin 231 

secretions, and oxygen uptake pathways (Gunderson & Stillman, 2015; Navas, 1996; Rogowitz 232 

et al., 1999; Spotila et al., 1992). Behavioural buffering strategies, such as seeking out refugia, 233 

adjusting posture, reducing activity, or altering movement patterns can also help minimize 234 

exposure to hydrothermal conditions near or above individual limits (Gunderson & Stillman, 235 

2015; Spotila et al., 1992).  236 

Species vary in their capacity to buffer hydrothermal stressors, and these differences are 237 

often shaped by both physiological tolerance limits and behavioral plasticity (Nowakowski et al., 238 
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2018; Prates & Navas, 2009; Toledo & Jared, 1993; Wilson, 2001). High temperatures may be 239 

favourable and benefit performance for terrestrial and arboreal amphibians who possess 240 

physiological and behavioural adaptations that lower their desiccation risk (Hossack et al., 2009; 241 

Tracy et al., 2010). For instance, arboreal frogs with higher resistance to cutaneous water loss 242 

(Rc) than more aquatic species, aided by thicker skin and mucus secretions, can tolerate greater 243 

hydrothermal extremes and may engage more readily in behavioral thermoregulation (Roznik et 244 

al., 2018; Young et al., 2005). Arboreal species can also maintain favourable hydrothermal body 245 

conditions by moving vertically along trees and seeking out refuges located along trunks or 246 

branches to avoid increased temperatures at ground level (Biazzo & Quintana-Ascencio, 2022; J. 247 

R. Johnson et al., 2008). Terrestrial species may access standing water or moist refuges on the 248 

ground (e.g. under leaf litter along soil, in understory vegetation) if available (Hossack et al., 249 

2013; Tracy et al., 2007). In contrast, species with lower dehydration tolerance are more 250 

restricted to favorable microhabitats and microclimates to maintain water balance (Navas et al., 251 

2021).  252 

The effectiveness and availability of behavioural modification strategies also depend on 253 

local habitat structure and quality and environmental context (Greenberg & Palen, 2021; A. 254 

Mitchell & Bergmann, 2016; Navas et al., 2008). The effects of altered temperatures or moisture 255 

availability are also context-dependent, such that changes in temperature and hydration may be 256 

positive or negative depending on whether they push organisms toward or away from their 257 

hydrothermal optima (Huey et al., 2012). High quality habitats (hydrothermally) allow organisms 258 

to operate close to their optimum for longer periods than low quality habitats with hydrothermal 259 

conditions near or above individual’s tolerable limits. Activity in low quality habitats may be 260 

more energetically costly and impair an individual's ability to perform essential functions 261 
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required for survival, particularly if microhabitats offer limited buffering (Neel & McBrayer, 262 

2018). Greater occurrence of low quality habitat requires animals to spend more time and energy 263 

behaviourally hydro-thermo-regulating by seeking refugia or maintaining water conservation 264 

poses during forced inactivity (Biazzo & Quintana-Ascencio, 2022; Navas et al., 2008; Sears et 265 

al., 2016; Sears & Angilletta, 2015), potentially impacting ecological functioning, fitness and 266 

even population dynamics. Improving our understanding of how environmental change and 267 

human activities affect hydrothermal physiological  quality of habitats, and the shifting 268 

distribution of high- and low-quality habitat across the landscape is thus a key step in 269 

determining the vulnerability of species to ongoing habitat loss and modification. 270 

1.5 Hypotheses 271 

 272 
In this thesis, I determine how forest harvesting reconfigures the physiological quality of 273 

boreal landscapes for an arboreal amphibian. I examine microhabitat conditions between 274 

harvested and un-harvested forests at different stages of forest succession to determine if 275 

microhabitat conditions in clearcut environments reduce gray treefrog performance. These 276 

conditions are then compared with the species’ hydrothermal niche determined from HTPS using 277 

jump performance. I propose the following hypotheses:  278 

Hypothesis 1a: Initial impacts of harvesting on hydrothermal vulnerability are maintained 279 

during succession. 280 

 Rationale: Canopy removal in recent cuts is expected to increase exposure to temperature 281 

extremes both overnight and during the day and increases desiccation risk, limiting amphibian 282 

activity capacity. These differences may be maintained because of differences  between clearcut 283 

regrowth and unharvested forest structure, since the former is shaped by intensive management 284 
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and develops high stand density with minimal canopy gaps, reduced sunlight penetration, and 285 

limited air movement, resulting in microclimates distinct from relatively unmanaged forests. 286 

These clearcut conditions that can persist for decades, with full recovery potentially taking a 287 

minimum of 60 years (Brassard & and Chen, 2006; Cyr et al., 2009). 288 

- Predictions: 289 

1) Performance will be lower in recent clearcuts than adjacent forest. 290 

2) Performance will be significantly different between forest and clearcuts regardless of 291 

the time that has elapsed since cutting. 292 

Alternative hypothesis 1b: Impacts of harvesting on hydrothermal vulnerability are rapidly 293 

erased by succession. 294 

Rationale: This could be because rapid vegetation regrowth increases lower-level vegetation 295 

cover and shading, while reducing air movement due to stand density. These changes can 296 

enhance local humidity and create more favourable microhabitats for amphibians, leading to 297 

conditions in older clearcuts that are similar to those in adjacent forests 298 

- Prediction: Differences in performance between clearcuts and adjacent forest will only be 299 

present in recent clearcuts. 300 

Hypothesis 2: Clearcutting has a greater effect on hydrothermal vulnerability during nighttime 301 

activity than during daytime inactivity in disturbed environments. 302 

 Rationale: I expect this because during the day, frogs may make use of covered refuges to 303 

buffer against temperature variations and desiccation risk from exposure. However, overnight 304 

during peak activity hours, frogs may occur more frequently in uncovered microhabitats, which 305 

could expose them to rapidly cooling temperatures that approach their critical thermal minimums 306 
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- Prediction: Performance reductions between clearcuts and forests will be more 307 

pronounced overnight in exposed microhabitats than during the day in covered 308 

microhabitats.  309 

2 METHODS 310 

To understand how temperature and hydration jointly shape performance capacities in 311 

clearcut habitats, I first fit separate temperature-dependent and hydration-dependent performance 312 

curves, then combined them to generate a predictive hydrothermal performance surface across 313 

the full combination of laboratory-tested temperatures and hydration combinations. I then 314 

applied this predictive surface to infer potential performance of critical microhabitats in clearcut 315 

environments across forest recovery stages.  316 

2.1 Hydrothermal Performance Tests 317 

2.1.1 Animal collection and housing 318 

We collected twelve adult male Eastern gray treefrogs (Dryophytes versicolor; Hylidae) 319 

on May 30 and 31, 2024, from three ponds. Four were collected on the evening of May 30 from 320 

a pond located at the northern end of Dog Lake Road, ON. Eight were collected on May 31 from 321 

two breeding ponds at the Kamview Nordic Centre, ON. I only used males because of the 322 

difficulty in finding enough females to achieve an adequate sample size. Animals were brought 323 

to Lakehead University’s Biology Aquatics Facility (BAF) and housed in individual glass 324 

terraria and acclimated for one week at 20°C ± 3°C and >70% humidity in a 12:12 light-dark 325 

cycle. Each tank was lined with damp paper towels and contained two PVC pipe perches, a 326 

refuge and plastic aquarium vegetation for enrichment, and a water dish. Paper towel substrate 327 

was regularly dampened with de-chlorinated water and was changed during daily cleaning or 328 
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when soiled. Water dishes were changed daily. Frogs were fed 6 crickets every 3 days, along 329 

with a dietary supplement of either multivitamin, calcium, or calcium +D3.  330 

2.1.2 Performance testing schedule 331 
 332 

I separated frogs into three groups of four individuals and randomly selected one frog 333 

from each group as a control throughout each of the trials. For all trials and groups, the control 334 

was kept at the experimental temperature but was not dehydrated and jumped on the same 335 

schedule as test animals to account for potential performance losses due to cumulative 336 

physiological fatigue over the course of each trial (Greenberg & Palen, 2021). Prior to testing, 337 

individuals were fasted for 24 hours to avoid digestion-induced thermal variation (Preest & 338 

Pough, 1989; ). They then partook in one trial and were given a two-day recovery period before 339 

the next trial. One group was tested each day and the order of test temperatures was randomized 340 

across groups. At the start of each trial day, I randomized the order in which animals underwent 341 

trials. Start times were staggered every 30 minutes between animals to avoid having multiple 342 

individuals reach the target dehydration levels simultaneously.  If, at any point during the trials, 343 

an animal was deemed unfit to continue, they were immediately removed from trials for the day 344 

and placed in a recovery water bath for at least an hour or until they had returned to their pre-trial 345 

weight and were returned to their enclosure. Veterinary approval was obtained before using these 346 

animals in subsequent trials (this occurred only once across all trials).  347 

2.1.3 Hydration and temperature manipulations 348 

 349 
Jumping ability was tested at four hydration levels (100%, 92%, 84 %, 75%, 70%) and 350 

five temperatures (37°C, 33°C, 24°C, 15°C, 8°C). Frogs were only taken to 37°C at 100% 351 

hydration. Body temperature and hydration status were varied by placing animals in a 352 
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dehydration tunnel (transparent acrylic tube with screened ends and a fan; design followed 353 

Greenberg & Palen, 2021) within an environmental chamber (VEVOR Reptile Incubator) set at 354 

the target testing temperature. Prior to serial dehydration, animals were placed within a water 355 

bath inside the environmental chamber set at the target temperature for 1 hour to reach full 356 

hydration. The environmental chamber remained at the target temperature for the duration of the 357 

trials. Initial frog weights were taken following the first set of jumps at full hydration. 358 

Dehydration levels were calculated as percent mass lost from their initial mass under the 359 

assumption that mass lost would be almost entirely water. Individuals were then placed within 360 

their respective tunnels and weighed every five minutes to monitor weight loss until the target 361 

dehydration was reached. Serial dehydration, rather than a random, approach reduced the number 362 

of times animals were dehydrated, and was a necessary animal welfare consideration (Greenberg 363 

& Palen, 2021). There were three occurrences during which frogs were not taken to 70% 364 

hydration. The first was on the second day of trials at 15°C when frog A2 had been dehydrating 365 

for over 5 hours and was only at 84% hydration. We stopped trials at 75% as we were worried 366 

about overly stressing the frog given the long dehydration period. Subsequently, if frogs 367 

dehydrated slowly (< 0.01 g every five minutes for over 30 minutes)  we added an extra fan to 368 

the dehydration tunnel. The second occurrence was when A1 obtained a minor injury and was 369 

removed from trials for the day; he was subsequently examined and cleared for a return to trials 370 

by a veterinarian. The third occurrence was when frog A6 did not jump during his trial of 24°C 371 

at 75% hydration despite provocation and so was not dehydrated to 70% for that temperature. 372 

2.1.4 Jump testing 373 

Once animals reached the target dehydration, they were removed from their tubes with damp 374 

gloves and placed into the jumping arena. The arena was a 122cm x 200cm white MDF board 375 
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surrounded by an 80 cm high plastic wall (Figure 2.1). A GoPro Hero 11 mini (linear, 4K, 60 376 

fps) was fixed 120 cm above the arena floor. Scale bars 100 cm and 97 cm in length were affixed 377 

to the arena floor in the x and y directions.  If animals did not jump immediately, they were 378 

encouraged to by feigning capture by hand from behind or lightly prodding their urostyle. After a 379 

maximum of 6 jumps, they were placed back into their containers and dehydration continued 380 

until they had reached the next dehydration target. 381 

 382 

 383 

Figure 2.1. Jump arena set up. Platform was a 122cm x 200 cm white MDF board surrounded 384 
by 80 cm high plastic wall. A GoPro Hero 11 mini (linear, 4K, 60 fps) was fixed 120 cm above 385 
the arena floor. Pieces of tape 100 cm and 97 cm in length were affixed to the arena floor in the x 386 
and y directions for scale bars respectively. Left image is clear board with a frog placed away from 387 
the center. Right image is a screengrab of one trial with labeled trajectories.  388 

2.2 Field Microhabitat Data collection  389 

2.2.1 Study Area and Site Selection 390 

To study the effect of clearcutting and succession on microhabitat quality for gray 391 

treefrogs, I used 16 sites split across three areas in the boreal forest transition zone around 392 

Thunder Bay, Ontario, Canada: 134 km northwest of the city, near Lac des Milles Lacs/Upsala; 393 
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40 km north of the city along Highway 527 and Hazelwood Conservation Area; and up to 120 394 

km southwest of the city between Whitefish, Sandstone, and Sunbeam Lakes (Figure 2.2). All 395 

field work was conducted in Northwestern Ontario in the boreal forest transition zone from July 396 

to September 2024, during a portion of the active months for gray treefrogs in this region. All 397 

sites were within the Pigeon River and Lake Nipigon Ecoregions.  398 

 399 

Figure 2.2 All sites used during the summer 2024 field season. There are three main locations 400 
with respect to Thunder Bay: Lac des Milles Lacs (northwest) , Whitefish/Sandstone 401 
(southwest), and 527/Hazelwood (north of Thunder Bay).  Marker colours identify years of 402 
succession, i.e. since cutting: 1-2 years (yellow), 2-4 years (green), 7-10 years (red), and 14-18 403 
years (blue). 404 
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 405 

Figure 2.3 Vegetational regrowth across each time-since-cut in all cut sites. All photos were 406 
taken from eye height (168cm). 407 

The northwestern Ontario section of the Boreal Shield transition zone consists of mixed-408 

wood and boreal forests, with tree species including black spruce (Picea mariana), jack pine 409 

(Pinus banksiana), white spruce (Picea glauca), balsam fir (Abies balsamea), trembling aspen 410 

(Populus tremuloides), white birch (Betula papyrifera), and balsam poplar (Populus balsamifera) 411 

(Brandt et al., 2013). The region is further characterized by numerous lakes, and widespread 412 

wetlands such as bogs and fens (Crins et al., 2024). The climate is continental subarctic to humid 413 

continental, with long, cold winters and short warm summers. Summer months experience longer 414 
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day lengths due to higher latitudes of the boreal zone, experiencing on average 10-12 hours of 415 

sunlight (Price, 2013). 416 

I identified all field sites using a combination of LANDSAT data, the Boreal Disturbance 417 

Database, and MNRF forest management planning (FMP) maps (Hermosilla et al., 2016; 418 

Remmel et al., 2023; Wulder et al., 2024). Sites were controlled for relative size of disturbance 419 

and pre-disturbance forest type. Areas that had experienced multiple harvests throughout 420 

different years were not used due to lack of available uncut forest for controls and to avoid 421 

potential compounding effects from multiple continuous harvests (Anoszko et al., 2022). We 422 

restricted our study to seeded clearcuts rather than planted clearcuts because in Ontario planted 423 

sites are almost exclusively conifer-dominated, whereas seeded sites regenerate into deciduous 424 

stands. Including both would have introduced different regeneration pathways and structural 425 

trajectories and increased variation in our clearcut sites. All selected clearcut sites had undergone 426 

the same post-harvest regeneration treatments according to the OMNRF harvest inventory plans. 427 

However, data on tending, debris removal, and seeding was difficult to obtain for older sites 428 

(12+ years). I aimed to minimize differences within sites by identifying areas with similar 429 

terrain, slope, and forest type using LANDSAT data and site visits as per recommendations in 430 

deMaynadier & Hunter (1995). All cut sites were rapidly colonized by dense stands of aspen 431 

(Populus tremuloides) and birch (Betula papyrifera) all within the same age (Figure 2.3) in 432 

contrast to the more compositionally diverse mixed-wood forests that include coniferous species 433 

such as balsam fir (Abies balsamea) and jack pine (Pinus banksiana), alongside native deciduous 434 

species. 435 



 22 

2.2.2 Study Design 436 

I implemented a crossed hierarchical design in which sites were nested within time-since-437 

cut group and plots were nested within sites. I considered four time-since-cut groups: 1-2 years, 438 

2-4 years, 7-10 years, and 14-20 years. I used 16 sites in total (four time-since-cut group x four 439 

replicates); each site was divided into three plots: control (forest not cut recently), edge, and 440 

harvested. In each plot, I estimated adult treefrog operative temperatures and evaporative water 441 

loss (EWL) using plaster models (Hastings et al., 2023; Peterman et al., 2013; Tracy et al., 2007) 442 

in three microhabitats: ground, sheltered trunk, and open trunk (Dodd, 2013; J. R. Johnson et al., 443 

2008). Each site was sampled twice over the season with a minimum of 3 weeks between sample 444 

periods (Table 2.1). 445 
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Table 2.1 Sites used for sampling with geographic location, sampling dates, region, and time-446 
since-cut groupings. Date ranges indicate that sampling was done over two days for that period 447 

to encompass both daytime and evening collection periods.  448 

 449 

2.2.3 Site Preparation 450 

Trees were randomly selected within each cut-block section of the site and then tree 451 

species, tree height and diameter at breast height (DBH), and distance between trees was 452 

replicated, as closely as possible, in the edge and forested plots. Tree selection was limited by 453 

tree availability in harvest plots, as there were generally fewer large standing trees in those 454 

environments, particularly in older plots. However, I aimed for two coniferous and two 455 
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deciduous in each plot. Edge habitat was considered to be within 30 meters on both sides of the 456 

treeline (Boucher et al., 2011; Matlack, 1993). I recorded site-characteristics around each tree 457 

including ground, mid-story, and upper story vegetation, canopy cover above replica placement, 458 

and leaf litter quantity. I measured heights for each tree whose microhabitats were being 459 

measured. I recorded overall macrohabitat weather (temperature, relative humidity, and 460 

dewpoint) for each clearcut with a temperature logger (HOBO Onset MX2301A) paired with a 461 

radiation shield for each recording period. 462 

 463 

Figure 2.4 Sampling of macro- and micro-habitats at a single site. Left: an idealized site with 464 
three macrohabitat plots: Forest, Edge, and Cut. Middle:  replica deployment on each tree, with 465 
(1) uncovered replicas, (2) replicas covered with pvc pipe, and (3) ground replicas. Right: photos 466 
of each microhabitat at a 2022 cut site. 467 

2.2.4 Replica construction and calibration 468 
 469 

I used plaster replicas (Hastings et al., 2023; Peterman et al., 2013; Tracy et al., 2007) to 470 

measure evaporative water loss (EWL) and surface temperatures in three microhabitats: trunk-471 

covered, trunk-uncovered, and ground. Replicas were based on Tracy et al. (2007). Plaster 472 
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replicas were created in two postures that real frogs adopt: water conservation (inactive) and 473 

upright (active) (Figure 2.5). Prior to field deployment, I tested whether plaster replicas in 474 

upright postures lost more water than those in water conservation. I used five replicas for each 475 

posture and tested them over two days. Each of the models were weighed, soaked in water for an 476 

hour, re-weighed and then left for four hours at 21°C in front of a fan to simulate the time they 477 

will be left in the field. They were then re-weighed to determine water loss as a percentage of 478 

original body mass. I found upright models to lose water faster than flat models and thus used 479 

both postures for all subsequent work. In total, I built 300 replicas, 150 in each posture.  480 

 481 
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Figure 2.5 Evaporative water loss from plaster replicas in two postures at 22.5 ºC. A: example 482 
replicas in upright (left) and water conservation/flat (right) postures. B: Differences in water loss 483 
between postures (n=4 replicas in each posture, with water loss measured across 2 days). The 484 
plot indicates water loss measurements taken over two days.  485 

To determine if my replicas approximated EWL rates of real frogs, I conducted 486 

calibration tests using three of the live frogs captured for the jumping performance tests, three 487 

upright replicas, and three flat replicas. These tests were conducted after jump trials had 488 

concluded and experimental animals had rested for 2 days. Each frog (real and plaster) was 489 

soaked in water for 60 minutes to reach full hydration. They were removed from their water, 490 

weighed, brought outside and placed in mesh-covered dishes in direct sunlight. Every five 491 

minutes I recorded surface temperatures (using Omega Infrared thermometer), weight, and 492 

whether the real frogs were in water conservation. Mass lost every five minutes was calculated 493 

by subtracting each weight at five minutes from the initial full hydration weight to get a total 494 

weight lost at the end of the 70-minute period. I compared the rate of weight loss between real 495 

frogs in upright position with replicas in upright position, and between real frogs in water 496 

conservation with replicas in water conservation position (Figure 2.6). I found a significant 497 

positive correlation between rates of real frogs and replicas (r = 0.865, p < 0.0001). I did not 498 

perform temperature corrections to match dehydration corrections due to lack of data on internal 499 

body temperatures of frogs during correction testing. To calculate the correction between real 500 

and replica frog water loss rates, used the following formula: 501 

𝐶𝐶𝐶𝐶 =  
𝛽𝛽1
𝛽𝛽2

 502 
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Where: CF is the correction factor,  𝛽𝛽1 is the slope of linear regression model for treefrog water 503 

loss against time; and 𝛽𝛽2 is the slope of the linear regression model for replica water loss against 504 

time.  505 

 506 

Figure 2.6 Water loss rates of real frogs (n=3) and plaster replicas (n=3) measured every five 507 
minutes over 70 minutes in an identical outdoor environment exposed to natural weather 508 
conditions (e.g. wind, radiation, humidity, temperature). Black line indicates the linear model for 509 
real frog water loss ~ replica water loss.  510 

2.2.5 Field replica deployment 511 
 512 
All replicas on tree trunks  were placed along the north-facing side of trunks 2 metres 513 

from the ground, and ground replicas were placed directly below also on the north-facing side 514 

around crevices or under vegetation on the ground. Trunk shelters were made from grey PVC 515 
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pipe to standardize shelter size and structure. Two replicas of different postures were paired 516 

together for each microclimate measurement (Figure 2.5) to estimate conditions at different 517 

activity levels in the field. Each pair of replicas was placed as closely together as possible 518 

(within 5-6 cm) with a HOBO MX2201 or HOBO pendant temperature datalogger in between 519 

them. Out of 16 sites, there were four from the early successional stages at which replicates in 520 

the harvest plots were placed on two adjacent trees of the same trunk size and height as single 521 

trees were too small to accommodate both models.  All other sites had replicas on the same tree. 522 

Trunk replica pairs were aligned vertically and ground replica pairs side-by-side (Figure 2.4; 523 

right). Vertical positioning of replicas (Figure 2.4) was randomized at each site to account for 524 

effects of placement on water loss were.  525 

For field deployment, replicas were soaked in water for one hour (time to full saturation), 526 

then weighed prior to deployment. I placed replicas at the three microhabitats within each plot 527 

(one site x three macrohabitats x three microhabitats x four replicates of each microhabitat = 48 528 

replicas at each site). Replicas were left for four hours during the day or 11 hours at night in each 529 

plot before being re-weighed to estimate evaporative water loss. Night and day deployment times 530 

differed because I assumed that replicas left out for 11 hours during the day would desiccate 531 

completely and I would be unable to determine when 100% water loss occurred. I recorded 532 

temperature experienced in microhabitats every 30 minutes as closely as possible to each pair of 533 

frogs using an unshielded temperature logger (HOBO MX2201 or HOBO pendant) for both day 534 

and evening temperatures. Replica surface temperature during the day was recorded manually 535 

every 30 minutes using an Omega thermocouple RDXL4SD type T. Data was collected during 536 

the day from 10:00 to 14:00, and overnight from 20:00 to 7:30 the next day. Deployment times 537 

shifted by 30 minutes near the middle and end of August to match the shift in sunset and sunrise 538 
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times. To avoid bias and to minimize differences in deployment and removal times, the order of 539 

deployment within each plot was randomized and then maintained for removal to ensure replicas 540 

were deployed for equal amounts of time. Since plaster replicas eventually began to deteriorate, 541 

they were replaced when their dry mass was reduced to 80% of their original dry mass (Tracy et 542 

al., 2007).  543 

2.3 Analysis 544 

 545 
All statistical tests were performed using software R version 4.3.1 (R Development Core 546 

Team). I used packages nlme (Pinheiro et al., 2025) and glmmTMB (Brooks et al., 2017) for 547 

model fitting, DHARMa (Hartig et al., 2024), emmeans (Lenth et al., 2025), performance 548 

(Lüdecke et al., 2021), and afex (Singmann et al., 2024) for model checks and post-hoc analysis. 549 

I used the interp (Gebhardt et al., 2024) package for bilinear interpolation of performance 550 

estimates. 551 

2.3.1 Jump Distance  552 

All videos were analyzed using Kinovea™. I measured the distance from each jump's 553 

start to endpoint for each frog and trial combination and used only the maximum jump distance 554 

as an estimate of maximal performance (H. John-Alder et al., 1988). If a frog did not jump or 555 

move, jump distance was recorded as zero. Jumps were considered distinct from hops as a form 556 

of movement and were distinguished by full extension of the frogs’ hind limbs (see Mitchell & 557 

Bergmann, 2016). Though acceleration is occasionally used as a measure of performance 558 

alongside jump distance, (A. Mitchell & Bergmann, 2016; Wilson, 2001) I did not calculate 559 

acceleration. Each maximum jump distance was used to fit hydro- and thermal- performance 560 

curves in section 2.3.2. 561 
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I used a linear mixed effects model to test the effect of the time frogs spent in a trial on 562 

jump distance, with fixed effects of time under trial and random effect of frog and date. I 563 

conducted this test to isolate potential physiological fatigue from being in trials from the effects 564 

of dehydration by comparing control frogs that did not undergo dehydration with test frogs that 565 

did undergo dehydration. I found no significant effect of time under trial on control frog jump 566 

distance (β =-0.00479, df = 48 , SE =  0.0078, p = 0.541; Figure 2.7). 567 

 568 

Figure 2.7 The effect of time under trial on jump distances for control frogs. Each plot is 569 
grouped by trial temperature. Points indicated normalized jump distances for each of the control 570 
frogs. 571 

2.3.2 Hydrothermal Performance Curves 572 

 573 
To quantify hydrothermal performance relationships for gray treefrogs, I fit a candidate 574 

set of thermal performance functions and dehydration-performance curves to laboratory jumping 575 



 31 

data (full list in Appendix B) for each frog separately. To account for uncertainty in model 576 

selection, I ranked all fitted candidate models for each frog using Akaike’s Information Criterion 577 

(AIC), calculated Akaike weights, and generated model-averaged predictions for that individual. 578 

This produced one averaged curve for each frog for each axis (temperature or hydration). I 579 

modeled thermal and hydric performance relationships separately (univariate fits) because (1) no 580 

established functional form exists for a joint temperature–hydration performance curve  581 

(Angilletta, 2009; Huey & Stevenson, 1979), and (2) my dataset did not support fitting high-582 

dimensional nonlinear mixed models without convergence failures or biologically unrealistic fits. 583 

Fitting models ignoring that each individual was measured multiple times was not an option as it 584 

would result in pseudoreplication.   585 

Fitting curves separately for each frog avoided problems with mixed-effects nonlinear 586 

model structure and allowed me to retain the shape and scaling of each individual’s response 587 

(Figure 3.1 and Figure 3.3). Within each frog, I fit candidate functions (adapted Kontopoulos et 588 

al., 2024 and Padfield et al., 2021) with nonlinear least squares regression (Appendix B) with 589 

either hydration or temperature as a response. I scaled jump distances to 0–1 (where 1 = that 590 

frog’s maximum distance). I excluded fits if they were multimodal (> three peaks within the 591 

observed range), exhibited unrealistic monotonic change across the experimental range, or 592 

clearly overfit the data (Angilletta, 2006). I only used frogs that had at least three data points 593 

(maximum jump) for each temperature and dehydration combination. This meant that for 70% 594 

dehydration, there is no weighted curve for frog A6. 595 

By using a broad candidate set for each univariate relationship and applying model 596 

selection and model-averaging, I aimed to reduce selection uncertainty in curve shapes (and 597 

therefore parameter estimates) and to ensure that predictions were not unduly influenced by a 598 
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single arbitrarily chosen model  (mixed models selection: Angilletta, 2006, Dormann et al., 2018; 599 

J. B. Johnson & Omland, 2004; Kontopoulos et al., 2024; Rozen-Rechels et al., 2019). 600 

Restricting the analysis to a single or small set of functions risks model misspecification, which 601 

could bias parameter estimates and predictions (J. B. Johnson & Omland, 2004).  602 

For species-level predictions, I combined curves in two stages: 603 

(1) Within-frog averaging: Model-averaged curves were generated using Akaike 604 

weights, so the contribution of each candidate function reflected its relative support 605 

for that frog’s data (Appendix A for model weights). 606 

(2) Across-frog averaging: The resulting individual model-averaged curves were then 607 

combined into a single population curve by equal-weighting each frog’s contribution. 608 

This ensured that all individuals contributed equally to the species-level estimate, 609 

regardless of the number of candidate functions retained for each frog 610 

I used the population model-averaged curves to build a predictive surface of jumping 611 

performance that combines temperature and hydration (Figure 3.5). To estimate field 612 

performance, I merged the two univariate surfaces into a bivariate surface by pairing predictions 613 

from the corresponding hydration and temperature curves and interpolating across the 614 

microhabitat field data (temperatures and hydration states) (Figure 3.5). The resulting predicted 615 

jump distances served as the response variable in subsequent statistical models comparing 616 

potential performance across sites and microhabitats (Section 2.3.3). This approach is analogous 617 

to using derived variables, common in species distribution or ecological niche modelling 618 

techniques, where predictions are treated as response variables in subsequent analyses (Elith & 619 

Leathwick, 2009).  620 
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I acknowledge several limitations in the above approach to curve fitting and 621 

interpolation. First, treating the curves univariately and later combining them may inflate the 622 

effective sample size, since the same individuals contribute to both fits. Second, propagating 623 

predictions from two separate models into a single combined surface inevitably carries forward 624 

the uncertainties from each fit. Nonetheless, given the current dataset and the study’s primary 625 

objective of estimating performance consequences under realistic field conditions, this approach 626 

represents a compromise between model complexity and data limitations. While this method 627 

allows for an integrated link between measured field conditions and laboratory-based 628 

performance relationships, it should be interpreted cautiously, as the predictions are subject to 629 

the combined errors and assumptions of both datasets. 630 

2.3.3 Hypothesis testing 631 

To examine differences in site conditions between clearcuts, forests, and edges through 632 

forest regrowth, I used model-averaged predictions from Section 2.3.2 to estimate expected 633 

performance under field conditions, using observed environmental temperature and hydration 634 

data. In this section, I tested for differences between macrohabitats (cut, edge, forest), 635 

microhabitats (ground, covered, uncovered) across each time-since-cut age. For each hypothesis, 636 

I fit mixed effects models with either temperature, water loss, or performance as the response 637 

variable. Models were fit for day and night separately. All models included random effects of 638 

sites nested within date to account for site variation, weather differences among days, and 639 

temporal autocorrelation. I performed all analyses using replica temperatures averaged across the 640 

entire period of deployment, corrected water loss levels calculated using the correction factor 641 

derived from calibration tests (correction factor ~ 0.7400), and performance estimates derives 642 

from jump testing data described above (Section 2.3.2). Sites with a minimum of one rainy day 643 
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were removed from the water loss and performance models to allow for proper specification of 644 

the nesting structure for date of visit and corresponding sites. For models that demonstrated 645 

autocorrelation after including random date effect, I checked for stationarity using Augmented 646 

Dickey-Fuller (ADF) tests and used autocorrelation function (ACF) and partial autocorrelation 647 

function (PACF) plots to determine p and q values for correlation structures. I checked all final 648 

models for assumptions of residual overdispersion, heteroscedasticity, normality, and 649 

independence. I performed multiple comparisons of estimated marginal means (with Tukey 650 

corrected p-values for multiple comparisons) post hoc tests to analyze interactions and fixed 651 

effects of significant in each of the models. 652 

2.3.4 Hypothesis one: macrohabitats through succession 653 

For hypothesis one models with temperature as a response, I fit non-linear mixed effects 654 

models (nlme package) with gaussian distributions and autocorrelation specifications (p=1, q=0).  655 

For the responses of water loss and performance, I fit generalized linear mixed effects models 656 

with a t-family distribution. I fit all models testing hypothesis one with a fixed interaction 657 

between macrohabitat (cut, edge, and forest) and age, and main effects of macrohabitat, age, and 658 

microhabitat. The random effect was date nested within site (Figure 2.8). 659 

 660 

Figure 2.8 Hypothesis one model structure. Models were fit for each response variable and each 661 
period (day or overnight) separately. Models were fit as non-linear mixed effects models with a 662 

gaussian distribution and autocorrelation function specifications. 663 

Response: Water loss or Temperature or Predicted performance 

Fixed Effects:  Macrohabitat x Age + Microhabitat 

Random Effects: (1| site/date) 
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2.3.5 Hypothesis two: microhabitat and posture differences 664 

For all models testing hypothesis two, I fit generalized linear mixed effects models with a 665 

t-student distribution (Brooks et al., 2017; glmmTMB package). I included the same fixed effects 666 

as for testing hypothesis one but added posture and interaction terms between microhabitat and 667 

age, and microhabitat and macrohabitat (Figure 2.9). Effects of posture on temperature could not 668 

be determined for overnight data as one temperature measurement was taken for each pair of 669 

upright and flat replicas in each microhabitat. I could not directly test the difference between day 670 

and night performance effects in the same model due to differences in time intervals for water 671 

loss rates. The same procedures and model checks were followed for all models as described 672 

above (section 2.3.3). 673 

 674 

Figure 2.9 Hypothesis Two Model Structure. Models were fit for each response variable and 675 
each period (day or overnight) separately. Models were fit as generalized linear mixed effects 676 

models when residual distribution required alternative specification (t-family) 677 

In the above section, my aim was to test for differences in expected performance among 678 

habitats and conditions. I therefore used a frequentist approach (linear/mixed-effects models) for 679 

hypothesis testing. This is distinct from the statistical method used in Section 2.3.2, wherein I 680 

used information-theory to estimate hydrothermal performance curves with no a priori 681 

hypotheses about general curve shape. These two stages address different questions—curve 682 

estimation versus hypothesis testing—and thus employ the statistical framework most 683 

appropriate to each objective. Although the second stage is based on predictions from the first, I 684 

Response: Water loss or Temperature or Predicted performance 

Fixed Effects:  Macrohabitat : Age + Age : Microhabitat + Macrohabitat : Microhabitat + 
Macrohabitat +   Age + Microhabitat + Posture  

Random Effects:  (1 | site/date) 
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treat them as conceptually distinct analyses. Using different statistical paradigms in different 685 

parts of an analysis is common in ecological modeling when stages have distinct inferential goals 686 

(Burnham & Anderson, 2004; J. B. Johnson & Omland, 2004). In such cases, the choice of 687 

framework is guided by the nature of the question being addressed, rather than by strict 688 

adherence to a single philosophical approach. 689 

3 RESULTS 690 

3.1 Thermal Performance Curves 691 

Thermal performance curves revealed that both thermal breadth and thermal optima shifted 692 

with hydration level (Figure 3.2), with Topt at 100% hydration substantially higher than at other 693 

hydration levels. Frogs reached their highest maximum performance at 92% hydration (max = 694 

0.81), and their lowest maximum at 70% hydration (max = 0.26). Thermal performance breadth 695 

(defined as the range of temperatures where performance was 90% of maximum) narrowed only 696 

slightly; at 100% hydration, it spanned 11 °C while at 70% hydration it spanned 9 °C. However, 697 

its position varied greatly, being situated between 28°C and 39.0 °C at 100% hydration and from 698 

22°C – 31 °C at 70%. Individual curves varied in shape and magnitude but consistently showed 699 

declines in performance at both high and low thermal extremes when dehydration increased. 700 

Individual weighted curves are present in Figure 3.1 demonstrate variation in thermal 701 

performance across frogs under different hydration treatments. 702 
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 703 

Figure 3.1 Weighted-average thermal performance curves for each frog at each hydration level. 704 
Faded coloured lines for each frog (each rectangle) indicate single curves fit from model types. 705 
Performance was measured as maximum jump distance, standardized as the proportion of each 706 
frog's maximum jump distance across all temperatures. Standardized performance values for each 707 
frog are indicated by black points. Temperature was measured from incubation temperatures in 708 
which frogs were held during trials. Solid black lines for each plot are results from Akaike 709 
weighted average curves for each frog. Not all models were fit for each frog due to parameter (k) 710 
restrictions and final curve shapes for each model.  711 

 712 
 713 
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 714 

 715 

Figure 3.2 Thermal performance curves at five dehydration levels (100%, 92%, 84 %, 75%, 716 
70%).  Data for trials was subset for dehydration levels across five temperatures (37°C, 33°C, 717 
24°C, 15°C, 8°C). Frogs were only taken to 37°C  at 100% hydration. Performance was 718 
measured as jump distance, normalized as the proportion of each frog's maximum jump distance 719 
across all temperatures. Temperature was measured from incubation temperatures in which frogs 720 
were held during trials. Curves produced are weighted averages from the curves fit to each frog. 721 
Coloured points correspond to standardized maximum jump distance for frogs (A1, A2, A3, etc.) 722 

3.2 Hydro-Performance Curves 723 

Hydro-performance curves indicated peak performance between 87%-92% hydration, with 724 

the highest optima occurring at 33°C and when frogs were nearly fully hydrated at 98% (Figure 725 

3.4). Across 8, 15, and 24°C, frog performance declined past 10% of their maximum values after 726 

reaching 15-20% dehydration. However, at 33°C, this threshold is reached at 10% dehydration. 727 

Maximum performance is lowest at the coldest temperature (8°C: max performance = 0.468). 728 
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Performance was highest at the warmest temperature (33°C max performance = 0.825) but 729 

declined rapidly below 90% hydration (Figure 3.4). Hydro performance curves showed 730 

consistent shapes across temperatures, with performance remaining relatively stable until 731 

hydration dropped below ~20%, after which all curves declined similarly (Figure 3.4). Individual 732 

averaged curves are presented in Figure 3.3, illustrating variation in hydric performance across 733 

frogs under different temperature treatments. 734 

 735 
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 736 
 737 

Figure 3.3 Individual weighted-average hydro-performance curves for all frogs and all 738 
temperature subsets. Faded coloured lines for each frog (each square) indicate single curves fit 739 
from model types (see appendix). Solid black lines for each plot are results from Akaike weighted 740 
average curves for each frog. Performance was measured as jump distance, normalized as the 741 
proportion of each frog's maximum jump distance across all temperatures. Points indicate these 742 
standardized distances for each frog at each hydration level (100, 92, 84, 75, 70 %) Hydration was 743 
measured as  percentage of fully hydrated mass lost. Not all models were fit for each frog due to 744 
parameter (k) restrictions and final curve shapes for each model.  745 

 746 

 747 
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 748 

 749 
 750 

Figure 3.4 Hydro performance curves at four temperatures. Data for trials was subset for water 751 
loss rates at each temperature (33°C, 24°C, 15°C, 8°C) across five dehydration levels (100%, 752 
92%, 84 %, 75%, 70%). Performance was measured as jump distance, normalized as the 753 
proportion of each frog's maximum jump distance across all temperatures. Hydration was 754 
measured as a percentage of fully hydrated mass lost. Curves are averaged from the weighted 755 
curves fit to each frog. Coloured points correspond to normalized  maximum jump distance for 756 
frogs (A1, A2, A3, etc.) 757 

3.3 Hydro-thermal Surface  758 

To estimate the combined effects of temperature and hydration, I constructed a 759 

hydrothermal performance surface using the model-averaged curves above. This surface 760 

illustrates predicted jump performance across the range of conditions observed in the field 761 

(Figure 3.5).  762 

 763 
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 764 

Figure 3.5 Hydrothermal performance surface generated from merging the univariate curves for 765 
hydro-performance and thermal performance curves and interpolating across a bilinear grid. 766 
Performance was measured as jump distance, normalized as the proportion of each frog's 767 
maximum jump distance across all temperatures. Hydration was measured as a percentage of 768 
fully hydrated mass lost. Temperature was measured from incubation temperatures in which 769 
frogs were held during trials. 770 

3.4 H1 - Successional Differences in Macrohabitat 771 

 772 
For the first hypothesis that forest and cut macrohabitats would be significantly different 773 

immediately post-cut and that these differences would persist 20-years post-cut,  I tested 774 

interaction between macrohabitat (plot) and successional stage with additive effect of 775 

microhabitat (Table 3.1 and Table 3.2). 776 

3.4.1 Daytime habitat and age interactions 777 

  778 
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I found a significant main effect of microhabitat, as well as a significant interaction 779 

between plot type and age for all three response variables (temperature, water loss, performance 780 

fit for daytime data (Table 3.1).  781 

Table 3.1 Hypothesis one model results for all three response variables during the day. Significant 782 
tests used marginal sums of squares for linear mixed effects models. Df indicates the numerator 783 
degrees of freedom. For the daytime water loss model, the denominator degrees of freedom 784 
(denDF) are: 22262 for plot type, microhabitat, and the plot type × age interaction; and 12 for age. 785 
For both the daytime water loss and performance models, the denominator degrees of freedom 786 
(denDF) are: 2120 for plot type, microhabitat, and the plot type × age interaction; and 11 for age. 787 
Denominator degrees of freedom for linear mixed effects models with lme were calculated using 788 
Kenward-Roger approximations. Significant p-values are in bold. 789 

 790 

Post-hoc tests for the interaction between macrohabitat and clearcut age indicated 791 

significant differences between habitats for all ages (Figure 3.6). For temperature effects, it was 792 

significantly warmer in cut plots than both forest and edge habitats, with the largest difference 793 
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between cut and forests 2-4 years old (mean difference = 1.715 ºC, SE = 0.0973, p < 0.001). The 794 

smallest difference was in cuts 14-20 years old (mean difference = 0.563 ºC, SE = 0.0973, p < 795 

0.001). Differences in water loss rates between cut and forests were significant across all ages, 796 

with the greatest difference in 1–2-year-old sites (mean difference = 5.15 % weight lost, SE = 797 

0.232, p < 0.001) and diminishing over time but remaining significant in our oldest successional 798 

stage (14-20-years-old: mean difference = 1.492 % weight lost,  SE = 0.269, p < 0.001). 799 

Estimated performance differences were significant between cut and forests habitats across all 800 

ages (Figure 3.6) with the smallest difference occurring in 14-20 year-old cuts (mean difference 801 

= 0.024, SE = 0.0052, p < 0.001) and the largest differences occurring in our 7-10-year-old and 802 

14-20-year-old successional plots (Figure 3.6). 803 
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 804 

Figure 3.6 Daytime performance (A), temperature (B), and water loss (C) differences between 805 
macrohabitats (plot types: cut, edge, and forest). All results are averaged over microhabitat type. 806 
Results were generated from mixed effects models with fixed effects of macrohabitat, age, 807 
microhabitat, and an interaction term between macrohabitat x age. The model was fit with 808 
random effect of date nested within site. Points indicate all raw data. Bars indicate significant 809 
differences between pairs of macrohabitats with associated p-values (significant if p < 0.05). 810 
Comparisons were generated from estimated marginal means of difference between 811 
macrohabitats across age groups with Tukey adjusted p-values for multiple comparisons. 812 
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3.4.2 Overnight habitat and age interactions 813 
 814 

I found a significant main effects of microhabitat, as well as a significant interaction 815 

between plot type and age for all three models fit for overnight data (Table 3.2). 816 

Table 3.2 Hypothesis one model results for all three response variables fit for overnight data. Left 817 
side table indicates models fit with temperature and performance ANOVA summaries generated 818 
using marginal type significance estimates and F-statistics. Right table is the model fit with 819 
hydration as a response with summaries generated using likelihood ratio tests with estimated chi 820 
squared distributions and model fit with as a glmm. For the overnight performance model, the 821 
denominator degrees of freedom (denDF) are: 2069 for plot type, microhabitat, and the plot type 822 
× age interaction; and 11 for age. For the overnight temperature model, the denominator degrees 823 
of freedom (denDF) are: 2120 for plot type, microhabitat, and the plot type × age interaction; and 824 
11 for age. Denominator degrees of freedom for linear mixed effects models with lme were 825 
calculated using Kenward-Roger approximations. Significant effects are indicated by bold p-826 
values.  827 

 828 

Post-hoc tests for the interaction between macrohabitat (plot type) and clearcut age 829 

revealed significant differences in performance between habitats for all ages overnight (Figure 830 

3.7 and Table 3.2). For temperature effects, it was significantly warmer in forest plots than both 831 

cut and edge habitats in all successional groups except in 1-2 year-since-cut groups, where no 832 

significant difference was found (mean difference = 0.213 ºC, SE = 0.1647, p < 0.399). The 833 
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largest difference between cut and forests occurred in 7–10-year-old sites (mean difference = -834 

0.783 ºC, SE = 0.165, p < 0.001), where it was colder in clearcuts than in forests. Water loss was 835 

significantly higher in forests than in cuts (Figure 3.7) in almost all age groups except in 2-4 836 

years-since-cut groups (mean difference = -0.117 % weight lost, SE = 0.0895, p = 0.393). Water 837 

loss was only significantly greater in 2–4-year-old cuts than in forests (mean difference = 0.5213 838 

% weight lost, SE = 0.1070, p < 0.001). The largest difference between water loss in cut and 839 

forested habitats occurred in 14–20-year-old sites, wherein frogs lost more water in forests 840 

(mean difference = -0.737 % weight lost, SE = 0.1234, p < 0.001). Resulting performance was 841 

significantly higher in forests than in cuts across all ages except in 1-2-year-old sites (Figure 842 

3.7). Performance differences between forest and cuts were largest in 7–10-year-old sites, when 843 

forests were significantly higher than cut plots (mean difference = -0.017, SE = 0.0027, p < 844 

0.001).  845 

Performance was higher in nearly all time-since-cut groups in forest compared to cut and 846 

macrohabitats. This difference was significant in all cut-ages except for 1-2-year-old cuts (Figure 847 

3.7). 848 
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 849 

Figure 3.7 Overnight performance (A), temperature (B), and water loss (C) differences between 850 
macrohabitats (plot types). Results were generated from mixed effects models with fixed effects 851 
of macrohabitat, age, microhabitat, and an interaction term between macrohabitat x age. The 852 
model was fit with random effect of date nested within site. Large bold points indicate data 853 
outliers, and faded points indicate all raw data. Bars indicate significant differences between 854 
pairs of macrohabitats with associated p-values (significant if p < 0.05). Comparisons were 855 
generated from estimated marginal means of difference between plot types across age groups 856 
with Tukey adjusted p-values for multiple comparisons. 857 
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3.5 Microhabitat and postural differences across succession in macrohabitats 858 

 859 
For the second hypothesis that overnight differences between cut and forests in uncovered 860 

microhabitats between would be more pronounced than differences in covered microhabitats 861 

during the day, I tested the interactions between macrohabitat (plot), successional stage, and 862 

microhabitat (Table 3.3 and Table 3.7).  863 

3.5.1 Daytime microhabitat effects 864 

Models fit for temperature during daytime periods revealed significant interactions 865 

between microhabitat and age and plot type with age, but no significant interaction of plot type 866 

with microhabitat (Table 3.3). Models for both hydration and temperature revealed significant 867 

interactions between all response variables of plot type, microhabitat, and age (Table 3.3). 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 
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Table 3.3 Models testing hypothesis two and interactions of plot and age with microhabitat. All 882 
estimates were generated from type III significance tests using denominator degrees of freedom 883 
(ddf) F tests for p-values. Significant estimates are indicated by bolded p-values. “Df” indicates 884 
numerator degrees of freedom for each parameter.  885 

 886 

Post hoc tests for comparisons of temperatures in microhabitats between plots during the 887 

day (e.g. uncovered cut vs. uncovered forest) demonstrated significantly higher average 888 

temperatures in all cut habitats than in forested habitats in both covered and uncovered 889 

microhabitats for all ages (Table 3.4). Differences between temperatures in cut and forests were 890 

larger for uncovered microhabitats, and the largest difference by year occurs in 7-10-year-old 891 

sites for both covered (mean difference = 1.417 ºC, SE = 0.086, p <0.001) and uncovered (mean 892 

difference = 1.4363 ºC, SE = 0.084, p < 0.001) microhabitats (Figure 3.8). There were no 893 

significant differences between microhabitats within habitat types except between covered and 894 

uncovered forest microhabitats in 7–10-year-old sites (Table 3.4). 895 
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Table 3.4 Daytime estimated marginal means for microhabitat comparisons within (left) and 896 
between (right) macrohabitat types for temperature. Results were generated from Tukey corrected 897 
least squares means on the mixed effects models for temperature and hypothesis two. “Age” 898 
indicates the time-since-cut group, “contrast” indicates the microhabitat and plot contrasts, with 899 
“estimate” as the difference between the estimated marginal means for each term in the pairing 900 
going from left to right. Significant contrasts (p < 0.05) are indicated in bold. 901 

 902 
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 903 
Figure 3.8  Daytime temperature differences between macrohabitats (plot types: cut, edge, and 904 
forest). Results were generated from mixed effects models with fixed effects of plot type 905 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 906 
random effect of date nested within site. Points indicate all raw data. Comparisons were 907 
generated from estimated marginal means of difference between microhabitat and macrohabitat 908 
interactions across age groups with Tukey adjusted p-values for multiple comparisons.  909 

Post hoc tests for comparisons of water loss rates in microhabitats between plots during 910 

the day (e.g. uncovered cut vs. uncovered forest) demonstrated significantly higher water loss 911 

rates in cut habitats than in forested habitats in both covered and uncovered microhabitats for all 912 

ages (Table 3.5). Differences in water loss rates between cut and forests were larger for 913 

uncovered microhabitats, and the largest difference by year occurs in 1-2-year-old sites for both 914 

covered (mean difference = 4.9029 % weight lost, SE = 0.242, p <0.001) and uncovered (mean 915 

difference = 5.3126 % weight lost, SE = 0.084, p < 0.001) microhabitats. Differences between 916 
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microhabitats diminished throughout succession but were still significant in our earliest 917 

successional stage treatment (14-20-years; Table 3.5). Water loss was significantly higher in 918 

uncovered microhabitats within habitat types (e.g. covered cut vs uncovered cut) for all age 919 

groups in both forest and clearcut habitats (Table 3.5). Differences between water loss rates in 920 

microhabitats was larger in cuts than in forests for all age groups, and differences were greatest 921 

in the most recent successional stage (1-2-year-old: mean difference = -1.67 % weight lost, SE = 922 

0.261, p < 0.001), with uncovered replicas losing more water (Figure 3.9). 923 

Table 3.5 Daytime estimated marginal means for contrasts in water loss rates for microhabitat 924 
comparisons within (left) and between (right) macrohabitat (plot) types. Results were generated 925 
from Tukey corrected least squares means on the mixed effects models for water loss in 926 
hypothesis two. “Age” indicates the time-since-cut grouping, “contrast” indicates the 927 
microhabitat and plot contrasts and direction, with “estimate” as the difference between the 928 
estimated marginal means for each term in the pairing.  Significant contrasts (p < 0.05) are 929 
indicated in bold. 930 

 931 
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 932 
Figure 3.9 Daytime water loss differences between macrohabitats (plot types: cut, edge, and 933 
forest). Results were generated from mixed effects models with fixed effects of plot type 934 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 935 
random effect of date nested within site. Points indicate all raw data. Comparisons were 936 
generated from estimated marginal means of difference between microhabitat and macrohabitat 937 
interactions across age groups with Tukey adjusted p-values for multiple comparisons.  938 

Post-hoc tests for comparisons of estimated performance in microhabitats between plots 939 

during the day (e.g. uncovered cut vs. uncovered forest) indicated significantly higher 940 

performance in cut habitats than in forested habitats in both covered and uncovered 941 

microhabitats for all ages (Table 3.6). There were no significant differences for performance in 942 

cuts between uncovered and covered microhabitats except in the 14-20-year-old cuts (Table 3.6). 943 

Between clearcuts and forests, performance was higher in both covered cut and uncovered cuts 944 

relative to covered forest and uncovered forest microhabitats (Table 3.6), and the largest 945 
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difference occurred in 2-4-year-old sites for both covered (mean difference = 0.0451, SE = 946 

0.003, p <0.001) and uncovered (mean difference = 0.0367, SE = 0.003, p < 0.001) 947 

microhabitats. Differences between microhabitats diminished throughout succession but were 948 

still significant in our earliest successional stage treatment (14-20-years-old; Table 3.6). 949 

Comparisons of estimated performance in uncovered vs. covered microhabitats within 950 

plots during the day (e.g. uncovered cut vs. covered cut) indicated significant differences in both 951 

forest and clearcut habitats only in our earliest age treatment (14-20-years-old; Table 3.6; Figure 952 

3.10). Differences in performance were greater in forests between covered and uncovered 953 

microhabitats for the two earliest time-since-cut groups (14-20 years and 7-10 years), with 954 

higher estimated performance in uncovered forest microhabitat (Table 3.6; Figure 3.10). There 955 

were no significant differences between microhabitats within habitat types 2-4 or 1-2-year-old 956 

sites (Table 3.6). 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 
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Table 3.6. Daytime estimated means for contrasts in performance for microhabitat comparisons 969 
within (left) and between (right) macrohabitat (plot) types. Results were generated from Tukey 970 
corrected least squares means on the mixed effects models for performance in hypothesis two. 971 
“Age” indicates the time-since-cut group, “contrast” indicates the microhabitat and plot contrasts, 972 
with “estimate” as the difference between the means for each term in the pairing. Significant 973 
contrasts (p < 0.05) are indicated in bold. 974 

 975 
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 976 

Figure 3.10 Daytime performance differences between macrohabitats (plot types: cut, edge, and 977 
forest). Results were generated from mixed effects models with fixed effects of plot type 978 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 979 
random effect of date nested within site. Points indicate all raw data. Comparisons were 980 
generated from estimated marginal means of difference between microhabitat and macrohabitat 981 
interactions across age groups with Tukey adjusted p-values for multiple comparisons.  982 

 983 

3.5.2 Overnight microhabitat effects  984 

Models fit for temperature during overnight periods revealed significant interactions 985 

between microhabitat and age and plot type with age, but no significant interaction of plot type 986 

with microhabitat (Table 3.7). Models for hydration indicated significant interactions between all 987 

response variables plot type, microhabitat, and age (Table 3.7). Models for performance 988 

indicated significant interactions between age with plot, and plot with microhabitat, but no 989 

significant interaction between age and microhabitat (Table 3.7). 990 
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Table 3.7 Models testing hypothesis two and interactions of plot and age with microhabitat for 991 
overnight data. “Df” indicates numerator degrees of freedom for each level. All estimates were 992 
generated from likelihood ratio tests and Chi-squared statistics for p-values. Significant contrasts 993 
are indicated by bold p-values.  994 

 995 

Post hoc tests for comparisons of microhabitat temperatures between plots overnight (e.g. 996 

uncovered cut vs. uncovered forest) demonstrated significantly lower average temperatures in 997 

cut habitats than in forested habitats in both covered and uncovered microhabitats for all ages 998 

except in covered microhabitats in 1-2-year-old sites (mean difference = -0.255 ºC, SE = 0.099, p 999 

= 0.194; Table 3.8; Figure 3.11). Differences between temperatures in cut and forests were larger 1000 

for uncovered microhabitats, and the largest difference occurred in 7-10-year-old sites for both 1001 

covered (mean difference = -0.713 ºC, SE = 0.119, p < 0.001) and uncovered (mean difference = 1002 

-0.7962 ºC, SE = 0.116, p < 0.001) microhabitats (Table 3.8; Figure 3.11).  In microhabitats 1003 
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within plot types (e.g. covered cut vs. uncovered cut), covered microhabitats were significantly 1004 

warmer than uncovered ones (Table 3.8). Temperature differences between microhabitats within 1005 

each macrohabitat type were significantly larger in cuts than in forests and were largest in 14-20 1006 

and 2-4-year-old sites (Table 3.8; Figure 3.11). 1007 

Table 3.8 Overnight estimated marginal means for contrasts in temperature for microhabitat 1008 
comparisons within (left) and between (right) macrohabitat (plot) types. Results were generated 1009 
from Tukey corrected least squares means on the mixed effects models for temperature in 1010 
hypothesis two. “Age” indicates the time-since-cut group, “contrast” indicates the microhabitat 1011 
and plot contrasts, with “estimate” as the difference between the estimated means for each term 1012 
in the pairing going from left to right. Significant contrasts (p < 0.05) are indicated in bold. 1013 

 1014 

 1015 

 1016 

 1017 
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 1018 

Figure 3.11 Overnight temperature differences between macrohabitats (plot types: cut, edge, and 1019 
forest). Results were generated from mixed effects models with fixed effects of plot type 1020 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 1021 
random effect of date nested within site. Points indicate all raw data. Comparisons were 1022 
generated from estimated marginal means of difference between microhabitat and macrohabitat 1023 
interactions across age groups with Tukey adjusted p-values for multiple comparisons. 1024 

Post hoc tests for comparisons of water loss rates in microhabitats between plots 1025 

overnight (e.g. uncovered cut vs. uncovered forest) indicated significantly higher water loss rates 1026 

in uncovered forested habitats than in uncovered clearcut habitats for all ages except 1-2-year-1027 

old sites (Table 3.9; Figure 3.12). Water loss rates in covered cut microhabitats were 1028 

significantly higher than covered forest microhabitats only in 1-2-year-old-sites (mean difference 1029 

= 0.941 % weight lost, SE = 0.13,  p< 0.001; Table 3.9), but were not significant for all other 1030 

time-since-cut groups. Differences between microhabitats increased throughout succession, with 1031 



 61 

larger differences clearcut and forest microhabitats overnight in our earliest successional stage 1032 

(14-20-year-old sites; Table 3.9).  1033 

Within macrohabitat types, water loss was significantly higher in uncovered 1034 

microhabitats (e.g. covered cut vs uncovered cut) for all age groups in only forested habitats but 1035 

were not significant for clearcuts (Table 3.9; Figure 3.12). Differences between covered and 1036 

uncovered forest microhabitats were greatest in our earliest successional group, where water loss 1037 

was higher in uncovered microhabitats (mean difference = -0.8828 % weight lost, SE = 0.148, p 1038 

< 0.001; Table 3.9; Figure 3.12). 1039 

Table 3.9. Overnight estimated marginal means for contrasts in water loss for microhabitat 1040 
comparisons within (left) and between (right) macrohabitat (plot) types. Results were generated 1041 
from Tukey corrected least squares means on the mixed effects models for water loss in 1042 
hypothesis two. “Age” indicates the time-since-cut group, “contrast” indicates the microhabitat 1043 
and plot contrasts, with “estimate” as the difference between the estimated means for each term 1044 
in the pairing reading from left to right in the contrast column. Significant contrasts (p < 0.05) 1045 
are indicated in bold. 1046 

 1047 

 1048 

 1049 
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 1050 

Figure 3.12 Overnight water loss differences between macrohabitats (plot types: cut, edge, and 1051 
forest). Results were generated from mixed effects models with fixed effects of plot type 1052 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 1053 
random effect of date nested within site. Points indicate all raw data. Comparisons were 1054 
generated from estimated marginal means of difference between microhabitat and macrohabitat 1055 
interactions across age groups with Tukey adjusted p-values for multiple comparisons. 1056 
 1057 

Post-hoc tests for comparisons of estimated performance in microhabitats between plots 1058 

overnight (e.g. uncovered cut vs. uncovered forest) indicated significantly higher performance in 1059 

forested than in clearcut habitats in both covered and uncovered microhabitats for all ages except 1060 

2-4 and 1-2-year-old cuts (Table 3.10). Performance was significantly highest in uncovered 1061 

forest habitats compared with uncovered 7-10-year-old cuts (mean difference = -0.176, SE =  1062 
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0.002, p < 0.001; Table 3.10). Performance was only higher in cuts at covered microhabitats 1-2 1063 

years old(mean difference = 0.0085, SE = 0.002, p = 0.007; Table 3.10)  1064 

Within microhabitats, performance was higher in covered microhabitats than in 1065 

uncovered microhabitats for both cuts and forests (Table 3.10). Differences between 1066 

microhabitats increased throughout succession but were still significant in our earliest 1067 

successional stage treatment (14-20 years: Table 3.10; Figure 3.13). Differences in performance 1068 

were only significant between microhabitats in clearcut habitats but not in forest habitats (Table 1069 

3.10; Figure 3.13). The largest difference between covered cuts and uncovered cut microhabitats 1070 

occurred in 14-20-year-old cuts (mean difference = 0.0127, SE = 0.003, p < 0.001; Table 3.10). 1071 

Table 3.10 Estimated marginal means for contrasts in performance for microhabitat comparisons 1072 
between habitat types overnight. Results were generated from Tukey corrected least squares 1073 
means on the mixed effects models for performance in hypothesis two. “Age” indicates the 1074 
successional group, “contrast” indicates the microhabitat and plot contrasts, with “estimate” as 1075 
the difference between the estimated means for each term in the pairing. Significant contrasts (p 1076 
< 0.05) are indicated in bold.  1077 

 1078 
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 1079 

Figure 3.13  Overnight performance differences between macrohabitats (plot types: cut, edge, 1080 
and forest). Results were generated from mixed effects models with fixed effects of plot type 1081 
(macrohabitat), age, microhabitat, and interactions between all three. The model was fit with 1082 
random effect of date nested within site. Points indicate all raw data. Comparisons were 1083 
generated from estimated marginal means of difference between microhabitat and macrohabitat 1084 
interactions across age groups with Tukey adjusted p-values for multiple comparisons. 1085 

3.5.3 Postural Effects  1086 

 1087 
During the day, upright frogs had significantly higher performance than flat frogs for all 1088 

time-since-cut groups (mean difference flat-upright = -0.00602, SE = 0.0011, p < 0.0001). 1089 

Upright frogs lost significantly more water than flat frogs during the day across all time-since-1090 

cut groups (flat – upright mean difference = -0.00548 % weight lost, SE = 0.0692, p < .0001). 1091 

Differences in temperature across postures were not significantly different (flat – upright mean 1092 
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difference = 0.00216 ºC, SE =0.0262,  p = 0.934). Posture had no significant interactions with 1093 

plot type, age, or microhabitat for any of the three response variables during the day. 1094 

At night, upright frogs had significantly higher performance (flat – upright mean 1095 

difference = -0.00291, SE = 0.000764, p < .0001) and water loss (flat – upright mean difference 1096 

= -0.28 % weight lost,, SE = 0.0402,  p < .0001) than flat frogs across all ages and plot types and 1097 

water loss. There were no significant differences in average temperature (flat – upright mean 1098 

difference = 0.000848 ºC, SE = 0.0252, p = 0.973). Posture had no significant interactions with 1099 

plot type, age, or microhabitat for any of the three response variables at night. 1100 

4 DISCUSSION 1101 

4.1 Diminished Performance in Clearcuts Overnight 1102 

Clearcuts provide warmer daytime conditions that align with higher gray treefrog 1103 

performance, but this is offset by reduced structural complexity that accelerates evaporative 1104 

water loss. However, at night when gray treefrogs are most active, performance is reduced in 1105 

clearcut microhabitats, while forests maintain more stable overnight environments that support 1106 

higher physiological performance, a result that is consistent with my second hypothesis. This 1107 

reflects the colder nighttime temperatures in clearcuts, which approach lower thermal limits 1108 

(Figure 3.7:C), imposing cold stress that reduces physiological function (M. E. Feder & 1109 

Hofmann, 1999; Schmidt et al., 2024).  1110 

At night, despite greater overstory cover, gray treefrogs in forests actually experience 1111 

higher water loss than in clearcuts. This increased dehydration likely results from the interaction 1112 

of temperature, vapor pressure deficit (VPD), and vegetation structure where my replicas were 1113 

placed (~ 2 m from the ground). Forests retain more heat at night but often have lower relative 1114 

humidity under the canopy—especially in older-growth stands with large gaps and heightened 1115 
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exposure to drying winds (De Frenne et al., 2013). Increased airflow in these forests may disrupt 1116 

boundary layers around frogs and enhance evaporative water loss. In contrast, clearcuts 1117 

experience radiative cooling, lowering air temperatures and reducing the atmosphere’s moisture-1118 

holding capacity (Chen et al., 1993). This often brings relative humidity closer to dew point and 1119 

slows evaporation (De Frenne et al., 2013). Mid-successional clearcuts (10–20 years post-1120 

harvest) were observed to have dense shrub and deciduous regrowth, which restricts vertical air 1121 

movement and traps humid, still air. These conditions promote thicker boundary layers and 1122 

reduce evaporation, offering some buffer against dehydration despite being more exposed than 1123 

closed-canopy forests (Peterman et al., 2013; Peterman & Semlitsch, 2014; Rittenhouse et al., 1124 

2008).  1125 

Although nighttime water loss was greater in forests than clearcuts, performance was 1126 

estimated to be higher in forests because overall water loss rates were too low to negatively 1127 

influence performance in either forests or clearcuts. Since water loss rates do not reach critical 1128 

thresholds overnight, performance is highly dependent on temperature in nighttime microhabitats 1129 

and the small hydric benefit in clearcuts is offset by lower nighttime temperatures. At colder 1130 

temperatures, performance may be reduced regardless of hydration state (Figure 3.4; (H. John-1131 

Alder et al., 1988; H. B. John-Alder et al., 1989; Navas, 1996). This suggests that although 1132 

clearcut microhabitats may reduce overnight water loss, the benefit is negligible because frogs 1133 

are already performance-limited by cold. Impaired performance in clearcuts at night will be 1134 

enhanced because nighttime (and daytime) performance was lower in uncovered microhabitats 1135 

and in upright (rather than water conservation) postures. Nocturnal gray treefrogs face a decision 1136 

during peak activity hours between remaining inactive under thermally favourable cover to 1137 

reduce physiological stress and emerging into colder, exposed microhabitats to forage and 1138 
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replenish energy reserves. While amphibians often perform under various hydration and 1139 

temperature states that do not maximize performance (Anderson & Andrade, 2017; Martin & 1140 

Huey, 2008; A. Mitchell & Bergmann, 2016; Payne et al., 2015), if environmental temperatures 1141 

consistently deviate from species’ thermal optima, performance capacities such as locomotion, 1142 

foraging efficiency, predator escape, and reproductive output can decline (Huey et al., 2009; 1143 

Navas et al., 2016). My results indicate that this decision comes with greater costs in clearcut 1144 

habitats, where reduced performance will make key activities, like foraging, more costly than in 1145 

forested environments where overall performance is higher. 1146 

4.2 Beneficially heightened daytime temperatures render frogs more vulnerable to 1147 
desiccation 1148 

Water loss, temperature, and performance were all higher in clearcuts than in forests 1149 

during the day (Table 3.4, Table 3.5, Table 3.6). These results are consistent with previous 1150 

research demonstrating elevated daytime temperatures and increased evaporative water loss in 1151 

open-canopy habitats that receive more direct solar radiation (De Frenne et al., 2019; Perez-1152 

Navarro et al., 2024; Richard et al., 2021). In contrast to the lower performance observed 1153 

overnight in clearcuts driven by thermal stress under colder conditions, gray treefrogs may 1154 

benefit from increased daytime temperatures over relatively short periods of time (4 hours). 1155 

These performance benefits may be of little ecological relevance since gray treefrogs are 1156 

predominantly nocturnal and thus most likely to be inactive, in sheltered refuges, during the day. 1157 

However, even in sheltered refuges, and while adopting water-conservation posture (Anderson & 1158 

Andrade, 2017; Tracy et al., 2010), inactive frogs will experience greater water loss in clearcuts 1159 

and thus may need to leave these refuges to rehydrate, incurring costs through increased energy 1160 

expenditure and increased predation risk that are not present in forested refugia (Rittenhouse et 1161 
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al., 2009). Moreover, exposure of inactive frogs to higher temperatures in clearcuts while 1162 

sheltering can elevate metabolic rates and thus induce greater energetic expenditure during 1163 

inactivity compared to cooler forest refugia, necessitating greater energy acquisition at night 1164 

(Rollins-Smith & Le Sage, 2023). 1165 

It is possible that treefrogs could shift their activity time to take advantage of higher 1166 

performance in daytime clearcuts, analogous to how some species have altered activity times in 1167 

response to climate change (Doody et al., 2019; Sinervo et al., 2010). However, the benefits of 1168 

such a shift may be lower than my results suggest because the full physiological consequences of 1169 

daytime conditions may not be captured within my four-hour sampling period. The advantage of 1170 

higher performance depends on dehydration levels not exceeding 15-20%, after which 1171 

performance declines (Figure 3.4); these thresholds are consistent with those found for other 1172 

species (Anderson & Andrade, 2017; Greenberg & Palen, 2021). This threshold is likely to be 1173 

surpassed under continued exposure to elevated clearcut temperatures in high latitude areas with 1174 

long summer daylight periods, especially because treefrogs may actively increase evaporative 1175 

water loss to mitigate thermal stress through evaporative cooling when body temperatures rise 1176 

(Sunday et al., 2014; Tracy et al., 2010, 2014) elevating dehydration risk even in shaded or 1177 

vegetated microhabitats (Spotila et al., 1992; Tracy, 1976). In the most recent clearcuts (<5 years 1178 

old), water loss levels reached 20–30% during the four-hour daytime window, resulting in the 1179 

lowest observed performances in clearcuts across all time-since-cut groups. Therefore, unless 1180 

gray treefrogs can access sufficient water to rehydrate throughout the day, performance will 1181 

eventually decline in cuts due to excessive dehydration, rendering them less physiological 1182 

suitable than forests. 1183 
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Gray treefrogs may be able to behaviourally buffer negative performance effects of 1184 

clearcuts by seeking out favourable refugia for hydrothermal regulation. At night, this would 1185 

mean seeking out covered microhabitats for their warmth, while during the day it would rely on 1186 

finding water sources for rehydration. At night, covered microhabitats in clearcuts were 1187 

consistently warmer than uncovered microhabitats across all successional stages (Table 3.8) and 1188 

therefore provide buffering from decreased temperature stress in exposed clearcuts. This means 1189 

treefrogs face a decision during peak activity hours between remaining inactive under thermally 1190 

stable cover to reduce physiological stress or emerging into colder, exposed microhabitats to 1191 

forage and replenish energy reserves from heightened metabolic activity during the day. A lack 1192 

of humid, daytime, refugia will render frogs more vulnerable to desiccation if temperatures and 1193 

water loss levels exceed or near individual limits regardless of their activity levels (Cline & 1194 

Hunter, 2014; Roznik et al., 2018). The abundance and configuration, i.e. accessibility, of refugia 1195 

substantially influence the effectiveness, and energetic costs of thermoregulation (Sears et al., 1196 

2016; Sears & Angilletta, 2015). While there are no existing data on the availability of 1197 

hydrothermal refugia in clearcuts, it is well established that they are hotter and drier during the 1198 

day (Chen et al., 1993; Hocking & Semlitsch, 2008), suggesting that such refugia are likely to be 1199 

few and far between, a situation that could be heightened by increased periods of drought under 1200 

ongoing climate change (Soltani et al., 2024; Zhang et al., 2021). Even within clearcuts from 1-1201 

14-years-old, refugia may not diminish the thermal stresses of elevated daytime temperatures 1202 

(Table 3.4). Therefore, frogs may still need to thermoregulate due to temperatures increases 1203 

within clearcut microhabitats (Scheffers et al., 2013) through evaporative cooling and could be at 1204 

risk for desiccation despite being covered and inactive. 1205 
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4.3 Long-term persistence of clearcutting effects 1206 

The effects of harvesting on gray treefrog temperature, water loss and performance were 1207 

still evident after 20 years post-harvest (Figure 3.7; Figure 3.6). The trajectory of post-harvest 1208 

succession diverges markedly from that of undisturbed forest stands, not only in tree species 1209 

composition but also in vertical structure and microclimatic buffering (Chen et al., 1993).  These 1210 

differences are particularly relevant given that structural recovery of microhabitats critical for 1211 

many amphibian species may take over 20 years to establish (Figure 3.7). While some vegetative 1212 

cover returns rapidly, the transition toward structural and compositional maturity in boreal 1213 

forests can take between 50-60 years post-clearcut, and full ecological recovery may exceed 60 1214 

years depending on disturbance intensity and landscape context (Brassard & and Chen, 2006; 1215 

Cyr et al., 2009). Given treefrogs relatively short (5-7 year) lifespans compared to microhabitat 1216 

recovery periods (20+ years), clearcutting could threaten persistence of forest-dwelling biphasic 1217 

frog populations by causing long-term reductions in the quantity and quality of suitable 1218 

microhabitat conditions and by reducing landscape connectivity and permeability (Becker et al., 1219 

2007; Harper et al., 2008; Semlitsch, 2000) over multiple generations. Long-term effects of 1220 

clearcutting could lead to reduced amphibian richness and abundance by increasing mortality, 1221 

promoting evacuation of clearcut habitats, and declines in abundance (deMaynadier & Hunter 1222 

Jr., 1995; Harper et al., 2015; Semlitsch et al., 2009; Todd et al., 2009; Todd & Rothermel, 1223 

2006). Importantly, juvenile dispersal is significantly hindered in early successional or 1224 

structurally simplified habitats (Patrick et al., 2006). Without immediate recovery of 1225 

microhabitat spaces, or following years of consecutive dry periods and warmer temperatures, 1226 

recruitment could be suppressed over multiple generations and shorter-lived species may have no 1227 

opportunities to recover (Harper et al., 2015).   1228 
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Additionally, altered habitat quality may lead to overcrowding in smaller forest patches if 1229 

individuals were unwilling to occupy cleared habitats. This could intensify competition for food 1230 

and shelter, increase stress and predation risk, and limit energy intake (Veysey Powell & Babbitt, 1231 

2015). Energetic constraints could reduce investment in growth, reproduction, and storage, 1232 

resulting in poorer body condition and smaller adult size across generations (Janin et al., 2011; 1233 

Veysey Powell & Babbitt, 2015). Collectively, such energetic and demographic constraints can 1234 

compound population declines in harvested landscapes 1235 

The retention of negative performance impacts through succession may also impact 1236 

metapopulation dynamics by making it more costly to move through the landscape to reach 1237 

favourable forest patches or edges. Moving through areas where locomotory performance is 1238 

lower will have greater energetic costs (Harper et al., 2015; Patrick et al., 2006; Rittenhouse et 1239 

al., 2009; Todd et al., 2009), making dispersal to forest patches more challenging. These effects 1240 

will be compounded by greater exposure to predation through increased movement frequency, 1241 

and frogs' own reluctance to cross, more open habitats (Joly et al., 2003; Popescu & Hunter, 1242 

2011; Rittenhouse et al., 2009). There is also the potential for synergistic effects where not only 1243 

may dispersing frogs be more detectable to predators in early successional habitats, but will also 1244 

have reduced escape ability due to impaired locomotory performance. This increase in landscape 1245 

resistance may also operate on more micro-scales, increasing the cost of seeking out 1246 

hydrothermal refugia in successional forest. Together, these constraints may hinder both long-1247 

distance dispersal between forest patches and fine-scale movements toward microhabitats 1248 

offering thermal and hydric refuge, ultimately reducing recolonization rates, increasing local 1249 

extirpation risk, and weakening overall metapopulation connectivity. 1250 
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Current forest management guidelines in Ontario prioritize connectivity and habitat 1251 

retention primarily for large mammals like moose and caribou (OMNRF, 2019), often 1252 

overlooking the fine-scale requirements of smaller taxa with more constrained population ranges. 1253 

While the OMNRF reports differences of opinion on the importance of landscape pattern versus 1254 

habitat amount for biodiversity conservation, small-bodied or low-mobility species (like 1255 

amphibians) are under-represented in the studies cited by OMNRF, even though they may 1256 

respond differently to landscape pattern due to limited dispersal. Given the vulnerability of  even 1257 

disturbance-resistance amphibians like the gray treefrog to dehydration and thermal extremes 1258 

(Demaynadier & Hunter, 1998; Harper et al., 2005), maintaining functional corridors of shaded, 1259 

humid habitat between remnant patches and intact forests is essential for facilitating movement, 1260 

recolonization, and genetic exchange (see Kuuluvainen, 2009; Kuuluvainen et al., 2021). 1261 

Therefore, sustainable harvesting practices should consider not only the timing and intensity of 1262 

silvicultural interventions but also the spatial configuration of harvested and retained areas. 1263 

Incorporating connectivity planning for a broader range of taxa, especially small vertebrates and 1264 

invertebrates, will improve the ecological integrity and resilience of regenerating forest 1265 

landscapes.  1266 

4.4 Limitations and assumptions 1267 

My results come with several caveats. Firstly, I estimated the performance of gray 1268 

treefrogs within microhabitats based on measurements of performance in the lab. However, these 1269 

measures may not accurately capture hydrothermal performance relationships in the field. 1270 

Additionally conditions that maximize performance may not be preferred conditions in the field 1271 

(Martin & Huey, 2008; A. Mitchell & Bergmann, 2016). My results demonstrate the capacity for 1272 

performance in relevant microhabitats frogs may encounter in the Boreal Forest transition zone. 1273 
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However, frogs are subject to various other physiological and ecological considerations that may 1274 

influence their behaviour and habitat use (Navas et al., 2021). They therefore need to make 1275 

decisions about conserving energy versus expending energy for activities like foraging, predator 1276 

avoidance, and hydrothermal-regulation. Frogs in drier and warmer habitats may sacrifice peak 1277 

locomotor performance (needed for escaping predators or foraging) to reduce dehydration risk 1278 

(A. Mitchell & Bergmann, 2016). There remains a critical gap in empirical assessments of how 1279 

and when species prioritize one regulatory mechanism over the other, especially under seasonal 1280 

or anthropogenically altered conditions where hydrothermal environments are shifting in 1281 

opposing directions(Gunderson & Stillman, 2015; Navas et al., 2008, 2021). Further, I could not 1282 

feasibly assess whether acclimation may alter hydrothermal performance curves (Schulte et al., 1283 

2011) and thus alter estimates of performance capacity across macro and microhabitats. 1284 

My sampling was also restricted in two important ways. First, it largely captures 1285 

conditions in the mid-story. Most previous research on temperature and water loss has focused 1286 

on ground-level microhabitats for terrestrial amphibians (Keppel et al., 2017), but for treefrogs 1287 

conditions in the canopy are likely to be important (Olson et al., 2023). To capture all conditions 1288 

that gray treefrogs may be facing, future work should explore microclimatic conditions in the 1289 

mid to upper canopy, where treefrogs may exploit warmer air layers (Johnson et al., 2008; 1290 

Laughlin et al., 2017; Olson et al., 2023). Measurements taken at a single level likely 1291 

underestimate the buffering effects of mid-successional vegetation, especially above two meters 1292 

where boundary layer dynamics and humidity conditions may differ from conditions in the mid 1293 

to upper canopy layers. It also ignores the potential for vertical movement to allow for 1294 

hydrothermal buffering (Klinges et al., 2024; Scheffers et al., 2013). Secondly, my sample was 1295 

entirely male (because of practical limitations on finding females in the field), and past research 1296 
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indicates that male and female performance may differ under similar physiological conditions 1297 

due males’ smaller body-size, which has been shown to influence metabolic rates, thermal 1298 

inertia, and performance due to differences in optimal body temperatures (Kingsolver & Huey, 1299 

2008; Pottier et al., 2021; Rohr et al., 2018). This underscores the importance of understanding 1300 

sex specific physiological and behavioral adaptations to predict responses to habitat alterations. 1301 

Finally, while my findings show that treefrogs have reduced performance in clearcuts and 1302 

that these effects are sustained across multiple decades of succession, I do not have evidence that 1303 

these performance impairments have implications at broader ecological scales, specifically 1304 

population dynamics. Few studies of thermal vulnerability make this link (Gunderson & 1305 

Stillman, 2015), but Sinervo et al. 2010 showed that a model in which degradation of thermal 1306 

environments resulted in individuals behaviorally minimizing  exposure to high daytime 1307 

temperatures by reducing activity, could predict population declines and persistence. The limited 1308 

research available on physiological costs in clearcut environments have identified reduced 1309 

amphibian survival and body conditions (Mazerolle et al., 2021; Rittenhouse et al., 2009; Todd et 1310 

al., 2014; Veysey Powell & Babbitt, 2015), suggesting that the performance costs associated 1311 

with clearcutting we observed for gray treefrogs in the boreal-transition zone could plausibly 1312 

influence population abundance and persistence.  1313 

5 CONCLUSION 1314 

While clearcuts may offer short-term thermal advantages during the day that align with the 1315 

thermal optima of gray treefrogs, these benefits are counteracted by elevated evaporative water 1316 

loss due to increased exposure and lack of hydrothermally preferrable refugia. At night, when 1317 

gray treefrogs are most active, performance capacity is consistently lower in clearcut 1318 

environments, with forests providing more stable microclimates that better support physiological 1319 
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function. These microclimatic effects persist even two decades post-harvest, underscoring the 1320 

long-term physiological costs of clearcutting in forest ecosystems. While climate change alters 1321 

average conditions over large spatial and temporal scales, habitat modification can produce 1322 

abrupt and localized microclimatic extremes that directly impact physiological function. These 1323 

structural changes often go unrecognized in assessments of amphibian vulnerability, despite their 1324 

potent effects on individual performance and behavioral flexibility. My results highlight the need 1325 

to incorporate the joint effects of temperature and hydration on microhabitat quality and 1326 

physiological performance into conservation assessments. Future work should focus on long-1327 

term, multi-generational studies of amphibian population recovery in repeatedly disturbed or 1328 

slowly regenerating forests. While some research has examined amphibian presence across forest 1329 

age classes (e.g., Patrick et al., 2006; Harper et al., 2015), most have examined abundance 1330 

immediately post-disturbance, but few have followed population recovery trajectories over time 1331 

through forest recovery, limiting our understanding of how chronic habitat degradation 1332 

influences long-term population persistence and dispersal. 1333 
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7 APPENDIX A 1970 

7.1 Weighted average results for individual thermal performance curves 1971 

 1972 
Table 7.1 Delta AIC values for each model and frog included in the final thermal performance 1973 
curve at 100% hydration. Model name indicates all models fit for each frog. NAs in column 1974 
values indicates that the specified model did not fit for the corresponding frog. Models with 1975 
lower delta AIC were given higher weights towards the final curves for each frog. 1976 

 1977 

 1978 
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 1979 

Table 7.2. Delta AIC values for individually fit thermal performance curves at 92% hydration. 1980 
Model name indicates all models fit for each frog. NAs in column values indicates that the 1981 
specified model did not fit for the corresponding frog. Models with lower delta AIC were given 1982 
higher weights towards the final curves for each frog. 1983 

 1984 

 1985 
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 1986 

Table 7.3. Delta AIC values for individually fit thermal performance curves at 84% hydration. 1987 
Model name indicates all models fit for each frog. NAs in column values indicates that the 1988 
specified model did not fit for the corresponding frog. Models with lower delta AIC were given 1989 
higher weights towards the final curves for each frog. 1990 

 1991 

 1992 
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Table 7.4. Delta AIC values for individually fit thermal performance curves at 75% hydration. 1993 
Model name indicates all models fit for each frog. NAs in column values indicates that the 1994 
specified model did not fit for the corresponding frog. Models with lower delta AIC were given 1995 
higher weights towards the final curves for each frog. 1996 

 1997 

 1998 

 1999 

 2000 
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Table 7.5. Delta AIC values for individually fit thermal performance curves at 70% hydration. 2001 
Model name indicates all models fit for each frog. NAs in column values indicates that the 2002 
specified model did not fit for the corresponding frog. Models with lower delta AIC were given 2003 
higher weights towards the final curves for each frog. 2004 

 2005 
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7.2 Weighted average results for individual hydro-performance curves. 2006 

Table 7.6 Delta AIC values for individually fit hydro-performance curves at 33 ºC. Model name 2007 
indicates all models fit for each frog. NAs in column values indicates that the specified model 2008 
did not fit for the corresponding frog. Models with lower delta AIC were given higher weights 2009 
towards the final curves for each frog. 2010 

 2011 
 2012 
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Table 7.7 Delta AIC values for individually fit hydro-performance curves at 24 ºC. Model name 2013 
indicates all models fit for each frog. NAs in column values indicates that the specified model did 2014 
not fit for the corresponding frog. Models with lower delta AIC were given higher weights towards 2015 
the final curves for each frog. 2016 

 2017 
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Table 7.8 Delta AIC values for individually fit hydro-performance curves at 15 ºC. Model name 2018 
indicates all models fit for each frog. NAs in column values indicates that the specified model did 2019 
not fit for the corresponding frog. Models with lower delta AIC were given higher weights towards 2020 
the final curves for each frog. 2021 

 2022 

 2023 
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Table 7.9 Delta AIC values for individually fit hydro-performance curves at 8 ºC. Model name 2024 
indicates all models fit for each frog. NAs in column values indicates that the specified model did 2025 
not fit for the corresponding frog. Models with lower delta AIC were given higher weights towards 2026 
the final curves for each frog. 2027 

 2028 

 2029 
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8 APPENDIX B 

8.1 Mathematical Models Tested 

To describe the effect of temperature (ºC) and dehydration on performance, I used a candidate set of 31 non-linear models to 

generate performance curves (Table 8.1). 

Table 8.1 Functions for all models used to fit the final thermal and hydric performance curves. P(z) indicates performance, and z is the 
parameter describing the fixed effect of either water loss or temperature for all models. Parameter definitions are described in the 
parameter column. 

Model Name 
Fixed 

Response 
Variable (z) 

Model Function Parameters 

2nd Order 
Polynomial 

(2024) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎𝑧𝑧2 +  𝑏𝑏𝑏𝑏 +  𝑐𝑐 

 
a: shape parameter that defines the rate at 0  

b and c: shape parameters 
with no biological meaning. 

3rd Order 
Polynomial 

(2024) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎𝑧𝑧3 +  𝑏𝑏𝑧𝑧2 +  𝑐𝑐𝑐𝑐 +  𝑑𝑑 

a, b, c, and d: shape parameters 
with no biological meaning. 

Analytis 
Kontodimas 

I  (2004) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎(𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2(𝑇𝑇max−𝑧𝑧) 

a: scale parameter defining curve height 
Tmin: low temperature (T) or hydration (H) at 

which the rate becomes negative 
Tmax: high T or H at which rate becomes 

negative 
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Ashrafi I 
(2018)  

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎+𝑏𝑏(𝑧𝑧)2 ∗ log(𝑧𝑧) + 𝑐𝑐𝑧𝑧3 

a, b and c: shape parameters 
with no biological meaning. 

Ashrafi II 
(2018) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎 +  𝑏𝑏 ∗  𝑑𝑑(𝑧𝑧)

3
2 +  𝑑𝑑 ∗  𝑧𝑧2 

a, b, c, and d: shape parameters 
with no biological meaning. 

Biere I 
(1999) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎 ∗  𝑧𝑧 ∗  ( 𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ) ∗  √( (𝑇𝑇max) − 𝑧𝑧) ) 

a: scale parameter defining maximum height 
of the curve 

Tmin: as above 
Tmax: as above 

z: temperature or hydration - fixed 

Briere II 
(1999) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎 ∗  𝑧𝑧 ∗  ( 𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ) ∗  ( 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑧𝑧 )

1
𝑚𝑚 

a: as in Briere I 
Tmin: as above 
Tmax: as above 

m: shape parameter to adjust curve 
asymmetry 

 

Biere I 
(added 

intercept) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎 ∗  𝑧𝑧 ∗  ( 𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ) ∗  √( (𝑇𝑇max) − 𝑧𝑧) ) + 𝑑𝑑 

 
a: as in Briere I 
Tmin: as above 
Tmax: as above 

m and d: shape parameters to adjust curve 
asymmetry and starting point. 

 
 Eubank 

(1973) 
Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) =  𝑎𝑎 ��𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝�
2 +  𝑏𝑏� 

 
a: scale parameter defining curve height. 

Tpk: optimum T or H 
b: shape parameter 
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Gaussian 
(2006) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  ∗ exp� − 0.5 ∗  �

𝑎𝑎𝑎𝑎𝑎𝑎� 𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝 �
𝑎𝑎

 �
2

� 

 
a: defines curve width 
Tpk: optimum T or H 

Popt: maximum performance at Tpk 
 

Gaussian-
Gompertz 

(2006) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) =  𝑑𝑑 ∗ exp �− exp� 𝑏𝑏 ∗  �𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝� −  𝜃𝜃 � −  𝑎𝑎 

∗  � 𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝 �2 � 

m: scale parameter defining curve height 
a: shape parameter 

Tpk: optimum T or H 

Janisch I 
(1925) 

Water loss or 
Temperature 

 

𝑃𝑃(𝑧𝑧) =  �
1

� �𝑚𝑚2 � ∗  � 𝑎𝑎𝑧𝑧 − 𝑇𝑇𝑝𝑝𝑝𝑝 +  𝑎𝑎 − �𝑧𝑧 − 𝑇𝑇𝑝𝑝𝑝𝑝���
� 

m: scale parameter defining curve height 
a: shape parameter 

Tpk: optimum T or H 

Janisch II 
(1925) 

Water loss or 
Temperature 

 

𝑃𝑃(𝑧𝑧) =  �
1

� �𝑚𝑚2 � ∗  � 𝑎𝑎𝑧𝑧 − 𝑇𝑇𝑝𝑝𝑝𝑝 +  𝑏𝑏 − �𝑧𝑧 − 𝑇𝑇𝑝𝑝𝑝𝑝���
� 

 
m: scale parameter defining curve height 

a: shape parameter for curve incline 
b: shape parameter for curve decline 

Tpk: optimum T or H 

Kamykowski 
(1985)  Temperature 

 
𝑃𝑃(𝑧𝑧) = 𝑎𝑎 ∗  (1 −  𝑒𝑒𝑒𝑒𝑒𝑒�−𝑏𝑏 ∗ (𝑧𝑧− 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)�)  ∗  (1 −  exp−𝑐𝑐 ∗ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚− 𝑧𝑧)) 

 
a, b and c: shape parameters 
with no biological meaning 

Lactin I 
(1995) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑒𝑒𝑒𝑒𝑒𝑒(𝜌𝜌 ∗  𝑧𝑧)  −  𝑒𝑒𝑒𝑒𝑒𝑒( 𝜌𝜌 ∗  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − �

(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑧𝑧)
𝐷𝐷𝐷𝐷

� 

 
𝝆𝝆: shape constant determining steepness of 

curve incline 
Tmax: T or H at which the curve begins to 

decelerate (maximum) 

DT: thermal or hydric safety margin 
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Lactin II 
(1995) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) = exp(𝜌𝜌 ∗  𝑧𝑧) − exp� 𝜌𝜌 ∗  𝑇𝑇max − �

(𝑇𝑇max − 𝑧𝑧)
𝐷𝐷𝐷𝐷

�� +  𝜆𝜆 

 
𝝆𝝆: shape constant determining steepness of 

curve incline 
𝝀𝝀: shape constant for curve height 

Tmax: T or H at which the curve begins to 
decelerate (maximum) 

DT: thermal or hydric safety margin 

Logan I 
(1976) Water loss 𝑃𝑃(𝑧𝑧) =  𝑝𝑝𝑝𝑝𝑝𝑝 ∗  ( exp ( 𝜌𝜌 ∗  𝑧𝑧 )  −  exp ( 𝜌𝜌 ∗  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚   −  �

(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑧𝑧)
𝐷𝐷𝐷𝐷

�) 

 
𝝆𝝆: shape constant determining rate of curve 

incline 
𝒑𝒑𝒑𝒑𝒑𝒑: shape constant determining rate of 

incline after lower threshold 
Tmax: T or H at which the curve begins to 

decelerate (maximum) 
DT: thermal or hydric safety margin 

Mitchell-
Angilletta 

(2009) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  � 

1
2 ∗ 𝑏𝑏�

∗  � 1 + cos� �
�𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑘𝑘�

𝑏𝑏
� ∗  𝑝𝑝𝑝𝑝 �� ∗  𝑎𝑎 

 
Tpk: optimum T or H 

a: scale parameter  
b: scale parameter for performance breadth 

 

Modified 
Deutsch 

(2008; 2011) 
Water loss 

𝑃𝑃(𝑧𝑧) = 

𝑖𝑖𝑖𝑖 𝑧𝑧 ≤  𝑇𝑇𝑝𝑝𝑝𝑝:  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ∗ exp� −  �
𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝

2𝜎𝜎 �
2

� 

𝑖𝑖𝑖𝑖 𝑧𝑧 >  𝑇𝑇𝑝𝑝𝑝𝑝: 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 −   𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ∗  �1 −  �
𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝

𝑇𝑇𝑝𝑝𝑝𝑝 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
�
2

� 

 

 
Popt: maximum performance at Tpk 

Tpk: optimum T or H 
σ = shape parameter defining steepness of 

curve decline 
Tmax: T or H at which the curve begins to 

decelerate (maximum) 
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Modified 
Gaussian 

(2006) 
Water loss 𝑃𝑃(𝑧𝑧) =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ∗ exp� − 0.5 ∗  �

𝑎𝑎𝑎𝑎𝑎𝑎� 𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝�
𝑎𝑎

�
𝑏𝑏

� 

 
Tpk: optimum T or H; 

a: shape parameter for curve width  
b: scale parameter for curve asymmetry 

Popt: maximum performance at Tpk 

 

Ratkowsky  
(modified) 

(1983) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) = �𝑎𝑎 ∗  (𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) ∗ �1 − exp�𝑏𝑏 ∗  (𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)���

2
 

 
a: defined as sqrt(P(z)/z- Tmin) 

Tmin: low T or H at which rate becomes 
negative 

Tmax: high T or H at which rate becomes 
negative 

b: parameter for fitting data beyond optimum 
 

Ruiz (2019) Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) =  𝐵𝐵0 +  𝐷𝐷𝐵𝐵max ∗ exp �−𝑎𝑎 ∗  �𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝�
2� 

 

𝑩𝑩𝟎𝟎: parameter describing shifts in rate (or 
minimum performance level) 

𝑫𝑫𝑩𝑩𝐦𝐦𝐦𝐦𝐦𝐦: parameter controlling the height of 
the curve above baseline 𝐵𝐵0. 

a: scale parameter defining curve decline rate 
after 𝑇𝑇𝑝𝑝𝑝𝑝. 

𝑻𝑻𝒑𝒑𝒑𝒑: optimum T or H 
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Rezende-
Bosinovic 

(2019) 

Temperature 

 

𝑃𝑃(𝑧𝑧) = 

𝑖𝑖𝑖𝑖 𝑧𝑧 ≤  𝑇𝑇𝑡𝑡ℎ:      𝐵𝐵0 ∗ exp�
log�𝑄𝑄{10}�

10
𝑧𝑧

� 

𝑖𝑖𝑖𝑖 𝑧𝑧 >  𝑇𝑇𝑡𝑡ℎ:     𝐵𝐵0 ∗ exp�
log�𝑄𝑄{10}�

10
𝑧𝑧

 � ∗  (1 −  𝑑𝑑 ∗ (𝑏𝑏 −  𝑧𝑧)2) 

 

Q10: the fold change in performance as a 
result of increasing the temperature by 10 ºC 

𝑩𝑩𝟎𝟎: parameter describing shifts in rate (or 
minimum performance level) 

b: parameter threshold T or H beyond which 
the curve declines 

d: parameter controlling the rate of decline 
beyond the threshold temperature, 𝑇𝑇𝑡𝑡ℎ 

Simplified 
Beta (2008) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) = �𝑟𝑟ℎ𝑜𝑜 ∗  � 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 −  �
𝑧𝑧

10
��� ∗  �

𝑧𝑧
10
�
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

 
 

rho, beta, and alpha: shape parameters 
with no biological meaning. 

Simplified 
Briere (1999) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) = �𝑎𝑎 ∗  ( 𝑧𝑧 −  𝑇𝑇min) ∗  √( 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧)� 

 
a: scale parameter for maximum rate of curve 

Tmin: low T or H at which rate becomes 
negative 

Tmax: high T or H at which rate becomes 
negative 

Simplified 
Briere II 

(1999) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  �𝑎𝑎 ∗  ( 𝑧𝑧 −  𝑇𝑇min) ∗  ( 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑧𝑧)

1
𝑚𝑚� 

 
a: scale parameter for maximum rate of curve 

Tmin: low T or H at which rate becomes 
negative 

Tmax: high T or H at which rate becomes 
negative 
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m: shape parameter to adjust curve 
asymmetry 

Skew Normal 
(2012) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) = �𝑎𝑎 ∗  �exp�

( − (𝑧𝑧 −  𝑏𝑏)2)
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎2) �� ∗  � 1 + erf�

� −𝜆𝜆 ∗  (𝑧𝑧 −  𝑏𝑏)�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

��� 

 
a: scale constant determining maximum 

height of the curve 
b: scale parameter controlling the T or H at 

which performance is optimized 
sigma: parameter controlling curve breadth 

(width) 
λ: parameter controlling curve asymmetry 

 

Taylor 
Sexton (1972) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧)

=  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ∗
�−(𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)4 +  2(𝑧𝑧 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 ∗   �𝑇𝑇𝑝𝑝𝑝𝑝 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�

2�

�𝑇𝑇𝑝𝑝𝑝𝑝 −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�
4  

 
a: defines curve width 

Tmin: low T or H at which rates become 
negative 

Tpk: optimum T or H 
Popt: maximum performance at Tpk 

 

Thomas 
(2012) 

Water loss or 
Temperature 𝑃𝑃(𝑧𝑧) =  𝑎𝑎 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏∗𝑧𝑧

⎝

⎛1 − ��
𝑧𝑧 −  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

𝑐𝑐
2

��

2

⎠

⎞ 

 
a: shape constant with no biological meaning 
b: shape constant with no biological meaning 
Topt: location of the maximum height of the 

curve 
c: range of T or H over which the 

performance rate is positive 
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Tomlinson-
Phillips 
(2015) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) = 𝐵𝐵0 ∗  � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 ∗  𝑧𝑧) −  𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧 −  𝑏𝑏)� 

 
𝑩𝑩𝟎𝟎: scale parameter for performance rate at 

Tmin 
a: shape constant indicating upwards slope of 

the curve 
b: parameter controlling peak height of the 

curve. 
 

Weibull 
(2024; 2010) 

Water loss or 
Temperature 

𝑃𝑃(𝑧𝑧) =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ∗  ��
𝑐𝑐 −  1
𝑐𝑐

�
1 − 𝑐𝑐
𝑐𝑐
� ∗  � � �

𝑧𝑧 −  𝑇𝑇𝑝𝑝𝑝𝑝
𝑑𝑑

� + �
𝑐𝑐 −  1
𝑐𝑐

�
1
𝑐𝑐
�

(𝑐𝑐 − 1)

�

∗ exp

⎝

⎛ −  � �
� 𝑧𝑧 − 𝑇𝑇𝑝𝑝𝑝𝑝�

𝑑𝑑
 �+ �

 𝑐𝑐 −  1 
𝑐𝑐

�
1
𝑐𝑐
�

𝑐𝑐

 +  �
𝑐𝑐 −  1
𝑐𝑐

�

⎠

⎞ 

 
𝑷𝑷𝒐𝒐𝒐𝒐𝒐𝒐: maximum performance value 
𝑇𝑇𝑝𝑝𝑝𝑝: T or H at which performance is 

optimized 
d: parameter describing the curve breadth 

c: parameter defining the overall curve shape 
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