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Abstract 

Fish community composition in freshwater lakes is shaped by a range of biotic and 

abiotic factors, including environmental conditions, species interactions, and spatial 

connectivity between waterbodies. While aquatic community ecology studies historically 

treated lakes as isolated systems, recent research has increasingly embraced a 

metacommunity framework, integrating spatial connectivity with environmental and 

biological predictors of community composition. Despite this shift, few studies have 

thoroughly examined the relative roles of spatial connectivity, environmental factors, and 

species interactions in shaping lake fish communities. To address this gap, I conducted a 

study across 81 lakes distributed within two quaternary watersheds at the IISD 

Experimental Lakes Area in northwest Ontario. Using Joint Species Distribution 

Modeling (JSDM) alongside spatial eigenvector mapping techniques—Asymmetric 

Eigenvector Mapping (AEM) and Moran’s Eigenvector Mapping (MEM)—drivers of 

fish community composition were investigated. Results indicate that spatial variables—

specifically lake connectivity, stream flow direction, and the maximum gradient along 

connecting streams—are primary drivers of fish metacommunity composition. In 

presence-absence models, these spatial factors explained more variation than 

environmental variables and species co-occurrence patterns (potentially reflecting species 

interactions). Conversely, relative abundance models (conditional on presence) 

performed poorly across all ecological models evaluated. These findings provide valuable 

insights into the role of spatial connectivity relative to other factors in shaping fish 

community structure on a presence-absence basis, emphasizing the importance of 

applying a metacommunity approach in community analyses.  
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Introduction 

1.1  Background 

Aquatic ecosystems worldwide are experiencing rapid and unprecedented rates of 

biodiversity loss (Desforges et al., 2022; Wudu et al., 2023). This decline is primarily 

driven by anthropogenic activities, including climate change, the introduction of non-

native species, and pressures from commercial fishing (Cooke et al., 2023; Desforges et 

al., 2022; Dextrase & Mandrak, 2006). Collectively, these factors pose a major threat to 

the structure, function, and stability of aquatic systems and their associated ecological 

communities. As environmental pressures intensify, understanding the biotic and abiotic 

factors that shape aquatic communities is essential for making informed management 

decisions, predicting the influence of future ecological changes, and identifying key 

considerations for restoration efforts. Despite the need to take a more comprehensive and 

holistic approach to studying aquatic communities, research that considers or includes 

metapopulation dynamics and connectivity between ecosystems remains relatively 

limited (Leibold et al., 2004). 

Early studies on drivers of aquatic community composition primarily focused on 

the influence of local environmental suitability. These studies investigated environmental 

conditions or biological interactions between species, often treating lakes as isolated 

systems. However, recent research has increasingly adopted a metacommunity 

framework, which emphasizes the importance of considering habitat connectivity along 

with environmental and biological factors when studying ecological communities 

(Guimarães et al., 2014; Leibold et al., 2004; Olden et al., 2001).  
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Metacommunity theory is defined as a set of local communities connected by the 

dispersal of interacting species (Leibold et al., 2004). This framework emphasizes the 

need to evaluate effects of both local and regional processes on community composition 

(Thompson et al., 2020; Wilson, 1992). In the context of fish composition in lakes, local 

processes refer to species interactions and lake-specific environmental conditions (Brown 

et al., 2011), whereas regional processes correspond to the means of species dispersal and 

movement as the degree of connectivity between waterbodies (Brown et al., 2011; 

Guimarães et al., 2014). By integrating both local and regional processes in biological 

analyses, a metacommunity approach aims to provide a deeper understanding of how 

various factors influence community structure.  

The metacommunity framework emphasizes the importance of both 

environmental suitability and habitat connectivity. While environmental suitability 

sustains species within their habitats, effective dispersal and colonization heavily rely on 

connectivity between habitats. An environment may provide optimal conditions, yet 

without sufficient connectivity, species may face isolation, limiting genetic exchange and 

increasing vulnerability to localized disturbances. Conversely, in less favourable 

environments, species may face negative growth rates and potential extirpation unless 

immigration, facilitated by connectivity to neighboring communities, offsets these hostile 

conditions. (Chase et al., 2020; Moritz et al., 2013).  

1.2  Environmental influences on fish communities  

Extensive research has been conducted over the past several decades investigating 

associations between local environmental conditions and the composition of fish 

communities (Chu et al., 2004; Johnson et al., 1977; Mehner et al., 2005; Öhman et al., 
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2006; Plumb & Blanchfield, 2009; Rahel, 1984; Robinson & Tonn, 1989). Lake 

morphology, including surface area and lake depth, plays a major role in shaping the 

structure and ecological dynamics of aquatic environments, influencing the distribution 

and behaviour of various fish species. The depth of a lake affects thermal stratification, 

dissolved oxygen levels and light penetration, all of which are critical factors influencing 

the presence and abundance of fish populations. Certain fish species, such as lake trout 

(Salvelinus namaycush) and cisco (Coregonus artedi), are particularly sensitive to water 

temperature and oxygen concentrations associated with specific depth zones (Fang et al., 

2009; Johnson et al., 1977). Lake trout specifically are strongly correlated with lakes 

supporting higher dissolved oxygen levels, along with greater water clarity, greater 

depths, and lower levels of total dissolved solids (Johnson et al., 1977; Sellers et al., 

1998). Deep, cold-water lakes provide an ideal habitat for these cold-water species, 

offering refuge during warmer months and suitable conditions for foraging. In contrast, 

shallow lakes provide preferred habitat for cool and warmwater fish species that thrive in 

more sunlit environments with abundant vegetation and cover (Mushet et al., 2023).  

In addition to lake morphology, water chemistry properties such as acidity, 

productivity, and light attenuation are also known to influence fish abundance and 

distribution (Benoît et al., 2016; Hossain et al., 2019; Jackson et al., 2001; Johnson et al., 

1977; Mills et al., 1987). Acidic conditions in lakes can result from natural processes, 

such as organic matter decomposition, as well as human activities, including the historic 

impacts of acid rain and runoff from mining operations (Beamish, 1976). Even slight 

deviations of 1-2 units from neutral pH can affect the survival, reproduction, and 

distribution of aquatic organisms, including both fish and invertebrates (Baker & 
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Christensen, 1991; Findlay et al., 1999; Matuszek & Beggs, 1988; Mills et al., 1987). 

During an 8-year acidification study at the Experimental Lakes Area, major shifts in the 

abundance of several fish species, including fathead minnow (Pimephales promelas), 

northern pearl dace (Margariscus nachtriebi), slimy sculpin (Cottus cognatus), white 

sucker (Catostomus commersonii), and lake trout, were observed to occur within 1 to 1.5 

pH units of the natural state of the lake, leading to substantial changes in community 

structure (Mills et al., 1987). 

Lake productivity, often represented by nitrogen and phosphorus levels, also 

greatly influence the ecological dynamics of lakes. Total phosphorus (TP) serves as a key 

indicator of eutrophication, influencing the growth of aquatic plants, algae, and other 

primary producers within freshwater ecosystems (Schindler et al., 1971, 1978). Elevated 

levels of TP can stimulate algal blooms, leading to decreased water clarity, oxygen 

depletion, and alterations in aquatic habitat structure (Hossain et al., 2019; Orihelet al., 

2017). Excessive nutrient inputs, often originating from agricultural runoff, sewage 

discharge, and atmospheric deposition, can exacerbate nutrient loading in lakes, 

promoting the proliferation of algae and reducing habitat suitably for many fish species 

(Orihel et al., 2017). Conversely, lakes with more balanced nutrient levels and moderate 

productivity typically support more diverse aquatic communities, contributing to overall 

ecosystem resilience and stability (Correll, 1998).  

Light attenuation, often associated with dissolved organic carbon (DOC), has also 

been shown to influence lake ecosystems and the fish communities they support 

(Schindler et al., 1997; Stasko et al., 2012). DOC is typically discharged into oligotrophic 

lakes from their surrounding catchment area (Schindler et al., 1997). Due to its effect on 
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light attenuation, elevated levels of DOC are often associated with reductions in the depth 

of euphotic zones, shallower and more stable thermoclines, and increased protection of 

aquatic organisms from harmful UV wavelengths (Schindler et al., 1997). Increased DOC 

levels are associated with higher epilimnetic temperatures, lower hypolimnetic 

temperatures, reduced oxygen in the hypolimnion, darker environments, decreased 

macrophyte cover, reduced benthic biomass production, and heightened protection 

against pollutants (Stasko et al., 2012). The influence of DOC on aquatic ecosystems 

affects the abundance and distribution of many fish species; previous research observed a 

decrease in the relative abundance of walleye (Sander vitreus) with increasing DOC 

levels, along with a decline in early growth rates for both walleye and lake trout (Benoit, 

2014). 

1.3  Biological interactions in fish communities 

Along with environmental factors, biological interactions including competition, 

predation, and mutualism are known to influence metacommunity structure (COSEWIC, 

2009; Englund et al., 2009; Hulsman et al., 2016; Scheibel et al., 2016). Predation can 

have a large structuring effect on community composition; for example, northern pike 

(Esox lucius) exhibit negative associations with several species and can eliminate most 

other fish species when introduced to naïve environments(Byström et al., 2007; 

Nicholson et al., 2015). Similarly, competition between species can also impact fish 

community structure, as has been observed among larval coregonids (lake whitefish and 

lake herring; Davis & Todd, 1998). Although past studies highlight the potential 

influence species interactions can have on fish community composition, efforts to 
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effectively incorporate these interactions into community modeling have been relatively 

limited (Wagner et al., 2020).  

1.4  Spatial influences on fish communities 

Spatial connectivity, within the metacommunity framework, is essential for 

facilitating regional dispersal between different waterbodies and hydrological systems 

(Brown et al., 2011; Urban, 2004). Lakes with higher degrees of connectivity increase the 

likelihood of fish dispersal between waterbodies, reducing the risk of local extinction 

while increasing the likelihood of homogenization amongst fish communities (Olden et 

al., 2001). Conversely, lakes that are more isolated face an increased risk of extinction 

and lower rates of recolonization (Fullerton et al., 2010; Olden et al., 2001). In addition to 

the presence of a connection, the degree of connectivity between lakes is primarily 

influenced by factors including the length and number of adjoining watercourses, the 

flow direction of these watercourses, and the presence of physical barriers along their 

paths (Olden et al., 2001). 

Although hydrological connectivity has historically been overlooked when 

researching fish community in lakes, recent research has begun to emphasize its 

importance (King et al., 2021; Laske et al., 2016). Research in the Midwest United States 

demonstrated that surface water connectivity positively influenced species richness in 

both lakes and streams, explaining 23% of the observed species composition across the 

region (King et al., 2021). Similarly, studies of Arctic lakes have identified connectivity 

as a primary driver of species richness, further emphasizing its importance in shaping fish 

communities (Laske et al., 2016).   
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Despite evidence highlighting the importance of spatial connectivity in ecological 

studies, one of the major challenges in evaluating this factor is appropriately integrating 

spatial patterns into ecological models. Depending on the model's objectives, spatial 

patterns can be viewed either as key contributors to ecological structures or as potential 

sources of bias when investigating specific processes (Dray et al., 2006). In aquatic 

ecosystems, incorporating spatial patterns is particularly challenging because species 

dispersal is often restricted to specific pathways, such as watercourses between connected 

lakes, rendering overland proximity metrics inappropriate. A promising solution to this 

issue is the application of spatial eigenvector mapping techniques, such as Moran’s 

eigenvector mapping (MEM) and asymmetric eigenvector mapping (AEM). These 

approaches can better represent specific connections among lakes by incorporating 

watercourse distance or other metrics that may significantly influence fish dispersal 

(Blanchet et al., 2008b; Dray et al., 2006). 

Moran’s eigenvector mapping (MEM) was initially developed by Borcard and 

Legendre (2002) in the form of Principal Coordinates of Neighbour Matrices (PCNM) 

and was later extended more broadly as MEM eigenfunctions by Dray et al. (2006). 

MEM is an eigenvector approach used to depict spatial patterns within a landscape. MEM 

eigenfunctions are derived through a principal coordinate analysis applied to a matrix 

among sampling locations (Dray et al., 2006). This matrix may be binary, thus exploring 

connectivity between sites, or weighted, where distance (or any other form of weight, 

such as watercourse distance, elevational gradients, etc.) can be applied. The resulting 

eigenvectors corresponding to the matrix can subsequently function as spatial predictor 

variables in multivariate regression models (Dray et al., 2006). MEM eigenvectors with 
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high eigenvalues (i.e., the first eigenvectors produced) typically capture broad-scale 

spatial patterns and explain the most variation in the associated spatial matrix. 

Eigenvectors with lower eigenvalues, on the other hand, tend to capture fine-scale spatial 

patterns and explain much less variation in the associated spatial matrix (Dray et al., 

2006; Heino et al., 2013). 

Blanchet et al. (2008) introduced Asymmetric Eigenvector Mapping (AEM) as an 

alternative to MEM, differing primarily in its ability to account for directionality and the 

influence of asymmetric processes on the distribution of species (Blanchet et al., 2008b).  

By doing so, ecological processes related to aquatic systems can more accurately be 

investigated, allowing for the incorporation of river networks and the flow direction of 

waterways into spatial models. Similar to MEM, AEM is also able to include variables as 

weights in the spatial matrix.   

 The construction of AEM eigenfunctions begins with a directional connection 

diagram (e.g. Figure 2.2) displaying all relevant sites (i.e., lakes) and edges (i.e., 

hydrological connections), reflecting the degree of connectivity amongst sites of interest. 

To enforce directionality into the diagram, a theoretical site 0 is added “upstream” of the 

study area. This site 0, within an aquatic standpoint, connects to all headwater lakes in a 

study area (Blanchet et al., 2008b). The patterns found in the connection diagram are then 

transformed into a sites-by-edges asymmetric matrix. Within an AEM matrix, non-zero 

values are present where a site is connected upstream to the corresponding edge. 

Conversely, a zero is present when the site is not connected upstream to the edge. For 

AEM matrices, weights will generally reflect the difficulty of upstream movement from 

low elevation to higher elevation sites (Blanchet et al., 2008b). 
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Following the construction of a sites-by-edges matrix, a singular value 

decomposition (SVD) is conducted, producing spatial eigenvectors, summarizing the 

variability found within the connectivity matrix. Like any other SVD and similar to MEM 

eigenfunctions, the first eigenvectors produced (those with the highest eigenvalues) 

explain the most variation in the matrix and summarize more broad-scale spatial patterns 

while those produced last (those with lower eigenvalues) explain the least variation and 

reflect fine-scale spatial patterns (Blanchet et al., 2008b; Dray et al., 2006). 

1.5  Metacommunity modeling approaches 

Given the complexity of fish communities in freshwater lakes and the many 

potential factors at play, a multivariate modeling approach is often required. Although 

previous efforts have been made to model the influence of environmental attributes, 

biological interactions, and hydrological connectivity together, these efforts have 

typically left out certain aspects of hydrological connectivity or species interactions. 

Sharma et al. (2011) provided insight into spatial and environmental factors influencing 

fish communities across all lakes in Ontario, but lacked detailed hydrological data, 

instead modelling connections among tertiary watersheds rather than among lakes (due 

primarily to computational limitations at the time) and excluding flow direction and 

potential fish movement barriers from their analysis (Sharma et al., 2011). Similar 

modeling efforts by Olden et al. (2001) found strong relationships between fish 

community composition and lake isolation and morphology in a collection of south-

central Ontario lakes, yet did not account for the influence of piscivorous species or 

natural fish movement barriers such as waterfalls, chutes, and cascades between 

adjoining lakes.  
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Despite the recognition that fish movement barriers likely have an influence of 

fish community composition in lakes in literature, few studies have effectively quantified 

their impact in conjunction with other factors when considering spatial connectivity. In 

studies that have included fish barriers in their analyses, often other factors were not 

analyzed. Mozzaquattro et al. (2020), for example, highlighted the importance of physical 

barriers, spatial distance, flow direction, and habitat features in shaping fish 

metacommunities in southern Brazil streams but were limited in their consideration of 

environmental and biological variables. To date, I have found no studies that 

comprehensively analyze fish barriers, flow direction and watercourse distance, along 

with environmental and biological factors together when considering fish community 

composition in freshwater lakes. 

Along with the challenges of modeling hydrological connectivity and the 

limitations of previous studies, past efforts to incorporate the influence of species 

interactions on community assemblage have also been limited (Leibold et al., 2021; 

Pichler & Hartig, 2021; Wagner et al., 2020). Two of the most common methods used in 

community modeling, ordination and species distribution modeling (SDMs), do not 

account for species interactions (Pichler & Hartig, 2021). To overcome these limitations, 

a relatively new modeling technique called Joint Species Distribution Modeling (JSDMs) 

has become increasingly popular, which is a multivariate regression model approach that 

considers species-specific environmental preferences, spatial autocorrelation, and 

covariances among species simultaneously to explain metacommunity structure (Leibold 

et al., 2021; Tikhonov et al., 2020). Unlike Species Distribution Models (SDMs), JSDMs 

integrate species-level models into a single model, fitted simultaneously to all community 



 

11 

 

data, allowing for species co-occurrences to be included in the final model (Ovaskainen 

& Abrego, 2020). 

1.6  Joint Species Distribution Modeling 

Although numerous JSDM approaches have been established, Hierarchical 

Modeling of Species Communities (HMSC) has been recognized for its strong predictive 

performance (Norberg et al., 2019). HMSC is a Bayesian-fitted JSDM and a multivariate 

hierarchical generalized linear mixed model (GLMM; Ovaskainen & Abrego, 2020). The 

HMSC framework is versatile in utilizing ecological data to model processes that 

structure community composition. It has the ability to incorporate environmental 

variables, phylogenetic relationships, potential biological interactions (represented as 

species co-occurrences), and spatial data into its analysis as well as accept community 

composition data as both presence-absence and species abundance. The fitting of HMSC 

models to data are achieved through Bayesian inference, employing Markov chain Monte 

Carlo (MCMC) estimation techniques (Tikhonov et al., 2020).  

Within the HMSC framework, latent variables are used to capture species co-

occurrence patterns that remain unexplained by the model’s specified fixed effects, such 

as environmental variables. These residual co-occurrence patterns can suggest potential 

biotic interactions or other unmeasured processes, which are then summarized in a 

residual species association matrix. Consequently, when two species are observed 

together more or less frequently than expected based on their environmental niches, they 

are respectively deemed as positively or negatively associated (Ovaskainen & Abrego, 

2020). Although these species co-occurrences may be the result of biological interactions, 

it is important to note that these patterns could also be the result of other undefined 
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factors not included in the JSDM analysis. For this reason, species co-occurrences are 

unable to be properly modeled alone or without the inclusion of established fixed 

environmental and spatial variables (Ovaskainen & Abrego, 2020). 

1.7  IISD Experimental Lakes Area 

The rapid decline in biodiversity within aquatic ecosystems highlights a critical 

need to understand the driving factors that shape metacommunity structure. Given the 

complexities associated with investigating the influence of both environmental and 

biological factors on community composition while also accounting for spatial 

connectivity, it is clear that a new holistic approach can and should be taken for 

freshwater lake ecosystems. The International Institute for Sustainable Development 

(IISD) Experimental Lakes Area (ELA) provides an excellent opportunity to conduct 

such a study due to its rich collection of data among hydrologically connected 

waterbodies, providing a solid foundation to investigate drivers of fish metacommunity 

structure in a region representative of the boreal shield ecozone.  

Following the establishment of the ELA in 1968, a total of 109 lakes were 

surveyed initially, providing information on the identity and relative abundance of fish 

populations, water chemistry metrics, and lake morphology data (maximum lake depth 

and surface area) for all surveyed lakes (Beamish et al., 1976; Cleugh & Hauser, 1971). 

Since this initial survey, several additional lakes in the region have also been sampled 

using similar methodology, thus providing a rich dataset for exploring watershed level 

fish metacommunity structure. 

In addition to developing a rich dataset of the fish communities within the ELA, 

Beamish et al. (1976) also noted several anecdotal differences in fish species composition 
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between the two main quaternary watersheds included in these early surveys; the Eagle 

watershed to the northwest and Dryberry watershed to the southeast (Beamish et al., 

1976). Lake whitefish (Coregonus clupeaformis), for example, were reportedly rare in 

lakes surveyed within the Dryberry watershed but abundant in lakes within the Eagle 

watershed. Conversely, lake herring (Coregonus artedi) were reported to be relatively 

common in the Dryberry watershed but less prevalent in the Eagle watershed. Johnny 

darters (Etheostoma nigrum) were also present in several surveyed lakes in the Dryberry 

watershed yet completely absent from lakes sampled in the Eagle watershed at the time.  

1.8  Objectives 

The main objectives of this thesis were: 

A. To determine the influence of lake connectivity and associated spatial variables (i.e., 

flow direction of connecting watercourses, stream gradient, stream sinuosity, and fish 

barriers such as waterfalls, chutes, and cascades) on fish community composition in 

freshwater lakes. 

B. To evaluate the relative importance of lake connectivity compared with environmental 

conditions and potential biological interactions (i.e., species co-occurrences) on fish 

community composition; and  

C. To identify key variables influencing the distribution of individual fish species in the 

region of the study.  
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Methods 

2.1  Study Area 

To determine the influence of lake connectivity, environmental variables, and 

species co-occurrence on fish metacommunity composition, 81 lakes spanning across 2 

neighbouring quaternary watersheds were studied (Figure 2.1). The majority of the 

selected lakes are found near the ELA, located in northwest Ontario, approximately 52 

km southeast of Kenora, ON. The ELA is surrounded by hundreds of freshwater lakes, all 

of which are found within two quaternary watersheds; the Eagle Watershed, located in 

the northeast region of study, and the Dryberry Watershed, located in the southwest 

region of study (Beamish et al., 1976). Lakes within the Eagle Watershed drain north into 

Eagle Lake, eventually joining the English River system (Schindler et al., 1996). Lakes 

within the Dryberry Watershed drain south, first into Dryberry Lake and then into the 

Lake of the Woods (Schindler et al., 1996). Both ultimately drain into the Winnipeg 

River, which then flows into Lake Winnipeg (Brunskill & Schindler, 1971; Schindler et 

al., 1996). 
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Figure 2.1.  Distribution of the 81 waterbodies and associated watercourses included in 

this study, shaded in dark blue. Quaternary watershed boundaries are defined by red lines. 

The Eagle Watershed is located in the northeast region and the Dryberry Watershed is 

located in the southwest region. 

Approximately 14,000 years ago, the region now encompassing the ELA was 

covered in glacial ice (Brunskill & Schindler, 1971). As the ice began to melt, a large 

lake formed, Lake Agassiz, with the eastern margin of the lake situated over where the 

ELA is now (Brunskill & Schindler, 1971). Over time, water began to recede, forming 

the lake basins and watersheds present today. As a result, lakes between the Eagle and 

Dryberry watersheds have been separated for thousands of years, with lakes within each 

watershed varying in degrees of connectivity to one another. 
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Due to the ELA’s rich collection of lake data and previous observations of fish 

metacommunity diversity, the area provides an excellent opportunity to investigate fish 

metacommunity composition and the potential drivers of fish metacommunity structure.  

2.2  Lake Selection 

Lakes chosen for this study were primarily selected based on their level of 

connectivity to other surrounding waterbodies. Since my research objectives primarily 

focused on understanding the influence of lake connectivity and stream-related variables 

(such as flow direction and the presence of fish movement barriers) in shaping fish 

community structure, I specifically targeted lakes that are part of longer lake chains, 

defined as a series of connecting lakes. Lake chains where historical fish surveys and 

water sampling had previously been conducted on a majority of lakes were prioritized. 

Additional surveys were conducted to include previously unsurveyed lakes within 

identified chains, ensuring the inclusion of as many lakes as possible within selected lake 

chains (Appendix A). 

2.3  Fish Abundance Surveys, Water Chemistry Sampling, and Estimation 

Data from both historical and recent surveys were utilized to provide information 

for each of the 81 study lakes. Fish community composition, water chemistry, and lake 

morphology data for each lake were collected between 1971 to 2023 (Appendix A). 

Historical data from 1971 to 2021 were available for 60 lakes, gathered by various 

organizations including IISD-ELA, Ontario Ministry of Natural Resources (OMNR), and 

the Department of Fisheries and Oceans (DFO). 

Historic fish surveys used various sampling methods, including gillnets, minnow 

traps, trap netting and seining (Appendix A). In cases where lakes underwent multiple 
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fish surveys, all available survey data were used to present a comprehensive depiction of 

the lake's species composition. This approach was implemented to account for variations 

in sampling methods and efforts across lakes that were sampled multiple times over the 

years, thereby reducing bias in species presence and abundance. Prior to 2014, all 

collections were made under the authority of Fisheries and Oceans Canada. Following 

2014, collections were made under the approval of the OMNR by way of scientific 

collection permits and with the approval of the Canada Council for Animal Care by way 

of the Lakehead University Animal Care Committee (AUP 1465945, 1469342).  

 In 2022 (June-August), with the help of several Lakehead University research 

assistants, I conducted broad-scale monitoring (BSM) fish surveys for the remaining 10 

unsurveyed study lakes. Surveys were based on the IISD-ELA Broad-Scale Monitoring 

Protocol, which is a modified version of OMNR’s Manual of Instructions for Broad-

Scale Fish Community (IISD, 2018; Sandstrom et al., 2013). Surveys typically involved 

setting 2-3 large mesh gills nets (8 mesh sizes per gang x 3.1 m panels) and 2-3 small 

mesh gill nets (5 mesh sizes per gang x 2.5 m panels) per sampling day across pre-

defined depth strata in the lake (see below), with set durations lasting 16-22 hours (IISD, 

2018).  

Prior to setting nets, the maximum depth of each lake was measured using a 

handheld depth sounder. Temperature and oxygen profiles were recorded at the deepest 

part of the lake using a YSI Pro ODO unit to identify potential anoxic depths. Secchi 

depth measurements were also taken at this location, along with two 500 ml water 

samples collected for subsequent laboratory analysis to determine water quality metrics 

including pH, dissolved organic carbon (DOC), and total phosphorus (TP). 
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During BSM surveys, depth strata of 1-3m, 3-6m, 6-12ms, 12-20m, 20-35m, and 

35-50m were sampled, with sampling efforts among depth strata conducted 

proportionally to the area of each stratum in the lake, excluding depths where anoxic (<2 

ppm of dissolved oxygen) conditions were observed (IISD, 2018). In addition to gillnets, 

minnow traps were placed along the shoreline of the lake, with at least three traps set per 

sampling day, as minnows often prefer downed trees and other underwater 

plants/structures for habitat (IISD, 2018).  

Fish community composition for each of the 81 study lakes was represented as 

either presence-absence or relative abundance, where relative abundance was categorized 

broadly as absent, rare, moderately abundant, or abundant based on survey catches. These 

relative abundance measures, initially introduced by Beamish et al. (1976), have been a 

common practice for rapidly summarizing fish population data for ELA lakes since 1969 

using limited data and has recently been demonstrated to accurately describe variation in 

catch per unit effort (CPUE) for several fish species (Littlefair et al., 2024). Relative 

abundance data were unavailable for 3 of our study lakes (lakes L254, L454, L589), 

resulting in a dataset of 78 lakes for relative abundance-specific analyses and 81 lakes for 

presence-absence analyses (Appendix A). 

Despite variations in survey years, fish community composition was assumed to 

have remained fairly consistent over time due to the relatively non-invasive survey 

methods deployed when assessing lakes, limited angling pressure in the region, and the 

limited amount of development in the area. This assumption is supported by previous 

long-term monitoring studies (Milling, 2020; Rennie et al., 2019; Slongo, 2022), which 

reported minimal changes in fish species abundance over extended periods in several 
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ELA lakes not subjected to experimental manipulation. Due to the broad metrics used for 

quantifying fish species’ abundance at each lake, a major change in a lake’s composition 

or management would likely have to occur to affect a species’ estimated relative 

abundance or presence-absence. 

Historic water sampling of the study lakes often varied in the frequency of 

sampling. For lakes that had been sampled multiple times, water chemistry metrics were 

averaged, while single-sampled lakes retained original values. Periods of data collected 

during whole-lake experiments that altered typical lake characteristics were excluded 

from the analysis. Water samples used for water chemistry metrics were also restricted to 

those sampled between a depth of 0-3m and those occurring during the open water season 

(i.e. between May and October). 

In addition to variation in water sampling frequency, the types of water chemistry 

metrics evaluated amongst historically sampled lakes also varied. In some cases, missing 

metrics were estimated from auxiliary data using published relationships (Beamish et al., 

1976; Chow-Fraser, 1991; Molot & Dillon, 1997). In the absence of pH data, lake surface 

area was used to estimate pH based on the observed regression found during the original 

ELA fish surveys (Beamish et al., 1976): 

(A)  Log pH = 0.77 + 0.04 [log Lake Surface Area] (r = 0.57, P < 0.001); where lake 

surface area is in units of 104m2.  

For total phosphorus (TP), conductivity and lake depth were used to calculate an 

estimate value (Chow-Fraser, 1991): 
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(B) log TP = 0.473 log MEI + 0.483 (r2 = 0.58); where TP is total phosphorus (µg/L) 

and MEI is defined below. 

(C) MEI = Conductivity ÷ Mean Depth; where MEI refers to morphoedaphic index (a 

metric used to predict fish production in lakes), conductivity is in µS/cm, and 

mean depth is in meters (m), defined in (D) below. 

(D) log Mean Depth = 0.940 [±0.058] log Maximum Depth – 0.349 (r2 = 0.82, n = 60, 

P = 0.0001); where mean depth and maximum depth are in meters (m). 

To estimate dissolved organic carbon (DOC), we used water colour to provide an 

estimated value (Molot & Dillon, 1997): 

(E)  DOC = 1.735 + 0.070 [colour] (R2= 0.93); where DOC refers to dissolved 

organic carbon (mg/L) and colour refers to water colour (Hu). 

2.4  Landcover Data 

All landcover-related analyses were performed using ArcGIS Pro 3.1. The surface 

area of study lakes was determined using the Ontario Integrated Hydrology Data (OIHD) 

v1.0 (OMNRF, 2012), in conjunction with high-resolution imagery and digital elevation 

models (DEMs) from a 2017 aerial survey of the area, provided by the ELA. Any 

discrepancies in watercourse polylines and lake polygons from OIHD were corrected 

using both high-resolution imagery and field assessment observations (Appendix B). 

Lake connectivity metrics, including average stream gradient, maximum stream 

gradient, stream sinuosity, and watercourse length, were calculated using tools in ArcGIS 

Pro (Appendix C).  In cases where the maximum depth of a study lake was not available 

from historical data, I utilized a GIS approach established by Heathcote al et., (2015). 
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This method estimates maximum depth using the lake’s surface area, elevation, and 

surrounding topography (Heathcote et al., 2015): 

(F)  D = 2 * √(A ÷ π); where D is the equivalent diameter (m) and A is the lake area 

(km2). 

(G)  25% buffer = 25% of D (m)  

(H)  log10 Zmax = 0.35 + log10 elevation change25 * 0.79 (R2 = 0.52, F[1,431] = 473, P < 

0.001); Zmax is the estimated maximum depth of the lakes (m), elevation change25 

is the difference between mean elevation within the 25% buffer and the elevation 

of the lake surface (m).  

Instances where maximum lake depth was estimated using this method are 

indicated in Appendix A.  

2.5  Lake Connectivity Surveys 

Connectivity between study lakes was examined via direct observation from May 

to August 2022. Preliminary research, which included reviewing hydrological maps, 

aerial imagery, digital elevation models (DEMs), and consulting with researchers at the 

ELA, guided this fieldwork. 

During spring and summer months, field assessments were conducted to confirm 

and evaluate previously identified connections between lakes. Drones (DJI mini-2) were 

deployed along remote and longer streams to verify the connection path between lakes 

and identify potential fish barriers, such as waterfalls, chutes, or cascades. While 

temporary barriers, including beaver dams and logjams, exist on the landscape and may 

impact fish movement in the short-term (i.e. tens of years), our investigation focused on 

more permanent barriers on the landscape like waterfalls, chutes and cascades (i.e., 
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hundreds to thousands of years; see below for definitions) and therefore having a more 

permanent impact on fish metacommunity structure (Davis et al., 2018). 

The assessment of potential fish barriers followed the Alberta Conservation 

Association’s (ACA) Guide to Waterfall Fish Barrier Assessment (Blackburn et al., n.d.). 

Given the absence of standardized assessment methods for fish barriers at both the 

provincial and federal levels in Ontario, I opted to utilize ACA's methodology due to its 

comprehensive approach for evaluating natural fish barriers. While originally designed 

for trout species, it was considered to be a conservative method for assessing upstream 

fish passage in our study area, given the limited ability of most fish species in the region 

to migrate upstream in watercourses (Gardunio, 2014; Spens & Ball, 2008).  

Fish barriers eligible for assessment included waterfalls, chutes, and cascades. 

Waterfalls were defined by shifts in water velocity, resulting in the detachment of water 

from the streambed typically exceeding 23 degrees and with a minimum height of 0.75 

meters. Chutes were characterized by steep gradients, usually less than 23 degrees, with 

water largely in contact with the streambed. Cascades were recognized as stream sections 

featuring a sequence of waterfalls and/or chutes of varying intensity and turbulence. 

Subsequent evaluations determined how the upstream movement of fish might be 

impeded, defined as a barrier mode. Four main barrier modes were evaluated: (1) leaping 

barriers, (2) swimming velocity barriers, (3) swimming depth barriers, and (4) swimming 

turbulence barriers (Blackburn et al., n.d.). 

Following this assessment, barriers were assigned scores ranging from 0 to 3, with 

a score of 3 indicating highly unlikely fish passage upstream. After evaluating all 

watercourses connecting adjoining lakes, each received a score, and in cases of multiple 
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barriers on a single between-lake connection, the highest fish barrier score was chosen as 

the spatial weight during eigenvector mapping. 

2.6  Statistical Approach 

To evaluate the impact of lake connectivity and identify key spatial variables 

influencing fish metacommunity composition, I employed a Joint Species Distribution 

Model (JSDM) approach, following the Hierarchical Modeling of Species Communities 

(HMSC) framework outlined by Ovaskainen & Algebra (2020). To determine which 

spatial variables related to lake connectivity most strongly explained fish metacommunity 

composition amongst the study lakes in the absence of other factors (environmental, 

species associations), spatial-only JSDMs were developed. These models consisted 

exclusively of spatial eigenvectors representing different types of spatial variables related 

to lake connectivity (Blanchet et al., 2008b; Dray et al., 2006). Models were executed and 

ranked based on their explanatory and predictive power. Spatial variables identified by 

spatial-only JSDMs as having the greatest influence on fish community structure were 

retained for later modeling efforts (see below). 

To determine the role of spatial variables (identified above) relative to 

environmental factors and species co-occurrence on fish metacommunity composition, a 

second JSDM approach was conducted. Full dataset JSDMs consisting of (A) 

environmental, spatial, and species co-occurrence latent variables, (B) exclusively 

environmental variables, (C) exclusively spatial variables, and (D) environmental and 

spatial variables were formulated and ranked based on their explanatory and predictive 

performance to determine the most effective combination of variables yielding the best 

performing models. Spatial variables selected from our best performing spatial-only 
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JSDM in the previous analysis were incorporated as the spatial variables in this 

assessment. After determining which set of variables produced the best performing 

model, overall and species-specific variance partitioning was conducted, identifying the 

relative role of each variable in explaining community and species-specific patterns of 

occurrence. Due to the nature of species co-occurrence latent variables, co-occurrence is 

unable to be modeled alone or without the inclusion of established fixed environmental 

and spatial variables (see Section 1.6; Ovaskainen & Abrego, 2020).  

2.7  Spatial-only JSDM Modeling 

Spatial-only JSDM models were implemented using R-packages aem, adespatial, 

and Hmsc (Blanchet et al., 2008b; Dray et al., 2006; Ovaskainen et al., 2017). Moran’s 

eigenvector mapping (MEM) and asymmetric eigenvector mapping (AEM) were used to 

represent several different spatial metrics I wanted to investigate (Blanchet et al., 2008b; 

Dray et al., 2006). MEM eigenvectors were used to represent overland distance between 

lakes and hydrological connectivity between lakes (not considering directional flow) 

whereas AEM eigenvectors were used to represent hydrological connectivity in 

conjunction with the flow direction of watercourses.  

Spatial weights were integrated into hydrological connectivity-based MEM and 

AEM eigenvectors to assess factors such as watercourse length, stream gradient, stream 

sinuosity, and physical fish barriers (waterfalls, chutes, and cascades quantified by fish 

barrier assessment scores; Appendix C). These weights were converted using a concave-

down function (ƒ= 1-dij/max(dij)), with dij denoting a specified spatial weight between n 

sampling locations, and max(dij) representing the largest spatial weight within the dataset 

(Blanchet et al., 2008b; Dray et al., 2006). Following the transformation of the lake 
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connectivity diagram (Figure 2.2) into a site-by-edges matrix (AEM) or site-by-site 

matrix (MEM), converted spatial weights were multiplied to each matrix, then converted 

into spatial eigenvectors through singular-value decomposition (AEM) or principal 

coordinate analysis (MEM). Spatial weights solely affecting fish movement upstream, 

such as stream gradient and fish barriers, were exclusively applied to AEM eigenvectors 

(Appendix D). Stream sinuosity, while potentially reducing a stream’s water velocity, 

may also promote habitat complexity and therefore facilitate bidirectional fish movement 

between lakes (Kaufmann & Robison, 1998). For this reason, sinuosity was considered 

an appropriate spatial weight for inclusion in both AEM and MEM eigenvectors.  

 

Figure 2.2. Lake connectivity diagram used for producing Moran’s Eigenvector Mapping 

(MEM) and Asymmetric Eigenvector Mapping (AEM). Dark blue boxes represent lakes 

included in Joint Species Distribution Models (JSDMs). Light blue boxes represent lakes 

not included in modeling but necessary to include for eigenvector mapping. Site 0 and 

associated connections represent a theoretical site upstream of all study lakes, necessary 

for AEM exclusively. The hypothetical site 0 introduces directionality into the diagram 

and establishes asymmetric spatial variables. To maximize the variance explained by 

spatial associations and minimize the likelihood of selecting eigenvectors describing only 

random spatial patterns, four spatial eigenvectors associated with the highest eigenvalues 

were selected for each model (Dray et al., 2006). 
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A hurdle model approach was applied to analyze presence-absence and relative 

abundance of fish communities within the HMSC framework, given the prevalence of 

zeros due to species absences. These models consist of two components: one addressing 

presence-absence and the other focusing on abundance conditional on presence. For the 

presence-absence model, species abundance data were transformed by converting non-

zero values to one, with absences retained as zeros, and applying a binomial model with a 

probit link function to each species (probit model is easier to fit to data than a logistic 

model in HMSC; Ovaskainen & Abrego, 2020). Subsequently, for the abundance model, 

a separate dataset was created treating zeros as missing values, modeling abundances 

conditional of presence using a Poisson model. By running separate presence-absence 

and abundance (conditional on presence) analyses, we were able identify distinct drivers 

of a species presence and abundance (Odriozola et al., 2021). Relative abundance data, 

originally categorized as either rare, moderately abundant, or abundant, were converted 

into numerical values of 1, 2, and 3, respectively. 

During model fitting, the posterior distribution was sampled using four Markov 

Chain Monte Carlo (MCMC) chains, each comprising 15,000 iterations, with the initial 

5,000 iterations discarded as burn-in. To achieve 1,000 posterior samples per chain and a 

total of 4,000 posterior samples, the iterations were thinned by 200. Convergence of the 

MCMC chains was assessed by computing the potential scale reduction factor (PSRF) for 

parameters related to species responses to spatial variables, ensured that PSRF values did 

not exceed 1.2 (Brooks & Gelman, 1998; Gelman & Donald, 1992). 

I evaluated the performance of spatial-only JSDM models based on indicators of 

both explanatory (mean Tjur R2, mean SR2, and mean Area under curve) and predictive 
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power (WAIC and mean 10-fold cross-validation: Tjur R2, SR2, Area under curve). Tjur 

R2 (a pseudo-R2) and Area under the curve (AUC) are measures of discrimination, asking 

how well the occurrence probabilities discriminate sampling units as either occupied or 

empty. The units of AUC and Tjur R2 are different; a model that behaves ‘as well as by 

chance’ will yield an AUC of 0.5 and a Tjur R2 of 0, whereas a model that perfectly 

discriminates empty and occupied sampling units will have an AUC of 1 and a Tjur R2 of 

1. SR² is considered a pseudo-R². While R² in a linear model is calculated as the squared 

Pearson correlation between predicted and actual values, SR² is computed as the squared 

Spearman correlation between observed and predicted values. 10-fold cross validation 

refers to a technique used to evaluate the performance of a model by dividing the data 

into ten equal parts or folds. The model is trained on nine folds and tested on the 

remaining one, and this process is repeated ten times, with each fold used exactly once as 

the test data. The results from each iteration are averaged to provide an overall 

performance metric. The Widely Applicable Information Criterion (WAIC) is a measure 

used to evaluate the performance of statistical models, particularly in Bayesian analysis. 

WAIC estimates the out-of-sample prediction error by considering both the goodness of 

fit and the complexity of the model. A lower WAIC value indicates a better model, as it 

suggests a good balance between fitting the data well and maintaining simplicity to avoid 

overfitting. 

For presence-absence data analysis, models with the highest explanatory and 

predictive mean Tjur R2 and mean Area under Curve (AUC) values and lowest WAIC 

score were deemed as our best performing model. Conversely, for the relative abundance 

dataset, models yielding the highest explanatory and predictive mean SR2 values and 



 

28 

 

lowest WAIC scores were considered best performing. Predictive power was calculated 

to identify overparameterization for any specific model.  

2.7  Full Dataset JSDM Modeling 

Full dataset JSDM models were conducted using the same framework and model 

specifications as the spatial-only JSDM models. Four environmental variables were 

selected for modeling: lake size (maximum lake depth), productivity (total phosphorus), 

acidity (pH), and light attenuation (dissolved organic carbon), based on their documented 

influence on fish presence and abundance (Beamish et al., 1976; Matuszek & Beggs, 

1988; Mills et al., 1987; Rennie et al., 2019; Stasko et al., 2012).  

Utilizing the most explanatory and predictive spatial variables identified from the 

spatial-only JSDM modeling, spatial eigenvectors for presence-absence modeling and 

relative abundance (conditional on presence) modeling were selected independently 

(Dray et al., 2006). Additionally, latent variables were introduced to account for species 

co-occurrences not explained by fixed variables. These latent variables were generated by 

integrating a community-level random effect at the sampling level (i.e., lake). 

Similar to spatial-only JSDM modeling, a hurdle model approach was applied, 

following MCMC sampling as described previously. Explanatory and predictive power 

were also used to identify our best performing model as described above, which was then 

analyzed for further investigation of the region's metacommunity structure. 
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Results 

3.1  Fish Abundance 

A total of 44 fish species were found among the 81 sampled lakes included in the 

analysis. Species richness varied greatly among study lakes, ranging from 1 to 27 species 

(mean = 6, SD = 6).  To avoid modeling issues due to low sample size, only species 

present in at least 10 lakes were selected for analysis; consequently, 16 fish species were 

included in JDSM modelling analyses (Table 3.1). Among these selected species, white 

sucker, yellow perch, and northern pearl dace were most frequently observed, occurring 

in 70, 58, and 53 lakes, respectively. 

Table 3.1. Fish species included in JSDM modeling, with a minimum of 10 occurrences 

(i.e., present in at least 10 lakes). 

Common Name Latin Name Number of occurrences 

Blacknose Shiner  Notropis heterolepis 26 

Burbot Lota lota 15 

Fathead Minnow Pimephales promelas 27 

Finescale Dace Chrosomus neogaeus 25 

Johnny Darter Etheostoma nigrum 13 

Lake Herring (Cisco) Coregonus artedi 24 

Lake Trout Salvelinus namaycush 36 

Lake Whitefish Coregonus clupeaformis 20 

Longnose Dace Rhinichthys cataractae 19 

Northern Pearl Dace Margariscus nachtriebi 53 

Northern Pike Esox lucius 19 

Northern Redbelly Dace Chrosomus eos 18 

Slimy Sculpin Cottus cognatus 29 

Spottail Shiner Notropis hudsonius 15 

White Sucker Catostomus commersonii 70 

Yellow Perch Perca flavescens 53 

 

3.2  Environmental Variables 

Lake size varied greatly, with surface areas ranging from 0.4 ha to 9,546.0 ha 

(mean = 259.8 ha, SD = 1122.6 ha) and maximum depths ranging from 0.5 m to 167.0 m 
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(mean = 23.3 m, SD = 30.9 m). Maximum lake depth was chosen as the sole metric 

representing lake size due to its strong correlation (r = 0.82) with surface area and its 

known influence on various fish species (Fang et al., 2009; Johnson et al., 1977). To 

address the skewed distribution of maximum lake depth, the log10 values of maximum 

lake depth were used in the models. 

 

Figure 3.1. Correlation between log10 values of maximum depth (m) and lake surface 

area (ha) amongst 81 study lakes (r = 0.82). 

 Acidity, represented by mean pH levels, varied from 5.15 to 7.88 across study 

lakes (mean = 6.77, SD = 0.46). Lake productivity, represented by mean TP levels, 

ranged from 3.0 µg/L to 41.5 µg/L (mean = 10.1 µg/L, SD = 6.7 µg/L). Due to the 

relatively strong correlation between TP and TN levels, TP was chosen as the sole 

variable to represent lake productivity in the analyses (r = 0.55; Figure 3.2). Given the 
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skewed distribution of TP, log10 values of TP were used. Mean DOC levels, representing 

light attenuation, ranged from 3.30 mg/L to 15.01 mg/L (mean = 7.67 mg/L, SD = 2.64 

mg/L). To address the skewed distribution of DOC, log10 values of DOC were used. All 

lake-specific values of environmental factors can be found in Appendix E. 

 

Figure 3.2. Correlation between log10 values of total nitrogen (µg/L) and total 

phosphorus (µg/L) amongst 81 study lakes (r = 0.55). 

3.3  Spatial-only JSDM Model 

3.3.1  Presence-Absence 

A total of 11 spatial-only JSDM models (SM1–SM11, where SM stands for 

spatial-only model; Table 3.2) were run to assess fish presence-absence. Spatial-only 

JSDM models, designed to identify key spatial variables influencing the presence or 

absence of fish species, demonstrated varying levels of predictive and explanatory power, 
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with model SM1 (an AEM model using maximum stream gradient as a weighting 

variable; Table 3.2) exhibiting the highest performance in both metrics. As an AEM 

model, SM1 consisted of spatial eigenvectors representing lake connectivity, stream flow 

direction, and included the maximum stream gradient along a watercourse as a spatial 

weight. The first four spatial eigenvectors selected for SM1 explained 85.33% of the 

spatially weighted connectivity matrix variance, effectively capturing most of the spatial 

variance related to lake connectivity, flow direction, and maximum stream gradients. 

Models using AEM eigenvectors (SM1-SM7) consistently outperformed all MEM (SM8-

SM11) models, highlighting the importance of including stream flow direction when 

investigating fish metacommunities. Additionally, Spatial-only JSDM models utilizing 

either AEM and MEM eigenvectors that included spatially weights by stream sinuosity 

demonstrated the poorest performance compared to other models, indicating stream 

sinuosity as a poor explanatory variable for estimating fish metacommunity structure.  
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Table 3.2. Explanatory (Mean Tjur R2, AUC) and predictive power (10-fold Cross Validation Mean Tjur R2, 10-fold Cross Validation 

AUC, WAIC) of Spatial JSDM models for presence-absence of fish species. Spatial JSDM models are assessed to identify appropriate 

spatial descriptors for Full Dataset JSDM models. Models with poor cross-validation values suggest poor model fit. 

Spatial 

Model 

Eigenvector 

Type 

Spatial Weight Mean Tjur R2 1 10-fold Cross Validation 

Mean Tjur R2 2 

AUC 1 10-fold Cross Validation 

AUC 2 

WAIC 3 

SM1 AEM Maximum stream 

gradient along 

watercourse 

0.1737 0.1226 0.7235 0.6416 8.3550 

SM2 AEM Hydrological 

connectivity only 

0.1722 0.1127 0.7224 0.6053 8.3644 

SM3 AEM Average stream gradient 

along watercourse 

0.1719 0.1206 0.7229 0.6382 8.3652 

SM4 AEM Hydrological 

watercourse length 

0.1683 0.1089 0.7186 0.6032 8.3981 

SM5 AEM Maximum fish barrier 

assessment score along 

watercourse 

0.1678 0.1168 0.7194 0.6332 8.4091 

SM6 AEM Presence of fish barrier 0.1678 0.1169 0.72034 0.6332 8.4161 
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SM7 AEM Stream sinuosity along 

watercourse 

0.1358 0.0797 0.70445 0.5901 8.7475 

SM8 MEM Hydrological 

watercourse length 

0.0743 0.0279 0.65218 0.4877 9.2910 

SM9 MEM Overland distance 

between lakes 

0.0723 0.0144 0.6812 0.5126 9.2258 

SM10 MEM Hydrological 

connectivity only 

0.0641 0.0161 0.65192 0.4594 9.4358 

SM11 MEM Stream sinuosity along 

watercourse 

0.0420 -0.0248 0.6114 0.3825 9.4027 

1 Tjur R2 and Area under the curve (AUC) are measures of discrimination, asking how well the occurrence probabilities discriminate sampling units as either occupied or empty. The units of AUC and 

Tjur R2 are different; a model that behaves ‘as well as by chance’ will yield an AUC of 0.5 and a Tjur R2 of 0, whereas a model that perfectly discriminates empty and occupied sampling units will have 
an AUC of 1 and a Tjur R2 of 1. 

2 10-fold cross validation refers to a technique used to evaluate the performance of a model by dividing the data into ten equal parts or folds. The model is trained on nine folds and tested on the 
remaining one, and this process is repeated ten times, with each fold used exactly once as the test data. The results from each iteration are averaged to provide an overall performance metric.  

3 The Widely Applicable Information Criterion (WAIC) is a measure used to evaluate the performance of statistical models, particularly in Bayesian analysis. WAIC estimates the out-of-sample 
prediction error by considering both the goodness of fit and the complexity of the model. A lower WAIC value indicates a better model, as it suggests a good balance between fitting the data well and 
maintaining simplicity to avoid overfitting. 
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3.3.2  Relative Abundance 1 

Spatial-only JSDM models were also evaluated for assessing the relative 2 

abundance (conditional on presence) of fish species. The best performing model in terms 3 

of explanatory power was SM12, which incorporated MEM eigenvectors describing 4 

overland distance between study lakes (regardless of connectivity). Apart from model 5 

SM12, models using AEM eigenvectors (SM13-SM19) consistently outperformed other 6 

MEM (SM20-SM22) models, similar to presence-absence spatial models. Despite these 7 

apparent patterns in explanatory power, all spatial-only JSDM relative abundance models 8 

exhibited very poor predictive power, suggesting poor model fit. The negative values of 9 

10-fold cross validation mean SR² for all relative abundance models indicate that these 10 

models’ ability to predict fish metacommunity composition is worse than a null model, 11 

which predicts the overall mean of the response variable (community composition) 12 

without accounting for predictor variables (spatial eigenvectors). Although a SR2 is not 13 

actually able to be negative, HMSC reverts the sign if the correlation coefficient is 14 

negative to indicate poor model fit (Ovaskainen & Abrego, 2020).  15 
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Table 3.3. Explanatory (Mean SR2) and predictive power (10-fold Cross Validation Mean SR2, and WAIC) of Spatial-only JSDM 

Models for relative abundance (conditional on presence) of fish species. Models with poor cross-validation values suggest poor model 

fit. 

Model  Eigenvector 

Type 

Spatial Weight Mean SR2 1 10-fold Cross Validation 

Mean SR2 2 

WAIC 3 

SM12 MEM Overland distance between lakes 0.2112 -0.0313 

 

41.2293 

SM13 AEM Average stream gradient along watercourse 0.1976 -0.0129 41.2872 

SM14 AEM Stream sinuosity along watercourse 0.1937 -0.0126 41.2801 

SM15 AEM Hydrological connectivity only 0.1931 -0.0146 41.2802 

SM16 AEM Maximum stream gradient along watercourse 0.1864 -0.0183 41.2879 

SM17 AEM Hydrological watercourse length 0.1842 -0.0132 41.2794 

SM18 AEM Maximum fish barrier assessment score along watercourse 0.1793 -0.0498 

 

41.2974 

SM19 AEM Presence of fish barrier 0.1761 -0.0509 41.2975 

SM20 MEM Hydrological connectivity only 0.1667 -0.0448 41.2884 

SM21 MEM Hydrological watercourse length 0.1414 -0.0644 41.2873 

SM22 MEM Stream sinuosity along watercourse 0.1000 -0.1029 41.2092 

1 SR² is considered a pseudo-R². While R² in a linear model is calculated as the squared Pearson correlation between predicted and actual values, SR² is computed as the squared Spearman correlation 
between observed and predicted values. 

2 10-fold cross validation refers to a technique used to evaluate the performance of a model by dividing the data into ten equal parts or folds. The model is trained on nine folds and tested on the 
remaining one, and this process is repeated ten times, with each fold used exactly once as the test data. The results from each iteration are averaged to provide an overall performance metric. 

3 The Widely Applicable Information Criterion (WAIC) is a measure used to evaluate the performance of statistical models, particularly in Bayesian analysis. WAIC estimates the out-of-sample 
prediction error by considering both the goodness of fit and the complexity of the model. A lower WAIC value indicates a better model, as it suggests a good balance between fitting the data well and 
maintaining simplicity to avoid overfitting. 
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3.4  Full Dataset JSDM Models 

3.4.1  Presence-Absence Models 

Among the Full Dataset JSDM models evaluating the presence and absence of 

fish species, Model ESC (Environment + Space + Co-occurrence), which incorporated 

environmental, spatial (SM1), and species co-occurrence latent variables, had the highest 

explanatory power and one of the highest predictive powers of all models considered 

(Table 3.4; Appendix F). The notable explanatory and predictive performance of Model 

ESC suggests that considering environmental, spatial, and species co-occurrence latent 

variables collectively are necessary for investigating fish metacommunity composition 

(as presence-absence), providing justification for its use in subsequent analyses. 
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Table 3.4. Summary of Full Dataset JSDM models (with optimized spatial predictors from SM1) for presence-absence of fish species. 

Model performance is ranked based on explanatory (Mean Tjur R2, AUC) and predictive (10-fold Cross Validation Mean Tjur R2, 10-

fold Cross Validation AUC, WAIC) power of each model. Models with poor cross-validation values suggest poor model fit. 

Model  Eigenvector Type Mean Tjur R2 1 10-fold Cross Validation 

Mean Tjur R2 2 

AUC 1 10-fold Cross Validation 

AUC 2 

WAIC 3 

Environment + Spatial + 

Co-occurrence (ESC) 

AEM Max Gradient 0.4012 0.1949 0.9044 0.7165 6.9068 

Environment + Spatial 

(ES) 

AEM Max Gradient 0.2965 0.2091 0.8358 0.7196 7.5980 

Spatial Only (S) AEM Max Gradient 0.1737 0.1143 0.7233 0.6187 8.3574 

Environment Only (E) AEM Max Gradient 0.1660 0.1091 0.7466 0.6372 8.2480 

1 Tjur R2 and Area under the curve (AUC) are measures of discrimination, asking how well the occurrence probabilities discriminate sampling units as either occupied or empty. The units of AUC and 

Tjur R2 are different; a model that behaves ‘as well as by chance’ will yield an AUC of 0.5 and a Tjur R2 of 0, whereas a model that perfectly discriminates empty and occupied sampling units will have 
an AUC of 1 and a Tjur R2 of 1. 

2 10-fold cross validation refers to a technique used to evaluate the performance of a model by dividing the data into ten equal parts or folds. The model is trained on nine folds and tested on the 
remaining one, and this process is repeated ten times, with each fold used exactly once as the test data. The results from each iteration are averaged to provide an overall performance metric. 

3 The Widely Applicable Information Criterion (WAIC) is a measure used to evaluate the performance of statistical models, particularly in Bayesian analysis. WAIC estimates the out-of-sample 

prediction error by considering both the goodness of fit and the complexity of the model. A lower WAIC value indicates a better model, as it suggests a good balance between fitting the data well and 
maintaining simplicity to avoid overfitting.
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3.4.2  Relative Abundance Models 

Among the Full Dataset JSDM models evaluating the relative abundance of fish 

species, Model C had the highest explanatory power (Table 3.5). However, similar to the 

relative abundance spatial-only models, all tested models for relative abundance 

(including Model C) demonstrated poor predictive power (10-fold cross validation SR2 

and WAIC), suggesting poor model fit generally (Table 3.5). The large difference 

between explanatory and predictive performance suggests that relative abundance, 

conditional on presence, is poorly explained by the tested variables and should therefore 

not be analyzed further. The negative values of 10-fold cross validation mean SR2 (see 

Section 3.3.2) for all relative abundance models suggests that the ability of these models 

to predict fish metacommunity composition is worse than a null model (i.e. one that 

predicts the overall mean of the response variable (community composition) without 

considering the predictor variables). This suggests poor model fit, overparameterization 

within the models, and/or selection of inappropriate variables. The especially high mean 

SR2 value observed with Model C is due to the model solely using latent variables as 

explanatory variables, meaning no environmental or spatial variable were included. These 

latent variables were produced to explain the most variation in the dataset and do not 

necessarily reflect any actual variables at play influencing relative abundance.   
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Table 3.5. Summary of Full Dataset JSDM models (with optimized spatial predictors) for relative abundance (conditional on 

presence) of fish species. Model performance is ranked based on explanatory (Mean Tjur R2, AUC) and predictive (10-fold Cross 

Validation Mean Tjur R2, 10-fold Cross Validation AUC, WAIC) power of each model. 

Model  Eigenvector Type Mean SR2 1 10-fold Cross Validation Mean SR2 2 WAIC 3 

Environment + Spatial + Co-occurrence (ESC) MEM connectivity 0.3664 -0.0062 41.5807 

Environment + Spatial (ES) MEM connectivity 0.2868 -0.0181 41.5182 

Spatial Only (S) MEM connectivity 0.1910 -0.0746 41.2835 

Environment Only (E) MEM connectivity 0.1871 -0.0974 41.2248 

1 SR² is considered a pseudo-R². While R² in a linear model is calculated as the squared Pearson correlation between predicted and actual values, SR² is computed as the squared Spearman correlation 
between observed and predicted values. 

2 10-fold cross validation refers to a technique used to evaluate the performance of a model by dividing the data into ten equal parts or folds. The model is trained on nine folds and tested on the 
remaining one, and this process is repeated ten times, with each fold used exactly once as the test data. The results from each iteration are averaged to provide an overall performance metric. 

3 The Widely Applicable Information Criterion (WAIC) is a measure used to evaluate the performance of statistical models, particularly in Bayesian analysis. WAIC estimates the out-of-sample 

prediction error by considering both the goodness of fit and the complexity of the model. A lower WAIC value indicates a better model, as it suggests a good balance between fitting the data well and 
maintaining simplicity to avoid overfitting. 
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3.5  Model ESC Presence-Absence Analyses 

3.5.1  Overall Exploratory Power 

Due to the high explanatory and predictive power of Model ESC in assessing the 

presence and absence of fish species, further analyses with this model were deemed 

appropriate. Of the explained variance by Model ESC, 52.6% was explained by spatial 

variables 36.0% by environmental variables, and 11.4% by species co-occurrence latent 

variables (Figure 3.3). Of the species modeled, lake trout, northern redbelly dace, and 

northern pike were best explained overall, whereas blacknose shiner was the least 

explained, with respective Tjur R2 values of 0.62, 0.61, 0.58, and 0.12 respectively 

(Figure 3.3).  

Explained variance of each factor varied considerably between species (Figure 

3.4). Overall, spatial eigenvector 2 and the maximum lake depth (i.e., lake size) explained 

the most variance across all species at 32.7% and 20.4% each. Total phosphorus (i.e., 

lake productivity) and DOC (i.e., light attenuation) explained the least variance across all 

species at 4.7% each. Lake trout, lake herring, slimy sculpin, burbot, and lake whitefish, 

many of which are considered cold-water species, were best explained by environmental 

variables, with maximum lake depth (i.e. lake size) being the most important 

environmental explanatory variable (Table 3.6). Northern pike, yellow perch, white 

sucker, johnny darter, finescale dace, spottail shiner, blacknose shiner, and longnose dace 

were best explained by spatial variables, specifically spatial eigenvector 2, except 

longnose dace, which was best explained by 3 (eigenvectors defined below). Northern 

redbelly dace and fathead minnow were best explained by species co-occurrence latent 

variables. 
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Figure 3.3. Variance partitioning (%) relative to presence-absence Model ESC’s Tjur’s 

R² for each fish species. The height of bars indicates the Tjur’s R² value associated with 

each species. Green represents cumulative environmental variables, blue represents 

cumulative spatial variables (i.e., selected spatial eigenvectors), and orange represents 

species co-occurrence latent variables.  
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Table 3.6. Main explanatory variables and associated explained variance (%) values for 

each fish species included in Model ESC for presence-absence. 

Species Highest Explanatory Variable Type Highest Explanatory Variable 

Blacknose 

Shiner 

Spatial 64.2% Spatial Eigenvector 2 34.4% 

Burbot Environment 60.7% Maximum Lake Depth 37.0% 

Fathead 

Minnow 

Species Co-

occurrence 

44.41% Species Co-occurrence 44.4% 

Finescale Dace Spatial 75.30% Spatial Eigenvector 2 49.7% 

Johnny Darter Spatial 73.4% Spatial Eigenvector 2 61.8% 

Lake Herring Environment 50.9% Maximum Lake Depth 40.0% 

Lake Trout Environment 87.8% Maximum Lake Depth 65.0% 

Lake Whitefish Environment 42.5% Maximum Lake Depth 29.3% 

Longnose Dace Spatial 47.3% Spatial Eigenvector 3 29.0% 

Northern Pearl 

Dace 

Spatial 68.3% Spatial Eigenvector 2 33.9% 

Northern Pike Spatial 83.4% Spatial Eigenvector 2 73.1% 

Northern 

Redbelly Dace 

Species Co-

occurrence 

44.1% Species Co-occurrence 44.1% 

Slimy Sculpin Environment 62.5% Maximum Lake Depth 46.0% 

Spottail Shiner Spatial 55.2% Spatial Eigenvector 2 36.3% 

White Sucker Spatial 73.4% Spatial Eigenvector 2 54.4% 

Yellow Perch Spatial 69.7% Spatial Eigenvector 2 58.1% 
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Figure 3.4. Variance partitioning (%) relative to presence-absence Model ESC’s Tjur’s 

R² for each fish species. The height of bars indicates the Tjur’s R² value associated with 

each species. Green shades represent environmental variables, blue shades (1-4) represent 

spatial eigenvector variables, and orange represents species co-occurrence latent 

variables.  

3.5.2  Spatial Eigenvectors 

Although spatial eigenvectors 1-4 in Model ESC collectively represent lake 

connectivity, stream flow direction, and maximum stream gradient, each eigenvector 

individually highlights key specific spatial patterns. To interpret visually the influence of 

each of these eigenvectors in describing spatial variation, values of each spatial 

eigenvector were plotted in relation to the spatial occurrence of the lakes which they 

describe. Spatial eigenvector 1 appears to highlight quaternary watershed boundaries 

found in the study area, with positive values representing Eagle watershed and negative 

values representing Dryberry watershed (Figure 3.5). Additionally, sites associated with 

higher absolute eigenvalues appear to be further downstream in lake chains, whereas 
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lower absolute eigenvalues seem to be located further upstream (Figure 3.5). Spatial 

eigenvector 2 appears to more strongly emphasize differences between lakes furthest 

downstream to headwater lakes and mid-level lakes, as highlighted by the strong negative 

correlation between lake order and eigenvector 2’s values (rs = -0.73; Figure 3.6).  Spatial 

eigenvectors 3 and 4 appear to represent distinct chains of lakes present in each study 

area (Figure 3.5). Identifying which spatial eigenvectors most represent the influence of 

maximum stream gradient along connecting watercourses appears to be somewhat 

challenging. Of the four spatial eigenvectors included in Model ESC, eigenvector 2 had 

the strongest explanatory power, suggesting a strong association between lake order and 

community composition.
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Figure 3.5. Visual representation of Spatial AEM eigenvectors 1-4 (a-d) used in Model ESC. AEM eigenvectors represent lake 

connectivity, flow direction of connecting watercourses, and the maximum gradient along a connecting watercourse. Each dot 
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represents a lake. Green dots are positive, red dots are negative. The size of the dot increases as the absolute eigenvector values 

increase. The width of the light blue polylines represent the maximum stream gradient found along with connecting watercourse.
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Figure 3.6 Spearman correlation between lake order and spatial eigenvector 2 amongst 

81 study lakes (rs = -0.73, p < 0.05).  

3.5.3  Species Responses to Environmental and Spatial Variables 

Nearly every environmental and spatial variable in Model ESC, excluding pH, 

had a strong positive or negative association with at least one species (>95% posterior 

probability; Figure 3.7). Maximum lake depth and spatial eigenvector 2 specifically had 

the most positive or negative associations with 9 and 11 out of 16 species, respectively. 
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Figure 3.7. Posterior distributions (means and 95% credible intervals) of regression 

coefficients for environmental and spatial eigenvector variables, by species. The 

coefficients are derived from the presence-absence Model ESC. Green indicates a 

variable has a strong positive association with a species. Red indicates a variable has a 

strong negative association with a species. Species with neutral environmental or spatial 

associations are shown in black. 

3.5.4  Environmental Drivers of Fish Presence 

Environmental variables accounted for 36.0% of the total variance explained 

across all species (Figure 3.4). Of this explained variance, maximum lake depth — 
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representing lake size in Model ESC — contributed 20.4%, with lake trout, burbot, and 

slimy sculpin showing particularly strong associations with this variable. Dissolved 

organic carbon (DOC), representing light attenuation, explained 4.7%, with lake trout and 

burbot being especially influenced by this factor. pH and total phosphorus contributed 

less to the overall variance, explaining 6.2% and 4.7% of the total explained variance, 

respectively, with few species showing particularly strong positive or negative 

associations with either variable. 

Lake trout (Tjur R2 = 0.619, 10-fold Cross Validation Tjur R2 = 0.521) was best 

explained by maximum lake depth and DOC (Figures 3.8). Based on presence-absence 

Model ESC, lake trout has strong positive associations with maximum lake depth and a 

negative association with DOC. The log10 maximum lake depth value where presence 

probability reaches 0.5 was 1.182 (95% CI: 1.055 to 1.308), equal to an actual maximum 

lake depth of 15.2 m (95% CI: 11.4 m to 20.3 m; Figure 3.8). The log10 DOC value where 

presence probability reaches 0.5 was 2.744 (95% see CI: 2.694 to 2.785) equal an actual 

DOC value of 6.66 mg/L (95% CI: 5.94 mg//L to 7.31 mg/L; Figure 3.8). The actual and 

predicted distribution of lake trout based on all model predictors is displayed in Figure 

3.9. If we use 0.5 probability as the cutoff for likely species presence, Model ESC 

correctly predicted the presence and absence of lake trout for 71 of the 81 study lakes.  
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Figure 3.8. Response of lake trout presence probability to (a) log10 value of maximum 

lake depth (m) and (b) the log10 value of dissolved organic carbon (mgl/L). Plots are 

based on predictive ability of presence-absence Model ESC. Green shaded area 

represents 95% posterior probability. 
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Figure 3.9. Actual and predicted distribution of lake trout across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where lake trout were predicted to be present but were 

not observed. Purple represents lakes where lake trout were observed but not predicted. 

The predicted distribution is based on the presence-absence Model ESC, with presence 

defined as a probability exceeding 0.5. 

For burbot (Tjur R² = 0.506, 10-fold Cross Validation Tjur R² = 0.376), maximum 

lake depth and DOC were also the key explanatory variables (Figure 3.10). The presence-

absence Model ESC suggests that burbot strongly favours deeper lakes and lower DOC 

levels. The log10 maximum lake depth where the likelihood of presence reaches 0.5 is 

1.718 (95% CI: 1.402 to 2.222), translating to an actual depth of 52.2 m (95% CI: 25.3 m 

to 167.0 m; Figure 3.10). Given the correlation between maximum depth and surface area 

(see Figure 3.1), the corresponding lake surface area at this probability level is 174.4 ha 
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(95% CI: 73.0 ha to 703.5 ha). For DOC, the log10 value for 0.5 presence probability is 

2.579 (95% CI: 2.439 to 2.678), equivalent to an actual concentration of 6.65 mg/L (95% 

CI: 4.40 mg/L to 7.82 mg/L; Figure 3.10). The actual and predicted distributions of 

burbot, incorporating all model predictors, are shown in Figure 3.11. With a 0.5 

probability cutoff, Model ESC accurately predicted burbot presence and absence in 74 of 

the 81 study lakes. 

Figure 3.10. Response of burbot presence probability to (a) log10 value of maximum lake 

depth (m) and (b) log10 value of dissolved organic carbon (mg/L). Plots are based on 

predictive ability of presence-absence Model ESC. Green shaded area represents 95% 

posterior probability. 
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Figure 3.11. Actual and predicted distribution of burbot across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where burbot were predicted to be present but were not 

observed. Purple represents lakes where burbot were observed but not predicted. The 

predicted distribution is based on the presence-absence Model ESC, with presence 

defined as a probability exceeding 0.5. 

Slimy sculpin (Tjur R² = 0.300, 10-fold Cross Validation Tjur R² = 0.107) was 

primarily influenced by maximum lake depth (Figure 3.12). Presence-absence Model 

ESC shows that slimy sculpin is strongly positively associated with greater lake depths. 

The log10 maximum lake depth at which the presence probability reaches 0.5 is 1.497 

(95% CI: 0.645 to 2.222), which corresponds to an actual depth of 31.4 m (95% CI: 4.4 m 

to 167.0 m; Figure 3.12). Given the strong correlation between maximum lake depth and 

surface area (see Figure 3.1), the lake surface area at this probability is estimated to be 
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94.7 ha (95% CI: 9.0 ha to 703.5 ha). Figure 3.13 displays the actual and predicted 

distributions of slimy sculpin based on all model predictors. When applying a 0.5 

probability threshold, Model ESC accurately predicted slimy sculpin presence and 

absence in 63 of the 81 study lakes. 

Figure 3.12. Response of slimy sculpin presence probability to log10 value of maximum 

lake depth (m). Plots are based on predictive ability of presence-absence Model ESC. 

Green shaded area represents 95% posterior probability.
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Figure 3.13. Actual and predicted distribution of slimy sculpin across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where slimy sculpin were predicted to be present but 

were not observed. Purple represents lakes where slimy sculpin were observed but not 

predicted. The predicted distribution is based on the presence-absence Model ESC, with 

presence defined as a probability exceeding 0.5. 

3.5.5  Spatial Drivers of Fish Presence 

Spatial variables accounted for 52.6% of the explained variance across all species. 

Spatial eigenvector 2, which appears to differentiate between downstream lakes (high-

order) and headwater lakes (low-order), accounted for 32.7% of the explained variance. 

Northern pike, white sucker, and finescale dace showed particularly strong associations 

with this variable. Spatial eigenvectors 1, 3, and 4 accounted for smaller portions of the 

explained variance, at 5.4%, 7.4%, and 7.1%, respectively. Eigenvector 1, which appears 
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to distinguish the Eagle and Dryberry watersheds, showed strong positive associations 

with fathead minnow and northern redbelly dace, suggesting both species are more likely 

to be present in the Eagle watershed. 

Northern pike (Tjur R2 = 0.584, 10-fold cross validation Tjur R2 = 0.473) was best 

explained by spatial eigenvectors 2 (Figures 3.14). Based on presence-absence Model 

ESC, northern pike had a strong negative association with spatial eigenvectors 2. The 

spatial eigenvector 2 value where presence probability reaches 0.5 is -0.0497 (95% CI: -

0.0937 to -0.0144), suggesting that northern pike are more likely to be found in further 

downstream lakes than headwater lakes (Figures 3.5, 3.6, and 3.14). The actual and 

predicted distribution of northern pike is displayed in Figure 3.15. If we use 0.5 

probability as the cutoff for likely species presence, Model ESC correctly predicts the 

presence and absence of northern pike for 76 of the 81 study lakes. 

 

Figure 3.14. Response of northern pike presence probability to spatial eigenvector 2. 

Plots are based on predictive ability of presence-absence Model ESC. Green shaded area 

represents 95% posterior probability. 
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Figure 3.15. Actual and predicted distribution of northern pike across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where northern pike were predicted to be present but 

were not observed. Purple represents lakes where northern pike were observed but not 

predicted. The predicted distribution is based on the presence-absence Model ESC, with 

presence defined as a probability exceeding 0.5. 

White sucker (Tjur R2 = 0.482, 10-fold cross validation Tjur R2 = 0.237) was best 

explained by spatial eigenvectors 2 (Figures 3.16). Based on presence-absence Model 

ESC, white sucker has a strong negative association with spatial eigenvectors 2.  The 

spatial eigenvector 2 value where presence probability reaches 0.5 is over 0.0826 

(modeling limitation unable to determine exact value), suggesting that white sucker are 

more likely to be found in higher-order lakes than headwater lakes (Figure 3.16). The 

actual and predicted distribution of white sucker is displayed in Figure 3.17. If we use 0.5 
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probability as the cutoff for likelihood of species presence, Model ESC correctly predicts 

the presence and absence of white sucker for 72 of the 81 study lakes. 

 

Figure 3.16. Response of white sucker presence probability to spatial eigenvector 2. 

Plots are based on predictive ability of presence-absence Model ESC. Green shaded area 

represents 95% posterior probability. 
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Figure 3.17. Actual and predicted distribution of white sucker across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where white sucker were predicted to be present but 

were not observed. Purple represents lakes where white sucker were observed but not 

predicted. The predicted distribution is based on the presence-absence Model ESC, with 

presence defined as a probability exceeding 0.5. 

Finescale dace (Tjur R2 = 0.369, 10-fold cross validation Tjur R2 = 0.055) was 

best explained by spatial eigenvectors 2 (Figures 3.18). Based on presence-absence 

Model ESC, finescale dace has strong positive association with spatial eigenvectors 2. 

The spatial eigenvector 2 value where presence probability reaches 0.5 suggests that 

finescale dace are more likely to be found in headwater lakes than downstream lakes 

(Figure 3.18). The actual and predicted distribution of finescale dace is displayed in 

Figure 3.19. If we use 0.5 probability as the cutoff for likely species presence, Model 
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ESC correctly predicts the presence and absence of finescale dace for 71 of the 81 study 

lakes. 

 
Figure 3.18. Response of finescale dace presence probability to spatial eigenvector 2. 

Plots are based on predictive ability of presence-absence Model ESC. Green shaded area 

represents 95% posterior probability. 
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Figure 3.19. Actual and predicted distribution of finescale dace across study lakes. Red 

represents lakes where the predicted and actual presence align (and species is present). 

Orange represents lakes where the predicted and actual presence align (and species is 

absent). Dark blue indicates lakes where finescale dace were predicted to be present but 

were not observed. Purple represents lakes where finescale dace were observed but not 

predicted. The predicted distribution is based on the presence-absence Model ESC, with 

presence defined as a probability exceeding 0.5. 

3.5.6  Species Associations (i.e., co-occurrences) 

There are several strongly positive and negative species associations (>95% 

posterior probability) occurring in presence-absence Model ESC, based on species co-

occurrence latent variables (Figure 3.20). Yellow perch appear to have a strong negative 

association with fathead minnow, finescale dace, northern redbelly dace, and slimy 

sculpin. By contrast, fathead minnow, finescale dace, northern redbelly dace, and slimy 

sculpin all have positive associations with one another. 



 

63 

 

 

Figure 3.20. Species-to-species associations based on species co-occurrence latent 

variables produced in presence-absence Model ESC. Blue refers to positive and red to 

negative associations amongst species. Size of circles represent posterior probability.  

 

Discussion 

The study of fish metacommunity composition presents challenges specifically 

related to the integration of spatial patterns with physiochemical variables and biological 

drivers of species co-occurrence. These challenges have limited past research in their 

ability to provide a holistic framework for identifying the driving factors that influence 

fish distribution. Here, through the integration of spatial eigenvectors—which represent 

spatial connectivity variables among lakes—into a joint species distribution model 
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(JSDM) also incorporating physiochemical and biological factors, I have captured the key 

factors shaping fish community structure in boreal shield lakes at a level of spatial 

resolution not previously considered within freshwater communities.  

The results demonstrate that spatial variables—specifically those related to lake 

connectivity, stream flow direction, and maximum stream gradient—are the primary 

factors influencing fish metacommunity composition in boreal shield lakes relative to the 

environmental and biological variables included in the analysis. These spatial variables, 

expressed as spatial eigenvectors, had the greatest explanatory power amongst all 

variable types in Model ESC (spatial: 52.6%, environmental: 36.0%, species co-

occurrence: 11.4%) and ranked highest amongst spatial-only JSDM models. The 

integration of spatial eigenvectors with environmental variables and species co-

occurrences (Model ESC) best explained and predicted fish community structure in terms 

of presence-absence, emphasizing the importance of a holistic, multivariate approach 

when studying metacommunities. 

Of the spatial variables identified as most influential (i.e., lake connectivity, 

stream flow direction, and maximum stream gradient), flow direction combined with lake 

connectivity appears to have the greatest impact on fish community structure in boreal 

shield lakes. This is evident in the ranking of spatial JSDM models, where AEM-based 

models—incorporating flow direction— consistently outperformed MEM-based models, 

which unlike AEM-based models, assumes bidirectional movement of fish along streams 

(essentially ignoring flow direction or barriers to movement). This notable difference in 

explanatory power between AEM and MEM models highlights the importance of 

incorporating flow direction when studying aquatic species. While maximum stream 
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gradient contributed to developing the best performing spatial JSDM model for fish 

presence-absence in the lakes (SM1), its influence was secondary to flow direction and 

lake connectivity as its addition only slightly improved model fit (see difference between 

SM1 and SM2 Tjur R2 values; Table 3.2).  

While lake connectivity and stream flow direction appear to be the most 

influential amongst spatial variables in this research, maximum stream gradient was the 

most effective spatial weight investigated and included in AEM-based models. Maximum 

stream gradient essentially represents the largest fish movement barrier present along a 

stream. If, for example, a large waterfall is present along a stream, the sudden elevation 

change would be captured by the maximum stream gradient value for that watercourse. 

Alternatively, if no waterfalls are present, the gradient may reflect the presence of rapids, 

chutes, or cascades. Although other methods, such as fish barrier assessment indices and 

average stream gradient were tested as means to represent barriers to upstream 

movement, maximum stream gradient outperformed both of these alternatives. This is 

likely because fish barrier assessments are subject to in-field sampling bias and may 

overlook less obvious gradient-based barriers, while average stream gradient likely 

downweighs sudden elevational changes if the rest of the stream is relatively flat. 

Despite the strong evidence I have found suggesting spatial connectivity strongly 

impacts fish community structure in lakes, many past and recent studies have reached the 

opposite conclusions. Traditionally, environmental factors have been emphasized in 

aquatic community studies, with fish communities often explained by environmental 

filters and species traits, while spatial variability has often been overlooked due to the 

difficulty of incorporating it into analyses (B. L. Brown et al., 2011; Jackson et al., 2001; 
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Leibold et al., 2004; Poff, 1997; Smith & Powell, 1971). Although the metacommunity 

framework has increased attention on spatial factors, their role is still often seen as 

secondary. For example, Henriques-Silva et al. (2013) concluded that environmental 

factors explained 16% of variation in Ontario lake fish communities, compared to just 1% 

for spatial factors (Henriques-Silva et al., 2013). Similarly, Magnuson et al. (1998) 

suggested that environmental variables were more influential than spatial variables in 

temperate lakes, possibly due to faster extinction rates reducing the impact of 

colonization events in boreal lakes (Magnuson et al., 1998).  

A major limitation of these previous studies is the coarse spatial resolution at 

which their analyses were conducted. Many relied on broad spatial measures, such as 

geographic coordinates (Henriques-Silva et al., 2013) or lake connectivity metrics that 

failed to account for variables like flow direction and movement barriers (Kadoya et al., 

2024). In contrast, my analysis used finer spatial scales by considering flow direction, 

stream gradient, and by treating individual lakes as spatial units. This approach provides 

a clearer understanding of spatial variation across landscapes at a more relevant level of 

spatial resolution (i.e. connections between adjacent lakes connected by waterways) and 

reveals the stronger influence of spatial factors on fish community composition among 

adjacent and connected boreal shield lakes. 

The approach implemented here is unique in its application to understanding the 

influence of spatial connectivity on lake-based fish metacommunities on the boreal 

shield. Although AEM eigenvectors have been successfully applied in previous studies to 

assess the influence of connectivity and flow direction on aquatic organisms (Liu et al., 

2013), their use in investigating lake-based fish metacommunities—particularly in boreal 
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shield lakes—has been limited. Research suggests that incorporating AEM eigenvectors, 

which can account for connectivity, flow direction, and spatial weights like stream 

gradient, can enhance the explanatory and predictive ability of stream-based 

metacommunity models (Mozzaquattro et al., 2020). Studies on freshwater fish, 

macroinvertebrates, and diatom metacommunities have also emphasized the importance 

of upstream movement barriers in shaping community structure in riverine environments 

(Dong et al., 2016; Mozzaquattro et al., 2020; Pollice et al., 2020). I have not found any 

studies that apply AEM eigenvectors to represent spatial variables for lake-based fish 

communities. Furthermore, no studies to date appear to have integrated this type of 

spatial eigenvector with JDSM into metacommunity models that simultaneously explore 

the impacts of environmental variables and species co-occurrence on community 

structure. 

Although spatial eigenvectors used in my analysis broadly encompass lake 

connectivity, stream flow direction, and maximum stream gradient, each of the four 

individual spatial eigenvectors selected for JSDM modeling highlights key spatial 

patterns on the landscape. Of the four eigenvectors, spatial eigenvector 2 was the most 

important variable in explaining fish metacommunity composition. Although spatial 

eigenvector 2 does encompass flow direction and maximum stream gradients of 

connecting watercourses, a visualization of the sign and magnitude of this eigenvector 

makes it evident that this eigenvector also strongly highlights differences between high 

and low-order lakes. Along with accounting for 32.7% of the explained variation found in 

overall metacommunity composition, several fish species had particularly strong 
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relationships with spatial eigenvectors 2, including northern pike, white sucker, and 

finescale dace.  

The positive association of northern pike with higher-order lakes indicates a 

preference for more downstream environments. These findings align with the known 

habitat preferences of northern pike. Although pike are relatively sedentary and territorial 

for most of the year, they can undertake substantial migrations during spawning, traveling 

tens to hundreds of kilometers to reach suitable tributary streams (Inskip, 1982). 

However, strong currents exceeding 1.5 m/sec can inhibit their movement (Harvey, 

2009), as reflected in their preference for still or slow-moving water. This preference, 

combined with their limited ability to migrate upstream against strong water velocities or 

over natural barriers, may explain the spatial patterns observed in this study, particularly 

their reduced presence in headwater, low-order lakes (Harvey, 2009). This constraint is 

particularly relevant during spring spawning, when flow rates in streams and rivers are 

typically at their highest, further limiting pike’s ability to access upstream habitats 

(Inskip, 1982). 

Similar to northern pike, white sucker exhibit a positive association with higher-

order lakes, although they are widely distributed, being present in 70 of the 81 lakes 

included in this study. This positive association reflects their absence from select 

headwater lakes, primarily those of lake orders 1 and 2, where white sucker are 

commonly absent. White sucker are known to migrate from lakes into streams during the 

spring spawning season, likely contributing to their widespread presence across lakes 

(Lucas & Baras, 2001; Reebs et al., 2008). However, their absence in certain lakes 

appears to be at least partially linked to extreme maximum stream gradients. White 
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sucker migration is known to be impacted by stream gradient, with previous research 

noting a substantial reduction in upstream movement ability between gradient of 10% and 

20% (Bunt et al., 1999). These steep gradients likely act as fish movement barriers, 

preventing white sucker from colonizing some headwater lakes despite their migratory 

ability. In fact, in 8 of the 11 study lakes where white sucker were absent, no white 

sucker populations were found in directly connected upstream lakes. Among these 8 

lakes, the average maximum stream gradient immediately downstream was 42.6% (SD = 

24.8%), far exceeding the gradient threshold documented as a barrier to upstream 

movement for this species. 

Unlike northern pike and white sucker, finescale dace demonstrated a positive 

relationship with spatial eigenvector 2, suggesting this species are present primarily in 

lower-order lakes (i.e., further upstream lakes). These findings align with research 

previous conducted by Booher and Walters (2021), who found an association of finescale 

dace with headwater streams, noting their preference for cool-water environments 

(Booher & Walters, 2021). Finescale dace are known to prefer small, shallow, spring-fed 

lakes with clear water, dense shoreline vegetation, and minimal presence of large 

predatory fish species (Stasiak & Cunningham, 2006). Although no negative species co-

occurrences between finescale dace with other species were detected in the analysis, their 

preference for headwater lakes may be somewhat linked to predator avoidance (Cordero 

& Jackson, 2019). Other analyses of ELA lakes (including pike translocation experiments 

into lakes from which they are not native) have found evidence of negative associations 

between finescale dace and other minnow species with northern pike (Nicholson et al., 

2015). 
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During the original ELA fish surveys, Beamish et al. (1976) noted several 

observations regarding differences between the two quaternary watersheds (Dryberry and 

Eagle watershed) included in this study, specifically regarding johnny darter, lake 

whitefish, and lake herring. By investigating species-specific relationships with spatial 

eigenvector 1, these observations were tested. Based on the model (Model ESC for 

presence-absence), only two species were suggested to be more or less likely to occur in 

either individual watershed (fathead minnow and northern redbelly dace were more likely 

to be found in Eagle watershed), neither of which were mentioned in Beamish et al. 

(1976).  

Although the application of spatial eigenvectors, including MEM and AEM 

eigenvectors, has become more common in aquatic community analyses, the selection 

and justification of which eigenvectors to use and include in subsequent analyses varies 

among studies (Parreira et al., 2023; Sharma et al., 2011). Due to the potentially large 

number of eigenvectors produced through eigenvector mapping (n-1, where n represents 

the number of edges—i.e., rivers or streams connecting to lakes—in AEM mapping, and 

represents the number of sites—i.e., lakes—in MEM mapping), the process of how to 

select eigenvectors (variable selection) for analyses must be considered carefully. 

Typically, a process called forward selection has been applied to identify and choose the 

most relevant eigenvectors for modeling spatial patterns in ecological data (Blanchet et 

al., 2008b, 2008a, 2011), in which an initial model is run (e.g., a redundancy analysis or 

RDA) where no spatial eigenvectors are selected. Following this, eigenvectors are 

sequentially added to the model one at a time based on their ability to further explain the 

response variable (which, in the context of community ecology, often refers to patterns of 
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community composition). This process continues until a predefined stopping criterion is 

met, which, in the case of an RDA model, is based on an alpha value of 0.05. Once this is 

reached, the selected eigenvectors can be used as variables going forward. Although this 

process is effective in choosing specific eigenvectors that best explain a response 

variable, it does not base the decision to include certain eigenvectors on the spatial 

pattern it represents. Additionally, the process of forward selection also has the potential 

for introducing spurious or ‘nonsense’ spatial predictors when applied to large datasets, 

especially when eigenvectors are selected without visual validation (i.e., confirming that 

the eigenvector does actually represent a spatial pattern of interest). Although Dray et al., 

(2006) and Blanchet et al, (2008) both argue that eigenvectors with smaller eigenvalues 

represent finer-scale spatial patterns worth consideration, there is also an increasing 

likelihood that they do not actually reflect spatial patterns at all and are simply 

artefactual. By instead selecting a set number of eigenvectors for each analysis (4 in my 

case) and using the eigenvectors that explained the most spatial variation in the spatial 

matrix of interest (i.e., eigenvectors with the highest eigenvalues), the issues that come 

with forward selection are essentially avoided. For all analyses conducted in this study, 

the selected eigenvectors accounted for over 50% of the total variance within each spatial 

matrix.  

In addition to the strong explanatory power of spatial variables on fish 

metacommunity composition, environmental variables also played an important role, 

especially in regard to coldwater fish species. Of the environmental variables, maximum 

lake depth, representing overall lake size due to its high correlation with lake surface 

area, explained 20.4% of the explained variation in metacommunity structure. DOC, 
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typically strongly associated with light attenuation in lakes, also played an important role 

for several species, although its overall impact was much smaller compared to maximum 

depth. 

The strong preference of lake trout for deep lakes with low DOC levels (i.e., 

clearer water) aligns with the known preferences of the species. Being a coldwater 

species, lake trout favour deep, cold lakes, particularly in the southern extent of their 

range (Sellers et al., 1998). As surface temperatures rise during spring and summer, lake 

trout retreat to deeper, cooler waters, eventually residing in the hypolimnion (below the 

thermocline), during warmer months. In lake under 500 hectares, similar to many of the 

lakes included in this research, the thermocline typically forms above 6 meters, which 

maintains the cold temperatures that lake trout prefer, typically around 10° (Fee et al., 

1996; Scott & Crossman, 1998).  

With regards to DOC, my findings suggest that lake trout are most likely to be 

present in lakes with DOC concentrations of 6.6 mg/L or lower, which aligns with their 

known tolerance range (2.6-8.8 mg/L; Benoît et al., 2016). DOC can majorly influence 

light penetration and the thermal structure of lakes, both of which can impact lake trout 

population (Fee et al., 1996; Stasko et al., 2012). High DOC levels reduce light 

availability for photosynthesis, thereby decreasing primary production and limiting 

availability for benthic prey (Benoît et al., 2016; Sherbo et al., 2023). Such changes can 

also alter predator-prey dynamics, favouring species adapted to low-light conditions 

while hindering those that rely on clear water (Stasko et al., 2012). Additionally, higher 

DOC levels may lead to lower oxygen levels in deep lake layers, further stressing lake 

trout populations (Craig, 2016). 
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Similar to lake trout, slimy sculpin also displayed a strong preference for deeper 

lakes. Slimy sculpin are a cool-water, benthic species that prefer cobble substrate in both 

lake and stream habitats. Like other cottids, they lack swim bladders and are generally 

characterized by low mobility and strong site fidelity(Gray et al., 2004, 2018). Adult 

sculpin prefer boulders, while young-of-year sculpin prefer gravel and rubble substrates. 

They typically inhabit cold waters and are rarely found in temperatures above 19°C, with 

lethal temperatures estimated between 23 and 25°C (Gray et al., 2018). Given slimy 

sculpin’s preference for cooler water, their presence in deeper lakes in the study area 

align with other observations elsewhere.  

Burbot are a coldwater fish commonly found in large, deep lakes, particularly at 

the southern edge of their range, where they reside in cool rivers and reservoirs (McPhail 

& Paragamian, 2000). In lakes, adult burbot prefer bottom habitats, typically residing 

below the thermocline during the summer months at temperatures between 10-12°C 

(Hackney, 1973; McPhail & Paragamian, 2000). The results align with these past 

findings, predicting that the probability of burbot presence exceeds 0.5 at lake depths of 

52.2 m (95% CI: 25.3 m to 167.0 m). Additionally, burbot tend to be more abundant in 

lakes with higher water clarity, specifically those with Secchi depths greater than 4.0 

meters (Marshall & Ryan, 1987), which aligns with my findings related to DOC. 

Even though environmental and spatial factors were the main explanatory 

variables in this analysis, several species associations were identified as not explained by 

either variable. It is important to recognize that species associations identified through 

JSDM modeling could reflect unknown or unspecified environmental or spatial variables, 

not otherwise included in the tested explanatory variables (Ovaskainen & Abrego, 2020). 
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This could lead to falsely assumed species interactions when taken at face value. For this 

reason, we cannot assume species interaction results are necessarily a reflection of true 

interactive effects without support from previous studies that have more directly focused 

on species-to-species relationships.  

Northern redbelly dace, finescale dace, fathead minnow, and slimy sculpin were 

found to have strong positive associations with one another. Previous studies on 

predation and species co-occurrence indicate that northern redbelly dace, finescale dace, 

and fathead minnow show high segregation from top predators like northern pike 

(Nicholson et al., 2015). Although negative associations with northern pike were not 

detected in the current study, the positive associations among small-bodied fish observed 

here may be linked to predator avoidance (Cordero & Jackson, 2019).  Cordero and 

Jackson (2019) found that northern redbelly dace, finescale dace, and fathead minnow 

exhibited strong segregation with top predators such as northern pike, suggesting that 

their co-occurrence tendencies in Ontario lakes may be related largely to predator 

avoidance (i.e., occurring in lakes together where predatory species are not present). The 

strong association between finescale dace and northern redbelly dace is expected, given 

their tendency to hybridize (Mee & Rowe, 2010) and their similar ecological niches 

(Stasiak & Cunningham, 2006). 

Yellow perch were observed to have negative associations with finescale dace, 

northern redbelly dace, fathead minnows, and slimy sculpin. Studies have documented 

significant declines in prey species populations, such as fathead minnows and northern 

redbelly dace, due to yellow perch predation, with these populations rebounding 

following yellow perch extirpation (Soukup & Wisenden, 2023). Yellow perch, unless 
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controlled by predation, can dominate small lakes and exclude other species through 

predation and competition. They often prey on juvenile fish and can be the most abundant 

piscivores in small lakes, even exhibiting cannibalistic behaviour (T. G. Brown et al., 

2009). 

While several species associations were detected through JSDM modeling, it is 

important to note that spatial resolution is crucial when inferring interactions among 

species from empirical data. Biotic interactions typically occur at local scales, and when 

species are modeled across large spatial extents, these interactions may be diluted in the 

observed patterns. As a result, certain biological interactions may be more influential on 

within-lake distributions and abundance than at a whole-lake scale (Vallé et al., 2023).  

Although environmental, spatial, and species co-occurrence latent variables were 

collectively able to effectively explain and predict the presence and absence of species 

within a metacommunity context, these same variables were ineffective in predicting 

relative abundance (conditional on presence). The substantial difference between all 

relative abundance full dataset and spatial-only JSDM models’ explanatory and 

predictive power suggests that no combination of environmental, spatial, or species co-

occurrence latent variables adequately modeled fish relative abundance. The poor 

predictive performance of these relative abundance models align with past studies that 

noted the challenges of modeling abundance, likely due to complex interactions and the 

need for large sample sizes (Pena et al., 2023). Although a hurdle model approach was 

necessary for this analysis due to the zero-inflated nature of the dataset, this approach 

reduced the sample size for relative abundance by excluding cases where species were 

absent (i.e., For each species, only lakes where the species is present are included in the 
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model). The reduced sample size likely contributed to the model’s limitations, making 

cross-validation and model efficacy more challenging, emphasizing the need for 

substantially larger sample sizes when modeling abundance. Similar challenges have 

been reported in studies of both bird and fish communities with abundance metrics as a 

response variable using JSDMs and hurdle models, where poor model performance was 

common (Keppeler et al., 2022; Pena et al., 2023). Abundance models tend to struggle 

due to zero-inflated and long-tailed community data (Warton, 2005), making modeling 

difficult to model, especially in a multivariate context. In addition, it is also entirely 

likely that the scale used to classify relative abundance in the current study was too 

coarse to detect the potential influence of spatial, environmental or biological variables 

on fish abundance at a lake-level scale. 

Despite the modeling approach being limited to explaining species presence and 

absence, the methods used and key findings are still widely applicable to the management 

of fish communities, lakes, and watersheds. While environmental conditions are often 

prioritized in habitat conservation, this research demonstrates the importance of spatial 

connectivity, specifically as it relates to the passage of species (i.e. specifically from one 

lake to another vs. across watersheds), in sustaining fish biodiversity. My findings 

suggest that effective management plans should consider the impacts of spatial variables, 

particularly understanding the role that stream gradients, flow direction, and lake 

connectivity play in shaping fish community structure and migration potential between 

waterbodies. Not only is this crucial for understanding why fish are where they are, but it 

can also be useful when investigating the spread of invasive fish species (Blanchet et al., 

2008b). Although the potential influence of species associations on fish metacommunities 
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is likely limited (based on the current analysis), the ability to incorporate possible species 

interactions into ecological modeling allows for a more holistic approach to studying 

metacommunities.   

Overall, this thesis demonstrates that the incorporation of spatial eigenvectors into 

JSDM models provides a clearer understanding of the role of spatial influences through 

connectivity on fish metacommunities, particularly at finer spatial scales. This framework 

not only lays the groundwork for future studies focused on exploring the role of spatial 

connectivity in shaping fish metacommunities but also offers insights for the 

management of aquatic systems by highlighting the key variables influencing species 

presence. By utilizing spatial eigenvectors, I was able to compare the effectiveness of 

different spatial variables in explaining fish species distribution. The integration of both 

environmental and spatial variables into JSDMs also enabled the identification of species 

co-occurrences that were not directly explained by these factors alone. Many of the co-

occurrences identified align with previously observed species interactions, supporting the 

associations reported here. Despite limitations of this approach, such as its ability to 

effectively explain and predict species’ relative abundance, JSDM modeling with the 

incorporation of spatial eigenvectors provides an effective way to investigate aquatic 

metacommunities. 
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Appendix A 

Table A. Summary of data sources for fish abundance, water chemistry, and lake morphology information used for JSDM modeling. 

AHI refers to Aquatic habitat inventory survey data. 

* indicates lakes where only presence-absence data are available for fish abundance 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L92 2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L93 1982 Gillnets and 

minnow traps 

1982 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L100 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L101 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 



 

89 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L102 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L104 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1991-1993, 

1996 

Beamish et al., 

1976 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L111 1982; 

1990 

Gillnets and 

minnow traps; 

Gillnets 

1981, 1982, 1986-

1990 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L128 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L130  1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

1973, 1978, 1982, 

1986  

Beamish et al., 

1976 

 

 

 

  

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 
 



 

90 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

trapnets and 

rotenone  
L131 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1986 

Beamish et al., 

1976 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L132 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1970, 1973, 1978, 

1982, 1986, 1992, 

2008 

Beamish et al., 

1976 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L164 2019 Trap nets 1978, 1982, 1986-

1994, 1997, 2008, 

2016 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L165 2019 Trap nets 1986-1997, 2008  IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L223 1973; 

2019 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets and 

angling 

1973-2004, 2008, 

2012, 2015-2022 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

91 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L224 1973; 

2019 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets and 

angling 

1972, 1974-1978, 

1981-2009, 2011-

2022 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L225 1973; 

2019 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets and 

minnow traps 

1973, 1978, 1982, 

1985-1989, 1992, 

1996, 2004 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L226 1973; 

2014 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets 

1971, 1973-1983, 

1985-1987, 1989-

1997, 2001-2004 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L227 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

1970-2020 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

92 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

occasionally 

trapnets and 

rotenone 

 

 
 

L228 (Teggau) 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1970, 1973, 1992, 

1995 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L239 1973; 

2019 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; Trap 

nets, gillnets, 

angling, and 

seine netting 

1973 Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L240 1973; 

1999-

2019 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets, 

angling, and 

seine netting 

1970-1972, 1974-

1978, 1980-2008, 

2016 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

93 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L254 

(Ethelma)* 

1975; 

Not 

specified 

Not specified 2008 AHI; IISD ELA AHI IISD ELA IISD ELA DOC 

estimated 

based on 

water 

colour 

(Molot & 

Dillon, 

1997) 
 

L257 2014 Gillnets, 

minnow traps, 

seine netting 

1978, 1982, 1986 IISD ELA; 

(Lennox, 2019) 

Estimated 

based on lake 

surface area, 

elevation, and 

surrounding 

topography 

(Heathcote et 

al., 2015). 

Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

IISD ELA IISD ELA 

L258 1996 Gillnets 2021 IISD ELA IISD ELA IISD ELA pH 

estimated 

using lake 

surface 

area 

(Beamish 

et al., 

1976). 

IISD ELA 

L259 1973; 

2002 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

1973, 1978, 1982, 

1986, 2021 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

94 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

rotenone; 

Gillnets 

L261 1973; 

2013 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; Not 

specified 

1968-1978, 1982, 

1986 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L262 (Rogers) 1973; 

1988 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets 

1973, 1978, 1982, 

1986, 1987, 1990 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L303 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1970-1978, 1980-

1983, 1985-1987, 

1989, 1992-1993, 

1996, 2008-2011, 

2015-2021 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

 

 

 
 

L305 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

1970-1974, 1978, 

1982-1983, 1985-

1993, 1995, 1998, 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

95 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

occasionally 

trapnets and 

rotenone 

2003, 2008, 2014-

2021 

L311 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L313 1997 Gillnets 1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L315 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1986 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA  

L316 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1986 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L317 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

1973, 1978, 1982, 

1986 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 



 

96 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

occasionally 

trapnets and 

rotenone 

L322 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L373 2019 Gillnets and 

angling 

1982, 1983, 1985-

1987, 1989-1992, 

1994-2009, 2011-

2022 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L374 (Porcus) 1983; 

2010 

Gillnets; 

Gillnets 

1983-1989, 2010 IISD ELA; 

OMNR 

IISD ELA; 

OMNR 

IISD ELA; OMNR IISD ELA; 

OMNR 

IISD ELA; 

OMNR  

L375 1986-

2019 

Trap nets; 

Gillnets 

1982, 1983, 1986-

1994, 1997, 2001-

2009, 2011, 2021, 

2022 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L376 

(Manomin) 

1982; 

2005 

Not specified; 

Gillnets and 

seine nets 

1984, 2007 AHI; IISD ELA AHI Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

IISD ELA IISD ELA 

L377 1992 Gillnets and 

minnow traps 

1978, 1982, 1986-

1993, 2004, 2006-

2007 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L379 1980 Not specified 1987, 2007 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 



 

97 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L382 1973; 

2003 

Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone; 

Gillnets 

1973, 1977-1980, 

1982, 1983, 1985-

1998, 2001-2004 

Beamish et al., 

1976; IISD ELA 

Beamish et al., 

1976; IISD 

ELA 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L429 2017 Gillnets 2017 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L464 

(Highwind)* 

1967; 

2023 

Not specified; 

Angling and 

personal 

communications 

1967 AHI; Personal 

communications 

AHI Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

pH 

estimated 

using lake 

surface 

area 

(Beamish 

et al., 

1976). 

DOC 

estimated 

based on 

water 

colour 

(Molot & 

Dillon, 

1997) 

L466 

(Dryberry) 

1974; 

2010; 

2016; 

2023 

Not specified; 

Gillnets and 

minnow traps; 

Gillnets and 

minnow traps; 

Gillnets and 

minnow traps 

2010, 2016 AHI; OMNR AHI; OMNR OMNR OMNR OMNR 

L467 

(MacDonald) 

1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

1973, 1982, 1986 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

 



 

98 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

trapnets and 

rotenone 

 
 

L468 (Roddy) 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1983, 1986, 1990, 

1992, 1993, 1996 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L469 (Eagle) 1973; 

2016; 

2022 

Not specified; 

Gillnets and 

minnow traps; 

Gillnets and 

minnow traps 

2016, 2022 AHI; OMNR AHI; OMNR OMNR OMNR OMNR 

L470 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1995-1997, 

2008, 2016, 2018 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L589 (Silvery)* 1977 Not specified 1977 AHI AHI Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

pH 

estimated 

using lake 

surface 

area 

(Beamish 

et al., 

1976). 

DOC 

estimated 

based on 

water 

colour 

(Molot & 

Dillon, 

1997) 



 

99 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L592 2022 Gillnets, 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L594 2022 Gillnets, 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L609 

(Peterson) 

1981 Gillnets and 

minnow traps 

1981 OMNR; AHI OMNR; AHI Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

OMNR DOC 

estimated 

based on 

water 

colour 

(Molot & 

Dillon, 

1997) 

 
 

L611 

(Lacourse) 

1981 Gillnets and 

minnow traps 

1981 OMNR; AHI OMNR; AHI Total phosphorus 

estimated based on 

conductivity and lake 

depth (Chow-Fraser, 

1991). 

OMNR DOC 

estimated 

based on 

water 

colour 

(Molot & 

Dillon, 

1997) 

L613 2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L614 2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 



 

100 

 

Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L615 

(Windermere) 

1976; 

1990; 

2010 

Not specified; 

Gillnets; 

Gillnets 

1982, 1987, 2010 OMNR AHI OMNR OMNR OMNR 

L622 1983 Gillnets 1981-1984, 1986, 

2021 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L623 1983 Gillnets and 

angling 

1981, 1983-1986, 

2021 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L624 2018 Gillnets and 

minnow traps 

2018 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L625 2018 Gillnets 1987, 1996, 2010-

2019 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L627 2016 Gillnets 1981, 1987, 2007, 

2015 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L628 2016 Gillnets 1987 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L629 1982 Gillnets, 

minnow traps 

1981-1986 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L631 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973 Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976 Beamish 

et al., 1976 

Beamish et 

al., 1976 

L634 Not 

specified 

Not specified 2023 IISD ELA Online 

resource 

IISD ELA IISD ELA DOC 

estimated 

based on 

water 

colour 

(Molot & 
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Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

Dillon, 

1997) 

L649 (Lower 

Stewart) 

1975; 

2017; 

Not 

specified 

Not specified; 

Gillnets; Not 

specified 

1975, 1987, 2017 AHI; OMNR; 

IISD ELA 

AHI; OMNR AHI; OMNR; IISD 

ELA 

AHI; 

OMNR; 

IISD ELA 

AHI; 

OMNR; 

IISD ELA 

L653 (Geejay) 1976; 

1982 

Rotenone; Not 

specified 

1982, 1987 OMNR; AHI AHI AHI; IISD ELA AHI; IISD 

ELA 

AHI; IISD 

ELA 

L659 Not 

specified 

Gillnets and 

minnow traps 

1981, 2007, 2019 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L660 

(Winnange) 

1985; 

2010; 

2015 

Not specified; 

Gillnets; 

Gillnets 

1985, 1990, 2010, 

2015 

AHI; IISD ELA AHI; IISD 

ELA 

IISD ELA IISD ELA IISD ELA 

L661 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1981-

1983, 1986, 1992, 

1996, 2008 

Beamish et al., 

1976 

Beamish et al., 

1976 

Beamish et al., 1976; 

IISD ELA 

Beamish 

et al., 

1976; 

IISD ELA 

Beamish et 

al., 1976; 

IISD ELA 

L663 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1986, 1992 

Beamish et al., 

1976 

Estimated 

based on lake 

surface area, 

elevation, and 

surrounding 

topography 

(Heathcote et 

al., 2015). 

IISD ELA IISD ELA IISD ELA 
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Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

L664 1973 Gillnets, wire 

minnow traps, 

dipnets, beach 

seines and 

occasionally 

trapnets and 

rotenone 

1973, 1978, 1982, 

1986 

Beamish et al., 

1976 

Estimated 

based on lake 

surface area, 

elevation, and 

surrounding 

topography 

(Heathcote et 

al., 2015). 

IISD ELA IISD ELA IISD ELA 

L665 Not 

specified 

Gillnets 2017 IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L677 2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L938 Not 

specified 

Trap nets and 

gillnets 

1986-1993, 1996, 

2008 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L979 2015 Gillnets and 

minnow traps 

1981, 1982, 1991, 

1992, 1998, 2001-

2004, 2006, 2008, 

2009 

IISD ELA IISD ELA IISD ELA IISD ELA IISD ELA 

L467OF 

(MacDonald 

Outflow) 

2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L468OF 

(Roddy 

Outflow) 

2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

L625OF (625 

Outflow) 

2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 
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Lake Fish 

Survey 

Year 

Fish Survey 

Methods 

Water Sampling 

Year 

Data Source 

        Fish 

Abundance 

Maximum 

Lake Depth 

Total phosphorus pH DOC 

Hornell 2022 Gillnets and 

minnow traps 

2022 Lakehead 

University 

Survey 

Lakehead 

University 

Survey 

Lakehead University 

Survey 

Lakehead 

University 

Survey 

Lakehead 

University 

Survey 
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Appendix B 

 

Existing inaccuracies in the Ontario Integrated Hydrology Data 

All GIS-related analyses were performed using ArcGIS Pro 3.1. The surface area of study lakes was determined using the 

Ontario Integrated Hydrology Data (OIHD) v1.0 (OMNRF, 2012), in conjunction with high-resolution imagery and digital elevation 

models (DEMs) from a 2017 aerial survey of the area, provided by the ELA. Any discrepancies in watercourse polylines and lake 

polygons from OIHD were corrected using both high-resolution imagery and field assessment observations. 

Several corrections were made to watercourses within the study area. The OIHD inaccurately depicts a stream connecting 

L256 (Veronica Lake) to L101 in the Dryberry watershed, where no such connection exists. Likewise, it incorrectly shows a stream 

linking L259 to L468 (Roddy Lake) in the Eagle watershed, while omitting the actual stream connecting L259 and L379 in the same 

watershed. Additionally, in 2010, ELA researchers constructed a 200-meter diversion channel to redirect flow from L627 into L625 

instead of L626, although the OIHD still depicts L627 as connected to L626. 
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Appendix C 

Table C. Information on spatial weights used for AEM and MEM spatial eigenvectors. 

Spatial Weight Description Calculation Method Units of Measurement Type of Spatial 

Eigenvector 

None Only using connectivity (MEM) and 

connectivity with directionality 

(AEM). 

N/A N/A MEM and AEM 

Hydrological 

Distance 

The measured distance between 

connecting lakes following along their 

associated stream. 

ArcGIS approach using the Ontario Integrated 

Hydrology Data (OIHD) v1.0 (OMNRF, 

2012) lake polygons and stream polylines. The 

spatial analyst tool Add Surface Information 

was used to measure the distance between lake 

polygons of interest along stream polylines. 

Meters (m) MEM and AEM 

Overland 

Distance 

The measured overland distance 

between study lakes, regardless of 

hydrological connectivity to one 

another. 

ArcGIS and adespatial (R-package) approach 

using the spatial analyst tool Add Surface 

Information to determine center points for 

lake polygons. Distances between center 

points of all lake polygons of interest were 

determined in R using adespatial. 

Meters (m) MEM only 

Stream 

Sinuosity 

The ratio of the stream length to 

straight line distance, determining how 

straight or meandering a stream 

between two lakes are. 

ArcGIS approach using Sinuosity Toolbox 

developed by Dils and Yang 2015 which uses 

the Ontario Integrated Hydrology Data 

(OIHD) v1.0 (OMNRF, 2012) stream 

polylines to calculate the ratio of the stream 

length to straight line distance. 

Ratio of the stream 

length to straight line 

distance (0-1); where 1 is 

equal to a completely 

straight line. 

MEM and AEM 
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Spatial Weight Description Calculation Method Units of Measurement Type of Spatial 

Eigenvector 

Average 

Stream 

Gradient 

The average slope along a stream 

connecting two lakes of interest. 

ArcGIS approach using the Ontario Integrated 

Hydrology Data (OIHD) v1.0 (OMNRF, 

2012) lake polygons and stream polylines 

along with digital elevation models (DEMs) 

from a 2017 aerial survey of the area, 

provided by IISD-ELA. The spatial analyst 

tool Add Surface Information was used to 

calculate the average slope for a stream 

polyline by taking a weighted average of the 

slope from each line segment. The weighting 

is based on the 3D length of each segment. 

This results in longer segments having greater 

influence on the resulting calculation over 

shorter segments. 

Percentage units (Grade) AEM only 

Maximum 

Stream 

Gradient 

The maximum slope along a stream 

connecting two lakes of interest. 

ArcGIS approach using the Ontario Integrated 

Hydrology Data (OIHD) v1.0 (OMNRF, 

2012) lake polygons and stream polylines 

along with digital elevation models (DEMs) 

from a 2017 aerial survey of the area, 

provided by IISD-ELA. The spatial analyst 

tool Add Surface Information was used to 

calculate the maximum slope from the 

segment with the largest calculated value. 

Percentage units (Grade) AEM only 

Fish Barrier 

Assessment 

Score 

An assessment score to determine the 

difficulty for a fish to move upstream 

along a stream. 

Calculated following the Alberta Conservation 

Association’s (ACA) Guide to Waterfall Fish 

Barrier Assessment (Blackburn et al., n.d.). 

Index (0-3); where 3 

suggests a watercourse is 

unpassable while moving 

upstream. 

AEM only 
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Appendix D 

Table D. Summary of Spatial-only Joint Species Distribution models (JSDMs). 

Spatial 

Model 

Fish Data Type Eigenvector 

Mapping1 

Spatial Weight Spatial Weight 

Formula 

Flow direction 

of watercourses 

SM1 Presence-Absence AEM Maximum stream gradient along watercourse ƒ= 1-dij/max(dij) Y 

SM2 Presence-Absence AEM Hydrological connectivity only - Y 

SM3 Presence-Absence AEM Average stream gradient along watercourse ƒ= 1-dij/max(dij) Y 

SM4 Presence-Absence AEM Hydrological watercourse length ƒ= 1-dij/max(dij) Y 

SM5 Presence-Absence AEM Maximum fish barrier assessment score along watercourse ƒ= 1-dij/max(dij) Y 

SM6 Presence-Absence AEM Presence of fish barrier ƒ= 1-dij/max(dij) Y 

SM7 Presence-Absence AEM Stream sinuosity along watercourse ƒ= 1-dij/max(dij) Y 

SM8 Presence-Absence MEM Hydrological watercourse length ƒ= 1-dij/max(dij) N 

SM9 Presence-Absence MEM Overland distance between lakes ƒ= 1-dij/max(dij) N 

SM10 Presence-Absence MEM Hydrological connectivity only - N 

SM11 Presence-Absence MEM Stream sinuosity along watercourse ƒ= 1-dij/max(dij) N 

SM12 Presence-Absence MEM Overland distance between lakes ƒ= 1-dij/max(dij) N 

SM13 Relative Abundance AEM Average stream gradient along watercourse ƒ= 1-dij/max(dij) Y 

SM14 Relative Abundance AEM Stream sinuosity along watercourse ƒ= 1-dij/max(dij) Y 

SM15 Relative Abundance AEM Hydrological connectivity only - Y 

SM16 Relative Abundance AEM Maximum stream gradient along watercourse ƒ= 1-dij/max(dij) Y 

SM17 Relative Abundance AEM Hydrological watercourse length ƒ= 1-dij/max(dij) Y 

SM18 Relative Abundance AEM Maximum fish barrier assessment score along watercourse ƒ= 1-dij/max(dij) Y 
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Spatial 

Model 

Fish Data Type Eigenvector 

Mapping1 

Spatial Weight Spatial Weight 

Formula 

Flow direction 

of watercourses 

SM19 Relative Abundance AEM Presence of fish barrier ƒ= 1-dij/max(dij) Y 

SM20 Relative Abundance MEM Hydrological connectivity only - N 

SM21 Relative Abundance MEM Hydrological watercourse length ƒ= 1-dij/max(dij) N 

SM22 Relative Abundance MEM Stream sinuosity along watercourse ƒ= 1-dij/max(dij) N 

1AEM refers to asymmetric eigenvector mapping (Blanchet et al., 2008). MEM refers to Moran’s eigenvector mapping (Blanchet et al., 2011; Dray et al., 2006).
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Appendix E 

Table E. Summary of average environmental variables for each of the 81 lakes included in this study. 

Lake Watershed 

Lake Surface 

Area (ha) 

Maximum 

Lake Depth 

(m) pH 

Conductivity 

(µS/cm) 

Total Nitrogen 

(µg/L) 

Total Phosphorus 

(µg/L) 

DOC 

(mg/L) 

L92 Eagle 9.56 1.4 6.26 14.94 843.0 15.8 14.86 

L93 Dryberry 6.38 8.0 6.57 22.24 430.8 10.7 8.04 

L100 Dryberry 10.47 12.8 6.90 23.00 283.0 22.0 7.81 

L101 Dryberry 11.14 0.5 6.90 17.00 414.0 21.0 5.96 

L102 Dryberry 4.75 2.0 6.60 18.00 413.0 14.0 7.12 

L104 Dryberry 7.88 5.0 6.72 24.00 375.0 10.7 9.30 

L111 Dryberry 9.47 32.0 6.78 21.06 303.4 5.7 7.44 

L128 Dryberry 8.47 2.0 6.80 20.00 295.0 8.0 8.67 

L130 Dryberry 7.33 6.0 6.91 20.00 323.0 13.0 5.72 

L131 Dryberry 3.32 2.0 6.26 16.60 257.0 11.0 7.56 

L132 Dryberry 6.93 8.0 6.55 16.71 372.0 9.7 7.61 

L164 Dryberry 21.39 7.0 6.70 21.14 395.5 9.5 11.19 

L165 Dryberry 17.64 5.0 6.68 21.77 394.6 9.3 11.39 

L227 Eagle 5.17 10.0 7.88 30.71 974.0 41.5 12.46 

L228 (Teggau) Eagle 1333.19 167.0 6.90 19.00 298.0 8.0 3.63 

L239 Dryberry 54.62 30.4 6.70 25.00 324.0 32.0 8.36 

L240 Dryberry 44.07 13.0 6.96 27.67 332.5 7.9 6.94 

L254 (Ethelma) Dryberry 394.99 33.6 7.00 30.00 255.0 4.0 5.03 

L257 Eagle 28.42 23.1 6.62 23.00 397.1 8.8 10.21 

L258 Eagle 71.98 138.0 7.34 35.00 340.9 6.4 8.32 

L259 Eagle 96.82 20.0 6.62 21.40 278.7 12.0 6.45 
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Lake Watershed 

Lake Surface 

Area (ha) 

Maximum 

Lake Depth 

(m) pH 

Conductivity 

(µS/cm) 

Total Nitrogen 

(µg/L) 

Total Phosphorus 

(µg/L) 

DOC 

(mg/L) 

L303 Dryberry 9.78 3.0 7.49 25.01 689.4 19.4 9.62 

L305 Eagle 57.81 33.0 7.27 26.56 252.2 6.4 4.94 

L311 Eagle 6.40 11.9 6.50 18.00 341.0 8.0 9.12 

L313 Eagle 133.38 24.4 6.65 19.00 323.0 9.0 10.86 

L315 Eagle 40.72 17.0 6.92 26.20 314.0 14.0 8.57 

L316 Eagle 21.33 5.0 6.46 23.80 341.0 7.0 12.65 

L317 Eagle 28.67 19.0 6.98 26.80 363.0 8.0 8.56 

L322 Eagle 83.58 19.0 6.80 20.00 232.0 9.0 7.69 

L374 (Porcus) Dryberry 163.60 30.0 7.13 28.68 264.0 5.3 4.49 

L376 (Manomin) Eagle 528.18 80.1 7.16 38.00 242.5 3.5 6.73 

L377 Eagle 27.54 18.0 6.96 24.27 259.0 6.1 6.37 

L379 Eagle 163.60 26.7 7.17 25.00 256.0 7.0 5.52 

L429 Eagle 15.69 8.3 6.80 16.90 516.5 6.2 7.17 

L464 (Highwind) Dryberry 777.19 62.2 7.00 30.00 263.4 6.1 5.03 

L467 (MacDonald) Dryberry 197.85 21.0 6.79 23.00 301.0 7.0 8.82 

L468 (Roddy) Eagle 297.27 25.0 7.72 28.45 342.7 9.2 6.14 

L470 Dryberry 5.61 2.0 6.28 16.50 516.3 12.4 11.79 

L589 (Silvery) Dryberry 473.73 39.1 6.98 30.00 195.9 5.5 5.03 

L592 Eagle 34.47 17.6 6.31 19.60 360.0 5.1 9.20 

L594 Dryberry 66.71 13.6 6.44 18.46 366.0 5.4 5.03 

L609 (Peterson) Eagle 12.94 10.0 7.00 70.00 478.3 11.9 5.03 

L611 (Lacourse) Eagle 37.78 6.0 7.00 60.00 526.4 13.9 5.03 

L613 Eagle 16.48 30.5 6.43 76.11 560.0 6.2 13.62 

L614 Eagle 8.17 23.0 5.85 25.07 273.0 5.6 6.83 

L615 (Windemere) Eagle 96.62 49.0 7.18 41.30 264.0 4.0 3.30 

L622 Eagle 40.19 31.0 6.91 25.17 324.7 5.9 7.44 

L623 Eagle 37.13 21.0 6.90 28.63 369.6 6.5 6.52 
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Lake Watershed 

Lake Surface 

Area (ha) 

Maximum 

Lake Depth 

(m) pH 

Conductivity 

(µS/cm) 

Total Nitrogen 

(µg/L) 

Total Phosphorus 

(µg/L) 

DOC 

(mg/L) 

L624 Eagle 0.76 1.0 6.50 23.00 493.2 10.0 8.36 

L625 Eagle 82.07 30.0 7.86 25.07 378.4 8.8 7.37 

L627 Eagle 35.28 8.0 6.99 18.50 310.5 6.3 5.89 

L628 Eagle 20.08 18.6 6.72 23.00 290.5 6.0 8.53 

L629 Dryberry 62.13 18.0 6.66 21.42 360.2 7.8 7.07 

L631 Dryberry 39.39 8.0 7.00 23.00 315.0 15.0 6.80 

L634 Dryberry 55.79 18.3 6.13 14.40 479.5 10.5 5.03 

L649 (Lower 

Stewart) Eagle 168.35 29.6 7.09 53.60 320.0 6.0 8.08 

L653 (Geejay) Eagle 188.00 46.3 7.31 43.00 271.4 3.0 6.61 

L659 Eagle 27.25 7.0 6.86 20.30 258.5 10.4 6.43 

L660 (Winnange) Eagle 2421.43 150.0 7.10 35.63 181.4 4.7 3.78 

L661 Dryberry 1.22 1.0 5.95 26.64 649.9 14.9 15.03 

L663 Dryberry 41.69 21.4 6.68 25.17 398.0 23.0 10.46 

L664 Dryberry 77.72 29.0 6.78 28.00 296.0 32.0 7.92 

L665 Dryberry 29.42 16.3 6.78 15.70 347.2 4.8 8.42 

L677 Eagle 3.30 1.5 6.45 17.93 315.0 7.4 7.37 

L938 Dryberry 19.23 6.0 7.03 33.50 235.0 5.7 5.68 

L979 Dryberry 2.26 1.0 6.34 23.97 594.9 16.2 11.62 

L467OF 

(MacDonald 

Outflow) Dryberry 0.56 1.7 6.18 18.60 358.0 3.3 10.56 

L468OF (Roddy 

Outflow) Eagle 1.23 1.1 6.49 16.48 334.0 3.9 6.65 

L625OF (625 

Outflow) Eagle 0.38 1.1 5.74 14.60 783.0 11.2 8.31 

Hornell Eagle 5.45 2.5 5.81 13.95 653.0 15.1 14.21 

L223 Eagle 27.30 14.0 6.90 22.40 294.6 6.4 5.15 

L224 Eagle 26.24 27.0 6.96 18.95 238.2 5.8 3.38 
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Lake Watershed 

Lake Surface 

Area (ha) 

Maximum 

Lake Depth 

(m) pH 

Conductivity 

(µS/cm) 

Total Nitrogen 

(µg/L) 

Total Phosphorus 

(µg/L) 

DOC 

(mg/L) 

L225 Eagle 3.71 2.0 5.15 22.65 570.9 13.0 10.17 

L226 Eagle 16.62 15.0 6.94 22.84 427.9 14.1 6.66 

L261 Eagle 5.75 10.0 6.00 16.78 416.8 17.9 7.90 

L262 (Rogers) Eagle 82.55 30.0 6.99 25.67 253.5 5.6 6.45 

L373 Eagle 27.83 21.0 7.21 26.11 250.5 6.6 4.24 

L375 Eagle 23.03 27.0 7.55 48.50 258.1 5.1 5.67 

L382 Eagle 37.79 13.0 6.78 22.59 369.3 7.2 7.41 

L466 (Dryberry) Dryberry 9545.98 105.5 6.80 28.60 188.0 4.8 3.70 

L469 (Eagle) Eagle 2430.48 33.6 7.08 46.75 331.0 11.4 6.05 
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Appendix F 

Table F. Species specific explanatory (Tjur R2, AUC) and predictive (10-fold cross validation Tjur R2 and AUC) power for Model 

ESC (presence-absence). 

Common Name Latin Name Tjur R2 1 10-fold Cross Validation 

Tjur R2 2 

AUC 1 10-fold Cross Validation AUC 2 

Blacknose Shiner  Notropis heterolepis 0.1188 0.0015 0.6895 0.5231 

Burbot Lota lota 0.5061 0.3761 0.9606 0.9030 

Fathead Minnow Pimephales promelas 0.4693 0.0783 0.9712 0.6550 

Finescale Dace Chrosomus neogaeus 0.3687 0.0552 0.9379 0.5879 

Johnny Darter Etheostoma nigrum 0.4275 0.2930 0.9265 0.8133 

Lake Herring (Cisco) Coregonus artedi 0.4133 0.2846 0.9174 0.8004 

Lake Trout Salvelinus namaycush 0.6192 0.5207 0.9778 0.9265 

Lake Whitefish Coregonus clupeaformis 0.4535 0.3744 0.9270 0.8779 

Longnose Dace Rhinichthys cataractae 0.2031 0.0811 0.8294 0.6638 

Northern Pearl Dace Margariscus margarita 0.2233 0.0626 0.7918 0.5620 

Northern Pike Esox lucius 0.5838 0.4734 0.9474 0.8871 

Northern Redbelly Dace Chrosomus eos 0.6070 -0.0008 0.9982 0.5485 
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Common Name Latin Name Tjur R2 1 10-fold Cross Validation 

Tjur R2 2 

AUC 1 10-fold Cross Validation AUC 2 

Slimy Sculpin Cottus cognatus 0.2998 0.1074 0.8879 0.6545 

Spottail Shiner Notropis hudsonius 0.2227 0.1042 0.7889 0.6162 

White Sucker Catostomus commersonii 0.4817 0.2374 0.9688 0.8156 

Yellow Perch Perca flavescens 0.4208 0.0695 0.9505 0.6289 
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