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            Abstract 

Understanding and forecasting drought events is crucial for effective water resource management 
and mitigation planning. Forecasting droughts is challenging due to their inherently complex 
patterns and dependencies. However, there is a tendency for droughts to occur during specific 
seasons or times of the year and exhibit distinct seasonal variability. This research focuses on 
analyzing seasonal drought patterns using a grouped data concept, where similar data points are 
aggregated into groups to represent distinct hydrological drought conditions.  

The objective is to develop a methodology that can effectively recognize and predict droughts 
based on these grouped streamflow data sets. In the proposed study exploratory data analysis 
techniques are used to recognize the seasonal patterns within the data to extract meaningful drought 
patterns from the streamflow data. The study employed a combination of statistical methods and 
machine learning techniques, including Markov models and Long Short-Term Memory models 
(LSTM), to forecast the grouped seasonal streamflow data. A Markov model is employed to model 
the transition probabilities among hydrological drought states, capturing the temporal 
dependencies in streamflow behaviour. Subsequently, a Hidden Markov model (HMM) is utilized 
to employ the underlying states (or underlying drought levels) in observed streamflow data. To 
further enhance forecasting capabilities, monthly and weekly LSTM networks are utilized to learn 
long-term sequential dependencies and forecast future streamflow drought patterns.  

The study area was selected as the Palliser Triangle, the driest region in Canada. A total of 25 river 
stations (catchment area ranging from 319 to 47,800 km2) were chosen, representing a range of 
river capacities: low flow (annual runoff range from 0 to 50 mm), medium flow ((annual runoff 
range from 50 to 175 mm), and high flow (annual runoff more than 175 mm) The monthly flow 
sequences of these rivers displayed the coefficient of variation ranging from 0.61 to 3.84, skewness 
from 0.57 to 8.39 and lag-1 autocorrelation from 0.2 to 0.63. In view of the highly skewed nature 
of monthly flows, the Box-Cox transformation was applied to normalize the data sequences and 
the normalization parameter ƛ ranged from -0.96 to 0.16. The Box-Cox transformation proved 
powerful for the normalization of flow data sets, which provided a strong platform for the analysis 
and forecasting of hydrologic droughts. The model results revealed that the discrete Markov model 
performed best for medium-flow rivers, achieving an average forecast accuracy of 65%, and the 
Hidden Markov model demonstrated superior performance for both low-flow and high-flow rivers, 
with an average forecast accuracy of 74%. The LSTM model showed consistent performance 
across all river types, providing monthly forecasts with approximately 80% accuracy and weekly 
forecasts with an impressive 90% average accuracy. Though the Markov models were found less 
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reliable and efficient in hydrologic drought forecasting, they offer valuable insights into the 
passages of drought passing through various states of severity. The outcome of this study is 
expected to provide valuable insights into the complex relationships between seasonal drought 
patterns and ultimately support more effective water resource management and drought 
preparedness strategies. 
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1 Chapter I: Introduction 
 

 

1.1 Introduction to Hydrological Droughts  

Hydrological drought is a prolonged period of natural water scarcity that is characterized by 

reduced streamflow, groundwater levels, and reservoir storage that can occur anywhere on the 

globe. It is a slow-onset disaster which can have severe implications for water supply, agriculture, 

health, economies, energy, and the environment. Unlike other types of droughts, such as 

meteorological droughts, which are defined by a lack of precipitation, hydrological droughts arise 

from a prolonged scarcity of precipitation, surface runoff, and other natural water resources. 

Hydrological drought reflects the combined impact on all-natural water resources and can persist 

even after normal rainfall patterns resume. It is important to understand that hydrological drought 

is different from aridity, which pertains to areas that are consistently dry and where water scarcity 

is a constant issue even under normal conditions (Beran and Rodier,1985). Unlike aridity, 

hydrological droughts are temporary periods of abnormally low water in rivers and reservoirs that 

can occur in any climate. These hydrological droughts are particularly challenging because they 

affect the water resources on which societies and ecosystems depend, often leading to long-term 

consequences.  

 

1.2 Current Issues in Hydrological Droughts 

Even though many people have less understanding of the severity of hydrological droughts, it 

affects people all around the globe more than any other natural disaster (Hewitt, 1997). Even in 

very recent decades, severe hydrological drought events in East Africa, Texas, and California have 

caused major losses in water supply causing huge damage to human life and the global economy 

(Hao et al., 2018).  

Hydrological droughts can happen due to various natural causes arising from periodic weather 

patterns. Besides natural causes, droughts are caused by altered weather patterns which affect air 

circulation through the atmosphere. When there is an anomaly in surface temperatures, particularly 
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over the sea, air circulation patterns are altered which, in turn, changes how and where precipitation 

falls around the globe. Furthermore, the global human population continues to balloon leading to 

intensive agricultural practices requiring increased water demand to sustain humans as well as 

agricultural practices. Due to this increasing water demand, hydrological droughts have attracted 

more attention recently in the world. A study (Wada et al., 2013) estimated that between 1960 and 

2010, the human consumption of water increased the frequency of drought in North America by 

25%. Other than these causes, deforestation and soil degradation are human-made causes of 

droughts. When forests and vegetation disappear, the water cycle is fed by less water which makes 

the water cycle weak, and regions become more vulnerable to droughts.  

Several hypotheses explain the combined atmospheric, air, and ground interface effects that result 

in hydrological drought conditions. One hypothesis is that the rainfall is reduced by the over-

seeding of clouds by dust particles, while there are other hypotheses related to the Albedo increase. 

When the surface of Earth has a higher albedo, it means that more incoming solar radiation is being 

reflected into space, and less is being absorbed by the surface. Increased Albedo can reflect the 

heat away from the earth thus increasing subsidence and in turn reducing rainfall (Beran and 

Rodier, 1985). Biogenic aerosols, which include particles from natural sources such as industrial 

plants, trees, and marine organisms, can act as cloud condensation nuclei. An increase in Albedo 

can decrease the availability of biogenic nuclei for raindrops. These processes can increase the 

vulnerability to droughts. 

 

1.2.1 Drought Definitions and Types  

Human factors, such as water demand and water management, can exacerbate the impact that 

drought has on a region. Because of the interplay between a natural drought event and various 

human factors, drought can mean different things to different people, and it is defined in various 

ways that reflect different perspectives and interests.  

The earliest known study on hydrological droughts was done by Palmer (1965), who stated that 

drought can be defined according to the varying interests in various fields, but basically, it is a 

prolonged and abnormal natural water deficiency period. Kumar and Panu (1997) defined 

hydrological drought based on a functional relationship between two key factors, the estimated 
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water demand, and the expected water supply. Wilhite and Glantz (1985) described hydrological 

drought as a “creeping phenomenon” such that it is difficult to identify how critical is a drought 

because it is challenging to spot the start and the end of a drought. For enhanced understanding, 

they clustered and defined drought into four types based on the kind of deficiency of natural 

water, namely meteorological, agricultural, hydrologic, and socio-economic. Due to climatic 

differences, what might be considered a drought in one location of the country may not be a 

hydrological drought in another location. There are many definitions and explanations for each 

type of drought, but basically, meteorological drought occurs when the amount of precipitation is 

less than the amount (or state) considered normal. Agricultural drought refers to a situation 

where the amount of moisture in the soil no longer meets the needs of a particular crop. 

Hydrologic drought occurs when surface and subsurface water supplies are below normal. 

Socioeconomic drought refers to the situation that occurs when physical water shortages begin to 

affect people.   

It is crucial to understand and analyze droughts for forecasting purposes. Forecasting hydrological 

droughts is an important part of early warning systems of droughts, as they provide lead time to 

planners for threat responses, which helps minimize hydrological drought impact risk. It has a 

great impact on water availability and, therefore is particularly important for ensuring food and 

water security. Effective forecasting systems can give enough lead time to adequately plan for 

water storage, identify alternative sources of freshwater, implement new (water-saving) 

agricultural practices, and import food and water, if necessary.  

This research introduces a novel approach to forecasting hydrological droughts based on a pattern-

based concept. Chapter II provides a literature review of existing hydrological drought forecasting 

methods. Chapter III outlines the research objectives and scope. Chapter IV develops 

methodologies to identify and predict seasonal drought patterns within streamflow data. Chapter 

V details the selection of study areas and data collection. Chapter VI applies the developed models 

to these selected watersheds. Chapter VII discusses the results obtained from the models, and 

Chapter 8 concludes with the final findings and offers recommendations for future research. 
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2 Chapter II: Review of Literature 
 

 

This chapter provides an overview of existing methods for drought forecasting, introducing various 

parameters used to measure droughts both qualitatively and quantitatively. It discusses how these 

parameters are incorporated into different forecasting methods, outlining the advantages and 

disadvantages of each approach/method. Additionally, the chapter explores how these methods 

have evolved over time to improve the forecast of drought parameters, highlighting advancements 

in forecasting techniques. 

 

2.1 Existing Methods for Hydrological Drought Forecasting 

 

2.1.1 Drought Variables and Parameters Used for Drought Forecasting 

Drought forecasting methods are used to predict the hydrological conditions or drought conditions 

in a certain area by examining current meteorological/hydrological information along with past 

weather patterns (Maija Bertule, 2017). There are various methods which are used in drought 

forecasting, including those based on historical correlations between drought variables, stochastic 

processes and most recently, machine learning methods.  

Drought forecasting methods require input data for analysis. The input data requirements change 

according to the type of drought being considered and/or analyzed. The variables and associated 

types of droughts include:  

(i) Precipitation for meteorological drought analysis because meteorological droughts are 

caused by a lack of precipitation, 

(ii) Stream flow, reservoir, and lake level data for hydrological drought analysis, and 

(iii) Soil moisture and crop yield for agricultural droughts.  

Furthermore, based on the combinations of the above inputs (precipitation, temperature, stream 

flow, and soil moisture) several drought indices have been derived in recent decades to study 
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agricultural droughts that can be used for forecasting (Mishra and Singh, 2010). The following are 

some of the commonly used drought indices for drought forecasting. 

1. Palmer Drought Severity Index (PDSI):  

The meteorological drought index was developed by Palmer (1965) to measure the departure 

of moisture supply. This index is based on the supply and demand concept of the water balance 

equation, considering more than just the precipitation deficit at specific locations. Palmer 

developed and tested using the regional climates of the U.S. The PDSI is calculated based on 

the monthly precipitation and temperature data, as well as the local available water content 

(AWC) of the soil. From the inputs, all basic terms of the water balance equation can be 

determined, including evapotranspiration, soil recharge, runoff, and moisture loss from the 

surface layer. The PDSI scale ranges from + 4 to - 4 indicating extreme wet conditions and 

extreme dry conditions, respectively. Even though PDSI is the most popular and commonly 

used indicator for drought classification, there are a few drawbacks such as difficulty due to 

the requirement of AWC of the soil and not including snow and human factors (irrigation) of 

the area. 

2. Crop Moisture Index (CMI): 

The CMI was developed by Palmer (1968) due to some of the drawbacks associated with PDSI 

becoming apparent. It is a weekly calculated short-term drought index especially suited to 

drought impacts on agriculture, which responds quickly to rapidly changing conditions. It is 

calculated by subtracting the difference between potential evapotranspiration and moisture, to 

determine any deficit. 

3. Standardized Precipitation Index (SPI): 

 
The SPI was developed by McKee et al. (1993) based on the standardized value of the 

precipitation. It is simply the number of standard deviations that observed cumulative 

precipitation deviates from the climatological average. Since the precipitation is typically not 

normally distributed, a transformation was applied to the distribution until it fitted to a normal 

probability distribution. It can be applied for one or more than one month, and a functional and 

quantitative definition of drought can be established for each time scale. 



6 
 

In the arena of hydrological drought, Yevejevich (1967) introduced the concept of truncation level 

to describe the drought in which the time series of drought variable (such as streamflow) is 

truncated at the demand level. All the episodes (termed as run) below the truncation level are 

designated as drought and above the truncation level are non-drought or wet periods. Five 

parameters are involved in characterizing droughts (as shown in Figure 2.1) which are duration, 

areal extension, magnitude (or intensity), probability of occurrence, and time of 

initiation/termination. These parameters provide a comprehensive framework for understanding 

and measuring droughts. Duration refers to the length of time a drought persists, while areal 

extension describes the geographical area affected by the drought. In the parlance of hydrologic 

drought, magnitude refers to the cumulative shortage of water below the truncation level during 

the drought duration. The intensity is expressed as the ratio of magnitude to duration. The 

probability of occurrence indicates the likelihood of a drought happening in each area. Lastly, 

initiation and termination denote the onset and end of a drought on the time horizon.  

 

 

 

 

 

 

 

 

 

 

 

In the study of drought forecast, various existing methods are employed to forecast the key 

parameters identified by Yevjevich as above. The following section briefly discusses different 

methodologies as well as their applications in drought forecasting. 
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Figure 2.1 Parameters to define the characteristics of droughts. 
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2.1.2 Regression Analysis 

Linear regression analysis is one of the earliest and most widely used forecasting approaches for 

drought data. Regression analysis helps to study the relationship between variables by analyzing 

the influence of independent variables on the dependent variable. Generally, multiple regression is 

used for drought analysis and independent variables are for which data is available and dependent 

data is the value that needs to be predicted. The formula for the regression analysis can be presented 

as follows. 

𝑌𝑖 = 𝑓(𝑋𝑖, 𝛽) +  𝑒𝑖      ………………………….(2.01) 

The dependent and independent parameters respectively for i = 1, 2, 3, …, N with 𝛽 as an unknown 

variable, f is the function to combine the independent parameter and the coefficients of variables, 

and ei is the error term. The drought parameter is a variable which has a significant contribution to 

the occurrence of droughts. The dependent variable is a drought quantifying parameter, for 

example, a drought index, whereas the independent variable is an explanatory variable for the 

drought quantifying parameter (i.e., precipitation, stream flow, and soil moisture).  

Some applications of regression analysis for drought forecasting are discussed below. Kumar and 

Panu (1997) developed a regression model using the stepwise regression procedure to predict the 

grain yield of a main crop as an agricultural drought quantifying parameter. Also, variables 

affecting the grain yield in the region (explanatory variables) were identified for agricultural 

drought forecasting.  Based on the deviation of estimated grain yield from the long-term mean 

grain yield, the degree of drought severity as being non, mild, moderate, or severe was determined 

(Kumar and Panu, 1997). A study (Leilah and Al-Khateeb, 2005) analyzed the correlation and 

regression to clarify the relationship between wheat grain yield and its components under drought 

conditions. They found that the most effective variable that affects the grain yield under drought 

conditions, and identified the type of breeding materials which give more grain yield under drought 

conditions. Meng et al. (2016) developed a logistic regression model using the SPI of the previous 

season and the Southern Oscillation Index (SOI) to give the probability of drought occurrence in 

the current season and reported that the impact of SPI of the previous season, and SOI of current 

season drought substantially varies from region to region, and season to season. This study also 

showed stronger drought persistence during the summer compared to other seasons. In other 
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words, the probability of fall drought occurrence is closely related to summer moisture conditions 

(Meng et al., 2016).  

Although regression analysis has been a commonly used method, there are some limitations as 

described below (Mishra and Singh, 2010). 

All calculations are done in regression models assuming linearity between the predictand and 

predictors. Therefore, this type of model has less capability for long-term forecasting and can only 

be recommended for short-term forecasting such as agricultural droughts. Since the regression 

model only considers linearity and thus non-linearity and stochastic behaviour of the drought data 

can be captured from the error term, therefore, it is difficult to understand the hidden mechanism 

and correlation with the past values of the same variables. To address issues arising from 

stochasticity and internal correlation of a variable, researchers have utilized time series models 

which utilize lagged versions of variables for forecasting droughts as described below. 

 

2.1.3 Time Series Models 

A stochastic process is a family of random variables {X, θ}, indexed by a parameter θ, where θ 

belongs to some indices set of time. It is simply a collection of random variables which describe 

the evolution of a system. There are many methods to analyze a stochastic process depending on 

the nature of a process. In time series models, the forecast of drought is done solely based on 

verified historical data of the same time series, hence the dependency of variables is the governing 

factor. 

The first applied time series model for drought forecast was the Autoregressive model with a 

memory of p-lagged data (AR(p)), which predicts the future time series depending only on the 

current and past values of the time series. Autoregressive models for hydrologic forecasting were 

developed by Thomas and Fiering (1962), Yevjevich (1967), Box and Jenkins (1970) and Salas et 

al., (1980). Since 1970, many researchers have developed more defined models to get improved 

estimations for parameters based on the initial work done on autoregressive models. Since 

autoregressive models predict the future based on the memory of the current and past values, they 

give more accurate results when the time series data have fewer variations. In the dry season, when 

the drought values are governed by smaller flows (such as groundwater influences), an AR(p) 
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model is used. Instead of lagged values, the time series data can be forecasted solely based on the 

past errors in time series data, and this concept was also applied in the Moving Average model 

with q lagged errors (MA(q)). When time series have high variations such as during the wet season 

where drought data is governed by high flows (such as precipitation), the MA(q) model is used to 

capture variations and to adjust the forecast. To consider both high and low flow behaviour in 

drought time series data, AR(p) and MA(q) models were combined to formulate an Auto-

Regressive Moving Average (ARMA(p,q)) model. In the ARMA(p,q) model, non-stationarity is 

removed by periodic standardization of daily, weekly, and monthly series but the required number 

of parameters becomes very large. To alleviate this situation, an Autoregressive Integrated Moving 

Average (ARIMA (p,d,q)) where non-stationarity series is differenced by the order of ‘d’ to obtain 

stationarity series. ARIMA models were developed accordingly to measure the non-stationarity 

within the seasons and thus Seasonal Autoregressive Integrated Moving Average (SARIMA) 

models were introduced. Since SARIMA models consider seasonality as a parameter, they are 

significantly more powerful than ARIMA models in forecasting complex time series that exhibit 

cyclicity and periodicity behaviours. 

Depending on the foregoing observations, a drought quantifying parameter of a time series can be 

used for drought forecasting with time series models. Rao and Padmanabhan (1984) investigated 

the yearly and monthly PDI (Palmer Drought Index) series and characterized them via valid 

stochastic models which may be used to forecast and simulate the PDI series. Results revealed that 

PDI series can be forecasted with reasonable accuracy, one to several months ahead. However, the 

yearly forecasts were found to be much less accurate (Rao and Padmanabhan, 1984). A linear 

stochastic model (ARIMA and SARIMA) was used by Mishra and Desai (2005) to develop 

drought severity-area-frequency curves and to analyze the temporal variation of drought using the 

SPI for different time scales. The SPI is computed by fitting a Gamma probability density function 

to the frequency distribution of precipitation summed over the time scale of interest. The frequency 

curves thus developed by Mishra and Desai (2005) were used to predict short-term droughts and 

hence applied for drought preparedness plans. A comparative analysis of ARIMA and SARIMA 

models for drought forecasting indicated that ARIMA models can be used with reasonable 

accuracy for a 1–2-month lead time (Mishra and  Desai, 2005). The capability of SARIMA models 

in streamflow forecasting was analyzed by Modarres (2007) who found that both observed as well 

as forecasted streamflow showed a drought period with different severity in the lead time. Results 
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also revealed the significance of the selection of a suitable threshold value in time series modelling 

(Modarres, 2007). Another study in Guanzhong Plain, China (Han et al., 2013) developed adequate 

linear stochastic models ARIMA and SARIMA to predict drought using SPI as the drought index 

and indicated that the forecasting accuracy of the ARIMA model increases with the time scale and 

are more powerful models in short-term drought forecasting. 

Even though time series models gave much stronger and more flexible output based on the past 

data, they are still considering only the linear relation between the predictor and predicant values. 

Nonlinear and more complex relationships such as soil moisture relationship with precipitation 

and evapotranspiration cannot be predicted accurately from these models. Time series models give 

more accurate results when there is a large amount of data available. Also, it is always easier to 

predict with a higher confidence level with shorter lead times.  Another main problem with time 

series models is that there are many types of time series models, and the reliability of results mainly 

depends on the capability and understanding of the user in the identification of the best adequate 

model amongst the candidate models (Mishra and Singh, 2010).Hydrological systems are always 

subjected to variations due to changes in weather patterns and land use practices. Therefore, it is 

very difficult to predict the exact behaviour of hydrologic processes using these models, and an 

uncertainty factor is always linked with the outcome. Therefore, probability models are used to 

deal with the complexity and uncertainty of a hydrologic process. 

 

2.1.4 Probability Models  

2.1.4.1 Markov Chain Models 

Markov chain models are the most used probability models for drought forecasting. In Markov 

chain models, the probability of the next state is only dependent on the current state, not any 

previous states which implies independence of variables. This can be denoted as: 

Probability (Xt = aj/(Xt-1 = ai, Xt-2 = ak, Xt-3 = a1, .., X0 = a0)) = Probability (Xt = aj/Xt-1 = ai) ………..(2.02) 

The conditional probability, Prob (Xt = aj / Xt-1 = ai), gives the probability that the process at time 

t will be in “state j” given that at time t-1, the process was in “state i”. The term Prob (Xt = aj/Xt-

1= ai) is commonly called one-step transition probability. That is, it is the probability that the 
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process makes the transition from state ai to state aj in one time step, which is commonly denoted 

by “pij”. 

The Markov model is very important in the context of drought forecasting due to its ability to 

capture temporal dependencies and probabilistic transitions between different states of drought 

conditions. A Markov model is generally a mathematical model that follows the principles of a 

Markov process. It is a stochastic model that represents a system where the future state depends 

only on the current state, irrespective of any previous history. In other words, the Markov property 

assumes that the system has no memory of how it arrived at its current state. A Markov chain 

model is a specific type of Markov model that represents a system with discrete states and discrete 

time steps. It consists of a set of states and probabilities of transitioning from one state to another. 

The transition probabilities are typically represented in a transition matrix, where each element 

denotes the probability of moving from one state to another in a single time step. 

The Markov models for drought analysis were first applied by Gabriel and Neumann in 1962. In 

their study, a Markov chain model was found to fit the daily rainfall data of Tel Aviv for the mid-

winter period. Various aspects of rainfall occurrence patterns could be mathematically derived 

from the Markov chain, and these models were also found to fit observed data (Neumann, 1961). 

A non-homogeneous Markov chain model was used by Lohani and Loganathan (1997) based on 

the Palmer Drought Severity Index to calculate the steady monthly class probabilities for various 

weather classes for the Tidewater region in Virginia; where the stochastic behaviour of droughts 

was characterized as an early warning system in the form of all possible sequences of drought 

progression that was useful for drought management (Lohani and Lognathan, 1997). The first-

order Markov chains to forecast drought conditions for future months are based on the current 

drought class described by the Palmer drought index (Lohani et al., 1998). In 2003, Steinemann 

(2003) used homogeneous Markov chain models and proposed a drought trigger preparedness plan 

at the basin scale to characterize the probabilities of drought transition. The seasonal SPI was 

forecasted (Cancelliere et al., 2007) by computing transition probabilities from one current drought 

condition to another in the future based on the statistics of the underlying monthly precipitation. 

The Markov Chain model was applied by Yang et al., (2018) for SPI values to define the spatial 

effects resulting from the spatial heterogeneity and the dependency. They defined local and spatial 

transition matrices to measure the spatial heterogeneity and the dependency other than the 
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traditional Markov transition matrices and showed that there is spatial heterogeneity in both 3-

month and 9-month SPI values. 

2.1.4.2 Hidden Markov Model (HMM) 

HMM offers a unique way to understand sequential data by assuming that observations are 

influenced by hidden states. At its core, an HMM consists of two main parts: hidden states and 

observed emissions. Hidden states represent the underlying dynamics of the system, while 

emissions are the measurable outcomes associated with each state. The transition probabilities 

between states capture how the system evolves, while emission probabilities determine the 

likelihood of observing certain outcomes given a state. 

Mohammed et al. (2021) discussed the use of a hybrid model called HMM-GA (Hidden Markov 

model-genetic algorithm) for forecasting the standard precipitation index (SPI) in the Bisha Valley, 

Saudi Arabia. The results showed a reasonable accuracy of 95%, implying the appropriateness of 

the HMM model as a tool for drought mitigation and warning systems Mohammed et al. (2021). 

Even though Markov models are effective in quantifying uncertainty associated with hydro-

meteorological factors that cause droughts, such models are argued to have the following 

disadvantages in drought modelling: 

1. An apparent performance: The Markov chain model for forecasting a drought class may 

not be more informative than the historical proportion of the drought class. An analysis 

done by Silva and Estacio, 2020 showed at least 1000-year database would be necessary to 

guarantee forecast accuracy superior 63% - 75%. Even if such large databases may be made 

available by paleoclimatic studies, the hypothesis of stationarity of precipitation must be 

verified, as the pattern of drought class transitions may change over the centuries. 

2. Less memory property: Markov models assume that the future state only depends on the 

current state and not on the past states. This low memory property limits the ability of the 

model to capture long-term dependencies or trends in the drought data. As a result, Markov 

models may not adequately capture the persistence or duration of drought events. 

3. Stationarity assumption: Markov models often assume that the underlying data-generating 

process is stationary, meaning that the transition probabilities between states remain 

constant over time. However, drought conditions may exhibit temporal variations and non-
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stationarity due to climate change or other factors. Ignoring non-stationarity can lead to 

inaccurate forecasts and limit the ability of such models to capture changing drought 

patterns.  

4. Limited representation of spatial and temporal dynamics: Markov models typically treat 

each location or grid cell independently, ignoring spatial dependencies and interactions 

between neighbouring regions. Drought events can exhibit spatial coherence and 

propagation, which is not adequately captured by simple Markov models. Similarly, 

Markov models may not fully account for seasonal or inter-annual variations in drought 

patterns, limiting their ability to capture complex temporal dynamics.  

5. Sensitivity to initial conditions: The performance of Markov models can be sensitive to the 

initial conditions or the starting state of the model. Small variations in the initial state can 

lead to significantly different forecast outcomes. This sensitivity can introduce uncertainty 

and affect the reliability of drought forecasts.  

Transforming the time domain data into frequency domain data can aid in identifying different 

frequencies and periodic patterns present in the data. The Fast Fourier Transform (FFT) and the 

Wavelet Transform (WT) are the most used methods for frequency domain transformations and 

these approaches are invaluable for characterizing seasonality, reducing noise, and handling non-

stationarity in time series. By extracting features from the frequency domain, such as FFT 

coefficients or WT features, one can enhance the performance of forecasting models and gain 

insights into the dynamic behaviour of signals. Incorporating FFT and WT analysis is particularly 

crucial when dealing with complex signals that exhibit diverse frequency characteristics, offering 

a comprehensive and nuanced view of the underlying data structure. 

 

2.1.5 Fast Fourier Transform and Wavelet Transform 

The Fast Fourier Transform (FFT) and the Wavelet Transform (WT) can be applied to analyze and 

extract information from streamflow time series data.  

The FFT is a mathematical technique used to transform a time-domain signal into its frequency-

domain representation by decomposing signals into sinusoidal components. In the context of 

streamflow forecast, FFT can be used to identify the dominant periodic components within the 
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streamflow data which in turn can help discern and identify the underlying patterns in the 

streamflow time series data. FFT especially helps detect the seasonal component or periodicity 

component of the data and filter out the noise embedded in the streamflow data. Almedeij (2016) 

employed Fourier spectral analysis to examine the cyclic structure of drought patterns and 

developed a long-term periodic model for drought forecasting using SPI values in an arid region 

of Kuwait. The study used the periodogram technique to identify periodicities in the drought data, 

revealing cycles of 12, 14, 19, 26, 31, 43, 64, 103, and 258 months.  A new tool called the Harmonic 

Oscillator Seasonal Trend (HOST) model was introduced (Raczyński and Dyer, 2023) to assess 

temporal patterns of streamflow drought and used the Fast Fourier Transform to extract the first 

five harmonics of the streamflow signals. The best-fit model from the study resulted in an accuracy 

in the range of 70-90% and was able to capture annual precipitation variation and longer-term 

inertia. A comparative analysis of the performance of models trained with FFT-based features 

versus traditional time domain features was conducted and showed that FFT-based feature 

engineering is a promising approach to enhance the performance of time-series forecasting models 

(Galan-Sales and Jiménez, 2023).  

Wavelet transform is a unique approach to analyze signals and extract meaningful information at 

different scales and resolutions by breaking down signals into wavelets, which are small, localized 

waveforms that capture both time and frequency information simultaneously. A comparison 

conducted by (Chong et al., 2019) revealed that when it comes to the temporal resolution for 

detecting both trends and periodic patterns, the Fourier transform seems less promising. Wavelet 

analysis can be applied to capture both high and low-frequency components in streamflow data 

with their temporal changes. These models demonstrate an improved performance compared to 

traditional FFT methods. The fundamental concept behind wavelet transform is decomposition and 

reconstruction which involves breaking down a signal into its constituent wavelets at different 

scales and positions, enabling the analysis of both high and low-frequency components with high 

precision. This decomposition process allows for the efficient representation of signals with both 

localized and global features (Sharma and Panu, 2024). A study used wavelet transform to analyze 

trends and significant periodicities in drought variables such as SPI and drought duration, severity, 

and peak in different regions of India which showed a significant decreasing trend in northeast 

India (Sharma et al., 2022). The study by Chong et al. (2022) analyzed the spatiotemporal 
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variability of droughts using wavelet transform and standardized precipitation indices (SPIs). The 

findings showed a declining trend in droughts from east to west in Sabah, Malaysia.  

However, wavelets can possess several disadvantages that can limit their efficacy in forecasting 

tasks. One major drawback is their limited adaptability, as wavelet transforms are often tailored to 

specific types of data or signal analysis, making them less versatile across diverse forecasting 

scenarios. Additionally, wavelets may struggle to capture complex nonlinear relationships present 

in some datasets, leading to less accurate forecasts in such cases. Another challenge is the manual 

selection of wavelet parameters, including basis functions and decomposition levels, which can be 

a subjective and time-consuming process requiring extensive experimentation. 

For such limitations, machine learning models offer several advantages over wavelet transforms 

for forecasting tasks. These models are highly flexible and adaptable, capable of learning complex 

patterns and capturing nonlinear relationships in the data. With the ability to automatically learn 

relevant features from the input data, machine learning models reduce the need for manual feature 

engineering, making them well-suited for high-dimensional or unstructured data. 

 

2.1.6 Machine Learning Models 

Machine learning is a useful approach for analyzing complicated and data-rich occurrences such 

as droughts and it has shown promise in drought forecasting due to its ability to capture complex 

patterns and relationships in time series data. Deep learning models such as Artificial Neural 

Networks (ANN) and hybrid models were found to be significantly powerful in understanding 

drought dynamics and predicting its impacts (Gyaneshwar et al., 2023).  

Drought is a complex phenomenon influenced by multiple interacting factors. Machine learning 

models, such as ANN, Support Vector Machine (SVM), and K-nearest neighbours (KNN) models 

can capture nonlinear relationships and interactions among various meteorological, hydrological, 

and environmental variables. The ability of these models to capture nonlinear relationships enables 

them to uncover hidden patterns and dependencies that may not be easily captured by linear models 

(Shiri et al., 2021). 

Drought forecasting often involves analyzing many variables, including precipitation, streamflow, 

temperature, soil moisture, vegetation indices, and more. Machine learning models can efficiently 
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handle high-dimensional data and automatically identify relevant features for predictive purposes. 

They can also handle missing data and outliers, allowing for more robust and accurate forecasts 

(Hao et al., 2019). 

Drought is a time-dependent phenomenon, and machine learning models can effectively model 

temporal dynamics. Models such as Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks excel at capturing temporal dependencies and patterns in time series 

data. Such models can learn from historical drought patterns to make accurate forecasts for future 

time steps. Machine learning models can handle complex data relationships and interactions, and 

can identify nonlinear and higher-order dependencies, as well as capture spatial and temporal 

correlations in drought data. This is particularly useful for capturing the spatial coherence and 

propagation of drought events across different locations (Shi et al., 2020). 

Machine learning models can adapt and learn from new data. They can continuously update their 

internal parameters and improve their performance as new observations become available. This 

adaptability is particularly valuable in drought forecasting, where environmental conditions and 

climate patterns can change over time (Feng et al., 2021).   

Another main advantage of machine learning models is that they can effectively integrate data 

from multiple sources, such as satellite imagery, climate models, ground-based observations, and 

remote sensing data. By incorporating diverse data types and sources, machine learning models 

can provide a more comprehensive and accurate understanding of drought dynamics. Drought 

forecasting involves inherent uncertainties due to the complexity and variability of environmental 

systems. Machine learning models can handle noisy and uncertain data, as well as quantify and 

propagate uncertainty through their forecasts. This allows for a more reliable assessment of 

drought conditions and associated risks (Zhang et al., 2022). 

It is important to note that the choice of machine learning model depends on the specific 

characteristics of the data, the available predictors, and the desired forecasting horizon as follows, 

1. Characteristics of the data: Understanding the characteristics of the data is crucial for 

selecting an appropriate machine learning model. This includes examining the nature of 

the input data, such as its format (e.g., time series, spatial data), the presence of any patterns 

or dependencies, the data size, and the availability of historical records. 
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2. Available predictors: The predictors or features are the variables or measurements used to 

make forecasts. In the context of drought forecasting, these could include meteorological 

data (temperature, rainfall, humidity), soil moisture levels, streamflow, remote sensing 

data, or any other relevant environmental or climatic variables. The choice of predictors 

depends on their availability, reliability, and their known or suspected relationships with 

drought conditions. 

3. Desired forecasting horizon: The forecasting horizon refers to the length of time into the 

future for which forecasts are sought. Drought forecasting can involve short-term forecasts 

(e.g., drought severity of the next week) or long-term forecasts (e.g., seasonal or multi-year 

drought outlook). Different machine learning models may have varying capabilities and 

performance for different forecasting horizons. 

The best fit for a specific drought forecasting task can be found by considering these factors. Some 

commonly used models for drought forecasting include regression models (e.g., linear regression, 

support vector regression), neural networks (e.g., artificial neural network model, recurrent neural 

networks), and more advanced techniques like deep learning models. 

2.1.6.1 Artificial Neural Network Model 

The most used machine learning model for drought forecasting is the Artificial Neural Network 

(ANN). It is a computational model inspired by the structure and functioning of biological neural 

networks, such as the human brain. ANNs are a subset of machine learning algorithms that are 

designed to learn and recognize patterns from data. 

An ANN consists of three main layers, which are the input, hidden and output layers. Those layers 

are interconnected by artificial neurons, which are also called nodes or units. The most common 

type of ANN is the feedforward neural network, where information flows in one direction, from 

the input layer through one or more hidden layers to the output layer. Each neuron receives input 

signals, performs a computation, and produces an output signal that is transmitted to the neurons 

in the next layer. The connections between neurons are represented by weights, which determine 

the strength of the signal transmitted from one neuron to another. During the training process, the 

weights are adjusted based on the input data and the desired output, allowing the ANN to learn and 

adapt to the underlying patterns in the data. The computation within each neuron involves two 

main steps: a linear combination of inputs and an activation function. The linear combination 
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involves multiplying the input signals by their corresponding weights and summing them. The 

activation function introduces non-linearity to the output of the neuron, enabling the network to 

learn complex relationships and patterns in the data. For forecasting purposes, a 3-layer feed-

forward ANN is used which consists of an input layer, a hidden layer, and the output layer. In the 

input layer, a linear combination is built between inputs, which are drought-quantifying 

parameters. In the hidden layer, nonlinear relationships are calculated using the activation function 

and, in the output, a layer is used for forecasting different lead times (Mishra and Singh, 2010).  

ANNs can have different architectures and configurations depending on the problem they are 

designed to solve. A comparative study on the Recursive Multistep Neural Network (RMSNN) 

and Direct Multistep Neural Network (DMSNN) for drought forecasting found that RMSNN was 

useful for short-term drought forecasting, while DMSNN was useful for long-term drought 

forecasting (Mishra and Desai, 2006). ANN was applied to predict drought using SPI by Morid et 

al. (2007) and identified that a modeller is not required to completely define the intermediate 

interactions between inputs and outputs (physical processes). This property makes ANNs 

particularly suited for analyzing complicated processes such as drought forecast, in which the 

interactions with the output of several input variables must be investigated. Using the Standardized 

Precipitation Evapotranspiration Index (SPEI), a Multilayer Perceptron Neural Network 

(MLPNN) algorithm was applied for drought forecasting with results showing a potential 

capability (Ali et al., 2017). A study introduced a machine learning framework based on the 

recurrent neural network called “DroughtCast” to predict the United States Drought Monitor Index 

using the simulated meteorological parameters and the satellite-observed soil moisture data (Brust 

et al., 2021). The DroughtCast model gave promising results up to 12-week lead time and identified 

precipitation, soil moisture and temperature as the most important variables for drought 

forecasting. An ANN model was found better for drought forecasting in semi-arid areas than arid 

areas, where precipitation has less correlation with the stream flow (Tareke and Awoke, 2023). 

Although the ANN model provides more promising results, it typically requires a large amount of 

high-quality training data to perform well. Insufficient or low-quality data can lead to overfitting 

or poor generalization, resulting in inaccurate forecasts. Drought data, particularly long-term 

reliable records, may be limited, which can pose challenges for ANN model development. Also 

are complex models with multiple layers of interconnected neurons. This complexity can make it 
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difficult to interpret the internal workings of the model and understand the underlying relationships 

between inputs and outputs. Traditional Artificial Neural Networks (ANNs) may struggle to 

capture long-term dependencies in sequential data due to the vanishing gradient problem. This 

issue arises during the training of deep neural networks, where the gradients of the loss function 

concerning the weights decrease exponentially as they are back propagated through the network. 

The vanishing gradient problem becomes particularly pronounced in deep networks with many 

layers, which is often the case in traditional ANNs. This lack of interpretability can limit the 

usefulness of ANNs in providing actionable insights for drought management. Sometimes ANN 

models tend to overfit and train from the noise data rather than learning the hidden patterns in the 

time series data. 

2.1.6.2 Long Short-Term Memory (LSTM) Model 

Long Short-Term Memory (LSTM) network is a Recurrent Neural Network (RNN) which was 

updated to address the challenge of capturing long-term dependencies in sequences, a hurdle that 

traditional ANNs often struggle with due to the vanishing gradient problem. The inclusion of 

memory cells and gating mechanisms in LSTMs enables the network to selectively retain and 

utilize information across different time steps, facilitating the capture of intricate temporal patterns. 

LSTMs are inherently designed for sequential data processing, excelling in tasks such as time 

series forecasting, natural language processing, and speech recognition where the temporal order 

of input data is crucial. Gating mechanisms in LSTMs, such as the forget gate and input gate, allow 

for controlled information flow, ensuring that the network can adapt to varying time scales and 

effectively handle both short-term and long-term dependencies. The ability to mitigate the 

vanishing gradient problem, coupled with state memory and multivariate time series handling, 

renders LSTMs more versatile and powerful in capturing the complexities of sequential data 

compared to traditional ANNs. 

LSTM was introduced by Hochreiter and Schmidhuber (1997) to resolve the vanishing problem in 

Recurrent Neural Networks. The vanishing gradient problem arises when back-propagating errors 

pile up through many layers of a neural network, especially in the case of deep networks or 

networks with long sequences. The gradients can become extremely small, causing the weights to 

receive very small updates, and leading to slow or stalled learning.  The LSTM architecture 

introduced memory cells and gating mechanisms to mitigate this issue and enable the network to 



20 
 

capture long-term dependencies more effectively. Selvaraj et al. (2023) forecasted the long-term 

rainfall and Standardized Precipitation Index for drought estimation using LSTM with more than 

99% accuracy. Another study used a combination of the Random Forest (RF) method, attention 

mechanism, and LSTM network to identify the important input values from the monthly average 

precipitation values to estimate the precipitation value for the next month with less than 10% error 

(Li et al., 2022). An LSTM and a hybrid model based on a Regularized Extreme Learning Machine 

were applied to predict the drought level using the Multivariate Standardized Streamflow Index 

(MSSI) by Hameed et al. (2023) and found that the hybrid model produced more accurate results 

compared to LSTM. On the other hand, the use of LSTM to predict monthly rainfall values in 

Ghana appeared to outperform when compared to the standard SVR and RF forecasting models 

(Dotse, 2023). The research by Coşkun and Citakoglu, (2023) utilized the LSTM deep learning 

algorithm to predict meteorological drought in Sakarya province (Türkiye) using the standardized 

precipitation index (SPI) at 1, 3, and 6-month time scales. The LSTM model achieved the best 

results for the SPI-1-month time scale and the SPI-3-month time scale. 

While LSTM networks have demonstrated success in capturing long-range dependencies in 

sequential data but have encountered several limitations. LSTMs can be computationally complex 

and require substantial training time, particularly for large datasets, making them resource-

intensive. Despite such disadvantages, LSTMs remain valuable in various applications, and 

ongoing research continues to explore enhancements in the realm of hydrological drought 

forecasting using seasonal grouped data. 

2.1.6.3 Support Vector Machines (SVM) 

Support Vector Machines (SVM) is a popular machine learning algorithm used for both 

classification and regression tasks. It is effective in solving both linearly separable and non-linearly 

separable problems. SVMs are based on the concept of finding an optimal hyperplane that 

maximally separates different classes or approximates a regression line with the maximum margin. 

SVMs can handle non-linearly separable data by using the kernel trick. The kernel trick involves 

the use of a kernel function, which computes the inner product between pairs of transformed data 

points in the higher-dimensional feature space. The key idea is that this inner product can be 

computed directly in the original feature space without explicitly transforming the data. 
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SVMs have been employed to predict drought indices, such as the Standardized Precipitation Index 

(SPI) or the Palmer Drought Severity Index (PDSI). SVM models trained on historical climate 

data have been used to forecast these indices, providing valuable information about future drought 

conditions. A study conducted on the domestic water supply in Tehran, Iran applied SVM to predict 

the seasonal standardized precipitation index using the Mutual Information (MI) method as the 

feature selection method. Different Kernel functions were compared, and the linear kernel function 

was found to outperform the other kernel functions in SPI forecast (Zahraie and Nasseri, 2011).  

The Godavari River basin in India upgraded the performance of the SVM by applying the 

sequential minimal optimization method for SPI forecast and observed that the Pearson Universal 

Kernal function was found to give the best results (Pande et al., 2023) in the long forecast of SPI 

and concluded that the performance of different Kernel functions increased when predicting long 

term drought conditions.  

SVM has been applied to classify drought severity levels based on meteorological and hydrological 

variables. SVM models have been used to accurately categorize drought conditions into different 

severity classes, such as mild, moderate, severe, or extreme drought. Schumacher (2020) trained 

SVM with precipitation, evapotranspiration, and soil moisture, and applied it to predict flash 

droughts up to 6-week lead time with reasonable accuracy. Another study in 2021 by Kolachian 

and Saghafan (2021) classified the standardized hydrological drought index into 9 classes using 

Support Vector Regression (SVR) and showed that classification by SVR has higher accuracy 

when the number of classes is lower.  

There are, however, some drawbacks of SVMs such as being computationally demanding, 

especially when dealing with large datasets or high-dimensional feature spaces. Training an SVM 

requires solving a quadratic optimization problem, which can become time-consuming and 

memory-intensive for large-scale applications. Also, the selection of appropriate values for the 

hyper parameters is crucial for the optimal solution. 

2.1.6.4 k-means Clustering and K-Nearest Neighbour Classification 

The k-means clustering is an unsupervised machine learning algorithm used for partitioning data 

into distinct groups, or clusters, based on similarity patterns. The fundamental principle behind k-

means is to iteratively assign data points to clusters in a way that minimizes the within-cluster sum 

of squares and effectively finds centroids that represent the center of each cluster. The algorithm 
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operates by initializing cluster centroids randomly and then iteratively refining them until 

convergence. 

A combination of multi-timescale meteorological drought indices and the Self Organizing Maps-

k-means clustering technique has been used to map future drought conditions in China for the 

period 2021-2050 (Peng et al., 2021); and results have indicated that the differences between 

precipitation and potential evapotranspiration are expected to increase throughout China, leading 

to more severe, frequent, and longer duration droughts in most parts of the country during the next 

three decades. Gamelin et al. (2022) successfully used the k-means clustering technique to identify 

known short-term and long-term drought events based on the Standardized Vapor Pressure Deficit 

Drought Index (SVPDI). 

The K-Nearest Neighbors (K-NN) algorithm is a supervised algorithm for labelling an unknown 

data point given existing labelled data. The K-NN algorithm assumes that similar things exist in 

proximity. The K-NN captures the idea of similarity or closeness by calculating the distance 

between points on a graph. The nearness of points is typically determined by using distance 

algorithms such as the Euclidean distance formula based on the parameters of the data. The 

algorithm will classify a point based on the labels of the K nearest neighbour points, where the 

value of K can be specified. 

The K-NN algorithm using temperature and precipitation data was applied to classify or predict 

agricultural drought events for five crop districts in Saskatchewan, Canada. Crop production 

quantities within the data period (1975-2002) were considered and based on the mean of the crop  

quantities, data were classified into two classes, which are drought and no drought. Then the 

drought class was reclassified to different drought levels starting from moderate to very severe 

droughts based on the mean values within the drought class. The overall accuracy was 83% for 

predicting non-drought events and 71% for predicting drought events (Boken and Haque, 2007). 

In 2019, a study in Hokkaido, Japan applied self-organizing maps (SOM) in combination with k-

means clustering to classify the anomalies in weather patterns. Results gave more accuracy for a 

3-day lead time but suggested further improvement of the method (Nguyen-Le and Yamada, 2019). 

Weighted K-nearest neighbours (W-KNN) is an extension of the traditional K-NN algorithm where 

the contribution of each neighbour to the classification (or regression) of a query point is weighted 

based on its distance from the query point. In traditional K-NN, all neighbours within the k nearest 
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neighbours are given equal importance in determining the class (or value) of the query point. 

However, in Weighted KNN, the influence of each neighbour is adjusted by assigning weights 

inversely proportional to their distances from the query point. W-KNN is a novel approach in 

drought forecasting, but it has been applied in other domains such as gesture recognition, fault 

detection, and communication signal modulation recognition. A gesture recognition method called 

Wi-NN captures human body action information, achieving gesture recognition without the need 

for additional devices. A classification accuracy of 93% has been reported by Yajun et al. (2023) 

on the original data once such data was processed and incorporated into the weighted KNN. 

Additionally, the W-KNN approach improved the state separation ability of the fault detection 

study especially in cases where the operating data has a heterogeneous distribution (Qian, 2022).  

Another study (Yulin, 2022) proposed a pattern recognition method for communication-modulated 

signals based on weighted KNN where it was concluded that feature extraction significantly 

improved the recognition accuracy and computing efficiency of weighted KNN. 

The K-nearest neighbour algorithm is one of the first algorithms that one learns in data science, 

and it is useful in classification problems due to its simplicity, quick calculation time and accuracy. 

However, as the size of the dataset differs, KNN becomes increasingly inefficient, compromising 

overall model performance.  

2.1.6.5 Hybrid Models 

Some studies have explored hybrid models that combine multiple machine-learning techniques or 

integrate machine learning-with other modelling approaches. For example, combining SVM and 

WT, or combining ANNs with Markov chains or hidden Markov models, has been proposed to 

improve drought forecasting accuracy.  

A study by Belayneh and Adamowski (2013) compared hybrid models based on ANN, SVM and 

coupled wavelet-ANN revealed the highest accuracy for the coupled wavelet-ANN model with a 

1 to 3-month lead time for the Awash River basin in Ethiopia.  A Wavelet-Boosting Support Vector 

Regression model was applied for SPEI as the drought quantification parameter for drought 

forecasting at Langat River Basin, Malaysia. The results of the study showed a higher accuracy 

when WT was adapted for de-noising data compared to the support vector regression model (Fung 

et al., 2020). The Hybrid model from the nonlinear autoregressive model with the neural networks 

model was found to give better results than individual models analyzing the SPI for the Bursa 
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region in Northern Antonia (Evkayaa and Kurnaz, 2020). The study by Ozger et al. (2022) used El 

Nino Southern Oscillation (ENSO) and persistence as the drought parameters to develop the 

Wavelet Fuzzy Logic (WFL) hybrid model which produced more accurate results in drought 

forecasting compared to an artificial neural network (ANN) model and a coupled wavelet and 

ANN (WANN) model. Six machine learning models (Adaptive Neuro-Fuzzy Inference System 

(ANFIS), Artificial Neural Network (ANN), Deep Learning Neural Network (DLNN), Fuzzy 

Rule-Based System (FRBS), Support Vector Machines (SVM), and Decision Tree (DT)) were 

applied to the Han River basin in South Korea to calculate the Standardized Runoff Index (SRI) 

and found that the fuzzy rule-based network provided better performance compared to neural-

based networks (Jehanzaib et al., 2021). A review of hybrid models used for drought forecasting 

by Alawsi et al., (2022) briefly described data preprocessing and the advantages and disadvantages 

of the different hybrid models. As for future research directions, data pre-treatment techniques, 

such as Singular Spectrum Analysis (SSA) and empirical mode decomposition were proposed. 

Choosing the most suitable machine learning algorithm for drought forecasting can be challenging. 

Various algorithms have their strengths and weaknesses, and the selection of an appropriate 

algorithm for a specific drought forecasting task requires a thorough understanding of data 

characteristics, underlying assumptions, requirements of models, and reasonable experimentation. 

It is important to assess the strengths, limitations, and assumptions of different models with 

specific characteristics of the data and the forecasting requirements to make an informed choice. 

Additionally, model evaluation and validation techniques are necessary to assess the accuracy and 

reliability of the chosen model for drought forecasting. 

 

2.2 Discussion on Future Direction 

The performance and accuracy of forecasting models can be influenced by several criteria. The 

understanding of the drought data can be improved by recognizing groups, classes, or patterns in 

the data set based on seasons. This is a more effective and less complex approach to drought 

forecasting rather than dealing with complicated models. The ability to predict, mitigate, and adapt 

to drought conditions can be enhanced by identifying and characterizing distinct patterns or 

categories of drought. This approach in drought forecasting can offer certain advantages over 
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regular drought forecasting methods. Some potential advantages of the seasonal pattern approach 

are: 

1. Capturing nonlinear relationships: Drought patterns often involve complex, nonlinear 

relationships between meteorological variables, soil moisture, and other factors. 

Traditional methods, such as statistical regression models, may assume linear relationships 

and struggle to capture these nonlinearities. Seasonal pattern recognition techniques, on the 

other hand, can identify intricate patterns and dependencies that exist within seasons, 

allowing for more accurate modelling and forecasting. The drawbacks of linear models 

have been described by Tong (1983), who pointed out their inadequacy in predicting time 

series data.  

2. Stability of the confidence boundary: Grouping data based on seasons can contribute to the 

stability of confidence boundaries throughout the group by providing an aggregated 

perspective rather than individual values for each element. By aggregating data within each 

season, the inherent variability within smaller timeframes is smoothed out, leading to more 

stable estimates of drought conditions. This reduction in variability contributes to greater 

stability in confidence boundaries, as they are based on averaged values across multiple 

observations within each season (Panu, 2000). 

3. Incorporating spatial and temporal patterns: Droughts can exhibit spatial and temporal 

variability, with patterns emerging at different scales. Pattern recognition techniques can 

account for these patterns and capture the spatial and temporal dependencies present in the 

data (Unny et al., 1981). This allows for the development of spatially explicit models that 

consider regional variations and temporal dynamics, enhancing the understanding and 

forecast of drought patterns at different scales. 

4. Uncovering novel insights: Pattern recognition approaches can uncover previously 

unrecognized patterns and associations in the data. By applying advanced data mining or 

machine learning techniques, researchers may discover new relationships, dependencies, 

or indicators of drought occurrence that were not apparent using traditional methods (Panu 

et al., 1978). These novel insights can lead to improved understanding and forecast of 

droughts, enabling more effective mitigation and adaptation strategies. 
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With the increasing application of pattern recognition approaches in computer science, image 

processing, speech recognition, data mining, and many others, future research will likely predict 

droughts based on their spatiotemporal patterns. This research focuses on pattern recognition in 

drought data to identify meaningful patterns and predict drought conditions based on those 

patterns. By analyzing and interpreting these patterns, the study aims to enhance the accuracy and 

effectiveness of drought forecasting. 

In the next chapter (Chapter III), the research objectives and scope are outlined. Chapter IV will 

focus on methods for recognizing patterns within drought data and utilizing these patterns to make 

accurate drought forecasts. 
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3 Chapter III: Objectives 
 

 

Analyzing drought impacts in Canada is vital for safeguarding agriculture, ensuring food security, 

and maintaining ecosystem health. A thorough analysis of drought can be gained through 

identifying heterogeneous patterns within drought data as droughts often manifest in diverse ways 

across different seasons, with varying intensities, durations, and impacts. Discerning the hidden 

seasonal patterns enables us to understand the dynamics of drought behavior which can enhance 

the predictability of droughts. The main objectives of this thesis are to set the foundation for 

seasonal drought streamflow forecasting in Canada based on pattern recognition concepts using 

statistical and machine learning approaches on a monthly time scale as follows. 

  

1. To establish operational definitions of hydrological drought and describe qualitative and 
quantitative measures for drought assessment as it relates to drought-impacted sectors. 

 

2. To discuss on the existence of heterogeneous Groups or Patterns within streamflow data. 
 

3. To develop a measure of disorder and identification of similar behaviour within monthly 
streamflow patterns to recognise the seasonal drought patterns. 

 

4. To analyze of seasonal drought patterns to identify the characteristics of each pattern. 
 

5. To cluster of seasonal drought patterns to find the variation of drought levels within drought 
patterns. 

 

6. To forecast seasonal drought patterns based on pattern recognition concepts using statistical 
and machine learning approaches. 

 

i. To forecast drought levels based on the seasonal drought patterns using the 
straightforward probabilistic framework of Discrete Markov Model. 
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ii. To forecast drought levels based on the Hidden Markov Model because it enhances 
the Discrete Markov Model performance by capturing more dynamic features of the 
streamflow drought patterns.  

 

iii. To forecast drought levels based on the Long Short-Term Memory (LSTM) model to 
learn dynamic features in both underlying long-term and short-term dependencies in 
monthly streamflow drought patterns. 

 

iv. To forecast drought levels based on the LSTM model by utilizing weekly data to 
analyze and capture detailed features of streamflow drought patterns by utilizing 
weekly data. 

 

 
7. To conduct comparative analyses of three models on the differences in predicting drought 

patterns and model performances model for forecasting drought patterns based on different 
performance assessment metrics. 
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4 Chapter IV: Development of Methodology 
 

 

This chapter describes the methods used to recognize drought patterns within streamflow data. It 

explains how these drought patterns are classified into different drought levels, and outlines the 

methods employed to predict droughts based on these identified patterns. 

 

4.1 Assessment of the Completeness and Quality of Streamflow Datasets 

To effectively model and analyze streamflow data, the assessment of the completeness and quality 

of the streamflow datasets before use is crucial. It is because without a thorough assessment of the 

streamflow datasets, the reliability and accuracy of the model results may be compromised.  

The initial step of assessing the streamflow datasets involves ensuring that there are no gaps or 

missing records in the data set. In cases where necessary, the missing data values could be 

supplemented using values that would have minimal impact on the underlying probability 

distribution of the dataset. Following the data infilling, an evaluation must be executed to verify 

that the dataset adheres to the conditions of weak stationarity. This confirmation is crucial to ensure 

precise and consistent statistical evaluations. 

 

4.1.1 Infilling of the Missing Data 

Frequently, it is typical to come across gaps or temporal periods where records are missing in the 

hydrometric (streamflow) datasets that were regularly maintained by the Water Survey of Canada. 

These missing streamflow records needed correction before could be applied to any analysis. As 

pointed out by Tallaksen et al. (2004), even a minor number of missing data values could greatly 

diminish the significance of summarized statistical information. To address this issue, two methods 

can be applied to infill the gaps in the data set and the selection of such a method is based on the 

length of the gap. The procedure involves a Linear Interpolation method for gaps shorter than ten 
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days and an Analogue River Ratio method for gaps longer than ten days up and to a year, as 

described below. 

4.1.1.1 Linear Interpolation Method 

Missing data were filled after plotting the relevant hydrological year and calculating the trend line 

for the hydrograph. The hydrograph was plotted indicating the streamflow value (m3/s) against 

each month and the trend line which gives the relationship between each streamflow value and the 

month was found using the remaining data of the year. Tallaksen et al. (2004) suggested that for 

short gaps of less than ten days, manual infilling using the Linear Interpolation method is 

appropriate, as long as there are no evident signs of flood or drought events. 

4.1.1.2 The Analogue River Ratio Method 

The Analogue River Ratio Method was used to in-fill missing data segments longer than ten days 

and up to a year. Tallaksen et al. (2004) described this method as straightforward, utilizing a nearby 

gauging station (analogue) to manually estimate missing flow values at the target station. The 

analogue station is recommended to be an upstream or downstream station of the target river or a 

station at the nearest catchment. This method relies on an established relationship, typically a ratio, 

between the flows at the target and analogue stations, which is then used to estimate the missing 

data. 

To perform the infilling, the target river and the nearest adjacent river(s) should ideally have over 

30 years of flow data. This data is used to develop a daily relationship (Equation (4.01)) for each 

day of the year. According to Brase and Brase (2006), a sample size of more than 30 years is 

generally used to approximate normality. The relevant equation is provided below. 

𝑥𝑖 =
∑ 𝑥𝑑

∑ 𝑎𝑑
∗  𝑎𝑖     …….……..…………………..(4.01) 

Where 𝑥𝑖 represents an estimate of the missing value on the ith day and ∑ 𝑥𝑑 gives the summation 

of known daily streamflow (m3/s) values over d-length days of the target station and 𝑎𝑖  is the 

known daily streamflow (m3/s) value of the ith day in the adjacent station and ∑ 𝑎𝑑  gives the 

summation of daily streamflow (m3/s) over d-length days of the adjacent station. Length d is ten 

days which starts from the nearest day where there are no missing data for both stations over a d-

period. 
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4.1.2 Quality of the Data Set 

It is important to assess the quality of the streamflow datasets. Assessing precision involves 

examining the variability and repeatability of the data while evaluating consistency entails 

checking for any inconsistencies or outliers within the dataset. A study (Vivian, 2022) showed that 

data quality for hydrological modelling is crucial, pre-treatment, including outlier removal should 

be done before using data for hydrological modelling as after removing the outliers in the study, 

the model classification performance increased up to at a 95% confidence level.  

It is necessary that the time series data must follow stationarity for statistical modelling of the time 

series. Stationarity refers to a property of a time series where its statistical properties, such as mean, 

variance, and autocorrelation, remain constant over time. But in hydrology, only the assumption 

of weak stationarity is acceptable, which includes both the first moment, the mean, and the second 

moment, the variance is constant in time. Achieving this involves checking and adjusting the 

average and variability across various time intervals and eliminating trends by differencing the 

data. Overall, assessing the completeness and quality of streamflow datasets is essential for 

ensuring the reliability and accuracy of streamflow modelling.  

This assessment involves checking for any missing data points or gaps in the time series, as well 

as evaluating the accuracy, precision, and consistency of the data through techniques such as 

sensitivity analysis, calibration, and validation. This assessment is necessary to identify any 

potential issues or limitations with the datasets that could impact the reliability and accuracy of 

streamflow modelling. 

 

4.2 Normalization of the Data Set 

Normalization of streamflow data is a necessary preprocessing step when applying streamflow 

data for hydrological analysis. It is necessary to ensure that the underlying distribution of the data 

is known, which makes the behaviour of the data set visible making it useful for model 

applications.  
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4.2.1 Need for Normalization 

The original streamflow data for most rivers possesses a skewed distribution. Transforming 

original streamflow data to normalized data can help to improve the stability, efficiency, fairness, 

and interpretability of models. Those advantages can be described according to the following 

factors. 

1. Improving the Model Performance: Many mathematical theories and statistical techniques 

assume that the data follow a normal distribution or some other specific distribution. Most 

of them assume the normal distribution. Normalization of the data can help meet these 

assumptions, potentially leading to better model performance and more accurate forecasts. 

2. Outlier Handling: There are extreme values or outliers in the hydrological data which 

usually result from catastrophic natural events such as extreme rainfall and extreme 

snowfall events, cyclones/hurricanes, or large forest fires and these can have a significant 

impact on hydrological analyses. While the traditional approach involves removing 

outliers, in hydrology outliers can be considered as part of the hydrograph, which includes 

potentially valuable information (Panu and Ng, 2017). However, normalization can help 

mitigate the influence of outliers by compressing extreme values and making them less 

extreme in the transformed data.  

3. Convergence and Stability: In machine learning methods, many optimization algorithms 

are used such as gradient descent, and those optimization methods that converge faster and 

are more stable when dealing with normalized data. This can help the model reach a 

solution more efficiently and prevent convergence issues that might arise from unscaled or 

poorly scaled data sets. 

When normalizing streamflow data, it is important to consider the distribution of the data and the 

specific needs of the modelling approach. Common normalization techniques can be varied from 

simple transformations such as min-max scaling, z-score standardization, and logarithmic 

transformations to more advanced transformations such as Box-Cox transformation (Box and Cox, 

1964). In this thesis, the Box-Cox transformation (one of the most common transformations that 

has been successfully used in the field of hydrology) has been utilized.  
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4.2.2 The Box-Cox Transformation 

The Box-Cox transformation (Box and Cox, 1964) is a mathematical technique that transforms the 

original data into an approximate normal distribution. It is particularly useful when dealing with 

data that exhibits heterogeneity, that is, streamflow data exhibits unequal temporal variability 

across different levels of streamflow data, making streamflow data laden with non-stationarity. At 

a given location, these varying levels of variability throughout the year could occur due to seasonal 

variations. The Box-Cox transformation can help stabilize the variance, making it more consistent 

across the data range. This can be particularly important when conducting statistical analyses that 

assume constant variance or stationarity. Streamflow data often exhibit significant skewness, with 

most values clustered at lower flow rates and a few extremely high values during flood events. 

This skewness can make statistical analysis challenging. The Box-Cox transformation can help 

reduce the skewness, making the data more symmetric and closer to a normal distribution.  

There are two conditions for using this transformation, which is that the values should be positive 

values of continuous variables. Both conditions are satisfied with monthly streamflow values. Box-

Cox transformation uses an exponent of a variable named lambda (𝜆) for the transformation, and 

𝜆 can vary from -5 to 5. All values of 𝜆 need to be considered and the optimal value of 𝜆 for the 

data should be selected such that the optimal value is the one which results in the best 

approximation of a normal distribution. The Box-Cox transformation of the y variable has the 

following form: 

y(λ)  = {
𝑥λ−1

λ
         if λ ≠  0

log(𝑦)          if λ =  0
  ……………………………..(4.02) 

Where x is the original data or monthly streamflow values in m3/s, and y(λ) is the transformed 

data. The parameter λ determines the type of transformation applied to the data. If the optimal λ is 

zero, data needs a natural logarithmic transform and when optimal λ is one then data is already 

normalized, it will be reduced by one unit keeping the shape of the distribution as same as the 

original distribution. To find the optimal value of λ, the maximum value of the likelihood function 

should be calculated. The likelihood function assumes that the original data follows a normal 

distribution after the Box-Cox transformation. It is expressed as: 

𝐿(𝜆) = −
𝑛

2
𝐿𝑛(𝜎λ

2) + (λ − 1) ∑ (𝑦𝑖)𝑛
𝑖=1   ……………………..(4.03) 
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where n is the number of data points, 𝑦𝑖  is the ith data point and 𝜎λ
2 is the estimate of the least 

squares variance using the transformed y variables for a specific 𝜆 value. 

The likelihood function L(λ) quantifies how well the transformed data fits the assumed normal 

distribution after the Box-Cox transformation, for a specific value of λ. The value of λ that 

maximizes this likelihood function, corresponds to the best transformation for the original data. 

In practice, maximizing L(λ) can be done by numerical optimization methods using different 

software packages like R or Python libraries such as SciPy. In this thesis, the MATLAB software 

is used to perform Box-Cox transformations and estimate the optimal λ value based on the 

likelihood function. By selecting a value of λ that maximizes the likelihood function, the original 

streamflow data can be effectively transformed to make it more closely resemble a normal 

distribution. 

 

4.3 Recognition of Patterns within Monthly Streamflow Data 

Streamflow data, which is typically measured as discharge over time, contains a combination of 

information. The meaningful insights can be extracted from the data by recognizing the underlying 

patterns within the data set. 

 

4.3.1 Existence of Groups or Patterns within Streamflow Data 

Streamflow data provides an integrated measure of the water cycle, reflecting the combined effects 

of various hydrological processes such as precipitation, infiltration, and evapotranspiration within 

a watershed. Therefore, streamflow can exhibit similar characteristics due to factors such as 

seasonal changes and climate oscillations. These factors can result in heterogeneous groups or 

clusters of streamflow based on similar behaviours. For instance, during wet seasons or periods of 

snowmelt, streamflow levels tend to rise, forming clusters of high-flow data. Conversely, during 

dry seasons or drought conditions, streamflow levels decrease, resulting in clusters of low-flow 

data.  

The presence of heterogeneous groups in streamflow data was first documented by Panu and Afza 

(1993), and Goodier and Panu (1994). Identifying the structure of groups and efficiently capturing 
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heterogeneity in streamflow data based on pattern recognition concepts was introduced by  Panu 

et al., (1978). This approach can provide main two advantages over univariate models, (1) 

Increasing the stability of the confidence boundary throughout the group and (2) Predicting the 

level of the drought for the entire group instead of predicting the drought level for a 

month/week/day. In addition to the main advantages, there are several benefits such as leading to 

improved model performance because the models can learn more efficiently from data with 

consistent behaviors. This can be particularly important when the original dataset, particularly 

streamflow data has a lot of fluctuations that might make it harder for the model to discern 

meaningful patterns. Also, grouping data based on similarity can result in more interpretable 

models. Instead of dealing with individual data points, the model is working with aggregated 

groups that can represent specific hydrological conditions such as seasons, which can make it 

easier to understand and communicate the results of the models. In this section, exploratory data 

analysis techniques are used to identify seasonal patterns and variations within the data to extract 

meaningful drought patterns from the streamflow sequences.  

 

4.3.2 Streamflow Drought Index (SDI) based Drought Levels (DL) 

The Streamflow Drought Index (SDI) is used to get a qualitative measurement of the drought level 

for a month. It analyzes streamflow data to determine how much a streamflow value deviates from 

historical patterns and assigns a drought level based on the variation.  As an initial step of SDI 

calculations, the streamflow data is normalised and then the SDI value for each month is obtained 

as follows. 

𝑆𝐷𝐼𝑖 =
𝑦𝑖 −𝑦̅

𝑆𝑑
    …………………………………..(4.04) 

Where 𝑦𝑖  is the normally transformed streamflow data for ith month and 𝑦̅ and 𝑆𝑑 are the mean 

and standard deviation respectively for normally transformed streamflow data of a specific time 

period being analyzed (Nalbantis and Tsakiris, 2009). For each month based on the SDI values, 

the drought level can be found as follows. This process transforms the normalised streamflow data 

into standardized units known as standard deviations from the mean. The SDI indicates how many 

standard deviations the observed streamflow is from the mean streamflow for a given time. As 

only droughts are considered in this research, only negative values, which indicate below-average 
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streamflow are categorized as shown in Table 4.1 and all positive values indicating above-average 

streamflow are considered as no drought states. 

Table 4.1 Drought levels based on SDI values. 

State Drought Level Criterion 
Probability 

(%) 

Threshold Values of Normally 

Distributed Flow 

0 No Drought SDI ≥ 0.0 50 Q50 

1 Mild Drought -1.0 ≤ SDI < 0.0 34.1 Q66 

2 Moderate Drought -1.5 ≤ SDI < - 1.0 9.2 Q90 

3 Severe Drought -2.0 ≤ SDI < - 1.5 4.4 Q95 

4 Extreme Drought SDI < -2.0 2.3 Q97.5 

 

The threshold values for each drought level in the flow were determined based on the empirical 

rule of the normal distribution. This rule, which states that approximately 68%, 95%, and 99.7% 

of data within a normal distribution fall within one, two, and three standard deviations from the 

mean, respectively, was used to classify the flow data into different drought levels. By applying 

this statistical method, the thresholds were systematically established to reflect the variability and 

extremity of the flow conditions associated with each drought level (Pramanik et al., 2009). The 

drought level or the drought state of each month used to calculate the drought level of the group is 

described in the following sections. 

 

4.3.3 Drought Level (DL) of the Group 

As discussed in the section 4.3.1, there is heterogeneity across the streamflow data and can be 

grouped based on the similarity within a group. A cluster of data points which shows a similar 

behaviour is called a “group” or a “pattern” from hereafter. To characterize the overall drought 

level across the group, a common practice which involves calculating the mean drought level (DL) 

for the group was considered. This mean drought level represents the average drought severity 

throughout the analyzed timeframe. Therefore, the group drought level was calculated as follows. 

The drought level of the group or (𝐷𝐿 𝐺𝑟𝑜𝑢𝑝) =
1

𝐿
∑ 𝐷𝐿𝑖

𝐿
𝑖=1 …………(4.05) 
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In which, L is the optimal length (or the optimal number of months) in a group. To simplify the 

process of finding the optimal drought length, a hydrological year was divided into equal-length 

groups. By consistently grouping the time periods, each group contains the same number of 

observations or the same number of monthly drought levels. This uniformity allows for 

straightforward calculation of the mean drought level (DL) for each group. The mean DL 

represents the average drought severity within each group, providing a single value that 

summarizes drought conditions over that period. This approach not only streamlines calculations 

but also ensures comparability across groups, making it easier to analyze and interpret drought 

patterns throughout the year. It is noted that such groups in a monthly streamflow time series could 

comprise of time duration of 2, 3, 4, 6, and 12 months and thus yielding respectively 6, 4, 3, 2, and 

1 group per year. For brevity in demonstrating the methodology in this thesis, only a group length 

of 3 months is considered and hence only four patterns per year are considered. 

 

4.3.4 Shannon Entropy Calculations to Recognize (or Categorise) Groups 

Shannon Entropy (Information Entropy) is a concept from information theory that can be used to 

measure the disorder or uncertainty within a group of data. A group with high Shannon entropy 

indicates a high degree of disorder or heterogeneity indicating the data points within the group 

exhibit significant variability. Conversely, a group with low Shannon entropy suggests a high level 

of order or homogeneity indicating that the data points are relatively similar, with minimal 

variation. Such a concept based on entropy consideration can be applied to measure the disorder 

of data within a group to quantify the homogeneity of the data within each group and conversely 

to measure the heterogeneity between groups. 

Shannon Entropy is expressed as follows (Shannon, 1948).  

𝐻(𝑋) = − ∑ 𝑝(𝑋𝑖
𝑛
𝑖=1 )𝑙𝑜𝑔2 𝑝(𝑋𝑖)    …………………………..(4.06) 

Where: H(X) is the entropy of the data measured in bits, n is the number of data points and  𝑝(𝑋𝑖) 

is the probability of the ith data point. In the context of pattern recognition in hydrology, entropy 

can be used to assess the different patterns by measuring entropy within the group (intra-entropy) 

and measuring entropy among various groups (inter-entropy).  
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A group consists of monthly normalised streamflow values that behave similarly. In reality, a 

hydrological year might have seasons of varying lengths, leading to a different number of seasons 

each year. However, in this thesis, as stated earlier, all hydrological years are assumed to have the 

same number of seasons with identical durations.  

4.3.4.1 Intra-Entropy (Within-Group Entropy): 

Intra-entropy measures the level of disorder or uncertainty within individual groups. It quantifies 

how well data points within a cluster are grouped or how similar they are to each other. Lower 

intra-entropy indicates that the data points within a cluster are more similar indicating a high 

degree of order and homogeneity within the group. Intra-entropy helps assess the cohesion or 

compactness of clusters. When clustering is effective, data points within a cluster should be more 

similar to each other, resulting in a low value of intra-entropy. 

Intra-entropy for a specific group was calculated using the entropy expression as described in 

equation (4.06) and the drought level (DL) of each month within a group is considered as a data 

point (X). The entropy is computed based on the probability of each drought level within the group. 

4.3.4.2 Inter-Entropy (Between-Groups Entropy): 

Inter-entropy measures the level of disorder or uncertainty between groups. It quantifies how 

distinct or dissimilar different groups are from each other. Higher inter-entropy indicates that 

groups are well-separated and distinct from each other, signifying a clear distinction and 

heterogeneity between them. 

Inter-entropy was calculated considering an entire group as a data point(X). The drought level of 

a group can be found by equation (4.05). After calculating the group drought levels, the probability 

of occurrence of each drought level can be found and used in equation (4.06) to obtain the inter 

entropy.  

The crucial aspect of evaluating the optimal structures of groups or patterns lies in achieving a 

balance between internal coherence and external distinctiveness. This implies that the optimal 

structure of groups has a minimum intra entropy, ensuring data points within a group are cohesive, 

and have a maximum inter entropy, making groups externally distinct. In this study entropy 

calculations for different group structures are carried out and the optimal structure of a 

group/pattern can be denoted as the length of L months. 
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4.3.5  Moving-Average Calculations 

After finding the optimal structure or the length of a group as L months, Moving Average is used 

to find the months that belong to a group and the seasonality hidden within a hydrological year. 

Moving average is a simple and effective method to reduce the fluctuations or randomness within 

the data, making it easier to see underlying trends or patterns. It involves calculating the average 

value of a set of data points within a sliding window as it moves through the streamflow time 

series. In this case, the moving window is taken as L months. This moving window calculates a 

new series z1, z2, z3, …, zn where zi is the average for streamflow values of ith to i+(L-1) consecutive 

months as described below. 

𝑧𝑖 =  
∑ 𝑥𝑖

(𝑤−1)+𝑖
𝑖=1

𝑤
   …….…………………………..…..(4.07) 

Where w is the moving window length (w is equal to L), 𝑥𝑖 is the streamflow value (m3/s) for the 

month i and 𝑧𝑖  is the moving average for starting from ith to (w-1)+ith month.  

4.3.5.1 De-seasonalization by Moving Average 

This is a technique used in hydrological time series analysis to separate seasonal variations from 

the time series to reveal the underlying trends and patterns. After calculating the moving average 

of the monthly streamflow data, the mean of the moving average from each z value is subtracted 

to isolate the seasonal components.  After finding the seasonal components of the data points in all 

the years of the study period, the average seasonal component for a month can be calculated by 

getting the average of the specific month over all years. By comparing the seasonal component for 

each month, hidden seasons or groups within a hydrological year (a hydrological year in the North 

American context runs from October first of a year to September 30 of the following year) can be 

indicated. The seasonal decomposition of the jth month in the hydrological year can be described 

as follows, 

Seasonal components of the j𝑡ℎ month =  𝑠𝑗 = (
1

𝑛
∑ 𝑧𝑗,𝑖

𝑛
𝑖=1 ) − 𝑧𝑗̅     ………....(4.08) 

Where j is the month of the hydrological year and ranges from 1, 2, 3, …, 12 and n is the total 

number of years in the study period, which should be a minimum of 30 years. As this determines 

the seasons in a year and the groups are based on these seasons, the groupings or the patterns 

identified from entropy calculations can be considered seasonal groups or seasonal patterns. To 
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identify the different clusters within a given seasonal group, a K-means clustering algorithm can 

be employed. 

 

4.3.6 K-means Clustering Algorithm 

To recognize the optimal number of clusters of patterns within a given seasonal pattern in all the 

years, K-means clustering is used. It can discover natural groupings or clusters within a dataset. A 

data point will be a seasonal pattern which was identified from Moving average de-seasonalization 

and hence the data set is L dimensional. 

The basis of the K-means clustering algorithm is to group similar patterns or groups based on their 

similar features, which in this case are streamflow values. It is an unsupervised machine learning 

algorithm with a goal to assign each group to one of the K clusters in such a way that the within-

cluster variance is minimized, leading to compact and well-separated clusters. 

As shown in Figure 4.1, the process begins by randomly initializing K centroids. Each data point 

is then assigned to the nearest centroid, forming several K clusters. After the initial assignment, 

the centroids of these clusters are recalculated as the mean of all data points within each cluster. 

The assignment and centroid update steps are repeated iteratively, such that data points are 

reassigned to the nearest centroid, and centroids are recalculated. This process continues until 

convergence, which occurs when the centroid assignments no longer change, or the centroids 

stabilize. The final output is K clusters with minimized within-cluster variance, ensuring that data 

points within each cluster are as similar as possible, while clusters are as distinct as possible from 

each other. 
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4.3.6.1 The Silhouette Scores to find the Optimal Number of Clusters  

The silhouette score is a metric used to evaluate the optimal number of clusters K within different 

numbers of clusters. It measures how similar an object is to its cluster (cohesion) compared to 

other clusters (distinction). The silhouette score ranges from -1 to 1, where a score close to +1 

indicates that the data point is well-clustered, with instances within the same cluster being close to 

each other and far from instances in other clusters. A score around 0 indicates overlapping clusters, 

No 

Yes 

New centroids of each 
cluster 

Distance from each point to 
centroid for a cluster. 

Re-Clustering each point 
based on the minimum 

distance. 

Number of cluster 

K 

Centroid of each cluster 

START 

Input = [M1, M2, …, ML] 

END 
Has Centroid 
changed? 

Figure 4.1 Flow chart for k means clustering algorithm. 
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where data points may be close to the decision boundary between clusters. A score close to -1 

suggests that data points may have been assigned to the wrong cluster. 

In this thesis to compute a silhouette score for a single data point, two distance parameters should 

be calculated for a seasonal pattern of L monthly normalised streamflow values. The first one is 

the average distance from a data point to all other points in the same cluster, denoted as “a”, 

representing cohesion. The second parameter is the average distance from a data point to all points 

in the nearest neighbouring cluster (the cluster other than its own) is taken as “𝑏”, which represents 

the separation. Then the silhouette score S for a data point is computed as follows. 

𝑆 =  
𝑏−𝑎 

max (𝑎,𝑏)
    ……….................................................(4.09) 

The average silhouette score across all data points should be calculated to compute the silhouette 

score for the entire dataset for a given number of clusters. A range from 2-10 is taken as the number 

of clusters and the silhouette score for different numbers of clusters is calculated. The optimal 

number of clusters can be selected as the number of clusters which gives the maximum silhouette 

score.  

 

4.4 Forecast of the Seasonal Drought Level  

As seasonal patterns within values of streamflow are recognized, it becomes crucial to 

predict/forecast future patterns using the recognized historical patterns. Predicting these patterns 

offers several benefits over simply predicting monthly flow values, as outlined in section 4.3.1 of 

this chapter. These patterns are interdependent due to the natural interdependencies of dry and wet 

seasons throughout a hydrological year. This dependency allows for the application of dependent 

models, such as Markov models, which can effectively predict future drought states depending on 

the current conditions. This section delves into the exploration and development of three distinct 

models for the forecast of the subsequent pattern: the discrete-time Markov model, the Hidden 

Markov Model, and the Long Short-Term Memory model. Each of these models brings its unique 

approach to forecast/forecasting future patterns in streamflow, providing a comprehensive analysis 

of their predictive capabilities of drought patterns. 
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4.5 MODEL 1: Development of Discrete Markov Model (DMM) for Drought 

Forecasting 

In this section, the process of predicting seasonal patterns in drought data using the Markov model 

theorem is explored and/or developed.  

As described in the introduction, a Markov Model is a stochastic process that behaves according 

to Markov property. The base of the Markov Model undergoes transitions from one state to another 

in a state space. The core concepts include states, which represent the possible conditions (e.g., 

different levels of drought severity), and transition probabilities, which quantify the likelihood of 

moving from one state to another. A crucial feature of Markov Model is the less memory or lag 1 

memory property, meaning the probability of transitioning to any future state depends solely on 

the present state and not on the sequence of events that preceded it. By establishing a solid 

understanding of these concepts, one can proceed to analyze how they can be applied to accurately 

predict patterns in drought data. This involves defining appropriate states for drought conditions, 

estimating the transition probabilities based on historical data, and using these probabilities to 

forecast/predict future drought seasonal patterns. 

 

4.5.1 State Space Models 

In state space consideration with a Discrete Markov Model is a non-empty set with given values 

associated with the process in the set. Dealing with discrete Markov Model, the state space will 

either be finite or countably infinite. In the context of drought forecasting using streamflow data 

with a Discrete Markov Model, the state space represents the collection of all possible drought 

levels for groups or seasonal patterns (DL-Group) that the system can be in at any given time. 

These states are based on the Streamflow Drought Index (SDI) as discussed in section 1.3.3. A 

time step t in the monthly streamflow time series corresponds to a specific range of SDI values, 

indicating a specific Drought Level (DLt). The average of the drought levels of the individual time 

steps within the group (length of the group is L) indicates the drought level for each group (DL-

Group). The number of groups within a year can be changed according to the length of the group. 

Figure 4.2 shows how the Drought Level of each month and the Drought Level of each group 
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change when the length of the group is 3 months. The monthly and group indices are respectively 

denoted by i and j to show how those indices change throughout a given year n. 

 

 

 

 

 

 

 

 

4.5.2 Markov Property 

A stochastic process is a Markov Model if it satisfies the Markov Property as follows., 

P [Xn+1 = j | Xn = i, Xn−1 = in−1, . . ., X1 = i1, X0 = i0] = P [Xn+1 = j | Xn = i] ..............(4.10) 

for all states i0, i1, . . ., in−1, i, j and n ≥ 0.  

This equation, known as the Markov Property, describes that a stochastic process, is a Markov 

Model given that the future position of states has no dependence on the past position of state 

transitions, but only depend on the current state. In other words, what happens with the next 

transition between states is independent of previous movements of states implying that the 

probability of moving from the current drought level to the next drought level depends solely on 

the current drought state. It does not consider how the system reached that state. For group drought 

forecasting, the group drought level of the group at time T (DL-GroupT), only depends on the 

group drought level of the group at time T-1 (DL-GroupT-1). 

 

Figure 4.2 Variations in interdependence among Drought Level of the group (DL-Group) when the group 
length is 3 months. 

(DL-Group)j (DL-Group)j+1 (DL-Group)j+2 (DL-Group)j+3 

(Hydrological Year)n 

DLi DLi+1 DLi+2 DLi+3 DLi+4 DLi+5 DLi+6 DLi+7 DLi+8 DLi+9 DLi+10 DLi+11 
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4.5.3 Discrete Markov Model (DMM) 

Markov Model are often referred to as discrete Markov Model. When a Markov Model is discrete, 

it usually has a finite number of outcomes that may occur with equal or different probabilities. The 

discrete-time Markov Model deals with a finite or countable number of states, S = {1, 2, 3, . . . , 

n}in which transitions can occur between them. Depending on the factors that are being dealt with, 

there may not be any transitions that occur between states or there may be numerous transitions. 

The total sum of the transitions leaving one state is always one in a discrete Markov Model. 

Transitions between states occur at random, which is how a Markov Model relates to stochastic 

processes.  

 
 

4.5.4 Transition Probability  

Transition probability is the probability of moving from one state to another in a finite number of 

transitions. The transition probabilities are denoted by the following:  

𝑃𝑖𝑗
𝑚   = P{Xn+m = j | X0 = i}.....................................(4.11) 

Where i is the state that is started in and after m number of transitions, the process ends in state j. 

When a state moves from one to another, its probability, denoted by Pij, is the likelihood of state i 

moving to state j. These probabilities, Pij, are called transition probabilities. Markov property 

assumes these transitions occurred completely at random. Previous transitions made are 

independent of future transitions and do not influence the outcome. These probabilities are 

independent of the states it was in before and just focus on the current position of the state.  

The transition probabilities can be denoted with a transition matrix. This matrix captures the 

probabilities of transitioning from one state to another between time steps. A transition matrix is a 

square matrix used to describe the transitions of a Markov Model. The element in the 𝑖th row and 

jth column of the matrix represents the probability of transitioning from state 𝑖 to state j in a time 

step. 
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 1 2 3 …… j 

1 P11 P12 P13 …… P1j 

2 P21 P22 P23 …… P2j 

3 P31 P32 P33 …… P3j 

…… …… …… …… …… …… 

i Pi1 Pi2 Pi3 …… Pij 

…… …… …… …… …… …… 

 

Figure 4.3  Transition matrix denoting the probabilities of each future state given the current state. 

 

4.5.5 Predicting the Future Group Drought levels using Discrete Markov Model 

When the sequence of the group drought levels (DL-Group) is known, the transition matrix can be 

calculated considering the next group drought level given the current group drought level for each 

time step T. By looking at the row of the current state in the matrix, the highest probable future 

state, which is the most likely next step can be identified. This method predicts the future by 

implementing a probabilistic estimate based on historical seasonal patterns. Even though this 

model gives simple drought forecast, it does not capture the dynamics of drought conditions. There 

are two main disadvantages of this model as follows.  

1. By converting streamflow values directly into drought levels, a lot of features in the 

streamflow can be lost. As streamflow data provides a continuous measure of water flow, 

it contains rich information about the dynamics of the hydrological conditions. By 

converting these continuous values into categorical drought levels, much of this detailed 

variability is lost which might be important for accurate forecasting and understanding of 

drought dynamics. 

2. As this model only provides the average drought level for the entire group, it fails to reflect 

the variability of drought levels of the months within the group. This approach can smooth 

Future State 

Current 

State 
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out important peaks and troughs in drought severity, potentially leading to less accurate 

forecasts and a poorer understanding of drought dynamics over time. 

Using a Hidden Markov Model (HMM) can address the disadvantages of the simpler Discrete- 

Markov Model (DMM) model by incorporating both observed data (streamflow values) and 

hidden states (drought severity levels). 

 

4.6 MODEL 2: Development of Hidden Markov Model (HMM) for Drought 

Forecasting 

A Hidden Markov Model is a way to understand a continuous and non-stationary system that 

changes over time. The basis of the HMM model is that there is an underlying system that changes 

into different states, and it controls the observable output of the system. The hidden Markov model 

was developed by Baum in 1966. The HMM assumes these states change randomly, but only 

according to the Markov property. The states are directly not visible, but the output or the emissions 

of those states are visible, called observations. The HMM helps to understand the hidden 

underlying mechanism of the states by looking at the observations.  

 

4.6.1 General Form of a Hidden Markov Model 

There are 5 elements consisting of HMM and it can be denoted as (S, O, A, B, π).   

 

 

 

 

 

 

The HMM procedure can be described as follows. Let us consider a hidden Markov model with 

that: 

……

…. 

……

…. 

S1 

O1 

S2 

O2 

S3 

O3 

Si 

Oj 

Figure 4.4 General form of a Hidden Markov Model. 
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• There is a N discrete number of states, and the set of states can be denoted as S={S1, S2,.., 

SN}. These are the underlying states through which the system transitions. They are not 

directly observable but influence the observable outputs. 

• Observations can have both discrete and continuous values. M possible observable symbols 

or outcomes can be denoted as O ={O1, O2,..., OM}, observations are distributed according 

to the hidden state distribution. 

• Transition probabilities are the probability of a hidden state transitioning from one state to 

another state and are defined by the N×N transition matrix A= [aij], where aij represents the 

probability of transitioning from state si to state sj. 

• Emission probabilities, which are the probability of an observation being generated from a 

hidden state and defined by the N×M emission matrix B =[bij], where bij represents the 

probability of emitting symbol oj from state si. 

• Initial state probabilities are the probabilities of the system starting in each of the hidden 

states represented by the initial state distribution π =[π1, π2, ..., πN], where πi is the 

probability of starting in state si. There can be πj =0, meaning that they cannot be initial 

hidden states. 

Altogether, the model parameters of HMM can be denoted as λ = (A, B, π) as A given by the 

transition matrix, B is given by the emission matrix and π is the initial probability distribution. 

These parameters allow HMM to capture the system dynamics and predict the future of the system 

behaviour accordingly. 

 

4.6.2 Fundamental Problems of HMM  

The Hidden Markov Model should be characterized into three fundamental problems (Rabiner, 

1989).  

1. Likelihood problem: Given model parameters λ = (A, B, π) and an observation 

sequence O = {O1, O2,..., OM}, what is the probability of observing that sequence 

given the model? In other words, what is 𝑃 (O ∣ λ)? 
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2. Decoding problem (Finding the Best State Sequence):  Given an HMM model 

(model parameters λ) and a sequence of observations O, what is the most likely 

sequence of hidden states that could have generated those observations? 

 

3. Learning Problem (Parameter Estimation): Given a sequence of observations (O) 

and a set of possible HMMs, how the parameters can be adjusted of the model λ to 

maximize the probability of observing the sequence?" 

 

To solve each of those questions, there are well-established algorithms which are the Forward-

Backward Algorithm, Viterbi Algorithm and Baum-Welch Algorithm for each question 

respectively. 

4.6.2.1 Problem 1: Likelihood problem (finding the probability of an observation): 

This problem calculates how likely it is that the observed sequence could have been generated by 

the specific given HMM or 𝑃 (O ∣ λ). This step is crucial to evaluate a known HMM model or 

model parameters. AN efficient algorithm called the forward-backwards algorithm is used to solve 

this. There are two processes in this algorithm which are forward αi(t) and backward algorithm 

βi(t). 

4.6.2.1.1 Forward Algorithm αi(t): 

As the model parameters give the sequence of the states and how the system is changing, forward 

variable αi(t) assesses the total probability of ending up in state Si at time t, given the observation 

which can be denoted as: 

𝛼𝑖(𝑡) = 𝑃(O1,O2, .. , Ot ; St = i | λ) .....................................(4.12) 
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Figure 4.5  Visualizing the computation of a single element αj(t+1) in the trellis by summing all 
       the previous values αit, weighted by their transition probabilities aij and multiplying 
       by the observation probability bi(ot). 
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The term 𝛼𝑖(𝑡) is the forward variable and represents the probability of being in state i after seeing 

the first t observations, given the model parameters λ. The value of each cell 𝛼𝑖(𝑡) is computed by 

summing over the probabilities of every path that could lead to ith hidden state in the time step t. 

 

The forward variable at each time t can be calculated inductively as the forward variable at time 

t+1 (αj(t+1)) can be denoted as follows,  

α𝑗(t + 1) =  ∑ α𝑖(𝑡)𝑎𝑖𝑗
𝑁
𝑖=1 𝑏𝑗(𝑂𝑡+1).....................................(4.13) 

Where the hidden state at time step t+1 is j and 𝑎𝑖𝑗  gives the probability of transitioning from ith 

state to jth state and𝑏𝑗(𝑂𝑡+1)gives the probability of emitting the given observation by the state j at 

the time step t+1. The forward algorithm can be solved as the forward variable at the initial state 

is given by the initial probability distribution π. 

4.6.2.1.2 Backward Algorithm βi(t): 

The backward procedure calculates the probability of the partial observation sequence from t + 1 

to the end, given the model µ and state si at time t. The backward variable βi(t) is defined as: 

β𝑖(𝑡) = 𝑃(Ot+1, Ot+2 ,… , OT | St =i, λ) .....................................(4.14) 
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Figure 4.6 The computation of βi(t) by summing all the successive values βj(t+1) weighted by their 
transition probabilities aij and their observation probabilities bj(ot+1). 

 

The β is the probability of seeing the observations from time t +1 to the end, given that the system 

is in state i at time t (and given the model parameters λ). The value of each cell β𝑖(𝑡) is computed 

by summing over the probabilities of every path that could lead to ith hidden state in the time step 

t. 
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 induction computation for the forward procedure can also be performed in the reverse order. 

β𝑖(t) =  ∑ β𝑗(t + 1)𝑎𝑖𝑗
𝑁
𝑗=1 𝑏𝑗(𝑂𝑡+1).....................................(4.15) 

Where the hidden state at time step t+1 is j and 𝑎𝑖𝑗  gives the probability of transitioning from ith 

state to jth state and 𝑏𝑗(𝑂𝑡+1) gives the probability of emitting the given observation by the state j at 

the time step t+1. The backward algorithm can be solved as the backward variable at the end state 

is equal to one. 

4.6.2.2 Problem 2: Decoding problem (Finding the best state sequence) 

The second problem is to find the best state sequence given a model and the observation sequence 

or 𝑃(𝑺 |𝐎, 𝛌). For this Viterbi algorithm is used to find the most probable path through the hidden 

states of the model that explains the observed data. The Viterbi algorithm is designed to evaluate 

recursively to find the most likely state sequence, S ={S1, S2,.., SN}for a given observation sequence 

O ={O1, O2,..., OM} by selecting the most probable state sequence, which can be denoted as: 

arg max 𝑃(𝑺 |𝐎, 𝛌) ................................................(4.16) 

The Viterby probability value of each state (j)at time step t can be denoted as (vt(j)) and it represents 

the probability that the HMM is in state j after seeing the first t observations and passing through 

the most probable state sequence S1,...,St−1, given. Formally, each state expresses the probability: 

𝑣𝑡(𝑗) =  max
𝑆1 ,..,𝑆𝑡−1

𝑃(𝑠1 , 𝑠2, … 𝑠𝑡−1; 𝑜1, 𝑜2, … , 𝑜𝑡 , 𝑠𝑡 = 𝑗 | 𝛌) ....................(4.17) 

Here max
𝑆1,..,𝑆𝑡−1

 signifies that the most probable path at t is represented by taking the maximum of 

overall possible previous state sequences max 𝑠1, 𝑠2 , … 𝑠𝑡−1 . As with the other dynamic 

programming algorithms, Viterbi probability for each hidden state j and time t is filled recursively. 

It is calculated similarly to the forward-backwards algorithm, except that the forward-backwards 

algorithm uses summing over previous states while the Viterbi algorithm uses the argument of 

maximization. For a given state Sj at time t, the value vt(j) is computed as 

𝑣𝑡(𝑗) =  max
𝑖=1:𝑁

𝑣𝑡−1(𝑖) 𝑎𝑖𝑗𝑏𝑗𝑂𝑡
.....................................(4.18) 

The three factors that are multiplied in the above equation for extending the previous paths to 

compute the Viterbi probability at time t are 𝑣𝑡−1(𝑖) the previous Viterbi path probability from the 
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previous time step,  𝑎𝑖𝑗 ; the transition probability from previous state qi to current state qj,  𝑏𝑗𝑂𝑡
the 

state observation likelihood of the observation symbol 𝑂𝑡  given the current state j.  

4.6.2.3 Problem 3: Learning problem (Parameter estimation) 

The learning problem in Hidden Markov Models (HMMs) is all about training the model, which 

makes this problem more advanced than evaluation and decoding problems. Unlike the evaluation 

and decoding problems that focus on using a trained model or known model parameters, the 

learning problem deals with setting the model parameters of the HMM λ = (A, B, π) based on a 

set of observed sequences. The goal of this question is to find the set of parameters λ = (A, B, π) 

that maximizes the probability of the observed sequence (O) given the model (P (O | λ)). This is 

challenging as the hidden states are not directly observable. As a solution for this issue, the Baum-

Welch Algorithm is used because it uses an iterative technique to solve the learning problem in 

HMMs. It works in a step-by-step manner to improve the model parameters based on the observed 

data. 

Baum-Welch uses the Expectation Maximization method to find the optimal model parameters. It 

works iteratively to improve the likelihood of P(O|λ). It uses the same forward-backward algorithm 

but with the Expectation Maximization (E & M) method.  The initial transition matrix and the 

emission matrix are assumed randomly and use Expectation Maximization for the convergence.  

4.6.2.3.1 Expectation Step 

Taking the model parameters λ = (A, B, π) the probability of being in state j at time t, which is 

denoted by γt (i) as follows.  

𝛾𝑡 (𝑖) = 𝑃(𝑆𝑡 = 𝑗 | 𝑂, 𝛌) ......................................(4.19) 

This means that: 

𝛾𝑡 (𝑖) =
𝛼𝑖 (𝑡) β𝑖(𝑡)

𝑃(𝑶 | 𝛌)
................................................(4.20) 

The probability ξt as the probability of being in state i at time t and state j at time t+1, given the 

observation sequence and of course the model: 

𝜀𝑡(𝑖, 𝑗) = 𝑃(𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗 |𝐎, 𝛌) ...................................(4.21) 



55 
 

This can be simplified using the forward and backward variables as follows. 

𝜀𝑡(𝑖, 𝑗) =
𝛼𝑖(𝑡)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1) β𝑗(𝑡+1)

∑ 𝛼𝑗(𝑡)𝑁
𝑗=1 β𝑗(𝑡)

...........................................(4.22) 

Given the above definitions, an initial model 𝛌 is ready and it can be used to run the training data 

O through the current model to estimate the expectations of each model parameter. Then the model 

is changed to maximize the values of the paths that are used as follows. 

4.6.2.3.2 Maximization Step 

Here the calculated 𝛾𝑡 (𝑖) and 𝜀𝑡(𝑖, 𝑗) is used to recompute new A and B probabilities. 

𝑎𝑖𝑗
′ =

expected number of transitions from state i to j

expected number of transitions from state i
 

 

𝑎𝑖𝑗
′ =

∑ 𝜀𝑡(𝑖,𝑗)𝑇−1
𝑡=1

∑ ∑ 𝜀𝑡(𝑖,𝑘)𝑁
𝑘=1

𝑇−1
𝑡=1

.......................................................(4.23) 

 

𝑏𝑗(v𝑘)′ =
expected number of times in state j and observing symbol v𝑘  

expected number of times in state j
 

 

𝑎𝑖𝑗
′ =

∑ 𝛾𝑡(𝑖)𝑇
𝑡=1 𝑠.𝑡 𝑂𝑡=𝑣𝑘

∑ 𝛾𝑡(𝑖)𝑇
𝑡=1

......................................................(4.24) 

 

The Expectation-Step and Maximization-Step are repeated until a stopping criterion is met. 

 

4.6.3 Development of the Hidden Markov Model for Drought Forecasting 

Observations of the HMM for drought forecasting are seasonal patterns or groups, making one 

observation L-dimensional. As there are 5 levels of drought in SDI values according to Table 4.1, 

the number of hidden states of the HMM is taken as five. Since the drought data or the observations 

are standardised and normally distributed values (SDI values), observations are Gaussian 
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distributed. Using the Baum Welch algorithm, the optimal model parameters were calculated and 

with the trained model (optimal parameters), the future group drought data is predicted. A trained 

model can identify the set of observations or groups governed by each state. Then for each hidden 

state, the model estimates the mean (𝜇) and the covariance (Σ) of the dependent observation. The 

SDI values (𝑂𝑇+1) of the future groups are calculated after finding (𝑂𝑇−𝑗) of the nearest past 

group. The nearest past group is selected according to two conditions: the first condition is that it 

should be generated by the same hidden state as (𝑂𝑇) of the current hidden state of the group and 

the second condition is it should have the nearest values to the current group.  Once the earliest 

group ( 𝑂𝑇−𝑗)  is identified, the differential changes in the SDI values from this past group to the 

subsequent group (𝑂𝑇−𝑗+1) were calculated. Then the calculated differential change was added to 

the observations of the current group(𝑂𝑇) SDI to predict the value of the future group as denoted 

in the equation below. 

𝑂𝑇+1 =  𝑂𝑇 + (𝑂𝑇−𝑗+1− 𝑂𝑇−𝑗) ...........................................(4.25) 

Even though HMM can identify the hidden state distribution and how the observations are 

changing accordingly, it primarily relies on the immediate previous state for predicting future states 

and observations. This makes them less effective in capturing long-term dependencies and trends 

in the data, which are crucial for accurate drought forecast. To avoid this, the Long Short-Term 

Memory (LSTM) Model was used to maintain information over long periods, allowing them to 

learn dependencies from distant past data. 

 

4.7 MODEL 3: Development of the Long Short-Term Memory Model (LSTM) 

for Drought Forecast 

Long Short-Term Memory (LSTM) are Recurrent Neural Networks type designed to handle 

sequential data with short- and long-range dependencies more effectively than standard RNNs. 

 

4.7.1 Artificial Neural Networks Model 

An Artificial Neural Networks Model, as introduced in section 2.2.6.1 of chapter 2, consists of 

three main layers, which are the input, hidden and output layers. Those layers are interconnected 
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by artificial neurons, which are also called nodes or units. The most common type of ANN is the 

feedforward neural network (Figure 4.7) and information flows in one direction, from the input 

layer through one or more hidden layers to the output layer. Each neuron receives input signals, 

performs a computation, and produces an output signal that is transmitted to the neurons in the 

next layer. The connections between neurons are represented by weights, which determine the 

strength of the signal transmitted from one neuron to another. During the training process, the 

weights are adjusted based on the input data and the desired output, allowing the ANN to learn and 

adapt to the underlying patterns in the data. 

 

 

 

 

 

 

 

 

Figure 4.7 A general structure of a feed-forward Artificial Neural Network including the input layer, the 
hidden layer and the output layer. 

 

4.7.2 Recurrent Neural Networks 

Recurrent Neural Networks mimics the way the human brain works. The thinking process of the 

human brain does not reset every moment, and it is connected to each moment. As that, Recurrent 

Neural Networks have loops that allow them to remember information from previous steps. This 

is the difference between Recurrent Neural Networks and traditional Neural Networks. Traditional 

neural networks cannot use the context from earlier sequences to help understand later sequences. 

Input Layer Hidden Layer Output Layer 
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The loop in the Recurrent Neural Networks makes it much more complex than a traditional Neural 

Network, but they are not that different from regular neural networks connected as shown in Figure 

4.8. 

 

 

 

 

 

 

 

 

 The seasonal pattern (xt) of (Streamflow Drought Index) SDI values and NN is a Neural Network 

ht is the hidden state of the current time step. This chain-like structure shows that Recurrent Neural 

Networks (RNNs) are closely related to sequence, making RNN the ideal neural network 

architecture for handling sequential types of data, where the order of data points is crucial. Even 

though theoretically RNN can handle both short-term and long-term sequential data effectively, 

practically RNN does not have the ability to learn very long-term dependencies. Long- Short-Term 

Memory (LSTM) models are specially designed RNNs to handle both short-term and long-term 

dependencies (Hochreiter and Schmidhuber, 1997). 

 

4.7.3 LSTM Network Architecture  

The LSTMs have the same chain structure as RNN, but the repeating module is more complex. 

LSTM have a basic unit named hidden unit that repeats within a hidden layer as shown in Figure 

4.9. Instead of having a single neural network layer, each hidden unit contains four neural network 

layers that interact uniquely. These layers work together to manage and control the flow of 

information, allowing the network to remember and use important details over long sequences of 

data.  

ht 

xt 

NN 

h1 

x1 

NN 

h2 

x2 

NN …

ht 

xt 

NN =

Figure 4.8  An extracted Recurrent Neural Networks. 
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Figure 4.9 One hidden layer in LSTM. 

 

A hidden unit of an LSTM consists of four interacting neural network layers (three Sigma neural 

networks and one tanh neural network) as shown in Figure 4.10. In this figure, the circles represent 

pointwise operations, such as vector addition and multiplication, while the boxes represent learned 

neural network layers. Cell state (Ct ) and the hidden state (ht) are the memory storages of the 

LSTM. Cell state is the long-term memory storage, and it keeps the information across multiple 

time steps while hidden state (or the short-term memory storage) capture the information of the 

current time step and carry forward the relevant information to the next step. 

 

 

 

 

 

 

 

 

 

 

The selection of the relevant information within the data is carefully operated by a structure called 

a “gate”. Gates are mechanisms that control the flow of information and decide what should be 

Xt 
Hidden 

Unit 1 

Hidden 

Unit 2 

Hidden 

Unit 3 

Hidden 

Unit n 
…

Figure 4.10 Illustration of the structure of a hidden unit. 

xt 
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ht ht-1 
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removed or considered. There are three gates in an LSTM and each gate consists of a sigmoid 

neural network layer (σ) and a pointwise multiplication operation. 

𝜎 =  
1

1+𝑒 −𝑥......... ....................................................(4.26) 

The sigmoid layer outputs values between 0 and 1, determining how much information should be 

passed through. This allows the LSTM to selectively keep or discard information as needed. 

The other neural network layer in the gates is the tanh neural network layer (tanh) and it can be 

defined as follows. 

    tanh  =  
𝑒 𝑥−𝑒 −𝑥

𝑒 𝑥+𝑒 −𝑥.............................................................(4.27) 

Unlike the sigmoid function, which outputs values between 0 and 1, the tanh function outputs 

values between -1 and 1. This can compress the linear inputs into nonlinear outputs which range 

between -1 and 1. During training, the LSTM model goes through several iterations, adjusting its 

internal parameters (weights and biases) in sigmoid and tanh functions to minimize the error 

between its predictions and the actual data. Both sigmoid and tanh neural networks are essential 

for gates to learn complex patterns within the data to predict the streamflow drought patterns. 

 

4.7.4 Forget-gate, Input-gate, and Output-gate. 

In LSTM, the cell state and hidden state are regulated by three gates; the Forget Gate, the Input 

Gate, and the Output Gate and these gates manipulate the information to determine what should 

be deleted, added and carried forward. Figure 4.11 illustrates how the information is processed 

through gates. 
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Figure 4.11 Three gates in a hidden unit to manipulate information. 

 

The first gate in the LSTM is the forgot gate which is a sigmoid layer. It decides what information 

to throw away from the cell state. It considers both the previous hidden state ht-1 and the current 

input xt, and outputs a number between 0 and 1 for each number in the cell state Ct-1. 

𝑓𝑡 =  𝜎(𝑊𝑓. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) ...........................................(4.28) 

Where, 𝑊𝑓 and 𝑏𝑓are weight matrix and bias gate for the forget gate.  

The next stage is the Input gate where the new information that will be stored in the cell state is 

decided. The input gate has two parts. First, a sigmoid layer called the “input gate layer” selects 

the values to update. Next, a tanh layer creates a vector of new candidate values which is denoted 

by ct. 

𝑖𝑡 =  𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) ...........................................(4.29) 

𝑐𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) ...........................................(4.30) 

Output Gate Forget Gate xt 

σ σ tanh σ 
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ht 

Ct-1 Ct 
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Where 𝑊𝑖 , 𝑏𝑖  and 𝑊𝑖 , 𝑏𝑖  are weight matrix and bias gate for the input gate and candidate list 

respectively. After the forget gate and input gate, the cell state is updated with the relevant 

information after discarding outdated or irrelevant information. The new cell state C t can be given 

as: 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 +  𝑖𝑡 ∗ 𝑐𝑡 ...........................................(4.31) 

Finally, the output layer filters out the data to determine which parts of the cell state will be used 

to compute the hidden state. Then the cell state is put through the tanh operator to transform it to 

values between -1 and 1.  

𝑜𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ...........................................(4.32) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝐶𝑡) ...........................................(4.33) 

Where, 𝑊𝑜 and 𝑏𝑜  are weight matrix and bias gate for the output gate.  

This process ensures that the LSTM outputs a relevant and filtered version of the cell state, tailored 

to the current context and ready for the next step in the sequence. 

 

4.7.5 LSTM for Drought Forecast 

The parameters of an LSTM model, such as in the forget, input, and output gates, relate to the 

physical properties of drought patterns and their forecast in several ways. Firstly, the forget gate 

decides which information from the previous cell state should be discarded or retained. This is 

crucial for managing long-term dependencies in drought data as drought conditions often persist 

over long periods. The forget gate helps the LSTM retain information about past conditions that 

are still relevant, such as prolonged periods of low streamflow or sustained high streamflow, which 

have long term dependencies within the data set.  Then the input gate determines which new 

information should be added to the cell state (long term memory) and it controls the extent to 

which new observations affect the hidden state (short term memory) of the network. It allows the 

model to understand the short-term influences such as seasonal variations and sudden anomalies 

such as temporary reduction in streamflow patterns, which could impact drought conditions. Both 

the forget gate and input gate help to understand the dynamic changes within the streamflow 

patterns while the output gate decides what information from the forget gate and input gate should 
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be used to predict the next hidden state which gives the next streamflow pattern. The output gate 

helps in interpreting the future drought states based on the past information. It translates the long 

term and short-term memory of the model (both cell state and hidden state) into actionable 

forecasts about future drought conditions, considering both long-term trends and recent changes. 

All weights are adjusted iteratively to get the best forecast results from those three gates during 

the training phase 

LSTM model trained for seasonal patterns which include grouped SDI values. For this model, 

firstly the monthly streamflow data was used by grouping it to a length of L months. Secondly, the 

model is used for weekly data instead of monthly data. This choice is made to evaluate the model 

behaviour for different data set sizes. Therefore, the length of the group containing weekly data is 

4.33L (= 13 weeks) instead of L. It is concluded that the availability of a larger dataset is important 

for training the LSTM model effectively, as LSTMs typically require substantial amounts of data 

to capture temporal dependencies accurately. A study conducted in 2020 indicated that the optimal 

number of hidden layers for streamflow forecasting ranges between 2 to 4 (Apaydin et al., 2020). 

Given that this thesis focuses on more complex drought data, characterized by significant 

variations across seasons, four hidden layers were chosen for the LSTM model. This selection 

ensures that the model can effectively capture and process the intricate patterns present in the data 

for improved forecasting accuracy. The LSTM is designed with 4 hidden layers each containing 

128 hidden units as streamflow data can contain complex dependencies. This number of hidden 

units and layers is structured to effectively capture the temporal dynamics of the drought index. 

 

4.8 Model Performance Metrics 

To evaluate the performances of each model for predicting the streamflow drought index of the 

future group, three main metrics including Mean Squared Error (MSE), R-squared (R2) and 

mismatch method have been used.  

The Nash-Sutcliffe efficiency is a widely used metric in hydrological modeling to assess the 

performance of a model relative to observed data (Mohammadi, 2021). However, there has been 

increasing interest in exploring alternative metrics, such as mean squared error and R-squared (R2), 

to evaluate the performance of machine learning models in the field of hydrology. R2 and Mean 
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squared error can give better insight into the predictive capabilities of the model compared to the 

Nash-Sutcliffe efficiency (Plevris et al., (2022)), as they provide a more comprehensive 

understanding of correlation of forecasted values with observation values and how the error 

distributed through out the forecast values. Since this research based on statistical and machine 

learning approaches of drought forecasting, R2 and Mean squared error were considered as the 

model performance metrices.  

  

4.8.1 Mean Squared Error (MSE) 

MSE measures the average squared difference between the predicted values and the actual values. 

Lower MSE values indicate better model performance. 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝐴𝑐𝑡𝑢𝑎𝑙,𝑖

𝑁
𝑖=1 − 𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ,𝑖)2...........................................(4.34) 

Where N is the number of samples, 𝑦𝐴𝑐𝑡𝑢𝑎𝑙,𝑖 and 𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖  are the actual and the predicted SDI 

values for ith sample respectively. If MSE is close to 0, it indicates that the model is accurately 

predicting the target variable. 

 

4.8.2 R-squared / R2 

R-squared measures the proportion of the variance in the target variable that is predictable from 

the independent variables. Higher R2 values indicate better model performance, with a maximum 

value of 1.  

𝑅2 = 1 −
∑ (𝑦𝐴𝑐𝑡𝑢𝑎𝑙,𝑖−𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)2𝑁

𝑖=1

∑ (𝑦𝐴𝑐𝑡𝑢𝑎𝑙,𝑖−𝑦̅)2𝑁
𝑖=1

...........................................(4.35) 

 

4.8.3 Mismatch Accuracy 

This approach compares the predicted drought level groups with the actual drought level groups. 

The actual and predicted SDI values of a group were converted into their respective drought level 

to find the drought level of the group. For each group, the predicted drought level to the actual 

drought level is compared. If they match, a value of 1 is assigned; if they do not match, a value of 
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0 is assigned. The percentage accuracy of correctly predicting the drought level of the group is 

calculated below, 

Accuracy = (Number of correct forecasts/Total number of forecasts) × 100% .....(4.36) 

This method provides a straightforward way to measure how well the model predicts the drought 

level of the group based on the streamflow drought index (SDI). 

 

4.9 Concluding Remarks 

In this chapter, the initial step involved data preprocessing to thoroughly understand the behaviour 

and characteristics of the dataset. Subsequently, patterns and groups within the data are identified 

through various techniques, including entropy calculations, moving average de-seasonalization, 

and k-means clustering. These identified patterns were then utilized to evaluate and compare the 

performance of three different forecast models, providing a comprehensive analysis of their 

effectiveness in capturing the underlying trends within the data. The forecast of streamflow 

drought patterns is critical for effective water resource management and mitigating the impacts of 

drought. In this research, three different models which are, Discrete Markov Model, Hidden 

Markov Model, and Long Short-Term Memory (LSTM) networks were utilized to predict drought 

levels based on the seasonal pattern of Streamflow Drought Index (SDI). Each model offers unique 

advantages in capturing the complex temporal dynamics of drought. 

The Discrete Markov model provides a straightforward probabilistic framework to predict future 

drought states based on the current state, making it useful for short-term drought forecasting. The 

Hidden Markov Model enhances this approach by considering the same hidden states as a discrete 

Markov model, but it can capture more features to see how the streamflow drought patterns behave 

dynamically, offering a more accurate forecast. The LSTM model has the ability to learn features 

in both long-term and short-term dependencies in streamflow data, thereby providing highly 

accurate forecasts. 

The next chapter (Chapter V) will describe the selection of study areas and watersheds for applying 

the models. This chapter will detail the process of choosing these regions and how they will be 

used to recognize and predict drought patterns using the developed models.  
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5 Chapter V: Study Area and Data Assembly 
 

 

This chapter will provide a detailed description of the study area used in the evaluation of each 

model for forecasting droughts. The study area was selected after a detailed examination of its 

suitability for evaluating the ability of each model to forecast droughts. This examination included 

a thorough analysis of the hydrological characteristics of the area using flow values of the rivers 

to understand the factors influencing regional drought occurrences. The data selection process 

involved collecting and analyzing different monthly time series datasets from various hydrometric 

stations distributed across the area to identify the monthly streamflow data sets that are suitable 

for model application qualitatively and quantitatively.  

 

5.1 Selection of the Study Area 

The study area was specifically selected from semi-arid regions in Canada, where drought 

conditions are both unique and frequent. The driest part of Canada is known as the Palliser 

Triangle, a vast semi-arid region located in the southern parts of Alberta and Saskatchewan, and a 

small section of southwestern Manitoba as shown in Figure 5.1. The Palliser Triangle is notable 

for its distinctive environmental challenges, especially the recurrent droughts that have historically 

affected the region. 

The origins of the Palliser Triangle can be traced back to the mid-19th century, when Captain John 

Palliser, a British explorer, conducted extensive fieldwork in the region between 1857 and 1860 

(Villmow, 1956). Palliser observations and reports highlighted the distinctively dry character of 

the area, which was at odds with the prevailing perceptions of the Canadian Prairies as a prosperous 

agricultural heartland (Villmow, 1956). He recognized a roughly triangular area that he felt to be 

poorly suited for farming and the area was named Palliser Triangle. Despite these observations, 

Palliser-triangle and the surrounding prairie area have become large farmland with leading crops 

of canola, spring wheat and lentils today. However, a primary issue in this region is the persistent 

occurrence of drought, which significantly impacts agricultural productivity and livelihoods of the 

area. Droughts have been a recurring feature in the Palliser Triangle, with some of the most severe 
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events occurring in the late 19th and early 20th centuries (Rannie, 2006). This makes an accurate 

drought forecast crucial for managing the risks and impacts of drought in regions. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Droughts in the Palliser Triangle  

There are frequent droughts in the Palliser Triangle and due to climate change in recent years, they 

have become more frequent and more severe (Safarianzengir et al., 2022). Palliser triangle is a 

main agricultural region producing major crops such as wheat and canola that are heavily impacted 

by droughts.  

The significant drought features in this area include the high precipitation variability in different 

seasons and high evapotranspiration rate due to the high temperature. Even though there are several 

rivers and lakes in this area, they are vulnerable to dwindling water levels due to reduced 

precipitation and increased evapotranspiration (Safarianzengir et al., 2022). This leads to the 

drying of lakes and creeks, groundwater depletion, and salinization of arable lands, with far-

reaching consequences for agriculture, ecosystems, and local communities within the area 

Figure 5.1Palliser triangle and surrounding prairie area. 
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(Safarianzengir et al., 2022). Therefore, it is very important to analyse this area in order to develop 

effective drought monitoring techniques. 

 

5.2.1 The Palliser Triangle 

Palliser Triangle is located between coordinates of 49°N to 51°N and 100°W to 114°W, but this 

boundary can fluctuate based on the climatic cycle (Burnett, 2007). Climatological features of this 

area include an average of approximately 352 mm of annual precipitation and an annual snowfall 

of 101 cm (Burnett, 2007). Main climatological seasons are characterized by long, dry summers 

that approximately last from April to October and relatively short, cold winters from November to 

March. (Last, 1994). The temperature varies from -5°C to -15°C in the winter season and the 

summer season temperature often exceeds 30 °C. Due to the high temperature and the low 

humidity, the evapotranspiration rate is very high which makes the annual water deficit, or the 

amount of the potential evapotranspiration exceeds the precipitation by 524 mm (Villmow, 1956; 

Burnett, 2007). 

The soil types of this region are primarily brown chernozemic and dark brown chernozemic which 

is representative of the semi-arid prairie environment (Villmow, 1956). The grassland of the 

Palliser Triangle consists of native species adapted to dry conditions, such as blue grama, needle-

and-thread, and western wheat grass. The basic ecosystem of the area is characterized by a lack of 

surface water features, with few permanent streams and many playa lakes or basins that only hold 

water seasonally (Last, 1994). Those lakes have high variability in water levels due to the high 

evapotranspiration rate.  

Despite the low precipitation in the Palliser Triangle, several significant rivers flow through this 

region, playing crucial roles in its hydrology and ecosystems. The South Saskatchewan River, 

originating in the Canadian Rockies, flows through Alberta and Saskatchewan before joining with 

the Bow River near Medicine Hat, Alberta. Another important river, the Red Deer River, meanders 

through central Alberta, eventually joining the South Saskatchewan River near the Saskatchewan 

border. In the southwestern reaches, the Oldman River winds through Alberta, adding to the flow 

of the South Saskatchewan River. Further east, the Assiniboine River crosses southern 

Saskatchewan and Manitoba, eventually merging with the Red River. The Bow River itself begins 
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in the Rocky Mountains and flows through Calgary before merging with the South Saskatchewan 

River. Other than these rivers, the Palliser Triangle region contains several long, continuous and 

evenly distributed streams with flow records that are suitable for reliable use in early warning 

systems for drought monitoring. 

 

5.3 Selection of Streamflow Stations  

The streamflow data for the Palliser Triangle area were extracted from HYDAT (Hydrologic Data), 

which is the streamflow data resource managed by the Water Survey of Canada. Over 100 

streamflow stations were assessed for completeness and statistical validity. To ensure data 

completeness, monthly data gaps were first cross-referenced with daily data for infilling purposes. 

For gaps of fewer than 10 days, linear interpolation was employed, while for gaps exceeding 10 

days but less than a year, the Analogue River Ratio method (Tallaksen, 2004) was used. 

Furthermore, the general rule for a sample size is to be greater than 30 years to yield stable 

estimates of statistics, viz., mean, variance, skewness and autocorrelations (Brase et al., 2006) 

Therefore, the streamflow stations were selected based on two criteria. The first criterion is that 

the station has no missing data or missing data only up to one year and the second criterion is that 

there are more than 30 years of available data, to obtain estimates of the aforementioned statistics.  

 

5.3.1 Filling the Missing Data using the Analogue River Ratio Method 

The Analogue River Ratio Method, as described by Tallaksen et al. (2004), was used to fill in 

missing data segments for up to a year. This method involves using the ratio between the target 

station and a nearby gauging station (analogue) to manually estimate missing flows at the target 

station. The analogue station was chosen as either an upstream or downstream station of the target 

river or a station in the nearest catchment. The filled missing data were then checked to ensure 

they fell within the 95% confidence limit of the mean streamflow values from the last 5 years and 

the next 5 years of the target river. If the filled data did not lie within the 95% confidence boundary, 

another station was selected according to the Analogue River Ratio Method. This process was 

repeated until the filled data lay within the 95% confidence boundary. This process is described in 

the Figure 5.2 below. 
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Figure 5.2 Flow chart for selection of streamflow stations. 
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5.3.2 Selection of Streamflow Datasets  

After careful consideration, only 25 streamflow stations were deemed suitable for further analysis 

and model application. Appendix- A provides additional details on the Analogue River Ratio 

Method for infilling missing records within the 95% confidence limit. The relevant characteristics 

of all such stations are summarized in Table 5.1 below. A common period of 48 years (October 1, 

1973, to September 30, 2022) was selected for all these stations. Catchments sizes of the selected 

stations range from 319 to 131,000 km2.  

A study conducted in 2020 introduced three clusters of rivers in the Canadian prairies based on the 

cumulative annual runoff of each river (Whitfield et al., 2020). The cumulative annual runoff was 

calculated as the flow per basin unit area. The first and most common type is low-flow capacity 

rivers, characterized by infrequent flow days and low total annual runoff, ranging from 0 to 50 

mm. The second type is medium-flow capacity rivers, which have more days with flow and a 

slightly greater annual runoff, ranging from 48 to 175 mm. The least common third type consists 

of high-flow capacity rivers, which have the fewest days without flow, include perennial streams, 

and exhibit much greater annual runoff, exceeding 173 mm.  

Low-flow capacity rivers are very common in the Canadian prairies and tend to dry out during the 

dry season, making it difficult to find small rivers with continuous flow throughout the year. 

Medium-flow capacity rivers are more prone to droughts than high rivers. Therefore, as shown in 

Table 5.1, three low-flow rivers, sixteen medium-flow capacity rivers, and six high-flow rivers 

within the Palliser Triangle were selected for analysis. This selection ensures a representative 

sample of rivers with varying susceptibility to drought conditions. Figure 5 shows the locations of 

the small, medium and large flow rivers. 
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Table 5.1 Basic hydrological characteristics of selected hydrometric stations within the study area. 

No Streamflow station name Selected 
Period  Prov Station ID Latitude 

(N) 
Longitude 

(W) 
Area 
(km2) 

1 Pembina River at Neche+ 1974-2022 MB 05OC004 48°59'22"  97°33'24"  8,480 
2 Souris River near Sherwood+ 1974-2022 SK 05ND007 48°59'24"  101°57'28"  23,100 

3 East Poplar River at International 
Boundary+ 1976-2022 SK 11AE003 48°59'58"  105°24'32"  1,400 

4 Little Saskatchewan River near 
Minnedosa++ 1974-2022 MB 05MF001 50°21'31"  99°54'27"  2,610 

5 Whitemud River at Westbourne++ 1974-2022 MB 05LL002 50°08'05"  98°35'02"  6,360 
6 Moose Jaw River near Burdick++ 1974-2022 SK 05JE006 50°24'01"  105°23'52"  9,230 

7 North Saskatchewan River at Prince 
Albert++ 1974-2022 SK 05GG001 53°12'12"  105°46'21"  131,000 

8 North Saskatchewan River near 
Deer Creek++ 1974-2022 SK 05EF001 53°31'23"  109°37'04"  57,200 

9 Qu'appelle River near Lumsden++ 1974-2022 SK 05JF001 50°39'01"  104°52'00"  17,500 

10 South Saskatchewan River at 
Saskatoon++ 1974-2021 SK 05HG001 52°08'26"  106°38'39"  141,000 

11 Swift Current Creek below Rock 
Creek++ 1974-2022 SK 05HD036 49°50'40"  108°28'46"  1,430 

12 Assiniboine River at Kamsack++ 1974-2022 SK 05MD004 51°33'53"  101°54'59"  13,000 
13 Blindman River near Blackfalds++ 1974-2022 AB 05CC001 52°21'25"  113°47'42"  1,800 
14 Battle River near Ponoka++ 1974-2022 AB 05FA001 52°39'47"  113°34'53"  1,820 
15 Red Deer River at Drumheller++ 1974-2022 AB 05CE001 51°28'02"  112°42'41"  24,900 
16 Medicine River near Eckville++ 1975-2022 AB 05CC007 52°19'10"  114°20'39"  1,920 
17 Milk River at Milk River++ 1974-2022 AB 11AA005 49°08'36"  112°04'54"  2,720 
18 Red Deer River near Bindloss++ 1974-2022 AB 05CK004 50°54'09"  110°17'58"  47,800 

19 South Saskatchewan River at 
Medicine Hat++ 1974-2022 AB 05AJ001 50°02'31"  110°40'39"  56,400 

20 Crowsnest River at Frank+++ 1974-2022 AB 05AA008 49°35'50"  114°24'38"  403 
21 Bow River at Calgary+++ 1974-2022 AB 05BH004 51°03'00"  114°03'05"  7,870 
22 Oldman River near Lethbridge+++ 1974-2022 AB 05AD007 49°42'33"  112°51'46"  17,000 
23 Highwood River near the Mouth+++ 1974-2022 AB 05BL024 50°46'57"  113°50'38"  3,950 
24 Belly River near Mountain View+++ 1974-2022 AB 05AD005 49°05'58"  113°41'51"  319 

25 St. Mary River at International 
Boundary+++ 1974-2022 AB 05AE027 49°00'43"  113°17'58"  1,210 

NOTE: + indicates low flow; ++ medium flow, and +++ high flow rivers. “Prov” indicate the 

province of the streamflow station. 
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The following Figure 5.3 shows the location of each station according to the station number listed 

in Table 5.1. 

 

The following Table (Table 5.2) provides the statistical characteristics of the selected streamflow 

stations, including the optimal lambda(ƛ)value for the Box-Cox transformation of each station, as 

well as the mean, standard deviation, and skewness of both monthly and weekly raw streamflow 

data distribution. 

 

 

 

 

 

Figure 5.3 Topographic map of Palliser triangle illustrating the locations of hydrometric stations selected 
for model application. 
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Table 5.2 Statistical characteristics of monthly and weekly flow sequences of streams under study 

*No 
Monthly Data Weekly Data 

Lambda Mean 
(m3s-1) CV Cs 

ρ1 Lambda Mean 
(m3s-1) CV Cs ρ1 

1 0.11 11.30 2.20 3.94 0.49 0.12 11.18 2.59 5.55 0.84 
2 0.08 5.11 3.84 9.21 0.61 0.04 5.12 4.34 11.99 0.86 
3 -0.44 0.24 3.54 8.39 0.20 -0.07 0.27 5.82 18.02 0.30 
4 -0.05 4.91 1.70 3.75 0.54 -0.04 4.94 1.88 4.30 0.86 
5 -0.13 7.28 1.94 3.68 0.55 -0.04 4.92 1.87 4.24 0.89 
6 0.05 2.61 3.66 6.60 0.28 -0.01 2.61 4.54 8.95 0.74 
7 -0.52 239.74 0.66 1.85 0.62 -0.55 239.57 0.77 3.03 0.82 
8 -0.62 218.14 0.63 2.10 0.60 0.08 218.41 0.73 3.26 0.80 
9 -0.46 6.99 2.20 5.58 0.36 -0.46 6.99 2.67 8.52 0.80 
10 0.16 209.45 0.64 2.33 0.66 0.07 205.56 0.73 3.57 0.87 
11 -0.09 1.54 2.20 7.49 0.28 0.16 1.05 2.44 6.94 0.55 
12 -0.09 10.29 2.37 4.01 0.48 -0.06 10.29 2.94 6.43 0.59 
13 -0.13 2.74 1.88 3.70 0.26 -0.17 2.74 2.75 7.56 0.46 
14 -0.05 1.92 1.90 4.28 0.36 -0.04 1.92 2.56 8.40 0.58 
15 -0.21 50.75 1.03 2.47 0.55 -0.26 50.83 1.21 3.79 0.76 
16 -0.15 4.15 1.67 2.92 0.37 0.06 4.21 2.31 5.34 0.53 
17 0.25 9.15 0.93 0.57 0.72 0.19 9.18 1.04 1.47 0.82 
18 -0.06 56.29 1.04 2.34 0.55 -0.10 56.39 1.23 3.85 0.76 
19 -0.50 156.94 1.03 3.16 0.51 -0.40 156.92 1.18 4.06 0.83 
20 -0.41 4.59 1.09 2.27 0.60 -0.43 4.60 1.19 2.84 0.88 
21 -0.96 86.19 0.61 2.16 0.63 -0.94 86.31 0.66 2.91 0.89 
22 -0.29 65.24 1.46 3.73 0.50 -0.26 65.26 1.67 5.10 0.79 
23 -0.22 18.71 1.55 3.74 0.48 -0.23 18.73 1.82 6.37 0.73 
24 -0.24 8.32 1.16 2.23 0.60 -0.25 8.34 1.28 2.84 0.85 
25 -0.15 18.08 1.18 2.63 0.59 -0.18 18.12 1.29 3.13 0.88 

NOTE: *The numbers presented correspond to the same streamflow data outlined in Table 5.1.* 
*CV indicates Coefficient of Variation; CS skewness, and ρ₁ autocorrelation coefficient at lag 1.* 

The Table 5.2 indicate the statistical characteristics of the monthly and weekly raw streamflow 

data sets. Here, lambda represents the optimal value used in the Box-Cox normalization 

transformation, ensuring the data achieves normality. CV refers to the coefficient of variation, 

calculated by dividing the standard deviation by the mean, providing insight into the relative 

variability of the data. CS denotes the skewness, indicating the asymmetry of the data distribution. 
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Lastly, "ρ₁" represents the autocorrelation coefficient at lag 1, measuring the correlation between 

current and previous time steps in the dataset. 

 

Figure 5.4 Low flow, medium flow and high flow river locations. 

 

The next chapter (Chapter VI) will involve applying the developed models to the selected 

watersheds. It will detail how the models are implemented in these specific regions to recognize 

and predict drought patterns based on the previously discussed methodologies. 

 

 

 

 

  Low flow rivers 
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6 Chapter VI: Application of Models 
 

In this chapter, the efficacy of the proposed models is evaluated by applying them to the selected 

25 watersheds known for their drought-prone characteristics. As discussed in Chapter V, these 

watersheds were specifically chosen from the Palliser Triangle area in Canada where drought 

conditions are unique and frequent. A monthly dataset spanning 48 hydrological years starting 

from October 1, 1973, to ending in September 30, 2022 was chosen for analysis from each 

streamflow station. The models were applied to all low-flow, medium-flow and high-flow per unit 

area generating capacity of rivers within the Palliser Triangle.  The application of models on 

specific rivers representing the flow generation capacity based on flow rate per unit area basis as 

low-flow river (the East Poplar River), the medium-flow river (the South Saskatchewan River), 

and the high-flow river (the Highwood River) is presented. A detailed analysis demonstrates how 

models perform across different drought levels and flow characteristics. 

 

6.1 Implementation of Streamflow Data for Proposed Models 

After carefully selecting 25 streamflow watersheds, the chosen data was used to evaluate the three 

models which are the Discrete Markov Model, the Hidden Markov Model, and the Long Short-

Term Memory (LSTM) model. Before applying these models, the data underwent a transformation 

process to ensure it was suitable for modelling. This transformation involved normalization to 

ensure that the data was statistically suitable. In turn, the data was analysed using different 

techniques to identify the meaningful drought patterns or groups within the streamflow data. 

Figure 6.1 illustrates the process of model application. Initially, the data must be transformed to 

suit the models being used. Subsequently, drought patterns need to be recognized before applying 

the models to ensure accurate forecasts. 
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Figure 6.1 Flow chart for model application. 
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6.2 Normalization of Data Sets 

Before applying the models, it is necessary to transform the data to a near-normal distribution to 

ensure suitability for modelling. This transformation was conducted using the Box-Cox normal 

transformation (Eq. 4.02 in Chapter IV), which stabilized variance and made the data closer to a 

normal distribution.  

The Rankit plot, also known as the normal probability plot, was used to visually evaluate if the 

transformed data were normally distributed.  In this plot, the quantiles of the transformed data are 

plotted against the theoretical quantiles of a normal distribution. If the data follows a normal 

distribution, the Rankit plot is an approximate straight line close to the expected normal 

distribution line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 6.2 Rankit normalization comparison for actual monthly streamflow data (A) and transformed 
monthly streamflow data (B) - East Poplar River at International Boundary. 
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Rankit plot illustrating a comparison between the theoretical normal distribution and the actual 

monthly streamflow data is shown in A while B represents a comparison between the theoretical 

normal distribution and transformed data for the East Poplar River (Figure 6.2), South 

Saskatchewan River at the Saskatoon station (Figure 6.3) and Highwood River (Figure 6.4). Those 

plots visually demonstrate how well the data conforms to a normal distribution after the 

A B 

Figure 6.3 Rankit normalization comparison for actual monthly streamflow data (A) and transformed monthly 
streamflow data (B) - South Saskatchewan River at Saskatoon station. 

A B 

Figure 6.4 Rankit normalization comparison for actual monthly streamflow data (A) and transformed 
monthly streamflow data (B) - Highwood River near its mouth. 
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transformation process. As shown in the Figure 6.2 for low flow East Poplar river, the Box-Cox 

transformation can produce negative values, even if the original data is positive. This can occur 

when using negative λ values, especially for right-skewed data. When the optimal λ value 

determined by the Box-Cox transformation is negative, the transformation is a reciprocal 

transformation. This can result in negative values, especially for smaller values in the original data. 

Appendix B provides similar Rankit plots for all 25 streamflow stations, allowing for a 

comparative analysis of normalization across different watersheds. 

 

6.3 Recognition/Classification of Drought Patterns/Groups 

The optimal patterns (or groups) within a streamflow data were recognized/classified using 

entropy considerations. The goal was to achieve minimal intra-entropy, or entropy within the 

groups, to ensure that each group is as internally cohesive as possible, and maximal inter-entropy, 

or entropy among the groups, to ensure that the groups are externally distinguishable. While a 

hydrological year can have groups of varying lengths, this research focused on groups of similar 

lengths for ease of operations. Therefore, the length of a group can be 2 months, 3 months, 4 

months, or 6 months. Intra- and inter-entropy calculations were performed for these different 

lengths of groups based on the Streamflow Drought Index (SDI). Using the Shannon Entropy 

(equation 3.06), the intra-entropy was calculated considering the DL (Drought Level) of each 
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Figure 6.5 Intra and inter entropy calculation for groups with different length for East Poplar River 
at International Boundary. 



81 
 

month within a group and inter-entropy was calculated considering the DL for the entire group of 

patterns. 
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Figure 6.6 Intra and inter entropy calculation for groups with different length for South 
Saskatchewan River at Saskatoon station. 

Figure 6.7 Intra and inter entropy calculation for groups with different length for Highwood River 
near its mouth. 
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Figures 6.5, 6.6 and 6.7 illustrate the results of intra- and inter-entropy calculations for various 

group lengths for the East Poplar River, South Saskatchewan River, and Highwood River 

respectively. The figures indicate that a 6-month group length is optimal for identifying patterns, 

effectively dividing a hydrological year into two distinct groups: wet and dry. Since the research 

specifically focuses on drought conditions, only the dry group is considered for further analysis. 

Consequently, the next best grouping length is selected as 3 months to critically evaluate the 

droughts for the South Saskatchewan River.  Appendix B provides entropy calculations for all 25 

streamflow stations, with the majority showing that 3 months is the optimal group length. 

Therefore, a 3-month grouping is chosen for subsequent analyses as shown in the below equation, 

Pattern or group = [M1, M2, M3] ……………………(6.01) 

Given that the data is divided into 3-month groups within a hydrological year, resulting in four 

distinct groups per year, these groups can be referred to as seasonal patterns or seasonal groups. 

Such a segment of 3 months representing a specific season or quarter of the year is designated as 

Season 1 from October to December, Season 2 from January to March, Season 3 from April to 

June, and Season 4 from July to September. The analysis shows streamflow variations according 

to seasons throughout the year and each seasonal pattern for ith year can be demonstrated below, 

Seasonal Pattern j = SPi,j ……………………(6.02) 

Where i indicate ith year and varies from 1 to 48th year representing the hydrological year starting 

from 1974 to 2022. Seasonal pattern number within a given year is indicated by j which varies 

from 1 to 4 as follows. 

j = 1 = Seasonal pattern 1 (October 1, to December 31) ………...……(6.03) 

j= 2 = Seasonal pattern 2 (January 1, to March 31) ………..……....…(6.04) 

j = 3 = Seasonal pattern 3 (April 1, to June 30) ……………..…..……(6.05) 

j = 4 = Seasonal pattern 4 (July 1, to September 30) ………..…...……(6.06) 
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6.4 Characteristics of Seasonal Patterns 

After identifying the structure of the seasonal patterns, with each pattern consisting of three months 

(e.g., Season 1: October 1, to December 31, Season 2: January 1, to March 31, etc.), a moving 

average technique is applied to understand the characteristics of these patterns. Using a moving 

average window of three months, the streamflow data can be smoothed to provide a better 

representation. This smoothing process helps to reduce short-term fluctuations and highlight long-

term patterns in the data. After applying the smoothing technique, the average value for each month 

over the 48 years can be calculated. This allows for an examination of how the streamflow values 

for each month have changed, on average over the years, providing insights into characteristics of 

seasonal patterns.  

 

Figure 6.8 Average deviation from the mean in monthly streamflow for East Poplar River. 
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Figure 6.9 Average deviations from the mean in monthly streamflow for South Saskatchewan River. 

 

 

 

Figure 6.10 Average deviation from the mean in Monthly streamflow for Highwood River 
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As seen in Figures 6.8 to 6.10, Seasonal Pattern 1, which consists of October, November, and 

December, on average characterized by a less severe drought pattern. Following this, Seasonal 

Pattern 2, encompassing January, February, and March, transitions into wet months, indicating a 

shift from mild drought levels to no drought conditions. However, Seasonal Pattern 3, which 

includes April, May, and June, exhibits a more severe drought level for both low-flow and medium-

flow rivers throughout all three months. This signifies a distinct transition from no drought to a 

more severe drought condition. For high-flow rivers, Seasonal Pattern 3 initially shows no drought, 

but by June, drought conditions start to emerge. Subsequently, July, August, and September, 

representing Seasonal Pattern 4, return to a mild drought pattern across low, medium, and high 

flow-producing capacity based on flow rate per unit area of rivers. 

From a visual analysis of Figures 6.8 to 6.10, it is apparent that there are four seasons within a 

year, indicating two wet seasons and two dry seasons. However, when examining high-flow rivers, 

it becomes evident that these rivers tend to have just two main seasons over a year: one dry season 

and one wet season. Such seasonal pattern differs from those observed in low flow and medium 

flow producing capacity based on flow rate per unit area of rivers, which exhibit more distinct 

seasonal variations with separate dry and wet periods.  

Furthermore, as the entropy calculations provide 3-month patterns to be the optimal size, 4 patterns 

or groups per hydrological year are considered as 4 different seasonal patterns. Appendix B 

provides the Moving Average plots for all 25 streamflow stations. 

 

6.5 Clustering the Seasonal Drought Patterns 

As a hydrological year is divided into four seasonal patterns, the optimal number of clusters within 

each seasonal pattern for 48 years was determined using K-means clustering. As mentioned in the 

characteristics of patterns, on average, Seasonal Pattern 1 is characterized by a mild drought 

pattern, Seasonal Pattern 2 exhibits no drought, Seasonal Pattern 3 experiences a more severe 

drought pattern, and Seasonal Pattern 4 returns to a mild drought pattern. However, in different 

years, these drought patterns can deviate from such average levels. To analyze such variations, a 

K-means clustering algorithm was used, providing an insightful analysis of how drought levels 

can change within a seasonal pattern.  
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For instance, the seasonal pattern 1 which comprises the months from October to December for all 

48 years was selected, and K-means clustering was performed to find the optimal number of 

clusters within patterns of Season 1. The optimal clustering for patterns of each season was 

determined using the Silhouette score. This score is the metric used to evaluate the quality of 

clustering by measuring how similar each data point is to its cluster compared to other clusters. It 

ranges from -1 to 1 and when a score is closer to 1 indicates that the data point is well-matched to 

its cluster and is distinct from other clusters. A score around 0 suggests that the data point lies on 

the boundary between clusters and a negative score indicates that the data point may have been 

incorrectly assigned to its cluster. 

To find the optimal number of clusters using the Silhouette score, the average silhouette score for 

different numbers of clusters (K) was calculated. The optimal number of clusters is the one that 

maximizes the average silhouette score, indicating well-defined and well-separated clusters. For 

the silhouette score calculation, only drought data was considered. Drought data refers to the 

normalised streamflow data below a specified threshold level, which in this case is defined as the 

mean value. By focusing on data below this threshold, the clustering analysis specifically targets 

periods of lower streamflow, providing insights into drought patterns within each seasonal pattern.  

 

 

 

 

 

 

 

 

 

 

 Figure 6.11 Silhouette score for seasonal patterns in East Poplar River at International Boundary. 
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 Figure 6.13 Silhouette score for seasonal patterns in Highwood River near its mouth. 

Figure 6.12 Silhouette score for seasonal patterns in South Saskatchewan River at Saskatoon Station. 
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As seen in Figures 6.11, 6.12 and 6.13, all four seasonal patterns exhibit an optimal number of 5 

drought clusters. This finding aligns with the Streamflow Drought Index (SDI), which categorizes 

monthly drought data into 5 clusters based on their severity. Therefore, in this thesis, seasonal 

patterns are categorized into five drought levels: no drought(D0), mild drought(D1), moderate 

drought(D2), severe drought(D3), and extreme severe drought(D4). Consequently, the grouped 

drought data can also be classified into 5 different drought severity classes according to the 

Streamflow Drought Index of each group as shown in the table below.  

Table 6.1 Drought levels based on SDI values for seasonal patterns/groups. 

State Drought Level Criterion for mean SDI value 

0 No Drought SDI ≥ 0.0 

1 Mild Drought -1.0 ≤ SDI < 0.0 

2 Moderate Drought -1.5 ≤ SDI < - 1.0 

3 Severe Drought -2.0 ≤ SDI < - 1.5 

4 Extreme Drought SDI < -2.0 

 

Appendix B provides the Silhouette scores for seasonal patterns of all 25 streamflow stations, with 

the majority showing 5 clusters within the seasonal patterns. After recognizing the seasonal 

patterns or groups within the data and identifying the drought level of each seasonal pattern, these 

patterns were used in applications to three models which are the Discrete Markov model, the 

Hidden Markov model, and the Long Short-Term Memory (LSTM) model. The models were 

evaluated on their performance in predicting the drought level of seasonal patterns for low-flow, 

medium and high-flow rivers.  

 

6.6 Applications of the Model 1: Discrete Markov Model (DMM) 

The Discrete Markov model was applied to each river, to predict the drought level of the seasonal 

patterns. There are four distinct types of seasonal patterns namely SPj, j=1, 2, 3, and 4. Each type 

of Pattern (SPj, has 48 members) and thus there are 192 SPj. Each type of SPj can belong to one of 

five drought categories (or levels). To assign a specific SPj, to a specific drought level (or state), 

the mean Streamflow Drought Index of the pattern is used. Based on the classification of a specific 

SPj to a specific drought level (or state), a transition matrix can be developed describing the 
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probability of transition from one drought level (or state) to another drought state (or level) for 

predictive purposes such as Markov state forecast.  

It is crucial to select an appropriate portion of the dataset for training and testing to ensure the 

model is trained effectively while also allowing it to be tested on a broader range of drought-level 

variations. This balanced approach helps the model learn from diverse patterns during training and 

accurately assess its performance across different drought levels during testing. Recent studies 

have shown that the model performance for statistical and machine learning models for streamflow 

forecasting can be affected by the different training and testing data splits (Feng et al., 2020). There 

are studies done to show that a 70:30 training-testing data split can offer promising results for 

predicting hydrological variables using machine learning models (Rahimi & Ebrahimi, 2023). The 

study has shown that streamflow modeling 70:30 could give more accurate results than 90:10 or 

80:20, as the smaller testing data size, in the latter approaches may not be sufficient to adequately 

assess the generalization capability of the model. The study discusses the importance of training 

and testing data to ensure that the testing dataset is large and varied enough for a more 

comprehensive evaluation of how well the model performs across different drought levels and 

conditions. This confirms that the model is not just overfitting to the training data but can also 

accurately predict drought patterns in new, unseen data (Rahimi & Ebrahimi, 2023). Therefore, 

this study also follows the 70:30 training and testing split to train and test the models. 

To build the transition matrix, 70% of the data was used for training, which amounts to 135 

seasonal patterns. The remaining 30% of the data, comprising 57 seasonal patterns, was used for 

forecast based on the transition matrix.  

 

6.7 Applications of the Model 2: Hidden Markov Model (HMM) 

The Hidden Markov Model was applied to predict the drought level of the seasonal patterns as 

described in the methodology chapter.  

Instead of focusing on the drought level of the group, which was based on the average streamflow 

drought index of the group, this method directly employs the streamflow drought index (SDI) 

values for each seasonal pattern. Consequently, a seasonal pattern contains three monthly 

streamflow drought indices to the model to train on the patterns of these indices and to predict the 
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SDI values for the next seasonal pattern (or the next three months). Using the predicted SDI values, 

the drought level for the upcoming seasonal pattern can then be calculated. 

With 48 years of data, resulting in 192 seasonal patterns, 70% of the patterns (135 patterns) were 

used for training the HMM, while the remaining 30% (57 patterns) were reserved for testing. This 

approach ensures that the model is well-trained before being tested on the 57 seasonal patterns to 

evaluate its forecast accuracy. 

 

6.8 Applications of the Model 3: Long Short-Term Memory (LSTM) Model  

Similar to other model applications, the same approach is used for the LSTM model, where the 

streamflow drought indices for each seasonal pattern are employed. The model is trained on these 

indices to predict the streamflow drought indices for the next seasonal pattern or the next three 

months, allowing for the calculation of the drought level of the upcoming seasonal pattern based 

on the predicted values. 

The LSTM model was applied to predict the drought level of the seasonal patterns with 48 years 

of data. Accordingly, 70% of the seasonal patterns which is 135 patterns were used for training the 

LSTM, while the remaining 30% (57 patterns) were used for testing. 

 

6.8.1 Selection of Model Parameters for Monthly LSTM Model 

First, the LSTM model was applied to predict values of the SDI using the monthly data. The Adam 

optimizer (for brevity also known as (Adaptive Moment Estimation) is a popular optimization 

algorithm used in the training of deep neural networks, including Long Short-Term Memory 

models. The Adam optimizer provides several advantages over traditional gradient descent 

algorithms for complex time series forecasting, such as an ability to adaptively adjust the learning 

rate for each parameter based on the estimated mean and variance of the gradients (Kingma & Ba, 

2015). Therefore, to predict SDI values, the Adam optimizer was chosen for the LSTM model. 

To get a balanced pace for the optimization process and to ensure that the model can make 

significant progress in learning without overshooting the optimal parameters, the learning rate and 

the number of iterations (epochs are the same as iteration number) were selected as 0.01 and 800. 
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The training plots for a low-flow river (East Poplar River), medium-flow river (South 

Saskatchewan River), and high-flow river (Highwood River) are shown in the figures to follow.  

 

 

 

Figure 6.14 Training plot for the East Poplar River. 

Figure 6.15 Training plot for the South Saskatchewan River. 
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Figure 6.16  Training plot for the Highwood River. 

 

As seen in Figures 6.14, 6.15, and 6.16, both low flow and high flow rivers require approximately 

800 iterations to reach optimization, whereas medium flow rivers achieve optimization within 

around 600 iterations. This is because low flow and high flow rivers exhibit significant flow 

variations and more complex patterns compared to medium flow rivers. As a result, they require 

more iterations to achieve optimization. Medium flow rivers, with less variation and simpler 

patterns, reach optimization more quickly. 

LSTM models have demonstrated the ability to capture the complex non-linear relationships 

inherent in hydrological time series data (Zhang et al., 2018). However, a key concern in the 

application of LSTM models for streamflow forecast is the requirement for large amounts of 

training data (Liu et al., 2019). Studies have shown that the reliability of LSTM models for 

streamflow forecast can be influenced by the frequency of the input data (Kwon et al., 2023). 

Specifically, research has indicated that LSTM models trained on weekly data may provide more 

reliable results compared to those trained on monthly data (Kwon et al., 2023). Therefore, the 

LSTM model was also applied to the weekly data set of rivers within the project study area. 
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6.8.2 Selection of Model Parameters for Weekly LSTM Model 

The LSTM model was applied using weekly data instead of monthly data. Therefore, three-month 

seasonal patterns for 48 years span into 192 weekly seasonal patterns. Instead of having 3 elements 

in the drought pattern vector (Eq. 5.01), the seasonal patterns have 13 elements corresponding to 

weekly streamflow data for three months as shown below. 

Weekly pattern/group = [W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13] …. (6.06) 

Accordingly, 70% of the seasonal patterns which is 135 patterns were used for training the LSTM 

model, while the remaining 30% (57 patterns) were used for testing the LSTM model.  

Similar to monthly LSTM model, the weekly LSTM model was optimized using the Adam 

optimizer. However, due to a more detailed distribution in the weekly data, the number of iterations 

was reduced to 500 from 800 as was used for the monthly LSTM. The learning rate was kept 

consistent at 0.01 for both models. The training plots for a low-flow (East Poplar River), medium-

flow river (South Saskatchewan River), and high-flow river (Highwood River) for the weekly 

LSTM model are shown in Figures 6.17, 6.18 and 6.19.  

 

 

Figure 6.17 Weekly LSTM model training plot for East Poplar River. 
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Figure 6.18 Weekly LSTM model training plot for South Saskatchewan river 

Figure 6.19 Weekly LSTM model training plot for Highwood River. 
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When examining the training plots for the weekly LSTM model, it is observed that the model 

achieves optimization within fewer iterations (500) compared to the monthly LSTM model (800). 

This is because the weekly LSTM can capture more refined details in weekly patterns, allowing it 

to converge more quickly than the monthly LSTM, which processes less granular data. 

In the next chapter, the results obtained from applying different models to all selected rivers are 

summarized in tables and exhibited in figures. Additionally, model evaluation measures such as 

Mean Squared Error (MSE) and R-squared (R2) are compared for the Hidden Markov model 

(HMM), and the Long Short-Term Memory (LSTM) model. The comparison also includes an 

analysis of how all three models (Discrete Markov Model (DMM), HMM, and LSTM) predict the 

drought level by examining the mismatch in drought levels to check the accuracy of model 

forecasting. This comprehensive analysis highlights the performance and effectiveness of each 

model in predicting drought levels across different river types. 
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7 Chapter VII: Results and Discussion 
 

The results of the proposed discrete Markov model, Hidden Markov model, and LSTM model are 

presented, compared, and discussed. Graphical analysis includes visual representations of 

forecasts and observed data, while statistical analysis involves evaluating model performance 

using measures such as Mean Squared Error (MSE) and R-squared. The models were then 

evaluated to assess their performance in predicting each drought level. Through such analyses, the 

chapter provides a comprehensive comparison of the effectiveness of models in predicting drought 

levels across the selected rivers. The graphical presentation of results for all models on specific 

rivers representing the low-flow (East Poplar River), the medium-flow river (South Saskatchewan 

River), and the high-flow river (Highwood River) are presented in this chapter while the model 

applications for all 25 watersheds are summarised in the tables. Graphical presentations of results 

corresponding to 25 watersheds are presented in Appendix C. 

 

7.1 Results of the Discrete Markov Model 

The proposed discrete Markov model predicts the drought level based on the most probable next 

drought level given the current drought level using the transition matrix. The transition matrix for 

East Poplar River (low flow river), South Saskatchewan River (medium flow river) and Highwood 

River (high flow river) is shown in the below Tables 7.1, 7.2 and 7.3, respectively. The transition 

matrices were calculated using 70% of the data set, which is 135 seasonal patterns. 

Table 7.1 Transition matrix for the East Poplar River. 
  

Future Drought level   
1 2 3 4 5 

Current 
Drought 

Level 

1 0.457 0.514 0.014 0.000 0.014 
2 0.340 0.630 0.020 0.000 0.010 
3 0.250 0.500 0.250 0.000 0.000 
4 1.000 0.000 0.000 0.000 0.000 
5 1.000 0.000 0.000 0.000 0.000 
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Table 7.2 Transition matrix for the South Saskatchewan River. 

  
 

Future Drought level   
1 2 3 4 5 

Current 
Drought 

Level 

1 0.696 0.275 0.000 0.029 0.000 
2 0.419 0.372 0.116 0.093 0.000 
3 0.100 0.400 0.200 0.300 0.000 
4 0.077 0.385 0.231 0.308 0.000 
5 1.000 0.000 0.000 0.000 0.000 

 

Table 7.3 Transition matrix for the Highwood River. 
  

Future Drought level   
1 2 3 4 5 

Current 
Drought 

Level 

1 0.485 0.485 0.030 0.000 0.000 
2 0.380 0.360 0.200 0.060 0.000 
3 0.667 0.000 0.000 0.250 0.083 
4 1.000 0.000 0.000 0.000 0.000 
5 1.000 0.000 0.000 0.000 0.000 

               

The future drought level was predicted as the most probable next drought level given that the 

current drought level is known. Based on the transition matrix of the East Poplar River (Table 7.1), 

given that the current drought levels are 1, 2, 3, 4, and 5, then the most probable future drought 

levels are 2, 2, 2, 1, and 1, respectively. Based on the transition matrix for the South Saskatchewan 

River in Table 7.2, when the current drought levels are 1, 2, 3, 4, and 5, the most probable future 

drought levels are 1, 1, 2, 2, and 1, respectively. Accordingly, using the transition matrix of the 

Highwood River in Table 7.3, given that the current drought levels are 1, 2, 3, 4, and 5, then the 

most probable future drought levels are (1 or 2), 1, 1, 1, and 1, respectively. 

As shown in the transition matrices, when the current drought level is severe or extreme, the most 

probable next drought level is no drought. This indicates that within a 3-month period, severe 

drought levels are likely to transition to no drought in the following 3 months. This pattern arises 

because severe drought durations in the Palliser Triangle area are typically short-term, lasting less 

than a month. 
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The model comparison for all 25 selected stations was conducted using mismatch evaluations, as 

described in the methodology (Chapter 4 section 4.8.3). The Mismatch evaluation measures the 

accuracy of models in predicting the correct drought level by calculating the percentage of correct 

forecasts. Model forecast results are summarized in Table 7.4, providing a detailed comparison of 

the performance of each model in predicting drought levels across the selected watersheds.  

Table 7.4 Model 1- Mismatch accuracy of Discrete Markov forecast for 25 streamflow stations 

Streamflow station name Province Type of the 
river flow 

Discrete Markov 
Model Forecast 

Accuracy 
Pembina River at Neche MB Low 61% 
Souris River near Sherwood SK Low 49% 
East Poplar River at International Boundary SK Low 43% 
Little Saskatchewan River near Minnedosa MB Medium 80% 
Whitemud River at Westbourne MB Medium 61% 
Moose Jaw River near Burdick SK Medium 73% 
North Saskatchewan River at Prince Albert SK Medium 63% 
North Saskatchewan River near Deer Creek SK Medium 53% 
Qu'appelle River near Lumsden SK Medium 56% 
South Saskatchewan River at Saskatoon SK Medium 69% 
Swift Current Creek below Rock Creek SK Medium 71% 
Assiniboine River at Kamsack SK Medium 73% 
Blindman River near Blackfalds AB Medium 51% 
Battle River near Ponoka AB Medium 49% 
Red Deer River at Drumheller AB Medium 75% 
Medicine River near Eckville AB Medium 73% 
Milk River at Milk River AB Medium 49% 
Red Deer River near Bindloss AB Medium 71% 
South Saskatchewan River at Medicine Hat AB Medium 61% 
Crowsnest River at Frank AB High 55% 
Bow River at Calgary AB High 49% 
Oldman River near Lethbridge AB High 43% 
Highwood River near the Mouth AB High 78% 
Belly River near Mountain View AB High 65% 
St. Mary River at International Boundary AB High 57% 
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As seen in Table 7.4 above, low-flow rivers have the lowest average accuracy of 51% in drought-

level forecasts with a range varying from 43% to 61%. In contrast, the medium and high-flow 

rivers yield more satisfactory results, with the medium rivers averaging an accuracy of 64% with 

a range varying from 49% to 80%, and the large rivers averaging an accuracy of 58% with a range 

varying from 43% to 78% as mentioned in the following Table 7.5.    

Table 7.5 Average mismatch accuracy of Discrete Markov Model 

 

 

 

 

The rivers which yield a forecast accuracy of more than 75% are the Little Saskatchewan River, 

Red Deer River and Highwood River which exhibit the two highest probable drought levels in the 

transition matrix. This can be seen when considering the Little Saskatchewan River transition 

matrix shown in Table 7.6 below.  

Table 7.6 Transition matrix for the Little Saskatchewan River. 
  

Future Drought level   
1 2 3 4 5 

Current 
Drought 

Level 

1 0.483 0.417 0.100 0.000 0.000 
2 0.396 0.396 0.146 0.063 0.000 
3 0.381 0.190 0.381 0.000 0.048 
4 0.600 0.000 0.000 0.400 0.000 
5 1.000 0.000 0.000 0.000 0.000 

 

The presence of these two highly probable drought levels increases the likelihood of accurately 

predicting the next drought level, resulting in improved forecast performance. Such an observation 

helps explain the higher accuracy observed for the Little Saskatchewan River, Red Deer River, and 

Highwood River. However, aside from such cases, the model does not demonstrate good accuracy 

across other rivers, indicating its inability to consistently predict different drought levels. 

River flow type Average 
accuracy 

Maximum 
Accuracy 

Minimum 
Accuracy 

Low flow 51% 61% 43% 
Medium flow 64% 80% 49% 
High flow  58% 78% 43% 
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The discrete Markov model yields better results for medium flow rivers compared to low and high 

flow rivers due to the relatively low fluctuations in medium flow rivers. These rivers tend to exhibit 

consistent patterns, with the same seasonal variations repeating throughout the years. This stability 

allows the Markov model to effectively capture and predict the flow behavior. In contrast, low and 

high flow rivers experience significant variations across different seasons and years, lacking a 

repeating pattern, which makes it more challenging for the Markov model to accurately predict 

their flow behavior. 

The model can also be evaluated concerning its predictive ability for different drought levels which 

are: No Drought (D0), Mild Drought (D1), Moderate Drought (D2), Severe Drought (D3), and 

Extreme Drought (D4). The following Table 7.7 provides a summary of results for all 25 

watersheds.  
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Table 7.7 Mismatch accuracy for Discrete Markov Model forecast for different drought levels 

Streamflow station name River flow capacity 
(flow/unit area) 

Forecast Accuracy of Drought Level  

D0 D1 D2 D3 D4 

Pembina River at Neche Low 60% 56% NA NA NA 

Souris River near Sherwood Low 55% 44% 0% NA NA 

East Poplar River  Low 34% 52% 0% NA NA 

Little Saskatchewan River Medium 69% 95% 0% NA NA 

Whitemud River at Westbourne Medium 55% 43% 0% NA NA 

Moose Jaw River near Burdick Medium 50% 60% 0% NA NA 

North Saskatchewan River at PA* Medium 55% 50% 100% NA NA 

North Saskatchewan River near DC* Medium 52% 47% 75% NA NA 

Qu'appelle River near Lumsden Medium 40% 50% 20% 100% NA 

South Saskatchewan River at SA* Medium 67% 60% 33% NA NA 

Swift Current Creek  Medium 71% 33% 0% NA NA 

Assiniboine River at Kamsack Medium 79% 63% 0% NA NA 

Blindman River near Blackfalds Medium 44% 44% 50% NA NA 

Battle River near Ponoka Medium 39% 56% 50% 50% 0% 

Red Deer River at Drumheller Medium 63% 50% 0% NA NA 

Medicine River near Eckville Medium 56% 82% 0% 0% NA 

Milk River at Milk River Medium 44% 67% 20% NA NA 

Red Deer River near Bindloss Medium 100% 45% 0% NA NA 

South Saskatchewan River at MH* Medium 33% 40% 100% NA NA 

Crowsnest River at Frank High 50% 29% 100% NA NA 

Bow River at Calgary High 50% 44% 67% 50% 0% 

Oldman River near Lethbridge High 48% 36% 0% NA NA 

Highwood River  High 50% 50% 67% NA NA 

Belly River  High 33% 71% 100% NA NA 

St. Mary River  High 45% 43% 100% NA NA 
Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 

 
 
The following table 7.8 shows the summary of the Average Drought Level forecasts for each 

drought level. This summary provides an overview of how well the model predicts different 

drought levels across all low-flow, medium-flow, and high-flow rivers. 
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Table 7.8 Average mismatch accuracy for drought level forecast - Discrete Markov Model. 

River flow rate 
capacity per unit area 

Average Mismatch Accuracy for Drought Level 
Forecast (%) 

D0 D1 D2 D3 D4 

Low flow Rivers 50% 51% 0% NA NA 

Medium flow Rivers 57% 55% 28% 50% 0% 

High flow Rivers 46% 46% 72% 50% 0% 
 

A review of low-flow rivers indicates that the model struggles to accurately predict moderate 

drought level (D2) and the average forecast accuracy for both no drought (D0) and mild drought 

(D1) levels is 50% indicating lower ability in forecast. For medium-flow rivers, the model shows 

accuracy in predicting no drought (D0) with an average accuracy of 57% and mild drought level 

(D1) with an average accuracy of 55%. These results are slightly higher than low flow rivers. The 

moderate drought level (D2) forecast for medium-flow rivers is still not successful because the 

average accuracy is 28%. But for North Saskatchewan and South Saskatchewan rivers show 100% 

accuracy in moderate drought-level forecast (Table 7.7). Both these rivers are large rivers which 

show more high flow river behaviour. Also, the high-flow rivers show higher accuracy in the 

forecast of moderate drought levels with an average accuracy of 72% (Table 7.7).  No drought(D0) 

and mild drought level (D1) accuracies are slightly less than medium-flow rivers with a 46% 

average for both drought levels.  

One plausible reason for such behaviour could be the inability of the model to capture variations 

within the patterns. Particularly for low and medium-flow rivers where flow levels exhibit 

significant variations from season to season. In contrast, high-flow rivers tend to maintain more 

consistent flow levels throughout the year, resulting in less pronounced flow variation. 

Consequently, the model tends to accurately predict severe drought levels in high-flow rivers but 

fails to do so for extremely severe drought levels. Overall, the model does not accurately capture 

the intricate variations within the seasonal patterns, impacting its predictive performance across 

different drought levels. 

The inability of the Discrete Markov Model to capture the variations in drought patterns may rise 

from two different reasons. First, the transition matrix only indicates the likelihood of different 

future drought levels based on the known current drought level. By predicting only, the highest 
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probable drought level, the model disregards other possible scenarios such that, while less likely, 

could still occur. Therefore, this approach does not account for variability in drought levels for 

forecasting. 

The second reason is discrete Markov model categorize drought data into distinct states or levels. 

This discretization process simplifies the variability within the seasonal patterns into an average 

level, which can result-in loss of crucial information. Specifically, the model may lose valuable 

details about the temporal variability, such as the intensity and duration of drought conditions and 

local anomalies that impact forecasts. By averaging these variations into discrete categories, the 

model potentially be missing out on important information or features within the patterns that 

could enhance forecast accuracy.  

To address this limitation, the Hidden Markov Model (HMM) was applied using Streamflow 

Drought Index values in the seasonal pattern instead of using the drought level of the seasonal 

pattern. Unlike the Discrete Markov Model, the HMM can directly handle Streamflow Drought 

Index values compared to getting an average drought level within the pattern.  

The HMM does not calculate the average drought level as the state; instead, it assumes that there 

are hidden states associated with the streamflow, corresponding to the five different drought levels. 

The model attempts to map these hidden drought states to the seasonal drought patterns, allowing 

it to understand the transitions between each drought state. By identifying these hidden states, the 

HMM forecasts the seasonal drought patterns based on the Markov Property, which relies on the 

assumption that future states depend only on the current state, not on the sequence of events that 

preceded it. This approach enables the model to capture the complex dynamics within the data and 

make more accurate drought predictions. 
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7.2 Hidden Markov Model 

 

7.2.1 Evaluation of Results of HMM obtained during the Training Phase 

The proposed Hidden Markov Model was applied to each streamflow station to predict values of 

SDI. For each river case, three-month-length seasonal patterns were used to represent the groups. 

Results from the training phase and the testing phase of the model were compared to evaluate the 

ability of the model to train on known data to predict unknown data sets. The predicted versus 

actual SDI values were compared using the Mean Squared Error (MSE) and R-squared (Table 7.9). 

Such a comparison helps assess the accuracy and reliability of the model in predicting drought 

indices across different streamflow stations. 

  

        Observed 
        HMM predicted Hidden States 

Figure 7.1 Hidden Markov Model for the East Poplar River (Training). 
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        Observed 
        HMM predicted Hidden States 

        Observed 
        HMM predicted Hidden States 

Figure 7.2 Hidden Markov Model for South Saskatchewan River (Training). 

Figure 7.3 Hidden Markov Model for Highwood River (Training) 
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When training the Hidden Markov Model (HMM), it seems to only predict the hidden states of the 

dataset. This is because HMMs are specifically designed to identify the most likely sequence of 

hidden states that could have predicted the observed states. Essentially, HMMs focus on learning 

how the hidden states are changing with the observations. This means that the primary output of 

an HMM during the training process is the sequence of hidden states, the transition probabilities 

between hidden states and the emission probabilities that relate hidden states to observed 

data/states. This process ensures the model captures the underlying patterns in the data, which can 

then be used to forecast future occurrences of drought states. 

The performance of the model during the training phase was evaluated using statistical measures 

such as MSE and R² for all streamflow stations. These metrics provided insights into the ability of 

a model to accurately predict values of SDI as summarized in Table 7.9 below. 
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Table 7.9 Summary statistics of the Hidden Markov Model (Training data). 

Streamflow station name River flow capacity 
(flow/unit area) MSE  R2 

Pembina River at Neche Low 0.37018 0.68132 

Souris River near Sherwood Low 0.47019 0.63534 

East Poplar River at International Boundary Low 0.44990 0.59861 

Little Saskatchewan River near Minnedosa Medium 0.37008 0.68313 

Whitemud River at Westbourne Medium 0.34753 0.70722 

Moose Jaw River near Burdick Medium 0.37079 0.68923 

North Saskatchewan River at Prince Albert Medium 0.28000 0.71506 

North Saskatchewan River near Deer Creek Medium 0.20175 0.80595 

Qu'appelle River near Lumsden Medium 0.21018 0.80760 

South Saskatchewan River at Saskatoon Medium 0.36100 0.70065 

Swift Current Creek below Rock Creek Medium 0.45348 0.63238 

Assiniboine River at Kamsack Medium 0.34618 0.70473 

Blindman River near Blackfalds Medium 0.33619 0.70833 

Battle River near Ponoka Medium 0.58980 0.49932 

Red Deer River at Drumheller Medium 0.37997 0.67684 

Medicine River near Eckville Medium 0.54581 0.54624 

Milk River at Milk River Medium 0.15827 0.85098 

Red Deer River near Bindloss Medium 0.32053 0.72452 

South Saskatchewan River at Medicine Hat Medium 0.64641 0.48941 

Crowsnest River at Frank High 0.37437 0.67468 

Bow River at Calgary High 0.16988 0.80130 

Oldman River near Lethbridge High 0.37611 0.68244 

Highwood River near the Mouth High 0.20230 0.81015 

Belly River near Mountain View High 0.29393 0.73857 

St. Mary River at International Boundary High 0.30313 0.73090 
Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 

 

During the training phase, the HMM model exhibits slightly higher accuracy for large flow rivers, 

with an average value of 0.73 for the R2 compared to medium flow and low flow rivers, which 
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have average R2 values of 0.68 and 0.63, respectively. Additionally, the forecast accuracy of the 

HMM model for each drought level can be evaluated to gain a more detailed understanding of its 

performance. Table 7.10 provides a summary of the results for No Drought (D0), Mild Drought 

(D1), Moderate Drought (D2), Severe Drought (D3), and Extreme Drought (D4) levels. 

Table 7.10 Mismatch accuracy of the Hidden Markov Model results for different drought level forecast 
(Training) 

Streamflow station name River flow capacity 
(flow/unit area) 

Drought Level forecast 

D0 D1 D2 D3 D4 

Pembina River at Neche Low 100% 100% 100% 100% 100% 

Souris River near Sherwood Low 84% 78% 0% 0% 67% 

East Poplar River  Low 74% 91% 0% NA 50% 

Little Saskatchewan River Medium 74% 100% 0% 0% 0% 

Whitemud River at Westbourne Medium 90% 65% 27% 0% 0% 

Moose Jaw River near Burdick Medium 85% 50% 43% NA 0% 

North Saskatchewan River at PA* Medium 96% 57% 100% 0% NA 

North Saskatchewan River near DC* Medium 86% 73% 5% 0% 0% 

Qu'appelle River near Lumsden Medium 92% 82% 25% NA NA 

South Saskatchewan River at SA* Medium 86% 49% 80% 0% NA 

Swift Current Creek  Medium 76% 71% 14% 0% 0% 

Assiniboine River at Kamsack Medium 71% 91% 14% 0% 0% 

Blindman River near Blackfalds Medium 80% 91% 42% 0% 0% 

Battle River near Ponoka Medium 81% 68% 43% 0% 0% 

Red Deer River at Drumheller Medium 94% 72% 14% 0% 0% 

Medicine River near Eckville Medium 92% 94% 0% 0% NA 

Milk River at Milk River Medium 100% 77% 67% 0% NA 

Red Deer River near Bindloss Medium 97% 93% 20% 0% 0% 

South Saskatchewan River at MH* Medium 74% 92% 0% 0% 0% 

Crowsnest River at Frank High 61% 100% 0% 0% NA 

Bow River at Calgary High 85% 88% 0% 0% NA 

Oldman River near Lethbridge High 76% 90% 75% 0% 0% 

Highwood River  High 98% 69% 91% 0% 0% 

Belly River  High 99% 98% 0% 0% NA 

St. Mary River  High 93% 86% 0% 0% 0% 
Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 
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As the Hidden Markov Model (HMM) tries to learn the hidden states (or the hidden drought 

conditions) during training, this table shows how accurately the model has identified those hidden 

drought levels.  

Table 7.11  Average mismatch accuracy of forecast for various Drought Levels – HMM (Training) 

River flow rate 
capacity per unit 

area 

Average Mismatch Accuracy for Drought 
Level Forecast (%) 

D0 D1 D2 D3 D4 

Low flow 86% 90% 33% 50% 72% 

Medium flow 86% 77% 31% 0% 0% 

High flow 85% 89% 28% 0% 0% 
 

From a review of Table 7.11, it is apparent that for low-flow rivers, the HMM is capable of 

predicting no drought (D0), mild drought (D1), moderate drought (D2), severe drought (D3), and 

extreme drought (D4) levels with an average accuracy of 86%, 89% 33%, 50% and 72% 

respectively. However, for medium-flow rivers, the model can only predict no drought (D0), mild 

drought (D1), and moderate drought (D2) with lower accuracies of 86%, 77%, and 31%, 

respectively. It fails to identify severe (D3) and extreme drought (D4) levels in medium flow as 

well as high flow rivers. For high-flow rivers, the model predicts no drought (D0) and mild drought 

(D1) levels with an average accuracy of 85% and 89%, respectively. However, the accuracy drops 

to 28% for moderate drought (D2), and the model fails to identify severe drought (D3) and extreme 

drought (D4) levels, with 0% accuracy for both. 

As discussed above, low-flow rivers experience the greatest variations in their flow levels from 

season to season, while medium-flow rivers exhibit less variation. In contrast, high-flow rivers 

generally maintain more consistent flow levels throughout the year, leading to less pronounced 

variations. The hidden state prediction results indicate that the model struggles to capture higher 

drought levels when the data has lower variations. This means the model is better at identifying 

higher drought levels in low-flow rivers compared to high-flow rivers, making the training phase 

of the model more reliable for low-flow rivers. However, even in low-flow rivers, the model faces 

challenges in capturing more complex drought patterns, such as extreme or severe droughts. Then 

to evaluate the performance of the trained model on the testing data, the trained model was applied 

to the testing data and the results are discussed below. 
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7.2.2 Evaluation of Results of the HMM obtained during the Testing Phase  

The testing results for the selected low-, medium-, and high-flow rivers are presented in figures 

and summarized in tables below. For the East Poplar River (low flow river), South Saskatchewan 

River (medium flow river), and Highwood River (high flow river), Figures 7.4, 7.5 and 7.6 

illustrate a visual representation of the performance concerning the predicted versus observed 

drought levels. The summary Table 7.12 lists MSE and R² values for each river, offering a 

quantitative assessment of the accuracy of the model.  

  

       Observed 
       HMM 

Figure 7.4 Hidden Markov Model for East Poplar River (Testing) 
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As expected, the test results appear to be poorer than the training results, indicating the limitations 

of the model to forecast new unseen data. However, the forecast results tend to be consistently 

       Observed 
       HMM 

       Observed 
       HMM 

Figure 7.5 Hidden Markov Model for South Saskatchewan River (Testing) 

Figure 7.6 Hidden Markov Model for Highwood River (Testing) 
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higher or lower than the actual results, which still makes it a useful model for drought forecasting.  

Although it doesn't perfectly match real-world data, the model tends to forecast more extreme 

drought patterns for dry conditions and more extreme no-drought patterns for non-drought 

conditions. This tendency can be advantageous in designing water management structures, as it 

provides a safety margin, ensuring that these structures are better prepared for potential extreme 

conditions. This characteristic suggests that while the model may not perfectly match the observed 

data, it can reliably indicate the general trend and severity of droughts. The statistical summary of 

the HMM model is provided in Table 7.12 below: 

Table 7.12 Summary statistics for Hidden Markov Model (Testing data) 

Streamflow station name River flow capacity 
(flow/unit area) MSE  R2 

Pembina River at Neche Low 0.58410 0.53574 
Souris River near Sherwood Low 0.56701 0.38350 
East Poplar River at International Boundary Low 1.08055 0.46469 
Little Saskatchewan River near Minnedosa Medium 1.06400 0.45119 
Whitemud River at Westbourne Medium 1.06050 0.36771 
Moose Jaw River near Burdick Medium 1.04311 0.36791 
North Saskatchewan River at Prince Albert Medium 0.58646 0.60247 
North Saskatchewan River near Deer Creek Medium 0.56785 0.68940 
Qu'appelle River near Lumsden Medium 1.42901 0.45508 
South Saskatchewan River at Saskatoon Medium 1.45755 0.40349 
Swift Current Creek below Rock Creek Medium 1.84620 0.26826 
Assiniboine River at Kamsack Medium 1.02980 0.51596 
Blindman River near Blackfalds Medium 1.25580 0.32295 
Battle River near Ponoka Medium 1.60967 0.42813 
Red Deer River at Drumheller Medium 1.18937 0.38614 
Medicine River near Eckville Medium 1.33911 0.35929 
Milk River at Milk River Medium 1.22800 0.41387 
Red Deer River near Bindloss Medium 1.16561 0.48063 
South Saskatchewan River at Medicine Hat Medium 1.42110 0.30933 
Crowsnest River at Frank High 0.63944 0.60345 
Bow River at Calgary High 0.58632 0.64331 
Oldman River near Lethbridge High 0.75275 0.52027 
Highwood River near the Mouth High 0.65028 0.66733 
Belly River near Mountain View High 0.83696 0.59489 
St. Mary River at International Boundary High 1.04066 0.44371 

Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 
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As seen in Table 7.12, the MSE and R² values indicate that the Hidden Markov Model (HMM) 

predicts better results for both low- and high-flow rivers compared to medium-flow rivers. This 

suggests that the model performs better with highly variable data. As discussed earlier, medium-

flow rivers exhibit the lowest variability within their data, maintaining a more constant pattern 

throughout the seasons. During the testing phase, the model attempts to identify the hidden state, 

or drought level, within the seasonal patterns and predicts the seasonal pattern based on the highest 

drought level within that hidden state. This approach explains why the forecast results of the model 

tend to be either significantly higher or lower than the actual values, as it emphasizes extreme 

patterns over more moderate variations. However, when evaluating drought level forecasts for each 

watershed as shown in below Table 7.13, the model exhibits notable discrepancies.  

Table 7.13 Hidden Markov Model forecast results for different drought levels (Testing). 

Streamflow station name River flow capacity 
(flow/unit area) 

Drought Level forecast accuracy (%) 
D0 D1 D2 D3 D4 

Pembina River at Neche Low 84% 77% NA NA NA 
Souris River near Sherwood Low 89% 42% 100% NA NA 
East Poplar River  Low 82% 65% 0% NA NA 
Little Saskatchewan River Medium 86% 50% NA NA NA 
Whitemud River at Westbourne Medium 70% 47% 0% NA NA 
Moose Jaw River near Burdick Medium 76% 35% 50% 50% NA 
North Saskatchewan River at PA* Medium 79% 63% 100% NA NA 
North Saskatchewan River near DC* Medium 79% 32% 33% 100% NA 
Qu'appelle River near Lumsden Medium 88% 57% 75% 0% NA 
South Saskatchewan River at SA* Medium 98% 33% 67% NA NA 
Swift Current Creek  Medium 91% 67% NA NA NA 
Assiniboine River at Kamsack Medium 80% 58% 100% NA NA 
Blindman River near Blackfalds Medium 76% 79% 50% NA NA 
Battle River near Ponoka Medium 76% 71% 44% 33% 100% 
Red Deer River at Drumheller Medium 76% 62% NA NA NA 
Medicine River near Eckville Medium 73% 56% 100% NA NA 
Milk River at Milk River Medium 82% 32% 38% 100% NA 
Red Deer River near Bindloss Medium 77% 65% 50% NA NA 
South Saskatchewan River at MH* Medium 79% 52% 0% NA NA 
Crowsnest River at Frank High 88% 83% 40% NA NA 
Bow River at Calgary High 86% 68% 24% NA 100% 
Oldman River near Lethbridge High 87% 78% 0% NA NA 
Highwood River  High 85% 57% 25% NA NA 
Belly River  High 78% 59% 14% NA NA 
St. Mary River  High 81% 65% 14% NA NA 

Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 



114 
 

When considering the average forecast results for low, medium and high-flow rivers as seen in the 

Table 7.14, it seems that all three types of rivers have similar type average results.  

Table 7.14  Average mismatch accuracy for Drought Level forecast – HMM(Testing) 

River flow rate 
capacity per unit 

area 

Average Mismatch Accuracy for Drought 
Level Forecast (%) 

D0 D1 D2 D3 D4 

Low flow 85% 61% 50% NA NA 

Medium flow 80% 54% 54% 57% 100% 

High flow 85% 68% 20% NA 100% 
 

This average result shows that the model achieves over 80% accuracy in predicting no drought 

(D0) levels and 100% accuracy for extreme severe drought (D4) forecasts for all low, medium and 

high-flow rivers. This is due to the tendency of the model to predict values that are either 

significantly higher or lower than the observed data. While the model excels in predicting extreme 

scenarios, its accuracy reduces for mild to severe drought levels, as it tends to overestimate drought 

conditions in these categories. This overestimation results in lower accuracy for the less extreme 

drought levels, highlighting a limitation in the ability of the model to accurately capture and 

differentiate between varying degrees of drought severity. 

This limitation could occur because the model attempts to interpret the hidden states of seasonal 

patterns and adjusts its forecasts based on the maximum values associated with each hidden state. 

As the model tries to map the observed data to these underlying states, it may lean toward 

predicting higher or lower drought levels, depending on the extremes it identifies within each 

hidden state. This tendency to align forecasts with the maximum values of the hidden states can 

lead to higher accuracy for extreme scenarios but lower accuracy for mild to severe drought levels, 

where the model might overestimate the drought severity. 
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Table 7.15 Comparison between average mismatch accuracy for Drought Level forecast for Discrete 
Markov Model and Hidden Markov Model 

Model 
River flow rate 

capacity per 
unit area 

Average Mismatch Accuracy for Drought Level Forecast (%) 

D0 D1 D2 D3 D4 

Discrete 
Markov 
Model 

Low flow 86% 90% 33% 50% 72% 
Medium flow 86% 77% 31% 0% 0% 
High flow 85% 89% 28% 0% 0% 

Hidden 
Markov 
Model 

Low flow 85% 61% 50% NA NA 
Medium flow 80% 54% 54% 57% 100% 
High flow 85% 68% 20% NA 100% 

 

When comparing the average accuracy for drought level forecasting between the Discrete Markov 

Model and Hidden Markov Model as in Table 7.15, it is observed that the forecast accuracy for no 

drought levels is the same for both models. However, the accuracy for mild drought levels has 

decreased with the Hidden Markov Model, while the forecast accuracy for more severe drought 

levels has increased. This indicates that the HMM can overcome the limitations of the Discrete 

Markov model by capturing more complex and less frequent extreme severe drought levels more 

effectively. The ability of the HMM to handle these severe conditions better highlights its 

advantage in modeling and predicting extreme drought scenarios. 

However, the Hidden Markov Model (HMM) struggles to capture less severe drought conditions 

accurately, as it tends to overestimate extreme values. This issue arises because the model forecasts 

based on the extreme values of the hidden states, which can lead to exaggerated predictions for 

severe drought conditions.  

The LSTM model can address the limitations of the Hidden Markov Model (HMM) by offering a 

more nuanced approach to forecasting drought conditions. Unlike the HMM, which relies on 

hidden states and tends to overestimate extreme values, LSTM networks can capture complex 

temporal dependencies and variations in the data over time. By learning from a sequence of past 

observations, LSTM models can better account effect from both extreme and mild drought 

conditions happened in the past, providing more balanced and accurate forecasts. This helps the 

LSTM model avoid the tendency to overestimate drought severity and provides more balanced and 

accurate forecasts across all drought levels.  
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7.3 Long Short-Term Memory Model for the Monthly Data 

 

7.3.1 Evaluation of Results of LSTM obtained during the Training Phase 

The proposed Long Short-Term Memory Model was applied to each streamflow station to predict 

the values of SDI. For each case, three-month-length seasonal patterns were used to represent the 

groups. Results from the training and testing phases of the model were compared to evaluate the 

ability of the model to train on known data to generate unknown data sets as shown in the following 

figures. The predicted versus actual values of SDI were compared using MSE and R2 (Table 7.16). 

This comparison helps assess the accuracy and reliability of the model in predicting drought 

indices across different streamflow stations. 

 

 

 

 

 

 

 

 

       Observed 
       LSTM(Monthly) 

Figure 7.7 Long Short-Term Memory Model for monthly data in East Poplar 
River (Training). 
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       Observed 
       LSTM(Monthly) 

       Observed 
       LSTM(Monthly) 

Figure 7.8 Long Short-Term Memory Model for monthly data in South 
Saskatchewan River (Training). 

Figure 7.9 Long Short-Term Memory Model for monthly data in Highwood 
River (Training). 
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The LSTM model training results closely match the observed patterns, demonstrating the ability 

of the model to capture both linear and nonlinear patterns within the data. It can effectively capture 

both long-term and short-term dependencies or patterns, making it a reliable tool for predicting 

and analyzing seasonal patterns and drought levels in streamflow data. Table 7.16 summarizes the 

statistical results of the LSTM model for monthly data. 

Table 7.16 Summary statistics for Long Short-Term Memory Model for monthly data (Training) 

Streamflow station name River flow capacity 
(flow/unit area) MSE R2 

Pembina River at Neche Low 0.01489 0.98677 

Souris River near Sherwood Low 0.01610 0.98540 

East Poplar River at International Boundary Low 0.02815 0.98340 

Little Saskatchewan River near Minnedosa Medium 0.01161 0.98971 

Whitemud River at Westbourne Medium 0.00954 0.99065 

Moose Jaw River near Burdick Medium 0.01141 0.98874 

North Saskatchewan River at Prince Albert Medium 0.01448 0.98572 

North Saskatchewan River near Deer Creek Medium 0.01368 0.98674 

Qu'appelle River near Lumsden Medium 0.01848 0.98155 

South Saskatchewan River at Saskatoon Medium 0.01072 0.99055 

Swift Current Creek below Rock Creek Medium 0.01262 0.98806 

Assiniboine River at Kamsack Medium 0.00851 0.99189 

Blindman River near Blackfalds Medium 0.01161 0.98937 

Battle River near Ponoka Medium 0.01237 0.98772 

Red Deer River at Drumheller Medium 0.01460 0.98604 

Medicine River near Eckville Medium 0.01516 0.98652 

Milk River at Milk River Medium 0.01738 0.98401 

Red Deer River near Bindloss Medium 0.01485 0.9859 

South Saskatchewan River at Medicine Hat Medium 0.01100 0.98943 

Crowsnest River at Frank High 0.00896 0.99145 

Bow River at Calgary High 0.01150 0.99000 

Oldman River near Lethbridge High 0.01188 0.99015 

Highwood River near the Mouth High 0.02204 0.98006 

Belly River near Mountain View High 0.01156 0.98931 

St. Mary River at International Boundary High 0.01566 0.98516 
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The LSTM model demonstrates exceptional performance with an average R2 value of 0.99 across 

low, medium, and high-flow rivers, indicating high accuracy in forecasts during training. This 

suggests the model effectively captures the patterns in the data and provides reliable forecasts. 

Furthermore, Table 7.17 shows how the training phase of the LSTM model can forecast the drought 

levels. 

Table 7.17 Mismatch accuracy for monthly LSTM Model forecast results for different drought levels 
(Training) 

Streamflow station name River flow capacity 
(flow/unit area) 

Drought Level 
Forecast Accuracy (%) 

D0 D1 D2 D3 D4 

Pembina River at Neche Low 92% 98% 56% 100% 100% 
Souris River near Sherwood Low 93% 95% 88% 75% 100% 
East Poplar River  Low 95% 95% 100% NA 100% 
Little Saskatchewan River Medium 93% 98% 85% 80% NA 

Whitemud River at Westbourne Medium 93% 98% 100% 67% NA 
Moose Jaw River near Burdick Medium 93% 91% 88% 100% 100% 
North Saskatchewan River at PA* Medium 89% 98% 85% 75% NA 

North Saskatchewan River near DC* Medium 94% 98% 92% 75% NA 
Qu'appelle River near Lumsden Medium 92% 93% 84% NA NA 
South Saskatchewan River at SA* Medium 100% 97% 86% 89% NA 

Swift Current Creek  Medium 90% 98% 75% 100% 100% 
Assiniboine River at Kamsack Medium 94% 94% 78% 100% 100% 
Blindman River near Blackfalds Medium 91% 98% 89% 100% 100% 
Battle River near Ponoka Medium 94% 98% 91% 100% NA 

Red Deer River at Drumheller Medium 93% 92% 89% 60% NA 
Medicine River near Eckville Medium 92% 94% 93% 50% NA 
Milk River at Milk River Medium 86% 97% 70% 75% NA 

Red Deer River near Bindloss Medium 91% 98% 67% 60% NA 
South Saskatchewan River at MH* Medium 93% 98% 100% 100% 50% 
Crowsnest River at Frank High 88% 96% 100% 100% NA 

Bow River at Calgary High 88% 98% 82% 100% 100% 
Oldman River near Lethbridge High 93% 98% 80% 50% NA 
Highwood River  High 91% 98% 100% 75% NA 
Belly River  High 89% 98% 85% 100% NA 

St. Mary River  High 94% 98% 88% 75% NA 
Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 
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The forecast accuracies for each drought level are very high with a minimum forecast accuracy of 

50%, as shown in Table 7.17. When considering the average forecast accuracy for each drought 

level, it is evident that the model can predict each drought level with even greater accuracy. 

Table 7.18  Average mismatch accuracy of  
Drought Level forecast– Monthly LSTM (Training) 

River flow rate 
capacity per unit 

area 

Average Mismatch Accuracy of  
of Drought Level Forecast (%) 

D0 D1 D2 D3 D4 

Low flow 93% 96% 81% 88% 100% 

Medium flow 92% 96% 86% 82% 90% 

High flow 91% 98% 89% 83% 100% 
 

The average forecast accuracies for all drought levels are higher than 80% (Table 7.18), indicating 

that the model performs well in identifying different drought conditions and provides reliable 

forecasts across various levels for all low, medium and high-flow rivers. The trained model was 

then tested to evaluate its performance on the test data. 

 

7.3.2 Evaluation of Results of LSTM obtained during the Test Phase  

The test results for the selected low-flow, medium, and high-flow rivers are presented in Figures 

7.10 to 7.12 and summarized in Table 7.19 below. For the East Poplar River (low flow river), South 

Saskatchewan River (medium flow river), and Highwood River (high flow river), figures 7.10 to 

7.12 illustrate the predicted versus actual drought levels, providing a visual representation of the 

model's performance. The summary Table 7.19 lists the MSE and R² values for each river, offering 

a quantitative assessment of the accuracy of the model.  
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       Observed 
       LSTM(Monthly) 

       Observed 
       LSTM(Monthly) 

Figure 7.10 Long Short-Term Memory Model for monthly data in East Poplar 
River (Testing). 

Figure 7.11 Long Short-Term Memory Model for monthly data in South 
Saskatchewan River (Testing). 
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Table 7.19 displays the statistical measurements of forecasts for the LSTM model using monthly 

data for the testing phase. 

 

 

 

 

 

 

 

       Observed 
       LSTM(Monthly) 

Figure 7.12 Long Short-Term Memory Model for monthly data in Highwood 
River (Testing) 
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Table 7.19 Summary statistics for Long Short-Term Memory Model for monthly data (Testing) 

Streamflow station name River flow capacity 
(flow/unit area) MSE R2 

Pembina River at Neche Low 0.33068 0.52056 

Souris River near Sherwood Low 0.61005 0.33877 

East Poplar River at International Boundary Low 0.56557 0.34090 

Little Saskatchewan River near Minnedosa Medium 0.31732 0.66202 

Whitemud River at Westbourne Medium 0.40658 0.57703 

Moose Jaw River near Burdick Medium 0.80325 0.25159 

North Saskatchewan River at Prince Albert Medium 0.22971 0.75472 

North Saskatchewan River near Deer Creek Medium 0.33625 0.66278 

Qu'appelle River near Lumsden Medium 0.59509 0.49162 

South Saskatchewan River at Saskatoon Medium 0.65540 0.36081 

Swift Current Creek below Rock Creek Medium 0.70714 0.29517 

Assiniboine River at Kamsack Medium 0.24932 0.74080 

Blindman River near Blackfalds Medium 0.46340 0.43569 

Battle River near Ponoka Medium 0.61737 0.49738 

Red Deer River at Drumheller Medium 0.30736 0.60733 

Medicine River near Eckville Medium 0.49164 0.47552 

Milk River at Milk River Medium 0.24037 0.73999 

Red Deer River near Bindloss Medium 0.33139 0.59670 

South Saskatchewan River at Medicine Hat Medium 0.56914 0.32083 

Crowsnest River at Frank High 0.21495 0.78525 

Bow River at Calgary High 0.32765 0.72430 

Oldman River near Lethbridge High 0.34178 0.47775 

Highwood River near the Mouth High 0.20009 0.79442 

Belly River near Mountain View High 0.27669 0.76162 

St. Mary River at International Boundary High 0.31139 0.67487 

 



124 
 

Even though the LSTM model resulted in highly accurate forecasts with an average of 0.99 (R2) 

for the training data, the testing data forecast results are much lower with an average of 0.56 (R2) 

measurement. As observed, the LSTM model performs slightly better for high-flow and few 

medium-flow rivers such as the North and South Saskatchewan rivers, which are medium but have 

large basins and show more high-flow river characteristics. However, the model faces difficulties 

in capturing the high variability of the low-flow rivers. Following Table 7.20 shows how the model 

performed in predicting each drought level for 25 watersheds. 

Table 7.20 Mismatch accuracy for monthly LSTM Model forecast results for different drought levels 
(Testing) 

Streamflow station name River flow capacity 
(flow/unit area) 

Drought Level (Forecast Average (%)) 
D0 D1 D2 D3 D4 

Pembina River at Neche Low 87% 67% NA NA NA 
Souris River near Sherwood Low 83% 45% 0% NA NA 
East Poplar River  Low 94% 67% 50% NA NA 
Little Saskatchewan River Medium 95% 86% NA NA NA 
Whitemud River at Westbourne Medium 85% 65% 0% NA NA 
Moose Jaw River near Burdick Medium 87% 67% 0% NA NA 
North Saskatchewan River at PA* Medium 97% 91% 50% NA NA 
North Saskatchewan River near DC* Medium 91% 75% 100% NA NA 
Qu'appelle River near Lumsden Medium 73% 73% 33% 0% NA 
South Saskatchewan River at SA* Medium 92% 80% 17% NA NA 
Swift Current Creek  Medium 87% 57% NA NA NA 
Assiniboine River at Kamsack Medium 91% 67% 50% NA NA 
Blindman River near Blackfalds Medium 79% 72% 0% NA NA 
Battle River near Ponoka Medium 68% 78% 38% 0% 0% 
Red Deer River at Drumheller Medium 88% 76% NA NA NA 
Medicine River near Eckville Medium 92% 94% 93% 50% NA 
Milk River at Milk River Medium 90% 52% 63% NA NA 
Red Deer River near Bindloss Medium 87% 68% NA NA NA 
South Saskatchewan River at MH* Medium 85% 80% 0% NA NA 
Crowsnest River at Frank High 85% 71% 50% NA NA 
Bow River at Calgary High 92% 84% 29% 0% 0% 
Oldman River near Lethbridge High 77% 79% NA NA NA 
Highwood River  High 85% 72% 33% NA NA 
Belly River  High 83% 70% 33% NA NA 
St. Mary River  High 81% 78% 40% NA NA 

Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 
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The following Table 7.21 shows the average drought level forecasts for the testing phase of the 

LSTM model. 

 Table 7.21  Average Drought Level forecast – Monthly LSTM (Testing) 

 

 

 

 

When considering the average drought level forecast, the LSTM model performs well in accurately 

predicting no drought (D0) levels. However, its accuracy decreases for higher severity drought 

levels such as moderate drought (D2), severe drought (D3) and extreme severe drought (D4) across 

all three types of rivers. This suggests that while the model is effective at identifying the absence 

of drought, it faces challenges in accurately predicting more severe drought conditions. 

Even though the model shows high accuracy during the training phase, it does not perform as well 

on the testing data, particularly struggling to capture more severe drought levels. This is a sign of 

overfitting of the model. Overfitting occurs when the model becomes too complex and learns the 

specific details and noise within the training data, rather than capturing the underlying patterns 

that are generalizable to new, unseen data. This can happen due to several reasons, such as an 

complexity of the data series or insufficient training data. As a result, the model is unable to 

accurately identify the less frequently occurring, more complex patterns, such as severe and 

extreme-severe drought levels, due to insufficient data. The limited dataset may not provide 

enough examples for the model to learn all the patterns effectively.  

Transitioning from monthly to weekly data could help address this issue by offering a more 

detailed and refined view of temporal variations within the hydrological system, potentially 

allowing the model to capture these complex patterns more accurately. Weekly data may allow the 

model to detect short-term fluctuations and trends that monthly data might miss, potentially 

improving its ability to predict extreme drought conditions. Therefore, the same LSTM model was 

trained using the weekly data. The predicted weekly data was converted to monthly data by 

aggregating the values of every four weeks to represent one month. 

River flow rate 
capacity per unit 

area 

Average Mismatch Accuracy for Drought Level 
Forecast (%) 

D0 D1 D2 D3 D4 
Low flow 88% 60% 25% NA NA 
Medium flow 87% 74% 37% 17% 0% 
High flow 84% 76% 37% 0% 0% 
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7.4 Long Short-Term Memory Model for Weekly data 

 

7.4.1 Evaluation of Results of LSTM obtained during the Training Phase 

The proposed Long Short-Term Memory Model was applied to each streamflow station to predict 

the value of SDI. Therefore, instead of three-month-long seasonal patterns, 13-week seasonal 

patterns were used to represent the groups. This approach allows for a finer resolution in capturing 

the temporal dependencies and variations within the streamflow data, potentially leading to more 

accurate forecasts of drought levels. The predicted versus actual SDI values were compared using 

MSE and R2, as presented in Table 7.22. This comparison helps assess the accuracy and reliability 

of the model in predicting drought indices across different streamflow stations. 
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       LSTM(Weekly) 

Figure 7.13 Long Short-Term Memory Model for weekly data in East Poplar 
River (Training). 
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Figure 7.14 Long Short-Term Memory Model for weekly data in 
South Saskatchewan River (Training). 

Figure 7.15 Long Short-Term Memory Model for weekly data in Highwood 
River (Training). 
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Table 7.22 Summary statistics for Long Short-Term Memory Model for weekly data (Training). 

Streamflow station name River flow capacity 
(flow/unit area) MSE R2 

Pembina River at Neche Low 0.0010 0.99943 

Souris River near Sherwood Low 0.02067 0.97900 

East Poplar River at International Boundary Low 0.01725 0.98041 

Little Saskatchewan River near Minnedosa Medium 0.01106 0.98863 

Whitemud River at Westbourne Medium 0.01930 0.97959 

Moose Jaw River near Burdick Medium 0.02863 0.97158 

North Saskatchewan River at Prince Albert Medium 0.02364 0.97424 

North Saskatchewan River near Deer Creek Medium 0.02685 0.96977 

Qu'appelle River near Lumsden Medium 0.02281 0.97740 

South Saskatchewan River at Saskatoon Medium 0.02738 0.97370 

Swift Current Creek below Rock Creek Medium 0.03832 0.95619 

Assiniboine River at Kamsack Medium 0.00627 0.99890 

Blindman River near Blackfalds Medium 0.01984 0.97724 

Battle River near Ponoka Medium 0.01290 0.98575 

Red Deer River at Drumheller Medium 0.02109 0.97954 

Medicine River near Eckville Medium 0.03752 0.96277 

Milk River at Milk River Medium 0.01781 0.98155 

Red Deer River near Bindloss Medium 0.02203 0.98352 

South Saskatchewan River at Medicine Hat Medium 0.03026 0.96908 

Crowsnest River at Frank High 0.01653 0.98373 

Bow River at Calgary High 0.02003 0.98015 

Oldman River near Lethbridge High 0.01638 0.98235 

Highwood River near the Mouth High 0.01930 0.97959 

Belly River near Mountain View High 0.02050 0.97769 

St. Mary River at International Boundary High 0.01978 0.98052 

 

The training results using weekly data show an average R2 of 0.98, which is slightly lower than 

the R2 of 0.987 achieved with the monthly data. However, this difference is minimal and can be 

considered almost similar. When considering the forecast accuracy for each drought level, the 
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weekly data results align closely with the monthly data, maintaining high accuracy in drought level 

forecast.  

 Table 7.23 Mismatch accuracy of weekly LSTM Model forecast results for different drought levels 
(Training) 

Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 

 

Streamflow station name 
River flow 
capacity 

(flow/unit area) 

Drought Level 
Forecast Average (%) 

D0 D1 D2 D3 D4 

Pembina River at Neche Low 92% 98% 76% 100% 100% 

Souris River near Sherwood Low 93% 95% 91% 75% 100% 

East Poplar River  Low 95% 95% 100% NA 100% 

Little Saskatchewan River Medium 93% 98% 85% 80% NA 

Whitemud River at Westbourne Medium 93% 98% 100% 67% NA 

Moose Jaw River near Burdick Medium 93% 91% 88% 100% 100% 

North Saskatchewan River at PA* Medium 89% 98% 85% 75% NA 

North Saskatchewan River near DC* Medium 94% 98% 92% 75% NA 

Qu'appelle River near Lumsden Medium 95% 95% 88% NA NA 

South Saskatchewan River at SA* Medium 100% 99% 86% 89% NA 

Swift Current Creek  Medium 90% 98% 75% 100% 100% 

Assiniboine River at Kamsack Medium 94% 94% 78% 100% 100% 

Blindman River near Blackfalds Medium 91% 98% 89% 100% 100% 

Battle River near Ponoka Medium 94% 98% 91% 100% NA 

Red Deer River at Drumheller Medium 93% 92% 89% 60% NA 

Medicine River near Eckville Medium 92% 94% 93% 88% NA 

Milk River at Milk River Medium 86% 97% 70% 75% NA 

Red Deer River near Bindloss Medium 91% 98% 87% 60% NA 

South Saskatchewan River at MH* Medium 93% 98% 100% 100% 50% 

Crowsnest River at Frank High 88% 96% 100% 100% NA 

Bow River at Calgary High 88% 98% 85% 100% 100% 

Oldman River near Lethbridge High 93% 98% 80% 88% NA 

Highwood River  High 95% 98% 100% 75% NA 

Belly River  High 92% 98% 85% 100% NA 

St. Mary River  High 94% 98% 90% 100% NA 
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The drought level forecast indicates that the LSTM model trained on weekly data can capture the 

drought levels effectively as well as the training phase of LSTM for monthly data. Then the trained 

model was applied to the testing phase to evaluate the model performance on the testing data set. 

 Table 7.24 Average mismatch accuracy of Drought Level forecasts - Weekly LSTM (Training) 

 

 

 

 

When considering training, the weekly LSTM model performs well in accurately predicting all 

drought levels, with all forecast averages exceeding 85% accuracy. This indicates the ability of the 

model to capture and accurately represent complex drought patterns, highlighting its effectiveness 

in understanding and forecasting varying drought conditions. The trained model was then 

evaluated on testing data to determine the model performance on unseen data. 

 

7.4.2 Evaluation of Results of LSTM obtained during the Testing Phase 

The trained model was then applied to predict the test data. As weekly data were used to train and 

predict, the monthly value was obtained by averaging four consecutive weekly values. This 

approach ensures that the model captures finer temporal patterns, leading to more accurate monthly 

forecasts. The predicted versus actual SDI were compared using MSE and R2, as shown in Table 

7.25.  

 

 

 

 

 

 

River flow rate 
capacity per unit 

area 

Average Mismatch Accuracy of Drought Level 
Forecast (%) 

D0 D1 D2 D3 D4 
Low flow 93% 96% 89% 88% 100% 
Medium flow 93% 97% 87% 85% 90% 
High flow 92% 98% 90% 94% 100% 
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       Observed 
       LSTM (Weekly) 

Figure 7.16 Long Short-Term Memory Model for weekly data in East Poplar River 
(Testing). 

Figure 7.17 Long Short-Term Memory Model for weekly data in South 
Saskatchewan River (Testing). 
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When considering the forecast accuracy of testing phase with the weekly data, the LSTM model 

shows the capability of capturing both short-term and long-term relationships as the extended 

weekly patterns can uncover hidden dependencies within the data, leading to more accurate 

forecasts as well as in training phase.  

Considering the testing results of both the monthly and weekly LSTM models, it is clear that the 

weekly LSTM provides superior forecasting performance compared to the monthly LSTM. This 

improvement can be attributed to the expanded pattern provided by the weekly data, which allows 

the LSTM model to capture finer details and nuances in the patterns. As a result, the model gains 

a better understanding of the data, leading to more accurate predictions. 

Table 7.25 shows the summary of statistical measurements, including MSE and R² values, for all 

25 watersheds. 

 

       Observed 
       LSTM (Weekly 

Figure 7.18 Long Short-Term Memory Model for weekly data in Highwood 
River (Testing). 
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Table 7.25 Summary statistics for Long Short-Term Memory Model for weekly data (Testing data) 

Streamflow station name River flow capacity 
(flow/unit area) MSE  R2 

Pembina River at Neche Low 0.02554 0.95962 

Souris River near Sherwood Low 0.03411 0.95724 

East Poplar River at International Boundary Low 0.06555 0.87732 

Little Saskatchewan River near Minnedosa Medium 0.06878 0.90207 

Whitemud River at Westbourne Medium 0.05355 0.93685 

Moose Jaw River near Burdick Medium 0.08090 0.92969 

North Saskatchewan River at Prince Albert Medium 0.04346 0.94384 

North Saskatchewan River near Deer Creek Medium 0.03192 0.95590 

Qu'appelle River near Lumsden Medium 0.07684 0.92439 

South Saskatchewan River at Saskatoon Medium 0.03054 0.95981 

Swift Current Creek below Rock Creek Medium 0.08636 0.84334 

Assiniboine River at Kamsack Medium 0.00871 0.99926 

Blindman River near Blackfalds Medium 0.14615 0.78890 

Battle River near Ponoka Medium 0.10274 0.91130 

Red Deer River at Drumheller Medium 0.02480 0.96281 

Medicine River near Eckville Medium 0.08101 0.86588 

Milk River at Milk River Medium 0.03908 0.95470 

Red Deer River near Bindloss Medium 0.02768 0.96946 

South Saskatchewan River at Medicine Hat Medium 0.06853 0.89240 

Crowsnest River at Frank High 0.02154 0.97837 

Bow River at Calgary High 0.06984 0.93931 

Oldman River near Lethbridge High 0.05927 0.88773 

Highwood River near the Mouth High 0.02575 0.97058 

Belly River near Mountain View High 0.03619 0.96182 

St. Mary River at International Boundary High 0.02487 0.97458 

 

The test results reveal significantly higher forecast accuracy (Table 7.25) for the weekly LSTM 

model with an R2 of 0.93, compared to an R2 of 0.56. for the monthly LSTM model. This suggests 
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that using weekly data has substantially improved the performance of the model in the testing 

phase.  

Table 7.26 Mismatch accuracy of weekly LSTM Model forecast results for different drought levels 
(Testing)  

Streamflow station name River 
flow 

Drought Level Forecast Averages (%) 

D0 D1 D2 D3 D4 

Pembina River at Neche Low 98% 91% NA NA NA 

Souris River near Sherwood Low 98% 80% 100% NA NA 

East Poplar River  Low 95% 95% 100% NA 100% 

Little Saskatchewan River Medium 97% 75% NA NA NA 

Whitemud River at Westbourne Medium 96% 100% NA NA NA 

Moose Jaw River near Burdick Medium 93% 88% 73% NA NA 

North Saskatchewan River at PA* Medium 94% 96% 100% NA NA 

North Saskatchewan River near DC* Medium 100% 93% 85% 88% NA 

Qu'appelle River near Lumsden Medium 100% 97% 100% 90% NA 

South Saskatchewan River at SA* Medium 100% 95% 100% NA NA 

Swift Current Creek  Medium 100% 80% NA NA NA 

Assiniboine River at Kamsack Medium 94% 94% 78% 100% 100% 

Blindman River near Blackfalds Medium 86% 85% 100% NA NA 

Battle River near Ponoka Medium 95% 100% 71% 67% NA 

Red Deer River at Drumheller Medium 97% 100% NA NA NA 

Medicine River near Eckville Medium 79% 94% NA NA NA 

Milk River at Milk River Medium 97% 100% 100% NA NA 

Red Deer River near Bindloss Medium 94% 100% NA NA NA 

South Saskatchewan River at MH* Medium 97% 90% NA NA NA 

Crowsnest River at Frank High 100% 85% 80% NA NA 

Bow River at Calgary High 100% 93% 85% NA 100% 

Oldman River near Lethbridge High 93% 96% NA NA NA 

Highwood River  High 97% 92% 78% NA NA 

Belly River  High 100% 93% 93% 90% NA 

St. Mary River  High 97% 92% 100% NA NA 
Note: PA* = Prince Albert, DC* = Deer Creek, SA* = Saskatoon, MH* = Medicine Hat, and NA = No 
Available Occurrences. 

 
The following Table 7.27 summarizes the Average Drought Level forecasts. This summary 

provides an overview of how well the model predicts different drought levels. 
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 Table 7.27 Drought level forecast averages – Weekly LSTM (Testing) 

 

 

 

 

When considering the average drought level forecast, the weekly LSTM model performs 

exceptionally well, with all drought level forecasts achieving more than 85% accuracy. Notably, 

the model performs particularly well in predicting extreme drought levels, indicating its strong 

capability in handling severe drought conditions. This demonstrates that the weekly LSTM model 

is superior in forecasting seasonal drought patterns compared to all other models because it 

effectively captures the complexity of drought conditions with high accuracy. 

 

7.5 Comparison between the Hidden Markov model and LSTM models  

Table 7.28 summarizes the statistical evaluation and compares how the Hidden Markov Model, 

LSTM model for the monthly data, and LSTM model for the weekly data handle the complexity 

of drought data. The MSE and R2 values for both the training and testing phases for each model 

are indicated.  

After predicting the values of the monthly SDI, the drought index for each group was calculated 

as the average of the SDI of relevant months within the group. The actual drought levels were then 

compared to the predicted drought levels of the group using the mismatch evaluation method to 

assess the accuracy of each model. This provides a qualitative evaluation of the model forecasts 

by assessing how well each model captures drought conditions. Table 7.29 below shows this 

qualitative evaluation of the drought level forecast for each model.  

River flow rate 
capacity per unit 

area  

Average Mismatch Accuracy of Drought Level 
forecast (%) 

D0 D1 D2 D3 D4 
Low flow 97% 89% 100% NA 100% 
Medium flow 95% 93% NA 86% 100% 
High flow 98% 92% 87% 90% 100% 
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Table 7.28 Summary statistics for the training and testing phases of each model. 

Streamflow station name 
Hidden Markov Model LSTM - Monthly  LSTM - Weekly  

Training Testing Training Testing  Training Testing  
MSE  R2  MSE  R2  MSE  R2  MSE  R2  MSE  R2  MSE  R2  

Pembina River at Neche+ 0.37 0.68 0.58 0.54 0.01 0.99 0.33 0.52 0.01 1.00 0.03 0.96 
Souris River near Sherwood+ 0.47 0.64 0.57 0.38 0.02 0.99 0.61 0.34 0.02 0.98 0.03 0.96 
East Poplar River at International Boundary+ 0.45 0.60 1.08 0.46 0.03 0.98 0.57 0.34 0.02 0.98 0.07 0.88 
Little Saskatchewan River near Minnedosa++ 0.37 0.68 1.06 0.45 0.01 0.99 0.32 0.66 0.01 0.99 0.07 0.90 
Whitemud River at Westbourne++ 0.35 0.71 1.06 0.37 0.01 0.99 0.41 0.58 0.02 0.98 0.05 0.94 
Moose Jaw River near Burdick++ 0.37 0.69 1.04 0.37 0.01 0.99 0.80 0.25 0.03 0.97 0.08 0.93 
North Saskatchewan River at Prince Albert++ 0.28 0.72 0.59 0.60 0.01 0.99 0.23 0.75 0.02 0.97 0.04 0.94 
North Saskatchewan River near Deer Creek++ 0.20 0.81 0.57 0.69 0.01 0.99 0.34 0.66 0.03 0.97 0.03 0.96 
Qu'appelle River near Lumsden++ 0.21 0.81 1.43 0.46 0.02 0.98 0.60 0.49 0.02 0.98 0.08 0.92 
South Saskatchewan River at Saskatoon++ 0.36 0.70 1.46 0.40 0.01 0.99 0.66 0.36 0.03 0.97 0.03 0.96 
Swift Current Creek below Rock Creek++ 0.45 0.63 1.85 0.27 0.01 0.99 0.71 0.30 0.04 0.96 0.09 0.84 
Assiniboine River at Kamsack++ 0.35 0.70 1.03 0.52 0.01 0.99 0.25 0.74 0.01 1.00 0.01 1.00 
Blindman River near Blackfalds++ 0.34 0.71 1.26 0.32 0.01 0.99 0.46 0.44 0.02 0.98 0.15 0.79 
Battle River near Ponoka++ 0.59 0.50 1.61 0.43 0.01 0.99 0.62 0.50 0.01 0.99 0.10 0.91 
Red Deer River at Drumheller++ 0.38 0.68 1.19 0.39 0.01 0.99 0.31 0.61 0.02 0.98 0.02 0.96 
Medicine River near Eckville++ 0.55 0.55 1.34 0.36 0.02 0.99 0.49 0.48 0.04 0.96 0.08 0.87 
Milk River at Milk River++ 0.16 0.85 1.23 0.41 0.02 0.98 0.24 0.74 0.02 0.98 0.04 0.95 
Red Deer River near Bindloss++ 0.32 0.72 1.17 0.48 0.01 0.99 0.33 0.60 0.02 0.98 0.03 0.97 
South Saskatchewan River at Medicine Hat++ 0.65 0.49 1.42 0.31 0.01 0.99 0.57 0.32 0.03 0.97 0.07 0.89 
Crowsnest River at Frank+++ 0.37 0.67 0.64 0.60 0.01 0.99 0.21 0.79 0.02 0.98 0.02 0.98 
Bow River at Calgary+++ 0.17 0.80 0.59 0.64 0.01 0.99 0.33 0.72 0.02 0.98 0.07 0.94 
Oldman River near Lethbridge+++ 0.38 0.68 0.75 0.52 0.01 0.99 0.34 0.48 0.02 0.98 0.06 0.89 
Highwood River near the Mouth+++ 0.20 0.81 0.65 0.67 0.02 0.98 0.20 0.79 0.02 0.98 0.03 0.97 
Belly River near Mountain View+++ 0.29 0.74 0.84 0.59 0.01 0.99 0.28 0.76 0.02 0.98 0.04 0.96 
St. Mary River at International Boundary+++ 0.30 0.73 1.04 0.44 0.02 0.99 0.31 0.67 0.02 0.98 0.02 0.97 
NOTE: + indicates low flow; ++ medium flow, and +++ high flow rivers.  
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Table 7.29 Drought forecast results of the training and testing phases of each model. 

Streamflow station name 
 Discrete 

Markov Model 
Forecast 

Hidden Markov Model LSTM - Monthly data LSTM - Weekly data 
Forecast 
(Train) 

Forecast 
(Test) 

Forecast 
(Train) 

Forecast 
(Test) 

Forecast 
(Train) 

Forecast  
(Test) 

Pembina River at Neche+ 61% 98% 81% 95% 80% 96% 95% 
Souris River near Sherwood+ 49% 72% 80% 96% 75% 97% 95% 
East Poplar River at International Boundary+ 43% 81% 73% 95% 81% 95% 86% 
Little Saskatchewan River near Minnedosa++ 80% 68% 73% 96% 92% 96% 89% 
Whitemud River at Westbourne++ 61% 69% 71% 97% 78% 98% 97% 
Moose Jaw River near Burdick++ 73% 65% 63% 95% 78% 95% 90% 
North Saskatchewan River at Prince Albert++ 63% 79% 73% 94% 93% 94% 95% 
North Saskatchewan River near Deer Creek++ 53% 65% 59% 98% 85% 98% 95% 
Qu'appelle River near Lumsden++ 56% 80% 75% 94% 69% 96% 94% 
South Saskatchewan River at Saskatoon++ 69% 65% 85% 97% 81% 97% 99% 
Swift Current Creek below Rock Creek++ 71% 67% 85% 96% 80% 96% 95% 
Assiniboine River at Kamsack++ 73% 71% 76% 96% 85% 97% 95% 
Blindman River near Blackfalds++ 51% 77% 76% 96% 75% 97% 90% 
Battle River near Ponoka++ 49% 69% 68% 99% 64% 99% 93% 
Red Deer River at Drumheller++ 75% 75% 69% 94% 83% 98% 98% 
Medicine River near Eckville++ 73% 78% 68% 95% 83% 97% 87% 
Milk River at Milk River++ 49% 85% 58% 89% 73% 89% 98% 
Red Deer River near Bindloss++ 71% 85% 71% 93% 78% 98% 97% 
South Saskatchewan River at Medicine Hat++ 61% 69% 64% 98% 81% 98% 94% 
Crowsnest River at Frank+++ 55% 63% 78% 96% 75% 97% 92% 
Bow River at Calgary+++ 49% 65% 75% 95% 78% 98% 91% 
Oldman River near Lethbridge+++ 43% 77% 81% 96% 78% 97% 94% 
Highwood River near the Mouth+++ 78% 82% 68% 97% 76% 97% 93% 
Belly River near Mountain View+++ 65% 82% 61% 96% 71% 97% 95% 
St. Mary River at International Boundary+++ 57% 73% 66% 96% 77% 97% 95% 
NOTE: + indicates low flow; ++ medium flow, and +++ high flow rivers.  
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The following discussions are made according to the summarized results provided by all four 

models during the training and testing phases. 

The Discrete Markov model provides better results for high and medium-flow rivers compared to 

low-flow rivers. This suggests that while the model performs well in predicting drought conditions 

for rivers with higher or more consistent flow, it faces challenges with the variability and 

complexity of patterns often associated with low-flow rivers. As a solution to address these 

limitations, the Hidden Markov Model (HMM) was applied as it is designed to better capture more 

complex patterns in the data using emission matrix and it can understand the underlying hidden 

states (underline drought levels) using transition matrix. 

From the summary results of the Hidden Markov Model, it is apparent that the model performs 

well for low-flow rivers compared to medium and high-flow rivers during the training phase. 

However, during the testing phase, the model demonstrates higher accuracies in predicting both 

no drought (D0) and extreme severe drought (D4) across all flow categories (low-, medium-, and 

high-flow rivers. Plus, for intermediate drought levels, the Hidden Markov Model did not yield 

good results. This limitation arises because the model focuses on identifying hidden states and 

making forecasts based on the extreme values of each drought level (each hidden state).  

To address this limitation and capture the more complex relationships within seasonal patterns, the 

LSTM model can be utilized. Unlike the Markov Models, the LSTM model can account for both 

long term and short-term temporal dependencies and variations, offering a more comprehensive 

approach to predicting a broader range of drought conditions.  

First, the LSTM model was applied using monthly data, and it achieved highly accurate results 

during the training phase for all low-, medium-, and high-flow rivers. However, during the testing 

phase, the model could primarily predict lower drought levels, such as no drought (D0) and mild 

drought (D1), with considerable accuracy. However, it struggled to accurately predict more severe 

drought levels for all types of low-, medium-, and high-flow rivers. A reason for such an issue is 

due to a lack of sufficient data to identify the complex hidden relationships within the data. To 

address this issue, the same LSTM model was applied to weekly data instead of monthly data. This 

approach aimed to expand the distribution and provide a more detailed view of temporal variations, 

thereby improving the ability of the model to capture and predict a broader range of drought levels, 

including more severe conditions. 
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The LSTM model using weekly data yields equally good results, with average drought level 

forecast accuracy exceeding 85% for both the training and testing phases across all low-flow, 

medium-flow, and high-flow rivers. This consistency indicates that the LSTM model trained on 

weekly data effectively captures the complex patterns and dependencies across different river flow 

conditions, making it a successful tool for predicting droughts. 

Drought data are inherently complex due to their intricate patterns and variability. This complexity 

makes accurate forecast challenging, as it requires capturing subtle and often non-linear 

relationships within the data. Compared to the Discrete Markov model, the Hidden Markov Model, 

and the LSTM model; the LSTM model delivered the highest accuracy in predicting drought data. 

This superior performance highlights the LSTM unique ability of the model to effectively capture 

and model complex patterns within drought data. Its advanced architecture allows it to learn both 

short-term and long-term dependencies, making it particularly adept at handling the intricate 

temporal dynamics of streamflow patterns. As a result, LSTM models demonstrate a clear 

advantage in accuracy for streamflow forecasts, showcasing their strength in dealing with 

sequential data. 

 

7.5.1 Evaluation of Reliability of LSTM Model 

Unlike traditional models that struggle to capture complex, nonlinear patterns, LSTM networks 

can learn to recognize and remember relevant past information, allowing them to make more 

accurate forecasts. Several key advantages of the LSTM are presented as follows, 

1. Capture Long-Term Dependencies: LSTMs are designed to retain information over long 

sequences, making them effective at learning and remembering long-term dependencies. 

2. Adapt to Complex Patterns: The model analyse temporal patterns through three gates in 

order to identify the complex dependencies within the data. 

3. Improved Performance in Sequence Forecast: Due to their ability to learn both short term 

and long-term patterns, LSTMs provide better performance in sequence forecast tasks. 

Therefore, the LSTM- model based on weekly data developed in this thesis were selected as the 

best models for seasonal drought pattern forecasting.  
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8 Chapter VIII: Conclusion and Recommendations 
 

 

8.1 Conclusions  

This study has investigated the concept of grouping streamflow data based on similar behaviours 

and predicting hydrological droughts based on such recognized patterns or groups within 

streamflow data. Entropy calculations were employed to identify similar behaviours and determine 

the optimal way to group the data. The characteristics of such groups were analyzed as seasonal 

patterns using the Moving Average. Such seasonal patterns were clustered using K-means 

clustering into different drought levels (namely: no drought, mild drought, moderate drought, 

severe drought and extreme severe droughts). After determining the drought levels of seasonal 

patterns, such recognized patterns were applied to three different models for drought level forecast 

such as the Discrete Markov Model, the Hidden Markov Model, and the LSTM model. For the 

evaluation of models for their suitability in drought forecast, the study involved streamflow data 

sets from 25 watersheds prone to drought in the driest part of Canada.  

All three models; the Discrete Markov Model, the Hidden Markov Model, and the LSTM model 

offer distinct advantages and disadvantages. Each model has its strengths, such as the simplicity 

and interpretability of the Discrete Markov Models or the ability to handle hidden states in the 

Hidden Markov Model. However, the LSTM model stands out with superior overall results. The 

LSTM model excels in capturing complex temporal patterns and long-term dependencies, making 

it the most effective for accurately predicting streamflow data in this study. Its advanced 

architecture allows it to handle intricate variations and dependencies, leading to the most reliable 

forecasting performance among the models evaluated. 
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8.2 Forecasting Seasonal Drought Pattern using Discrete Markov Model 

The Discrete Markov Model was used to predict the drought level based on the streamflow drought 

index of each seasonal pattern or group. In this approach, forecasts were made by determining the 

most probable next drought level given the current drought level through a transition matrix.  The 

results of the model indicate that it forecasts drought levels more accurate for medium flow rivers. 

This improved performance is largely due to the repeating patterns observed in these rivers. The 

Markov Model, which excels in understanding transitions between states based on historical data, 

benefits from the regularity of these patterns. The consistent and predictable nature of medium 

flow rivers allows the model to better grasp the underlying process and make more precise 

forecasts. Consequently, the ability of the model to accurately predict drought levels in medium 

flow rivers is enhanced by the stable and repetitive flow characteristics that align well with the 

probabilistic approach of the model. 

However, the transition matrix only indicates the likelihood of different future drought levels based 

on the known current drought level. By predicting only the highest probable drought level, the 

model disregards other possible scenarios that, while less likely, could still occur. This approach 

does not account for uncertainty or variability in forecasts. It may miss out on less likely but 

significant drought levels that could have substantial impacts. Ignoring such likelihoods of 

occurrences can lead to a lack of preparedness for less probable but possible drought events. 

As a solution, instead of relying solely on a univariate dataset like streamflow, incorporating 

additional parameters such as precipitation and soil moisture levels can enhance the predictive 

capability of the model. Including such additional factors provides a more comprehensive view of 

the hydrological system and improves the ability of the model to account for various scenarios and 

uncertainties. 

Additionally, the transition matrices could be expanded to more advanced forms to better capture 

the behaviour of each seasonal pattern. Incorporating other statistical measures, such as variation 

and skewness within the seasonal patterns, can provide a more nuanced understanding of the data. 

These measures help in identifying and modelling the subtle differences and shifts in drought 

conditions, leading to more accurate and comprehensive forecasts. By integrating such advanced 

statistical techniques, the model can better account for the complexities and variability within 

seasonal patterns. 
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8.3 Forecasting Seasonal Drought Pattern using Hidden Markov Model 

While comparing the summarized statistics, it became evident that the Hidden Markov Model 

(HMM) primarily focuses on predicting the hidden states of the observations rather than the actual 

observations themselves during the training phase. A hidden state in an HMM is an internal, 

unobservable condition or state that influences the observable data. Although these hidden states 

are not directly observed, they represent underlying processes or patterns that affect the observable 

outcomes. 

The training process utilizes the Viterbi algorithm, which is designed to identify the most probable 

sequence of hidden states that best explains the observed data. This algorithm emphasizes 

uncovering the underlying dynamics that drive the observable outcomes rather than directly 

predicting the specific values of the observations. Hidden states play a crucial role in this process 

by representing the internal conditions that influence the data, and the model captures the 

transitions between these states as well as their impact on the observed data through emission 

probabilities. 

In the testing phase, the Hidden Markov Model provide estimates of future seasonal patterns based 

on such states. The results from the Hidden Markov Model (HMM) demonstrate its capability to 

effectively forecast high variability in streamflow data, yielding better performance for both low 

flow and high flow rivers. The model leverages extreme values identified in each hidden state to 

predict drought patterns. However, this approach can result in forecasts that are more extreme than 

the actual observed outcomes. The strength of HMM lies in its ability to capture and predict the 

complex dynamics and variability within the data, but this sensitivity to extreme values can lead 

to forecasts that exaggerate the severity of drought conditions compared to the real data. This 

tendency can be advantageous for disaster management, as it often predicts more extreme 

scenarios, potentially providing a more cautious approach to risk assessment and management. 

The behaviour of the model rises from its tendency to predict observations based on the extreme 

values associated with the hidden states. By focusing on such extremes, the HMM prioritize 

scenarios that represent the worst-case conditions, which can be useful for planning and 

preparedness. However, this approach also means that the model may not accurately capture the 

more moderate, typical observations, leading to forecasts that skew towards the extremes of the 

drought levels. 
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The model performed better for low-flow rivers during the training phase, suggesting that it is 

more effective at identifying the hidden states associated with highly variable distributions. 

However, in the testing phase, the HMM showed improved performance for all low-flow, medium-

flow and high-flow rivers. This indicates that while the model may have initially excelled at 

learning patterns from the more complex flow rivers, it ultimately generalized better to the 

different types of rivers when applied to new data. This shift in performance highlights the 

capability of the model to adapt and provide useful forecasts even for more complex scenarios. 

 

8.4 Forecasting Seasonal Drought Pattern using the LSTM Model 

Overall, the LSTM model demonstrated significantly higher accuracy compared to statistical 

models, such as the Discrete Markov Models and Hidden Markov Models. This superior 

performance is attributed to the advanced ability of LSTM to capture both short-term and long-

term dependencies within the data, as well as its capacity to handle complex temporal patterns and 

variations. While the statistical models provide valuable insights, their more simplistic approach 

and reliance on discrete state transitions or aggregated data often limit their predictive accuracy.  

The LSTM model produced similar results for the training phase when using both monthly and 

weekly data but exhibited differing performance in the testing phase. During training, the ability 

of the model to fit the data was comparable because it learned the underlying patterns effectively 

in both scenarios.  

The LSTM model ultimately provided the most accurate forecasts for drought patterns due to its 

ability to capture both long-term and short-term dependencies in the data. By effectively learning 

from these temporal relationships, the LSTM model achieved superior results in predicting drought 

conditions. The weekly data-based LSTM model delivered the best performance, as the finer 

granularity of weekly data allowed the model to identify more detailed and refined patterns in 

drought conditions. This expanded input enabled the model to discern subtle variations and trends 

that were less apparent with monthly data, enhancing its overall forecasting accuracy.  This arises 

because the weekly data, with its finer temporal resolution, captures more detailed and frequent 

variations in the streamflow data. This granularity allows the LSTM model to learn and generalize 

complex, short-term patterns more effectively. In contrast, the monthly data aggregates 
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observations over a longer period, potentially smoothing out critical short-term fluctuations and 

reducing the ability of the model to capture and predict these nuances. 

 

8.5 Limitations of LSTM Models 

The structure of the developed LSTM model is specifically suited for drought forecast in rivers 

within the Palliser Triangle area. As a result, for watersheds in other regions or responses to 

significant changes within the Palliser Triangle, such as urbanization or deforestation, the current 

model structure may not be appropriate. Therefore, it is crucial to adapt and reconstruct the LSTM 

model to account for these varying conditions and ensure its effectiveness across different 

environments and scenarios. 

 

8.6 Recommendations for future works 

It should be noted that this study is based on specific model architectures. To achieve more accurate 

and reliable results, future research should consider exploring several additional concepts. 

1. Utilize Multivariate Models: As this study only used streamflow data, it is recommended 

to incorporate multiple variables such as precipitation, soil moisture and temperature data 

to capture a more comprehensive view of the factors influencing drought conditions. This 

approach especially could be helpful for the Discrete Markov Model. 

 

2. Explore Hybrid and Ensemble Models: This study applied three different models separately 

but combining those modelling approaches to leverage the strengths of various techniques 

can improve forecast accuracy. 

 

3. Investigate Different Lengths of Seasonal Patterns: In this study, only similar-length 

segments were considered for simplicity. But with climate change, the seasons have varied 

with different durations and lengths. Based on such an observation, it is recommended to 

experiment with seasonal patterns of varying lengths to capture a broader range of seasonal 

variations. 
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10 APPENDIX – A  
Infilling of the Missing Data 

This appendix also demonstrates that the filled data for the selected 25 streamflow stations are 

within the 95% confidence boundary, ensuring their reliability for further analysis. 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Filling North Saskatchewan River at Prince Albert station data using North Saskatchewan 
River near Deer Creek station data. 
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Figure A.2 Filling South Saskatchewan River at Saskatoon station data using South Saskatchewan 
River at St. Louis station data. 



155 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2010, Feb 2017, August

St
re

am
flo

w
 (m

3/
s)

Month

Filling missing data within 95% confident boundary

Upper 95% boundary Mean monthly Streamflow(m3/s)

Lower 95% boundary Filled dataFigure A.3 Filling Whitemud River at Westbourne station data using Pine Creek near 
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Figure A.4 Filling Pembina River at Neche station data using Pembina River near 
Windygates station data. 



156 
 

11 APPENDIX - B 
 

Recognizing Seasonal Drought Patterns  

The following figures show the Rankit comparison plots for normalized data in selected 25 

watersheds, where the Box-Cox transformed data is compared with theoretically normally 

distributed data. This comparison helps in assessing how well the data conforms to a normal 

distribution after the Box-Cox transformation. 

 

 

 

 

 

 

 

Figure B.01 Rankit Normalization Comparison for 
Pembina River at Neche 

Figure B.02 Rankit Normalization Comparison for 
Souris River near Sherwood 

Figure B.04 Rankit Normalization Comparison for 
Little Saskatchewan River near Minnedosa 

Figure B.113 Rankit Normalization Comparison for 
Moose Jaw River near Burdick 
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Figure B.05 Rankit Normalization Comparison for 
Assiniboine River at Kamsack Figure B.06 Rankit Normalization Comparison for 

Battle River near Ponoka 

Figure B.07 Rankit Normalization Comparison for 
Belly River near Mountain View 

Figure B.08 Rankit Normalization Comparison for 
Blindman River near Blackfalds 

Figure B.09 Rankit Normalization Comparison for 
Bow River at Calgary 

Figure B.10 Rankit Normalization Comparison for 
Crowsnest River at Frank 
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Figure B.11 Rankit Normalization Comparison for 
East Poplar River at International Boundary 

Figure B.12 Rankit Normalization Comparison for 
Highwood River near the Mouth 

Figure B.13 Rankit Normalization Comparison for 
Medicine River near Eckville 

Figure B.14 Rankit Normalization Comparison for 
Milk River at Milk River 

Figure B.15 Rankit Normalization Comparison for 
North Saskatchewan River at Prince Albert 

Figure B.16 Rankit Normalization Comparison for 
North Saskatchewan River near Deer Creek 
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Figure B.17 Rankit Normalization Comparison for 
Oldman River near Lethbridge 

Figure B.18 Rankit Normalization Comparison for 
Qu'appelle River near Lumsden 

Figure B.19 Rankit Normalization Comparison for 
Red Deer River at Drumheller 

Figure B.20 Rankit Normalization Comparison for 
Red Deer River near Bindloss 

Figure B.21 Rankit Normalization Comparison for 
South Saskatchewan River at Medicine Hat 

Figure B.22 Rankit Normalization Comparison for 
South Saskatchewan River at Saskatoon 
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Figure B.23 Rankit Normalization Comparison for 
St. Mary River at International Boundary 

Figure B.24 Rankit Normalization Comparison for 
Swift Current Creek below Rock Creek 

Figure B.25 Rankit Normalization Comparison for 
Whitemud River at Westbourne 
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Shannon Entropy Calculations  

The following figures illustrate the entropy calculations conducted in this study. The primary 

objective was to achieve minimal intra-entropy, or entropy within the groups, to ensure that each 

group remains as internally cohesive as possible. Simultaneously, the goal was to maximize inter-

entropy, or entropy among the groups, to ensure that the groups are externally distinguishable from 

one another.  

Intra- and inter-entropy calculations were performed for these different group lengths of 2 months, 

3 months, 4 months, or 6 months based on the Streamflow Drought Index (SDI). The intra-entropy 

was calculated using Shannon Entropy, considering the Drought Level (DL) of each month within 

a group.  

Based on the entropy calculations, it appears that some rivers naturally form 6-month groups, 

resulting in two similar groups per year—typically classified as either wet or dry groups, or more 

specifically as drought and no drought groups. However, since this research focuses exclusively 

on drought conditions, it will prioritize the next optimal entropy calculation results, which 

correspond to 3-month groupings. This choice of 3-month groups divides the hydrological year 

into four distinct seasonal patterns, allowing for a more detailed and focused analysis of drought 

patterns throughout the year. 

 

Figure B.26 Intra and Inter entropy calculation for groups with different lengths for Pembina River at Neche 
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Figure B.29 Intra and Inter entropy calculation for groups with different lengths for Battle River near Ponoka 

0

1

2

3

4

5

6

2 3 4 6

En
tro

py
 (

bi
ts)

Number of months in a group (similar length groups)
Inter Entrophy Intra Entrophy

Figure B.27 Intra and Inter entropy calculation for groups with different length for Souris River near 
Sherwood 
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Figure B.28 Figure 0.24 Intra and Inter entropy calculation for groups with different length for Assiniboine River 
at Kamsack 
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Figure B.30 Intra and Inter entropy calculation for groups with different lengths for Belly River near Mountain View 

 

Figure B.31 Intra and Inter entropy calculation for groups with different lengths for Blindman River near Blackfalds 

 

Figure B.32 Intra and Inter entropy calculation for groups with different lengths for Bow River at Calgary 
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Figure B.33 Intra and Inter entropy calculation for groups with different lengths for Crowsnest River at Frank 

 

Figure B.34 Intra and Inter entropy calculation for groups with different lengths for Little Saskatchewan River near 
Minnedosa 

 

Figure B.35 Intra and Inter entropy calculation for groups with different lengths for Medicine River near Eckville 
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Figure B.36 Intra and Inter entropy calculation for groups with different lengths for Milk River at Milk River 

 

Figure B.37 Intra and Inter entropy calculation for groups with different lengths for Moose Jaw River near Burdick 

 

Figure B.38 Intra and Inter entropy calculation for groups with different lengths for the North Saskatchewan River at 
Prince Albert 
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Figure B.39 Intra and Inter entropy calculation for groups with different lengths for the North Saskatchewan River 
near Deer Creek 

 

Figure B.40 Intra and Inter entropy calculation for groups with different lengths for Oldman River near Lethbridge 

 

Figure B.41 Intra and Inter entropy calculation for groups with different lengths for Qu'Appelle River near Lumsden 
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Figure B.42 Intra and Inter entropy calculation for groups with different lengths for Red Deer River at Drumheller 

 

Figure B.43 Intra and Inter entropy calculation for groups with different lengths for Red Deer River near Bindloss 

 

 

Figure B.45 Intra and Inter entropy calculation for groups with different lengths for the South Saskatchewan River at 
Medicine Hat 
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Figure B.46 Intra and Inter entropy calculation for groups with different lengths for Swift Current Creek below Rock 
Creek 

Figure B.47 Intra and Inter entropy calculation for groups with different lengths for Whitemud River at Westbourne 

 

Moving Average Calculations 

The summarized graph of all 25 watersheds reveals distinct seasonal drought characteristics. On 

average, the months of October, November, and December typically exhibit no drought or mild 

drought conditions. From January to March, the conditions generally remain drought-free. 

However, the period from April to June shows a transition from no drought to more severe drought 

levels, indicating the onset of drier conditions. Conversely, the months from July to September 

display a shift from severe drought back to mild drought conditions, suggesting a gradual easing 

of drought severity as the hydrological year progresses. 
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Figure B.48 Average Monthly streamflow variations for selected 25 watersheds 
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K-means clustering 

The average characteristics of the seasonal patterns are as, Seasonal Pattern 1 is generally 

characterized by mild drought conditions, Seasonal Pattern 2 exhibits no drought, Seasonal Pattern 

3 experiences more severe drought conditions, and Seasonal Pattern 4 returns to a mild drought 

pattern. However, these drought patterns can vary significantly from year to year. To analyze these 

deviations of drought levels within the average patterns, K-means clustering was applied to 

identify distinct clusters within each seasonal pattern. This clustering approach provides a detailed 

analysis of how drought levels can change within a seasonal pattern. The silhouette scores, 

calculated for the 25 watersheds, are shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.49 Silhouette Score for seasonal patterns in Assiniboine River at Kamsack 

Figure B.50 Silhouette Score for seasonal patterns in Belly River near Mountain View 
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Figure B.51 Silhouette Score for seasonal patterns in 
Blindman River near Blackfalds 

Figure B.52 Silhouette Score for seasonal patterns in 
Bow River at Calgary 

Figure B.53 Silhouette Score for seasonal patterns in 
Crowsnest River at Frank 

Figure B.54 Silhouette Score for seasonal patterns in 
Little Saskatchewan River near Minnedosa 

Figure B.55 Silhouette Score for seasonal patterns in 
Medicine River near Eckville 

Figure B.56 Silhouette Score for seasonal 
patterns in Moose Jaw River near Burdick 
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Figure B.58 Silhouette Score for seasonal patterns in 
North Saskatchewan River at Prince Albert 

Figure B.571 Silhouette Score for seasonal patterns in 
North Saskatchewan River near Deer Creek 

Figure B.59 Silhouette Score for seasonal patterns in 
Oldman River near Lethbridge 

Figure B.60 Silhouette Score for seasonal patterns in 
Pembina River at Neche. 

Figure B.61 Silhouette Score for seasonal patterns in 
Red Deer River at Drumheller. 

Figure B.62 Silhouette Score for seasonal patterns in 
Red Deer River near Bindloss. 
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Figure B.63 Silhouette Score for seasonal patterns in 
Qu'appelle River near Lumsden 

Figure B.64 Silhouette Score for seasonal patterns in 
Souris River near Sherwood 

Figure B.65 Silhouette Score for seasonal patterns in 
South Saskatchewan River at Medicine Hat 

Figure B.66 Silhouette Score for seasonal patterns in 
St. Mary River at International Boundary 

Figure B.67 Silhouette Score for seasonal patterns in 
Swift Current Creek below Rock Creek 

Figure B.68 Silhouette Score for seasonal patterns in 
Whitemud River at Westbourne 
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12 APPENDIX - C 
 

Forecasting using Markov Models and LSTM Models 

 

Hidden Markov Model Forecast Results 

 The following figures illustrate the forecast results of the Hidden Markov Model (HMM) for all 

25 watersheds. These figures reveal a consistent trend where the HMM model tends to predict 

values that are either higher or lower than the actual observations. This tendency indicates that the 

model might be overestimating or underestimating the drought levels, leading to a systematic 

deviation from the observed data. This behaviour suggests that while the HMM can identify 

general patterns, it may struggle with accurately capturing the nuances of drought severity, 

resulting in forecasts that are not fully aligned with observed conditions. 

 
Figure C.01 HMM prediction results for 

Pembina River. 
Figure C.02 HMM prediction results for 

Souris River 

Figure C.03 HMM prediction results for 
Assiniboine River 

Figure C.04 HMM prediction results for 
Battle River 
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Figure C.05 HMM prediction results for 
Blindman River 

Figure C.06 HMM prediction results for 
Little Saskatchewan River 

Figure C.09 HMM prediction results for 
Medicine River 

Figure C.08 HMM prediction results for 
Milk River Figure C.07 HMM prediction results for 

Moose Jaw River 

Figure C.10 HMM prediction results for 
North Saskatchewan River 



176 
 

 

 

  

Figure C.11 HMM prediction results for 
North Saskatchewan River near Deer Creek 

Figure C.12 HMM prediction results for 
Qu'appelle River  

Figure C.13 HMM prediction results for 
Red Deer River 

Figure C.14 HMM prediction results for 
Red Deer River 

Figure C.15 HMM prediction results for 
South Saskatchewan River at Medicine Hat 

Figure C.16 HMM prediction results for 
Swift Current Creek 
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Figure C.17 HMM prediction results for 
Whitemud River 

Figure C.18 HMM prediction results for 
Belly River 

Figure C.19 HMM prediction results for 
Crowsnest River 

Figure C.20 HMM prediction results for 
Oldman River 

Figure C.21 HMM prediction results for 
St. Mary River 
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Monthly LSTM Model Forecast Results 

 

The following figures present the monthly LSTM forecast results for the selected 25 watersheds. 

These figures demonstrate that the LSTM model performs better than the HMM model in 

predicting drought levels. The LSTM model's forecasts align more closely with the actual 

observations, indicating a higher accuracy in capturing the nuances of monthly streamflow data. 

This improved performance suggests that the LSTM model is more effective at handling the 

complexities of drought patterns compared to the HMM, providing more reliable and accurate 

forecasts. 

 

 

Figure C.22 Monthly LSTM prediction results for 
Pembina River 

Figure C.23 Monthly LSTM prediction results for 
Souris River 

Figure C.24 Monthly LSTM prediction results for 
Assiniboine River 

Figure C.25 Monthly LSTM prediction results for 
Battle River 
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  Figure C.26 Monthly LSTM prediction results for 
Blindman River 

Figure C.27 Monthly LSTM prediction results for 
Little Saskatchewan River 

Figure C.28 Monthly LSTM prediction results for 
Medicine River 

Figure C.29 Monthly LSTM prediction results for 
Milk River 

Figure C.30 Monthly LSTM prediction results for 
Moose Jaw River 

Figure C.31 Monthly LSTM prediction results for 
North Saskatchewan River at Prince Albert 
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Figure C.32 Monthly LSTM prediction results for 
North Saskatchewan River near Deer Creek 

Figure C.33 Monthly LSTM prediction results for 
Qu'appelle River 

Figure C.34 Monthly LSTM prediction results for 
Red Deer River 

Figure C.35 Monthly LSTM prediction results for 
Red Deer River near Bindloss 

Figure C.36 Monthly LSTM prediction results for 
South Saskatchewan River at Medicine Hat 

Figure C.37 Monthly LSTM prediction results for 
Swift Current Creek 



181 
 

  Figure C.38 Monthly LSTM prediction results for 
Whitemud River 

Figure C.39 Monthly LSTM prediction results for 
Belly River 

Figure C.40 Monthly LSTM prediction results for 
Bow River 

Figure C.41 Monthly LSTM prediction results for 
Crowsnest River 

Figure C.42 Monthly LSTM prediction results for 
Oldman River near Lethbridge 

Figure C.43 Monthly LSTM prediction results for 
St. Mary River at International Boundary 
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Weekly LSTM model forecast results 

The following figures present the weekly LSTM forecast results for 25 selected watersheds. These 

figures demonstrate that the weekly LSTM model outperforms the monthly LSTM model in 

predicting drought levels. The weekly model shows higher accuracy in capturing the nuances and 

variations within the data, indicating that LSTM models benefit from a larger dataset to enhance 

precision. Despite the complexity of the drought data, the weekly LSTM model excels in providing 

accurate forecasts, effectively handling even the most intricate drought patterns. This improvement 

highlights the advantage of using more granular data for better capturing the detailed fluctuations 

in drought conditions. 

 

  

Figure C.44 Weekly LSTM prediction results for 
Pembina River 

Figure C.45 Weekly LSTM prediction results for 
Souris River 

Figure C.46 Weekly LSTM prediction results for 
Assiniboine River 

Figure C.47 Weekly LSTM prediction results for 
Battle River 
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Figure C.48 Weekly LSTM prediction results for 
Blindman River 

Figure C.49 Weekly LSTM prediction results for 
Little Saskatchewan River 

Figure C.50 Weekly LSTM prediction results for 
Medicine River 

Figure C.51 Weekly LSTM prediction results for 
Milk River at Milk River 

Figure C.52 Weekly LSTM prediction results for 
Moose Jaw River 

Figure C.53 Weekly LSTM prediction results for 
North Saskatchewan River at Prince Albert 
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Figure C.54 Weekly LSTM prediction results for 
Qu'appelle River 

Figure C.55 Weekly LSTM prediction results for 
Red Deer River at Drumheller 

Figure C.56 Weekly LSTM prediction results for 
Red Deer River near Bindloss 

Figure C.57 Weekly LSTM prediction results for 
South Saskatchewan River at Medicine Hat 

Figure C.58 Weekly LSTM prediction results for 
Swift Current Creek below Rock Creek 

Figure C.59 Weekly LSTM prediction results for 
Whitemud River at Westbourne 
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Figure C.60 Weekly LSTM prediction results for 
Belly River  

Figure C.61 Weekly LSTM prediction results for 
Bow River 

Figure C.62 Weekly LSTM prediction results for 
Crowsnest River at Frank 

Figure C.63 Weekly LSTM prediction results for 
Oldman River 

Figure C.64 Weekly LSTM prediction results for 
St. Mary River at International Boundary 


