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Abstract 

To reduce fossil fuel consumption, which causes carbon dioxide emissions and global 

warming, renewable energy is gaining popularity. Among various renewable energy sources, wind 

energy is one of the most cost-effective ways to generate electricity. Numerous studies have been 

conducted to improve the performance of wind energy conversion systems (WECS) in various 

aspects. However, traditional control strategies employed in WECS often lead to lower efficiency, 

complicated implementation, complex system modeling, sophisticated drive circuit design, and 

suboptimal responses. This PhD thesis presents a comprehensive exploration of cutting-edge 

techniques for optimizing wind energy conversion systems, unified by the application of a 

proposed multi-agent reinforcement learning (MARL) method. The research is structured around 

three primary objectives, each contributing to the advancement of renewable energy technologies 

through the innovative use of MARL. Firstly, the thesis delves into the control of a neutral point 

clamped (NPC) power converter employed in a direct-drive permanent magnet synchronous 

generator (PMSG)-based WECS. The focus is on enhancing power quality and meeting grid code 

requirements for total harmonic distortion (THD). Traditional controllers like PI often struggle 

with parameter tuning and adaptability to varying operating conditions, resulting in suboptimal 

performance under dynamic and unbalanced scenarios. AI-based approaches, while more adaptive, 

typically require extensive offline training and detailed system modeling, making them less 

practical for real-time applications. The proposed approach eliminates the need for offline training 

and extensive system modeling, distinguishing itself from traditional machine learning (ML), 

neural network-based techniques, and PI-based methods. Through simulations and comparative 

analysis, the effectiveness of the MARL strategy is validated, particularly in handling unbalanced 

voltage sag scenarios. The integration of meta-learning to optimize the discount factor (DF), a vital 

hyperparameter in RL-based approaches, further enhances the adaptability and convergence rate 

of the control system, ensuring power quality. Afterwards, the research addresses the challenges 

in maximum power point tracking (MPPT) for the wind energy conversion systems. Traditional 

methods like Perturb and Observe (P&O) and incremental conductance are known for their slow 

dynamic response and susceptibility to steady-state oscillations around the maximum power point, 

especially under rapidly changing wind conditions. The proposed customized MARL approach 

overcomes these limitations by employing multiple agents that work collaboratively, resulting in 

improved energy output and responsiveness to wind speed variations. The use of a meta-learned 
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discount factor optimizes the MARL algorithm, reducing learning duration and enhancing 

convergence. Extensive simulations and also a 1000W prototype implementation demonstrate the 

MARL strategy's superiority over traditional MPPT methods, confirming its practical benefits and 

reliability in real-world applications. Finally, the thesis explores power prediction and 

management, as well as energy scheduling, in a microgrid (MG) environment. The MG integrates 

renewable energy sources such as wind turbines (WT), photovoltaic (PV) systems, and battery 

energy storage systems (BESS), along with combined cooling, heating, and power (CCHP) units. 

Traditional forecasting methods, such as ARIMA models and simple neural networks, often fail to 

capture the complex temporal dependencies and variability in renewable energy sources, leading 

to inaccurate predictions. A multi-layer recurrent neural network (MLRNN) is developed for 

accurate 24-hour forecasting of renewable energy generation. A grid-search method is proposed 

to optimally tune the number of RNN layers and the optimizer learning rate. This model leverages 

historical wind and solar data to capture complex temporal dependencies and patterns. The 

predicted values are then used as the maximum WT and PV output capacity to optimize power 

management within the MG using the proposed MARL method. This approach minimizes fuel and 

CO2 emissions costs, enhances coordination among MG components, and ensures efficient power 

distribution, resource utilization, and BESS scheduling. Traditional centralized control methods 

can be computationally intensive and less responsive to real-time changes, whereas the 

decentralized control provided by MARL will reduce computational burden and improves 

response quality, demonstrating its effectiveness in maintaining optimal MG performance. 

Comparative analysis validates the effectiveness of the approach. 

Overall, this thesis provides a robust and innovative framework for enhancing wind energy 

conversion, renewable energy forecasting, and microgrid power management through the 

application of a unified MARL-based approach. For the coding and simulation Python 

programming and Simulink MATLAB are used, respectively. The findings underscore the 

potential of MARL application to significantly improve the efficiency, reliability, and 

environmental sustainability of renewable energy systems and WECS 
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Chapter 1 

Introduction 

 
1.1 Overview on Global Wind Power Capacity 

Traditionally, electric power generations depend on the nonrenewable resources such as fossil 

fuels, which lead to carbon dioxide (CO2) emissions resulting in air pollution and global warming 

[1]. Moreover, some technical issues like power supply and transmission efficiency can bring us 

the milestone of looking for a suitable replacement. Consequently, researchers' focus in this area 

has shifted from reducing the detrimental effects of climate change to embracing clean energies as 

a safe and effective approach to offset the progression of these problems [2]. Currently, renewable 

energy technologies, also known as clean energy, such as wind, solar, and hydro-power, are 

commonly used in electrical power generations, resulting in a decline in fossil fuel usage and 

carbon emissions. The CO2 emission is a crucial issue that prompted the United Nations to reiterate 

its call for immediate action to achieve net zero greenhouse gas (GHG) emissions by 2050, a call 

which has since been echoed by more than 120 countries, as well as thousands of businesses, 

investors, cities, regions, and universities. The Europe, Japan, South Korea, Canada, and South 

Africa all pledged to achieve net zero carbon emissions by 2050 in 2020, marking a turning point 

in climate change policy. Countries that have adopted or are considering net zero objectives 

currently account for two-thirds of the world economy and 63 % of global GHG emissions, when 

combined with China's net zero by 2060 aim and the United States' plan to attain net zero emission 

by 2050 under the Biden administration.  

The era of fossil fuels is ended, and the global energy transformation is here to stay, more 

than ever. Wind energy is the dominant renewable resource due to its abundant availability, cost-

effectiveness, and technological advancements. Wind is a naturally occurring and inexhaustible 

source of energy, harnessed efficiently through modern wind turbines. According to the prediction 

annual wind installations must increase dramatically to reach net zero emission by 2050. New 

global wind installations (in GW) to reach the target are illustrated in Fig. 1.1 from 2020 to the 

year 2030. International Energy Agency (IEA) Outlook has estimated the volume of required wind 
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capacity installation in 2022-2024 and 2026-2029 periods, so far, and it is demonstrated in this 

figure. 

 
Fig. 1.1: New required global wind installations (in GW) to reach the net zero GHG [3]. 

 

The extended period of high energy prices following the COVID-19 pandemic, worsened by 

the Russian invasion of Ukraine, has revealed a deep energy crisis, as well. This crisis is a result 

of a fragmented and delayed transition to alternative energy sources, leaving energy markets 

vulnerable to unstable fossil fuel supplies influenced by political motives and unfair competition, 

even more than ever. The crisis has not only exposed consumers and industries to high energy 

costs but has also significantly contributed to the resurgence of inflation as a major global 

economic challenge. Despite the increasing clarity of the impacts of accelerated global warming, 

many countries are still postponing necessary actions outlined in the agreement to reduce 

emissions with the aim of reaching net zero greenhouse gas emission by the year 2050. 

Nevertheless, this "poly-crisis" has spurred action from society and policymakers, with a growing 

momentum toward emission reduction and sustainability. Governments worldwide have taken 

unprecedented measures over the past year to accelerate the energy transition and reduce reliance 

on fossil fuels. This has led to the adoption of ambitious targets for renewable energy and the 

phasing out of fossil-based technologies in various sectors. Intergovernmental energy agencies 

predict that renewable energy, particularly wind and solar power, will dominate electricity demand 

growth in the coming years. Wind energy offers several advantages over solar energy. Wind 

turbines can generate electricity day and night, unlike solar systems that are dependent on sunlight. 
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This continuous generation capability allows wind energy to provide a more consistent and reliable 

power supply. Furthermore, wind turbines have a smaller land footprint compared to solar PV 

systems, making them more suitable for areas with limited space availability. Additionally, wind 

energy is often more cost-effective than solar PV, especially in regions with strong and consistent 

wind resources. Given these advantages, the focus of this work will be on wind power, exploring 

its technical aspects and potential for sustainable energy generation. 

Increased wind energy will need immediate infrastructure and grid expansion, along with 

investment in storage technologies and demand-side management. For the world to attain an 

energy route that is compliant, there is a clear and unequivocal consensus that oil and gas usage 

must be consistently and substantially decreased during the next three decades. According to the 

international energy agency, renewable sources will account for 98% of the 2,518 TWh of 

electricity generation to be added between 2022 and 2025. Global wind energy council (GWEC) 

expects 680 GW of wind capacity to be added globally between 2023 and 2027, with significant 

contributions from onshore wind installations. Wind energy is on track to achieve 1 terawatt of 

installed capacity by mid-2024, and Bloomberg forecasts that wind power will add nearly another 

terawatt by 2030, after taking 33 years to reach the first terawatt. The 2 TW milestone which is 

expected to be achieved in just seven years is provided in Fig. 1.2. The information provided is 

sourced from GWEC Market Intelligence, IEA Net Zero by 2050 Roadmap (2021), and projected 

new wind capacity from 2023-2030, assuming a ~7.2% CAGR based on GWEC's 2023 Global 

Outlook. Capacity gap figures are estimations based on the IEA roadmap milestone for 2030. 

Cumulative global installations for wind energy align roughly with the international renewable 

energy agency (IRENA) world energy transitions outlook: 1.5°C Pathway (2021). It's important to 

note that this data represents new and cumulative capacity and does not account for 

decommissioned projects. 
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Fig. 1.2: The 2 TW new global wind capacity installation milestone [3]. 

 

In 2022, meticulously, the global wind power industry saw the addition of 77.6 GW of new 

capacity connected to power grids, resulting in a total installed wind capacity of 906 GW. This 

represents a 9% growth compared to 2021. Despite a 5% year-over-year decline in new onshore 

installations, 2022 marked the third-highest year in history for additions. Following a record year 

in 2021 with over 21 GW of new offshore wind capacity commissioned, 2022 saw a drop to 8.8 

GW, making it the second-highest year on record. The new installation in onshore and offshore 

sections are demonstrated in Fig. 1.3 from 2018 to 2022. 

 
Fig. 1.3: The new wind capacity installation from 2018 to 2022 [3]. 
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The Asia-Pacific region experienced a 3% decrease in market share compared to 2021 but 

remains the world's largest wind market, with China contributing 87% of its 2022 additions. 

Europe, as the second-largest market, witnessed record onshore wind installations in 2022, 

boosting the region's market share from 19% in 2021 to 25%. North America (mainly USA and 

Canada) retained third place but lost 2% in market share due to slower growth in the US. Latin 

America increased its market share in 2022 by 1%, driven by a record year for installations in 

Brazil. Despite a record year in new installations in 2021, Africa & the Middle East connected 

only 453 MW of wind power in 2022, the lowest since 2013. The top five markets for new 

installations in 2022 were China, the US, Brazil, Germany, and Sweden, collectively making up 

71% of global installations last year, which was 3.7% lower than in 2021. This decline was 

primarily due to China and the US, the world's two largest markets, losing a combined 5% market 

share compared to the previous year. This marks the second consecutive year that both countries 

have lost market share. 

In terms of cumulative installations, the top five markets as of the end of 2022 remained 

unchanged, with China, the US, Germany, India, and Spain together accounting for 72% of the 

world's total installed wind power capacity, consistent with 2021. New wind power capacity in 

2022 by region and also top 10 markets are shown in Fig. 1.4, as well. 

 
Fig. 1.4: New wind power capacity by region on the left and top 10 markets on the right for the year 2022 [3]. 

 

Although, Canada is almost new to exploring its vast wind energy resources, the country has 

grown fast in the sector, and it is now the ninth largest producer of wind energy in the world with 

installed capacity of 15.3 GW by the end of 2022. The provincial leaders in wind power capacity 

are Ontario, Quebec, and Alberta. According to the Canadian Renewable Energy Association, 
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Canada has 317 wind energy projects producing power. The largest wind farm is Black Spring 

Ridge, located in Vulcan County, Alberta, with 166 wind turbines. Thirty-nine onshore and 

offshore wind power projects are planned for the next ten years, with a total project value of $16 

billion. 
 

1.2 Onshore and Offshore Wind Turbines 
Onshore WECSs are known for their lower installation costs, primarily because they are more 

accessible and require less logistical effort. They are easier to maintain and repair, leading to 

reduced operational costs over the system's lifespan. Furthermore, onshore projects typically have 

shorter permitting and project development timelines, allowing for quicker deployment. Land 

availability is another key advantage, as onshore sites are abundant and do not necessitate 

significant land reclamation or marine engineering. However, onshore wind turbines may 

experience less consistent and weaker winds compared to offshore locations, affecting energy 

output. Space limitations can also be a concern, particularly in regions with limited available land. 

Moreover, the visual and noise impact of onshore wind turbines on nearby communities may 

present challenges. In the year 2022, the global onshore wind sector witnessed the connection of 

68.8 GW of new grid-connected capacity, resulting in a cumulative global onshore capacity of 842 

GW, reflecting a year-over-year growth of 8.8%. Despite global additions in 2022 being 5% lower 

than the previous year, Europe stood out by adding a record 16.7 GW of onshore wind capacity, 

thanks to record installations in Sweden, Finland, Poland, and recovering installations in Germany. 

The slowdown in Latin America (LATAM), Africa & the Middle East contributed to the 

overall decline, but the primary reason was the deceleration of onshore installations in the US. In 

China, onshore wind installations had declined in 2021 as the market transitioned to ‘grid parity’, 

where onshore wind electricity receives the same regulated price as coal power. However, it was 

forecasted that Chinese installations would rebound, reaching 46 GW in 2022. While the Chinese 

Wind Energy Association reported 44.7 GW of onshore wind capacity installed in 2022, the 

National Energy Administration reported only 32.6 GW of new grid-connected capacity. In the 

US, stable onshore wind growth was anticipated for 2022, with the internal revenue service (IRS) 

granting a one-year extension for projects that began construction in 2016 or 2017, allowing them 

to qualify for the full production tax credit (PTC) rate if operational by the end of 2022. 
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Nevertheless, the US wind industry only commissioned 8.6 GW of onshore wind capacity in 2022, 

the slowest year since 2018, mainly due to supply chain constraints and grid interconnection issues. 

Apart from China and the US, other top onshore wind markets in 2022 included Brazil (4.1 

GW), Sweden (2.4 GW), and Finland (2.4 GW). Market support mechanisms such as ‘grid parity’, 

auctions/tenders, and the PTC remained crucial for onshore wind capacity additions in 2022, 

collectively accounting for a 91% market share. However, excluding China, the global awarded 

onshore wind capacity through auctions saw a 30% decrease compared to 2021, with Europe 

experiencing a 29% drop. In China, although only 11 GW of onshore wind capacity was approved 

under the ‘grid parity’ mechanism in 2022, provincial governments announced more than 50 GW 

of capacity under the same support mechanism by January 2023, aligning with China's '30-60' 

targets.  

On the other hand, Canada has a robust onshore wind energy sector, with over 13 GW of 

installed capacity across the country as of 2024. This capacity is spread across more than 300 wind 

farms, predominantly located in provinces such as Ontario, Quebec, and Alberta. Ontario leads 

with over 5 GW of installed capacity, followed by Quebec with approximately 4 GW and Alberta 

with about 1.7 GW. The onshore wind industry has seen significant growth due to supportive 

government policies, advances in turbine technology, and decreasing costs. Projects like the 

Henvey Inlet Wind Project in Ontario, which has an installed capacity of 300 MW, illustrate the 

scale and impact of onshore wind farms. Future onshore projects are expected to add several GW 

of capacity by 2030, driven by provincial renewable energy targets and increased investment in 

sustainable infrastructure. 

Besides, offshore type has its own set of advantages. Offshore sites generally experience 

stronger and more consistent winds, resulting in higher energy production. Additionally, offshore 

wind turbines have minimal visual impact on land, making them more suitable for densely 

populated coastal regions. The scalability of offshore projects is a significant benefit, with vast 

offshore areas allowing for the installation of a larger number of turbines and the potential for 

large-scale wind farms. Moreover, offshore projects typically have fewer land-use conflicts 

compared to onshore installations. However, offshore wind projects are more expensive due to 

complex foundation structures, offshore installation, and more challenging maintenance. Logistics 

can be major challenge, as transporting equipment and personnel to offshore sites can be 



23 
 

logistically complex and costly. Furthermore, offshore projects may have environmental concerns, 

such as seabed disturbance and potential impacts on marine ecosystems. 

In 2022, the global offshore wind sector added 8.8 GW of new capacity to the grid, bringing 

the total global offshore wind capacity to 64.3 GW by the end of the year. While this represents a 

58% decrease from the record-breaking year of 2021, it still marks 2022 as the second-highest year 

in offshore wind history. China maintained its leadership in global offshore wind development, 

despite new installations in 2022 being 70% lower than in 2021. This decline was due to the end 

of the feed-in tariff (FiT), transitioning China's offshore wind market to the era of 'grid parity' 

starting January 1, 2022. Despite these challenges, China's offshore wind industry demonstrated 

resilience by commissioning more than 5 GW of new capacity in 2022, surpassing a cumulative 

installation milestone of 30 GW by the year's end, a feat that took Europe over three decades to 

achieve. 

Europe accounted for the majority of the remaining new offshore wind capacity in 2022, with 

2.5 GW connected to the grid across six countries. The UK solidified its leading position in the 

European offshore wind market by completing the commissioning of wind turbines at the 1.4 GW 

Hornsea Project 2, now the world's largest operational offshore wind farm. Additionally, the UK 

grid-connected 27 wind turbines at the 1.1 GW Sea green Project in 2022. France emerged as 

Europe's second-largest offshore wind market in new additions in 2022, following the full 

commissioning of its first commercial offshore wind project, the 480 MW Saint-Nazaire wind 

farm, in November. The Netherlands and Germany also contributed significant new capacity, 

adding 369 MW and 342 MW, respectively. Italy entered the offshore wind market with its first 

commercial project, the 30 MW Beleolico offshore wind farm, featuring Chinese wind turbines 

and becoming the first offshore wind project commissioned in the Mediterranean Sea. Norway's 

94.6 MW Hywind Tampen floating wind project, featuring Siemens Gamesa turbines on a concrete 

floating foundation, faced delays due to supply chain issues, with only seven wind turbines (60.2 

MW) operational by the end of 2022. 

Overall, 66.4 MW of floating wind capacity was commissioned in 2022, including the Hywind 

Tampen project in Norway and a 6.2 MW floating wind turbine installed in China on a prototype 

floater called 'Fuyao'. New offshore installation globally from 2018 to 2022 is provided in Fig. 1.5. 

The offshore wind market has doubled in size, increasing from 4.4 GW in 2018 to 8.8 GW in 2022. 

This growth has raised its market share in global new installations from 9% to 11%. However, this 
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figure is 11 % lower than in 2021, mainly because new installations in China slowed down after 

an incentive-driven installation rush. GWEC Market Intelligence predicts that the global offshore 

wind market will maintain its rapid growth rate. 

 
Fig. 1.5: New offshore wind capacity (MW) installation globally from 2018 to 2022 [3]. 

 

Canada's offshore wind energy sector is in its early stages, with considerable potential for 

future development. As of 2024, there are no operational offshore wind farms, but several projects 

are in the planning and development phases. The most notable among these is the proposed 

Atlantic Offshore Wind Project, which aims to capitalize on the strong and consistent winds off 

the coast of Nova Scotia. This project is expected to contribute significantly to Canada's renewable 

energy capacity, with initial plans targeting an installed capacity of up to 500 MW. Additionally, 

the federal and provincial governments are investing in research and development to overcome 

technical and environmental challenges associated with offshore installations. By 2030, Canada 

aims to establish a competitive offshore wind market, aligning with global trends and enhancing 

the country's renewable energy portfolio. 

This section provides a comprehensive summary of the global wind power capacity 

installation trends from 2001 to 2022, as depicted in two distinct figures. The Fig. 1.6 illustrates 
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the new wind power capacity installations annually, while the Fig. 1.7 showcases the cumulative 

globally installed wind power capacity over the same period. The overall trend indicates a 

remarkable exponential growth in installed wind power capacity, reflecting the increasing global 

adoption of wind energy as a sustainable energy source. However, the new installation graph 

reveals certain fluctuations, particularly during worldwide crises, which have influenced the pace 

of new capacity additions. Both figures encompass data from both onshore and offshore wind 

sectors, highlighting the expansion of wind energy technologies in diverse geographical regions. 

 
Fig. 1.6: New wind power capacity (GW) installation globally from 2001 to 2022 [3]. 
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Fig. 1.7: Total wind power capacity (GW) installation globally from 2001 to 2022 [3]. 

 

Additionally, Table 1.1 is included to detail the leading countries in both the onshore and 

offshore wind sectors in terms of new wind power capacity installations and total installed capacity 

for the years 2021 and 2022. This table provides a detailed breakdown of each country's 

contribution to global wind power capacity expansion, offering insights into regional trends and 

developments. The inclusion of onshore and offshore sectors separately allows for a more nuanced 

analysis of the evolving landscape of wind energy deployment, highlighting the growing 

significance of offshore wind farms in certain regions. 
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Table 1.1: Leading countries in onshore and offshore wind power capacity for years 2021 and 2022 [3]. 

 
 

1.3 Wind Turbine Supply Chain 
In terms of the global wind supply chain, Europe has a well-developed and mature supply 

chain, covering turbine nacelles, key components, and raw materials. However, since establishing 

its local wind supply chain in 2008-2010, China has emerged as the world's leading wind turbine 

manufacturing base and the largest production hub for key components and raw materials. 

European and American wind turbine original equipment manufacturers (OEMs) opted to broaden 

their supply chain to ensure a secure supply in the aftermath of the COVID-19 pandemic. India, 

the second-largest hub in the Asia-Pacific (APAC) region for turbine assembly and key 

components production, has emerged as a more prominent player in the global wind supply chain. 

While the majority of wind industry suppliers are still located in APAC, Europe, and the Americas, 

new players have also emerged in the Middle East and North Africa (MENA) region. As for the 
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adequacy of the supply chain capacity to support growth, globally, there are currently 153 turbine 

assembly plants in operation, with an additional 74 facilities either under construction or in the 

planning stages. China leads the way with over 100 nacelle assembly facilities in operation and 64 

under construction, boasting a turbine nacelle production capacity of 98 GW per year, which 

accounts for 60% of the global market share. Europe ranks as the second-largest turbine nacelle 

production base, with assembly facilities mainly located in countries such as Germany, Denmark, 

Spain, France, Portugal, and Turkey. The US follows as the world's third-largest wind nacelle 

manufacturing hub, trailed by India and LATAM, primarily Brazil. Overview of global wind 

turbine (WT) nacelle facilities are provided in Table 1.2. Globally, there is a nacelle production 

capacity of 163 GW in 2023. While initially, the wind industry seems to have enough nacelle 

assembly capacity to meet the projected global demand up to 2027. 
 

Table 1.2: Overview of global WT nacelle facilities [3]. 

 China Europe India USA LATAM Asia 
Pacific 

Africa Total 

Number of nacelle 
assembly facilities 

(onshore) 77 16 13 4 6 3 1 123 

Number of nacelle 
assembly facilities 

(offshore) 20 5 0 0 0 4 0 30 

Number of 
announced nacelle 
assembly facilities 

(onshore) 
17 0 2 0 0 0 0 19 

Number of 
announced nacelle 
assembly facilities 

(offshore) 
47 1 0 3 0 4 0 55 
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The provided information underscores the critical importance of studying wind energy 

conversion systems in the context of achieving net-zero greenhouse gas emissions by 2050. As the 

global community strives to mitigate climate change and transition to renewable energy sources, 

a deep understanding of WECS becomes paramount. Increased knowledge and research in various 

fields related to wind power systems, including aerodynamics, structural engineering, control 

systems, and grid integration, are crucial. Advancements in these areas are essential for enhancing 

the efficiency, reliability, and cost-effectiveness of WECS. Moreover, as the world looks to scale 

up wind energy capacity significantly, innovative solutions and interdisciplinary collaboration will 

play key roles in accelerating the adoption of wind power and achieving sustainability goals. The 

upcoming sections will delve into the technical concepts of WECS, providing a detailed 

exploration of the principles and technologies driving this vital component of the renewable energy 

landscape, apart from general numerical information which has been discussed, so far. 

 

1.4 Wind Energy Conversion System  
Typically, a WECS is a structure consists of both mechanical and electrical components to 

transform wind energy into electrical power. The WECS should be configured to harvest the 

maximum possible amount of power from wind turbine generators under various operating 

conditions in order to meet the grid criteria [4]. A standard configuration of a wind energy 

conversion system, can be observed in Fig. 1.8, which primarily consist of a wind turbine rotor, 

gearbox, electrical generator, and power electronic converter as an interface, and a transformer for 

electrical power grid integration purpose. 

 

Fig. 1.8: Standard configuration of a wind energy conversion system [4]. 
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Where the wind turbine's shaped blades can aerodynamically absorb the wind energy, it 

transforms to rotating mechanical power, which is then converted to electrical power by the 

generator unit. Gearboxes are used in WECS to optimize generator speed, enable the use of smaller 

generators, enhance torque production at lower wind speeds, maintain a constant generator 

rotational speed for stable AC output, adapt to variable wind speeds, reduce mechanical stress, 

lower noise levels, improve safety, and facilitate maintenance and repairs, making the overall wind 

energy system more efficient and cost-effective. Power converters are essential in such systems to 

ensure grid compatibility, optimize power capture from variable wind speeds, control voltage and 

frequency, provide reactive power support, enhance grid reliability, enable fault ride-through, and 

facilitate energy storage integration, all of which contribute to efficient wind energy generation 

and seamless integration with the electrical grid [4], [5], and [6]. And the last but not the least, 

transformers are employed in a WECS for grid connection to step up the generated electricity's 

voltage to match grid voltage levels, reducing transmission losses and enabling efficient power 

transfer over long distances. 

Based on the above-mentioned components, various types of WECSs have been developed to 

optimize wind energy conversion and grid integration. These systems can be categorized as 

follows: Fixed-Speed WECS, traditional systems employing gearboxes and power converters for 

grid compatibility; Variable-Speed WECS, which utilize power converters to adapt to changing 

wind conditions and improve efficiency; Direct-Drive WECS, eliminating gearboxes for increased 

reliability and cost-effectiveness. These diverse WECS types cater to specific operational 

requirements and environmental contexts, and they will be explained in more detail in the 

following sections. 

 

1.4.1   Feasible Configurations of WECS 

This section contains a literature review on practical solutions for wind energy conversion 

systems. Fixed speed wind energy and variable speed wind energy systems are two commonly 

known types of technological solutions that can meet all generator and grid side specifications [7]. 

In the 1980s, a fixed-speed wind energy system was suggested [8]. An asynchronous squirrel cage 

induction generator (SCIG), which is also known as type 1 WECS, with a soft starter using 

thyristors makes up a configuration (Fig. 1.9). The wind turbine generators are connected to the 
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power grid directly via step-up transformers. They can therefore be operated with a rotor speed 

variation of less than 1%. To achieve a unity power factor, a bank of shunt capacitors is required 

to provide reactive power compensation. SCIGs may have appealing alternatives, such as simple 

construction and low cost. The soft starter is connected to the grid without the use of 

synchronization devices, resulting in a smooth grid integration. The key disadvantage is lacking a 

speed control mechanism. For reliability and stability, due to the high mechanical stress induced 

by wind torque pulsation, it needs a stiff grid. To have almost 10% speed variation resistors can 

be added to the rotor of the SCIG and it is considered as the 2nd type of WECS. However, the 

efficiency is still low, power factor is low, and capacitor bank is still a must. Mechanical stress on 

turbine also remains high so soft starter should be placed in such systems, as the first type. 

 

Fig. 1.9: Fixed speed WECS converter equipped with soft starter. 

 

Due to the instability in wind speed and torque, the higher variable speed wind energy system 

has many advantages over the fixed speed WECS, including lower mechanical tension on 

components, such as the gearbox and the shaft. Furthermore, the system can be infused with full 

power output with less fluctuated power. A portion-scale and full-scale power converters are 

presented in this literature review as the two major configurations of the variable speed wind 

energy system. This variable speed configurations are used in modern WECSs to maximize the 

power energy captured from the wind. They can also maintain active and reactive power 

management under all operational conditions. Reference [7] has defined a Doubly Fed Induction 

Generator (DFIG) based WECSs (type 3). With a wound rotor induction generator (WRIG), it can 

provide partial variable speed system. The power grid is directly connected to the generator stator 
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in this configuration. As seen in Fig. 1.10, a back-to-back (BTB) indirect ac/dc/ac power electronic 

converters integrate the rotor into the grid via slip rings. 

 

Fig. 1.10: Variable speed WECS based on the partial scale power converter. 

 

Aside from the inclusion of slip rings, another major disadvantage of this arrangement is the 

stator direct connection to the grid, which limits controllability with a safety mechanism during a 

power grid fault.  

However, as seen in Fig. 1.11, another variable speed WECS configuration based on the full-

scale power converter can be employed (WECS type 4). Squirrel cage induction generator (SCIG), 

WRSG, and PMSG are examples of generators that are validated to be used in this configuration. 

Although, PMSG has a few advantages over other generators, such as; it regulates the grid voltage 

by supplying further reactive power, since it is interfaced with the power system via a full-scale 

back-to-back converter. It also eliminates the requirement for a gearbox, reducing the weight and 

size of nacelle hardware, as well as mechanical losses and maintenance demands. Via full-scale 

BTB power converters and transformers, they are smoothly linked to the grid. The ac-dc converter 

on the generator side is used to control generator output power over a large speed range and 

maintain unity power factor, while the dc-ac converter on the grid side is used to provide active 

and reactive power conversion to keep the dc link voltage of the capacitor fixed. The wind turbine 

can be directly coupled to the BTB power converter without using a gearbox for a variable speed 

WECS that uses a multi-pole PMSG, or the gearbox size can be decreased, as mentioned above. 

For example, working at low speeds with no gears will improve the WECS reliability, as well [9]. 
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Fig. 1.11: Variable speed WECS based on the full-scale power converter. 

 

While PMSG based WECS offer several advantages, as stated, there are some drawbacks 

associated with this system. One drawback is its relatively higher initial cost due to the use of 

permanent magnets and full-rated power converter. Additionally, PMSG-based systems may face 

challenges in grid integration, as they require almost complex power electronics and control 

systems to ensure proper grid compatibility. However, it's important to emphasize that these 

drawbacks can be seen as trade-offs for the benefits of increased efficiency, reliability, and other 

pros which would be offered by employing this configuration.  

Overall, considering the potential and positive attributes of PMSG-based WECS, and DFIG-

based ones are promising candidate for industry applications. However, in this work the main 

concentration is on direct-drive PMSG-based WECS. 

As previously mentioned, a power converter is a must in a WECS. To link a wind turbine 

equipped with PMSG to the grid system, a variety of power converter topologies can be used. The 

key goal of these topologies is to meet the specifications of both the wind generator and the power 

grid in terms of optimum performance, low cost, and reliability with a straightforward maintenance 

approach. They should also be able to monitor active power and compensate reactive power, so 

that grid codes are met independent of wind speed variations [9]. Hence, the following sections 

study and address some of the possible power converter topologies which can be employed within 

the WECSs. The power converter classification is also provided; however, the concentration is on 

the 4th type of WECS which is aimed in this work. 
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1.5 Power Converter Topologies 
The power converters can be classified based on many aspects such as; direct / indirect 

conversion. In direct conversion the constant AC voltage and frequency directly converted to 

variable AC voltage and variable frequency. However, in an indirect one there are two stages; AC 

to DC, then DC to AC [10]. Direct and indirect conversion methods in power electronics play 

crucial roles in converting electrical energy efficiently. In the context of direct conversion 

(AC/AC), it involves a single-stage process of converting AC power to the desired output voltage 

or frequency, which can reduce overall power loss and increase efficiency. However, direct 

conversion systems often require sophisticated semiconductor technology and control algorithms, 

leading to higher initial costs and potential reliability issues. In contrast, indirect conversion 

(AC/DC/AC) involves multiple stages, which may introduce additional energy losses due to the 

intermediate conversion steps, reducing efficiency. Yet, indirect conversion methods are typically 

more versatile, offer better fault tolerance, and are more cost-effective for certain applications. 

Overall, despite the inherent energy losses in indirect conversion, the flexibility, reliability, and 

cost-effectiveness it offers often make it the preferred choice for providing effective and practical 

solutions in many power-electronic applications. However, by optimizing the control of multilevel 

power converters, enhancing semiconductor devices, and developing more efficient switching 

techniques, it is possible to further enhance the energy efficiency and overall performance of these 

systems. As a result, ongoing efforts are directed toward refining these control strategies and 

technologies to continually improve the efficiency and reliability of indirect conversion methods 

in power electronics.  

Another critical categorization in power electronics pertains to the distinction between current 

source and voltage source power converters. In the context of WECS, voltage source power 

converters are frequently favored. These converters are well-suited for applications like WECS 

due to their ability to provide stable voltage output regardless of fluctuations in load or 

disturbances in the grid. This is vital for maintaining grid compatibility and for ensuring that the 

electrical energy generated by the wind turbines is seamlessly integrated into the existing power 

grid, as it allows the WECS to generate power at a constant voltage and frequency that aligns with 

grid requirements. Voltage source power converters also offer a high degree of control and are 

adaptable to varying wind conditions, making them an ideal choice for optimizing power capture 

and energy production in WECS installations.  
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To summarize and have a clearer overview, the most common available topologies for 

medium-voltage high-power converter can be shown as Fig. 1.12. As mentioned, according to this 

figure, power converters are broadly classified into two main categories: direct and indirect. The 

indirect class further divides into unclassified types, including voltage source and current source 

converters. In contrast, the direct class comprises only two types: matrix converters and 

cycloconverters. These classifications are crucial for understanding the diverse range of power 

conversion technologies available and their specific applications in various industries, especially 

in the context of wind energy where converters play a vital role in transforming and managing 

electrical power efficiently. 
  

 
Fig. 1.12: Multilevel converter classification [10]. 
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Based on the pros and cons of the concepts discussed thus far, the fourth type of WECS, which 

contains PMSG, utilizing indirect power conversion has emerged as a promising configuration. 

The indirect power conversion method offers enhanced flexibility and versatility, making it well-

suited for optimizing wind energy conversion in varying conditions. Consequently, this approach 

has garnered attention as a viable option for WECS. In light of this, the next section will delve into 

the details of a suitable and well-established power converters within this system, shedding light 

on its crucial role in efficiently harnessing wind energy, and their advantages and disadvantages 

over each other. It contains two-level and multi-level power converters for PMSG-based WECS. 
 

1.5.1   Two-Level Converter for PMSG Based WECS 

The back-to-back two-level voltage sourced converter (VSC), as seen in Fig 1.13, is the most 

general topology used to interface direct drive of PMSG based WECS with the gird. The voltage 

sourced rectifier (VSR) will absorb the most wind energy on the generator side. The voltage source 

inverter (VSI) can regulate active and reactive power while maintaining a steady dc link voltage. 

Despite the fact that this converter has a simple structure with six switches on both sides, it can 

experience high voltage stress dv/dt in high power medium voltage applications. Furthermore, 

large size filters may be needed to meet gird device specifications for lower total harmonic 

distortion [11], [12]. 

 

Fig. 1.13: Configuration of direct drive PMSG for WECS using two-level BTB converter. 
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Figure 1.14 demonstrates a semi-controlled system with the BTB power converter. By 

replacing three-phase, six diodes instead of a two-level VSR, a low cost-effective solution with 

high efficiency can be achieved as compared to the previous power converter topology. Diodes 

rectifier, dc-dc boost converter, and two-level voltage source inverter make up this topology. Since 

reactive power is not available in such a PMSG-based system, converter topology uses the voltage 

source inverter (VSI) to pass active power unidirectionally to the power grid system [13]. 

However, the diode rectifier output is small, so boost converter is required to compensate the grid 

side converter low output. In this regard, the number of elements, cost, and control complexity will 

increase. Additionally, the use of a diode rectifier may lead to higher total harmonic distortion, 

potentially requiring larger filters to meet grid specifications. 

 

 

Fig. 1.14: PMSG for WECS configuration with direct drive using diodes rectifier, dc-dc boost converter and 

two-level voltage source inverter. 

 

1.5.2   Multi-Level Converter for PMSG Based WECS 

Multilevel converter topologies can reach a several number of output voltage levels as 

compared to traditional two-level converters. As the output voltage waveform quality improves, a 

smaller filter size is needed. The voltage tension around the converter electronic devices is also 

diminished. The topology of the flying capacitor (FC) multilevel BTB converter, is considered as 

one of the typical structures, can be combined with PMSG direct drive for WECS. Fig. 1.15 depicts 

a 3-level FC converter. The capacitors are used to synthesize the output voltage levels in terms of 

switching states. Furthermore, the FC converter stage can be easily expanded.  The key drawbacks 
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of flying capacitor converters in WECS include their complex control and management 

requirements, voltage stress concerns, limited scalability, a higher component count leading to 

increased costs and maintenance complexity, limited fault tolerance, and increased size and 

weight. While these converters offer advantages as mentioned, their limitations make them less 

preferable in certain WECS configurations, particularly in larger installations or those where 

scalability, reliability, and cost-effectiveness are paramount, driving the choice of alternative 

converter topologies [15]. 

In WECS, a stacked flying capacitor power converter can also be used to connect variable-

speed wind turbines to the electrical grid. It comprises multiple flying capacitor cells stacked in 

series, each containing a capacitor, a switch, and a diode. This configuration enables the conversion 

of variable frequency and voltage AC from the wind turbine to fixed frequency and voltage AC 

suitable for grid connection. However, compared to a regular flying capacitor converter, the 

stacked configuration offers several advantages. It allows for increased voltage levels, improved 

voltage balance across capacitors, and potentially higher efficiency due to reduced switching losses 

and improved voltage balancing. However, this configuration also introduces complexity in 

control and operation, requiring more sophisticated control algorithms. Additionally, the increased 

component count and complexity may lead to higher costs compared to a regular flying capacitor 

converter. So, regular FC option is more common in wind energy industry. 

 

 

Fig. 1.15: Configuration of direct drive PMSG based WECS using BTB regular flying capacitor multi-level 

converter. 
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As seen in [14], and [15], neutral point clamped (NPC) multilevel converter is used for direct-

drive PMSG based WECS. To satisfy the specifications of the gird integration, this topology is 

developed by the BTB structure. In this case, a zero-voltage level can be achieved by clamping 

diodes connecting the midpoint of the IGBT switches to the converter neutral point. Though, in 

order to balance the dc link capacitor voltage in this topology, a control circuit is needed. The 

utilization of NPC power converters in PMSG-based WECS comes with a range of noteworthy 

advantages. Notably, NPC converters are known for their inherent simplicity in control and 

operation compared to the advanced features they offer. This simplicity can translate to easier 

maintenance and lower control system costs. Additionally, NPC converters excel in delivering 

high-quality voltage waveforms, effectively reducing harmonics and enhancing power quality, 

which is crucial when integrating renewable energy sources into the grid. Their ability to 

efficiently operate at high switching frequencies can lead to downsized filtering components, 

resulting in a more compact and cost-effective system. Moreover, NPC converters offer enhanced 

fault tolerance and high reliability, making them well-suited for applications where uninterrupted 

energy supply is essential. 

However, like any technology, NPC converters also present some drawbacks. The increased 

semiconductor count required by the converter configuration compared to the 2-level voltage 

source converter, while offering advantages in fault tolerance, leads to higher complexity in control 

algorithms and increased manufacturing costs. This higher number of semiconductor devices can 

also contribute to potential reliability concerns, as each component represents a point of failure. 

Moreover, NPC converters are not as suitable for applications requiring very high voltage levels, 

which may necessitate the use of alternative converter topologies. Although, the maximum voltage 

that can be used with a NPC power converter depends on several factors, including the specific 

design of the converter, and the voltage rating of the semiconductor devices used. But, in typical 

wind turbine s, for very higher voltage applications, such as grid-scale wind farms, other converter 

topologies like modular multilevel converters (MMC) may be more appropriate due to their higher 

voltage capabilities. 

As a result, for high-power, medium voltage wind energy applications, a direct-drive PMSG 

wind turbine system with a 3L-NPC BTB power converter, which is illustrated in Fig. 1.16, seems 

to be a promising system, and will be comprehensively analysis along with the work.  
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Fig. 1.16: Configuration of direct drive PMSG based WECS using BTB neutral point diode clamped 

multilevel converter. 

 

Marquardt and Lesnicar proposed the MMC for the first time in 2004. Then, [16] 

discussed the state of the art of MMC topologies. The MMC, has emerged as a candidate in WECS 

and HVDC applications due to its more appealing technological approach. The MMC is made up 

of many submodules connected in series. In contrast to a 2-level VSC, this structure can cause a 

system switching frequency in the MMC to be decreased. As a result of the low voltage tension 

dv/dt through the IGBT system, the total harmonic distortion (THD) of the output voltage will 

be dropped at the same switching frequency [17]. The MMC, nowadays, are aimed in many 

literatures. However, it has no much propensity to employ MMC in medium voltage WECS due 

to the major drawbacks such as requirement of large number of semi-conductors, other power 

electronic devices, and capacitors. Furthermore, since individual capacitor voltage balancing 

control is needed, the MMC control circuits can become more complicated. As can be seen in Fig. 

1.17, the MMC can be developed with several number of half-bridge (HB) or full-bridge (FB) 

submodules. Based on the above-mentioned flaws, the MMC will not be investigated in this 

research. 
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Fig. 1.17: Configuration of direct drive PMSG based WECS using BTB modular multi-level converter. 

 

Apart from the above-mentioned multilevel converter, the cascaded H-bridge (CHB) 

converter stands as another viable choice for WECS in industry. Cascaded H-bridge converters 

offer certain advantages and disadvantages. One of the key advantages is their modularity, which 

allows for easy scalability and maintenance. They also have a relatively high level of voltage and 

current control, making them suitable for various wind turbine configurations. However, they do 

come with some drawbacks, including increased component count, which can result in higher 

initial costs and increased susceptibility to component failures. In contrast as stated, the NPC 

multilevel converter, offers more efficient power conversion and reduced harmonic distortion 

proportional to its simplicity. Its lower component count and proven reliability make it a preferable 

choice for long-term sustainability and cost-effectiveness.  

Comparing the analyses of four distinct popular multilevel inverter topologies are included in 

Table 1.3. Each topology contains advantages and disadvantages. Overall, the implementation of 

power converters varies depending on their benefits and downsides. CHB or MMC are commonly 

employed in the high-voltage and high-power applications. The NPC, on the other hand, is used 

in medium-voltage, high-power applications. Hence, the output of the WECSs mostly is in medium 

range (less than 1 kV), the NPC can be considered as a promising architecture in wind energy 

industrial applications based on literature.  
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Table 1.3: Compares the benefits and downsides of several multilayer converters. 

Topology Advantages Disadvantages Ref. 

CHB 

• Good for applications that require higher 
fault tolerance. 

• It is possible to use in an asymmetric 
source arrangement. 

• Using a modular layout, makes it able to 
operate in a high-power rating. 

• Just unidirectional switches are needed. 
• Reliable and almost simple structure 

• There is a need for more gate drivers. 
• To increase the output voltage, a large 

number of individual dc sources are 
necessary. 

• Asymmetric configuration causes a loss of 
modularity. 

• Implementation costs are high. 
• Semiconductor with different voltage 

ratings. 

[18] 
[19] 

FC 

• Ideal for applications involves high fault 
tolerance. 

• The quantity of DC sources is reduced. 
• Lower output filter is required. 
• Switches are under less voltage stress. 

• A significant number of electrolytic 
capacitors are required. 

• Switching efficiency is poor. 
• The expense of installation is considerable. 

[20] 
[21] 

MMC 

• Modularity at its finest. 
• Low output harmonics. Good for various 

voltage ratings. 
• Transformer is optional in some cases. 
• The number of semi-conductor power 

switches does not increase as voltage 
levels rise. 

• A significant number of independent DC 
voltage sources is required. 

• Various phases of the inverter have 
different voltage imbalances. 

• Through the capacitor, high voltage ripple 
can be found. 

• High thermal and conduction losses. 

[22] 
[23] 

NPC 

• It's excellent in EMI and thermal 
management. 

• The number of DC sources is reduced. 
• Ideal for applications which require high 

fault tolerance. 
• The design is simple. 
• Superior dynamic responsiveness and 

harmonic spectrum performance. 
• Neutral clamping switches help solve 

voltage balancing and the unequal sharing 
of losses amongst switches. 

• The voltage balancing circuit can be 
complicated. 

• Inner and outer switches have an unequal 
share of voltage stress and losses. 

[24] 
[25] 
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1.5.3   Overview of Industrial Power Converters 

In the realm of industrial wind energy conversion systems, the selection of converter 

topologies is pivotal for the efficient conversion of variable wind turbine output into usable 

electrical power for the grid. Various converter types are employed based on factors such as power 

rating, grid requirements, and cost considerations. The CHB converter is a prominent choice, 

offered by manufacturers like ABB, Siemens, and GE Renewable Energy. Typically, CHB 

converters for WECS applications exhibit rated power levels ranging from 1 MW to 10 MW per 

turbine, with voltage specifications varying from 690 V to 34.5 kV or higher for grid connectivity. 

Another prevalent converter topology in the WECS sector is the NPC converter, manufactured 

by companies such as Schneider Electric, Toshiba, and Hitachi. NPC converters share similar rated 

power and voltage characteristics with CHB converters, making them suitable alternatives for 

medium to high-power WECS applications. For instance, Schneider Electric's NPC converters can 

handle power ratings ranging from 1 MW to 10 MW, with voltage levels from 690 V to 34.5 kV, 

ensuring compatibility with various grid integration requirements. However, NPC converters have 

lower switching losses due to their reduced number of switching devices per phase, leading to 

higher efficiency and reduced heat generation. They also exhibit lower harmonic distortion in the 

output voltage waveform, which helps in maintaining a cleaner output voltage and reducing stress 

on connected equipment. Additionally, NPC converters offer improved voltage balance, higher 

modularity, scalability, better overload capability, and improved fault tolerance compared to CHB 

converters in industry. 

The Two-Level Full Converter is commonly employed in large-scale wind energy projects, 

with manufacturers like Vestas, Nordex, and Goldwind offering solutions. These converters 

exhibit rated power and voltage ranges akin to CHB and NPC converters, catering to diverse grid 

integration requirements. For example, Vestas' 2LFC converters can handle power ratings up to 3 

MW with voltage levels from 690 V to 34.5 kV, ensuring seamless integration into the grid. 

Matrix converters, offered by ABB, Siemens, and Danfoss, are also prevalent in medium to 

high-power WECS setups, eliminating the need for bulky DC-link capacitors and enhancing power 

density and efficiency. Full-Bridge and Half-Bridge converters, supplied by Infineon 

Technologies, ON Semiconductor, and STMicroelectronics, cater to medium to high-power and 

low to medium-power applications, respectively, each with its own voltage and power 

specifications. For instance, Infineon Technologies' Full-Bridge converters can handle power 
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ratings up to 10 MW, while their Half-Bridge converters are suitable for power ratings ranging 

from 100 kW to 1 MW, ensuring compatibility with various WECS requirements. 

Flying Capacitor Converters, manufactured by companies such as ABB, Siemens, and Fuji 

Electric, are also utilized in medium-power WECS setups up to 5 MW, offering advantages in 

terms of efficiency and performance. However, this type of power converter come with several 

disadvantages in the WECS industry. These include complex control requirements due to the need 

to manage flying capacitors for voltage balancing, which can increase system cost and complexity. 

Additionally, despite efforts to balance the flying capacitors, voltage imbalances can occur, leading 

to potential issues like overvoltage or undervoltage conditions, reducing overall converter 

efficiency and reliability. These factors make FC converters less favorable in certain WECS 

applications compared to other converter topologies, contributing to their declining popularity in 

the industry. 

In addition to the converter topologies, voltage and power ratings, an important consideration 

in industrial power converters is the switching frequency range, which has a significant impact on 

performance, efficiency, and reliability. The switching frequency of industrial power converters 

in WECS varies depending on the converter topology, power rating, and specific application 

requirements. NPC converters typically operate within the range of 1 kHz to 3 kHz for high-power 

applications, as higher frequencies can lead to significant switching losses, reducing efficiency. 

CHB converters generally work within the 1 kHz to 5 kHz range, particularly for medium-power 

applications, balancing efficiency and harmonic reduction [26]. Two-Level Converters which are 

more common in lower power setups, can operate at slightly higher frequencies, typically between 

2 kHz and 6 kHz, due to their simpler design and lower power demands. Matrix converters, which 

eliminate the need for bulky DC-link capacitors, often operate at higher switching frequencies, 

ranging from 5 kHz to 20 kHz, making them suitable for compact, high-efficiency applications. 

Meanwhile, Flying Capacitor Converters usually switch within the 1 kHz to 3 kHz range, similar 

to NPC converters, due to the need for voltage balancing across capacitors. Therefore, the choice 

of switching frequency is crucial, balancing power efficiency, heat management, and the quality 

of the output waveform [27]. 

Afterwards, beyond the choice of converter topologies, it is essential to recognize the critical 

role that control strategies play in the effective operation of these systems. Control strategies are 

pivotal in ensuring efficient power conversion, grid integration, and the optimization of energy 
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output. They determine the system's response to varying wind conditions and grid requirements, 

affecting its overall performance and reliability. In the next section, we will provide an in-depth 

review of available, commonly-used, and modern control strategies employed in conjunction with 

the mentioned converters. This analysis will shed light on the importance of control strategies in 

the context of WECS, offering valuable insights for engineers and researchers striving to enhance 

the efficiency and effectiveness of wind energy technologies. 
 

1.6 Control Techniques 
Power converter control strategies play vital roles in ensuring efficient and reliable operation 

of power conversion systems. The control of a power converter is crucial for maintaining stable 

voltage and current levels, regulating power flow, and protecting the converter and connected 

devices from faults and overloads. Additionally, the control strategy determines the converter's 

response to dynamic changes in the input or output conditions, such as load variations or 

disturbances in the power supply. In the following section, various applicable control strategies 

for power converters will be discussed in detail, highlighting their benefits and disadvantages. 

 

1.6.1   Linear Control 

A modulation stage is almost always incorporated in the linear controllers of power 

converters. This modulator device linearizes the nonlinear converter control approach by providing 

control signals for the switches. The most well-known linear controller is the proportional-integral 

(PI) controller. To generate a pulse width modulation (PWM) signal for the switches, a reference 

of a sinusoidal signal is compared to a triangular carrier one in this approach. When the carrier 

value is less than the reference signals, for example, the switch state is altered to increase the output 

signal, and vice versa. Other modulation approaches, such as space vector modulation (SVM) and 

selective harmonic elimination (SHE), are also accessible in the literature. A linear controller for 

current regulation of the system has been provided in Fig. 1.18 using SVM/PWM, where the 

reference load currents are compared with the measured one, and the error identified between them 

is processed by typical PI modulators. 
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Fig. 1.18: PI controller based linear current controller using PWM/SVM for a three-phase load. 

 

Linear controllers are widely used in the fields of industrial drives and power generation 

systems, such as; field-oriented control (FOC) which is used to manage the flux and torque of the 

generator in the machine-side converter. On the other hand, PI controllers in voltage-oriented 

control (VOC) is used to control the grid-side inverter in a similar way.  

The linear control approach for NPC power converters employed in WECS offers several 

advantages and disadvantages. On the positive side, linear control strategies are well-established 

and relatively easy to implement. They provide stable and predictable system responses under 

varying wind conditions, ensuring consistent power generation. Linear control is also effective in 

grid synchronization, allowing WECS to seamlessly integrate with the electrical grid. However, it 

does have its drawbacks. Linear control methods may not fully exploit the converter's capabilities, 

potentially leading to suboptimal energy capture and reduced efficiency, particularly in the 

presence of rapid wind fluctuations. To address these limitations, modern control strategies like 

model predictive control (MPC) and hysteresis control have been developed, aiming to enhance 

the performance of power converters in WECS by providing more sophisticated and adaptive 

control. The choice between linear and modern control approaches depends on specific project 

requirements, emphasizing the importance of a nuanced evaluation when designing WECS. 
 

1.6.2   Hysteresis Control 

As illustrated in Fig. 1.19, a hysteresis error threshold is used in hysteresis control to 

determine switching operating modes by comparing the measured quantity with the reference 

signal [28]. When the regulated current reaches the limit, the switch status is altered. The scheme's 

implementation is as straightforward as the current control. Direct torque control (DTC) [29] and 

[30] are two examples of higher-level multidimensional nature applications. When using a digital 
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control technique, a substantial inspection recurrence is required to maintain the controlled 

parameters constantly within the hysteresis range. 

Hysteresis control is a well-established control approach for power converters in WECS, 

offering its own set of pros and cons. One of the key advantages of hysteresis control is its 

simplicity and robustness. It provides fast and accurate control, making it effective for rapid 

switching in power converters. However, hysteresis control has its limitations. It can lead to 

increased switching losses and higher stress on converter components due to frequent switching, 

potentially reducing the converter's overall efficiency and longevity. Additionally, it may generate 

higher harmonic distortions, which could impact the quality of power injected into the grid. In 

contrast to more advanced control strategies, hysteresis control may not fully optimize the 

converter's performance in scenarios where precise control and efficiency are paramount. 

 

Fig. 1.19: A three-phase hysteresis current control for a three-phase system. 

1.6.3   Sliding Mode Control  

The sliding mode control (SMC) methodology is a propulsive converter control method which 

belongs to variable structure control and flexible adaptive control families. This non-linear control 

approach is nicely related to both linear and nonlinear architectures. Figure 1.20 shows a sliding 

mode control approach in addition to the PWM/SVM block. Load voltage references are generated 

by the controller. The control variable is forced to follow or slide in the pre-determined direction 

[31]. This strategy involves changing the structure of the controller over time in order to provide 

a strong and stable functioning in the face of parameter and load variations [32]. 

The sliding mode control approach for power converter presents distinct advantages and 

disadvantages. One of its key advantages is its robustness in the face of uncertainties and 

disturbances. Sliding mode control excels in tracking reference signals, even when the wind 

conditions are highly variable. It offers excellent dynamic response and disturbance rejection 
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capabilities, making it suitable for enhancing the overall system's reliability and grid integration. 

However, there are notable drawbacks to consider. Sliding mode control can generate high-

frequency switching, leading to increased switching losses and potential stress on the converter 

components, which may reduce overall efficiency and longevity. Furthermore, it may exhibit 

chattering behavior, characterized by rapid switching between control modes, which can lead to 

increased electrical and mechanical wear and tear. While it offers compelling benefits in terms of 

robustness, sliding mode control may not be the ideal choice when minimizing switching losses 

and harmonics is crucial. 

 

Fig. 1.20: A sliding mode control strategy alongside the PWM/SVM for a three-phase load. 

 

1.6.4   Model Predictive Control 

Model predictive controllers, as illustrated in Fig. 1.21, allow for the use of any algorithm 

which employs a model to predict behavioral patterns and selects the most appropriate control 

operation based on a cost/loss function. Predictive control necessitates a considerable number of 

computations than traditional controllers. Because high-speed microprocessors are readily 

available, this large number of computations may be completed in a shorter period of time, of 

course [34]. MPC is an optimization approach where a cost function is optimized over a pre-

determined time horizon while taking into account system limitations and the model [35].  

Model predictive control of power converters has attracted many researchers. Authors in [36] 

developed a ubiquitous and moderate-complexity MPC technique for DFIG-based wind energy 

conversion systems, which could perform successfully in both balanced and unbalanced 

circumstances. To regulate the three-level boost converter and grid-side NPC inverter, a model 

predictive procedure was provided in [37]. The predictions were assessed using two autonomous 
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cost functions, besides diminishing the switching states. The switching signals, then, directly 

applied to the machine (MSC) and grid side converters (GSC). Since the MPC controller needs to 

investigate extensively for all potential switching signals to obtain the appropriate switching signal 

in each controller time span, it had a high computing cost. In [38], a MPC was employed on both 

sides of a back-to-back NPC converter, which linked a permanent magnet synchronous based 

WECS to the grid. The predictive control technique, which took into account the redundancy of 

the switching states of the NPC, was applied to accomplish DC-link neutral-point balancing. With 

the predictive control, the count of switching commutations was lessened, the low-voltage ride-

through criterion was met, and the current spectrum was controlled, as well. However, the required 

computations were still high. In [39], an effective model predictive control approach for torque 

and power regulation of a back-to-back NPC converters employed in WECS with PMSG was 

presented, based on hexagon and triangle candidate regions. The variety of feasible switching 

states was dramatically decreased owing to proper candidate region selection, which diminished 

calculation time. Reference [40] provided the predictive voltage source converter model with a 

cascaded control structure. A mathematical technique was used to compute the sensitivity 

coefficients for power injections and slack bus voltage. A rigorous finite-control set MPC approach 

with modified predictions for a PMSG based WECS with a three-level back-to-back NPC power 

converter system was suggested and verified in [41]. The technique considered the power 

converter nonlinearity and switching nature, combining the control objective optimization and 

switching state determination procedures into a single computation phase. Not only was the system 

resilience against parameter fluctuations increased, the control variable ripples were also 

significantly decreased. The MPC, however, has a number of shortcomings. The downside of MPC 

is the complicated algorithm, which necessitates a proper process model and a high number of 

model coefficients. Furthermore, if there is an actual disturbance at the plant input, it may not work 

well, no matter how much it is improved. Moreover, frequency variation is another main 

disadvantage of MPC. 
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Fig. 1.21: Fundamental concept of predictive control. 

 

1.6.5   Artificial Intelligence Based Control Approaches 

The shift toward using AI-based control techniques for power converters in WECS is driven 

by the need for more efficient, adaptive, and robust solutions to manage the variability and 

complexity of wind energy. Traditional control methods, as mentioned, often struggle to optimize 

performance under changing environmental conditions and system uncertainties. AI-based 

approaches offer the ability to learn and adapt to real-time data, enhancing the ability to predict 

and respond to the situations. Machine learning [42], artificial neural networks (ANN) [41], 

genetic algorithms (GA) [43], and fuzzy logic controllers (FL), reinforcement learning (RL), etc., 

have all been grouped together as intelligent control approaches [44]. Fig. 1.22 depicts an FLC 

technique in which the PI controller is replaced by the FL. The FL input is the derivative and error 

of the reference current. For membership functions, this controller adds the converter 

administrator/experience, planner's learning, and instinct. Because power converters are non-linear 

in essence, using the FL without understanding the suitable converter model might improve the 

system's strength when parameter variations occur [45]. Fig. 1.23, on the other hand, depicts the 

ANN-based controller. Through an acceptable gain (K), the load current tracking error is sent into 

the ANN, and the ANN generates changing signals for power converter. A constant switching 

frequency may be accomplished using this manner. However, their implementation can be 

challenging due to their inherent complexity. Designing and training ANNs requires specialized 

knowledge in both control systems and machine learning, which can increase development time 
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and costs. Additionally, ANNs require large amounts of training data to learn the control behavior 

effectively, and ensuring their generalization to new, unseen scenarios can be difficult. ANNs are 

also considered "black-box" models, making their decision-making process less interpretable, 

which can be a drawback in safety-critical applications. ANNs offer great potential for enhancing 

the control of power converters in WECS, but careful consideration and expertise are necessary to 

mitigate their disadvantages and ensure their effective implementation. Although, the advantages 

of FLC and ANN may be combined as shown in Fig. 1.24 to improve control performance and 

mitigate above-mentioned shortcomings.  

 

Fig. 1.22: FLC strategy utilizing pulse width/space vector modulation for a three-phase system. 

 

Fig. 1.23: An ANN based controller for a three-phase system. 
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Fig. 1.24: A Neuro-fuzzy controller for a three-phase system. 

 

Learning-based control approaches represent a pivotal and highly influential component of 

AI-based methods. In the realm of control systems and automation, these approaches have gained 

significant prominence for their adaptability and capacity to address complex and dynamic real-

world scenarios. By leveraging machine learning (ML) or RL techniques, learning-based control 

methods enable systems to acquire knowledge from data and adapt their behavior accordingly, 

often surpassing the performance of traditional control strategies. These approaches are 

particularly beneficial when dealing with systems that are challenging to model accurately or when 

encountering varying environmental conditions. By continuously learning and evolving, they 

empower systems to optimize their control strategies, making them invaluable tools in the pursuit 

of enhanced efficiency, autonomy, and adaptability in a wide array of applications across 

industries. Consequently, learning-based control approaches stand as a leading frontier in the 

ongoing integration of AI into control systems, offering remarkable potential for the future of 

automation and robotics [46]. In this regard, power electronic systems may be imbued with 

consciousness by adopting ML, and thus the system’s autonomy would be strengthened. Reference 

[47] offered a MPC trained methodology for modular multilevel converter based on a ML and 

ANN models. The converter was controlled by a highly accurate artificial neural network model. 

So, data from the standard rapid MPC approach was collected to train a ML algorithm. The 

suggested ML-based method had the same performance as a traditional MPC, but in a much more 

computation-effective way. Though, ML solutions were mostly conducted as tools for condition 

monitoring and fault diagnostic of converters in researches [48], [49], or control of a single-phase 

power converter, not three-phase ones [50]. 

Overall, Table 1.4 lists some of the pros and downsides of the mentioned strategies, which 

are popular for power converter employed in WECS, to summarized what have been discussed. 
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Table 1.4: Compares the benefits and downsides of the control strategies. 

Strategy Advantages Disadvantages Ref. 

Linear 
• It is less expensive. 

• Simple and straightforward to 
implement. 

• Less complicated 

• Switching losses are higher. 
• Lower order harmonics are present. 

• Power quality is poor. 
• Less reliable. 

• Error in the steady state is high. 

[51] 

Hysteresis 

• Simple to put into practice. 
• There's no need for complex 

technology. 
• There is no need for a modulator. 

• Switching losses make it less efficient for 
low-power purposes. 

• The width of the hysteresis band, load 
factors, non-linearity, and working 

circumstances all affect the switching 
frequency. 

• It necessitates the use of costly filters to 
eliminate the spectral component. 

[52] 

Sliding Mode 
• Offers a fast response. 

• During load disturbances and 
parameter changes, it remains steady. 

• It's complicated in implementation. 
• High-frequency oscillations are generated. 

• Unable to cope with unforeseen 
uncertainty. 

• The choice of sliding surface has an effect 
on performance. 

[53] 

Model 
Predictive 

• Allows for a faster dynamic reaction. 
• The design is more straightforward. 

• Increased tracking precision. 
• It is possible to include non-linear 

characteristics and constraint. 
• Less sensitive to the system model. 

• Sophistication of computation. 
• Switching frequency can be varied. 

• High maintenance cost. 
• Lack of flexibility 

[54] 

Artificial 
Intelligence 

based 

• can adapt to changing environmental 
conditions. 

• Get rid of human error. 
• Costs of computation and time are 

being reduced by means of system 
modeling elimination. 

• Understanding of high-Dimensional 
Data. 

• It is necessary to have enough training data 
for training. 

• may not always generalize well to unseen 
conditions. 

• AI controllers can be vulnerable to cyber-
attacks if not properly secured. 

[54] 
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Based on the comprehensive investigation and the information presented in the provided table, 

it is evident that AI-based techniques offer a compelling and promising approach for controlling 

power converters in WECS and can be a proper candidate for the counterparts. Given the focus of 

this work on RL and ML based approaches for controlling the NPC power converters within 

WECS, these methodologies will be subjected to thorough investigation in the upcoming chapters. 

RL and ML bring about a paradigm shift in the way control strategies are conceived and 

implemented, offering the potential for greater adaptability, improved performance, and robustness 

in the face of uncertain environmental conditions and system dynamics. By delving deep into these 

cutting-edge techniques, this study aims to provide valuable insights into their application and 

effectiveness within the context of WECS. Understanding and harnessing the power of RL and 

ML within the control of NPC converters is pivotal to unlocking the full potential of wind energy 

systems, making this research an important contribution to the field of renewable energy and 

automation, in terms of power quality and maximum power point tracking (MPPT). In Chapter 2, 

the AI controller's working concept, particularly the ML and RL-based as well as the proposed 

control strategy, are detailed. 
 

1.7 Motivation of the Thesis Work 
Based on the previous discussions, wind energy conversion systems are found to be 

instrumental, in the global transition toward sustainable energy sources to achieve net zero GHG 

emission by 2050. Among the critical components of WECS, power converters play a pivotal role 

in optimizing energy extraction and grid integration. Traditionally, PI-based controllers have been 

used for control tasks, but these may fall short in managing the dynamic and complex nature of 

wind energy systems. AI-based control strategies hold immense potential to revolutionize the 

control of power converters for power quality at the grid side and maximum power point tracking 

at the machine side in a three-phase system. This part seeks to provide an overview of the 

motivations and contributions of applying the cutting-edge methodology to enhance the 

performance and efficiency of WECS, which will be investigated in this research.  

This study is structured into three distinct but interrelated parts, each addressing critical 

aspects of WECS. The first part focuses on the control of the grid side NPC power converter with 

a primary objective of enhancing power quality. Grid side control strategies are essential for 

ensuring that the power supplied to the electrical grid is stable and high quality, ultimately 
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contributing to grid stability and the seamless integration of renewable energy. The second part of 

the study delves into the control of the machine side NPC power converter, with a specific aim to 

implement advanced MPPT strategies. MPPT is pivotal in wind energy systems, as it enables wind 

turbines to capture the maximum possible energy from varying wind conditions. Both objectives 

address critical control challenges in WECS, collectively contributing to the efficient and reliable 

operation of wind energy systems in the pursuit of sustainable and clean energy production. 

Finally, the micro-grid (MG) power management will be addressed, in this thesis work. In MGs 

utilizing wind energy systems and other uncertain technologies, effective power management and 

battery energy storage system (BESS) scheduling are essential, instantly, due to the inherent output 

fluctuations associated with these sources. This is not only a must, but also it enhances grid stability 

and reliability and maximizes the utilization of renewable energy, reduces dependency on fossil 

fuels, in order to minimize the fuel cost.  

 

As the motivation for the grid Side NPC Control to maintain the power quality, the followings 

are considered: 

1. Challenges in Conventional Control: Traditional control methods, such as PI 

controllers, often struggle to handle the dynamic and non-linear behavior of wind turbines 

and grid-connected systems, which are essential for maintaining power quality. AI-based 

control approaches can offer the capability to adapt to varying grid conditions resulting in 

improved grid-side power quality. 

2. Limited Application of AI in wind industry: An analysis of the literature reveals that 

AI, specifically RL-based controller in the context of power converters has received 

limited attention, with most studies concentrating on AI models applied to single-phase 

or DC/DC systems. This motivates the author to explore the application of RL in 

controlling three-phase NPC power converters. 

3. Detailed system modeling requirement: Conventional PI controllers in WECS demand 

detailed and accurate system modeling that is often complex and difficult to achieve. In 

contrast, RL-based controllers significantly reduce the need for intricate system modeling 

by learning optimal control strategies through interactions with the environment. This 

capability of RL-based approaches not only simplifies the control design process but also 

can enhance the system THD performance. 
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The impact of this research on power converter power quality are summarized, as follows: 

1. Eliminating PI Controller Tuning: With the elimination of PI controllers, the need for 

parameter tuning and bandwidth adjustments becomes obsolete. This simplifies the 

control process and reduces maintenance complexities. 

2. Mitigation of Power Quality Issues: This study seeks to significantly reduce power 

quality issues by effectively managing voltage sags, swells, and harmonic distortions. This 

contribution is vital for preserving the integrity of the electrical grid and minimizing the 

risk of equipment damage. 

3. Considering Unbalance Power System Condition: The study contributes to solving 

unbalanced condition problems, single-phase and double-phase voltage drop, that other 

AI solution models might not work properly.  

4. Innovative Application: The research introduces MARL to control power converters. 

MARL extends the capabilities of RL by allowing multiple agents to interact, making it 

well-suited for handling complex, multi-dimensional scenarios. Ans it is also an 

innovative application of MARL in wind energy systems represents a pioneering 

contribution to the field of control strategies.  

5. Optimal MARL hyperparameter tuning: a novel approach is proposed to optimize the 

MARL hyperparameter known as the discount factor (DF), which significantly enhances 

the performance and response of the system compared to traditional tuning methods which 

often rely on manual adjustments.  

 

As the motivation for machine side NPC power converter control for MPPT purpose, the 

followings are considered: 

1. Dependency on Accurate System Modeling: Techniques like Perturb and Observe 

(P&O) and Incremental Conductance (IC) require precise modeling of the wind turbine 

and power electronics to function effectively. Inaccurate models can lead to suboptimal 

performance and incorrect MPP tracking. 

2. Slow Dynamic Response: Traditional methods often exhibit slow response times to 

rapidly changing wind conditions, which can result in significant energy losses. The lag 

in adapting to new maximum power points reduces the overall efficiency of the WECS. 
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3. Oscillations Around MPP: Many conventional MPPT algorithms suffer from 

oscillations around the maximum power point, particularly under steady-state conditions. 

These oscillations can cause wear and tear on the system components and reduce the 

lifespan of the turbine and converters. 

 

The impact of this research on highly-efficient MPPT are summarized, as follows: 

1. Improved MPPT: The development of an advanced MPPT algorithm enhance the energy 

capture capabilities of wind turbines, ensuring that the system operates at their peak 

efficiency under varying wind conditions, and provide fast response to the wind speed 

changes. 

2. Novelty in Multi-Agent RL for MPPT: The work extends the novelty by applying multi-

agent RL not only to power converter control, but also to MPPT purposes, further 

expanding the horizon of research in this domain. Also, a highly-efficient approach is 

proposed to optimize the MARL discount factor hyperparameter, which significantly 

enhances the performance and response of the system compared to methods rely on 

manual adjustments.  

3. Lab Implementation of MPPT: As an additional contribution, the study emphasizes the 

practicality of the proposed MARL ta tackle MPPT by implementing it in a laboratory 

environment. This validation helps bridge the gap between theoretical RL-based model 

and real-world applications in power systems. 

 

The first two objectives of this thesis focus on enhancing power quality and maximizing 

energy extraction in WECS through advanced NPC converter control and MPPT techniques. These 

improvements set a strong foundation for the third objective, which involves effective power 

management in a microgrid comprising wind turbines, photovoltaic systems, and combined 

cooling, heat, and power units. Given the inherent uncertainties associated with WT power 

generation, robust power management is crucial. Hence, the research motivation for power 

management and energy scheduling of a MG, are as follows: 
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1. Optimizing Renewable Integration: With the increasing emphasis on renewable energy 

integration into the MG, managing the intermittent nature of sources like solar and wind 

becomes critical.  

2. Economic Benefits: Effective power management can result in significant economic 

benefits. By optimizing energy use and storage systems, the operational costs of running 

a microgrid can be substantially lowered. Additionally, improved efficiency and reliability 

can enhance the economic attractiveness of microgrid projects, encouraging further 

investments and adoption. 

3. CO2 emissions concern: One of the primary motivations for this study is the significant 

potential of microgrids to reduce CO2 emissions, by an optimal power management 

strategy. By integrating renewable energy sources such as wind turbines and solar panels, 

as well as the properly-managed units’ energy generation, microgrids can diminish fossil 

fuel burning, directly lowering carbon footprints. 

 

The impact of the research on this environmentally-friendly power management and BESS 

energy scheduling are summarized, as follows: 

1. Multi-Objective Optimization in A Comprehensive Microgrids: A novel MARL 

approach is proposed for power management in a microgrid with wind turbines, 

photovoltaic panels, and Combined Cooling, Heating, and Power (CCHP) units, including 

chillers, micro-turbines, etc., aiming to optimize a multi-objective function to reduce both 

fuel consumption and CO2 emissions, considering the penalty factors for PV and WT 

generations. 

2. Optimizing Agent Number for Efficient MG energy scheduling: Determined the 

optimal number of agents in the MARL system, a previously unexplored aspect, ensuring 

the right balance between complexity and effectiveness in managing the MG, leading to 

improved performance and efficiency. 

3. Solving fluctuations in the training phase: The discrepancy in co-player policies is an 

acute issue as it makes restoring them intrinsically challenging and causes undesired 

fluctuations in the training phase. The matter is resolved here employing the 𝑄-based 
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Bellman equation. The 𝑄-based Bellman equation helps resolve this issue by explicitly 

modeling the interactions and dependencies between agents. 

 

1.8 Objective of the Thesis 
This thesis aims to address the existing challenges in power converter control strategy, MPPT, 

and power management within MGs containing wind energy systems by proposing a novel MARL 

method. The main objectives of this research are as follows: 

1. Improving Power Quality of WECS: 

o Develop a ML approach: Design and develop an improved ML approach to 

control grid-side power converters employed in a direct-drive PMSG-based WECS 

for ensured power quality. 

o Develop an Advanced MARL Approach: Design and implement a MARL-based 

control strategy for grid-side and machine-side power converters in a direct-drive 

PMSG-based WECS. This approach aims to enhance the power quality by 

effectively managing voltage sags, swells, and reduction in total harmonic 

distortions. 

o Reduce System Modeling Complexity: By utilizing MARL, minimize the need 

for detailed and complex system modeling required by traditional PI controllers, 

thus simplifying the control design process. 

2. Enhancing MPPT Efficiency: 

o Develop an Advanced MPPT Algorithm: Create a highly-efficient MPPT 

algorithm based on MARL to maximize energy extraction from wind turbines. This 

algorithm ensures rapid adaptation to varying wind conditions and reduce 

oscillations around the maximum power point. 

o Optimize MARL Hyperparameters: Implement a meta-learning approach to 

optimally adjust the MARL discount factor, significantly enhancing the system's 

response time and overall efficiency. 
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o Practical Implementation and Validation: Validate the proposed MARL-based 

MPPT algorithm in a laboratory environment to bridge the gap between theoretical 

models and real-world applications, ensuring practical feasibility and robustness. 

3. Optimizing Power Management in Microgrids: 

o Develop Accurate Power Predictions: Utilize a recurrent multi-layer ANN to 

accurately predict the output power of WT and PV systems over a 24-hour period, 

incorporating a stochastic gradient-based optimizer to minimize the RMSE cost 

function. 

o Model a Comprehensive Microgrid and develop Multi-Objective Cost 

Function: Design and mathematically model a microgrid (MG) that includes WT, 

PV, CCHP units, micro-turbines, and BESS. Formulate the system's constraints and 

equality equations to balance loads and generations effectively. Also, develop a 

multi-objective cost function considering fuel costs, CO2 emission costs, and 

penalty factors for WT and PV due to their inherent uncertainties. 

o Employ MARL for Optimal Management: Apply the proposed MARL method 

to manage power among generation units and optimize BESS scheduling within a 

24-hour period. Focus on achieving cost-effective and efficient power 

management. 

o Determine Optimal Agent Configuration and DF value: Identify the optimal 

number of agents in the MARL system, as well as the DF value to balance 

complexity and effectiveness, ensuring improved performance and efficiency in 

managing the microgrid. 
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1.9 Thesis Organization 
In this thesis, the subsequent chapters are meticulously structured to address the key 

components of AI-based control strategies and their applications in wind energy systems. Chapter-

2 delves into the fundamentals of AI-based control strategies, with a specific focus on the proposed 

MARL method. This chapter presents formulation of the MARL approach, detailing its innovative 

aspects and theoretical underpinnings. Chapter-3 is dedicated to controlling the grid-side NPC 

power converter using the developed MARL method. And validates its applicability and 

superiority over conventional methods through extensive simulation results. In Chapter-4, the 

focus shifts to the MPPT problem. This chapter presents a series of extensive scenarios and 

simulation results that substantiate the efficacy of the proposed method. Additionally, it includes 

the implementation of the MARL-based MPPT on a laboratory setup, providing empirical 

evidence of its practical viability and effectiveness. Afterwards, Chapter-5 addresses the power 

management problem, encompassing the modeling, development of mathematical equations, and 

constraints of the proposed microgrid. This chapter also presents the results of energy scheduling, 

supported by detailed discussions on the outcomes and their implications. Finally, Chapter-6 

provides a succinct conclusion of the research findings and suggests directions for future work. 

This chapter encapsulates the contributions of the thesis, highlighting the advancements made in 

the field of wind energy systems through the innovative use of MARL-based control strategies. It 

also identifies potential areas for further research, ensuring that the groundwork laid by this thesis 

can be built upon by future studies. 
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Chapter 2 

Literature Review, and Development of the Proposed Power 

Converter Control Strategy 

 

2.1   Introduction 
Power converters are fundamental components in electrical systems, responsible for 

converting and regulating electrical energy across a wide spectrum of applications. Traditionally, 

the control of power converters has been grounded in heuristic and model-based methods, which, 

while effective, come with their inherent limitations. With the emergence of artificial intelligence, 

particularly machine learning and reinforcement learning methods, the landscape of power 

converter control is undergoing a transformative shift. These AI-based approaches offer numerous 

advantages, ranging from enhanced efficiency and adaptability to the potential for autonomous 

optimization. However, it is worth noting that, despite the immense potential, relatively less 

attention has been directed toward applying AI-based control strategies to power converters. While 

AI has made substantial inroads in various domains, the application of AI to power converters has 

primarily centered around single-phase DC/DC converters. This has garnered noteworthy success 

in improving control performance, efficiency, and adaptability. Yet, the vast domain of three-phase 

AC converters, which play a critical role in industrial and commercial electrical systems, remains 

relatively unexplored, especially in WECS research area. The advantages that AI-based control 

strategies offer in the context of single-phase converters set the stage for a compelling exploration 

of their potential in three-phase AC converters. 

This chapter serves as an introduction to the use of AI, specifically ML and RL. Moreover, 

the chapter draws attention to the relative scarcity of research and implementation in AI-based 

control of power converters, particularly in the context of three-phase AC converters, employed in 

WECSs. By bridging this gap in research, it is aimed to shed light on the untapped potential and 

opportunities for enhancing power converter control in various applications. So, the proposed 

strategy will be detailed here, and will be served for WECS power quality and MPPT purposes, in 

the following chapters. 
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2.2   Machine Learning Models 
Without an explicit prior programming task, AI algorithms can learn directly from data. The 

motif omits the complexity of the system modeling (here, WECS). Machine learning, with its 

capacity to learn from data, is particularly well suited to issues that are either too complicated to 

properly characterize or whose description is inaccurate. Several ML algorithms can be applied to 

the diverse problems which originate in data networks, such as; regression, logistic regression, 

polynomial logistic regression [55], support vector machine [56], K-nearest neighbors [57], K-

Means [58], random forest [59], gradient boosting machine [60], multilayer perceptron [61], Naïve 

Bayes [62], and many others. These algorithms can be sub-divided into four main categories: 

Supervised learning: The ML endeavor of learning a function that maps inputs to an output 

according to the input-output pairs is known as supervised learning. It utilizes labeled training data 

and a collection of training examples to infer a function. Each sample in supervised learning is a 

pair of an input and an output usually known as the target. A supervised learning algorithm 

evaluates the training dataset and generates a highly-accurate estimated function that can be 

applied to new unseen cases. The algorithm must be able to predict a correct output for the 

mentioned unseen data. It is noteworthy that based on the output type, the supervised learning 

would be either regression or classification problems [63]. As one of the WECS application for 

this type of ML-based solution, [64] introduced a multivariate estimation for the power curve of 

the wind turbine considering the weather conditions such as wind speed, air density, wind 

turbulence, and wind share. Or, [65] compared various supervised techniques in a data-centric 

approach to wind turbine component failure detection. 

Unsupervised learning: Unsupervised Learning is a ML approach in which the model does 

not require the users' supervision. Alternatively, it empowers the model to operate independently 

to identify previously unnoticed patterns and trends. It is mostly concerned with unlabeled data. In 

comparison to supervised learning, unsupervised learning algorithms allow users to execute more 

sophisticated data processing. Unsupervised learning, on the other hand, might be more 

unpredictable than other learning approaches. Clustering, and anomaly detection are two examples 

of such category [66]. In WECS application, [67] carried out the demand analysis of operation 

mode extraction of high proportion renewable energy power system. Then, an automatic mode 

extraction algorithm based on K-mean algorithm and improved unsupervised-based cluster 

validity index was proposed. 
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Semi-supervised learning: A learning issue with a small number of labeled instances and a 

large number of unlabeled cases is known as semi-supervised learning. This sort of learning issue 

is difficult to address since neither supervised nor unsupervised learning algorithms can effectively 

employ a mixture of labeled-unlabeled data. As a result, specialized semi-supervised learning 

methods are necessary [68]. In WECS application, [69] proposed a workflow to detect faults based 

on automatic feature selection, and semi-supervised classification for fault detection.  

Amongst mentioned sub-methods the adoption of supervised ML for power converter control 

in a WECS is underpinned by several compelling reasons: 

1. Adaptability: Power converters often operate in dynamic environments where conditions, 

such as load characteristics and input voltages, can vary substantially. Supervised ML models 

excel in adapting to such changes. They learn from historical data, automatically adjusting control 

parameters to maintain optimal performance without the need for manual tuning. 

2. Nonlinear System Handling: Power converters and wind generators are inherently 

nonlinear systems, exhibiting complex and intricate dynamics. Traditional control methods 

frequently resort to linearization, which can compromise control accuracy, especially in dynamic 

applications. In contrast, supervised ML models can inherently handle these nonlinearities, 

capturing intricate system dynamics with precision. 

3. Data-Driven Control: Power converters generate substantial data through sensors and 

feedback mechanisms. Supervised ML leverages this rich data environment, making it particularly 

well-suited for applications, where real-time information drives decision-making is required. By 

learning from past data, these models make informed decisions based on the most recent system 

conditions. 

4. Fault Tolerance: Supervised ML models can detect and respond to faults in real-time. This 

enhances the overall reliability of power converters by identifying anomalies and mitigating 

potential damage, a vital consideration in applications where system safety is paramount. 

These underscore the importance of the supervised learning approach in power converter 

control strategy employed in a WECS. The following section focuses on the development of 

supervised machine learning solutions and the underlying mathematics are also provided to 

support the concept explanation. 

 



65 
 

2.3   Development of Supervised Machine Learning 
In the simplest terms, linear regression is a supervised machine learning model that identifies 

the best fit linear line seen between independent and dependent variables, i.e., it discovers the 

linear connection between the two variables. There are two forms of linear regression: simple and 

multiple. Only one independent variable is included in simple linear regression, and the model 

must identify a linear connection between the only parameter and the dependent variable. Multiple 

linear regression, on the other hand which is the type of this study problems, uses more than one 

independent feature variable to identify a link. Equation (2.1) describes the multiple linear 

regression. And 𝑏0 is the bias, 𝑤1, 𝑤2, … , 𝑤𝑛 are coefficients of the independent variables 

of 𝑥1, 𝑥2, … , 𝑥𝑛, and ℎ𝑤(𝑥) is the hypothesis function or predicted target.  
 

ℎ𝑤(𝑥) = 𝑏0 + 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝑛𝑥𝑛                                                                                                       (2.1) 
 

In the context of supervised machine learning, nonlinear regression, on the other hand, is used 

to find a nonlinear function that best fits the data. The general mathematical representation of 

nonlinear regression can be expressed as follows: 
 

ℎ𝜔(𝑥) = 𝑓(𝑋,𝑤) + 𝜖                                                                                                                                                        (2.2) 

 

Where 𝑓(𝑋,𝑤) is the nonlinear function that relates the inputs to the target output. And 𝜖 

represents the error term, accounting for the difference between the predicted values and the actual 

observed values. The goal of nonlinear regression is to determine the best-fitting function 

𝑓(𝑋, 𝑤) and estimate the parameters 𝜔 in such a way that the error term 𝜖 is minimized, indicating 

a close alignment between the predicted and actual values. The specific form of the non-linear 

function will depend on the nature of the problem and the chosen model. Common types of 

nonlinear models include: 

 

Polynomial Regression: This is a type of nonlinear regression where the function 𝑓(𝑋,𝑤) 
takes the form of a polynomial equation. It should be noted that using a high degree of polynomial 

tries to overfit the data and for smaller values of degree, the model tries to underfit so it is required 

to find the optimum value of a degree. The best degree of the nonlinear function can be attained 

by trial and error in the model [70]. 
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ℎ𝑤(𝑥) = 𝑏0 + 𝑤1𝑥1 +𝑤2𝑥1
2 +⋯+ 𝑤𝑛𝑥1

𝑛 + 𝑤𝑛+1𝑥2 +⋯                                                                             (2.3) 
 

Exponential Regression: In this case, the function follows an exponential equation, like: 
 

ℎ𝑤(𝑥) = 𝑏0 + 𝑤1. 𝑒
𝑤2𝑋                                                                                                                                    (2.4) 

 

Logistic Regression: Logistic regression models the probability of a binary outcome, and the 

function is the logistic function, given as: 
 

ℎ𝑤(𝑥) =
1

1+𝑒−(𝑏0+𝑤𝑥1+𝑤2𝑥1
2+⋯+𝑤𝑛𝑥1

𝑛)
                                                                                                                  (2.5) 

 

However, when it comes to the specific domain of power converter control, the choice of the 

most suitable nonlinear regression model is a critical decision. Given the complex and often 

nonlinear relationships between input variables and the desired output in power converter control, 

polynomial regression emerges as a compelling choice. Polynomial regression allows for a more 

flexible representation of the data, accommodating intricate dynamics. It can capture nonlinear 

relationships by introducing higher-order terms, offering a better fit for the dynamic behavior of 

power converters. In this context, the versatility and adaptability of polynomial regression make it 

a strong candidate for effectively modeling and controlling power converters, enhancing their 

performance, efficiency, and adaptability. 

 

2.3.1   Regularized Polynomial Locally Weighted Regression 

The prediction accuracy of the commonly-used polynomial regression may not be enough. 

So, locally weighted regression can assist in enhancing the overall performance of polynomial 

regression algorithms. The primary idea underlying locally weighted regression is to create a local 

model in which data points in close vicinity of the current query point are assigned more weight 

over data points further away, as follows: 

𝑊 = 𝑒
−
(𝑥(𝑗)−𝑥)

2

2𝜏2                                                                                                                                                (2.6) 
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In this equation, the weights are determined by the 𝑥 point around which the attempt is given 

to evaluate the regression. The weight 𝑤(𝑗) gets near the 1 if |𝑥(𝑗) − 𝑥| is low, and it would be low 

if |𝑥(𝑗) − 𝑥| is high. The 𝜏 is also known as the bandwidth parameter. In this instance, increasing 

the 𝜏 of the bell shape curve equation will lead to raise of the further points weight. In this problem 

the bandwidth parameter could be attained by trial and error, as well.  

Moreover, developing a ML model is more than just loading data and getting desirable results. 

There are several shortcomings which thus impact the accuracy of any model. Overfitting in ML 

is one such defect that degrades the model accuracy. When a model learns the details and noise in 

the training data to the point that it degrades the model performance on new data, this is referred 

to overfitting [71]. To solve the issue, many regularization solutions have been proposed by data 

analysts. Ridge regularization (L1 regularization), and Lasso regularization (L2 regularization) 

strategies are two well-known regularization methods which are provided to prevent parameters 

from being too large. Reference [72] proposed a wind speed forecasting method based on 

regularized ML method, as an effective computing technique to deal with control and operation of 

WECS. In this regard, overfitting will be restrained. To achieve this, a weighted summation of the 

parameters (L1) or the squared summation of them (L2), as 𝑅(𝑤), will be concatenated to the cost 

function, which will be defined in following section.  

 

In which: 

𝑅(𝜔) =

{
 
 

 
 1

2
∑𝑤𝑗

𝑛

𝑗=1

= ‖𝑤‖       →     𝑖𝑓: 𝐿1

1

2
∑𝑤𝑗

2

𝑛

𝑗=1

= ‖𝑤‖2
2     →     𝑖𝑓: 𝐿2

 (2.7) 

 

 

2.3.2   Cost Function 

As mentioned, the main goal of a regression model is to determine the best-fit line and the 

appropriate interception and coefficient values so that the error is minimized. To assess the model 

performance a cost/loss function is vital to demonstrate how well it operates. Several cost functions 

are represented in literature. The mean squared error (MSE) stands out as the most suitable cost 

function for controlling power converters in machine learning applications due to its inherent 

properties and relevance to the task. MSE measures the average squared difference between 
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predicted and actual values, making it ideal for tasks where the goal is to minimize the difference 

between the output of the power converter and the desired target. In the context of power converter 

control, MSE provides a clear, quantitative measure of performance that directly reflects the 

system's accuracy. Furthermore, MSE is convex, which means it has a single global minimum, 

making it easier to optimize using gradient-based methods. This property ensures that the 

optimization process converges reliably to a solution, enhancing the stability and efficiency of the 

control algorithm. Additionally, MSE is well-suited for continuous and differentiable 

optimization, aligning with the requirements of many power converter control algorithms that rely 

on iterative optimization techniques. To eliminate any potential of negative errors, a square of the 

difference between the actual and forecasted value is computed. The average of the sum of squared 

discrepancies between forecasts and actual observations is used to calculate the MSE, as follows. 

For better understanding the equation, the m demonstrates the number of data and 𝑦(𝑗) is the actual 

output values. 
 

𝑀𝑆𝐸 = 𝐽(𝑤) =
1

2𝑚
∑ (ℎ𝑤(𝑥

(𝑗)) − 𝑦(𝑗))
2𝑚

𝑗=1                                                                                                     (2.8) 

 

After applying the local weights and regularization terms to the cost function based on (8), 

the overall cost function would be (2.9), in which, 𝜆 is regularization strength, which balances the 

minimization importance, between the two terms in the cost function. 

 

𝐽(𝑤) =
1

2
𝑊(𝑗) ∑ (ℎ𝑤(𝑥

(𝑗)) − 𝑦(𝑗))
2𝑚

𝑗=1 + 𝜆𝑅(𝑤)                                                                                                      (2.9) 

 

2.3.3   Cost Function Optimizers 

In the realm of supervised machine learning, the optimization of the cost function is a pivotal 

step. This process involves finding the set of model parameters that minimizes the difference 

between predicted values and actual observations. Numerous optimization algorithms have been 

developed for this purpose, each with its unique strengths and characteristics. Some well-known 

optimizers include stochastic gradient descent (SGD), Adam, RMSprop, and Adagrad, to name a 

few. While the choice of optimizer may depend on the specific problem and the nature of the data, 

several optimizers have gained widespread use due to their effectiveness. In the following sections, 
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we will delve into some of the most commonly used optimization algorithms, providing a detailed 

exploration of their principles and practical applications in the context of power converter control. 
 

Stochastic Gradient Descent: The iterative approach of SGD is often used to optimize an 

objective function with sufficient smoothness criteria. Stochastic gradient descent algorithms are 

a modification of gradient descent, in terms of computational volume. In SGD, the gradient is 

calculated using just one of the randomly-selected observations instead of all of them. In some 

cases, this approach can reduce computation time. SGD is commonly used to avoid local optimum 

and saddle-points, which would otherwise trap deterministic processes. In SGD, the true gradient 

of 𝐽(𝜔) is approximated by a gradient at the chosen sample, and the parameters will be updated, 

as regards [73]. where, 𝛼 is the hyperparameter of the step size which is obtained by trial and error, 

in this work. 

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤𝑜𝑙𝑑 − 𝛼(𝛻𝐽(𝑤))                                                                                                                                                (2.10) 

Mini-Batch Gradient Descent (MSG): Mini batched updates are a more accurate computing 

procedure than SGD. As a result in MGD, in each updating iteration, a batch of data is picked 

instead of only one sample [74]. To update the parameters, here, commonly a batch of 8, 16, 32, 

64, 128 or 256 data is involved in each iteration. In this scenario, the model mostly outperforms 

SGD in terms of learning rate and accuracy. Hence, a higher step size can be used to have lower 

number of iterations required to achieve the convergent.  

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤𝑜𝑙𝑑 − 𝛼 (
1

𝐵𝑎𝑡𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟
∑ 𝛻𝐽(𝑤)𝐵𝑎𝑡𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟
𝑛=1 )                                                                                                 (2.11) 

Broyden–Fletcher–Goldfarb–Shanno (BFGS): The BFGS optimizer is basically an 

approach for addressing nonlinear optimization problems with no constraints. It preconditions the 

gradient with curvature data to identify the descent direction. It performs by progressively refining 

an approximation to the loss function. Hessian matrix (𝐻) derived only from gradient assessments 

using the extended secant approach. It is computationally cost-effective to update the BFGS 

curvature matrix and it is usually more stable than gradient descent approaches [75]. The iterative 

process begins with an initial guess for parameter matrix 𝜔0, and Hessian matrix 𝐻0. Then: 

 

𝐻𝑡𝑃𝑡 = − 𝛻𝐽(𝑤𝑡)                                                                                                                                            (2.12) 



70 
 

𝑠𝑡 = 𝛼𝑡𝑃𝑡                                                                                                                                                         (2.13) 

𝑤𝑡+1 = 𝑤𝑡 + 𝑠𝑡                                                                                                                                               (2.14) 

𝑦𝑡 =  𝛻𝐽(𝑤𝑡+1) − 𝛻𝐽(𝑤𝑡)                                                                                                                               (2.15) 

𝐻𝑡+1 = 𝐻𝑡 +
𝑦𝑡𝑦𝑡

𝑇

𝑦𝑡
𝑇𝑠𝑡
−

𝐻𝑡𝑠𝑡𝑠𝑡
𝑇𝐻𝑡

𝑇

𝑠𝑡
𝑇𝐵𝑡𝑠𝑡

                                                                                                                          (2.16) 

 
where, 𝑃𝑡 represents the search direction, 𝛼𝑡 is the stepsize which can be found through a one-

dimensional linear optimization, and the 𝑠𝑡 illustrates the update step. 
 

Limited-memory BFGS: L-BFGS, such as above-mentioned BFGS, navigates its search 

across variable space through an estimation of the inverse Hessian matrix, but instead of storing 

all the problem variables, L-BFGS just maintains a few vectors that reflect the estimation 

implicitly. In other words, L-BFGS uses the m most recent iterations for Hessian matrix 

approximation. The L-BFGS approach is particularly well suited for optimization problems with 

multiple variables due to the linear memory demand [76]. 

  

Adagrad: Adagrad is an optimizer frequently used in machine learning, particularly for 

minimizing the MSE cost function. This algorithm stands out for its adaptive learning rates, which 

automatically adjust the step size for each parameter during training. The mathematics behind 

Adagrad involves updating the learning rate for each parameter based on the historical gradient 

information. Specifically, for a parameter θ, the update rule is as follows: 

 

𝛥𝑤𝑡  =  (𝜂 / 𝑠𝑞𝑟𝑡(𝐺𝑡  +  𝜀))  ∗  𝛻𝜃 𝐿(𝑤𝑡)                                                                                                                 (2.17) 

 

Here, 𝛥𝜔𝑡 represents the change to the parameter 𝜔 at time step 𝑡, 𝜂 is the learning rate, 𝐺𝑡 

accumulates the squared gradients of 𝑤 up to time 𝑡, and 𝜀 is a small constant added to avoid 

division by zero. Adagrad is effective in scenarios where some parameters require larger updates 

than others, as it adapts the learning rates individually, ensuring faster convergence for infrequent 

features and slower updates for frequent ones, making it a valuable tool for optimizing MSE cost 

functions in various machine learning tasks. 
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Adam: Adam (Adaptive Moment Estimation) is a popular optimization algorithm that 

combines the advantages of both the Adagrad and root mean square propagation algorithms. It's 

known for its effectiveness in training deep neural networks. Adam uses adaptive learning rates 

for each parameter and maintains two moving averages of past gradients to adjust these learning 

rates.  

While there are numerous optimization algorithms available, several well-known ones were 

briefly explained for ML cost function optimization tasks. However, to boost the efficiency of the 

ML model, apart from the regularizing or choosing proper optimizer, data pre-processing plays a 

crucial role by ensuring that the data is clean, consistent, and ready for analysis. It involves a series 

of steps such as cleaning, transforming, and aggregating data to improve the quality and usability 

for modeling. In the following part, the subject of data pre-processing will be discussed. 
 

2.3.4   Data Pre-Processing  

Data preprocessing is a fundamental and indispensable stage in the machine learning pipeline. 

It involves a series of techniques applied to raw data to make it suitable for analysis and modeling. 

Proper data preprocessing is critical for several reasons. First and foremost, it helps in cleaning 

and refining the dataset, ensuring that it is free from missing values, outliers, and errors. By doing 

so, it reduces the potential for introducing bias or inaccuracies into the model, thereby enhancing 

the robustness and reliability of the results. Secondly, data preprocessing aids in the transformation 

of data into a format that can be effectively used by machine learning algorithms. This includes 

encoding categorical variables into numerical representations, scaling features, and addressing 

imbalanced datasets. Without these transformations, algorithms may struggle to extract 

meaningful patterns and relationships within the data. Lastly, data preprocessing often contributes 

to dimensionality reduction, which can lead to more efficient model training and interpretation, as 

well as reduced computational overhead. Among the myriad data preprocessing methods, the most 

well-known ones are: 

Feature Scaling: Feature scaling is essential because it ensures that features are on a similar 

scale, preventing some from dominating others and skewing the learning process of many machine 

learning algorithms that rely on distance measures. The most common techniques for feature 

scaling include Min-Max scaling and Standardization (Z-score scaling). 
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wherein, 𝑥𝑖
(𝑗)
 is the 𝑖𝑡ℎ  input feature of the 𝑗𝑡ℎ sample data, 𝜇𝑖

(𝑗)
 is mean, and 𝜎𝑖

(𝑗)
 is the 

standard deviation, respectively. Relying on the scaled labeled data the model will be trained, and 

a regression algorithm seeks to attribute inputs into an output in lower iterations. 
 

Feature Encoding: Categorical data, cannot be directly used in many machine learning 

algorithms. Feature encoding is vital for converting these categories into a numerical format that 

models can understand. Two common methods are One-Hot Encoding and Label Encoding. 
 

Handling Missing Data: Missing data is a common issue in real-world datasets and can lead 

to erroneous results. Proper handling ensures that the model's training and predictions are not 

compromised. For imputing missing values, common approaches include mean imputation which 

is replace missing values with the mean of the column. 

These three data preprocessing methods are foundational in ensuring data quality and 

compatibility for machine learning tasks. Feature scaling normalizes the data to a consistent range, 

feature encoding translates categorical data, and handling missing data maintains the integrity of 

the dataset. Their effective application enhances the accuracy and generalizability of machine 

learning models and is pivotal in the quest for meaningful insights and reliable predictions. 
 

2.4   Limitations of ML technique for Power Convert Control 
Machine learning solutions for controlling power converters in WECS face several significant 

challenges and limitations. One of the primary issues is the complexity of the WECS environment, 

which includes highly nonlinear dynamics, uncertainties in wind speed and direction, and varying 

load demands. These complexities make it challenging to develop accurate ML models that can 

effectively control the power converters under all operating conditions. Additionally, the 

performance of ML models heavily depends on the quality and quantity of training data, which 

can be limited or difficult to obtain for WECS, especially for rare or extreme operating conditions. 

Another limitation of ML technique is their lack of interpretability, particularly in deep 

learning models. This lack of transparency can be problematic in critical applications such as 
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WECS control, where understanding the reasoning behind control decisions is essential for 

ensuring safe and reliable operation. Moreover, ML models may suffer from the problem of 

overfitting, where they perform well on the training data but fail to generalize to unseen data, 

leading to poor performance in real-world applications. These would probably disable the ML 

model to tackle with unbalance and faulty conditions in wind energy systems.   

Reinforcement learning offers a promising alternative to traditional ML approaches for power 

converter control in WECS. RL algorithms, such as Q-learning and Deep Q-Networks (DQN), 

learn optimal control policies through trial and error, without requiring explicit models of the 

system dynamics. This makes RL well-suited for controlling complex systems like WECS, where 

the underlying dynamics are not fully understood or are difficult to model accurately. Furthermore, 

RL algorithms can adapt to changing environmental conditions and learn optimal control strategies 

over time, potentially outperforming traditional ML approaches in terms of control performance 

and efficiency. 

Due to the afore-mentioned limitations of ML method for power converter control, it is 

required to move toward the principles of RL and explore how it can be applied to address these 

issues. Also, the advantages of RL in learning optimal control policies in complex and uncertain 

environments will be explained, and proposed novel RL-based method for controlling power 

converters in WECS for this study will be developed, step by step. This method will aim to 

overcome the challenges faced by traditional ML approaches and provide a more effective and 

efficient solution for controlling power converters in wind energy systems for power quality and 

MPPT purposes. 

2.5   Reinforcement learning 
Reinforcement Learning is a fascinating subfield of AI learning that centers on training agents 

to make sequential decisions in an environment. Unlike supervised learning, where labeled data 

guides the model, and unsupervised learning, which uncovers patterns in unlabeled data, RL relies 

on trial-and-error learning. Reinforcement Learning is based on the idea of learning by interacting 

with an environment. An RL agent takes actions in the environment, and in return, the environment 

provides feedback in the form of rewards or punishments. The agent's objective is to learn a policy, 

a strategy that maximizes cumulative rewards over time. This process is analogous to training a 

pet where you reinforce desirable behaviors with treats. Key Components of RL are as follows: 
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1. Agent: The agent is the core decision-maker in the RL framework. It can be a software 

agent or a physical entity (e.g., a robot). The agent's role is to interact with the environment, make 

decisions, and learn from the consequences of those decisions. The agent's goal is typically to 

maximize the cumulative reward it receives over time by selecting actions that lead to desirable 

outcomes. The agent in a WECS could be a control system or algorithm that determines the optimal 

control actions for the system. 

2. Environment: The environment is the external system that the agent interacts with. It 

encompasses everything outside the agent itself that can influence or be influenced by the agent's 

actions. The environment is usually characterized by its states, actions, transition dynamics, and 

reward structure. In RL, the environment is the entity that provides feedback to the agent in the 

form of rewards or punishments. 

3. State (s): A state represents the current situation or configuration of the environment at a 

specific time. States capture all relevant information needed to make decisions in the context of 

the RL problem. States can be as simple as the position of a chessboard or as complex as the 

sensory data from a self-driving car. They serve as input to the agent's decision-making process 

and influence its choice of actions. States in a WECS problem could include wind speed, turbine 

speed, power output, blade pitch angle, and other relevant parameters that describe the current 

operating conditions of the wind turbine system 

4. Action (a): An action represents the choices made by the agent to interact with the 

environment. Actions can be discrete, or continuous. The agent selects actions from a predefined 

set of possibilities. The chosen action affects the state of the environment and can lead to different 

consequences, including receiving rewards or penalties. An action in a WECS problem 

corresponds to the control actions which the agent can take to influence the system's behavior, 

such as adjusting the rotor speed, blade pitch angle or the generator torque. 

5. Policy (π): The policy defines the agent's strategy for selecting actions in various states. It 

is a mapping from states to actions that guides the agent's behavior. In essence, the policy 

represents the agent's decision-making algorithm. A good policy should aim to maximize the 

expected cumulative reward over time. Policies can be deterministic, meaning they always select 

the same action for a given state, or stochastic, introducing randomness into action selection. 
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6. Reward (r): The reward is a numerical value that provides feedback to the agent about the 

immediate consequence of taking a specific action in a particular state. Rewards can be positive, 

negative, or zero, reflecting whether an action was beneficial, detrimental, or had no impact. The 

agent's objective is to learn a policy that maximizes the cumulative reward over time. Reward 

functions are designed to guide the agent toward desirable outcomes. Rewards in a WECS problem 

could be defined based on the amount of energy generated by the wind turbine system in a given 

time period 

7. Value Function (V): The value function, denoted as 𝑉(𝑠), estimates the expected 

cumulative reward that an agent can achieve starting from a specific state s while following a given 

policy 𝜋. In other words, it quantifies the goodness of being in a particular state and following a 

particular policy. It helps the agent assess the desirability of states and is essential for decision-

making. 

8. Q-Function: The Q-function, denoted as 𝑄(𝑠, 𝑎), estimates the expected cumulative 

reward that an agent can achieve by taking a specific action a in a specific state s and then following 

a particular policy π. It is a fundamental concept in RL, particularly for value-based methods like 

Q-Learning. Q-values are crucial for determining which actions are the most rewarding in each 

state, thus guiding the agent's actions. 

These components collectively form the foundation of RL, enabling the agent to learn from 

its interactions with the environment and make decisions to maximize cumulative rewards. In the 

realm of RL, a rich array of methods has emerged to address the challenge of training agents to 

make intelligent decisions in complex environments. These methods can be broadly categorized 

into model-based and model-free approaches. 

Model-Based Methods: Model-based methods involve creating a model of the environment. 

This model includes a transition probability distribution that specifies how the environment 

changes from one state to another when an action is taken, and a reward function that assigns 

numerical values to state-action-state transitions. These learned models are then used for decision-

making. The agent can simulate potential interactions with the environment, predict the outcomes, 

and determine the best course of action. Model-based methods are often sample-efficient, making 

them useful when collecting real-world data is expensive or risky.  
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Model-based reinforcement learning for WECS inherits some limitations from previously 

studied model-based control strategies, such as the difficulty and accurately modeling the complex 

dynamics of WECS, including uncertainties in wind conditions and turbine behavior. This 

modeling inaccuracy can lead to suboptimal control decisions and reduced performance. 

Moreover, limited generalization of model-based RL algorithms considers as the most critical 

issues, specifically. These algorithms are often tailored to explicit WECS configurations and 

operating conditions, and they may struggle to generalize to new or unseen scenarios. This lack of 

generalization can necessitate retraining or adaptation of the RL algorithm when the system 

changes, adding complexity and computational burden. 

Model-Free Methods: Model-free methods, in contrast to model-based ones, do not require 

an explicit model of the environment. Instead, they directly learn the optimal policy or value 

function through trial and error. They learn by continuously interacting with the environment, 

updating the agent's policy or value function based on the rewards and outcomes of their actions. 

Model-free methods are divided into two categories: policy-based and value-based approaches. 

These methods are often more robust and applicable to a wide range of problems but can be 

sample-inefficient, particularly in situations with sparse or delayed rewards. 

• Policy-Based Methods: Policy-based methods focus on optimizing the policy 

itself, which is a mapping from states to actions. The goal is to find a policy that maximizes 

the expected cumulative reward. These methods often use gradient-based optimization 

techniques to update the policy, making it more likely to choose actions that lead to higher 

rewards. Policy-based methods are particularly useful when dealing with high-dimensional 

action spaces or scenarios where the optimal policy is complex and challenging to represent. 

They excel in stochastic environments and can handle both discrete and continuous action 

spaces. However, policy optimization can be computationally expensive, and finding the 

optimal policy can be challenging, with a trade-off between exploration and exploitation. 

• Value-Based Methods: Value-based methods focus on estimating the value 

function or Q-function. The value function estimates the expected cumulative reward starting 

from a given state, while the Q-function estimates the expected cumulative reward of taking 

a specific action in a specific state. These methods estimate the value or Q-function and 

derive the policy from it. By selecting the action with the highest estimated value in a given 
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state, the agent can make decisions. Value-based reinforcement learning solutions offer 

distinct advantages over policy-based approaches for optimizing WECS. One key advantage 

is their simplicity, as value-based methods often feature simpler algorithms and 

implementations, facilitating easier understanding and deployment. Additionally, these 

methods exhibit scalability, effectively handling large state and action spaces inherent in 

complex WECS control tasks. Value-based approaches also excel in exploration, naturally 

navigating the state-action space to discover optimal policies, particularly beneficial in 

environments with uncertainties like WECS. Moreover, these methods tend to be more stable 

during training, focusing on learning the value of states rather than directly learning a policy. 

This stability, coupled with efficient value function optimization, typically leads to faster 

convergence to optimal policies. However, they may struggle with high-dimensional action 

spaces or problems where the optimal policy is stochastic and can suffer from overestimation 

biases that some algorithms aim to mitigate. 

Due to the advantages of value-based RL methods, this technique will be used for optimizing 

WECS, in terms of power quality improvement, MPPT, and power management schemes. The 

mathematics and development are provided, as follows. 

 

2.5.1   Mathematical Modeling of Reinforcement Learning 

As mentioned, in RL, an agent sequentially interacts with an environment, 𝐸. The 

environment is characterized by the transition function, 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡), the reward function 

𝑅(𝑎𝑡, 𝑢𝑡), action space 𝐴, and discount factor, 𝛾. The transition function then can be defined as: 

 

 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡): 𝑆 × 𝐴 × 𝑆 → ℝ                                                                                                                                  (2.19) 

 

This would specify the probability distribution of the next state, 𝑠𝑡+1, given the current state, 

𝑠𝑡, and action, 𝑎𝑡. Here, 𝑆 illustrates the state space, and 𝐴 considers as the action space. While 

some RL-based methods can be extended to continuous action spaces, as well, the author focuses 

on discrete action spaces, which is proper for WECS units’ control. This is due to the fact that as 

the likelihood of the subsequent state is solely determined by the preceding state and action, and 
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this would bring up the Markov decision process (MDP) concept.  In RL, the Markov property is 

a foundational principle that streamlines the representation of environments and decision-making. 

It asserts that a system's future state is solely determined by its present state and is independent of 

the sequence of states that came before it. This principle can be mathematically formulated as: 

 

𝑃( 𝑠𝑡+1 ∣∣ 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑠0, 𝑎0 ) = 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)                                                                                           (2.20) 

 

According to this equation, independent of previous states or actions, the probability to shift 

from the present state of 𝑠𝑡 to the following state, 𝑠𝑡+1, relies entirely on the present situation. As 

it enables agents to come to decisions based exclusively on the current state, this characteristic is 

essential to reinforcement learning as it streamlines the learning process. The state-action pairings, 

{𝑠𝑡, 𝑎𝑡}, are mapped to rewards via the possibly stochastic reward function, 𝑅(𝑠𝑡, 𝑎𝑡): 𝑆 × 𝐴 → ℝ. 

In fully observable circumstances, the agent picks an action 𝑎𝑡 ∈ 𝐴 from their policy of 𝜋(𝑎𝑡 ∣

𝑠𝑡): 𝑆 × 𝐴 → [0,1] after spotting the environment's Markov state, 𝑠𝑡. Following that, the 

environment transforms to the next state, 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡), and offers the agent a reward, 

𝑟𝑡 ∼ 𝑅(𝑠𝑡, 𝑎𝑡). Conventionally, it is assumed that the agent is unaware of the transition function 

or reward function; instead, it must acquire knowledge about these through interaction with the 

environment. A discount factor, 𝛾, is also included in the task, indicating the relative value of 

future rewards. The agent's objective is to adjust the policy in order to maximize the total 

anticipated discounted return for each episode: 

 

 𝐽 = 𝔼𝜏∼𝑃(𝜏)𝑅0(𝜏)                                                                                                                                                             (2.21) 

 

 where 𝜏 is the trajectory of 𝜏 = {𝑠0, 𝑎0, 𝑟0, … , 𝑠𝑇+1} and the expected return from time step 𝑡 

onwards would be: 

 

 𝑅𝑡(𝜏) = ∑ 𝛾𝑡′𝑡′=𝑡 𝑟(𝑠𝑡, 𝑎𝑡)                                                                                                                                            (2.22) 
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employing the Markov assumption, it can be expressed that the probability of the trajectory 

is multiplication of probabilities across time steps:  

 

𝑃(𝜏) = 𝑃(𝑠0)∏ 𝑃(𝑟𝑡 ∣ 𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡)𝑃(𝑎𝑡 ∣ 𝑠𝑡)𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡)
𝑡=𝑇
𝑡=0                                                                           (2.23) 

 

 In (23), both the transition function, 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡), and the policy 𝑃(𝑎𝑡 ∣ 𝑠𝑡) = 𝜋(𝑎𝑡 ∣ 𝑠𝑡) 

can be defined. 

A schematic for the high-level process of an RL agent is depicted in Fig 2-1. This diagram 

highlights the above-mentioned three signals that enable communication between the agent and 

environment at time steps 𝑡 and 𝑡 +  1: state, action, and reward 

 

Fig. 2.1: The agent-environment process in RL 

 

In value-based reinforcement learning, as mentioned, the value function is a crucial concept 

used to estimate the expected cumulative reward an agent can obtain from a given state (or state-

action pair) following a specific policy. It helps the agent make decisions by quantifying the 

desirability of different states or actions. So, the state-value function of 𝑉𝜋(𝑠𝑡) would be calculated 

by (24). The output is a scalar which demonstrates the relative value of a particular state. 

Estimating the value of a state-action pair has comparable benefits. The action value function, 

represented by the notation 𝑄𝜋(𝑠𝑡, 𝑎𝑡), evaluates the value 𝑉𝜋(𝑠𝑡) of acting at 𝑠𝑡 and then adhering 

to the policy 𝜋. Equation (2.25), which calculates the state-value function, and the action-value 

function in (2.24) are closely connected. 
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𝑉𝜋(𝑠𝑡) = 𝔼[𝑅𝑡|𝑠𝑡]                                                                                                                                                            (2.24) 

 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼[𝑅𝑡|𝑠𝑡]                                                                                                                                                         (2.25) 

In this regard, the value function can be expressed as:  

 

𝑉𝜋(𝑠𝑡) = 𝔼[𝑄𝜋(𝑠𝑡 , 𝑎𝑡)]                                                                                                                                                     (2.26) 

 

      Single-agent RL faces challenges when applied to WECSs due to the dynamic and 

interdependent nature of wind turbine operations in a wind farm. Single-agent RL mostly assumes 

a stationary environment, but wind conditions, which directly impact turbine performance, are 

non-stationary. In a wind farm, the wake effect caused by one turbine can significantly affect 

neighboring turbines, introducing further non-stationarity. Credit assignment, attributing rewards 

to specific turbine actions, is complex in a wind farm. Turbines' actions can influence each other's 

rewards, such as one turbine's operation affecting the wind speed and direction experienced by 

others. Balancing exploration and exploitation are critical in turbine control. Single-agent RL may 

struggle to balance these concepts in a WECS, where turbines must adapt to changing wind 

conditions while maximizing power output, potentially requiring coordination with neighboring 

turbines. Also, turbines in a wind farm may need to coordinate to avoid wake effects and maximize 

overall power output. However, they also compete for wind resources. Single-agent RL is not 

designed to handle the coordination and competition inherent in a multi-turbine wind farm or other 

sophisticated WECS structures. 

While single-agent approaches have paved the way for advancements in reinforcement 

learning (RL), they are not without limitations, though. To address these shortcomings, multi-agent 

reinforcement learning (MARL) has been developed. In the next section, MARL will be explored 

and its application in enhancing the capabilities of RL algorithms will be discussed. 

 

2.5.2   Multi-agent Reinforcement Learning 

Multi-agent reinforcement learning can address the above-mentioned challenges in WECS by 

enabling system to learn to cooperate, compete, and coordinate. MARL algorithms allow turbines 
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to adapt to changing wind conditions, mitigate wake effects, and optimize overall farm 

performance by learning from each other's experiences.  MARL is a subfield of reinforcement 

learning that focuses on scenarios where multiple agents interact in a shared environment, and 

their actions collectively determine the outcome.  

Formally, MARL may be expressed as a stochastic game, which is denoted by the tuple 

contains; 𝐺 = <  𝑆, 𝐴, 𝑃, 𝑟, 𝑂, 𝑁, 𝛾 >, where agents, demonstrated by 𝑖 =  {1, . . . , 𝑁}, select 

successive actions from 𝑎𝑖 ∈ 𝐴. There is also genuine state 𝑠 ∈ 𝑆 in the environment, just like in 

the single agent setting. Every agent initiates a collective action at every time step, causing a 

change in the surroundings based on the state transition function 𝑃(𝑠′|𝑠, 𝑎): 𝑆 ×  𝐴 ×  𝑆 → ℝ. In 

this case, 𝛾 is the discount factor, a value between [0, 1] which balance the future rewards, and as 

before, 𝑟(𝑠, 𝑎, 𝑖): 𝑆 ×  𝐴 ×  𝑁 defines an agent ith reward.  

In the following sections, the various types of control strategies based on MARL, will be 

explored. These strategies can be broadly categorized into centralized and decentralized 

approaches, each offering distinct advantages and challenges. Additionally, different 

environmental settings, such as cooperative environments where agents work together to achieve 

a common goal, and zero-sum environments where agents' goals are in direct conflict, leading to 

competitive interactions, will be discussed, as well. Understanding these different strategies and 

environments is crucial for designing effective MARL systems for various applications. 

 

2.5.3   Centralized vs Decentralized Control 

Centralized control RL involves singles decision-making entity that coordinates actions for 

all agents based on the global state of the system. This approach offers advantages such as 

enhanced coordination among agents, leading to potentially more efficient and synchronized 

behavior. Additionally, centralized control can leverage global information about the environment, 

enabling more informed decision-making. However, it also has its drawbacks. For instance, 

centralized control introduces a single point of failure; if the central controller malfunctions, the 

entire system may fail. Moreover, the need for constant communication between the central 

controller and agents can result in communication overhead, potentially slowing down decision-
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making processes. In the fully observable set-up, the centralized controller of 𝐶𝜋(𝑎|𝑠𝑡), which 

maps the states into a probability distribution over joint action 𝑎 would be: 

 

𝐶𝜋(𝑎|𝑠𝑡) = 𝐴 ×  𝑆 →  [0, 1]                                                                                                                                        (2.27) 

 

Decentralized control, on the other hand, allows each agent to make decisions independently 

based on its local state information. This approach offers scalability benefits, as it does not require 

coordination among all agents, making it more suitable for large-scale system of WECS. 

Decentralized control also tends to be more robust, as the failure of one agent does not necessarily 

affect the entire system. However, decentralized control may suffer from a lack of coordination 

among agents, which can lead to suboptimal or conflicting actions, especially in complex 

environments. Additionally, decentralized control may have limited access to global information, 

which can constrain decision-making capabilities. Each agent in this context has a local policy, 

denoted by 𝜋𝑖(𝑎𝑖 ∣ 𝑠𝑡), that maps states to a probability distribution across actions relevant to the 

particular agent. It would be observed that the probability distribution over the joint action is 

factorized by this: 

 

𝑃( 𝑎 ∣∣ 𝑠𝑡 ) = ∏𝜋
𝑖( 𝑎𝑖 ∣∣ 𝑠𝑡 )                                                                                                                                            (2.28) 

 

2.5.4   Cooperative, Zero-sum, and General-Sum Environment 

In MARL, the environment refers to the external system in which agents operate and interact. 

It includes all elements that the agents can perceive and affect, such as other agents, objects, and 

the rules governing their interactions. The environment provides feedback to the agents in the form 

of rewards based on their actions, shaping their learning process. The different types of 

environments are summarized, as follows: 

Cooperative: In a cooperative environment, agents collaborate to achieve a common goal. 

They share information and resources to maximize the collective reward. This setting promotes 

teamwork and can lead to solutions that are beneficial for all agents involved. And it can be 

formulated as: 
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𝑟(𝑠, 𝑎, 𝑖) =  𝑟(𝑠, 𝑎, 𝑖′),   ∀𝑖, 𝑖′                                                                                                                                         (2.29) 

 

Pros include encouraging collaboration and teamwork, potentially leading to optimal 

solutions that benefit all agents. However, cons include the requirement for effective 

communication and coordination between agents, as well as the risk of one agent exploiting others' 

cooperation for its own gain. 

Zero-sum: In a zero-sum environment, the total reward is constant, meaning one agent's gain 

comes at the expense of another agent's loss. This competitive setting often leads to strategic 

behavior as agents try to outperform each other. And the rewards can be defined as: 

 

∑ 𝑟(𝑠, 𝒂, 𝑖) = 0𝑖 ,   ∀𝑠, 𝑎                                                                                                                                                  (2.30) 

 

Pros include well-defined competitive dynamics that can lead to strategic decision-making, 

along with established game theory principles and algorithms for analysis. However, cons include 

constant conflict between agents, which can limit cooperation and joint learning, as well as the 

potential for unstable learning dynamics and suboptimal solutions. 

General-Sum: In a general-sum environment, the total reward is not fixed and can vary based 

on the actions of all agents. This setting represents a wide range of real-world scenarios where 

agents' actions can collectively impact the overall reward. Pros include a more realistic 

representation of many real-world scenarios and encouraging agents to consider the global impact 

of their actions. However, cons include increased complexity in learning due to the varying nature 

of rewards and the requirement for sophisticated algorithms to handle the interactions between 

agents. 

For the application of power quality and MPPT in WECS using MARL, the cooperative 

environment is often used. In a cooperative environment, agents work together to achieve a 

common goal, which in this case could be maximizing the power output of the WECS, and 

maintaining good power quality. Cooperation among agents in this context can involve sharing 

information about wind conditions, turbine performance, and power quality measurements to 

collectively make decisions that benefit the overall system performance. Using a cooperative 
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environment in this scenario allows the agents to coordinate their actions to ensure that the WECS 

operates efficiently and effectively. This can lead to better overall power output and improved 

power quality, as agents can collaborate to mitigate issues such as voltage fluctuations or 

harmonics in the system. Additionally, cooperation can help agents explore the state space more 

effectively, leading to faster convergence to optimal solutions for MPPT. In contrast, using a zero-

sum or general-sum environment may not be as suitable for this application. In a zero-sum 

environment, agents' goals are directly opposed, which could lead to suboptimal behavior as agents 

compete against each other rather than cooperating. And general-sum environment, while is more 

flexible, may not provide the necessary structure for agents to effectively coordinate their actions 

towards a common goal. 

While MARL offers promising capabilities for addressing complex problems in WECS, there 

are several shortcomings of general MARL approaches when applied to this domain. One key 

limitation is the scalability of traditional MARL algorithms as the number of agents increases. The 

complexity of coordination and communication among agents can become prohibitively high, 

leading to inefficient learning and decision-making processes. Another challenge is the non-

stationarity of the WECS environment, where factors such as wind speed change. Traditional 

MARL algorithms struggle to adapt quickly to these dynamic environments, requiring frequent 

retraining and recalibration, which can be computationally expensive and time-consuming. 

Additionally, the discrepancy in such co-player policies among the agents is an acute issue as it 

makes restoring them intrinsically challenging and causes undesired fluctuations in the training 

phase. As the other challenges in the realm of MARL, the intricacies of inter-agent dependencies 

give rise noise and variance in rewards, leading to training instability. 

Moreover, usually, fixed values are used for the discount factor in MARL. While it is 

straightforward, it would carry some limitations, especially in dynamic WECS environments. 

Using a fixed discount factor can lead to suboptimal policies, as it may not appropriately balance 

the importance of short-term and long-term rewards. Additionally, a fixed discount factor may not 

adapt well to changes in the environment or system dynamics, limiting the ability of RL algorithms 

to learn optimal control policies in complex and uncertain environments. 
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To address these limitations, a novel approach, based on MARL, is proposed for WECS 

applications for power quality and MPPT purposes. The details are provided in following sections 

and the above-mentioned issues are going to be fulfilled, step by step. 

 

2.6   Proposed Multi-Agent Reinforcement Learning 
The MARL represents a paradigm shift in artificial intelligence, extending the principles of 

RL to environments with multiple interacting agents, as mentioned. Moreover, MARL provide 

higher capacity to capture emergent behaviors and interactions in sophisticated systems, compared 

to the single agent RL. Here, a model-free based MARL will be employed to tackle the WECS 

problems, aiming to boost the power quality and MPPT efficiency. The model-free nature of the 

proposed MARL eliminates the need for an explicit model of the environment, allowing agents to 

learn optimal policies directly from experience [77], [78], [79].  

Tuple G = < 𝑁, 𝑆, 𝐴, 𝑅, 𝑃, 𝑂, 𝛾 > characterizes proposed multi-agent RL setting, where 𝑁 

indicates the total number of agents, 𝑆 is the state space, 𝐴 =  {𝐴1, . . . , 𝐴𝑁} represents the set of 

actions for every agent, 𝑃 is the probability of a transition from one state to another, 𝑅 is the reward 

function, and 𝑂 =  {𝑂1, . . . , 𝑂𝑁} is the set of observations for every single agent. and the gamma 

notation, 𝛾, serves as a discount factor, as stated. In an environment with 𝑁 agents, 𝑖𝑡ℎ agent 

observes the global state 𝑠𝑡 at time-step 𝑡. It then applies the local stochastic policy 𝜋𝑖 for carrying 

out an action of 𝑎𝑖𝑡 and obtain a reward of 𝑟𝑖𝑡.  

Here, a fully cooperative environment is proposed, so every agent observes a shared value for 

reward 𝑟𝑡 at every time step; that is, 𝑟1𝑡 = · · · = 𝑟𝑁𝑡 = 𝑟𝑡. Cooperative MARL offers several 

advantages over zero-sum and general-sum environments. In a cooperative setting, agents work 

together to achieve a common goal, whereas in a zero-sum environment, one agent's gain comes 

at the expense of another's loss. Cooperative MARL promotes teamwork and collaboration, 

leading to potentially better overall outcomes. It also avoids the constant conflict and competitive 

dynamics present in zero-sum games, allowing for more stable and cooperative strategies to 

emerge. On the other hand, general-sum environments allow for more complex interactions and 

outcomes, they can be more challenging to navigate due to the varying nature of rewards. 

Cooperative MARL, on the other hand, focuses on agents working together towards a shared 

objective, simplifying the decision-making process and promoting joint learning.  
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Despite these advantages, the fully cooperative method in MARL has two significant 

limitations, one of them known as the "Tragedy of the Commons." This occurs when agents 

prioritize their individual interests over the collective goal, leading to suboptimal outcomes for the 

group as a whole. To address this limitation, a solution known as the "Nash Social Welfare" (NSW) 

has been proposed. The Nash Social Welfare is a modification of the fully cooperative method that 

aims to align individual and collective interests. It introduces a social welfare function that 

represents the overall welfare of all agents in the system. Mathematically, the NSW is defined as: 

 

𝑁𝑆𝑊 = ∑ 𝑉𝑖
𝑁
𝑖=1                                                                                                                                                                 (2.31) 

 

In which the 𝑉𝑖 is the value function for the ith agent. The NSW encourages agents to consider not 

only their individual rewards but also the rewards of other agents, leading to more cooperative 

behavior. By incorporating the NSW into the fully cooperative method, agents can learn to balance 

their individual interests with the collective goal, resulting in more efficient and effective 

cooperation in MARL. 

Moreover, from the viewpoint of each given agent, the environment gets non-stationary over 

the training process, since each agent's policy 𝜋𝑖 varies: 

 

𝑃(𝑠 ′ |𝑠, 𝑎𝑖  , 𝜋1, . . . , 𝜋𝑁 )  ≠  𝑃(𝑠 ′ |𝑠, 𝑎𝑖  , 𝜋′1, . . . , 𝜋′𝑁  )                                                                                   (2.32)  

 

When 𝜋𝑖 ≠ 𝜋′𝑖, the fundamental presumption of MDP will be violated. This indicates every 

agent's perception of co-player policies is distinctive. The discrepancy in co-player policies is an 

acute issue as it makes restoring them intrinsically challenging and causes undesired fluctuations 

in the training phase. The matter is resolved here employing the 𝑄-based Bellman equation. The 

𝑄-based Bellman equation helps resolve this issue by explicitly modeling the interactions and 

dependencies between agents. By defining the 𝑄-function as the expected cumulative reward 

starting from a state, taking a joint action, and then following a joint policy thereafter, the 𝑄-based 

Bellman equation captures the dynamics of the joint action-value function. This allows agents to 

evaluate the long-term consequences of their actions, considering the policies of all agents 

involved. By jointly optimizing the 𝑄-values, agents can learn a joint policy that not only 
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maximizes their individual rewards but also takes into account the impact of their actions on other 

agents. This promotes coordination and cooperation among agents, leading to more stable and 

effective behavior in complex environments like WECS. Additionally, by using the 𝑄-based 

Bellman equation, agents can learn to adapt to changes in the policies of co-players, ensuring 

robustness and flexibility in their decision-making processes. So, the proposed Q-function for 

MPPT purpose is considered to be: 

 

𝑄𝑖
∗ (𝑠, 𝑎𝑖  |𝜋−𝑖) = ∑ 𝜋−𝑖𝑎−𝑖

(𝑎−𝑖  , 𝑠) [𝑟(𝑠, 𝑎𝑖  , 𝑎−𝑖) +  𝛾 ∑ 𝑃(𝑠 ′ |𝑠, 𝑎𝑖  , 𝑎−𝑖) 𝑚𝑎𝑥𝑎𝑖
′  𝑄𝑖

∗(𝑠, 𝑎𝑖
′)𝑆′                     (2.33) 

 

The notation 𝑄𝑖∗(𝑠, 𝑎𝑖 ∣ 𝜋−𝑖) represents the optimal action-value function for agent 𝑖 when the 

other agents are following policies denoted by 𝜋−𝑖. The equation describes how the optimal 𝑄-

value for an action 𝑎𝑖 in state 𝑠 is determined by the sum of the immediate reward 𝑟(𝑠, 𝑎𝑖 , 𝑎−𝑖) and 

the discounted future expected maximum 𝑄-value, where 𝑎−𝑖 represents the joint actions of all 

other agents except 𝑖. The optimal policy for agent i, which denoted as 𝜋𝑖∗(𝑠), is derived from the 

optimal 𝑄-values. It is the policy that selects actions in each state to maximize the expected 

cumulative reward: 

 

𝜋𝑖
∗(𝑠) = argmax

𝑎
(𝑄𝑖(𝑠, 𝑎𝑖))                                                                                                                           (2.34) 

 

The joint optimal policy, 𝜋∗, is the combination of optimal policies for all agents: 

 

𝜋∗ = (𝜋1
∗, 𝜋2

∗, … , 𝜋𝑁
∗ )                                                                                                                                       (2.35) 

 

In other words, the goal is to find the joint optimal policy that maximizes the expected 

cumulative reward stated in (2.36) by iteratively improving the 𝑄-values over time 𝑡 and updating 

the policies until convergence. 

 

max
𝜋𝑖

𝔼[∑ 𝛾𝑡𝑅(𝑠, 𝑎𝑖 , 𝑎−𝑖)𝑡
∞
𝑡 ]                                                                                                                            (2.36) 
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As the other challenges in the realm of MARL, the intricacies of inter-agent dependencies 

give rise noise and variance in rewards, leading to training instability. To address this issue, the 

Nash Equilibria is proposed. Nash Equilibria provide a theoretical framework for achieving stable 

states in strategic interactions among agents. In the context of MARL, a Nash Equilibrium is a set 

of strategies, one for each agent, where no agent has an incentive to unilaterally deviate from its 

current strategy given the strategies of the other agents. In other words, at a Nash Equilibrium, 

each agent's strategy is optimal given the strategies of the other agents, and no agent can improve 

its payoff by changing its strategy unilaterally. By aiming to reach a Nash Equilibrium, MARL 

agents can achieve stability in their interactions, reducing the noise and variance in rewards that 

can lead to training instability. Agents learn to anticipate and respond to the actions of other agents 

in a way that leads to a mutually beneficial outcome, rather than engaging in erratic or 

unpredictable behavior. This not only improves the efficiency of learning but also promotes 

cooperation and coordination among agents, leading to more robust and effective decision-making 

in complex environments. According to the concept: 

 

           ∀𝜋𝑖  ∈  𝛱𝑖  , ∀𝑠 ∈  𝑆, 𝑣𝑖
(𝜋𝑖
∗,𝜋−𝑖

∗  ) 
(𝑠) ≥  𝑣𝑖

(𝜋𝑖,𝜋−𝑖
∗  ) 
(𝑠)                                                                               (2.37) 

 

where 𝛱𝑖 is an array of all potential policies for agent 𝑖 and 𝑣𝑖(𝑠) is the anticipated 

cumulative reward of agent 𝑖 in state 𝑠. In the context of WECS applications, state-value functions 

of 𝑉 have limitations when different actions in the same state can lead to significantly different 

outcomes. For example, in a wind farm, the same wind conditions at a turbine can result in different 

power outputs based on how the turbine is controlled. State-value functions would provide a single 

value for the expected return from that state, regardless of the control action taken, potentially 

leading to suboptimal control decisions. To address this limitation, the concept of the advantage 

function is proposed for WECS applications, in this work. The advantage function 𝐴(𝑠𝑡, 𝑎𝑡) 

provides a measure of how much better or worse taking action a in state s is compared to the 

average action in that state. In the context of this study, the advantage function is quantifying 

objectives from choosing a particular control action compared to the average control action. 

Mathematically, the advantage function is defined as the difference between the action-value 

function and the state-value function: 
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𝐴𝑖(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑖(𝑠𝑡 , 𝑎𝑡) − 𝑉𝑖(𝑠𝑡)                                                                                                                                    (2.38) 

 

By incorporating the advantage function into RL algorithms for WECS, such as for wind 

turbine control, agents can make more informed decisions. This allows for more efficient learning 

and better performance, as the advantage function helps the agent understand the impact of its 

actions in different states, leading to more optimal control strategies that maximize power output 

or other objectives. 

The structure of the proposed MARL strategy has been developed, with a focus on addressing 

challenges such as disparate perceptions of co-player policies and training instability arising from 

inter-agent dependencies. One crucial hyperparameter in MARL is the discount factor, which 

determines the importance of future rewards in the agents' decision-making process. In the next 

section, the proposed method for optimally tuning the discount factor will be presented. This 

method aims to find a balance between the short-term rewards and long-term goals of the agents, 

ensuring that the MARL system converges to stable and optimal strategies 

 

2.6.1   Proposed Optimal Discount Factor Tunning Strategy 

In the context of proposed MARL, the 𝛾 hyperparameter which can be seen in (2.33), plays a 

pivotal role in shaping the learning dynamics and long-term rewards within the environment, 

thereby significantly impacts the eventual policy convergence.  

Using a fixed discount factor or grid-searched values for the discount factor, especially in 

WECS applications can lead to several limitations. Firstly, a fixed discount factor does not adapt 

to changes in the environment or system dynamics, which are common in WECS due to the 

variability of wind conditions. This can result in suboptimal control strategies, as the importance 

of future rewards relative to immediate rewards may vary over time. Additionally, using a fixed 

discount factor may not capture the complex interactions and dependencies between actions and 

rewards in WECS, where the impact of an action in one time step can influence future rewards in 

non-linear ways. 
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There is another way to tune the gamma hyperparameters, known as grid search strategy. 

Grid-searched values for the discount factor suffer from similar limitations. While grid search can 

potentially find a better discount factor than a fixed value, it is computationally expensive and may 

not scale well to large state and action spaces in WECS. Grid search also requires prior knowledge 

or assumptions about the range of possible discount factors, which may not always be accurate or 

realistic. Moreover, grid search does not adapt to changes in the environment, and the optimal 

discount factor found through grid search may not generalize well to different wind conditions or 

turbine configurations. Overall, using fixed or grid-searched values for the discount factor in 

WECS can limit the ability of RL algorithms to learn optimal control policies and adapt to 

changing environmental conditions. 

Meta-learning strategy is proposed to address the DF tuning, optimally, where it is learned 

dynamically during the training process. Specifically, the meta-learned DF is minimized through 

stochastic gradient descent over multiple episodes or iterations. SGD is employed in proposed 

MARL, due to the ability in handling noisy gradients effectively, navigating complex landscapes 

efficiently, and facilitating stable convergence in high-dimensional parameter spaces like WECS. 

This adaptive mechanism allows the agents to autonomously adjust the discount factor, enhancing 

adaptability to changing environments and potentially accelerating convergence towards better 

policies. To do so, the loss function can be defined as the negative 𝑄-value for state-action pairs, 

and then update gamma using gradient descent to minimize the loss function of 𝐿. In this regard: 

 

𝐿 = −𝑄𝑖
∗ (𝑠, 𝑎𝑖  |𝜋−𝑖)                                                                                                                                       (2.39) 

 

𝐿 = −(∑ 𝜋−𝑖𝑎−𝑖
(𝑎−𝑖  , 𝑠) [𝑟(𝑠, 𝑎𝑖  , 𝑎−𝑖) +  𝛾 ∑ 𝑃(𝑠 ′ |𝑠, 𝑎𝑖  , 𝑎−𝑖) 𝑚𝑎𝑥𝑎𝑖

′  𝑄𝑖
∗(𝑠, 𝑎𝑖

′)𝑆′ )                                  (2.40) 

 

To update the 𝛾 by SGD: 

 

𝛾𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

= 𝛾𝑡  − 𝛽
𝜕𝐿(𝛾)

𝜕𝛾
                                                                                                                                (2.41) 
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The parameter 𝛽 in (2.41) demonstrates the step size in gradient descent. This process can be 

repeated iteratively until convergence, resulting in an estimate of the optimal gamma that 

maximizes the 𝑄-value.  

 

2.7 conclusion 
In this chapter, the application of machine learning ML in WECSs was explored, beginning 

with the classification techniques and solution development. While significant potential was 

identified with ML methods, limitations affecting their effectiveness in WECS applications were 

also noted. To address these challenges, RL and its advantages were introduced, with the 

mathematical foundations and discussions provided. Despite the benefits, it was observed that 

general RL models may not always achieve optimal performance without further refinement. 

Consequently, a MARL model was proposed and developed step by step to enhance the RL 

approach. Recognizing the necessity for more precise and adaptive tuning, a meta-learning strategy 

was introduced to dynamically and accurately adjust the discount factor within the proposed 

MARL model. This innovative approach aimed to optimize the performance of the MARL method, 

ensuring a more robust and efficient solution for WECS applications. Through this comprehensive 

development and refinement, contributions were made to advancing the state of the art in power 

management and optimization for WECS, paving the way for more intelligent and adaptive energy 

solutions. 
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Chapter 3 

RL-Based Control Strategy of a Three-Phase NPC Power 

Converter for WECS 
 

3.1   Introduction 
This section provides a comprehensive exploration of the cutting-edge wind energy power 

converter control method utilizing proposed MARL in previous chapter. The aim is to evaluate the 

performance of the suggested learning-based approach for a promising and practical wind energy 

conversion system configuration, which is direct-drive permanent magnet synchronous generator-

based one. The effort concentrates on both satisfying grid code requirements in terms of THD, and 

increasing the power quality, while reducing system modeling sophistication. The full-scale back-

to-back neutral-point clamped power converter is determined to be the case of control, employed 

in direct-drive PMSG-based WECS. Grid-side converter is controlled with high precision using 

proposed multi-agent reinforcement learning algorithm, which necessitates no offline training, and 

system modeling, unlike machine learning and neural network-based techniques. The simulations 

and subsequent discussion commence by implementing the polynomial locally weighted 

regularized regression machine learning strategy. This approach is initially evaluated to identify 

any inherent shortcomings. Upon observing these limitations, a proposed method is introduced to 

effectively mitigate these issues. The proposed method is meticulously applied to refine the ML-

based strategy and voltage-oriented control method, ensuring a more robust and efficient approach 

in addressing the identified shortcomings. To do so, single-phase and double-phase voltage sag 

are considered to assess the functionality of the suggested MARL in unbalance scenarios. To 

empower the proposed strategy, as mentioned, meta-learning is employed within to optimize the 

discount factor value. Compared to fixed DF and conventional DF tuning methods, meta-learnt 

DF provide superior adaptability, and convergence rate. Literature review, MARL application, 

comparative analysis, findings and related discussion are provided in following sections. 
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3.2   Literature Review 
Numerous converter technologies and control methodologies have been investigated to 

surpass simply generating wind energy and to assist in bolstering the power system. Presently, 

wind turbines employ direct-drive permanent magnet synchronous generators or doubly-fed 

induction generators, are the most widespread wind energy conversion technologies in the field of 

electrical engineering, as academic search for viable solutions [80], [81]. In comparison to DFIG, 

PMSG grants several advantages, as mentioned in the first chapter. For instance, it maintains grid 

voltage by supplying additional reactive power, since it is connected to the power system through 

a full-scale converter. It also eradicates the need for a gearbox, which diminishes the weight and 

size of nacelle equipment, beside the mechanical losses and preservation requirements [82]. 

With respect to power converter, on the other hand, a three-level neutral-point clamped back-

to-back (NPC-BTB) converter offers more than two voltage levels, yet requires fewer components 

than, for instance, five-level topologies [83]. Furthermore, this system meets all of the necessary 

grid requirements and demonstrates adequate tolerance for faulty scenarios [84]. Therefore, for 

high-power wind energy deployments, a direct-drive PMSG wind turbine system that employs a 

3-level NPC-BTB power converter, as depicted in Fig. 3.1, is a desirable configuration of choice.  

 
 

Fig. 3.1: The direct-drive PMSG-based WECS employed a 3 levels full-scale back-to-back neutral point 

clamped power converter. 

 

When it comes to design control strategies for above-mentioned WECS structure, traditional 

PI-based controllers heavily rely on the exact calibration of the controller's parameters and 
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bandwidth [85]. Additionally, the parameters achieved in a particular system cannot be applied to 

other setups and must be re-tuned [86]. This type of linear control methods, primarily rely on linear 

approximations of converters, achieved through techniques like averaging and state space 

modeling. While these methods are straightforward to study and implement and work well for 

simpler, linear, or weakly non-linear converters, they falter when confronted with highly non-

linear operating conditions, uncertainties, and disturbances [87]. Some solutions exist in the 

literature to mitigate these limitations, often involving the use of multiple controllers tailored to 

different operating modes. Conversely, non-linear control methods address converter non-linearity 

using techniques like feedback linearization, sliding mode control, and model predictive control. 

Feedback linearization transforms the non-linearity into a linear representation, though it demands 

an accurate model of the converter and its inverse, which can be challenging to obtain for complex 

converters [88]. As a result, model predictive control has gained more attention to overcome the 

shortcomings. In [89], a universal and moderately complex MPC approach was developed for 

DFIG-based WECSs, which could operate effectively in both balanced and unbalanced conditions. 

Or, to manage the three-level boost converter and grid-side NPC inverter, a model predictive 

technique was outlined in [90]. Two independent cost functions were employed to evaluate the 

predictions and reduce the switching states. However, the MPC controller required extensive 

exploration of all possible switching signals in each controller interval to identify the appropriate 

one, demanded a high computational cost. Therefore, in [91], a proficient MPC strategy was 

introduced for regulating torque and power in BTB-NPC converters for WECSs with PMSG. This 

method employed hexagonal and triangular designated domain to significantly reduce the count of 

possible switching states, resulting in reduced computation burden. Although, High power 

oscillations and substantial processing work have hindered MPC solutions, yet [92]. 

On the other hand, the sliding mode control is a promising approach for managing the NPC 

converter due to its features, such as finite-time convergence and robustness against system 

uncertainties [93]. However, despite these benefits, conventional SMCs are prone to the chattering 

problem, negatively impacting power system operations. The super-twisting algorithm, a type of 

second order SM control, offers an attractive solution for reducing chattering [94]. This algorithm 

hides the discontinuous function used in common SMC within the integral, significantly reducing 

the chattering effect. For instance, a second order SM controller has been proposed for the LC-

coupling hybrid active power filter as a current controller, demonstrating excellent dynamic and 
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steady-state performance in terms of THD. Additionally, the controller has been applied to both 

the voltage and current loops of a three-level NPC converter, and its use has been extended to grid-

connected WECS converters, dc-dc converters, and motor drives. However, this type of controller 

requires knowledge of the disturbance derivative's boundary, and its gains must be carefully 

managed to avoid excessive chattering amplification, limiting its performance [96]. 

Artificial intelligence is an expanding area of study that has gained significant attention in 

recent years due to the potential to provide assistance in various fields, as explained in chapter 2. 

Within the AI concept, fuzzy logic (FL), machine learning and reinforcement learning are three 

significant subfields. In [97], an FL control technique was proposed for three-phase, 3L-NPC 

power converters to enhance disturbance declination, power tracing, dc-link voltage adjustment, 

and suppress chattering. However, the FL mainly suffers from high computational cost due to the 

requirement of multiple control loops, and it relies heavily on empirical knowledge and is not 

suitable for complex systems [98]. The adoption of machine learning in power electronics has the 

potential to mitigate the drawbacks of traditional and FL-based solutions. Nevertheless, prior 

research on ML dominantly concentrated on employing ML as a mechanism for condition 

monitoring purposes, or converter defect detection, [99], [100]. In this context, using MPC for the 

training phase, [101] offered an ML-based technique for modular multilevel converters. The 

developed framework yielded results comparable to MPC but requiring substantially less 

computation. In [102] the voltage-oriented control (VOC) procedure was employed to train a 

ML model instead of MPC, which was subsequently utilized to effectively and precisely govern 

the grid-side NPC power converter. As a result, computational load was significantly reduced and 

moved from online to offline execution. Also, since the PI controllers in VOC were removed, 

bandwidth and PI controller parameters were no longer necessary. Moreover, there was a 

considerable drop in calculations. Several optimizers were tested on developed ML model and the 

findings indicated that in terms of training time, total harmonic distortion capability, and precision, 

Broyden-Fletcher-Goldfarb-Shanno optimizer outscored other cost function optimizers. It should 

be highlighted, although if the ML model used to regulate the three-phase grid-side NPC converter 

was adept at addressing balanced circumstances, the system was not tested in unbalanced 

instances. However, there are some disadvantages linked to the shift in computing load from online 

to offline retrieval. In an offline learning, the system cannot adjust to environmental alterations 

instantly. In the case of power converter control strategy, where unplanned changes can 
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happen and needs for prompt adaptations, this can be very troublesome. Online learning can 

therefore provide more adaptability and responsiveness in unbalance situation. 

Hence, as stated, reinforcement learning is a subfield of AI that is particularly suited to online 

learning and can address the limitations of offline learning for power converter control strategy, 

mentioned earlier. RL algorithms enable the system to adapt to changes in real-time by learning 

from the feedback (reward or penalty) it receives through interactions with the environment. This 

allows the system to continually improve its performance and optimize the control policy. While 

some references can be found which addressed the reinforcement learning application in 

controlling DC-DC converters, there has been relatively little or even no attention paid to RL-

based control of NPC power converters [103], [104]. 

In the following sections, the simulations and ensuing discussion will begin with the 

implementation of a strategy based on polynomial locally weighted regularized regression machine 

learning. This approach will be carefully assessed to identify any shortcomings it may have. 

Following the identification of these limitations, a proposed method will be introduced to address 

and overcome these issues. This proposed method will be applied in a thorough manner to enhance 

the ML-based strategy, aiming to create a more reliable and effective approach in dealing with the 

identified shortcomings. The proposed multi-agent reinforcement learning approach detailed in 

previous chapter is used to control the grid-side neutral point clamped power converter employed 

in direct drive permanent magnet synchronous generator-based WECS. The MARL in NPC control 

offers several advantages over earlier investigation, including improved adaptability and 

flexibility, as well as the ability to optimize the system in real-time. Additionally, the online 

learning feature of the proposed strategy allows the system to continuously improve its 

performance over time, as it adapts to changing environmental conditions and system dynamics. 

Furthermore, the MARL is capable of handling the single-phase and double-phase voltage sag 

unbalance conditions, in contrast to the ML-based approaches. By dividing the task into smaller 

sub-tasks and assigning them to different agents, the overall problem can be decomposed and 

solved in a more scalable and efficient manner, compared to the single agent RL. Besides, MARL 

allows for the exploration of diverse strategies and policies, which can lead to better overall 

performance and increased robustness in face of changing environmental conditions or system 

dynamics. To further improve the performance of the proposed control strategy, the discount factor 
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value, which explained that it is a vital hyperparameter of the RL algorithm, is learned optimally 

through a proposed meta-learning approach. This is found to be superior to fixed discount factor 

values or other traditional methods of tuning the discount factor, in terms of adaptability, and 

convergence rate. Outcomes of the comparison evaluation and simulation indicate the proposed 

method outperforms the alternatives and may serve as a solid contender for traditional and even 

the most lately researched control strategies. The steps of the method are summarized as follows: 

1. The initial step involves the definition of NPC and grid parameters. These parameters serve 

as the foundational building blocks for the control strategy, providing essential information 

about the system's characteristics and specifications. 

2. Following the parameter definition, the next crucial phase involves specifying 

hyperparameters. In this context, the hyperparameters include the number of episodes, the 

number of agents, the state size, the action size, and learning and exploration rates. These 

hyperparameters play a pivotal role in shaping the behavior and learning process of the 

proposed MARL algorithm, ensuring it aligns with the unique requirements of the grid side 

NPC control in WECS. 

3. Subsequently, the definition of states and actions is imperative for the successful 

implementation of the control strategy. In this specific problem, the states are designated as 

grid active power, grid side line-to-line voltage, DC link voltage, and THD. These states 

collectively provide a comprehensive snapshot of the system's condition, enabling the 

algorithm to make informed decisions based on real-time data. For the actions, the modulation 

index has been chosen as the variable to be controlled. This is a key parameter that directly 

influences the converter's operation and, therefore, holds great significance in optimizing grid 

integration.  

4. Now, in accordance with the explanation of the proposed MARL algorithm equipped with the 

meta-learned discount factor, it is essential to initialize the Q table, episode reward, and 

discount factor. The initialization process is a critical precursor to the algorithm's learning and 

decision-making phases. Methods for initializing these parameters must be carefully chosen 

to ensure effective and efficient learning.  

        Zero and random initialization are two commonly used methods in reinforcement 

learning. Zero initialization involves setting all Q-table values to zero, while random 

initialization assigns random values to the Q-table. However, zero initialization often suffers 
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from convergence issues due to the agents initially having identical Q-values and making 

similar decisions. This can lead to slow learning and a lack of exploration. In this particular 

work, the random initialization method has been selected for the purpose of initializing the Q-

table, episode reward, and discount factor. Random initialization introduces diversity in the 

initial Q-values, enabling agents to explore a wider range of actions and states from the outset. 

This diversity can help overcome convergence issues and promote faster learning, which is 

crucial for effective control of the grid side NPC in WECS. 

5. As mentioned, an essential component of the proposed methodology involves the 

implementation of a meta-learning process. This meta learning is conducted to continuously 

update the discount factor used in the proposed MARL algorithm. The objective is to refine 

and optimize the DF through iterative updates until convergence is achieved. This iterative 

approach ensures that the DF is finely tuned and aligned with the specific dynamics and 

requirements of the grid side NPC. 

6. Once the optimized discount factor is determined, it serves as a critical parameter within the 

proposed MARL algorithm. The DF is used to update the Q-table parameters within MARL, 

aiming to maximize the cumulative reward over time. This iterative updating process ensures 

that the Q-table is continually refined to make more informed decisions, ultimately enhancing 

the control strategy's effectiveness. The updating process perseveres until convergence is 

reached, signifying that the MARL algorithm has learned to make optimal decisions.  

7. Following the successful control of the modulation index, it becomes instrumental in the next 

step of the process. The modulation index is employed in the Pulse Width Modulation (PWM) 

technique, which is utilized to generate the switching signals for the NPC. PWM allows for 

precise control over the output waveform, ensuring that the power converter operates in a 

manner that maximizes efficiency and meets the desired grid integration requirements.  

This seamless integration of meta-learning, MARL, modulation index control, and PWM 

signal generation forms a comprehensive and sophisticated control strategy for the grid side NPC 

in WECS, contributing to enhanced performance and grid stability. Certainly, to provide a visual 

representation of the entire process, a detailed flowchart has been presented in Fig. 3.2.  
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Fig. 3.2: The flowchart of the proposed grid-side NPC control strategy 

 



100 
 

3.3   ML-based and Proposed MARL Diagrams 
The system parameters outlined in Fig. 3.1 are detailed in Table 3.1. The Turbine (machine) 

side NPC converter is controlled using a field-oriented control strategy, aiming to produce nearly 

1200 V of pure DC voltage in the dc-link. Subsequently, the capacitors filter and equalize the DC 

voltage to 600 V each. Following this, the grid-side NPC inverter is controlled to supply 1.6 MW 

of active power to the grid, maintaining a line-to-line voltage of 800 V based on the VOC strategy.  

Table 3.1: System Parameters 

Parameters Values 

Rated BTB converter apparent power 2 MVA 

Switching device IGBT 

Generator output voltage ~1200 V 

Reference DC voltage for 𝐶1 600 V 

dc-link capacitor (each) 25 mF 

dc-link resistor 50 mΩ 

Switching frequency 2 KHz 

Grid frequency 60 Hz 

Grid side line-line voltage 800 V 

Active power delivered to the grid 1.6 MW 

 

VOC approach is based on the transformation between the 𝑎𝑏𝑐 stationary reference frame and 

the 𝑑𝑞 synchronous frame. The control technique is applied in a grid-voltage synchronous 

reference frame, with all variables in steady state components. This simplifies the inverter's design 

and control. The grid voltage is monitored and its angle 𝜃𝑔 is determined for the voltage orientation 

to achieve the VOC, as follows: 

𝑉𝛼 =
2

3
(𝑉𝑎𝑔 −

1

2
𝑉𝑏𝑔 −

1

2
𝑉𝑐𝑔) = 𝑉𝑎𝑔                                                                                                                   (3.1) 
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𝑉𝛽 =
2

3
(
√3

2
𝑉𝑏𝑔 −

√3

2
𝑉𝑐𝑔) =

√3

3
(𝑉𝑎𝑔 + 2𝑉𝑏𝑔)                                                                                                    (3.2) 

 

𝜃𝑔 = 𝑡𝑎𝑛−1
𝑉𝛽

𝑉𝛼
                                                                                                                                                   (3.3) 

 

where, g,   is the grid voltage angle, 𝑣𝑎𝑔, 𝑣𝑏𝑔, and 𝑣𝑐𝑔 are phase voltages. The VOC strategy 

is achieved by aligning the frame's d-axis with the grid voltage, resulting in 𝑣𝑑𝑔 = 𝑣𝑔, out of 

which: 

 

𝑣𝑞𝑔 = √𝑣𝑔
2 − 𝑣𝑑𝑔

2 = 0                                                                                                                                      (3.4) 

 

This may be used to compute the active and reactive power of the system, as follows: 

 

𝑃𝑔 =
3

2
(𝑣𝑑𝑔𝑖𝑑𝑔 + 𝑣𝑞𝑔𝑖𝑞𝑔) =

3

2
𝑉𝑑𝑔𝑖𝑑𝑔                                                                                                               (3.5) 

 

𝑄𝑔 =
3

2
(𝑣𝑞𝑔𝑖𝑑𝑔 − 𝑣𝑑𝑔𝑖𝑞𝑔) = −

3

2
𝑉𝑑𝑔𝑖𝑞𝑔                                                                                                          (3.6) 

 

 
According to the (3.6) the q-axis reference current would be obtained: 

 

𝑖𝑞𝑔∗ =
𝑄∗

−1.5𝑣𝑑𝑔
                                                                                                                                                    (3.7) 

 

The overall block diagram of the VOC is illustrated in Fig. 3.3. 
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Fig. 3.3: Block diagram of the conventional PI-based voltage-oriented control.  

 

This is used to collect the required data for training purpose of the ML model parameters. 

Three sensors are needed to measure the DC-link voltage, output voltage, and current. The input 

feature matrix of the algorithm is created after running successful simulation of the system for 

𝑚 = 50410 sample data, each contains 𝑛 = 5 features. In this matrix 𝑉𝑑𝑐1is the upper capacitor 

voltage of the DC-link, 𝑉𝑑𝑔 and 𝑉𝑞𝑔, along with 𝐼𝑑𝑔 and 𝐼𝑞𝑔 are the phase voltages and currents in 

the 𝑑𝑞-reference frame, respectively. 

The data obtained from the results was gathered and split into two subsets through cross-

validation: 70% for training data and 30% for blind-testing data, which verifies the ML training's 

accuracy. The training dataset is utilized to establish the fitting parameters ω based on the 
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optimizers used to minimize the cost function. Following the training phase, the blind, unseen data 

is tested to confirm the algorithm's reliable operation. The overall control strategy for the 

mentioned ML-based grid-side NPC converter is depicted in Fig. 3.4. The outputs of the ML-based 

control scheme are the d-q axis control voltages, which generate the in-phase disposition pulse 

width modulation (IPD-PWM) signals for the converter switches. 

 
 

Fig. 3.4: System configuration for GSC control 

 

Moreover, the proposed MARL diagram is depicted here, providing a clear representation of 

the overall procedure. Initially, the observations, which consist of sensor-measured signals, are 

carefully selected to ensure accurate input data for the agents. These are the problem state space 

and required information for the agents to make decision. Following this, the reward function is 

designed to reflect the objectives of the system, and the action space is defined to encompass the 

possible control actions for the power converters. Lastly, the implementation of the MARL is 

applied to the grid-side three-level NPC converter, where it functions as both the switching and 
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control method. The diagram in Fig. 3.5 visually illustrates the interactions between these 

components, showing the step-by-step flow of the proposed methodology. 

 
Fig. 3.5: Block diagram of the proposed MARL controller.  

 
 

3.4   Simulation Results 
In this section, a comprehensive simulation study is conducted to evaluate the effectiveness 

of the discussed ML-based control scheme for the BTB-NPC grid-connected inverter. Initially, the 

dc-link voltage and the voltage across capacitor 𝐶1, which are controlled by a Proportional-Integral 

(PI) block in the field-oriented control of the machine-side converter, are depicted in Fig. 3.5. This 

figure also includes the 600 V reference for comparison purposes.  
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Fig. 3.5: The dc-link voltage, 𝑪𝟏 capacitor voltage, and the reference. 

 

Then, the three-phase current of the grid side converter controlled by VOC is shown in Fig. 

3.6. As noted earlier, the VOC is employed not only as a means of data collecting, also used for a 

better understanding of the functionality of the suggested solution, by preparing a comparative 

condition. In addition to the three-phase current, the THD analysis is performed to investigate the 

controller harmonic performance, as well. The THD in this instance was 3.79 %. These results are 

considered as the base study case of comparison and a tool for assessment of the efficacy of the 

four optimizers, including, SGD, MGD, BFGS, and L-BFGS. If the total harmonic distortion 

resulting from the ML model is found to be less than the THD acquired by the Voltage-oriented 

control, it will indicate an improved performance and thereby enhance the overall efficiency and 

power quality of the grid-connected WECS. 
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Fig. 3.6: Three-phase current of the grid side NPC converter controlled by VOC. 

 

In this analysis, the three-phase balance condition is considered. The stochastic gradient 

descent optimizer is the first ML optimizer used to minimize the locally weighted polynomial 

regression cost function, trained by the VOC. Despite being one of the more traditional 

optimization algorithms, SGD demonstrates its effectiveness in this context. With a fixed step size 

of 𝛼 = 0.001, the training process took approximately 6 minutes. The accuracy of mapping the 

blind-testing data to the real output was calculated to be 96.12%, while the accuracy on the training 

dataset was 97.84%. These high percentages indicate that there is no overfitting, as the accuracy 

on the testing dataset is not significantly lower than that on the training dataset. The simulation 

results for the three-phase current of the grid-side converter are presented in Fig. 3.7(a), 

showcasing the system's successful performance. However, the system did experience a slightly 

higher THD of 3.93% compared to the one controlled by VOC. To further evaluate the SGD 

performance in this specific problem, the loss function value versus iterations has been plotted in 

Fig. 3.7(b). It is evident that after approximately 280 iterations, the response converges, 

demonstrating the effectiveness and convergence of the SGD optimizer in this scenario. 
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(a) 

 
(b) 

 
Fig. 3.7: Stochastic gradient descent results; (a) three-phase current, (b) convergence behavior. 

 
For the analysis of the second optimizer, the MGD was chosen. Fig. 3.8(a) shows the three-

phase output currents of the permanent magnet synchronous generator, while Fig. 3-8(b) illustrates 

the convergence behavior of the algorithm. Notably, a step size of 0.003 was selected for this 

analysis, using trial and error. Unlike SGD, MGD considers a batch of 64 data points in each 

iteration to update the parameters, instead of a single data, leading to a less training time of almost 

4 minutes. However, this optimization method resulted in lower accuracies compared to SGD, with 

89.89% accuracy on unseen data and 93.18% on training data. The THD also increased to 9.06%, 

indicating that BGD may not be a suitable candidate for this research problem as it fails to meet 

the THD criteria set for the grid, even in normal operation condition. This is further evidenced by 

the phase voltages shifting away from a sinusoidal pattern to a significant extent. Despite these 
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drawbacks, the convergence behavior of the BGD optimizer, as shown in Fig. 3.8(b), demonstrates 

convergence after approximately 200 iterations. 

 
(a) 

 
(b) 

Fig. 3. 8: Batch gradient descent (BGD) results; (a) three-phase current, (b) convergence behavior. 

 

The third optimizer considered is BFGS, a recent quasi-Newton based method discussed in 

the previous chapter. Unlike previous optimizers, BFGS does not require manual step size tuning. 

Instead, it performs a line search in the desired direction to determine the optimal step size for 

minimizing the loss function. The grid current waveform resulting from this optimization is 

depicted in Fig. 3.9(a). Compared to the SGD-optimized case study, the training time was 

significantly reduced to 2 minutes and 34 seconds, while simultaneously improving the accuracy 
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on both the testing and training datasets to 98.70% and 98.33%, respectively. These high 

accuracies indicate that the training process was conducted effectively, avoiding overfitting and 

ensuring that the algorithm can be applied to new, unseen data with almost identical outcomes. 

The THD analysis revealed a THD of 3.24%, which demonstrates the effectiveness of BFGS in 

minimizing harmonic distortions, and the performance surpasses the one controlled by VOC. This 

improvement in THD performance signifies the effectiveness of the BFGS optimization method 

in reducing harmonic distortions, leading to a more efficient and reliable grid-connected inverter 

system. The loss function values plotted against iterations in Fig. 3.9(b) provide a visual 

assessment of BFGS's performance in this specific scenario, showing convergence in 

approximately 140 iterations. The convergence for the BFGS algorithm is observed to be faster 

than that of SGD. As mentioned BFGS is a quasi-Newton method that approximates the Hessian 

matrix of second derivatives, allowing it to use curvature information to make more informed and 

efficient updates to the parameters. This leads to a faster convergence. 

 

 
(a) 
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(b) 

 
Fig. 3.9: Broyden–Fletcher–Goldfarb–Shanno results; (a) three-phase current, (b) convergence behavior. 

The L-BFGS method, a variant of the BFGS algorithm, is known for its efficient memory 

usage, making it a popular choice in machine learning applications. L-BFGS navigates the variable 

space by using an estimate of the inverse Hessian matrix, similar to BFGS. However, unlike BFGS, 

which stores the entire estimate of the inverse Hessian, L-BFGS only stores a few vectors that 

implicitly represent the estimate. Fig. 3.10(a) displays the simulation current waveforms relevant 

to this optimization method. Despite its efficiency, L-BFGS required the least amount of training 

computation time at almost 2 minutes. However, compared to the simple BFGS, the accuracy and 

THD were slightly compromised, with a THD of 4.26% and accuracies of 97.00% and 94.61% on 

the training and testing datasets, respectively. The convergence behavior of L-BFGS, as shown in 

Fig. 3.10(b), is similar to that of the simple BFGS algorithm. 

 
(a) 
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(b) 

Fig. 3.10: Limited-Memory Broyden–Fletcher–Goldfarb–Shanno results; (a) three-phase current, (b) 

convergence behavior 

 

To facilitate a clearer comparison, Table 3.2 is included. The table highlights that the L-BFGS 

optimization algorithm was the fastest, with a reduction of 2 minutes in training time compared to 

the other methods. However, the BFGS optimizer achieved the best performance in terms of THD 

and accuracy, performing better than the base case study conducted under VOC method. Also, 

compared to the base case study, the ML solution optimized by BFGS significantly reduced 

computational complexity. Furthermore, there is no longer a need to tune the PI controller 

parameters. Overall, the simple BFGS algorithm demonstrated effective functionality across all 

metrics, in normal operation condition of the PMSG-based WECS. 

 

Table 3.2:  Comparison Study 

Optimizer Complexity 

Memory 

requirement 

(Mb) 

Training 

time (s) 

Accuracy on 

training dataset 

(%) 

Accuracy on 

testing dataset 

(%) 

THD 

(%) 

Conversion 

iterations 

SGD low 1.18 366 97.84 96.12 3.93 280 

MGD Moderate 0.93 238 93.18 89.89 9.06 200 

BFGS Moderate  2.41 154 98.70 98.33 3.24 140 

L-BFGS high 2.07 117 97.00 94.61 4.26 140 
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To better understand the impact of pre-processing and the addition of Lasso regularization to 

the cost function, the problem was also solved using four different optimizers without these 

features. The results, presented in Table 3.3, show a significant reduction in training time and 

memory usage, which is expected since the cost function is simpler and no data preprocessing is 

required. However, this simplification led to decreased accuracy on both training and testing 

datasets. Additionally, the increased discrepancy between training and testing accuracies indicates 

overfitting, meaning the model performs well on training data but poorly on new test data. 

Furthermore, the system's performance in terms of THD was not acceptable across all optimizers. 

Therefore, it can be concluded that the inclusion of regularization and data processing enhances 

the machine learning model's accuracy and THD performance. 

Table 3.3: Comparison study (non-regularized and non-pre-processed). 

Optimizer 

Memory 

requirement 

(Mb) 

Training 

time (s) 

Accuracy on 

training dataset 

(%) 

Accuracy on 

testing dataset 

(%) 

THD (%) 
Conversion 

iterations 

SGD 0.88 147 83.79 75.51 13.94 320 

MGD 0.60 109 86.64 79.28 10.92 300 

BFGS 1.12 77 92.48 85.33 6.78 190 

L-BFGS 0.97 48 88.59 81.48 7.51 190 

 

 

3.4.1   Simulation Results for the Proposed MARL Method 

The ML models, although successful in normal operating conditions, was also tested under 

single-phase voltage drop scenarios. For this matter, the model resulted the best (optimized by 

BFGS) is considered to be analyzed under unbalance condition. However, the investigation 

revealed that the ML model was ineffective in handling unbalanced scenarios, as evidenced by the 

results shown in Fig. 3.11. Following the clearance of the single-phase voltage droop unbalance 

situation started at 0.1 sand cleared at approximately 0.15 seconds, the system was unable to return 

to its previous operating conditions under normal circumstances. This outcome suggests that the 
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ML model struggled to adapt to the unpredictable nature of unbalanced situations. Controlling 

wind energy conversion systems and power systems in unbalanced conditions is also a crucial 

point. Because these situations can occur frequently in real-world scenarios. Therefore, the 

proposed MARL-based approach optimally tuned by meta-learning method may offer a solution 

to this challenge by providing more adaptive and robust control in such scenarios. 

 
 
Fig. 3.11: Three-phase grid-side current under ML-based model controller for single-phase voltage drop 

unbalance condition. 

Herewith, two MARL-based approaches are tested on a predefined WECS and their respective 

results have been graphically depicted below. The methods include MARL with constant discount 

factor DF within the learning and exploration process, and proposed MARL incorporates meta-

learnt DF. Each method was carefully evaluated to determine the efficacy in optimizing the 

performance of the WECS. It is worth mentioning that the 𝛼 and 𝛽 are design to be 0.03, and 0.5, 

respectively, acquired by trial and error. To do so, two unbalance scenarios; single phase 90% 

voltage drop, and two phases voltage drop, have been decided to be examined. Afterwards, the 

functionality of the proposed method to control the grid-side NPC employed in PMSG-based 

WECS will be defined. 
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First Case Study; Single-Phase Voltage Drop 

In order to approximate the real-world problem response behavior of the system, the voltage 

for phase-A declines to almost 10% of rated value throughout 0.06 s starting at t = 0.093 s, 

depicted in Fig. 3.12. Both MARL with constant DF and proposed MARL equipped with meta-

learnt DF have been employed to observe the functionality of each, in this case study. The Fig. 

3.13(a) and Fig. 3.13(b) illustrate the grid-side three-phase current for mentioned strategies, 

respectively. The maximum peak current alters to almost 1.35 pu since the grid-side NPC should 

convey the rated current as a reactive component to the grid in accordance with the low voltage 

ride through (LVRT) standards [105], within the unbalance interval. At any point, the current 

flowing towards the grid remained balanced for both methods, as illustrated. However, the 

constant DF have led to higher THD (4.65 % THD for fixed DF and 3.97 % for the meta-learnt 

DF) and higher current overshoot, as can be observed clearly from Fig. 7. This exhibit more rapid 

and precise transient responsiveness without notable overshoot of the proposed MARL strategy to 

control the grid-side NPC in a PMSG-based WECS.  

 
Fig. 3.12: Unbalance three-phase grid-side 
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(a) 

 
(b) 

 
 

Fig. 3.13: Three-phase grid-side current in single-phase voltage drop scenario; (a) MARL with constant DF, 

(b) proposed MARL employed meta-learnt DF. 
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As mentioned earlier, the WECS is designed to deliver 1.6 MW to the grid. To illustrate the 

performance of the proposed MARL approach with a meta-learned discount factor, Fig. 3.14 

displays the average active and reactive power values. According to this figure, during steady-state 

operation, from 0 to approximately 0.1 seconds, the WECS operates at unity power factor. In this 

condition, the system achieves an average active power output of roughly 1.6 MW and an average 

reactive power output of 0 VAR supplied to the grid, indicating that all the power delivered is 

active power with no reactive component. However, when a single-phase voltage drop occurs, the 

scenario changes significantly. The active power transmitted to the grid drops to 0 W on average, 

while the reactive power increases substantially to nearly 1.6 MVAR. This change indicates the 

system's compliance with low voltage ride through (LVRT) standards, which require the system 

to support the grid by supplying reactive power during voltage sags. The specific voltage sag in 

this case is nearly 90%. After the unbalanced condition is resolved and the system returns to normal 

operation, the active power output increases back to 1.6 MW, and the reactive power output 

decreases to 0 VAR, resuming the initial steady-state performance. These results demonstrate the 

system's ability to meet LVRT requirements and its effective response to voltage disturbances, 

ensuring grid stability and reliability. 

 

Fig. 3.14: Average active and reactive power delivered to the grid by proposed MARL controller model, in 

single-phase voltage drop scenario. 
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Second Case Study; double-Phase Voltage Drop 

Figure 3.15 presents the simulation findings of the grid-side three-phase voltages for the 

second scenario. In this scenario, starting at 0.093 seconds, the voltages of phase A and phase B 

decrease to almost 60% of their rated voltage value over an interval of approximately 0.06 seconds. 

This voltage drop necessitates a response from the system to maintain grid stability. 

 

Fig. 3.15: Unbalance three-phase grid-side voltage in double-phase voltage drop scenario 

 

During this period, the current adjusts to almost 1.3 per unit (pu) because the NPC power 

converter is required to provide at least 75% of the nominal current as a reactive component to 

meet the LVRT specifications. The remaining portion of the nominal current is then imposed as 

active current, ensuring that the system adheres to the necessary reactive power support during the 

voltage sag. In this instance, results similar to those for a single-phase grid voltage drop are 

demonstrated. According to the outcomes, the grid-side current remained balanced throughout the 

intervals for both the MARL approach with a fixed discount factor and the proposed MARL 
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approach with a meta-learned DF, as illustrated in Fig. 3.16 The proposed strategy exhibits almost 

no overshoot during the transition from normal operation to a two-phase voltage sag. Additionally, 

the THD performance is superior, with 4.11% THD for the fixed DF approach and 3.36% for the 

proposed model, as shown in Fig. 3-16(b). Moreover, the response time is quicker during the 

transitions compared to the fixed DF-based MARL, which can be seen in Figure 16(a). After the 

clearance of the unbalanced condition, the proposed strategy achieved normal operation almost 

instantly, whereas the fixed DF approach exhibited a delay of approximately 0.02 seconds. This 

rapid recovery and superior performance of the proposed MARL approach underline its potential 

as a promising alternative in managing grid stability during voltage disturbances. These results 

highlight the effectiveness and efficiency of using a meta-learned DF in improving the system's 

response to unbalanced grid conditions. 

 
(a) 
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(b) 

 
 

Fig. 3.16: Three-phase grid-side current in double-phase voltage drop scenario; (a) MARL with constant DF, 

(b) proposed MARL employed meta-learnt DF 

 
In terms of the power delivered to the grid by the WECS under the proposed grid-side NPC 

power converter control method, both active and reactive power are supplied to the grid during the 

unbalanced interval of a double-phase voltage sag. This differs from the previously-studied 

scenario where only reactive power was fed to the grid during similar disturbances. Figure 3.17 

illustrates the average active and reactive power delivered to the grid. In the steady-state period, 

the behavior of the power is identical to the one observed in the previous section following a single-

phase voltage drop. Specifically, the system maintains stable power delivery with an average active 

power of approximately 1.6 MW and an average reactive power of 0 VAR. During the interval of 

the two-phase voltage drop, however, the average active and reactive power values change 

significantly. The average active power decreases to about 0.95 MW, while the average reactive 

power increases to approximately 1.1 MVAR. This adjustment in power levels indicates that the 

system is effectively providing the necessary reactive power support to meet the LVRT 

requirements during the voltage sag.  
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Once the unbalanced condition is cleared, the system quickly restores its former operating 

conditions. The active power output returns to 1.6 MW, and the reactive power output reverts to 0 

VAR, indicating a swift recovery to normal operation without any voltage drop. This capability to 

regain normal operation promptly after clearing the unbalanced condition underscores the 

effectiveness of the proposed NPC power converter control method in maintaining grid stability 

and reliability under various voltage sag conditions. 

Overall, these results highlight the robustness and efficiency of the proposed control strategy 

in ensuring higher power quality with less THD, and continuous and stable power delivery to the 

grid, even during significant voltage disturbances. The ability to supply both active and reactive 

power during two-phase voltage sags demonstrates the system's enhanced performance compared 

to scenarios where only reactive power was provided. 

 

 
Fig. 3.17: Average active and reactive power delivered to the grid by proposed MARL controller model, in 

double-phase voltage drop scenario 
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3.4.2   Comparative study 

Figure 3.18 is provided to highlight the recommended MARL approach in the context of 

learning and exploration behavior compared to the commonly-used MARL method with fix DF. 

The cumulative rewards of the prescribed MARL with a meta-learned discount factor are shown 

in green. Initially, the cumulative rewards for this technique are lower than those for the MARL 

instance where the constant DF is set to a value of 0.7, depicted in blue. This initial 

underperformance is attributed to the nature of MARL, which involves multiple agents learning to 

cooperate collaboratively to achieve a shared goal. This collaborative learning process can be 

problematic in the early episodes as the agents explore various strategies to find the optimal DF. 

The complexity of coordinating multiple agents results in slower initial progress compared to using 

a fixed DF. However, after approximately 120 episodes, the recommended MARL approach 

begins to outperform the conventional one. This improvement indicates that the agents have 

effectively learned to cooperate and optimize their strategies, leveraging the advantages of the 

meta-learned DF. The performance gains become evident as the cumulative rewards for the 

recommended approach surpass those of the fixed DF method. Additionally, the moving average 

of the cumulative rewards over the last 10 episodes is shown in solid red. This moving average 

provides a smoothed representation of the performance trends, highlighting the stability and 

consistency of the recommended MARL approach as it progresses through the episodes. 

Overall, it the long-term benefits of the proposed MARL with a meta-learned DF. While it 

may initially lag behind due to the complexities of multi-agent learning, it ultimately achieves 

superior performance as the agents effectively adapt and optimize their behaviors. This highlights 

the potential of the recommended MARL approach to deliver better results in dynamic and 

complex environments compared to traditional MARL method with fixed parameters. 
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Fig. 3.18: Cumulative rewards in episodes for RL with constant and also meta-learnt DF. 

 

The proposed method is also comprehensively compared to the VOC in many aspects. Hence, 

a normal operation condition is employed to analyze the performance of the proposed method and 

the VOC-based one, in the same WECS configuration. The three phase grid-side currents acquired 

by these two methods are demonstrated in Fig. 3.19.  According to this figure, MRAL solution 

provide almost 0.4% improvement in THD performance, compared to the VOC.  

 
(a) 
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(b) 

 
Fig. 3.119: Three-phase current acquired by, (a) proposed MARL, (b) VOC. 

 

Moreover, Table 3.4 highlights several key performance metrics for comparison purposes, 

including control strategy, complexity, adaptability, performance, response time, robustness, 

scalability, energy efficiency, hardware requirements, sensor requirements, THD, and so forth. In 

terms of efficiency, the 4% improvement by using MARL over VOC in the NPC power converter 

comes down to MARL’s ability to dynamically adapt and optimize control under varying 

conditions. VOC is based on fixed parameters, which lead to inefficiencies such as increased 

harmonics, as mentioned, and increased reactive power. Augmented reactive power reduces the 

efficiency of a power system by elevating the total apparent power required without contributing 

to productive output. While reactive power supports the establishment of electric and magnetic 

fields in inductive and capacitive components, it does not generate useful work. As reactive power 

rises, the overall apparent power increases, yet the active power, which performs actual work, 

remains unchanged. This results in a lower power factor and efficiency, as more energy is 

consumed to sustain the system’s operation without increasing useful power delivery. 

Furthermore, the increase in reactive power leads to higher losses due to resistive heating in 

conductors and transformers, compounding the reduction in overall system efficiency. MARL, on 

the other hand, learns and adjusts in real-time, reducing these inefficiencies by optimizing the 

converter’s switching and minimizing harmonics, improving both power quality and overall 

efficiency. Moreover, VOC assumes linearity and ideal conditions, but real-world nonlinearities, 

such as switching variations and voltage imbalances, degrade its performance. MARL is better at 
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managing these nonlinearities by continuously adapting to system changes, ensuring closer 

operation to the converter’s theoretical maximum efficiency. 

Overall, the MARL method shows advantages over VOC, particularly in terms of adaptability, 

robustness, scalability, energy efficiency, and THD. However, MARL is more complex, requires 

higher memory usage, longer response times, compared to VOC. However, in a 60 Hz system, 

each cycle lasts approximately 16.67 ms. While VOC has a faster response time of 1.7 ms 

compared to MARL’s 4.2 ms, MARL’s response time is still sufficient to adapt effectively within 

a single cycle. With such a response time, MARL can respond to changes four times per cycle, 

allowing it to dynamically adjust control strategies in real time and maintain efficient performance. 
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Table 3.4:  Comparison Study 

 

Aspect VOC Proposed MARL 

Control 

Strategy 

Traditional control method using PI 

controllers for voltage and current 

regulation. 

Advanced control method using multiple 

reinforcement learning agents for decision 

making. 

Complexity Moderate complexity. Requires tuning of 

PI controllers. 

High complexity. Requires training of multiple 

agents and fine-tuning of learning parameters. 

Adaptability Limited adaptability. Requires retuning for 

different operating conditions. 

High adaptability. Agents can learn and adapt to 

changing conditions. 

Response Time Fast response due to predefined control 

laws. (1.7 ms) 

Require more time for agents to learn optimal 

actions. (4.2 ms) 

Scalability Limited scalability. Adding new 

components requires retuning. 

High scalability. New agents can be added for 

new components. 

Energy 

Efficiency 

Efficient under well-tuned conditions 

(93%) 

Potential for higher efficiency through continuous 

optimization (97%) 

Sensor 

Requirements 

Yes, requires accurate voltage and current 

sensors. 

Yes, requires accurate voltage and current sensors. 

Simulation 

Time 

Shorter simulation time. Well-defined 

control laws. (14s) 

Longer simulation time. Involves extensive 

training of agents. (33s) 

Reliability High reliability in stable conditions. High reliability in dynamic conditions due to 

continuous learning. 

Ease of Use Easier to use with well-documented 

methods and guidelines. 

Requires expertise in reinforcement learning and 

control systems. 

THD  Moderate THD. (3.79%) Lower THD due to optimized control. (3.36%) 

Memory Use Lower memory usage. (1.6 MB) Higher memory usage due to agent storage and 

training data. (3.4 MB) 

Computational 

Requirements 

Moderate computational requirements. 

(Standard CPU) 

High computational requirements. (High-

performance GPUs or CPUs) 
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3.5   Conclusion  
This chapter utilized a novel reinforcement learning based approach for controlling the grid-

side neutral point clamped power converter used in direct-drive permanent magnet synchronous 

generator-based wind energy conversion systems. The innovative technique utilized a multi-agent 

reinforcement learning strategy, detailed in previous chapter, which provided several advantages 

over previous machine learning and RL-based methods. These advantages included enhanced 

adaptability and flexibility, as well as the ability to optimize the system online continuously. One 

of the key benefits of the MARL approach was its online learning capability, which allowed for 

the continual improvement of system performance as it adapted to changes in environmental 

conditions and system dynamics. The proposed MARL method could handle both single-phase 

and double-phase voltage sag unbalance conditions, marking a significant improvement over 

traditional ML-based method. By dividing the problem into smaller sub-tasks and assigning them 

to different agents, the proposed MARL approach enabled more scalable and efficient problem 

decomposition and resolution compared to single-agent reinforcement learning. This division 

allowed for the exploration of various strategies and policies, leading to better overall performance 

and increased robustness in the face of changing environmental conditions or system dynamics. 

To further enhance the performance of the proposed control approach, a meta-learning 

technique was employed to optimally learn the discount factor value, a crucial hyperparameter of 

the reinforcement learning algorithm. This meta-learning method was found to be superior to fixed 

DF values or other conventional methods of tuning the discount factor in terms of adaptability, 

cumulative rewards, total harmonic distortion, and convergence rate. 

Evaluation and simulation results demonstrated that the proposed method outperformed both 

traditional and recently researched control strategies, establishing it as a strong competitor in the 

field. The combination of MARL and meta-learning techniques resulted in a control approach that 

was not only more adaptable and flexible but also more efficient and robust, making it a significant 

advancement in the control of grid-side NPC power converters in PMSG-based WECS. 
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Chapter 4 

Reinforcement Learning-based Maximum Power Point 

Tracking Approach for PMSG-based WECSs 
 

4.1   Introduction 
Wind energy conversion systems have been instrumental in harnessing renewable energy, yet 

they often face challenges with conventional maximum power point tracking methods. These 

traditional approaches can suffer from slow tracking speeds, poor precision, and a high sensitivity 

to fluctuations in wind speed. To address these issues, this chapter employs the cutting-edge multi-

agent reinforcement learning strategy explained in chapter 2, to optimize MPPT in variable WECS. 

The proposed MARL approach distinguishes itself by significantly improving energy output and 

enhancing the system's ability to swiftly respond to wind speed variations. Unlike traditional 

single-agent methods, the MARL approach employs multiple agents working in tandem. This 

decentralized cooperation allows the system to achieve superior precision and interaction 

capabilities, thus maximizing power generation more effectively. One of the key innovations of 

this approach is the incorporation of a meta-learned discount factor. This enhancement optimizes 

the MARL algorithm, reducing the learning phase duration and improving the convergence rate. 

The result is a more robust and efficient solution that adapts quickly to changing wind conditions, 

ensuring consistent and reliable performance. 

Extensive simulations provide a comprehensive performance assessment of the proposed 

model-free MARL approach. The results highlight its potential applicability and underscore its 

advantages over conventional methods. These simulations demonstrate the MARL strategy's 

ability to maintain high energy output and quick adaptation to wind speed changes, showcasing its 

practical benefits. To further validate the effectiveness of the proposed algorithm, a 1000W 

prototype was implemented. This real-world application confirms the functionality of the MARL 

strategy in wind MPPT scenarios, providing tangible evidence of its superiority. The prototype 

testing reveals that the MARL approach not only meets but exceeds the performance of traditional 

MPPT methods, offering a reliable and efficient solution for wind energy systems. 
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4.2   Literature Review 
Given the growing prices and detrimental effects of fossil fuels on the environment, there is 

an urge more than ever for viable renewable energy alternatives. In this regard, wind energy has 

experienced growth and is well-positioned to emerge as a significant sustainable and economical 

source of power [106]. Although, in order to boost the efficiency, a maximum power point tracking 

approach is required to extract maximum power from the wind energy conversion system. Three 

of the main varieties of MPPT methodology for WECS include indirect power control (IPC), direct 

power control (DPC), and smart or artificial intelligence (AI) based schemes. The most popular 

IPC-based conventional MPPT approach are tip speed ratio (TSR) [107], optimal torque (OT) 

[108], [109], and power signal feedback (PSF). These methods may not always be as efficient as 

direct methods in extracting maximum power. furthermore, they can be sensitive to inaccuracies 

in the wind turbine model parameters, which affect the performance and reliability. Also, major 

performance downsides might arise from any mismatch between the predicted and actual 

characteristics for WECS [110]. 

DPC is another widely recognized primary categorization of MPPT scheme. Among the most 

commonly-used DPC-based sub-approaches, incremental conductance (INC) [111], and optimum 

relation based (ORB) [112], can be named. These approaches suffer from fluctuations around 

maximum power points, lower convergence rate, and also requirement of additional sensors and 

equipment, which raises the initial, operation, and maintenance costs [113]. The Perturb and 

Observe (P&O) algorithm is another widely used DPC-based method for MPPT purposes [114]. 

Its simplicity and ease of implementation are notable advantages, making it a popular choice. 

However, P&O has shortcomings, such as struggling to accurately track the MPP under rapidly 

changing wind speeds. While P&O is a commonly used method, there is ongoing research to 

improve the performance. 

There are also methods such as; whale optimization, and droop-based control, that are not 

popular because of global optimum and power fluctuation issues [115], [116]. 

Obstacles encountered in above-mentioned strategies for nonlinear and unpredictable 

WECS have given rise to the popularity of AI or learning control-based methodologies including 

fuzzy logic, artificial neural networks, model predictive control, and reinforcement learning. In an 

attempt to address the shortcomings, in [117] and [118] FL-based strategies were considered to 
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control the current loop for MPPT purposes. Or a direct drive permanent magnet synchronous 

generator based WECS was implemented in [119] to deal with MPPT challenge by FL for wide 

range of wind speeds.  However, primary drawback of FL as a state feedback-based controller, is 

need of comprehensive data measurement in addition to thorough dynamic model of the system. 

Moreover, literature survey on FL-based MPPT predominantly concentrates on refining dynamic 

performance of WECS, while less attention has been paid to investigation of optimal performance 

attributes [120].  

Therefore, it turns out, more intelligent optimization methods may offer more reliable and 

consistent results for MPPT, while reduce sophistication and provide a model-free solution [121], 

[122] Reference [113] designed a MPPT technique to identify the optimal relationship between 

the rotor speed and permanent magnet generator power using ANNs. The procedure switched from 

the ANN to the ORB since MPP was attained. References [123] and [124] employed an ANN and 

deep neural network approaches which allowed for adjusted electromagnetic torque so that the 

system could enforce the generator speed to follow the reference speed and reference power, 

respectively. But, ANN-based solutions carry some problematic concerns. Large-scale training 

datasets are necessary for ANNs, and this might not always adequately capture the intricate and 

dynamic wind patterns.  

On the other hand, an enhanced MPC strategy was introduced for a back-to-back (BTB) three-

level neutral point clamped (NPC) converter in [125], designed for high-power PMSG-based 

WECSs. This approach incorporated virtual space vectors and utilizes sensors to measure machine 

side electrical parameters along with rotor position. However, two major disadvantages of MPC-

based methods are the computational complexity and sensitivity to model inaccuracies [126]. 

The shortcomings for neural network and MPC based MPPT solutions motivated researchers 

to move towards RL-based MPPT. RL is a machine learning paradigm where an agent learns to 

make decisions by interacting with an environment. RL can adapt to changing environmental 

conditions and optimize the turbine's performance without requiring detailed models of the system. 

In this regard, [127] proposed a variable-speed WECS intelligent MPPT method based on RL. By 

updating the action values in line with the rewards earned, the controller applied a model-free Q-

learning approach to continually gain a mapping policy from states to optimal control actions. 

Even though the convergence rate and exploration were not optimal yet, [128] suggested a 
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maximum detection method, a component of Q-learning, that accelerates real-time tracking by 

pushing the WECS towards MPPT performance. Reference [129] is concerned with the problem 

of MPPT for a permanent magnet vernier generator based WECS using the Q-learning with the 

finite-time control. The major disadvantages of such single-agent RL for MPPT problems are the 

limited ability to explore and exploit the vast and complex search space effectively, and slow 

learning rates as it relies on a single agent to adapt to changing environmental conditions. 

In this research endeavor, a novel approach employing multi-agent reinforcement learning is 

presented to address the MPPT limitations encountered in PMSG-based WECSs employed with 

BTB-NPC power converter, illustrated in previous chapter.  In comparison to traditional methods, 

the proposed approach enhances energy output and the ability to swiftly respond to changes in 

wind speed. Furthermore, due to its decentralized nature, multiple agents collaborate to maximize 

power generation, ensuring superior precision and enhanced interaction capacity compared to 

single-agent RL methods. Additionally, by incorporating a meta-learnt discount factor (DF), a 

pivotal hyperparameter in the RL process, the MARL algorithm improves learning phase time and 

convergence rate, resulting in a more robust solution. Once the optimal rotor speed-power (𝜔𝑟 , 𝑃𝑒) 

curve is determined throughout the proposed strategy, the method utilizes P&O to accurately 

pinpoint the MPP. Extensive simulation results demonstrate the performance of the model-free 

MARL approach, indicating its potential applicability. Moreover, a 1000W prototype validates the 

functionality of the algorithm in real-world wind MPPT problems. 

 

4.3   Proposed MARL Application in MPPT 
Illustrated in Fig. 4.1, proposed MARL approach involves two distinct phases within MPPT; 

online application phase and online learning phase. In online learning phase, controller serves as 

agents, engaging with the environment to acquire knowledge of maximum power points through 

Q-value. These MPPs are then utilized to derive optimal rotor speed and electrical power profiles, 

which are subsequently employed for P&O maximum power point tracking control over online 

application phase. 
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Fig. 4.1: The concept of the proposed MARL for MPPT scheme of WECS 

 

During the initial online application phase, it is crucial to clearly define the concepts of state 

and action spaces, along with the reward, when employing proposed algorithm for determining the 

optimal 𝜔𝑟 − 𝑃𝑒  curve. The controllers acting as agents in the WECS identify the current state and 

choose a discrete action based on Q-values associated with all viable actions using Q-function 

defined in chapter 2. Subsequently, the agent receives a reward, to adjust the values of the executed 

actions in previous state. 

To determine the problem control strategy and the state space for the proposed method, PMSG 

modeling, as well as the overall mechanical power of the WECS should be pre-defined. For the 

PMSG, the following equations would describe the dynamics: 

 

𝑣𝑑 = 𝑅𝑖𝑑 +
𝐿𝑑𝑑𝑖𝑑

𝑑𝑡
− 𝐿𝑞𝑖𝑞𝜔𝑠                                                                                                             (4.1) 

 

𝑣𝑞 = 𝑅𝑖𝑞 +
𝐿𝑞𝑑𝑖𝑞

𝑑𝑡
+ (𝐿𝑑𝑖𝑑 + 𝜑𝑚)𝜔𝑠                                                                                               (4.2) 
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In which, 𝑅 is the stator resistor, 𝑣𝑑 and 𝑣𝑞 are the stator voltages after Park’s transformation, 

𝐿𝑑 and 𝐿𝑞 denote the inductances, stator pulsation and the flux are shown by 𝜔𝑠, and 𝜑𝑚.  

As the WECS is considered to be grid-connected, the nonlinear current equations for PMSG 

would be: 

 

𝑖𝑑 = −
1

𝐿𝑑+𝐿𝑙
[(𝑅 + 𝑅𝑙)𝑖𝑑 + 𝑃(𝐿𝑞 + 𝐿𝑙)𝑖𝑞𝜔]                                                                                   (4.3) 

 

𝑖𝑞 = −
1

𝐿𝑞+𝐿𝑙
[(𝑅 + 𝑅𝑙)𝑖𝑞 − 𝑃(𝐿𝑑 + 𝐿𝑙)𝑖𝑑𝜔 + 𝑃𝜑𝑚𝜔]                                                                   (4.4) 

 

The 𝑅𝑙 and 𝐿𝑙 are the load resistor and inductance. And the 𝜔 is considered to be the angular 

speed. Considering 𝐿𝑑 = 𝐿𝑞, for the PMSG with 𝑝 poles, the electromagnetic torque, and 

subsequently the power output can be presented as: 

 

 𝑇𝑒𝑚 = 𝑝𝜑𝑚𝑖𝑞                                                                                                                     (4.5) 

 

𝑃 = 𝑇𝑒𝑚𝜔𝑟                                                                                                                          (4.6) 

 

In terms of wind turbine modeling, the turbine rotor radius size (𝑅), air density (𝜌), speed of 

the wind (𝑉𝑤), and the conversion efficient of the generator (𝐶𝑝) are the characteristics that impact 

the power output shown by:  

 

𝑃𝑊𝑇 =
1

2
𝜌𝜋𝑅2𝑉𝑤

3𝐶𝑝                                                                                                                         (4.7) 
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The 𝐶𝑝 is correlated to TSR of 𝜆 and pitch angle of 𝜃: 

 

𝐶𝑝 = 0.5 − 0.0167(𝜃 − 2) 𝑠𝑖𝑛 [
𝜋(𝜆+0.1)

18−0.3(𝜃−2)
] − 0.00184(𝜆 − 3)(𝜃 − 2)                                       (4.8) 

 

Hence, the maximum power can be extracted from the wind, when the optimum tip speed 

ratio of 𝜆𝑜𝑝𝑡 is reflected upon:  

 

𝑃𝑚𝑎𝑥 =
1

2

𝜌𝐴𝑅3𝐶𝑝𝑚𝑎𝑥
𝜆𝑜𝑝𝑡
3 𝜔𝑡

3 = 𝑘𝜔𝑡
3                                                                                                        (4.9) 

 

In (4.7), the 𝐴 is the area of the swept area of the turbine blades, and 𝜔𝑡 considered as the WT 

rotation speed. Then, for each wind speed, there exists a corresponding 𝜔𝑟 − 𝑃𝑒  curve. Within this 

curve, there is a singular rotor speed that is optimal for maximizing wind power extraction. 

Therefore, the state space can be defined effectively as a pair representing the operating point of 

speed and power, as follows: 

 

𝑆 = {𝑠|𝑠𝑘,𝑗 = (𝜔𝑟,𝑘 , 𝑃𝑒,𝑗)}                                                                                                             (4.10) 

 

It is worth mentioning that 𝑘 ∈ [1, 2, … , 𝐾] and 𝑗 ∈ [1, 2, … , 𝐽], denote the total number of 

uniformly divided segments across the entire range of 𝜔𝑟 and 𝑃𝑒, respectively. 

Under the condition that the constraints on rotor speed 𝜔𝑟 are observed and not surpassed, the 

agent has at its disposal three distinct action possibilities for each state: augmentation (△𝜔𝑟), 

reduction (−△𝜔𝑟), and maintaining an idle state (0). Driven by the evaluation of the current state 

represented by (𝜔𝑟, 𝑃𝑒) and the prescribed action policy, the agent strategically chooses an action 

from the designated action space. This decision, is geared towards optimizing the adjustment of 

the rotor speed. In this regard, the action space is demonstrated as follows: 
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𝐴 = {𝑎| +△𝜔𝑟 , − △ 𝜔𝑟 , 0}                                                                                                           (4.11) 

 

After accomplishing a given task, the agents receive a reward to evaluate the effectiveness of 

the chosen action. The reward function is crafted to incentivize the agent in actively pursuing 

MPPT while steering clear of operating the turbine at points where power output falls below the 

optimal threshold. In this context, the reward function may be conceptualized and formulated as 

follows: 

 

𝑅𝑡+1 = {

+1             𝑤ℎ𝑒𝑛 𝑃𝑒,𝑡+1 > 𝑃𝑒,𝑡
0                𝑤ℎ𝑒𝑛 𝑃𝑒,𝑡+1 = 𝑃𝑒,𝑡
−1             𝑤ℎ𝑒𝑛 𝑃𝑒,𝑡+1 < 𝑃𝑒,𝑡

                                                                                         (4.12) 

 

Simply, if the specified action makes 𝑃𝑒 to climb, the agent would attain a positive reward; 

however, if it causes the 𝑃𝑒 to decrease, compared to the previous stage, the agent will get a 

negative reward which can be named as penalty. Otherwise, if there is no change in the power, the 

cumulative reward would be unchanged 

The flow chart of the proposed method employed with meta-learnt DF is illustrated in Fig. 

4.2, where the updating criteria is defined by (4.13). The 𝛿 stands for the optimizing convergence 

rate and is considered to be 0.00001 for this study. 

 

|𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)| < 𝛿                                                                                                     (4.13) 
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Fig. 4.2: Flow chart for proposed MARL employed with meta-learnt DF [130]. 
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4.4   System Configuration 
In this study, the same system of the previous chapter, a wind turbine system featuring a 

direct-drive permanent magnet synchronous generator, is employed for high-power wind energy 

applications to evaluate the effectiveness of the proposed MARL method in MPPT. The system 

incorporates a 3-level neutral point clamped back-to-back power converter. The voltage-oriented 

control method is employed to regulate the grid-side NPC converter, while the machine-side NPC 

converter is slated to be controlled through the suggested MARL online strategy, detailed in 

previous section. The primary objective of the VOC is to generate a pure DC voltage of around 

1200 V in the dc-link. This DC voltage is subsequently evenly filtered and distributed across two 

capacitors, each maintaining a voltage level of 600 V. The grid-side NPC inverter, under the 

governance of the VOC, transmits 1.6 MW of active power to the grid, featuring a line-to-line 

voltage of 800 V. For detailed system parameters, please refer to Table 3-1. 

 

4.5   Simulation Results 
In the simulation study, the evaluation of the proposed MARL method for MPPT in PMSG-

based WECS has been conducted across three distinct scenarios, leveraging Simulink MATLAB 

software for comprehensive analysis. These scenarios encompass varying wind speed conditions, 

allowing for a thorough investigation into the MARL method's efficacy under different 

environmental settings. A 5-minute period is considered for online learning simulation, which 

strikes a balance between computational efficiency and exploring the state space, adequately. It 

should be mentioned that the PMSG and proposed method parameters are provided in Table 4.1 

and Table 4.2. 
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Table 4.1: Simulated PMSG Parameters 

Parameters Values 

Rated wind power 2 MW 

Mechanical torque 848.826 kN m 

Rotor flux linkage 5.826 Wb 

d-axis inductance 1.573 mH 

q-axis inductance 1.573 mH 

Stator resistance 0.821 ohm 

Air gap flux density 0.00077 Tesla 

Air gap 4 mm 

Number of pair poles 26 

 

Table 4.2: Proposed MARL Method Parameters 

Parameters Values 

Number of agents N 4 

Number of episodes 1000 

Number of iterations in each episode 20 

K 100 

J 80 

Convergence rate 𝛿 0.000001 

Updating step 𝛽 0.002 

Exploration rate 0.3 

Exploitation rate 0.7 
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4.5.1   Constant Wind Speed Scenario 

To evaluate the system ability in optimizing the 𝐶𝑝 in a scenario where a fixed wind speed of 

10 m/s is considered, the Fig. 4.3 is presented. According to the figure, the initial pursuit of the 

maximizing 𝐶𝑝 commenced at 0 seconds by the agents. In an efficient learning session, the agent 

swiftly navigated to the MPP within a concise timeframe of approximately 15 seconds. A 

subsequent exploration phase was noticeable around the 90-second mark, during which the agent 

diligently sought actions aimed at augmenting power production. Afterwards, the proposed 

controller fixes the 𝐶𝑝 at the maximum possible value, around 0.42. Additionally, a comprehensive 

analysis has been provided in Table 4.3, showcasing some of the action values derived from Q-

table after a 300-second learning period, focusing on specific state pairs (𝜔𝑟, 𝑃𝑒) in per unit. 

Notably, states (0.82, 0.735) and (0.83, 0.735) emerged as the most frequently visited. The MPP, 

crucial for optimized performance, was identified within the state (0.82, 0.735), where the action 

"stay" holds the highest value. Conversely, in other states values, either increment (Inc), or 

decrement (Dec) commands possess highest actions. 

 

(a) 
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(b) 

Fig. 4.3: Fixed wind speed scenario, (a) the wind speed, (b) the 𝑪𝒑 in a 5-minute online learning. 

 

Table 4.3: States and Actions for Some Values from Q-Table in Fixed Wind Speed Scenario 

States Action 

𝜔𝑟 (pu) 𝑃𝑒 (pu) Inc/Dec/Stay 

0.80 0.735 Inc 

0.81 0.735 Inc 

0.82 0.735 Stay 

0.84 0.735 Dec 

0.85 0.735 Dec 

0.87 0.735 Dec 

 

4.5.2   Step-Changed Wind Speed Scenario 

The second scenario is examined to evaluate the proposed algorithm's ability to manage the 

step change wind speed condition. This is accomplished by implementing a repetitive wind speed 

profile that underwent step changes alternately from 12 to 8, and then from 8 to 10 m/s and again 

from 10 to 12 m/s, every 50 s (Fig. 4.4). The resulting 5-minute online learning process is also 

recorded, and the findings are depicted in Fig. 4.4(b). At the outset, the agent was "naive" and 

continued to explore at each wind step change, instantly. However, the agent's learning process 
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allowed it to adapt to the condition in approximately 150 seconds and fixed the 𝐶𝑝 at almost 0.42, 

right after the first wind pattern cycle. Moreover, based on the figure, in each wind step changes, 

the 𝐶𝑝 drop rate has decreased less, which shows improved exploration of the agents within system.  

 

(a) 

 
(b) 

 
Fig. 4.4: Step-change wind speed scenario. (a) wind speed, (b) the 𝑪𝒑 in a 5-minute online  

 
 

The Fig. 4.5 also illustrates the dynamics of the interplay between step-changed wind speed 

and rotor speed under the proposed strategy. At the outset of the plot, when the wind speed is at 

the rated value of 12 m/s, the rotor speed initially starts to pick up and ultimately reaches a 

maximum rated value of 1 pu. This behavior reflects the rotor's response to the input of the wind 

speed, and it showcases how the rotor operates at its maximum capacity to harness the wind energy. 
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However, as the wind speed declines to 8 m/s, the rotor speed adjusts accordingly to approximately 

0.6 pu. Finally, when the wind speed increases from 8 to 10 m/s, the rotor speed also increases and 

reaches almost 0.82 pu. The plot highlights the actual and the theoretical maximum power values 

of the rotor speed in blue and dotted red lines, respectively.  

 
Fig. 4.5: Theoretical and actual rotor speed in step-changed wind speed. 

 
 

Moreover, the provided information in Fig. 4.6, portrays a comparison between the actual 

power output of a wind energy conversion system and its theoretical maximum power output. 

Evidently, after almost one complete wind pattern cycle, the controller effectively tracks the 

maximum power point and operates in close proximity to the optimal operating point. For example, 

initially when the agents are completely naive, in 12 m/s rated wind speed from 0 to 50 s, the 

optimal power is 1 pu, while the actual power is averagely around 0.77 pu. However, with the 

same wind speed from 300 to 350 s, the actual power is matched with the optimal value at 1 pu, 

which demonstrates the trained agents’ ability to track the MPP, accurately. 
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Fig. 4.6: Theoretical and actual power for step-change wind speed scenario. 

 

Table 4.4 also presents subset of action values, as well as the related actions, revealing the 

presence of three distinct MPPs situated within states (0.6, 0.325), (0.82, 0.735), and (1.0, 0.985). 

Apart from these values, proposed method maximizes the extracted power by increasing or 

decreasing the rotor speed according to the acquired optimal policy by the agents. The successive 

actions then make the rotor speed reach one of the above-mentioned values. These findings serve 

as robust confirmation that the agent effectively assimilates knowledge and learns from its 

experiential interactions within the system. 
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Table 4.4: States and Actions for Some Values from Q-Table in Step-Change Wind Speed  

 

States Action 
𝜔𝑟 (pu) 𝑃𝑒 (pu) Inc/Dec/Stay 

0.58 0.325 Inc 

0.60 0.325 Stay 

0.65 0.325 Dec 

0.81 0.735 Inc 

0.82 0.735 Stay 

0.98 0.985 Inc 

1.00 0.985 Stay 

1.01 0.985 Dec 

 

4.5.3   Variable Wind Speed Scenario 

The third scenario within the simulation study delves into variable wind speed conditions, 

representing a scenario that almost mirrors realistic environmental situations. In Fig. 4.7, a 

representation of the randomly generated variable wind pattern spanning between 7 and 12 m/s is 

depicted which is used for comprehensive assessment of the proposed MARL for 𝐶𝑝 control.  

 
Fig. 4.7: The variable wind speed pattern. 
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The outcome is demonstrated in Fig. 4.8. However, despite the MARL system's attempt to 

regulate 𝐶𝑝, based on learned experiences, the 𝐶𝑝 curve showcased in this figure exhibits 

oscillation. These changes coincide with rapid, almost large-magnitude changes in wind speed. 

But, observed oscillation in 𝐶𝑝, reveals a noteworthy trend of decreasing fluctuation amplitude, 

converged to 0.42. This intriguing pattern serves as a compelling indication of the advanced 

learning capabilities embedded within the proposed MARL framework. The diminishing 

oscillation underscores the system's adeptness in adapting and refining its strategies over time, 

reflecting a profound capacity to learn from experience. The Fig. 4.9 depicts the corresponding 

power output and as can be seen the proposed MPPT strategy is able to follow the wind pattern 

and adjust the rotor speed to extract the maximum operational power point. It is operating under 

variable wind speeds ranging from 7 to 12 m/s, in which 12 is considered as the rated wind speed 

value. In this case, the power fluctuates between 1 pu and almost 0.2 pu. 

 
 

Fig. 4.8: The 𝑪𝒑 in a 5-minute online learning in variable wind speed scenario. 
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Fig. 4.9: The extracted power from the variable wind speed. 

 

4.5.4   Comparative Study 

The quantitative and qualitative comparison among well-known MPPT algorithms is also 

provided in Table 4.5, and it should be noted that the same wind pattern generated has been used 

for all the methods.  

The tip speed ratio method requires prior knowledge of the wind turbine's characteristics to 

maintain the optimal tip speed ratio. This method does not involve online learning, which 

simplifies its implementation but limits its adaptability to changing wind conditions. TSR also 

requires additional sensors to measure wind speed accurately, increasing the system's complexity 

and cost. Despite these requirements, TSR achieves an average output power of 0.481 pu, a 

computational time of 3.10 ms, and a memory requirement of 1.034 kB. The need for precise wind 

speed measurements and additional sensors can be seen as a drawback. 

The optimal rotor blade method also necessitates prior knowledge of the wind turbine's 

characteristics but does not require online learning or additional sensors. This simplicity makes 

ORB easy to implement and cost-effective. However, its average output power is the least among 

all the methods at 0.459 pu, with a computational time of 2.21 ms and a memory requirement of 
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1.279 kB. While ORB is less efficient, its lower complexity and sensor requirements make it a 

practical choice for simpler applications. 

The P&O method stands out for not requiring prior knowledge or additional sensors, making 

it highly adaptable and easy to implement. P&O does not involve online learning, which reduces 

its complexity while maintaining a high average output power of 0.496 pu. The computational 

time for P&O is 2.84 ms, with a memory requirement of 1.488 kB. P&O's balance of high 

efficiency and moderate computational demands makes it a popular choice in various applications, 

although it can experience oscillations around the maximum power point. 

The proposed MARL method combines advanced learning algorithms and control strategies 

to optimize MPPT performance. It does not require prior knowledge or additional sensors but 

leverages online learning to enhance adaptability. The proposed MARL method achieves the 

highest average output power of 0.511 pu, demonstrating superior efficiency and energy yield. Its 

computational time is 2.67 ms, and the memory requirement is 1.640 kB. Despite its higher 

complexity and memory requirements, the proposed MARL method offers significant benefits in 

terms of efficiency and adaptability, making it the most effective choice for maximizing energy 

capture in modern WECS. 

According to the table, the proposed method includes the complexity introduced by inter-

agent dependencies in MARL, as well as the parallelly-run meta-learning to tune the DF, leading 

to increased computational time and computational memory. Despite these limitations, the meta-

learned DF and the use of multi-agent structure increase the MPPT efficiency, as reflected in the 

average output power, which surpasses that of the TSR, ORB, P&O methods. 
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Table 4.5: Comparative Study for Several MPPT Approaches 

Strategies 
Prior 

knowledge 
requirement 

Online 
learning 

Additional 
sensors 

Average 
output power 

(pu) 

Computational 
time (ms) 

Memory 
requirement 

(kB) 

TSR Yes No Yes 0.481 3.10 1.034 

ORB Yes No No 0.459 2.21 1.279 

P&O No No No 0.496 2.84 1.488 
Proposed 
MARL No Yes No 0.511 2.67 1.640 

 
 
 

The power extracted from the wind by the aforementioned MPPT methods is also depicted in 

Fig. 4.10, which serves to validate the results and discussion presented in the table. The figure 

illustrates the performance of each method, showing the varying efficiency and energy yield 

corresponding to each strategy. These visual representations in this figure corroborate the 

quantitative and qualitative analyses in the table, underscoring the superior performance of the 

proposed MARL method in maximizing energy capture in WECS. 

P&O TSR
ORB

Proposed MARL

 
Fig. 4.10: The extracted power from the wind by four different MPPT methods. 
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To demonstrate the superior performance of the proposed MARL with meta-learnt DF in 

terms of cumulative rewards, three other scenarios are compared in the same variable wind speed 

condition which was considered in previous scenario; RL with a fixed discount factor, RL with a 

meta-learned DF, and a proposed MARL with a meta-learned DF. The results, presented in Fig. 

4.11, reveal that RL with a fixed DF initially performs similarly to single-agent RL with a meta-

learned DF but declines after 150 episodes. In contrast, MARL with a meta-learned DF, despite 

starting with lower cumulative rewards due to initial collaboration challenges, outperforms the 

others after around 400 episodes. At the end of the 1000th episode, the cumulative rewards for the 

mentioned scenarios converged to almost 440, 515, and 580, respectively. This improvement is 

aligned with tracking speed and precision and also learning capabilities of the MARL strategy, 

employed with meta-learnt DF, suggesting its potential for long-term performance. 

 
Fig. 4.11: cumulative rewards in 1000 episodes for different RL approaches. 
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4.6   Experimental Results 
In this section, the implementation of the proposed controller is detailed, demonstrating its 

application in a direct-drive PMSG-based WECS. The schematic representation of the 

experimental setup is illustrated in Fig. 4.12. To emulate the dynamics of a wind turbine directly 

powering the PMSG, a DC motor, facilitated by a DC drive, is employed. The power generated by 

the PMSG is then channeled back to the DC source via a three-phase 2-Level voltage source 

converter. It should be mentioned that due to the lack of NPC power converter module in the lab, 

the 2-level voltage source converter in a BTB configuration has been used. The implementation of 

the proposed MARL control algorithms equipped with meta-learnt discount factor takes place on 

a DSP DSPTMS320F28335 real-time control board. In the experimental setup, the training process 

of the proposed multi-agent reinforcement learning algorithm is conducted on a computer, 

specifically utilizing MATLAB installed on a laptop. This process involves iteratively learning the 

optimal control policy through interactions of agents with the environment. Tasks such as defining 

the reinforcement learning problem, selecting appropriate algorithms, executing the training loop, 

and so forth are all performed on the computer. Once the training process is completed, the trained 

model, which encapsulates the learned control policy, is stored on the computer. During operation, 

the trained model is used to make real-time control decisions based on the current state of the 

system. The control processes, including the application of the learned control policy to the system, 

are implemented on a DSP board. This board receives inputs from sensors, executes the control 

algorithm based on the trained model for MPPT, and generates outputs to adjust the operation of 

the wind turbine, optimally. It should be mentioned that the laptop configuration is; 13th 

Generation Intel® Core™ i7-13700H Processor (E-cores up to 3.70 GHz P-cores up to 5.00 GHz), 

with the GPU of 8GB GDDR6. 
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Fig. 4.12: Experimental schematic of the emulated WECS. 

 
 

 The arrangement of the experimental setup is depicted in Fig. 4.13, containing labeled 

equipment. For detailed specifications regarding the PMSG parameters, and the WECS model the 

Table 4.6 and Table 4.7 have been provided.  

Laptop

PMSG

DC 
Source

Oscilloscope

DSP

Power 
Converter

 
Fig. 4.13: Experimental set-up. 
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Table 4.6: Implemented WECS Parameters 

Parameters Values 

Rated BTB converter apparent power 1.2 kVA 

Machine side output DC voltage 120 V 

Reference dc-link voltage 60 V 

dc-link capacitor (each) 200 𝜇F 

dc-link resistor 1 Ω 

Switching frequency 1 KHz 

Grid frequency 60 Hz 

Grid side line-line voltage 180 V 

Active power delivered to the grid 1 kW 
 

Table 4.7: Implemented PMSG Parameters 

Parameters Values 

Rated wind power 1000 W 

Moment of inertia 0.0006J Kg.m2 

EMF constant 11.5 V/krpm 

d-axis inductance 0.375 mH 

q-axis inductance 0.434 mH 

Stator resistance 0.706 ohm 

Air gap flux density 0.00041 Tesla 

Air gap 2 mm 

Number of pair poles 4 
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In the MPPT simulation, a switching frequency of 2000 Hz was used, while a switching 

frequency of 1000 Hz is chosen for the actual implementation. This discrepancy is primarily due 

to practical considerations related to IGBT operation, thermal management, and electromagnetic 

interference (EMI). Higher switching frequencies, such as 2000 Hz, can enhance control precision 

and system responsiveness in simulations. However, in practical implementations, particularly 

with IGBTs, higher frequencies can lead to increased switching losses and elevated heat 

generation. This requires more effective cooling solutions and can impact overall system 

efficiency. Furthermore, higher switching frequencies tend to generate more high-frequency noise, 

which can exacerbate EMI issues. Excessive EMI can interfere with nearby electronic devices and 

communication systems, posing compliance challenges with electromagnetic compatibility (EMC) 

standards. Using a lower switching frequency of 1000 Hz in the implementation helps mitigate 

these issues. This frequency strikes a practical balance between performance and thermal 

management, reducing switching losses and heat generation. Additionally, it helps minimize EMI, 

ensuring that the system operates within safe thermal limits and complies with EMC regulations. 

As 1000 Hz is a commonly used value in IGBT applications, it aligns with industry standards, 

optimizing both system reliability and performance. 

Three distinct scenarios are systematically employed to assess the effectiveness of the 

proposed MARL method for MPPT applications. In the first scenario, the system's response to a 

step change in wind speed is thoroughly examined. The second scenario delve into the performance 

of the MARL approach when faced with variable wind speeds, and finally, the third scenario 

involve a comparative analysis between the proposed MARL-based MPPT method and the 

conventional P&O method.  

 

4.6.1   Step-Changed Wind Speed Scenario 

To validate the learning capability of the agents, a wind speed profile featuring step changes 

alternating between 8 and 10 m/s every 50 seconds is employed (Fig. 4.14(a)). The outcome for 

the implemented power coefficient is depicted in Fig. 4.14(b). Initially, the agent exhibits a short 

term "naive" state, resulting in a decrease in 𝐶𝑝 due to incorrect exploration. This motif as well as 

the fluctuation in 𝐶𝑝 amplitude, up to 3% is attributed to a misguided exploration direction, 
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specially at the time of wind speed step change like 50 s, 100 s, 150 s, and so on. Nevertheless, the 

agent demonstrates its capacity to adjust its actions, ultimately moving in the correct direction 

illustrated by decreasing the drop value at almost each wind speed step-change. This underscores 

the agent's ability to learn from erroneous experiences, showcasing its adaptive learning 

capabilities. It can be proven by almost omitting the 𝐶𝑝 drop from 250 s.  

 
(a) 

 
(b) 

Fig. 4.14: Step-changed implemented scenario. (a) step-changed wind pattern, (b) 𝑪𝒑 in a 5-minute online 

learning in step-changed wind speed scenario. 
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4.6.2   Variable Wind speed Scenario 

The wind pattern, and the corresponding power output are graphically illustrated in the 

subsequent Fig. 4.15(a) and Fig. 4.15(b), providing a comprehensive analysis of the system's 

response to variable wind speeds. The theoretical power as well as the actual power gained by the 

proposed method are depicted at the same graph to show how successfully the algorithm can follow 

MPP. Moreover, Fig. 4.15(c) is provided to validate the performance of the proposed method by 

comparing with the same system simulation output. The alignment between the implemented and 

simulated output power further attests to effectiveness of the proposed approach in accurately 

tracking maximum power point. According to the findings, the average powers for the 

implemented and simulated system are 0.58 pu, and 0.61 pu, respectively. Although, the slight 

discrepancy can be justified by different initialized condition measurement accuracy, losses and 

environment condition.  

 
(a) 

 



155 
 

(b) 

 
(c) 

Fig. 4.15: The variable wind speed scenario. (a) wind speed profile, (b) electrical power and actual wind power 

captured by implemented proposed MARL method, (c) wind power captured by simulated system. 

 
 

The Fig. 4.16 also depicts the variation in implemented 𝐶𝑝 throughout the learning process. 

Notably, fluctuations in 𝐶𝑝 are observed, attributed to the variable wind patterns. However, as the 

learning process approaches completion, a discernible trend emerges— the variability in 𝐶𝑝 

diminishes. This reduction in fluctuation suggests that agents, adapting to the complexities of 

varying wind patterns, achieve a more stabilized and optimized performance over time. 

 
Fig. 4.16: The 𝑪𝒑 in a 5-minute online learning in variable wind speed scenario. 
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4.6.3   Comparative Study 

In the final scenario, an additional variable wind pattern (Fig. 4.17(a)) is taken into account, 

and the resulting power outputs from both the proposed method and the conventional P&O based 

MPPT approach are presented (Fig. 4.17(b)). The comparative analysis depicted in the figure 

indicates that the proposed method excels in extracting more power (averagely 0.629 pu) and 

operates more optimally in comparison to the general P&O approach (averagely 0.616 pu) for the 

entire 500 s time period. Moreover, the proposed method omits the wind speed sensor required in 

conventional P&O method, as well as the complicated offline system modeling.  

 
(a) 

 
(b) 

Fig. 4.17: Comparative study between the proposed MARL and general P&O methods. (a) wind speed profile, 

(b) actual wind power by both methods. 

 



157 
 

In another scenario, a step change in wind speed from 6 to 8 m/s is considered to analyze the 

response rate to the rotor speed change for both the proposed method and the traditional P&O 

method to follow the maximum power point. This analysis focuses on the rate of change in rotor 

speed following the wind speed step change, with the results plotted for both methods. According 

to the plotted Fi. 4.18, both methods eventually converged to a rate of change of approximately 

0.2. However, the proposed method demonstrated a faster response, reaching 5% of the 

convergence value within 34 ms. In contrast, the traditional P&O method took slightly longer, 

achieving the same 5% convergence threshold at 46 ms. This marginal yet crucial difference 

highlights the superior responsiveness and efficiency of the proposed method in adapting to 

changes in wind speed, ensuring quicker stabilization and optimal performance of the wind turbine 

system. 

 

Fig. 4.18: Comparative study between the proposed MARL and general P&O methods in terms of rotor speed 

reaction to the wind speed change. 

 

4.7   Conclusion 
Wind energy conversion systems employing conventional MPPT methods often encounter 

challenges such as sluggish tracking speeds, imprecise adjustments, and sensitivity to wind speed 
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fluctuations. This study introduced a novel approach using multi-agent reinforcement learning 

MARL to overcome these limitations in variable wind speed PMSG-based WECS. In comparison 

to traditional methods, the proposed MARL strategy enhanced energy output and the system's 

ability to swiftly adapt to changes in wind speed. Furthermore, due to its decentralized nature, the 

approach involved multiple agents collaborating to maximize power generation, ensuring superior 

precision and enhanced interaction capabilities compared to single-agent RL methods. 

Additionally, by incorporating a meta-learned discount factor, the MARL algorithm was further 

refined in terms of learning efficiency and convergence speed, resulting in a more robust solution. 

Comprehensive simulation results were presented to evaluate the performance of the proposed 

MARL approach, demonstrating its potential applicability. Moreover, a prototype was also 

implemented to validate the effectiveness of the proposed algorithm in real-world wind MPPT 

scenarios.  
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Chapter 5 

Robust, Optimal, and Environment-Friendly Power 

Management Scheme for Renewable Energy systems 
 

5.1   Introduction 
This chapter recommends utilizing recurrent neural networks and reinforcement learning-

based approaches to address the challenges in power prediction for renewable energy resources, 

micro-grid (MG) power management, and energy scheduling. The proposed MG includes 

combined cooling, heating, and power (CCHP), wind turbines, photovoltaic systems, and battery 

energy storage systems (BESS). To accurately estimate the 24-hour generation of renewable 

resources, a multi-layer recurrent neural network (MLRNN) model is developed and trained using 

historical wind and solar data. The model's hyperparameters are optimized through a grid-search 

algorithm. This approach offers several advantages over traditional methods. MLRNNs provide 

higher accuracy in forecasting due to their ability to capture complex temporal dependencies and 

patterns in the data. They can effectively extract non-linear mapping functions from labeled data, 

which is essential for modeling the intricate relationships between different variables in renewable 

energy systems. Additionally, the MLRNN model can be easily scaled and adapted to incorporate 

additional data sources or extended time horizons, enhancing its versatility and applicability. 

MLRNNs are also more robust to noisy data compared to conventional linear models, ensuring 

more reliable predictions under varying conditions. 

The forecasted values are then employed in the subsequent study phase to achieve optimal 

power management within the MG's generation units. A model-free, multi-agent reinforcement 

learning approach mainly proposed in chapter 2 is employed to minimize the multi-objective fuel 

and CO2 emission cost function, ensuring a robust and environmentally friendly MG. This solution 

offers distinct advantages. MARL agents can adapt to changing environments and operational 

conditions, providing more flexible and responsive power management. Unlike centralized 

approaches, proposed MARL allows for decentralized control, reducing the computational burden 

and improving response quality. By employing multiple agents, the MARL method enhances 

coordination among various MG components, leading to more efficient and balanced power 
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distribution amongst the renewable energy resources, and the micro-turbine power generators. 

MARL outperforms single-agent methods by effectively finding optimal operating power points 

in complex and dynamic environments, ensuring better performance and resource utilization. 

Moreover, the optimal number of agents are also defined to improve the strategy, as well. 

According to the findings, the proposed MARL method effectively dispatches power generation 

among renewable resources and the MT in the CCHP system, while reducing fuel and CO2 

emission costs. It also manages the BESS efficiently to support MG operations, demonstrating its 

capability to maintain optimal performance while supporting the MG. 

 
 

5.2   Literature Review 
Several countries around the world are bringing carbon (CO2) emission and energy yield 

regulations into place to diminish the greenhouse gas emissions and augment the energy efficiency 

[131]. As a result, deployment of distributed generation (DG) systems, which primarily use 

renewable energy-based sources, is rapidly rising to meet the prescribed prospect. Infrastructures 

and system enlargement will be then required, alongside investments in storage technology, and 

power generation management. Integrating the DGs into the insightful micro-grids (MGs) concept 

plays a vital role in supplying safe, balanced and eco-friendly operations of the power system 

[132], [133]. MGs embrace a range of DG blocks, including wind turbine (WT), photovoltaic (PV), 

battery energy storage system (BESS), and so forth. Although, an energy management strategy 

(EMS) is necessary for a MG to operate in grid-connected and stand-alone scenarios to properly 

adapt the energy, supplied and exported from and to the main power network [1314]. EMS is 

frequently described as a nonlinear optimization issue. Numerous approaches, such as quadratic 

and mixed integer programming, particle swarm optimization, and genetic algorithm, have been 

suggested in studies to tackle the EMS problems with different objective functions [135]-[137]. 

Nevertheless, since the renewable energy sources and loads are unpredictable in real world 

problems, the mentioned methods rely on the day-ahead forecast's accuracy, and this has negative 

impact on how the system operates with these algorithms, in real time [138]. To solve the 

shortcomings, an alternative EMS solutions are available, depending on the Markov decision 

process (MDP). Reference [139], derived a near-optimal EMS for an MG, using a finite MDP-
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based supplemented by deep neural network learning. The approach, meanwhile, required high 

calculation volume and complex system modeling.  

Stochastic optimization (SO) based EMS is an option, as well. A finite collection of alternative 

situations is used by SO to explore the search area and makes decisions derived from empirical 

average of such possibilities. To reduce the real-time electricity cost, a SO-based EMS strategy for 

stand-alone grids was reported in [140]. With the same objective function, a real-time SO for EMS 

in domestic system contains WT, PV, and energy storage systems was suggested in [141]. But 

inherently, the SO is an iterative problem-solving approach, and in some cases the convergence 

cannot be assured Also, implementation in real-world situations may not always be feasible [142]. 

Model predictive control is another comprehensive approach that makes it through an explicit 

concept to forecast how the structure will respond in the upcoming and adapt the control plan over 

time. MPC has a proven track record of offering real-time solutions for multi-variable operations 

that are delayed and chaotic [143]. To reduce operating costs and carbon dioxide emission, an 

MPC-based EMS in an MG was provided in [144]. Reference [145], on the other hand, employed 

MPC-based solution to lessen the negative consequences of unforeseen renewable energy units’ 

outputs, in an islanded MG. Conversely, MPC suffers from sophisticated calculation, high 

maintenance cost and lack of flexibility. 

Power management improvement is also being treated by gravitational search algorithm 

[146], and artificial bee colony search algorithm [147]. Although, for the highest fitness 

fulfillment, these algorithms have complicated parameter calculations, restrictions, coding 

challenges, and formulations. Furthermore, the adaptive neuro-fuzzy inference system and fuzzy-

logic controller are the other practical choices that of course still have drawbacks in power 

management problems, according to the literature [148]. In order to achieve consistent and 

refinement resolution, artificial intelligence (AI) based approaches like artificial neural network 

(ANN) and reinforcement learning (RL) based optimization approaches are getting attractive 

choices in recent years. RL, on the other hand, has achieved superior performance in optimizing 

agent in power systems’ problems, like deriving a daily consumption plan to charge the electric 

vehicle fleet [149], or optimizing the profit function for electricity suppliers. RL can also be 

leveraged in strategic bidding for load-shedding in an MG [150]. As the other application, RL was 

used to strategically schedule batteries in order to reduce energy costs for customers in [151], or 
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reduce the estimated costs for both customer and a service provider in an MG, in [152]. Besides, 

an energy management problem of a MG was framed in [153] to minimize operational costs. This 

was achieved using RL to develop a real-time scheduling plan, taking into account the uncertainty 

of the load. Also, the RL was utilized to capture uncertainty in [154] without external prediction 

mechanism or probability distribution for controlling a residential multi-energy system.  

However, RL-based power management strategies are still in their infancy and to the best of 

authors’ knowledge, less research has been conducted in this field, and require further efforts to 

address the gaps. Hence, this research addresses the challenges in renewable energy resources 

output power prediction, and energy management in MGs, in two phases. The proposed MG 

incorporates WT, PV, and a BESS, adding complexity with numerous variables and constraints. 

Additionally, a combined cooling, heating, and power system is included (Fig. 5.1). Proposed 

MLRNN model is trained on historical wind and solar data to accurately predict day-ahead 

renewable energy outputs, in the first phase of study. This approach offers advantages, including 

improved accuracy in capturing non-linear relationships between variables and output power 

labeled datasets. The model's hyperparameters are optimized using a grid-search algorithm, 

resulting in superior prediction accuracy, compared to the trial-and-error strategy. The micro-grid 

then employs proposed model-free, MARL approach in the second phase to optimize power flow 

and energy scheduling, considering the predicted renewable energy output. The objective is to 

minimize fuel costs and CO2 emission cost, making the MG robust and environmentally friendly. 

The recommended MARL demonstrates significant exploration capabilities, achieving near-

optimal cost function values. By distributing tasks among multiple agents, the MARL approach 

outperforms single-agent reinforcement learning in finding optimal operating points in a complex 

environment. Furthermore, by determining the optimal number of agents, this method effectively 

balances computational load and memory usage, ensuring efficient operation without 

compromising performance. Additionally, the MARL strategy provides a comprehensive 

evaluation through cost function values, cumulative rewards, and convergence speed, 

demonstrating superior performance in these metrics. The outcomes in a more robust and scalable 

solution, capable of handling complex power management scenarios with enhanced precision and 

reliability compared to single-agent RL and conventional approaches. Comprehensive MATLAB 

simulations validate the method's potential for real-world application, by conducting comparative 

analysis, as well as the BESS scheduling within the MG. 
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Fig. 5.1: Proposed MG configuration [155]. 

 

5.3   Proposed Solution 
The proposed solution comprises two distinct phases. In power prediction phase, historical 

weather patterns data, acquired by the software supported by NREL called system advisor model 

(SAM), is used to predict the output power of renewable resources within the MG, accurately. 

Building upon the predictions, subsequent power management phase involves dynamic load 
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balancing and power sharing among the generation units aimed at minimizing fuel and CO2 

emission costs. This two-phase approach ensures efficient utilization of renewable resources while 

maintaining grid stability and reliability. As the world move toward a sustainable energy future, 

robust power management strategies play a pivotal role in achieving the goals. The phases are 

detailed, as follows. 

 

5.3.1   Phase One-MLRNN for WT and PV Power Prediction 

A recurrent neural network (RNN) is designed for sequential data processing, making it 

particularly effective for time series prediction problem. RNNs utilize their internal state to process 

sequences of inputs, allowing them to capture temporal dependencies. However, traditional RNNs 

suffer from significant shortcomings, including the vanishing gradient problem, which hinders the 

network's ability to learn long-term dependencies, and difficulties in training due to their inherently 

sequential nature. To address these issues, here, a multi-layer RNNs, also known as deep RNNs, 

is introduced to foresee short-term WT, PV output power generations, in order to accurately adapt 

to the changing weather patterns. These networks stack multiple RNN layers, enabling them to 

capture more complex patterns and hierarchies in the data. The strength of MLRNNs lies in their 

enhanced capability to model intricate temporal dynamics and long-range dependencies, leading 

to more accurate and robust predictions in various applications. 

The configuration of the model for one layer is demonstrated in Fig. 5.2. The backpropagation 

procedure through the time is also shown in this figure. It involves computing the gradient of the 

loss function with respect to each weight by the chain rule, iteratively adjusting the weights to 

minimize the loss. According to the figure, the hidden state of ℎ𝑡 can be attained as follows. Where, 

the input at the time of 𝑡 is shown by 𝑥𝑡, the recurrent hidden state at the time of 𝑡 − 1 is 

represented by ℎ𝑡−1. The 𝜎 is the activation function, and the 𝑉 and 𝑊 are the weight matrices 

which should be initialized. It is worth mentioning that the bias vector 𝑏ℎ is concatenated to the 

mentioned matrices. 

 

ℎ𝑡 = 𝜎(𝑉𝑥𝑡 +𝑊ℎ𝑡−1)                                                                                                                                          (5.1) 

 



165 
 

Then the output can be achieved by: 

 
𝑦𝑡 = 𝑉ℎ𝑡                                                                                                                                                                     (5.2) 

t-1 t t+1

x t-1 x t x t+1

yt-1 yt yt+1

V

W

 
Fig. 5.2: The configuration of the MLRNN for one layer. 

 
In a MLRNN, the hidden states are updated across multiple layers 𝐿. For layer 𝑙 at time step 

𝑡, the hidden state ℎ𝑡
(𝑙) and the 𝑦𝑡 are computed as follows: 

 
ℎ𝑡
(𝑙)
= 𝜎(𝑉(𝑙)𝑥𝑡

(𝑙−1)
+𝑊(𝑙)ℎ𝑡−1

(𝑙)
)                                                                                                                                (5.3) 

 

𝑦𝑡 = 𝑉
(𝑙)ℎ𝑡

(𝑙)
                                                                                                                                                         (5.4) 

 
 Normalized root mean square error (nRMSE) is used regarding assess the effectiveness of 

the forecast, known as the loss function 𝐿. In (5.5), the predicted and actual values of the power 

are shown by 𝑃𝑝𝑟𝑒𝑑 and 𝑃𝑎𝑐𝑡, within 24-hour period.  

 

𝐿 = √
1

24
∑ (𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑎𝑐𝑡)

224
𝑡=1                                                                                                                               (5.5) 
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The backpropagation involves computing the gradients of the loss function 𝐿 with respect to 

the weights at each layer. For a given loss 𝐿 at time step 𝑡: 

 
𝜕𝐿

𝜕𝑊(𝑙) = ∑
𝜕𝐿

𝜕ℎ𝑡
(𝑙)

24
𝑡=1

𝜕ℎ𝑡
(𝑙)

𝜕𝑊(𝑙)                                                                                                                                          (5.6) 

 

Where 𝜕ℎ𝑡
(𝑙)

𝜕𝑊(𝑙) includes the dependencies from previous time steps and layers. Afterwards, an 

optimizer is required to update the weights which results in reducing overall losses and enhances 

the model accuracy. Stochastic gradient descent is suggested as the optimizer for the purpose 

[156]. 

According to the proposed model, there are two hyper parameters; number of layers in 

MLRNN and step size (learning rate) of the SGD. The traditional methods like Bayesian or trial 

and error methods result in the non-optimal selection of these hyperparameters. Hence, in this 

study, a grid-search method is proposed for the hyperparameters tuning. So, 10% of the samples 

are randomly selected as the validation dataset, and the model is run through the parameters’ grid. 

Afterwards, the combination of the hyperparameters which results in the best performance will be 

obtained, and then will be used in training and testing process.  

After highly-accurate prediction of the uncertain renewable resources, optimal power 

management should be conducted to minimize the defined multi-objective cost function. The 

subject is covered in second phase of study. 

 

5.3.2   Phase Two-MARL for Power Management Scheme 

The proposed method has already been developed in Chapter 2. In this chapter, it is focused 

on customizing it for power management problem-solving, specifically by defining the state, 

actions, and reward function as the three fundamental factors in RL-based problem. This 

customization is crucial to tailor the general approach outlined in Chapter 2 to address the unique 

challenges and requirements of power management. By precisely defining the state variables, 

possible actions, and the reward function, it can effectively implement and optimize the method 

for this specific problem domain. 
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For the state space, the output powers of the BESS, MT, WT, and PV systems, as well as the 

time of day, h(t) are opted. These selections are made, because the output powers are critical 

indicators of the energy supply available from different sources at any given time, which directly 

influences power management decisions, and the BESS is a must for supporting the grid in times 

of power generation shortage. Including these as state variables ensures that the model can 

accurately capture the dynamic nature of the power supply and adjust strategies accordingly. 

Second, the h(t), is a vital component in the state space because energy generation and 

consumption patterns vary significantly throughout the day. So, the state space is defined as: 

 

𝑠𝑡 = {𝑃𝑃𝑉 , 𝑃𝑃𝑉 , 𝑃𝑀𝑇 , 𝑃𝐵𝐸𝑆𝑆, ℎ(𝑡)}, 𝑠𝑡 ∈ 𝑆                                                                                                         (5.12) 

 
Based on the state space, the agent can issue decision commands for the generation units and 

BESS at each dispatching interval. The action space is divided into three distinct sets: "idle", which 

means maintaining the current value; "increase", used to increase power generation or charge the 

BESS; and "decrease", used to decrease power generation or discharge the BESS. 

The reward function serves as a pivotal feedback mechanism, providing the agent with 

insights into the effectiveness of its actions. This feedback loop is crucial for the agent to glean 

lessons from its prior experiences and refine its decision-making capabilities over time [157]. A 

meticulously crafted reward function is imperative, as it enables the agent to discern how best to 

optimize the actions toward the overarching objectives of cost minimization and efficient power 

management within the microgrid. The reward function is defined as follows: 

 

𝑅𝑡+1 = {

+1             𝑤ℎ𝑒𝑛 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡+1 > 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡
0                𝑤ℎ𝑒𝑛 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡+1 = 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡
−1             𝑤ℎ𝑒𝑛 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡+1 < 𝐶𝐹𝑡𝑜𝑡𝑎𝑙,𝑡

                                                                                       (5.13) 

 
The proposed strategy entails an initial focus on defining the output power of renewable 

energy resources, followed by the power management solution based on the proposed MARL 

framework. However, to effectively implement this strategy, it is necessary to model the microgrid, 

including its constraints and operational parameters, provided in next section.  
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5.4   MG Modeling and Problem Formulation 
Power management in an MG can be accomplished by making sure that power supply and 

demand are always balanced. This can be quantitatively represented by the following equality 

equation for the system illustrated in Fig. 5.1. Here, the electric chiller (EC) power is shown by  

𝑃𝐸𝐶 , 𝐷𝑒𝑙𝑒𝑐 is the electrical demand, 𝑄𝑏𝑜𝑖𝑙𝑒𝑟 and 𝑄𝐴𝐶  represent the boiler and absorption chiller 

capacity, respectively. 𝐻𝑀𝑇 is the recovered heat from MT, and 𝑄ℎ𝑢 considered as fed power to 

the heating unit.   

 

𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝑀𝑇(𝑡) + 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑑𝑐ℎ(𝑡) − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑐ℎ(𝑡) − 𝑃𝐸𝐶(𝑡) = 𝐷𝑒𝑙𝑒𝑐(𝑡)                         (5.14) 

 

𝑄𝑏𝑜𝑖𝑙𝑒𝑟 − 𝑄𝐴𝐶 +𝐻𝑀𝑇 = 𝑄ℎ𝑢                                                                                                                                                         (5.15) 

 

𝑄𝐴𝐶 . 𝐶𝑂𝑃𝐴𝐶 + 𝑃𝐸𝐶 . 𝐶𝑂𝑃𝐸𝐶 = 𝐷𝑐𝑜𝑜𝑙𝑖𝑛𝑔                                                                                                            (5.16) 

 

𝑄ℎ𝑢. 𝜂ℎ𝑢 = 𝐷ℎ𝑒𝑎𝑡𝑖𝑛𝑔                                                                                                                                                            (5.17) 

 

𝑃𝑀𝑇 .
𝜂𝑡ℎ 

𝜂𝑒
= 𝐻𝑀𝑇                                                                                                                                                                (5.18) 

 

In (16), the cooling demand is illustrated by 𝐷𝑐𝑜𝑜𝑙𝑖𝑛𝑔 and, 𝐶𝑂𝑃𝐴𝐶  and 𝐶𝑂𝑃𝐸𝐶  stand for 

performance coefficients of absorption chiller (AC) and electric chiller. In (5. 17), and (5.18) the 

𝜂ℎ𝑢 is the MT thermal efficiency, 𝜂𝑒 is the MT electrical efficiency, and 𝜂ℎ𝑢 presents the heating 

unit efficiency. 

Then, the overall cost of generating and supplying energy is expressed mathematically by the 

cost function (𝐶𝐹) in power management problems. By adopting suitable methodology, the 

optimal solution would be acquired aiming to reduce the cost function. Considering that CO2 

emissions, which have enormous negative effects on the environment and the economy, is a 
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significant challenge. A comprehensive and robust approach to combat climate change and 

establish sustainable and cost-effective energy systems must include minimizing CO2 emission 

costs, as well. Hence, in this work, a cost function is established considering both costs of fuel, 

and CO2 emission. The first objective function demonstrated in (19) depends on natural gas 

consumption by MT and the boiler (𝐹𝑀𝑇, and 𝐹𝑏𝑜𝑖𝑙𝑒𝑟). And the 𝐶𝑁𝐺 demonstrates the natural gas 

price per 𝑚3. It should be noted that the PV and WT are considered as free energy resources.  

Second cost function related to the CO2 emission from burning natural gas is provided in (5.22). 

 

𝐶𝐹1 = ∑ (𝐹𝑀𝑇(𝑡) + 𝐹𝑏𝑜𝑖𝑙𝑒𝑟(𝑡)). 𝐶𝑁𝐺
24
𝑡=1                                                                                                            (5.19) 

 
Where: 

 
𝐹𝑀𝑇(𝑡) =

𝑃𝑀𝑇(𝑡)

𝜂𝑒
𝛽                                                                                                                                                               (5.20) 

 

𝐹𝑏𝑜𝑖𝑙𝑒𝑟(𝑡) =
𝑄𝑏𝑜𝑖𝑙𝑒𝑟(𝑡)

𝜂𝑏
𝛽                                                                                                                                                         (5.21) 

 

𝐶𝐹2 = ∑ (𝐹𝑀𝑇(𝑡) + 𝐹𝑏𝑜𝑖𝑙𝑒𝑟(𝑡)). 𝜇𝐶𝑂2
24
𝑡=1 × 𝜌𝐶𝑂2                                                                                                      (5.22) 

 

In these equations, 𝛽 is the conversion factor of the natural gas, and 𝜂𝑏 is boiler efficiency. 

And 𝜇𝐶𝑂2 is the emission conversion factor, and 𝜌𝐶𝑂2 is the penalty cost of the emission in $/kg. 

Finally, the total cost function that are aimed to be minimized, would be: 

 

𝐶𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐹1 + 𝐶𝐹2                                                                                                                                                               (5.23) 

 

The penalty factor for MG power management in the presence of wind turbines and 

photovoltaic systems needs to closely mirror real-world conditions to ensure the developed model's 

practicality and effectiveness. This requirement arises from the inherent variability and 

intermittency of renewable energy sources like WT and PV, which significantly impact the 



170 
 

stability and reliability of power management in a real-world setting. By incorporating a penalty 

factor that accurately reflects these challenges, the model can better simulate the operational 

constraints and economic impacts faced by actual power systems. This factor will be integrated 

into the cost function, ensuring that the optimization process accounts for the additional costs and 

operational considerations associated with integrating renewable energy sources. The cost function 

will thus include terms that represent the penalty for deviations from optimal power management, 

capturing the costs associated with under- or over-utilization of WT and PV systems, and ensuring 

that the solution is robust, efficient, and reflective of real-world dynamics. This equation illustrates 

the definition of the penalties, expressed through the symbols 𝜌𝑊𝑇 and 𝜌𝑃𝑉, which are the fees 

times the disparity among the calculated and expected generation. 

 

𝐶𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ {(𝐹𝑀𝑇(𝑡) + 𝐹𝑏𝑜𝑖𝑙𝑒𝑟(𝑡)). 𝐶𝑁𝐺 + 𝜌𝑊𝑇 . (𝑃
𝑤𝑖𝑛𝑑,𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑃𝑤𝑖𝑛𝑑,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑(𝑡)) +24

𝑡=1

𝜌𝑃𝑉 . (𝑃
𝑃𝑉,𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑃𝑃𝑉,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑(𝑡))}                                                                                                             (5.24) 

 

To comprehensively understand the impact of the penalty factor on microgrid (MG) power 

management, both scenarios with and without the penalty factors will be considered. Analyzing 

these scenarios allows us to assess the extent to which the penalty factor influences the 

optimization process and the overall performance of the power management system. 

Optimizing the cost function in a MG may be subject to a number of restrictions and 

constraints that must be taken into account. For the CCHP, which generates heat, power, and 

cooling all simultaneously using a single power source, with the purpose of enhancing reliability 

and stability in MGs, while cutting down the prices and greenhouse gas emissions, the AC, EC, 

and the boiler must not exceed their rated capacity. So, the CCHP constraints considered as 

follows: 

 

0 ≤ 𝑄𝐴𝐶(𝑡) ≤ 𝑄𝐴𝐶𝑚𝑎𝑥(𝑡)                                                                                                                                                        (5.25) 

 

0 ≤ 𝑃𝐸𝐶(𝑡) ≤ 𝑃𝐸𝐶𝑚𝑎𝑥(𝑡)                                                                                                                                                        (5.26) 
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0 ≤ 𝑄𝑏𝑜𝑖𝑙𝑒𝑟(𝑡) ≤ 𝑄𝑏𝑜𝑖𝑙𝑒𝑟𝑚𝑎𝑥(𝑡)                                                                                                                                                    (5.27) 

 

Micro turbine in a CCHP system produces energy (𝑃𝑀𝑇) by combustion of fuel, such as natural 

gas, or propane. The steam or hot water released by the turbine's exhaust can subsequently serve 

for heating purposes or to drive an absorption chiller for cooling. For the MT, when an MT’s output 

power falls below a certain level, the efficiency drastically decreases. So: 

 

𝑃𝑀𝑇𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑀𝑇(𝑡) ≤ 𝑃𝑀𝑇𝑚𝑎𝑥(𝑡)                                                                                                                                                (5.28) 

 
On the renewable energy resources of PV and WT, the constraints are provided, as well. 

According to the (5.29) and (5.30), the PV and WT output power can be limited within zero and 

rated generation capacity of the units. 

 
0 ≤ 𝑃𝑊𝑇 ≤ 𝑃𝑊𝑇𝑚𝑎𝑥                                                                                                                                                             (5.529) 

 

0 ≤ 𝑃𝑃𝑉 ≤ 𝑃𝑃𝑉𝑚𝑎𝑥                                                                                                                                                              (5.30) 

 

 An energy storage system known as BESS in a microgrid serves to store excess energy 

(𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑐ℎ) provided by the microgrid for future consumption (𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑑𝑐ℎ). The microgrid's 

energy demand and supply are balanced in part by the BESS, which can also offer backup power 

during blackouts. The following are some restrictions to take into account when integrating BESS 

into power management in a microgrid. It should be noted 𝑋𝑐ℎ is 1 when the BESS is being 

charged, and 𝑋𝑑𝑐ℎ is 1 when the BESS is being discharged, otherwise they take the 0 value. 

 

0 ≤ 𝑃𝐵𝐸𝑆𝑆,𝑐ℎ(𝑡) ≤
𝑃𝐵𝐸𝑆𝑆,𝑐ℎ𝑚𝑎𝑥

𝜂𝑐ℎ
. 𝑋𝑐ℎ(𝑡)                                                                                                                                       (5.31) 

 

0 ≤ 𝑃𝐵𝐸𝑆𝑆,𝑑𝑐ℎ(𝑡) ≤ 𝑃𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑚𝑎𝑥 . 𝜂𝑐ℎ . 𝑋𝑑𝑐ℎ(𝑡)                                                                                              (5.32) 
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𝑋𝑐ℎ(𝑡) + 𝑋𝑑𝑐ℎ(𝑡) ≤ 1                                                                                                                                                       (5.33) 

 
The state of charge (SoC) in a BESS is a crucial factor in determining the amount of energy 

possible to be extracted from and the capacity which is still available for future usage. Monitoring 

SoC is crucial to prevent overcharging or undercharging, which can impair performance or 

possibly permanently damage the BESS [150]: 

 

𝑞𝐵𝐸𝑆𝑆(𝑡) = 𝑞𝐵𝐸𝑆𝑆(𝑡 − 1) + 𝑃𝐵𝐸𝑆𝑆,𝑐ℎ(𝑡). 𝜂𝑐ℎ −
𝑃𝐵𝐸𝑆𝑆,𝑐ℎ

𝜂𝑐ℎ
                                                                                          (5.34) 

 
In which 𝑞𝐵𝐸𝑆𝑆 is the battery energy in 𝑘𝑊ℎ. Moreover, 𝜂𝑐ℎ and 𝜂𝑑𝑐ℎ are charging and 

discharging efficiency of the battery energy storage system. 

 

𝑞𝐵𝐸𝑆𝑆𝑚𝑖𝑛 ≤ 𝑞𝐵𝐸𝑆𝑆(𝑡) ≤ 𝑞𝐵𝐸𝑆𝑆𝑚𝑎𝑥                                                                                                                                                 (5.35) 

 

∑ 𝜂𝑐ℎ . 𝑃𝐵𝐸𝑆𝑆,𝑐ℎ(𝑡)
24
𝑡=1 = ∑

𝑃𝐵𝐸𝑆𝑆,𝑑𝑐ℎ(𝑡)

𝜂𝑑𝑐ℎ

24
𝑡=1                                                                                                        (5.36) 

 
The MG, CCHP, BESS, and modeling parameters defined in the equations are detailed in 

Table 5.1.  
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Table 5.1: The Units’ Parameters [158]. 

 

Parameters Values (unit) Parameters Values (unit) 

𝑃𝑀𝑇𝑚𝑎𝑥 100 (kW) 𝜂𝑒 0.5 

𝑃𝑀𝑇𝑚𝑖𝑛 10 (kW) 𝜂𝑏 0.8 

𝑄𝑏𝑜𝑖𝑙𝑒𝑟𝑚𝑎𝑥  80 (kW) 𝛽 0.09043 (𝑚3/𝑘𝑊ℎ) 

𝑄𝐴𝐶𝑚𝑎𝑥  100 (kW) 𝐶𝑂𝑃𝐴𝐶  0.7 

𝑃𝐸𝐶𝑚𝑎𝑥 100 (kW) 𝐶𝑂𝑃𝐸𝐶 3 

𝜂ℎ𝑢 0.8 𝐶𝑁𝐺 0.157 ($/𝑚3) 

𝜂𝑡ℎ  0.3 𝜇𝐶𝑂2 × 𝜌𝐶𝑂2 0.062 ($/𝑚3) 

𝜌𝑃𝑉 0.09 ($/𝑘𝑊ℎ) 𝜌𝑊𝑇 0.1 ($/𝑘𝑊ℎ) 

𝑞𝐵𝐸𝑆𝑆𝑚𝑎𝑥 20 (kWh) 𝑃𝐵𝐸𝑆𝑆,𝑑𝑐ℎ𝑚𝑎𝑥 6 (kW) 

𝑞𝐵𝐸𝑆𝑆𝑚𝑖𝑛 6 (kWh) 𝜂𝑐ℎ  85 % 

𝑃𝐵𝐸𝑆𝑆,𝑐ℎ𝑚𝑎𝑥 6 (kW) 𝜂𝑑𝑐ℎ  98 % 

 

So far, the proposed method, along with the MG modeling, cost function definition, and 

problem constraints, have been meticulously determined. These elements establish a robust 

foundation for evaluating the performance and effectiveness of the method in managing power 

within the microgrid framework. In the next section, the proposed method will be rigorously tested 

on the suggested MG to assess its applicability and validate its potential benefits.  

 

5.5   Simulation Results 
MLRNN has been applied to forecast WT and PV output power, and the findings are 

impressively accurate. The MLRNN prediction model is trained from historical data and therefore 

can take into consideration the dynamic and nonlinear features of renewable energy resources to 

provide precise predictions of the 24-hour power output. The Northern California weather data 

from NREL software called SAM has been utilized for the training process, contains wind speed, 

wind direction, air temperature, air pressure, and humidity for WT, and solar irradiance, ambient 

temperature, panel temperature, sun position, and humidity for PV. Grid-search has been employed 

for optimal auto-tuning of the hyperparameters. In this regard, 10% of the data has been assigned 

as the validation data set for the mentioned purpose. It should be mentioned that for the grid-search, 
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the domain for two hyperparameters of number of hidden layers in MLRNN and the step size of 

the SGD are considered to be between [1, 8] and [10−3, 10], accordingly. The domains are selected 

to ensure comprehensive exploration during grid search, balancing theoretical considerations and 

empirical evidence. To have visual understanding of the grid-search, the 3-D plots, which show 

the optimal hyperparameter values to have minimized nRMSE cost function for both WT and PV 

power output predictions, based on that 10% randomly selected weather data, are presented in Fig. 

5.3. According to the fig. 5.3(a), the optimum hyperparameters of the WT output power prediction 

is calculated to be 4 hidden layers with the SGD step size of 0.03 for updating the weights. Fig. 

5.3(b) demonstrates 3 layers and step size of 0.48 as the optimized hyperparameter values for PV.  

 
(a) 

 
(b) 

Fig. 5.3: Grid-search 3-D plots for optimum hyperparameters of; (a) WT, (b) PV power prediction. 
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Based on the defined parameters the proposed model has been trained on 70% of the dataset, 

using backpropagation optimized by SGD. And 30 epochs each of which contains 20 iterations 

have been assigned for MLRNN model training. To enhance the accuracy and convergence rate, 

the data has been preprocessed and shuffled, beforehand. The outcomes illustrate the accuracies 

of 96.45% and 98.70% for WT and PV output power prediction, respectively. To have a clear 

overview of accuracy and training behavior of the model within the training in 30 epochs, Fig. 5-

4 is plotted for WT, Fig. 5.4(a) shows the accuracy and the Fig. 5.4(b) shows the nRMSE trend 

over the iterations. These characteristics are almost the same for the PV.  

 
(a) 

 
(b) 

 
Fig. 5.4: Training process of MLRNN for WT output power prediction. (a) the accuracy trend, (b) the nRMSE 

error convergence trend. 
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After successful training, the rest of the 20% data which is determined as testing data set, has 

been applied to the trained model for predicting the WT and PV output power. The results are 

provided in Fig. 5.5 and Fig. 5.6, respectively. 24 actual and corresponding prediction samples are 

demonstrated to validate the accurate performance of the proposed model on unseen test data set. 

It should be mentioned that the accuracies on test data set for WT and PV output power prediction 

are measured to be 96.06% and 98.32%, accordingly.  

 
Fig. 5.5: Predicted and actual values of the generated power from WT in 24 hours. 

 

 
Fig. 5.6: Predicted and actual values of the generated power from PV in 24 hours. 
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The summary of proposed MLRNN parameters explained above, are gathered in Table 5.2. 

Moreover, the 24-hour WT and PV output power capabilities are shown in table 5.3, and Table 

5.4, which would be used in next phase of study.  

Table 5.2: Summary of The Proposed MLRNN Parameters. 

 

WT 

RNN layers 4 

Optimizer MGD 

MGD step size 0.03 

Batch size 64 

Epochs 30 

Iteration 20 × 30 

Test accuracy 96.06% 
 

PV 

RNN layers 3 

Optimizer MGD 

MGD step size 0.48 

Batch size 128 

Epochs 30 

Iteration 20 × 30 

Test accuracy 98.32% 
 

 

 
Table 5.3: WT Predicted Output Power Capability. 

 

Hour WT (kW) Hour WT (kW) Hour WT (kW) 

1 57.2 9 29.5 17 34.4 

2 58.5 10 28.6 18 26.8 

3 61.3 11 29.1 19 46.5 

4 65.0 12 18.4 20 51.1 

5 36.7 13 16.2 21 36.3 

6 17.5 14 36.9 22 36.7 

7 32.1 15 48.9 23 33.0 

8 33.2 16 45.3 24 25.2 
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Table 5.4: PV Predicted Output Power Capability. 

 

Hour PV (kW) Hour PV (kW) Hour PV (kW) 

1 0 9 36.6 17 391 

2 0 10 55.4 18 2.2 

3 0 11 62.7 19 1.6 

4 0 12 65.3 20 0 

5 0 13 65.7 21 0 

6 0 14 65.9 22 0 

7 1.0 15 62.4 23 0 

8 2.1 16 56.0 24 0 
 

 

As the next step, proposed MARL algorithm is employed on the MG to validate the robust 

economic power flow performance of the method. Electrical, heating, and cooling demands are 

pictured in Fig. 5.7. According to the load profiles and the predicted power capabilities of the 

renewable energy resources, the proposed power management strategy would be executed.  

 

(a) 
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(b) 

 

(c) 

 
Fig. 5.7: (a) Electrical, (b) cooling, (c) heating load profiles. 
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In this study, a dynamic time-sharing electricity price curve is employed in the microgrid 

model, replacing a fixed-price model. The time-sharing curve, depicted in Fig. 5.8, illustrates the 

fluctuation of electricity costs over the course of a day. This dynamic pricing strategy offers several 

advantages over a fixed-price model. The dynamic pricing reflects the real-world variability of 

electricity costs, providing a more accurate representation of the economic factors that influence 

energy management decisions. By incorporating this dynamic pricing approach, the model can 

better simulate and optimize the microgrid's operations under realistic conditions, leading to more 

effective and economically viable solutions.  

 
Fig. 5.8: Time-sharing electricity price curve. 

 

Four agents have been assigned to find the optimal solution for the developed cost function 

without penalty factors for PV and WT. And the discount factor is chosen to be 0.91 by trial and 

error. The dispatch results are provided in Fig. 5.9, contains the generation units’ output power 

within a 24-hour period. According to the figure and comparing it with the loads’ profiles, it can 

be deduced that MT has been assigned mainly to feed heating and cooling demands, due to the 

natural gas price. And the WT and PV in high demand periods operate near their maximum power 

generation capability. Keeping a minimum generation level for MT in a microgrid helps ensure 
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stability, operational efficiency, power quality, economic viability, integration with renewable 

sources, and the provision of ancillary services. This minimum output power was defined to be 

10% of the rated capacity. So, in low demand hours, MT has worked at its minimum operation 

point which is 10 kW. The mentioned observation can validate proper functionality of proposed 

MARL to have an economical and optimal power management, while considering the pre-defined 

constraints. And based on fuel price and CO2 emission cost which were provided in Table I, total 

cost for the acquired power management among the generation units attained to be almost 224$.  

 

Fig. 5.9: The generation units’ managed output power without penalty factor consideration. 

 

The outcomes for the minimized cost function considering penalty factors for PV and WT are 

demonstrated here. The explanation mirrors the scenario without penalty factors, illustrating the 

effectiveness of the proposed method for this more realistic power management problem, as well. 

However, the cost calculated is $241, which represents an increase due to the inclusion of penalty 

factors that account for various operational constraints and inefficiencies. These penalty factors 

are essential for capturing the cost for differences between generated power from the renewable 

energy sources and the expected available power. By incorporating this element, the model 

provides a more accurate representation of the actual costs involved in managing PV and WT 
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systems. This inclusion inevitably results in a higher cost figure compared to the idealized scenario 

without penalties. The rest of the study is based on this scenario, and the result of energy dispatch 

amongst the generation units is shown in Fig. 5.10. 

 
Fig. 5.10: The generation units’ managed output power considering penalty factors. 

 

The charging states of the BESS over 24 hours are illustrated in Fig. 5.11. The initial BESS 

charge is set at 10 kW at 1:00 am to ensure there is a baseline storage level to manage early morning 

demand when generation might be lower. During times when the generation units cannot meet the 

electrical demand, the battery discharges to supply the load, with a maximum discharge rate of 6 

kW per step. Conversely, the battery is scheduled to recharge at the earliest possible moment when 

excess generation is available, with a maximum charge rate of 6 kW per step. This deliberate 

limitation on charging and discharging rates is strategically implemented to achieve several critical 

objectives. First, by capping the maximum step at 6 kW, we reduce the stress on the battery cells, 

which enhances their longevity. Rapid charging and discharging can lead to significant wear and 

tear on the cells, reducing the overall lifespan of the BESS. Second, this approach minimizes the 

risk of overheating, which is crucial for ensuring safe operation. Overheating can not only damage 

the battery but also pose safety risks. Third, operating within this optimal power range improves 
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the efficiency of the BESS. Batteries typically perform better and are more efficient when charged 

and discharged at moderate rates rather than at their maximum capacity. Moreover, the charging 

and discharging states of the BESS with positive and negative values, respectively, are illustrated 

in Fig. 5.12. 

 
Fig. 5.11: The BESS energy. 

 
Fig. 5.12: The BESS charging and discharging. 
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5.5.1   Comparative Study 

Comparative analysis is also provided to validate the superior performance of the proposed 

MARL solution over single agent RL. The provided Fig. 5.13 illustrates a comparative analysis 

focusing on their cumulative rewards. In the figure, the single-agent RL method starts with higher 

cumulative rewards and converges quickly within almost 90 iterations, reaching a final value 

around 50. On the other hand, the proposed MARL solution exhibits a slower start with noticeable 

fluctuations in cumulative rewards. The exploration phase leads to fluctuations in individual agent 

rewards as they try to learn the beneficial actions for different scenarios. Moreover, 

communication and coordination among agents introduce complexity, potentially causing 

fluctuations as agents adjust their strategies based on shared information. Despite this initial phase, 

the MARL approach shows a remarkable improvement over time and almost converges to a final 

value around 62, which is significantly higher than the single-agent performance. The superior 

performance of the MARL solution is attributed to its ability to leverage the collective intelligence 

and coordination among multiple agents. By allowing agents to learn and collaborate 

simultaneously, the MARL approach can explore a wider range, adapt to dynamic environments 

of the MG more effectively, and ultimately achieve higher cumulative rewards for power 

management purpose. 

 
Fig. 5.13: The comparative study in terms of cumulative rewards. 
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Furthermore, the single agent RL is employed to optimize the provided cost function in the 

same MG configuration. Through the analysis and calculations, the cost is determined to be 257 

dollars. In comparison, the proposed MARL solution achieved a lower cost of 241 dollars, 

indicating an improvement in cost efficiency of the proposed power management solution. The 

Fig. 5.14 is also depicting the difference in units’ generation between the single-agent RL and 

MARL approaches. The negative values show less generation and the positive values represent the 

higher generation compared to the proposed MARL power management strategy. According to the 

figure, single agent RL increases the power generation from micro-turbine (Fig. 5.14(c)) and drop 

the renewable energy free resources generation in some hours, which leads to higher operational 

cost, compared to the suggested method.  

 

(a) 
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(b) 

 

(c) 

Fig. 5.14: The units’ generations differences compared to the proposed MARL employed single agent RL by 

(a) WT, (b) PV, (c) MT. 
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Furthermore, the proposed method is tested with various number of agents and the results are 

demonstrated in Table 5.5. The provided table offers a detailed comparison of different numbers 

of agents in proposed reinforcement learning framework, considering their impact on cost function 

value, convergence speed, memory usage, calculation time, and cumulative rewards. As the 

number of agents increases, the cost function value generally decreases up to four agents, reaching 

its minimum at four agents by 241$. This suggests that increasing the number of agents improves 

the ability to optimize long-term planning and reduce overall costs. Beyond four agents, the cost 

function value starts to increase, indicating that adding more agents does not necessarily lead to 

better performance and might even degrade it. 

The convergence speed, indicated by the number of iterations required, initially increases with 

the number of agents, as more agents mean more complex interactions and dependencies that need 

to be learned. Specifically, the convergence speed increases from 90 iterations for one agent to 

320 iterations for four agents. However, after four agents, convergence speed begins to slow down 

significantly, highlighting the diminishing returns in performance with additional agents. For 

instance, with six agents, convergence speed is at 410 iterations, and beyond six agents, the system 

fails to converge. 

Memory usage also increases with the number of agents. As more agents are introduced, the 

system needs to store more state information and interaction data, leading to higher memory 

consumption. The memory usage increases from 327 kB for one agent to 809 kB for four agents 

and spikes to 4614 kB for six agents, indicating substantial resource requirements. The sharp 

increase in memory usage beyond four agents suggests that the system becomes more resource-

intensive without corresponding improvements in performance. Calculation time shows a similar 

trend, increasing with the number of agents due to the additional computational complexity. 

Calculation time rises from 0.81 seconds for one agent to 3.76 seconds for four agents and jumps 

significantly to 13.98 seconds for six agents. This indicates that while more agents can enhance 

decision-making, the computational cost increases substantially, especially beyond four agents. 

Cumulative rewards increase with the number of agents up to four, suggesting that more 

agents help the system accumulate more rewards by making better long-term decisions. The 

cumulative rewards increase from 50 for one agent to 62 for four agents. However, beyond four 

agents, cumulative rewards start to decline, indicating that the system becomes less effective in 
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optimizing long-term rewards, possibly due to the increased complexity and resource contention 

among the agents. 

Overall, the proposed configuration of four agents strikes an optimal balance among cost, 

convergence speed, memory usage, calculation time, and cumulative rewards, and achieving the 

lowest cost function value at $241 and the highest cumulative rewards at 62. This configuration 

minimizes the cost function value and maximizes cumulative rewards while maintaining 

reasonable convergence speed and resource usage. Adding more agents beyond this point results 

in diminishing returns, higher resource consumption, and potentially instability, making four 

agents the most effective choice for this power management problem. 

 

Table 5.5: Comparative Study in Terms of Number of Agents. 

Number of 

agents 

Cost function 

value ($) 

Convergence speed 

(approximate 

iterations) 

Memory 

usage (kB) 

Calculation time 

(s) 

Cumulative rewards 

(Approximately) 

1 257.16 90 327 0.81 50 

2 255.54 130 411 1.44 54 

3 246.01 150 798 2.25 57 

4 (proposed) 241.76 320 809 3.76 62 

5 246.22 270 1324 2.31 56 

6 283.76 410 4614 13.98 39 

7 inf - - 59.99 -inf 

8 inf - - 48.31 -inf 

 
 

As mentioned, a discount factor of 0.91 was selected for the four-agent RL power 

management solution. To evaluate the effect of different DF values, various alternatives were 

considered, and the results are provided in the table below. The DF of 0.91 was chosen as it offered 

the best balance across several key metrics, including response time, memory use, cumulative 
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rewards, and system stability. The advantages of a DF of 0.91 include its ability to adequately 

prioritize future rewards while maintaining efficient short-term decision-making, resulting the best 

cost function value among other DF values. This balance helps in achieving a more stable and 

effective power management strategy. The Table 5.6 is provided to comprehensively shed light on 

the discussed material.  

The provided table offers a comprehensive comparison of different discount factor (DF) 

values in terms of cost function value, convergence speed, memory usage, calculation time, and 

cumulative rewards. As the DF increases, the cost function value decreases, reaching its minimum 

at a DF of 0.91. This indicates that higher DFs (up to a certain point) enhance long-term planning, 

thereby reducing overall costs. However, beyond a DF of 0.91, the cost function value begins to 

rise slightly, suggesting diminishing returns or potential over-optimization for future rewards at 

the expense of immediate costs. 

The convergence speed, represented by the number of iterations required, increases with the 

DF from 0.3 to 0.91. This trend is expected because a higher DF means the agent considers more 

future rewards, making the value function more complex and harder to optimize quickly. At a DF 

of 1, the agent fails to converge, indicating instability and unrealistic value estimations due to the 

overvaluation of future rewards. Memory usage also increases steadily with the DF. Higher DFs 

necessitate storing more detailed future reward information, hence the higher memory 

consumption. The significant jump in memory usage from a DF of 0.91 to 0.95 highlights the steep 

increase in resource requirements for small increments in DF at higher values. Similarly, 

calculation time increases with DF due to the additional computational complexity associated with 

considering a longer horizon of future rewards. The calculation time at DF = 1 is notably low 

because the agent fails to converge, leading to premature termination. 

Cumulative rewards increase with the DF up to 0.91, indicating that higher DFs help the agent 

accumulate more rewards by making better long-term decisions. The slight drop in cumulative 

rewards at DF = 0.95 and the unrealistic values at DF = 1 suggest that excessively high DFs may 

not effectively balance immediate and future rewards, leading to suboptimal performance. 

The DF of 0.91 stands out as it provides the best balance between short-term and long-term 

rewards, resulting in the lowest cost function value and the highest cumulative rewards without 

excessive memory usage or convergence issues. The convergence speed and calculation time at 
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this DF are reasonable, making it a practical choice for real-world power management applications 

where computational resources and time are limited. Additionally, the agent remains stable and 

performs well, avoiding the pitfalls of very high DFs that can lead to unrealistic valuations of 

future rewards. 

 

Table 5.6: Comparative Study in Terms of DF Value. 

DF value 
Cost function 

value ($) 

Convergence speed 

(approximate 

iterations) 

Memory 

usage (kB) 

Calculation time 

(s) 

Cumulative rewards 

(Approximately) 

0.3 259.87 200 721 3.37 57 

0.5 277.61 220 738 3.40 57 

0.7 271.84 280 766 3.51 57 

0.9 247.12 320 781 3.98 60 

0.91 

(Proposed) 
241.76 320 809 3.76 62 

0.95 248.33 330 1307 4.45 59 

1 inf - - 0.99 -inf 

 
 
 

5.6   Conclusion 
   In order to overcome the obstacles in micro-grid power management, a recurrent neural 

network along with reinforcement learning based method was proposed in this work. The projected 

MG included a BESS, WT, PV, and CCHP systems. A multi-layer recurrent neural network model 

was developed and trained using historical wind and solar dependent factors dataset to efficiently 

estimate the generation of day-ahead renewable WT and PV resources. The strategy 

featured advantages over previously investigated methods, including higher accuracy and the 

enhanced ability to extract non-linear mapping functions between the input and output. To improve 

the model, the hyperparameters of number of hidden layers and learning rate for wights updating 
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were auto-tunned via the grid-search. The anticipated values would subsequently be used in the 

following phase, which was the optimal power management throughout MG's generation units. In 

order to achieve a dependable and environmentally friendly MG, a model free reinforcement 

learning was used to maintain the multi-objective fuel and CO2 emission cost function minimized. 

Hence, a four-agent RL approach was suggested to cope with the task. By integrating the smaller 

tasks that each agent performed, multi-agent solutions aimed to solve the complicated issue of 

discovering the best operating points in the challenging environment, rather than four agents. The 

results demonstrated that the proposed MARL successfully distributed the power generation 

amongst micro turbines in CCHP system and other renewable resources, economically. The 

outcomes also confirmed that the proposed MG's BESS performed properly under both light and 

heavy load conditions within a day.  
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Chapter 6 

Conclusion 

 

6.1   Summary 
This PhD thesis aimed to enhance wind energy conversion systems by leveraging advanced 

techniques unified by a proposed multi-agent reinforcement learning method to address challenges 

in fossil fuel consumption, carbon dioxide emissions, and global warming. 

In Chapter-1, an overview of WECS was provided, including different configurations, power 

converters, and control strategies. Historical numerical information about WECS was also 

reviewed, laying the groundwork for understanding the current state and potential advancements 

in wind energy technology. 

Chapter-2 detailed an AI-based controller and the step-by-step development of the proposed 

MARL method equipped with meta-learned discount factors. This approach aimed to enhanced 

system adaptability and performance, distinguishing itself from traditional control strategies that 

often struggled with parameter tuning and adaptability under varying conditions. 

Chapter-3 delved into the control of a neutral point clamped power converter in a direct-drive 

permanent magnet synchronous generator (PMSG)-based WECS. The focus was on improving 

power quality and meeting grid code requirements for total harmonic distortion. The proposed 

MARL approach eliminated the need for extensive offline training and system modeling, offering 

superior performance in dynamic and unbalanced scenarios compared to traditional and AI-based 

methods. 

In Chapter-4, the thesis addressed maximum power point tracking challenges in WECS. 

Traditional methods like Perturb and Observe and Incremental Conductance were compared with 

the customized MARL approach, which employed multiple agents for improved energy output and 

responsiveness. The MARL strategy, validated through simulations and a 1000W prototype 

implementation, demonstrated significant improvements over traditional MPPT methods. 
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Finally, Chapter-5 explored power prediction and management within a microgrid 

environment, integrating renewable energy sources such as WT, PV systems, BESS, and CCHP. 

A multi-layer recurrent neural network was developed for accurate 24-hour forecasting, and also 

optimizing power management using the proposed MARL method. This approach minimized fuel 

and CO2 emissions costs, enhanced coordination among MG components, and ensured efficient 

resource utilization and BESS scheduling. 

Overall, this thesis presented a robust and innovative framework for enhancing wind energy 

conversion, renewable energy forecasting, and microgrid power management through a unified 

MARL-based approach. Python and Simulink MATLAB used for coding and simulation purposes. 

The findings underscored the potential of MARL to significantly improve the efficiency, 

reliability, and environmental sustainability of renewable energy systems and WECS. 

 

6.2   contributions 
The contributions of this research on power converter power quality are summarized as 

follows: 

• The research introduced MARL to control power converters, extending the capabilities of RL 

by allowing multiple agents to interact. This was an innovative application of MARL in wind 

energy systems, representing a pioneering contribution to the field of control strategies. Also, a 

novel approach was suggested to optimize the MARL hyperparameter known as the discount 

factor, significantly enhancing the performance and response of the system compared to 

traditional tuning methods that often relied on manual adjustments. 

• In a fully cooperative environment like WECS, agents typically focus on maximizing their own 

rewards, often neglecting the rewards of other agents. This behavior tends to lead to suboptimal 

performance. To resolve this issue, the author proposed incorporating Nash equilibrium and 

Nash social welfare strategies, encouraging the agents to account for both their individual 

rewards and the cumulative rewards of the entire system. 

• By eliminating the requirement for detailed system modeling, this study substantially reduced 

the computational workload, making the control system more practical and less resource-

intensive. Moreover, the elimination of some PI controllers removed the need for parameter 
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tuning and bandwidth adjustments, simplifying the control process and reducing maintenance 

complexities.  

• This study reduced power quality issues like single or double phase voltage drop, which are 

often challenging for other AI models. By leveraging the adaptability and dynamic response 

capabilities of the MARL, this work ensured a stable and reliable power supply, and preserving 

the integrity of the electrical grid. This contribution was vital for the sustainable integration of 

renewable energy sources into the power grid, enhancing overall system resilience and 

efficiency. 

 

The impact of this research on highly efficient MPPT is summarized as follows: 

• The research introduced a novel application of multi-agent reinforcement learning, extending 

its use beyond power converter control to include maximum power point tracking. This 

innovative approach expanded the horizon of research in this domain. Additionally, the highly 

efficient meta-learning method was proposed for optimizing the discount factor, significantly 

enhancing the system's performance, efficiency, and responsiveness compared to traditional 

methods that often relied on manual adjustments. The proposed algorithm improved the energy 

capture capabilities of wind turbines, ensuring that the system operated at peak efficiency under 

different wind condition scenarios and provided a fast response to wind speed changes, 

compared to the counterparts. 

• At times, agents may deviate from the learned optimal policy, leading to suboptimal model 

performance and fluctuations in the MARL learning process. To overcome this challenge, the 

Q-Bellman equation was introduced by the author to guide agents within the MARL framework 

for the MPPT problem, ensuring they adhere to the optimal policy that maximizes cumulative 

rewards. This approach helps maintain consistent performance and improves overall system 

efficiency. 

• The study emphasized the practicality of the proposed multi-agent reinforcement learning 

method for maximum power point tracking by implementing it in a laboratory environment. 

This hands-on validation bridged the gap between theoretical RL-based models and real-world 

applications in power systems. The implementation took place on a DSP TMS320F28335 real-
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time control board, showcasing the robustness and effectiveness of the proposed control 

algorithms equipped with a meta-learned discount factor. 

 

The impact of this research on environmentally friendly power management and BESS energy 

scheduling is summarized as follows: 

• The research proposed a customized MARL method for power management in a comprehensive 

microgrid integrating PV, WT, CCHP units, etc. method aimed to optimize a multi-objective 

function to reduce both fuel consumption and CO2 emissions while considering the penalty 

factors for PV and WT generations. Additionally, the study considered the BESS scheduling to 

support the microgrid in stability and reliability.  

• The study focused on determining the optimal number of agents and optimal discount value in 

the MARL, an aspect that had not been explored previously. This optimization ensured a 

balanced approach between complexity and effectiveness in managing the microgrid, leading 

to improved performance and efficiency.  

• MLRNN was proposed to accurately predict the WT and PV output power which would be used 

as the maximum capability of the generation resources for the power management purpose. The 

research employed grid-search optimization to fine-tune the MLRNN hyperparameters; number 

of layers and SGD step size. These critical hyperparameters significantly influenced the 

learning process and performance, resulted in better convergence and overall system 

performance compared to traditional manual tuning methods. 

 

6.3   Future Work 
As future work of the doctoral study the following projects are proposed to achieve more 

robust and efficient direct-drive PMSG-based WECSs. 

• In exploring optimal reinforcement learning models for WECS applications, there are 

other recently-studied models such as; Proximal Policy Optimization (PPO), Deep 

Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC), etc., that are 

valuable to be investigated. Comparing these approaches will provide insights into 
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their effectiveness in optimizing the responses, as well as ensuring computational 

efficiency.  

• Integrating MARL with a meta-learned discount factor substantially enhances 

performance in WECS by improving adaptability and optimizing power output, 

according to the outcomes. However, this integration leads to increased computational 

burden and memory usage. To mitigate these challenges and achieve a more optimal 

solution, the code can be refined through the implementation of more efficient 

algorithms that streamline processes and reduce complexity, by employing techniques 

such as model compression and parallel processing which can significantly decrease 

computational load  

• In this study, an islanded microgrid was analyzed. Future research could focus on grid-

connected MGs, as well as the transition between islanded and grid-connected modes. 

Exploring these dynamics is crucial for understanding the resilience and flexibility of 

MGs, ensuring stable power supply during grid fluctuations or outages. Studying the 

seamless transition between modes can enhance the reliability of renewable energy 

integration and improve the overall stability of the power system. 

 

6.4   Conclusion 
To mitigate fossil fuel consumption, which leads to carbon dioxide emissions and global 

warming, renewable energy gained prominence. Among the various renewable sources, wind 

energy emerged as one of the most cost-effective solutions for electricity generation. Numerous 

studies focused on enhancing the performance of wind energy conversion systems (WECS) in 

different areas. However, traditional control strategies employed in WECS often resulted in lower 

efficiency, complicated implementation, complex system modeling, intricate drive circuit design, 

and suboptimal responses. This PhD thesis presented a thorough investigation of advanced 

techniques to optimize WECS, centered around a proposed multi-agent reinforcement learning 

method. The research was organized into three primary objectives, each contributing to the 

advancement of renewable energy technologies through the innovative application of MARL. 

Firstly, the thesis examined the control of a neutral point clamped power converter used in a 

direct-drive permanent magnet synchronous generator based WECS. The aim was to improve 
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power quality and comply with grid code requirements for total harmonic distortion. Traditional 

controllers, such as PI, often struggled with parameter tuning and adapting to varying operating 

conditions, leading to suboptimal performance in dynamic and unbalanced scenarios. The 

proposed approach eliminated the need for offline training and extensive system modeling, 

distinguishing it from traditional machine learning based techniques, and PI-based methods. 

Simulations and comparative analyses validated the MARL strategy, particularly in addressing 

unbalanced voltage sag conditions. The integration of meta-learning to optimize the discount factor 

(DF), a critical hyperparameter in RL-based methods, further improved the control system’s 

adaptability and convergence rate, ensuring power quality, and higher power converter efficiency. 

Subsequently, the research tackled challenges in maximum power point tracking for the same 

wind energy conversion systems. Conventional methods like P&O was characterized by slow 

dynamic response and susceptibility to steady-state oscillations around the maximum power point, 

especially under rapidly changing wind conditions. The customized MARL approach overcame 

these limitations by utilizing multiple agents that collaborated, improving energy output and 

responsiveness to wind speed variations. The meta-learned discount factor optimized the MARL 

algorithm, reducing learning time and enhancing convergence. Extensive simulations, along with 

a 1000W prototype implementation, demonstrated the MARL strategy's superiority over 

traditional MPPT methods, confirming its practical advantages and reliability in real-world 

applications. 

Lastly, the thesis explored power prediction, management, and energy scheduling in a 

microgrid. The MG integrated renewable energy sources such as WT, PV systems, and BESS, 

alongside combined cooling, heating, and power units. Traditional forecasting models, often failed 

to capture the complex temporal dependencies and variability of renewable energy sources, leading 

to inaccurate predictions. A multi-layer recurrent neural network was developed to provide 

accurate 24-hour forecasts for renewable PV and WT energy generation, in the first phase of study. 

A grid-search method was used to optimally tune the number of RNN layers and the optimizer 

learning rate. The predicted values were then used as the maximum WT and PV output capacities 

to optimize power management within the MG using the proposed MARL method, in the second 

phase. This approach minimized fuel and CO2 emissions costs, enhanced coordination among MG 

components, and ensured efficient power distribution, resource utilization, and BESS scheduling. 
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Traditional centralized control methods often proved computationally intensive and less 

responsive to real-time changes, whereas the decentralized control offered by MARL reduced 

computational burden and improved response quality, demonstrating its effectiveness in 

maintaining optimal MG performance. Comparative analyses and optimally tunning the number 

of agents and DF value confirmed the effectiveness of the proposed approach. 

Hence, this thesis provided a comprehensive and innovative framework for enhancing wind 

energy conversion, renewable energy forecasting, and microgrid power management using a 

unified MARL-based approach. Python programming and MATLAB Simulink were utilized for 

coding and simulation, respectively. The findings highlighted the potential of MARL applications 

to improve the efficiency, reliability, and environmental sustainability of renewable energy 

systems and WECS. 
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Appendix 

Simulink MATLAB diagram of the direct-drive PMSG-based wind energy conversion 

system. 
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Grid-side power converter controller: 

 

 

 

Machine-side power converter controller: 
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Measurements and transformations 
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MATLAB function all_marl_thd_optimization.m to interface with the Python script for the 

proposed grid-side NPC converter control method: 

 

 

Proposed grid-side NPC converter control method diagram based on MARL equipped with 

meta-learning approach to tune the DF: 
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The MATLAB function block code: 

 
 

The python code interfaced with Simulink MATLAB for grid-side NPC power converter 

control strategy based on proposed MARL approach: 
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General P&O MPPT algorithm: 

 

 

MATLAB function call_marl_mppt.m to interface with the Python script for the proposed 

MPPT method: 
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Proposed MPPT method based on MARL equipped with meta-learning approach to tune the 

DF: 

 

 

 

The MATLAB function block code: 
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The python code interfaced with Simulink MATLAB: 
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Python code for PV and WT output power prediction using multi-layer RNN equipped grid-

searched hyperparameters of number of layers and learning rates. 
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Python code for MG power management and BESS energy scheduling based on the proposed 

MARL method.  
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