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Abstract
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by Ehsan Sobhani

With the growing focus on sustainable transportation, Battery Electric Buses (BEBs)
have emerged as a viable solution. BEBs have received significant recognition as an
environmentally conscious and sustainable means of transportation. In many cases,
transitioning from a conventional diesel-fueled transit system to a fully electric one is
essential. Designing an effective strategy, which encompasses placing charging sites and
implementing proper charging mechanisms, is crucial to ensuring efficient and consistent
charging of BEBs in an electrified public transit system. However, the challenge intensifies

when the transit planner aims to maintain a consistent daily service timetable.

The research endeavours to tackle this challenge by formulating efficient charging strate-
gies and methodologies for infrastructure planning. This thesis outlines a four-step
approach for transit system planners to attain optimal solutions, encompassing worst-case
energy consumption calculation, off-service charging site placement, off-service (overnight)
charging mechanism, on-route charging planning, and finding the number required BEBs
and integration of them to fully electric transit system. Four methods are designed
for use in planning: the Constrained Greedy Clustering (CGC) algorithm, the Priority
Charging Mechanism (PCM), the Constraint Affinity Clustering Algorithm (CACA), and
timetable tuning. A case study based on a real-world Thunder Bay, ON transit system
validates the proposed methodologies and assesses their effectiveness in improving the
overall performance of the BEB fleet. Results demonstrate significant improvements in
operational efficiency, cost reduction, and environmental sustainability by implementing

the proposed charging infrastructure optimization strategies.

The findings of this research contribute to the advancement of sustainable transportation
by providing practical insights and solutions to the challenges associated with BEB

charging infrastructure design and optimization.
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Chapter 1

Introduction

1.1 Introduction

Recently, battery electric buses (BEBs) have gained significant attention as a sustainable
and environmentally friendly transportation solution [46]. However, BEBs face the
challenge of a limited power supply, necessitating recharging when their battery energy is
depleted. There are two main methods for recharging the battery. i) Charging during the
bus route (known as on-route charging or opportunity/boost charging) and ii) recharging
when the bus is not in service (off-service charging) [18, 65]. On-route charging involves
recharging BEBs’ batteries while operating, typically at designated charging points along
their routes [19]. These charging sites can be installed at bus stops, terminals, or depots
to quickly top up the battery’s charge [5]. This method is particularly useful for extending
the range of BEBs and ensuring continuous service without requiring long breaks for
recharging. Off-service charging refers to recharging BEB batteries when the buses are
not in regular service, such as overnight or during scheduled breaks. This approach is
commonly used to ensure that BEBs have sufficient power to complete their routes and

minimize disruption to service during peak operational hours.

The high capital costs associated with BEBs pose a significant barrier to market pen-
etration. Consequently, several studies have conducted cost-benefit analyses of BEBs,
considering both capital and operating costs. For example, in [76], researchers found
that despite the high initial capital investment, the lower fuel costs of BEBs made them

competitive with diesel buses.

Various strategies have been proposed to address demand charges associated with BEBs.
Gallo et al. [22] suggests methods such as enhancing EB efficiency, utilizing energy

transfer technology, employing time-of-use pricing, or temporarily suspending demand
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charges. You et al. [74] propose a battery-switching strategy where depleted batteries are
replaced with charged ones at battery-switching stations, minimizing electricity costs and

battery degradation.

In [29], fast chargers, in combination with Electric Shock chargers, are used to pinpoint
the ideal charging station locations. The study employed a simulation method to examine
the relationship between battery capacity and the charging capability of fast-charging
stations. In [59], a method is employed to investigate the connection between battery

capacity and the charging capability of fast-charging sites.

Past studies addressing the setup of BEB fleets have typically utilized optimization models
that need to be more user-friendly for transit system operators. These models rely on
specific assumptions, parameters, and constraints that can present challenges concerning
BEB fleets. These models provide charging opportunities based on these inputs, but if
any of these factors change during operation, the optimized solutions may become invalid.
Consequently, numerous external factors can disrupt the model’s functionality, making
it less practical for operators. Additionally, these models can encounter computational
difficulties when dealing with extensive transit systems featuring multiple terminals and
depots. Furthermore, most researchers have concentrated on on-route charging strategies

dependent on unpredictable delays in service schedules [69, 73].

Urban transit system planning considers numerous factors in its design, including pop-
ulation density, land use, traffic patterns, demographics, accessibility, environmental
considerations, economic development, safety and security, technological advances, and
stakeholder engagement [9, 10, 35, 40, 80|. By integrating these considerations, planners
can develop transit systems that are efficient, accessible, sustainable, and responsive to
the needs of urban communities. Transit systems are often designed for urban areas
with specific characteristics tailored to the population’s needs and environment. With
the transition to electrification, it is crucial to maintain the fundamental characteris-
tics of the existing transit system and adhere to key planning priorities, which may
take precedence over optimizing electric power consumption and its impact on the grid.
More comprehensive planning is needed for BEBs charging within the electrification of
diesel-fueled transit systems while maintaining unchanged daily schedule services. This
comprehensive planning map should guide the system planner, starting from an initial
point and sequentially selecting charging approaches to achieve the best strategy to
minimize infrastructure and operating costs. The planning map should outline practical
charging mechanisms for each chosen strategy and ultimately provide the locations of
charging sites, chargers’ characteristics, the minimum number of chargers at each site,
the number of required BEBs in a fully electric transit system, and propose schedule

tuning to minimize Capital Expenditure (CAPEX) and Operating Expenditure (OPEX).
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Developing a robust charging strategy encompassing off-service and on-route charging
approaches or adding extra BEBs can solve the uncertainties of relying solely on one
charging method. By considering multiple charging approaches, we can explore the most
effective infrastructure and operating cost while maintaining the transit timetable services
established by transit system planners for diesel-fueled transit systems. This approach
allows flexibility and efficiency in managing electric bus fleets without altering inherited

transit schedules.

The proposed map begins by pinpointing worst-case energy consumption estimation for
daily schedules as the starting point. It then endeavours to meet the estimated energy
needs through various charging approaches sequentially, starting with the one that incurs
lower infrastructure and operating costs (overnight charging) and progressing towards
a more expensive approach (adding extra BEBS). As Figure 1.1 shows energy serves as
the foundation of this comprehensive map, acting as the bridge between the diesel-fueled

transit system and the battery-electric-powered transit system, operating on the exact

service schedules.

Worst - Case BEB Energy
Consumption Parameters:

| e Stop Density
* BY 98 B 30 B3 39 B9 3 ® Route Topology
45 15115 s [ s 15 |15 s [as 15 s as s 150 o e Winter operating
e HVACON
e Number of Passenger

Required
Energy

Battery-Electric-powered Transit Network

Overnight Charging Opportunity Charging Extra BEBs
Energy @ Energy @ ‘T‘Er!etg“{_ _
—— e I’; [ w1 P

FIGURE 1.1: Overall view of electrification of transit system
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1.2 Technical Challenges
Electrifying transit systems faces numerous challenges, including:

1. Strategic placement of charging sites presents a challenge for transit planners, partic-
ularly concerning power grid considerations. Efficient placement can reduce energy
consumption for BEBs, minimizing operational costs and aiding load balancing
across the power grid. Moreover, when repurposing diesel bus depots and garages
for electrified systems to mitigate infrastructure costs, considering newly calculated
placement locations could be beneficial for locating charging sites from depots and

garages, particularly in large-scale transit systems.

2. Off-service charging should occur during hours with minimum electricity cost,
avoiding overloads or disruptions in electricity supply by ensuring that the combined
power demand from charging BEBs does not exceed the power grid’s capacity
(power grid constraints) while determining the minimum number of charging piles
in charging sites can significantly reduce CAPEX, an essential consideration for
transit system planners when migrating from a diesel-fueled system to an electrified
one. Unified charging processes for BEBs off-service (overnight) are essential for
minimizing charging malfunctions and optimizing resource utilization in charging
sites (depots or garages). Designing the proper charging model to ensure that all
BEBs receive the maximum possible charge despite pile malfunctions is challenging
for planners. This approach also enables planners to automate the charging process,

reducing OPEX and malfunctions while eliminating the need for manual intervention.

3. Due to the limited travelling distances of BEBs compared to diesel buses, planners
often require more BEBs to fulfill transit daily services. However, BEBs, regardless
of size and battery technology, tend to be expensive [38]. Therefore, one of the
main challenges for planners is finding the minimum number of BEBs and efficiently
assigning them to transit daily services. In essence, efficiently assigning BEBs to
fulfill transit daily services minimizes the overall number of BEBs required for

operation.

4. Implementing on-route charging presents challenges, irrespective of the BEB bat-
tery’s capacity. It often requires the installation of costly fast-charging infrastructure
[19]. Adhering to bus service schedules by relying on the time intervals between
services for recharging creates a strong connection between charging times and
service schedules. Relying heavily on service schedules has a detrimental impact on

charging schedules, which are inherently inflexible and critically essential. Therefore,
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the challenges are specifying the minimum transit terminals for on-route charg-
ing to satisfy all working BEBs on-route charging. Moreover, allocating on-route
chargers efficiently to BEBs ensures BEBs have the most opportunities for charging
in pre-defined timetable schedules. In large-scale transit systems, selecting only
one charging approach can be challenging due to varying power grid constraints,
charging sites’ locations, and routes’ topologies. Incorporating both off-service and
on-route charging introduces complexity to the planning process. This complex-
ity stems from coordinating charging schedules, determining ideal infrastructure
placement, and managing operational logistics to ensure seamless integration while
minimizing service disruptions. Moreover, factors like battery capacity, charging
times, and route variations further complicate decision-making for transit planners.
Therefore, achieving a balance between these charging approaches is essential for

effectively managing the electrification of transit systems.

1.3 Research Approach

We aim to divide the charging planning into sub-problems and propose practical solutions.
Based on the transit system characteristics, planners can select the most suitable charging
strategy and apply the corresponding methods to migrate to an electric transit system.
In addressing the challenges of planning BEB charging within the transit system, our
approach involves thoroughly analyzing the existing diesel-fueled transit system designed
to meet the urban public commuting demands. This analysis aims to estimate the
worst-case daily energy consumption of the diesel-fueled transit system. Doing so gives us
insight into the most demanding scenarios planners encounter during the BEBs charging
planning process. Understanding these worst-case scenarios is essential for devising
effective strategies to optimize BEB charging infrastructure and ensure reliable service
delivery within the transit system. Subsequently, we endeavour to address the energy
requirements in various ways, ranging from cost-effective off-service charging to more
expensive solutions such as on-route (opportunity) charging and adding extra BEBs,

respectively, considering charging infrastructure and energy costs.

This study uses energy as the common denominator between diesel-fueled and battery-
electric-powered transit systems. We start our analysis from the perspective of diesel-fueled
transit system activities, where we can see the worst-case daily BEBs energy consumption.
After that, we plan to supply the required energy efficiently. Firstly, we attempted to
procure energy through off-service (overnight) charging, the most cost-effective approach
due to the lower electricity rates during nighttime hours as depicted in Figure 4.5

(bars in orange colour). The endeavour yielded two methods: the Constrained Greedy
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Clustering (CGC) for ideal placement of off-service charging sites to comply with power
grid constraints, and The Priority Charging Mechanism (PCM) is designed explicitly
for off-service charging to ensure that all BEBs are charged simultaneously, thereby
guaranteeing efficient charging performance even in the event of charger malfunctions by

distributing the malfunction effect between all charging BEBs.

Driven by the challenge of determining the minimum number of on-route charging
terminals, their most effective locations, and their allocation to BEBs, we developed the
On-route Charging strategy. This strategy utilizes inherited service schedules from the
diesel-fueled transit system and allocates chargers to BEBs, ensuring energy balance
among all chargers. Moreover, we proposed the service schedule tuning method to
maximize the BEBs charging opportunities. It’s worth mentioning that the proposed
planning strategy can be used either independently or as a complementary component
with off-service charging. Transit system planners facing limitations with off-service

charging can employ this approach independently.

In cases where neither off-service nor on-route charging can fully supply the daily energy
needs of the transit system, transit system planners are compelled to add extra BEBs to
meet the scheduled services. We propose a planning approach to determine the minimum
number of BEBs required for a fully electric transit system and to assign these BEBs
in a way that minimizes energy consumption while fulfilling service requirements. The
outcome is the Constrained Affinity Clustering Algorithm (CACA), which clusters the
distances travelled by BEBs to fulfill transit system activity blocks. This clustering
efficiently enables us to utilize shared BEBs to fulfill the services belonging to each

cluster.

1.4 Contributions

The following are the contributions of the thesis.

1. To address challenge one, this thesis introduces the CGC algorithm, an approach
designed to determine the most effective charging placement. The algorithm uses
clustering techniques to minimize energy consumption and optimize charging load
distribution in transit systems. This improves the placement of charging sites
for off-service charging in transit systems, aiming to reduce energy consumption
and balance the load among the charging sites. Further, this thesis introduces
an intelligent overnight charging mechanism called PCM, specifically designed to
charge BEBs simultaneously using the minimum number of chargers. This approach

directly addresses challenges three and four. The goal is to minimize infrastructure
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costs while effectively distributing the impact of charging malfunctions among all

BEBs being charged, thereby mitigating the effects of such malfunctions.

2. To address challenge two, a comprehensive assessment of daily energy requirements
is carried out under various scenarios, yielding findings contributing to solving
subsequent challenges. This thesis suggests a planning approach (CACA) to calculate
the minimum number of BEBs needed in a transit system by distributing them
among the activity blocks in the transit system, tackling challenge three. The
CACA algorithm ensures efficient allocation of BEBs to activity blocks, minimizing

shared BEB travel distances.

3. To address challenge four, the thesis presented a comprehensive three-step plan-
ning approach to determine the minimum number of on-route charging terminals
necessary within a transit system. Emphasizing effective allocation, it addresses
the strategic assignment of transit system activity blocks to the identified charg-
ing terminals, optimizing the charging opportunities for BEBs. Furthermore, the
approach aims to balance the distribution of supplied energy among the charging
terminals, ensuring efficient utilization of resources across the transit network. The
thesis proposes a planning mechanism, Figure 1.1, for transit planners aiming to
utilize multiple charging approaches while minimizing total costs efficiently. This
mechanism involves three prioritized steps, allowing planners to skip each step
individually and use the others in the design process. By providing this flexible
approach, planners can adapt their strategies based on their specific needs and
constraints, ultimately achieving cost-effective electrification of the diesel-fueled

transit system.

4. To address challenge four, which stems from inheriting the service timetable from
a diesel-fueled transit system, maximizing the charging opportunities for each
BEB requires them to be at the charging terminal at intervals that maximize
temporal separation from other BEBs at the same charging terminal. The thesis
proposes a timetable tuning method to achieve maximum temporal dispersion
and minimize synchronicity without altering the activity blocks’ service rate. This
method enhances BEB charging opportunities by tuning the timing of transit system

activity blocks slightly forward or backward.

1.5 Publications

E. Sobhani, A. Yassine and A. Ameli, "Maximizing On-Route BEB Charging Opportunity
through Temporal Dispersion in Inherited Transit Timetables" IEEE Transactions on

Intelligent Transportation Systems, 2024.
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E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Placement of Charging Sites for
Off-Service Battery Electric Bus in Transit Systems," 2024 IEEE Energy Conference
(ENERGYCON), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Optimal Planning for Off-Service
Charging of Electric Public Transit Networks," 2024 IEEE Smart Cities Futures Summit
(2024 IEEE SCF), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Intelligent Overnight Charging
Mechanism for Battery Electric Buses in a Transit Network," 2024 International Joint
Conference on Computer Science and Software Engineering (TIMES-iCON2024), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Optimal Planning for On-Route
Charging of Battery Electric Buses in Public Transit Networks," 2024 IEEE Smart Cities
Futures Summit (2024 IEEE SCF), 2024.

1.6 Organization

This thesis is organized as follows:

e Chapter 1: Introduction - This chapter provides a comprehensive overview of the

thesis, giving insight into its various aspects and components.

e Chapter 2: Background, Related Work - This chapter describes migrating diesel-
fueled to battery electric-power buses. This chapter also presents a summary
of relevant published works. This chapter also presents a summary of relevant

published works.

e Chapter 3: Estimation of Required Energy for the Transit System - This chapter
introduces the methodology for estimating the daily energy requirements of a

battery-electric-powered transit system.

e Chapter 4: Planning for Off-Service Charging - This chapter introduces an algorithm
for strategically placing charging sites within a transit system to minimize energy
consumption and ensure a uniform distribution of charging loads across all chargers.
Additionally, it presents an off-service (overnight) charging mechanism, prioritizing
the simultaneous charging of all BEBs while minimizing the impact of charging
malfunctions. Furthermore, it introduces the CACA algorithm, which effectively
plans off-service charging for fully electrified public transit systems, determining

the number of BEBs and efficiently assigning them to activity blocks.
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e Chapter 5: Planning for opportunity charging - This chapter introduces effective
planning for on-route charging BEBs. It emphasizes optimizing the number of
charging terminals and strategically allocating them to BEBs to maximize charging
opportunities while ensuring balanced energy distribution among the charging
terminals. This chapter presents a method for adjusting the inherited timetable
from diesel-fueled transit systems without affecting the service rate to maximize

BEBSs’ opportunity to charge.

e Chapter 6: Conclusion and Research Directions - This chapter presents the conclu-
sions drawn from the analysis of the results obtained in this study. Additionally,
it proposes potential avenues for future research and provides an overview of the

current limitations.



Chapter 2

Background and Related Work

This chapter provides an overview of the background and related work pertinent to
planning BEB charging in transit networks. It includes an analysis of the body of research
on approaches, technologies, and literature pertinent to the effective installation of

charging infrastructure and the enhancement of BEB charging tactics in transit networks.

2.1 Background

In recent years, a critical global effort to address climate change has focused on reducing
emissions. With the transportation sector contributing 20% of global COs emissions in
2020 and 75% of those emissions from motor vehicles [13], it is essential to implement
decarbonization and sustainability measures in this sector. Policymakers have long
recognized public transportation as crucial for promoting environmentally friendly mobility
[16, 21]. One widely adopted strategy worldwide is electrifying public buses [48, 67|. BEBs
have garnered significant attention due to their unique advantages: they are quieter, more
reliable, energy-efficient, and emit no tailpipe emissions [68]. Many countries, including
China [17], the United States [20], Korea [11], and various European countries [12], have
conducted BEB demonstration projects. By May 2020, China had deployed over 420,000
electric buses, constituting 60% of its transit fleet and nearly 99% of the world’s total
[32]. The US e-bus market has experienced a 66% increase since 2021 [61]. Despite the
recent increase in electric bus adoption, there is still a long journey ahead before BEBs

widely replace traditional buses.

Two significant challenges to making transit buses electric are planning where and when
to charge BEBs [28, 39|. Batteries currently store less energy than diesel ones. According
to [25, 44, 59|, BEBs need big batteries to charge slowly overnight at depots or medium-

sized ones to charge periodically at fast-charging stations along the route. Fast-charging

10
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systems for BEBs, unlike slow ones, have several benefits. A bus with a smaller battery
is lighter, can carry more passengers, and costs less for batteries [24]. Many electric bus
projects worldwide use fast-charging systems. However, switching to them poses serious
challenges. While they save money upfront, agencies must carefully place fast-charging
stations to keep the transit system running smoothly. Fast charging can be costly without
an intelligent charging plan due to high power demand charges and expensive electricity
during busy times [30, 56]. Demand charges, also known as demand fees, are usually
billed monthly and start when there is a sudden spike in power usage during the billing

period [1].

2.1.1 Brief Overview of BEB Charging Technologies

Charging infrastructure technologies for BEBs encompass a variety of options tailored to

different operational needs.

Opportunity Charging
(On-route Charging)

[ Thunder Bay Depat 1

T —
Thunder Bay Waterfront W

Off-Service Charging

FI1GURE 2.1: BEB off-service and on-route charging

Off-service charging sites (Plug-In Charging): Charging sites a familiar and
straightforward plug-in for charging BEBs, the same as used for electric vehicles. They
are typically utilized for overnight charging at bus depots or designated charging locations,
allowing BEBs to start their routes with a full charge each day. One of the main
advantages of plug-in stations is their ease of installation and operation, making them a
convenient choice for transit operators. However, they also have limitations, such as the
need for BEBs to connect to the charging point using a charging cable. This process can
be time-consuming and labour-intensive, especially for large fleets. Additionally, plug-in
sites generally offer slower charging speeds than other technologies, resulting in longer

charging times and potential scheduling challenges for transit networks [62].
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On-route charging (Opportunity charging, Pantograph Charging): Charging
sites offer a more advanced charging solution for BEBs, allowing for rapid charging during
layovers or dwell times. These systems utilize overhead pantographs mounted on the BEB
and the charging infrastructure, enabling high-power charging with reduced charging times.
Pantograph systems can be integrated into existing infrastructure along bus routes or
main terminals, minimizing the need for additional infrastructure modifications. However,
they also come with challenges, including higher initial installation costs, compatibility
issues with different BEB models and charging infrastructure standards. Despite these
challenges, pantograph charging systems are gaining popularity in transit networks seeking

to minimize service disruptions and improve operational efficiency |55, 62].

Inductive charging Charging: Technology represents a cutting-edge approach to
BEB charging, offering the convenience of wireless charging without needing physical
connections. This technology is well-suited for dynamic charging scenarios, such as
in-motion charging on electrified roadways or stationary charging at bus stops. Inductive
charging pads can be embedded in the road surface, minimizing visual impact and
offering a seamless charging experience for BEBs. However, inductive charging also has
limitations, including lower charging efficiency than direct connection methods and higher
initial installation costs due to specialized infrastructure requirements. Additionally,
compatibility issues with current BEB models and infrastructure standards may limit the
adoption of inductive charging technology in transit networks. Despite these challenges,
ongoing advancements in inductive charging technology hold promise for the future of

BEB charging infrastructure.

Battery swapping is the least utilized method for on-route charging. It entails the
automated removal of depleted or low-SOC batteries and their replacement with fully
charged ones. Efficient management of the recharging process at these stations can help
minimize electricity costs. However, challenges include the potential financial implications
of acquiring additional batteries and ensuring battery swaps are conducted without

causing damage [36].

Advancements in BEB charging technology and infrastructure are ongoing, with research
focusing on areas such as ultra-fast charging, vehicle-to-grid (V2G) integration, and
dynamic charging solutions. These innovations aim to improve further the efficiency,

reliability, and sustainability of BEB operations within transit networks.

2.1.2 Brief Overview of the BEB Charging Planning

Charging infrastructure must be strategically deployed to support BEB operations within

the transit network. This may involve installing charging stations at bus depots for
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overnight charging, along bus routes for on-route charging, or at terminus stations for rapid
charging during layover periods. Infrastructure deployment should consider route coverage,
energy demand, BEB fleet size, and charging infrastructure interoperability. Charging
infrastructure should be integrated with energy management systems to optimize charging
schedules, balance energy consumption, and minimize operational costs. Intelligent
charging algorithms can prioritize charging based on energy demand, grid capacity,
and renewable energy availability. Efficient BEB charging planning contributes to the
sustainability of public transit systems by maximizing the utilization of renewable energy
sources and minimizing grid impacts. This aligns with goals such as achieving carbon

neutrality and promoting clean energy transitions in urban transportation systems.

Adoption and successful operation of electric public transportation systems depend on
effective planning for BEB charging in transit networks. According to [15], switching to
electric buses has several advantages for the economy, society, and environment. These
advantages include decreased greenhouse gas emissions, better air quality, and a reduced
dependency on fossil fuels. Nevertheless, deploying the charging infrastructure, energy
management plans, and operational optimization must be carefully considered to integrate

BEBs successfully into transit networks.

The importance of efficient BEB charging planning is underscored by its impact on
several key factors. Ensuring reliable and consistent charging infrastructure availability is
essential for maintaining the operational reliability of BEB fleets. Effective planning helps
prevent downtime due to insufficient charging capacity or equipment malfunctions. Ideal
placement of charging infrastructure and strategic scheduling of charging sessions can
help minimize infrastructure costs and energy expenses associated with BEB operation
[45]. Efficient charging planning involves strategically managing when and how BEBs are
charged within a transit network. By optimizing charging schedules and infrastructure
utilization, it becomes possible to minimize peak demand charges. These charges occur
when electricity usage spikes during periods of high demand, such as during peak hours
[26]. Transit operators can reduce the strain on the electrical grid by spreading out
charging sessions, avoiding simultaneous high-demand periods, and avoiding costly peak-
demand charges [30]. By optimizing the utilization of renewable energy sources and
minimizing grid impacts, efficient BEB charging planning contributes to the long-term
sustainability of public transit services. This aligns with achieving carbon neutrality and

promoting clean energy transitions in urban transportation systems [51].

Ensuring that BEBs are charged on time is crucial for maintaining reliable service
availability and punctual performance in public transit systems. When BEBs are correctly
charged, they can adhere to their schedules, minimizing delays and providing passengers

with a dependable transportation experience. This reliability contributes significantly
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to passenger satisfaction, as travellers can trust that the buses will arrive on time and
complete their routes efficiently. When public transit services consistently meet passengers’
needs for punctuality and reliability, they are more likely to choose public transportation
as their preferred mode of travel. Therefore, timely charging of BEBs is vital in enhancing
overall passenger satisfaction and ensuring public transit systems’ continued success and
viability [42].

2.2 Literature Review

This literature review thoroughly examines the adoption and utilization of BEBs, focusing
on charging infrastructure planning and scheduling strategies, namely off-service and
on-route charging. While off-service charging remains the primary method, it has received
less attention than opportunity charging. Studies aim to minimize energy costs and
alleviate peak loads, which are crucial concerns for public transit planners, with grid
constraints being an important consideration, particularly during simultaneous charging
at depots. Recent research emphasizes opportunity charging, categorized into two groups:
optimizing charging schedules based on predetermined BEB-to-trip assignments and joint
optimization considering both assignment and charging schedules. For fixed BEB-to-trip
assignments, the objective is to minimize en-route charging costs while ensuring successful
trip completion without energy depletion. Table 2.1 compares different research studies
based on their models and approaches. The primary objective is to minimize energy costs
or reduce peak loads, which are significant concerns for public transit planners. Grid
constraints are also considered, especially when multiple BEBs charge simultaneously at
the depot. Many studies focus on developing heuristic algorithms to solve the off-service
charging scheduling problem because this problem is often formulated as a Mixed-Integer
Linear Programming (MILP) or Mixed-Integer Nonlinear Programming (MINP), which

can be challenging to solve efficiently, particularly for large-scale scenarios.

[72] proposes a collaborative optimization model for electric bus line scheduling with
multiple on-route charging modes, showcasing cost reduction and enhanced utilization
rates for buses and drivers while considering the impact of bus line length on charging
mode selection. The model effectively reduces costs, improves utilization rates, and
minimizes the number of buses and drivers, with bus line length playing a significant role
in charging mode selection. [57| introduces a new framework for analyzing off-service
charging strategies for electric buses, emphasizing intelligent algorithms’ cost-saving
potential and the benefits of participating in ancillary services markets. It employs a
comprehensive methodology to assess charging costs and grid load impacts, exemplified

through a case study of three depots in the Netherlands, outlining the research design and
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mathematical models utilized. [63] proposes a Real-Time Smart Optimization algorithm,
utilizing a genetic algorithm to optimize BEB depot charging schedules, emphasizing the
need for intelligent charging algorithms and potential future enhancements. A framework
for analyzing BEB on-route charging strategies is introduced in [7], highlighting the
cost-saving potential of smart charging algorithms and the benefits of participating in
ancillary services markets. Through a detailed methodology incorporating diverse factors,
it evaluates charging impacts on costs and grid load, exemplified by a case study of
Dutch bus depots. [23] delves into the transition to electric buses in public transit; it
introduces an extended vehicle time-window scheduling model tailored to multi-depot
BEB transit systems, optimizing charging cost and waiting time. [33] introduces two
off-service charging scheduling algorithms for large bus depots to reduce peak load, tested
using actual data from the Alsterdorf depot, with one algorithm targeting peak demand
and the other aiming to flatten average load. Validation is done using a Bus Depot
Simulator, scheduling jobs, calculating intervals, and organizing buses to minimize peak

demand.

[34] tackles the multi-depot on-route BEBs scheduling problem, emphasizing BEB-depot
constraints and partial recharging policies, employing a mixed-integer programming
model and a branch-and-price heuristic algorithm to optimize operational costs effectively.
Key findings showcase the effectiveness of the branch-and-price algorithm in producing
high-quality solutions, demonstrating cost reduction potential through increased battery
capacity and charging rate. [4] explores electrifying public transportation with plug-in
charging and proposes a coordinated charging algorithm for BEBs depots, integrating
energy storage and photovoltaic systems to maximize profit and minimize grid impact.
The methodology involves mathematical modelling, simulations on the SkyBus fleet, and
assessing PEB charging impact in Auckland, NZ, with a proposed scheduling algorithm
for profit optimization and grid stability enhancement. [71] addresses the multi-objective
electric vehicle scheduling problem, integrating time-of-use pricing and peak load risk,
showcasing cost reduction and peak load management effectiveness. [78] addresses BEBs
charging scheduling problem by considering nonlinear charging profiles and battery degra-
dation effects, aiming to minimize costs for peak-hour bus services while determining
bus-to-trip assignments and charging schedules. It proposes mixed-integer programming
models and valid inequalities to solve the problem efficiently. It demonstrates its applica-
tion through a case study on Singapore’s No.171 bus route, offering insights for public
transport operators. [3] explores the managerial benefits of adding electric buses alongside
diesel vehicles in fleets, proposing a novel MIP formulation for Electric Vehicle Scheduling
Problems. [6] presents a vehicle scheduling method for electric buses, emphasizing idle
recharge times to enhance scheduling robustness amidst stochastic volatilities in trip travel

time and energy consumption. It underscores the significance of integrating recharging
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behaviours, limited driving range, and stochastic factors into scheduling strategies, advo-
cating against continuous trips and promoting collaborative optimization of scheduling

and charging plans.

[43] explores the challenge of efficiently scheduling electric vehicles (EVs) with limited range
and charging constraints, proposing mathematical formulations and solution methods
based on the deficit function theory and an equivalent bi-objective integer programming
model to minimize the total number of EVs and battery chargers. The study validates
the effectiveness of these models and methods through numerical examples and a real-life
case study in Singapore, indicating their potential for solving large-scale battery-electric
transit vehicle scheduling problems. |[31] proposes a method to optimize overnight
charging for electric bus fleets, aiming to minimize battery aging costs while considering
variable temperatures and operational conditions. Simulation results demonstrate a
substantial reduction in battery capacity loss over ten years compared to conventional
charging strategies, addressing concerns regarding battery longevity and operational costs
in increasing electrified transit in urban public transport. [58] proposed a MILP for
effective electric and hybrid /non-electric bus scheduling, emphasizing careful modelling
of mixed-fleet conditions. The methodology offers potential for decision support systems
transitioning to greener transport, utilizing an overlapping approach to enhance optimally
over complex decomposition schemes. [41] presents a formulation for the multi-depot
vehicle scheduling problem with multi-vehicle types, including EBs, addressing range
and refuelling constraints. It introduces a novel approach to generate feasible time-
space-energy and time-space networks, formulating the problem as an Integer linear
programming to minimize total system cost while considering emissions and proposing a
simplified formulation for computational efficiency. Applied to Hong Kong’s bus services,
it analyzes fleet size, operational and passenger costs, emissions, and implications of
government subsidies, Low-Emission-Zone scheduling, and safe driving ratios for bus
refuelling. [79] explores the Electric Bus Charging Facility Planning problem, focusing
on heterogeneous BEB fleets in urban transit networks. It aims to optimize charger
deployment at terminals and depots to meet daily charging demand while minimizing
costs, considering uncertainties in BEB travel time and battery degradation. A two-stage
stochastic programming model is formulated, and heuristic methods are proposed to solve
large-scale instances. Experiments on fictitious and real-world BEB transit networks in
Singapore evaluate model and algorithm performance, providing managerial insights for

enhancing BEB transit system efficiency.

In [70], a directed graph models the available charge times for BEBs, which periodically
return to the station for passenger pickup and battery recharging. A Constrained Network
Flow MILP problem is formulated to optimize charger scheduling and determine the

necessary number of chargers to maintain battery state of charge thresholds. This study
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TABLE 2.1: BEB Charging Litterateurs Overview
Authors Method Year | Objective Algorithm
Jahic et al. [33] Off-service | 2019 | Min peak load Simulaion
Gkiotsalitis et al. [23] | Off-service | 2023 | Min OPEX MILP
Brinkel et al. [7] Off-service | 2023 | peak-shaving Optimization
Verbrugge et al. [63] | Off-service | 2022 | Min OPEX S:}?;tlc Algo-
Rafique et al. [57] Off-service | 2022 Min OPEX and MILP
Penalty
Xie et al. [72] On-route | 2023 | Min OPEX NL Optimization
Jiang et al. [34] On-route | 2022 | Min OPEX X(}ILP and Heuris-
Arif et al. [4] Off-service | 2020 | Max profit MILP
Vehicle schedul- _
Wu et al. [71] On-route | 2022 ing & Min OPEX LP and Heuristic
Zhang et al. [78] On-route | 2022 | Min OPEX Branch and Price
Alvo et al. [3] Off-service | 2021 | Min BEBs Benders Decompo-
sition
) Min OPEX and
Bie et al. [6] On-route | 2021 CAPEX MINL and NCP
. Vehicle schedul-
Liu et al. [43] On-route | 2020 ing & Min OPEX ILP
Houbbadi et al. [31] Off-service | 2019 | Min aging cost Gra@gnt—based
Optimisation
Rinaldi et al. [58] On-route | 2020 | Min OPEX ILP
Min OPEX
. ,Emission Cost
Li et al. [41] On-route | 2019 MILP
and Passenger
Cost
reinforcement
Min (CAPEX), | learning method
Zhou et al. [79] On-route 2023 | Num of chargers | and a surrogate-
and their types based optimiza-
tion
Whitaker et al. [70] Both 2023 | Min TCO MILP
vehicle schedul- | simulated anneal-
Zhou et al. [77] On-route 2020 ing and chargers | ing and greedy dy-
scheduling namic selection

demonstrates the effectiveness of the proposed method in generating the best charging
plans. The approach considers costs and accommodates fixed and variable charger
numbers. This study views the problem independently without considering the current

diesel-fueled transit system. It causes the solution to be less practical.
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The paper [77] introduces a Multi-objective Bi-level programming model to optimize both
vehicle scheduling and charging schedule of a mixed bus fleet operating from a single
depot. The upper level of the model minimizes operating costs and carbon emissions while
considering constraints such as connecting times between trips and the limited driving
range of electric buses. The lower level focuses on charging scheduling to minimize charging
costs while meeting the constraints of charging time and driving distance limitations.
An integrated heuristic algorithm is proposed to solve the model, utilizing an iterative
neighbourhood search algorithm based on simulated annealing for vehicle scheduling and
a greedy dynamic selection strategy for charging scheduling. A case study based on a
mixed bus fleet in Beijing demonstrates the effectiveness of the proposed model and
solution algorithm. the paper does not consider transit system planning parameters such

as travel demand for vehicle scheduling.

In summary, current research predominantly focuses on deterministic optimization for BEB
charging facility planning and charging strategy, assuming known input parameters and
constraints with certainty. This approach aims to find the best solution that maximizes
or minimizes an objective function while satisfying all constraints, and it is suitable when
uncertainties are absent or accurately quantified. Therefore, the solutions heavily rely
on the input data, leaving planners needing insight into the process behind reaching
these solutions. Therefore, if there is a slight change in any input, we must perform
the entire optimization again, which could yield a completely different solution from the
previous one. Most research treats the BEB transit system as an entirely new problem
to solve. However, transit system planning involves a complex interplay of parameters,
such as route configurations, scheduling, passenger demand patterns, and infrastructure
capabilities. Therefore, viewing BEB transit system planning as dependent on the current
diesel-fueled transit system is crucial. The goal should be to maintain the existing route
structures, timetables, driver assignments, and operational shifts as much as possible

during the migration to a battery-electric transit system.

Previous studies on BEB on-route charging scheduling have focused on minimizing energy
costs by considering time-of-use tariffs, existing timetables, and charger power. However,
there remains to be a significant gap in the literature regarding adapting and tuning
existing timetables for a smooth transition to electric buses. This gap is crucial as it
involves optimizing the scheduling to reduce synchronization issues and ensure equitable
charging opportunities for all BEBs at the terminal. The current approaches often
overlook the need to adjust bus schedules to accommodate the specific requirements of
electric buses, such as varying charging times. Consequently, there needs to be more
strategies that address the equal distribution of charging opportunities among all buses
without changing the service rates defined by transit system planners, potentially leading

to inefficiencies and increased waiting times at charging stations. Addressing this gap
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would involve developing scheduling algorithms that minimize the required chargers at
each charging terminal, which lowers infrastructure and operating costs (minimizing power
demand), and optimizing the operational timetable to balance the charging demand across
all BEBs. This approach would maximize the charging infrastructure utilization and

enhance the overall efficiency of BEB operations.

The expectation for BEB transit systems to utilize a combination of various charging
technologies arises from several factors. Different regions or transit networks may possess
diverse infrastructure capabilities and constraints. Incorporating a mix of charging
technologies provides flexibility to adapt to existing infrastructure and accommodate
future expansions. Operational efficiency is paramount in BEB transit networks. Different
charging technologies offer varying charging speeds, costs, and energy efficiency. By
integrating these technologies, BEB transit systems can optimize charging processes
to minimize operational costs and maximize efficiency. BEBs may operate on routes
with varying distances and schedules, necessitating different charging solutions to meet
their range requirements. Utilizing a combination of charging technologies allows greater
flexibility in addressing range limitations and optimizing charging schedules. Despite
these anticipated benefits, only a few studies have explored integrating different charging
technologies in BEB transit networks. This could be attributed to factors such as the
complexity of coordinating multiple technologies, limited availability of data on their
performance and interoperability, and the relative novelty of BEB technology in many
regions. Hence, further research is needed to investigate how to effectively coordinate
and integrate diverse charging technologies in BEB transit networks to realize their full

potential.



Chapter 3

Estimation of Daily Required Energy
for the Transit System

3.1 Introduction

As we transition from diesel to electric buses, we must recognize that transit planning
primarily focuses on providing efficient, reliable, and accessible public transportation
services that meet the community’s needs. While electrification is a crucial step towards

reducing our environmental footprint, it’s not the only factor to consider.
A comprehensive transit plan must consider factors beyond electrification, such as:
e Population density and land use patterns influence the demand for public trans-
portation.

e Employment centers, educational institutions, and healthcare facilities that rely on

public transportation services.
e Accessibility and mobility needs, including those of people with disabilities.
e Traffic congestion and parking issues that public transportation can mitigate.
e Environmental impact and sustainability goals.
e Funding and budgeting constraints affecting the feasibility of electric bus adoption.
Given these priorities, it’s essential to recognize that the transition to electric buses will
not necessarily require changes to timetables and routes. The primary focus should be

ensuring that the new electric buses can seamlessly integrate into the existing public

transportation system without disrupting the community’s services.

20
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By prioritizing the community’s needs and focusing on the bigger picture, we can ensure
that the transition to electric buses succeeds while minimizing disruptions to the public
transportation services people rely on. It’s time to put the community’s needs first and

prioritize the factors that truly matter in transit planning.

As daily worst-case transit system energy consumption is the foundation of transit system
electrification planning, we utilize the data-driven model application to estimate the
BEB worst-case energy consumption for the transit system. This estimation is based
on the exact timetable of the diesel-fueled transit system. Subsequently, we use the
estimated amount for daily worst-case energy consumption estimation, which provides
the foundation for further planning. The energy consumption of BEB is influenced by
a complex web of factors, including the bus itself, its operation, its route, and external
conditions. This complexity makes it difficult to accurately predict how much energy
these buses use. In this section, we calculate the worst-case energy consumption for
each transit network route, considering its characteristics, such as stop densities and
topology. For the next step, we utilize the calculated energy consumption for each route

to determine the total energy consumption of the city of Thunder Bay’s transit system.

3.1.1 Preliminaries

We define the terminology and assumptions used in the context of a transit system as

follows:

e A service refers to a trip along a route, either starting from the starting terminal

and concluding at the ending terminal or vice versa.
e All fleet BEBs have specific schedules for their service times.

e Every BEB in the fleet departs from the depot at the start of the workday and

returns to the depot after completing its assigned services.

e Transit route or transit line typically refers to a specific path or track followed
by BEBs travelling between terminals. As the distances travelled for departure
and return services’ paths may vary, they are defined separately, with route length
denoted by superscripts 1 (for departure service path) and 2 (for return service

path).

e The worst-case energy consumption, caused by weather conditions, number of stops

along the route, number of passengers and driving habits, is a per kilometre.

e The transit system has one depot for all BEBs to stay overnight. A large fleet-size

transit system might have more than one depot.
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e One BEB serves each activity block shown in figure 3.1. That means the number of
the working fleet BEBs equals the number of activity blocks shown in Figures 1, 2,
and 3.

The set of BEBs in the transit system is presented by B = {b;,ba,...,by}. BL =
{bly,bly,...,bl,} denotes the set of transit system’s daily activity blocks. The services
within each activity block are denoted as {sj,sk,...,s:} and S = {s1,s2,...,8m} be the
set of all daily performed services within the transit system. Each block bl, in BL
comprises the daily services assigned to one BEB. The BEBs’ departure times from
and arrival times to the transit system depot are presented by T4 = {tgh’tglg’ . ,tgln}
and T* = {t}) ,t},,...,t4 } respectively. The service sy, € S consists of the tuple

<, M2 8 te

T? “Sm m’

es, > which is defined as follows.
The set T = {tg,,t5,,...,t5 } represents the transit system’s daily services starting

times, where Vs, € S, and the set T® = {tg ,tS,,...,t5_} represents the transit system’s
daily services ending times, where Vs, € S.
Definition (Service Routes): The set of transit system’s routes (lines) within the

transit network.

R={1,2,...,r}, VreR (3.1)

Definition (Departure/Return service routes’ Lengths-L): Set of distances from
the transit network routes’ initial terminals to their ending terminals (superscript 1) or
from the transit network routes’ ending terminals to their initial terminals (superscript
2).

L={1}2112 . 1112 wveRr (3.2)
Definition (Service-Routes’ Energy Consumption-E): Set of transit system services’

worst-case energy consumption:

E° = {e ,€5,, ..., }, Vsm€S (3.3)

S17? 7s2? S

A service’s worst-case energy consumption is given by:
e} =pxl, ie{l,2},jeR (3.4)

Figure 3.1 shows the transit system’s activity block.
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F1GURE 3.1: Transit system activity block

The required energy to perform each activity block in the activity blocks set BL, given
in Equation (5.1), equals the total energy requirement to perform the assigned activity

block’s services, as represented in Equation (5.2).

EP = {ey),, eply, .- epl,}, Vb, € BL (3.5)

€bl, :e:i+"'+e§j’ Ve:j,...,e:j c E° (36)
As the activity blocks encompass all necessary services within a working day, the transit
system’s daily worst-case energy requirement, denoted as E,, is the sum of all required

energy for each activity block. This is expressed as:

Ey = epl; + ...+ epl, Vebh, ...,€pl, € EP! (3.7)

3.1.2 BEB worst-Case Energy Consumption Estimation for Each Route
of City of Thunder Bay Transit Network

In this section, we calculate the city of Thunder Bay’s daily worst-case energy consumption
using the approach outlined in the previous section. Therefore, we must determine each
route service’s energy consumption rate (8). For calculating 8, we utilized the BEB
energy consumption simulator, depicted in Figure 3.2, which was developed by McMaster
University, BEB Simulator. It is designed based on a published paper titled "Machine

learning prediction models for battery-electric bus energy consumption in transit" [2].

The simulator parameters which are taken into account are:


https://ebus-sim.com/application
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=[L7,  ElectricBus Energy Simulator HOME SUPPORT PROJECT TEAM

Please provide the following information:

City name (optional)

Route length in Km *

Number of stops *

Average operating speed km/h *

Average ridership (number of passengers) *

Initial battery state of charge *

| 90% 75% 50% J

Driver's familiarity with e-Bus *

‘ N

Average New

| Competent

FIGURE 3.2: Screenshot of BEB energy consumption estimator application

The route length is measured in kilometres, and each route may have a different
length in two directions. Therefore, we assume different lengths for each direction

of the route.

Number of stops, we assume fifty percent of the total transit route’s stops as

worst-case stops.

Average BEB speed km/h during the service route.
Number of passengers in BEB during the service route.
Initial battery state of the charge (SOC)

Driver’s familiarity with BEBs can be set into three states: competent, average,

and new.
BEB battery capacity can be set into 150, 300, 450, and 600 kWh.
Electrical HVAC can be ON and OFF.

Working season can be summer, fall, winter, and spring.
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e Route topology grade can be set into Mostly Rolling Grade, Mostly downgrade,
Mostly upergrade, Extreme downgrade, and Extreme upergrade, for detailed infor-

mation, see Appendix A.

To calculate the worst-case energy consumption rate () for each transit line (route), we
made the following assumptions: the average BEB speed is 20 km/h, the average number
of passengers is 25, the initial battery state of charge is 50%, the driver’s familiarity with
BEB is competent, the BEB battery capacity is 600 kWh, the operation time is winter,
Electric HVAC is ON, and the number of stops is one-third of the total line (route) stops.
The topology grade %, the total number of stops, and the length for each route are
presented in Table 3.1.

TABLE 3.1: Thunder Bay’s transit network Lines (Routes) Parameters and Energy
Consumption Rate

Energy
Route Topology | Rolling Number
Direction Length Rate
(Line) Grade % | grade of Stops
kWh/Km
Cowan to Mary
1 -0.22 (-1%-1%) 30 22.755 2.08
NB
Mary NB to
1 0.24 (-1%-1%) 17 21.022 1.99
Cowan
Waterfront to
2 -0.01 (-1%-1%) 10 10.16 2.02
Confederation
Confederation
2 0.01 (-1%-1%) | 11 12.569 | 2
to Waterfront
Waterfront to
3C 0.89 (-1%-1%) 11 7.491 2.07
Catlegreen
Castkegeen to
3C -0.85 (-1%-1%) 10 7.898 2.05
Waterfront
Waterfront to
3J 0.88 (-1%-1%) 10 9.007 2.03
Sherwood
Sherwood to
3J -0.88 (-1%-1%) 7 5.459 2.05
Waterfront
Waterfront to
3M _ 0.01 (-1%-1%) 8 8.199 2.01
City hall
City hall to
3M -0.01 (-1%-1%) 8 7.193 2.03
Waterfront

Continued on next page
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Table 3.1 — continued from previous page
. Energy

Route Topology | Rolling Number
Direction Length Rate

(Line) Grade % | grade of Stops

kWh/Km

4 Loop 0 (-1%-1%) 18 23.862 1.98
Confederation

5 0.1 (-1%-1%) 8 5.34 2.08
to Brown
Brown to Con-

) ) -0.1 (-1%-1%) 6 4.984 2.04
federation

6 Loop 0 (-1%-1%) 11 23.826 1.94
Waterfront to

7 0.5 (-1%-1%) 12 7.921 2.08
Shunia
Shunia to Wa-

7 -0.5 (-1%-1%) 8 5.174 2.09
terfront
Intercity to

8 . 0.02 (-1%-1%) 14 15.391 2
City hall
City hall to In-

8 ) -0.02 (-1%-1%) 14 13.942 2.02
tercity
Waterfront to

9 _ 0.02 (-1%-1%) 11 14.635 1.99
Intercity
intercity to Wa-

9 -0.02 (-1%-1%) 12 13.943 2
terfront
Confederation

10 ) 0 (-1%-1%) 9 7.838 2.04
to City hall
City hall to

10 _ 0 (-1%-1%) 9 8.196 2.03
Confederation
Waterfront to

11 ) 0.86 (-1%-1%) 8 5.058 2.09
Winsdor
Winsdor to Wa-

11 -0.86 (-1%-1%) 8 5.708 2.07
terfront

12 Loop 0 (-1%-1%) 10 9.751 2.02
Waterfront to

13 -0.87 (-1%-1%) 7 7.048 2.01
Dawson
Dawson to Wa-

13 0.87 (-1%-1%) 10 9.970 2.01
terfront
City hall to Air-

14 0.07 (-1%-1%) 9 10.157 2
port

Continued on next page
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Table 3.1 — continued from previous page
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We can calculate the daily worst-case energy consumption amount by obtaining the £

value for all Thunder Bay’s transit network lines (routes). The daily working activity

consists of 33 activities, shown in Figures 1, 2, and 3, activity blocks containing scheduled

services.

With the worst-case energy consumption rate determined for all lines (routes) and their

corresponding lengths, we can calculate the daily worst-case energy consumption for the

entire transit system. Figure 3.3 illustrates the estimation of daily worst-case energy

consumption for all activity blocks within the Thunder Bay transit system. Consequently,

the total estimated daily worst-case required energy amounts to 17,612 kWh.
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FIGURE 3.3: Estimated daily worst-case energy consumption for the Thunder Bay

transit system’s activity blocks

In summary, we utilized the BEB energy consumption estimator, developed through a

data-driven approach, to determine the worst-case energy consumption rate for transit
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system lines (routes). Using this rate, along with the lengths of each route and their
corresponding service schedules (activity blocks), we estimated the daily worst-case energy
consumption for the entire transit system, specifically for the city of Thunder Bay. The
total estimated daily worst-case required energy is 17,612 kWh.



Chapter 4

Planning for Off-service Charging

4.1 Introduction

Off-service charging planning is crucial for electrifying transit systems. It involves
strategically scheduling the charging of BEBs during off-peak hours, typically overnight,
when the electricity demand is lower. This approach helps minimize disruptions to transit
operations while ensuring that BEBs are adequately charged to meet their daily service

requirements.

By implementing optimized off-service charging plans, transit agencies can achieve several
benefits. They can maximize fleet availability by ensuring that BEBs are fully charged
and ready for service during peak operating hours, thereby minimizing downtime and
improving service reliability. Additionally, they can realize cost savings by optimizing
charging infrastructure and leveraging off-peak electricity rates to reduce operational
costs associated with BEB charging. Efficient off-service charging planning also enables
grid integration by balancing the demand for electricity from BEB charging with the
capacity of the local power grid. This helps avoid overloads and ensures grid stability,
contributing to a more reliable and sustainable transit system overall. The primary
objective of off-service charging planning is to optimize charging infrastructure utilization
and minimize operational costs while meeting the energy demands of the transit fleet.
Optimization entails determining the minimum number and location of charging sites,
scheduling the charging sessions to coincide with periods of low electricity demand, and

considering factors such as battery capacity, route schedules, and depot capacities.

This chapter proposes the CGC model for strategically placing off-service charging sites.
The aim is to balance the demand for electricity from BEB charging with the capacity of
the local power grid, thereby avoiding overloads and ensuring grid stability. The proposed

29
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algorithm is evaluated by the placement of charging sites for two different capacities of
the local power grid. The chapter introduces a charging mechanism for BEBs during
off-service overnight charging in the second phase. The last part of the chapter discusses
the transition from diesel buses to fully electrified ones, utilizing the off-service charging
approach. This allows transit planners to calculate the required BEBs and assign them to

fulfill the diesel-fueled transit system’s activity blocks by the proposed CACA algorithm.

4.2 Brief Introduction to Clustering

Clustering is a fundamental technique in unsupervised learning that is used to group
similar data points. The goal is to partition a set of data points into clusters, where
points within the same cluster are more similar than those in other clusters. Various
clustering algorithms exist, each with its approach to defining similarity and grouping
data points. Some standard clustering algorithms include K-means, hierarchical clustering,
and DBSCAN.

4.2.1 Agglomerate Clustering

Agglomerative clustering is a hierarchical clustering technique used to group similar data
points. Agglomerative clustering indeed follows a bottom-up approach. It begins by
considering each data point as an individual cluster and iteratively merges the closest
pairs of clusters until all points belong to a single cluster. This process is driven by
similarity measures, merging clusters based on proximity or similarity. The result is a
hierarchical clustering structure where the final, single cluster encompasses all data points.
Linkage, a crucial aspect of this process, determines how the similarity between clusters
is measured and influences which clusters are merged at each step. There are several

standard linkage methods used in hierarchical agglomerative clustering:

e Single Linkage (Nearest Linkage): This method calculates the distance between
the closest points in two clusters and considers that distance as the distance between
the clusters. Single linkage tends to produce elongated clusters and is sensitive to
noise and outliers. It is computationally efficient but can suffer from the chaining

effect, where clusters are merged based on just one or a few close points.

e Complete Linkage (Farthest Linkage): Complete linkage calculates the distance
between the farthest points in two clusters and uses that distance to measure
dissimilarity between the clusters. This method tends to produce compact, spherical

clusters and is less sensitive to noise than a single linkage. However, it can need
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help with elongated clusters and is computationally more expensive than single

linkage due to the need to consider all pairwise distances.

e Average Linkage: Average linkage computes the average distance between all pairs
of points in the two clusters being merged. This method balances the strengths of
single and complete linkage and is more robust to noise. It tends to produce clusters

of more uniform sizes and shapes, making it a popular choice in many applications.

d(C;, C;) ICH Zdey (4.1)

x€C; yeC;

Where C; and Cj are two clusters. |C;| and |Cj| are the number of data points in
clusters Cj and Cj, respectively. d(x,y) is the distance between data points x and

y, which is used as similarity metric.

The average linkage criterion computes the average distance between all pairs of
data points in clusters C; and Cj. This formula calculates the distance between
clusters C; and Cj, which is then used in the agglomerative clustering process to

determine which clusters to merge at each step.

e Centroid Linkage: Centroid linkage calculates the distance between the merged
clusters’ centroids (mean points). This method often produces clusters of approxi-
mately equal size and is less sensitive to outliers. It is computationally efficient and

can handle high-dimensional data well.

e Ward’s Linkage: Ward’s linkage aims to minimize the increase in variance when
merging clusters. It tends to produce clusters with relatively equal sizes and compact
shapes. While computationally more intensive than other linkage methods, Ward’s
linkage is proper when the goal is to identify compact, homogeneous clusters. Given

two clusters A and B, the distance d(A, B) in Ward’s method can be represented as:

_|A[IB[

AAB) = 8]

lea — psl® (4.2)

where:

— |A| and |B| are the sizes of clusters A and B respectively.
— ua and pp are the centroids of clusters A and B.

— |pua — ps||? is the squared Euclidean distance between the centroids of clusters
A and B.

The choice of linkage method significantly impacts the resulting clusters’ characteristics,
including their shapes, sizes, and overall structure. Selecting a linkage method that aligns

with the data’s characteristics and the desired clustering outcome is essential.



Chapter 4. Planning for Off-service Charging 32

4.2.2 Evaluation Metrics

When evaluating clustering algorithms and benchmarking their performance, several
metrics can be used to assess the quality of the clustering results. Here are some

commonly used metrics:

e Silhouette Score (SS): This metric measures how similar an object is to its
cluster compared to others. It ranges from -1 to 1, where a high value indicates
that the object is well-matched to its cluster and poorly matched to neighbouring
clusters. The SS for a data point i is defined as:

. b(i) —af(i)
S5(1) = max{a(i), b(i)} (4:3)

where a(i) is the average distance between i and all other points in the same cluster

(i.e., the intra-cluster distance), and b(i) is the minimum average distance from i to

all points in any other cluster (i.e., the nearest-cluster distance).

The SS for the entire dataset is the mean SS of all data points:

8s == s(i) (4.4)
where n is the number of data points.

e Weighted Silhouette Score (WSS): We consider each data point’s weight to
compute a WSS.

N . .
WSS = Zi:lNW(l) .S(l) (45)
2z (i)
where N is the number of data points, w(i) is the weight of data point i, and s(i) is

the SS of data point i.

e Davies-Bouldin Index (DBI): This index computes the average similarity be-
tween each cluster and its most similar cluster, where lower values indicate better

clustering.

k
1 avg(Ri) + avg(R;)
DBI = — 4.6

k ;rﬁﬁi‘ < d(C1, C;) (46)
where k is the number of clusters, R; is the intra-cluster distances for cluster i,
d(Cj, Cj) is the distance between the centroids of clusters i and j, and avg(R;) is

the average intra-cluster distance for cluster i.
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4.3 Placement of Off-service Charging Sites by CGC Method

A BEB maintains a consistent energy consumption rate of 5 kWh/km. It has a battery
with the capacity of @ kWh with 2 percent of charge available. We assume that all
variables affecting BEB energy consumption, such as consumption rate and route length,
remain constant. Therefore, BEBs assigned to fulfill an activity block’s charging needs
should consistently need charging at a specific constant terminal along the assigned
activity block path that the BEB will travel during the working day. This specific

terminal is referred to as the block’s dispatching terminal.

T is a set representing the transit network’s terminals.

T = {t1,t, ...t} (4.7)

Definition (Dispatching Terminals-D): The set of the transit network’s terminals

where BEBs are sent for charging:

D= {dl,dg, . ,dq}, VqeT, & |D| < ’T’ (48)

Definition (Dispatching Rates(weights)-W): Set of dispatching rates asso