
Lakehead University

Planning for Battery Electric Buses
Charging in Transit System

by

Ehsan Sobhani

A thesis submitted in partial fulfillment for the
degree of Master

in the
Computer Science

July 2024

University Web Site URL Here (include http://lakeheadu.ca)
esobhani@lakeheadu.ca
Department or School Web Site URL Here (include http://)


Declaration of Authorship

I, Ehsan Sobhani, declare that this thesis titled ‘Planning for Battery Electric Buses

Charging in Transit System’ and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at

this University.

■ Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. Except

for such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



Lakehead University

Abstract
Faculty Name

Computer Science

Master of Science

by Ehsan Sobhani

With the growing focus on sustainable transportation, Battery Electric Buses (BEBs)

have emerged as a viable solution. BEBs have received significant recognition as an

environmentally conscious and sustainable means of transportation. In many cases,

transitioning from a conventional diesel-fueled transit system to a fully electric one is

essential. Designing an effective strategy, which encompasses placing charging sites and

implementing proper charging mechanisms, is crucial to ensuring efficient and consistent

charging of BEBs in an electrified public transit system. However, the challenge intensifies

when the transit planner aims to maintain a consistent daily service timetable.

The research endeavours to tackle this challenge by formulating efficient charging strate-

gies and methodologies for infrastructure planning. This thesis outlines a four-step

approach for transit system planners to attain optimal solutions, encompassing worst-case

energy consumption calculation, off-service charging site placement, off-service (overnight)

charging mechanism, on-route charging planning, and finding the number required BEBs

and integration of them to fully electric transit system. Four methods are designed

for use in planning: the Constrained Greedy Clustering (CGC) algorithm, the Priority

Charging Mechanism (PCM), the Constraint Affinity Clustering Algorithm (CACA), and

timetable tuning. A case study based on a real-world Thunder Bay, ON transit system

validates the proposed methodologies and assesses their effectiveness in improving the

overall performance of the BEB fleet. Results demonstrate significant improvements in

operational efficiency, cost reduction, and environmental sustainability by implementing

the proposed charging infrastructure optimization strategies.

The findings of this research contribute to the advancement of sustainable transportation

by providing practical insights and solutions to the challenges associated with BEB

charging infrastructure design and optimization.
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Chapter 1

Introduction

1.1 Introduction

Recently, battery electric buses (BEBs) have gained significant attention as a sustainable

and environmentally friendly transportation solution [46]. However, BEBs face the

challenge of a limited power supply, necessitating recharging when their battery energy is

depleted. There are two main methods for recharging the battery. i) Charging during the

bus route (known as on-route charging or opportunity/boost charging) and ii) recharging

when the bus is not in service (off-service charging) [18, 65]. On-route charging involves

recharging BEBs’ batteries while operating, typically at designated charging points along

their routes [19]. These charging sites can be installed at bus stops, terminals, or depots

to quickly top up the battery’s charge [5]. This method is particularly useful for extending

the range of BEBs and ensuring continuous service without requiring long breaks for

recharging. Off-service charging refers to recharging BEB batteries when the buses are

not in regular service, such as overnight or during scheduled breaks. This approach is

commonly used to ensure that BEBs have sufficient power to complete their routes and

minimize disruption to service during peak operational hours.

The high capital costs associated with BEBs pose a significant barrier to market pen-

etration. Consequently, several studies have conducted cost-benefit analyses of BEBs,

considering both capital and operating costs. For example, in [76], researchers found

that despite the high initial capital investment, the lower fuel costs of BEBs made them

competitive with diesel buses.

Various strategies have been proposed to address demand charges associated with BEBs.

Gallo et al. [22] suggests methods such as enhancing EB efficiency, utilizing energy

transfer technology, employing time-of-use pricing, or temporarily suspending demand

1
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charges. You et al. [74] propose a battery-switching strategy where depleted batteries are

replaced with charged ones at battery-switching stations, minimizing electricity costs and

battery degradation.

In [29], fast chargers, in combination with Electric Shock chargers, are used to pinpoint

the ideal charging station locations. The study employed a simulation method to examine

the relationship between battery capacity and the charging capability of fast-charging

stations. In [59], a method is employed to investigate the connection between battery

capacity and the charging capability of fast-charging sites.

Past studies addressing the setup of BEB fleets have typically utilized optimization models

that need to be more user-friendly for transit system operators. These models rely on

specific assumptions, parameters, and constraints that can present challenges concerning

BEB fleets. These models provide charging opportunities based on these inputs, but if

any of these factors change during operation, the optimized solutions may become invalid.

Consequently, numerous external factors can disrupt the model’s functionality, making

it less practical for operators. Additionally, these models can encounter computational

difficulties when dealing with extensive transit systems featuring multiple terminals and

depots. Furthermore, most researchers have concentrated on on-route charging strategies

dependent on unpredictable delays in service schedules [69, 73].

Urban transit system planning considers numerous factors in its design, including pop-

ulation density, land use, traffic patterns, demographics, accessibility, environmental

considerations, economic development, safety and security, technological advances, and

stakeholder engagement [9, 10, 35, 40, 80]. By integrating these considerations, planners

can develop transit systems that are efficient, accessible, sustainable, and responsive to

the needs of urban communities. Transit systems are often designed for urban areas

with specific characteristics tailored to the population’s needs and environment. With

the transition to electrification, it is crucial to maintain the fundamental characteris-

tics of the existing transit system and adhere to key planning priorities, which may

take precedence over optimizing electric power consumption and its impact on the grid.

More comprehensive planning is needed for BEBs charging within the electrification of

diesel-fueled transit systems while maintaining unchanged daily schedule services. This

comprehensive planning map should guide the system planner, starting from an initial

point and sequentially selecting charging approaches to achieve the best strategy to

minimize infrastructure and operating costs. The planning map should outline practical

charging mechanisms for each chosen strategy and ultimately provide the locations of

charging sites, chargers’ characteristics, the minimum number of chargers at each site,

the number of required BEBs in a fully electric transit system, and propose schedule

tuning to minimize Capital Expenditure (CAPEX) and Operating Expenditure (OPEX).
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Developing a robust charging strategy encompassing off-service and on-route charging

approaches or adding extra BEBs can solve the uncertainties of relying solely on one

charging method. By considering multiple charging approaches, we can explore the most

effective infrastructure and operating cost while maintaining the transit timetable services

established by transit system planners for diesel-fueled transit systems. This approach

allows flexibility and efficiency in managing electric bus fleets without altering inherited

transit schedules.

The proposed map begins by pinpointing worst-case energy consumption estimation for

daily schedules as the starting point. It then endeavours to meet the estimated energy

needs through various charging approaches sequentially, starting with the one that incurs

lower infrastructure and operating costs (overnight charging) and progressing towards

a more expensive approach (adding extra BEBS). As Figure 1.1 shows energy serves as

the foundation of this comprehensive map, acting as the bridge between the diesel-fueled

transit system and the battery-electric-powered transit system, operating on the exact

service schedules.

Figure 1.1: Overall view of electrification of transit system
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1.2 Technical Challenges

Electrifying transit systems faces numerous challenges, including:

1. Strategic placement of charging sites presents a challenge for transit planners, partic-

ularly concerning power grid considerations. Efficient placement can reduce energy

consumption for BEBs, minimizing operational costs and aiding load balancing

across the power grid. Moreover, when repurposing diesel bus depots and garages

for electrified systems to mitigate infrastructure costs, considering newly calculated

placement locations could be beneficial for locating charging sites from depots and

garages, particularly in large-scale transit systems.

2. Off-service charging should occur during hours with minimum electricity cost,

avoiding overloads or disruptions in electricity supply by ensuring that the combined

power demand from charging BEBs does not exceed the power grid’s capacity

(power grid constraints) while determining the minimum number of charging piles

in charging sites can significantly reduce CAPEX, an essential consideration for

transit system planners when migrating from a diesel-fueled system to an electrified

one. Unified charging processes for BEBs off-service (overnight) are essential for

minimizing charging malfunctions and optimizing resource utilization in charging

sites (depots or garages). Designing the proper charging model to ensure that all

BEBs receive the maximum possible charge despite pile malfunctions is challenging

for planners. This approach also enables planners to automate the charging process,

reducing OPEX and malfunctions while eliminating the need for manual intervention.

3. Due to the limited travelling distances of BEBs compared to diesel buses, planners

often require more BEBs to fulfill transit daily services. However, BEBs, regardless

of size and battery technology, tend to be expensive [38]. Therefore, one of the

main challenges for planners is finding the minimum number of BEBs and efficiently

assigning them to transit daily services. In essence, efficiently assigning BEBs to

fulfill transit daily services minimizes the overall number of BEBs required for

operation.

4. Implementing on-route charging presents challenges, irrespective of the BEB bat-

tery’s capacity. It often requires the installation of costly fast-charging infrastructure

[19]. Adhering to bus service schedules by relying on the time intervals between

services for recharging creates a strong connection between charging times and

service schedules. Relying heavily on service schedules has a detrimental impact on

charging schedules, which are inherently inflexible and critically essential. Therefore,
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the challenges are specifying the minimum transit terminals for on-route charg-

ing to satisfy all working BEBs on-route charging. Moreover, allocating on-route

chargers efficiently to BEBs ensures BEBs have the most opportunities for charging

in pre-defined timetable schedules. In large-scale transit systems, selecting only

one charging approach can be challenging due to varying power grid constraints,

charging sites’ locations, and routes’ topologies. Incorporating both off-service and

on-route charging introduces complexity to the planning process. This complex-

ity stems from coordinating charging schedules, determining ideal infrastructure

placement, and managing operational logistics to ensure seamless integration while

minimizing service disruptions. Moreover, factors like battery capacity, charging

times, and route variations further complicate decision-making for transit planners.

Therefore, achieving a balance between these charging approaches is essential for

effectively managing the electrification of transit systems.

1.3 Research Approach

We aim to divide the charging planning into sub-problems and propose practical solutions.

Based on the transit system characteristics, planners can select the most suitable charging

strategy and apply the corresponding methods to migrate to an electric transit system.

In addressing the challenges of planning BEB charging within the transit system, our

approach involves thoroughly analyzing the existing diesel-fueled transit system designed

to meet the urban public commuting demands. This analysis aims to estimate the

worst-case daily energy consumption of the diesel-fueled transit system. Doing so gives us

insight into the most demanding scenarios planners encounter during the BEBs charging

planning process. Understanding these worst-case scenarios is essential for devising

effective strategies to optimize BEB charging infrastructure and ensure reliable service

delivery within the transit system. Subsequently, we endeavour to address the energy

requirements in various ways, ranging from cost-effective off-service charging to more

expensive solutions such as on-route (opportunity) charging and adding extra BEBs,

respectively, considering charging infrastructure and energy costs.

This study uses energy as the common denominator between diesel-fueled and battery-

electric-powered transit systems. We start our analysis from the perspective of diesel-fueled

transit system activities, where we can see the worst-case daily BEBs energy consumption.

After that, we plan to supply the required energy efficiently. Firstly, we attempted to

procure energy through off-service (overnight) charging, the most cost-effective approach

due to the lower electricity rates during nighttime hours as depicted in Figure 4.5

(bars in orange colour). The endeavour yielded two methods: the Constrained Greedy
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Clustering (CGC) for ideal placement of off-service charging sites to comply with power

grid constraints, and The Priority Charging Mechanism (PCM) is designed explicitly

for off-service charging to ensure that all BEBs are charged simultaneously, thereby

guaranteeing efficient charging performance even in the event of charger malfunctions by

distributing the malfunction effect between all charging BEBs.

Driven by the challenge of determining the minimum number of on-route charging

terminals, their most effective locations, and their allocation to BEBs, we developed the

On-route Charging strategy. This strategy utilizes inherited service schedules from the

diesel-fueled transit system and allocates chargers to BEBs, ensuring energy balance

among all chargers. Moreover, we proposed the service schedule tuning method to

maximize the BEBs charging opportunities. It’s worth mentioning that the proposed

planning strategy can be used either independently or as a complementary component

with off-service charging. Transit system planners facing limitations with off-service

charging can employ this approach independently.

In cases where neither off-service nor on-route charging can fully supply the daily energy

needs of the transit system, transit system planners are compelled to add extra BEBs to

meet the scheduled services. We propose a planning approach to determine the minimum

number of BEBs required for a fully electric transit system and to assign these BEBs

in a way that minimizes energy consumption while fulfilling service requirements. The

outcome is the Constrained Affinity Clustering Algorithm (CACA), which clusters the

distances travelled by BEBs to fulfill transit system activity blocks. This clustering

efficiently enables us to utilize shared BEBs to fulfill the services belonging to each

cluster.

1.4 Contributions

The following are the contributions of the thesis.

1. To address challenge one, this thesis introduces the CGC algorithm, an approach

designed to determine the most effective charging placement. The algorithm uses

clustering techniques to minimize energy consumption and optimize charging load

distribution in transit systems. This improves the placement of charging sites

for off-service charging in transit systems, aiming to reduce energy consumption

and balance the load among the charging sites. Further, this thesis introduces

an intelligent overnight charging mechanism called PCM, specifically designed to

charge BEBs simultaneously using the minimum number of chargers. This approach

directly addresses challenges three and four. The goal is to minimize infrastructure
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costs while effectively distributing the impact of charging malfunctions among all

BEBs being charged, thereby mitigating the effects of such malfunctions.

2. To address challenge two, a comprehensive assessment of daily energy requirements

is carried out under various scenarios, yielding findings contributing to solving

subsequent challenges. This thesis suggests a planning approach (CACA) to calculate

the minimum number of BEBs needed in a transit system by distributing them

among the activity blocks in the transit system, tackling challenge three. The

CACA algorithm ensures efficient allocation of BEBs to activity blocks, minimizing

shared BEB travel distances.

3. To address challenge four, the thesis presented a comprehensive three-step plan-

ning approach to determine the minimum number of on-route charging terminals

necessary within a transit system. Emphasizing effective allocation, it addresses

the strategic assignment of transit system activity blocks to the identified charg-

ing terminals, optimizing the charging opportunities for BEBs. Furthermore, the

approach aims to balance the distribution of supplied energy among the charging

terminals, ensuring efficient utilization of resources across the transit network. The

thesis proposes a planning mechanism, Figure 1.1, for transit planners aiming to

utilize multiple charging approaches while minimizing total costs efficiently. This

mechanism involves three prioritized steps, allowing planners to skip each step

individually and use the others in the design process. By providing this flexible

approach, planners can adapt their strategies based on their specific needs and

constraints, ultimately achieving cost-effective electrification of the diesel-fueled

transit system.

4. To address challenge four, which stems from inheriting the service timetable from

a diesel-fueled transit system, maximizing the charging opportunities for each

BEB requires them to be at the charging terminal at intervals that maximize

temporal separation from other BEBs at the same charging terminal. The thesis

proposes a timetable tuning method to achieve maximum temporal dispersion

and minimize synchronicity without altering the activity blocks’ service rate. This

method enhances BEB charging opportunities by tuning the timing of transit system

activity blocks slightly forward or backward.

1.5 Publications

E. Sobhani, A. Yassine and A. Ameli, "Maximizing On-Route BEB Charging Opportunity

through Temporal Dispersion in Inherited Transit Timetables" IEEE Transactions on

Intelligent Transportation Systems, 2024.
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E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Placement of Charging Sites for

Off-Service Battery Electric Bus in Transit Systems," 2024 IEEE Energy Conference

(ENERGYCON), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Optimal Planning for Off-Service

Charging of Electric Public Transit Networks," 2024 IEEE Smart Cities Futures Summit

(2024 IEEE SCF), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Intelligent Overnight Charging

Mechanism for Battery Electric Buses in a Transit Network," 2024 International Joint

Conference on Computer Science and Software Engineering (TIMES-iCON2024), 2024.

E. Sobhani, A. Yassine and A. Ameli, S. Riahinia "Optimal Planning for On-Route

Charging of Battery Electric Buses in Public Transit Networks," 2024 IEEE Smart Cities

Futures Summit (2024 IEEE SCF), 2024.

1.6 Organization

This thesis is organized as follows:

• Chapter 1: Introduction - This chapter provides a comprehensive overview of the

thesis, giving insight into its various aspects and components.

• Chapter 2: Background, Related Work - This chapter describes migrating diesel-

fueled to battery electric-power buses. This chapter also presents a summary

of relevant published works. This chapter also presents a summary of relevant

published works.

• Chapter 3: Estimation of Required Energy for the Transit System - This chapter

introduces the methodology for estimating the daily energy requirements of a

battery-electric-powered transit system.

• Chapter 4: Planning for Off-Service Charging - This chapter introduces an algorithm

for strategically placing charging sites within a transit system to minimize energy

consumption and ensure a uniform distribution of charging loads across all chargers.

Additionally, it presents an off-service (overnight) charging mechanism, prioritizing

the simultaneous charging of all BEBs while minimizing the impact of charging

malfunctions. Furthermore, it introduces the CACA algorithm, which effectively

plans off-service charging for fully electrified public transit systems, determining

the number of BEBs and efficiently assigning them to activity blocks.
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• Chapter 5: Planning for opportunity charging - This chapter introduces effective

planning for on-route charging BEBs. It emphasizes optimizing the number of

charging terminals and strategically allocating them to BEBs to maximize charging

opportunities while ensuring balanced energy distribution among the charging

terminals. This chapter presents a method for adjusting the inherited timetable

from diesel-fueled transit systems without affecting the service rate to maximize

BEBs’ opportunity to charge.

• Chapter 6: Conclusion and Research Directions - This chapter presents the conclu-

sions drawn from the analysis of the results obtained in this study. Additionally,

it proposes potential avenues for future research and provides an overview of the

current limitations.



Chapter 2

Background and Related Work

This chapter provides an overview of the background and related work pertinent to

planning BEB charging in transit networks. It includes an analysis of the body of research

on approaches, technologies, and literature pertinent to the effective installation of

charging infrastructure and the enhancement of BEB charging tactics in transit networks.

2.1 Background

In recent years, a critical global effort to address climate change has focused on reducing

emissions. With the transportation sector contributing 20% of global CO2 emissions in

2020 and 75% of those emissions from motor vehicles [13], it is essential to implement

decarbonization and sustainability measures in this sector. Policymakers have long

recognized public transportation as crucial for promoting environmentally friendly mobility

[16, 21]. One widely adopted strategy worldwide is electrifying public buses [48, 67]. BEBs

have garnered significant attention due to their unique advantages: they are quieter, more

reliable, energy-efficient, and emit no tailpipe emissions [68]. Many countries, including

China [17], the United States [20], Korea [11], and various European countries [12], have

conducted BEB demonstration projects. By May 2020, China had deployed over 420,000

electric buses, constituting 60% of its transit fleet and nearly 99% of the world’s total

[32]. The US e-bus market has experienced a 66% increase since 2021 [61]. Despite the

recent increase in electric bus adoption, there is still a long journey ahead before BEBs

widely replace traditional buses.

Two significant challenges to making transit buses electric are planning where and when

to charge BEBs [28, 39]. Batteries currently store less energy than diesel ones. According

to [25, 44, 59], BEBs need big batteries to charge slowly overnight at depots or medium-

sized ones to charge periodically at fast-charging stations along the route. Fast-charging

10
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systems for BEBs, unlike slow ones, have several benefits. A bus with a smaller battery

is lighter, can carry more passengers, and costs less for batteries [24]. Many electric bus

projects worldwide use fast-charging systems. However, switching to them poses serious

challenges. While they save money upfront, agencies must carefully place fast-charging

stations to keep the transit system running smoothly. Fast charging can be costly without

an intelligent charging plan due to high power demand charges and expensive electricity

during busy times [30, 56]. Demand charges, also known as demand fees, are usually

billed monthly and start when there is a sudden spike in power usage during the billing

period [1].

2.1.1 Brief Overview of BEB Charging Technologies

Charging infrastructure technologies for BEBs encompass a variety of options tailored to

different operational needs.

Figure 2.1: BEB off-service and on-route charging

Off-service charging sites (Plug-In Charging): Charging sites a familiar and

straightforward plug-in for charging BEBs, the same as used for electric vehicles. They

are typically utilized for overnight charging at bus depots or designated charging locations,

allowing BEBs to start their routes with a full charge each day. One of the main

advantages of plug-in stations is their ease of installation and operation, making them a

convenient choice for transit operators. However, they also have limitations, such as the

need for BEBs to connect to the charging point using a charging cable. This process can

be time-consuming and labour-intensive, especially for large fleets. Additionally, plug-in

sites generally offer slower charging speeds than other technologies, resulting in longer

charging times and potential scheduling challenges for transit networks [62].
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On-route charging (Opportunity charging, Pantograph Charging): Charging

sites offer a more advanced charging solution for BEBs, allowing for rapid charging during

layovers or dwell times. These systems utilize overhead pantographs mounted on the BEB

and the charging infrastructure, enabling high-power charging with reduced charging times.

Pantograph systems can be integrated into existing infrastructure along bus routes or

main terminals, minimizing the need for additional infrastructure modifications. However,

they also come with challenges, including higher initial installation costs, compatibility

issues with different BEB models and charging infrastructure standards. Despite these

challenges, pantograph charging systems are gaining popularity in transit networks seeking

to minimize service disruptions and improve operational efficiency [55, 62].

Inductive charging Charging: Technology represents a cutting-edge approach to

BEB charging, offering the convenience of wireless charging without needing physical

connections. This technology is well-suited for dynamic charging scenarios, such as

in-motion charging on electrified roadways or stationary charging at bus stops. Inductive

charging pads can be embedded in the road surface, minimizing visual impact and

offering a seamless charging experience for BEBs. However, inductive charging also has

limitations, including lower charging efficiency than direct connection methods and higher

initial installation costs due to specialized infrastructure requirements. Additionally,

compatibility issues with current BEB models and infrastructure standards may limit the

adoption of inductive charging technology in transit networks. Despite these challenges,

ongoing advancements in inductive charging technology hold promise for the future of

BEB charging infrastructure.

Battery swapping is the least utilized method for on-route charging. It entails the

automated removal of depleted or low-SOC batteries and their replacement with fully

charged ones. Efficient management of the recharging process at these stations can help

minimize electricity costs. However, challenges include the potential financial implications

of acquiring additional batteries and ensuring battery swaps are conducted without

causing damage [36].

Advancements in BEB charging technology and infrastructure are ongoing, with research

focusing on areas such as ultra-fast charging, vehicle-to-grid (V2G) integration, and

dynamic charging solutions. These innovations aim to improve further the efficiency,

reliability, and sustainability of BEB operations within transit networks.

2.1.2 Brief Overview of the BEB Charging Planning

Charging infrastructure must be strategically deployed to support BEB operations within

the transit network. This may involve installing charging stations at bus depots for



Chapter 2. Background, Related Work 13

overnight charging, along bus routes for on-route charging, or at terminus stations for rapid

charging during layover periods. Infrastructure deployment should consider route coverage,

energy demand, BEB fleet size, and charging infrastructure interoperability. Charging

infrastructure should be integrated with energy management systems to optimize charging

schedules, balance energy consumption, and minimize operational costs. Intelligent

charging algorithms can prioritize charging based on energy demand, grid capacity,

and renewable energy availability. Efficient BEB charging planning contributes to the

sustainability of public transit systems by maximizing the utilization of renewable energy

sources and minimizing grid impacts. This aligns with goals such as achieving carbon

neutrality and promoting clean energy transitions in urban transportation systems.

Adoption and successful operation of electric public transportation systems depend on

effective planning for BEB charging in transit networks. According to [15], switching to

electric buses has several advantages for the economy, society, and environment. These

advantages include decreased greenhouse gas emissions, better air quality, and a reduced

dependency on fossil fuels. Nevertheless, deploying the charging infrastructure, energy

management plans, and operational optimization must be carefully considered to integrate

BEBs successfully into transit networks.

The importance of efficient BEB charging planning is underscored by its impact on

several key factors. Ensuring reliable and consistent charging infrastructure availability is

essential for maintaining the operational reliability of BEB fleets. Effective planning helps

prevent downtime due to insufficient charging capacity or equipment malfunctions. Ideal

placement of charging infrastructure and strategic scheduling of charging sessions can

help minimize infrastructure costs and energy expenses associated with BEB operation

[45]. Efficient charging planning involves strategically managing when and how BEBs are

charged within a transit network. By optimizing charging schedules and infrastructure

utilization, it becomes possible to minimize peak demand charges. These charges occur

when electricity usage spikes during periods of high demand, such as during peak hours

[26]. Transit operators can reduce the strain on the electrical grid by spreading out

charging sessions, avoiding simultaneous high-demand periods, and avoiding costly peak-

demand charges [30]. By optimizing the utilization of renewable energy sources and

minimizing grid impacts, efficient BEB charging planning contributes to the long-term

sustainability of public transit services. This aligns with achieving carbon neutrality and

promoting clean energy transitions in urban transportation systems [51].

Ensuring that BEBs are charged on time is crucial for maintaining reliable service

availability and punctual performance in public transit systems. When BEBs are correctly

charged, they can adhere to their schedules, minimizing delays and providing passengers

with a dependable transportation experience. This reliability contributes significantly
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to passenger satisfaction, as travellers can trust that the buses will arrive on time and

complete their routes efficiently. When public transit services consistently meet passengers’

needs for punctuality and reliability, they are more likely to choose public transportation

as their preferred mode of travel. Therefore, timely charging of BEBs is vital in enhancing

overall passenger satisfaction and ensuring public transit systems’ continued success and

viability [42].

2.2 Literature Review

This literature review thoroughly examines the adoption and utilization of BEBs, focusing

on charging infrastructure planning and scheduling strategies, namely off-service and

on-route charging. While off-service charging remains the primary method, it has received

less attention than opportunity charging. Studies aim to minimize energy costs and

alleviate peak loads, which are crucial concerns for public transit planners, with grid

constraints being an important consideration, particularly during simultaneous charging

at depots. Recent research emphasizes opportunity charging, categorized into two groups:

optimizing charging schedules based on predetermined BEB-to-trip assignments and joint

optimization considering both assignment and charging schedules. For fixed BEB-to-trip

assignments, the objective is to minimize en-route charging costs while ensuring successful

trip completion without energy depletion. Table 2.1 compares different research studies

based on their models and approaches. The primary objective is to minimize energy costs

or reduce peak loads, which are significant concerns for public transit planners. Grid

constraints are also considered, especially when multiple BEBs charge simultaneously at

the depot. Many studies focus on developing heuristic algorithms to solve the off-service

charging scheduling problem because this problem is often formulated as a Mixed-Integer

Linear Programming (MILP) or Mixed-Integer Nonlinear Programming (MINP), which

can be challenging to solve efficiently, particularly for large-scale scenarios.

[72] proposes a collaborative optimization model for electric bus line scheduling with

multiple on-route charging modes, showcasing cost reduction and enhanced utilization

rates for buses and drivers while considering the impact of bus line length on charging

mode selection. The model effectively reduces costs, improves utilization rates, and

minimizes the number of buses and drivers, with bus line length playing a significant role

in charging mode selection. [57] introduces a new framework for analyzing off-service

charging strategies for electric buses, emphasizing intelligent algorithms’ cost-saving

potential and the benefits of participating in ancillary services markets. It employs a

comprehensive methodology to assess charging costs and grid load impacts, exemplified

through a case study of three depots in the Netherlands, outlining the research design and
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mathematical models utilized. [63] proposes a Real-Time Smart Optimization algorithm,

utilizing a genetic algorithm to optimize BEB depot charging schedules, emphasizing the

need for intelligent charging algorithms and potential future enhancements. A framework

for analyzing BEB on-route charging strategies is introduced in [7], highlighting the

cost-saving potential of smart charging algorithms and the benefits of participating in

ancillary services markets. Through a detailed methodology incorporating diverse factors,

it evaluates charging impacts on costs and grid load, exemplified by a case study of

Dutch bus depots. [23] delves into the transition to electric buses in public transit; it

introduces an extended vehicle time-window scheduling model tailored to multi-depot

BEB transit systems, optimizing charging cost and waiting time. [33] introduces two

off-service charging scheduling algorithms for large bus depots to reduce peak load, tested

using actual data from the Alsterdorf depot, with one algorithm targeting peak demand

and the other aiming to flatten average load. Validation is done using a Bus Depot

Simulator, scheduling jobs, calculating intervals, and organizing buses to minimize peak

demand.

[34] tackles the multi-depot on-route BEBs scheduling problem, emphasizing BEB-depot

constraints and partial recharging policies, employing a mixed-integer programming

model and a branch-and-price heuristic algorithm to optimize operational costs effectively.

Key findings showcase the effectiveness of the branch-and-price algorithm in producing

high-quality solutions, demonstrating cost reduction potential through increased battery

capacity and charging rate. [4] explores electrifying public transportation with plug-in

charging and proposes a coordinated charging algorithm for BEBs depots, integrating

energy storage and photovoltaic systems to maximize profit and minimize grid impact.

The methodology involves mathematical modelling, simulations on the SkyBus fleet, and

assessing PEB charging impact in Auckland, NZ, with a proposed scheduling algorithm

for profit optimization and grid stability enhancement. [71] addresses the multi-objective

electric vehicle scheduling problem, integrating time-of-use pricing and peak load risk,

showcasing cost reduction and peak load management effectiveness. [78] addresses BEBs

charging scheduling problem by considering nonlinear charging profiles and battery degra-

dation effects, aiming to minimize costs for peak-hour bus services while determining

bus-to-trip assignments and charging schedules. It proposes mixed-integer programming

models and valid inequalities to solve the problem efficiently. It demonstrates its applica-

tion through a case study on Singapore’s No.171 bus route, offering insights for public

transport operators. [3] explores the managerial benefits of adding electric buses alongside

diesel vehicles in fleets, proposing a novel MIP formulation for Electric Vehicle Scheduling

Problems. [6] presents a vehicle scheduling method for electric buses, emphasizing idle

recharge times to enhance scheduling robustness amidst stochastic volatilities in trip travel

time and energy consumption. It underscores the significance of integrating recharging
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behaviours, limited driving range, and stochastic factors into scheduling strategies, advo-

cating against continuous trips and promoting collaborative optimization of scheduling

and charging plans.

[43] explores the challenge of efficiently scheduling electric vehicles (EVs) with limited range

and charging constraints, proposing mathematical formulations and solution methods

based on the deficit function theory and an equivalent bi-objective integer programming

model to minimize the total number of EVs and battery chargers. The study validates

the effectiveness of these models and methods through numerical examples and a real-life

case study in Singapore, indicating their potential for solving large-scale battery-electric

transit vehicle scheduling problems. [31] proposes a method to optimize overnight

charging for electric bus fleets, aiming to minimize battery aging costs while considering

variable temperatures and operational conditions. Simulation results demonstrate a

substantial reduction in battery capacity loss over ten years compared to conventional

charging strategies, addressing concerns regarding battery longevity and operational costs

in increasing electrified transit in urban public transport. [58] proposed a MILP for

effective electric and hybrid/non-electric bus scheduling, emphasizing careful modelling

of mixed-fleet conditions. The methodology offers potential for decision support systems

transitioning to greener transport, utilizing an overlapping approach to enhance optimally

over complex decomposition schemes. [41] presents a formulation for the multi-depot

vehicle scheduling problem with multi-vehicle types, including EBs, addressing range

and refuelling constraints. It introduces a novel approach to generate feasible time-

space-energy and time-space networks, formulating the problem as an Integer linear

programming to minimize total system cost while considering emissions and proposing a

simplified formulation for computational efficiency. Applied to Hong Kong’s bus services,

it analyzes fleet size, operational and passenger costs, emissions, and implications of

government subsidies, Low-Emission-Zone scheduling, and safe driving ratios for bus

refuelling. [79] explores the Electric Bus Charging Facility Planning problem, focusing

on heterogeneous BEB fleets in urban transit networks. It aims to optimize charger

deployment at terminals and depots to meet daily charging demand while minimizing

costs, considering uncertainties in BEB travel time and battery degradation. A two-stage

stochastic programming model is formulated, and heuristic methods are proposed to solve

large-scale instances. Experiments on fictitious and real-world BEB transit networks in

Singapore evaluate model and algorithm performance, providing managerial insights for

enhancing BEB transit system efficiency.

In [70], a directed graph models the available charge times for BEBs, which periodically

return to the station for passenger pickup and battery recharging. A Constrained Network

Flow MILP problem is formulated to optimize charger scheduling and determine the

necessary number of chargers to maintain battery state of charge thresholds. This study
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Table 2.1: BEB Charging Litterateurs Overview

Authors Method Year Objective Algorithm

Jahic et al. [33] Off-service 2019 Min peak load Simulaion

Gkiotsalitis et al. [23] Off-service 2023 Min OPEX MILP

Brinkel et al. [7] Off-service 2023 peak-shaving Optimization

Verbrugge et al. [63] Off-service 2022 Min OPEX Genetic Algo-
rithm

Rafique et al. [57] Off-service 2022 Min OPEX and
Penalty MILP

Xie et al. [72] On-route 2023 Min OPEX NL Optimization

Jiang et al. [34] On-route 2022 Min OPEX MILP and Heuris-
tic

Arif et al. [4] Off-service 2020 Max profit MILP

Wu et al. [71] On-route 2022 Vehicle schedul-
ing & Min OPEX LP and Heuristic

Zhang et al. [78] On-route 2022 Min OPEX Branch and Price

Alvo et al. [3] Off-service 2021 Min BEBs Benders Decompo-
sition

Bie et al. [6] On-route 2021 Min OPEX and
CAPEX MINL and NCP

Liu et al. [43] On-route 2020 Vehicle schedul-
ing & Min OPEX ILP

Houbbadi et al. [31] Off-service 2019 Min aging cost Gradient-based
Optimisation

Rinaldi et al. [58] On-route 2020 Min OPEX ILP

Li et al. [41] On-route 2019

Min OPEX
,Emission Cost
and Passenger
Cost

MILP

Zhou et al. [79] On-route 2023
Min (CAPEX),
Num of chargers
and their types

reinforcement
learning method
and a surrogate-
based optimiza-
tion

Whitaker et al. [70] Both 2023 Min TCO MILP

Zhou et al. [77] On-route 2020
vehicle schedul-
ing and chargers
scheduling

simulated anneal-
ing and greedy dy-
namic selection

demonstrates the effectiveness of the proposed method in generating the best charging

plans. The approach considers costs and accommodates fixed and variable charger

numbers. This study views the problem independently without considering the current

diesel-fueled transit system. It causes the solution to be less practical.
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The paper [77] introduces a Multi-objective Bi-level programming model to optimize both

vehicle scheduling and charging schedule of a mixed bus fleet operating from a single

depot. The upper level of the model minimizes operating costs and carbon emissions while

considering constraints such as connecting times between trips and the limited driving

range of electric buses. The lower level focuses on charging scheduling to minimize charging

costs while meeting the constraints of charging time and driving distance limitations.

An integrated heuristic algorithm is proposed to solve the model, utilizing an iterative

neighbourhood search algorithm based on simulated annealing for vehicle scheduling and

a greedy dynamic selection strategy for charging scheduling. A case study based on a

mixed bus fleet in Beijing demonstrates the effectiveness of the proposed model and

solution algorithm. the paper does not consider transit system planning parameters such

as travel demand for vehicle scheduling.

In summary, current research predominantly focuses on deterministic optimization for BEB

charging facility planning and charging strategy, assuming known input parameters and

constraints with certainty. This approach aims to find the best solution that maximizes

or minimizes an objective function while satisfying all constraints, and it is suitable when

uncertainties are absent or accurately quantified. Therefore, the solutions heavily rely

on the input data, leaving planners needing insight into the process behind reaching

these solutions. Therefore, if there is a slight change in any input, we must perform

the entire optimization again, which could yield a completely different solution from the

previous one. Most research treats the BEB transit system as an entirely new problem

to solve. However, transit system planning involves a complex interplay of parameters,

such as route configurations, scheduling, passenger demand patterns, and infrastructure

capabilities. Therefore, viewing BEB transit system planning as dependent on the current

diesel-fueled transit system is crucial. The goal should be to maintain the existing route

structures, timetables, driver assignments, and operational shifts as much as possible

during the migration to a battery-electric transit system.

Previous studies on BEB on-route charging scheduling have focused on minimizing energy

costs by considering time-of-use tariffs, existing timetables, and charger power. However,

there remains to be a significant gap in the literature regarding adapting and tuning

existing timetables for a smooth transition to electric buses. This gap is crucial as it

involves optimizing the scheduling to reduce synchronization issues and ensure equitable

charging opportunities for all BEBs at the terminal. The current approaches often

overlook the need to adjust bus schedules to accommodate the specific requirements of

electric buses, such as varying charging times. Consequently, there needs to be more

strategies that address the equal distribution of charging opportunities among all buses

without changing the service rates defined by transit system planners, potentially leading

to inefficiencies and increased waiting times at charging stations. Addressing this gap
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would involve developing scheduling algorithms that minimize the required chargers at

each charging terminal, which lowers infrastructure and operating costs (minimizing power

demand), and optimizing the operational timetable to balance the charging demand across

all BEBs. This approach would maximize the charging infrastructure utilization and

enhance the overall efficiency of BEB operations.

The expectation for BEB transit systems to utilize a combination of various charging

technologies arises from several factors. Different regions or transit networks may possess

diverse infrastructure capabilities and constraints. Incorporating a mix of charging

technologies provides flexibility to adapt to existing infrastructure and accommodate

future expansions. Operational efficiency is paramount in BEB transit networks. Different

charging technologies offer varying charging speeds, costs, and energy efficiency. By

integrating these technologies, BEB transit systems can optimize charging processes

to minimize operational costs and maximize efficiency. BEBs may operate on routes

with varying distances and schedules, necessitating different charging solutions to meet

their range requirements. Utilizing a combination of charging technologies allows greater

flexibility in addressing range limitations and optimizing charging schedules. Despite

these anticipated benefits, only a few studies have explored integrating different charging

technologies in BEB transit networks. This could be attributed to factors such as the

complexity of coordinating multiple technologies, limited availability of data on their

performance and interoperability, and the relative novelty of BEB technology in many

regions. Hence, further research is needed to investigate how to effectively coordinate

and integrate diverse charging technologies in BEB transit networks to realize their full

potential.



Chapter 3

Estimation of Daily Required Energy

for the Transit System

3.1 Introduction

As we transition from diesel to electric buses, we must recognize that transit planning

primarily focuses on providing efficient, reliable, and accessible public transportation

services that meet the community’s needs. While electrification is a crucial step towards

reducing our environmental footprint, it’s not the only factor to consider.

A comprehensive transit plan must consider factors beyond electrification, such as:

• Population density and land use patterns influence the demand for public trans-

portation.

• Employment centers, educational institutions, and healthcare facilities that rely on

public transportation services.

• Accessibility and mobility needs, including those of people with disabilities.

• Traffic congestion and parking issues that public transportation can mitigate.

• Environmental impact and sustainability goals.

• Funding and budgeting constraints affecting the feasibility of electric bus adoption.

Given these priorities, it’s essential to recognize that the transition to electric buses will

not necessarily require changes to timetables and routes. The primary focus should be

ensuring that the new electric buses can seamlessly integrate into the existing public

transportation system without disrupting the community’s services.

20
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By prioritizing the community’s needs and focusing on the bigger picture, we can ensure

that the transition to electric buses succeeds while minimizing disruptions to the public

transportation services people rely on. It’s time to put the community’s needs first and

prioritize the factors that truly matter in transit planning.

As daily worst-case transit system energy consumption is the foundation of transit system

electrification planning, we utilize the data-driven model application to estimate the

BEB worst-case energy consumption for the transit system. This estimation is based

on the exact timetable of the diesel-fueled transit system. Subsequently, we use the

estimated amount for daily worst-case energy consumption estimation, which provides

the foundation for further planning. The energy consumption of BEB is influenced by

a complex web of factors, including the bus itself, its operation, its route, and external

conditions. This complexity makes it difficult to accurately predict how much energy

these buses use. In this section, we calculate the worst-case energy consumption for

each transit network route, considering its characteristics, such as stop densities and

topology. For the next step, we utilize the calculated energy consumption for each route

to determine the total energy consumption of the city of Thunder Bay’s transit system.

3.1.1 Preliminaries

We define the terminology and assumptions used in the context of a transit system as

follows:

• A service refers to a trip along a route, either starting from the starting terminal

and concluding at the ending terminal or vice versa.

• All fleet BEBs have specific schedules for their service times.

• Every BEB in the fleet departs from the depot at the start of the workday and

returns to the depot after completing its assigned services.

• Transit route or transit line typically refers to a specific path or track followed

by BEBs travelling between terminals. As the distances travelled for departure

and return services’ paths may vary, they are defined separately, with route length

denoted by superscripts 1 (for departure service path) and 2 (for return service

path).

• The worst-case energy consumption, caused by weather conditions, number of stops

along the route, number of passengers and driving habits, is α per kilometre.

• The transit system has one depot for all BEBs to stay overnight. A large fleet-size

transit system might have more than one depot.



Chapter 3. Estimation of Daily Required Energy for the Transit Network 22

• One BEB serves each activity block shown in figure 3.1. That means the number of

the working fleet BEBs equals the number of activity blocks shown in Figures 1, 2,

and 3.

The set of BEBs in the transit system is presented by B = {b1, b2, . . . ,bn}. BL =

{bl1,bl2, . . . ,bln} denotes the set of transit system’s daily activity blocks. The services

within each activity block are denoted as {sj, sk, . . . , sr} and S = {s1, s2, . . . , sm} be the

set of all daily performed services within the transit system. Each block bln in BL

comprises the daily services assigned to one BEB. The BEBs’ departure times from

and arrival times to the transit system depot are presented by Td = {tdbl1 , t
d
bl2

, . . . , tdbln}
and Ta = {tabl1 , t

a
bl2

, . . . , tabln} respectively. The service sm ∈ S consists of the tuple

< r, l1r |l2r , tssm , t
e
sm , esn > which is defined as follows.

The set Ts = {tss1 , t
s
s2 , . . . , t

s
sm} represents the transit system’s daily services starting

times, where ∀sn ∈ S, and the set Te = {tes1 , t
e
s2 , . . . , t

e
sm} represents the transit system’s

daily services ending times, where ∀sn ∈ S.

Definition (Service Routes): The set of transit system’s routes (lines) within the

transit network.

R = {1, 2, . . . , r}, ∀r ∈ R (3.1)

Definition (Departure/Return service routes’ Lengths-L): Set of distances from

the transit network routes’ initial terminals to their ending terminals (superscript 1) or

from the transit network routes’ ending terminals to their initial terminals (superscript

2).

L = {l11, l21, l12, l22 . . . , l1r , l2r}, ∀r ∈ R (3.2)

Definition (Service-Routes’ Energy Consumption-E): Set of transit system services’

worst-case energy consumption:

Es = {ess1 , e
s
s2 , . . . , e

s
sm}, ∀sm ∈ S (3.3)

A service’s worst-case energy consumption is given by:

essm = β × lij, i ∈ {1, 2}, j ∈ R (3.4)

Figure 3.1 shows the transit system’s activity block.
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Figure 3.1: Transit system activity block

The required energy to perform each activity block in the activity blocks set BL, given

in Equation (5.1), equals the total energy requirement to perform the assigned activity

block’s services, as represented in Equation (5.2).

Ebl = {ebl1 , ebl2 , . . . , ebln}, ∀bln ∈ BL (3.5)

ebln = essi + . . .+ essj , ∀essj , . . . , e
s
sj
∈ Es (3.6)

As the activity blocks encompass all necessary services within a working day, the transit

system’s daily worst-case energy requirement, denoted as Ew, is the sum of all required

energy for each activity block. This is expressed as:

Ew = ebl1 + . . .+ ebln , ∀ebl1 , . . . , ebln ∈ Ebl (3.7)

3.1.2 BEB worst-Case Energy Consumption Estimation for Each Route
of City of Thunder Bay Transit Network

In this section, we calculate the city of Thunder Bay’s daily worst-case energy consumption

using the approach outlined in the previous section. Therefore, we must determine each

route service’s energy consumption rate (β). For calculating β, we utilized the BEB

energy consumption simulator, depicted in Figure 3.2, which was developed by McMaster

University, BEB Simulator. It is designed based on a published paper titled "Machine

learning prediction models for battery-electric bus energy consumption in transit" [2].

The simulator parameters which are taken into account are:

https://ebus-sim.com/application
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Figure 3.2: Screenshot of BEB energy consumption estimator application

• The route length is measured in kilometres, and each route may have a different

length in two directions. Therefore, we assume different lengths for each direction

of the route.

• Number of stops, we assume fifty percent of the total transit route’s stops as

worst-case stops.

• Average BEB speed km/h during the service route.

• Number of passengers in BEB during the service route.

• Initial battery state of the charge (SOC)

• Driver’s familiarity with BEBs can be set into three states: competent, average,

and new.

• BEB battery capacity can be set into 150, 300, 450, and 600 kWh.

• Electrical HVAC can be ON and OFF.

• Working season can be summer, fall, winter, and spring.
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• Route topology grade can be set into Mostly Rolling Grade, Mostly downgrade,

Mostly upergrade, Extreme downgrade, and Extreme upergrade, for detailed infor-

mation, see Appendix A.

To calculate the worst-case energy consumption rate (β) for each transit line (route), we

made the following assumptions: the average BEB speed is 20 km/h, the average number

of passengers is 25, the initial battery state of charge is 50%, the driver’s familiarity with

BEB is competent, the BEB battery capacity is 600 kWh, the operation time is winter,

Electric HVAC is ON, and the number of stops is one-third of the total line (route) stops.

The topology grade %, the total number of stops, and the length for each route are

presented in Table 3.1.

Table 3.1: Thunder Bay’s transit network Lines (Routes) Parameters and Energy
Consumption Rate

Route

(Line)
Direction

Topology

Grade %

Rolling

grade

Number

of Stops
Length

Energy

Rate

kWh/Km

1
Cowan to Mary

NB
-0.22 (-1%-1%) 30 22.755 2.08

1
Mary NB to

Cowan
0.24 (-1%-1%) 17 21.022 1.99

2
Waterfront to

Confederation
-0.01 (-1%-1%) 10 10.16 2.02

2
Confederation

to Waterfront
0.01 (-1%-1%) 11 12.569 2

3C
Waterfront to

Catlegreen
0.89 (-1%-1%) 11 7.491 2.07

3C
Castkegeen to

Waterfront
-0.85 (-1%-1%) 10 7.898 2.05

3J
Waterfront to

Sherwood
0.88 (-1%-1%) 10 9.007 2.03

3J
Sherwood to

Waterfront
-0.88 (-1%-1%) 7 5.459 2.05

3M
Waterfront to

City hall
0.01 (-1%-1%) 8 8.199 2.01

3M
City hall to

Waterfront
-0.01 (-1%-1%) 8 7.193 2.03

Continued on next page
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Table 3.1 – continued from previous page

Route

(Line)
Direction

Topology

Grade %

Rolling

grade

Number

of Stops
Length

Energy

Rate

kWh/Km

4 Loop 0 (-1%-1%) 18 23.862 1.98

5
Confederation

to Brown
0.1 (-1%-1%) 8 5.34 2.08

5
Brown to Con-

federation
-0.1 (-1%-1%) 6 4.984 2.04

6 Loop 0 (-1%-1%) 11 23.826 1.94

7
Waterfront to

Shunia
0.5 (-1%-1%) 12 7.921 2.08

7
Shunia to Wa-

terfront
-0.5 (-1%-1%) 8 5.174 2.09

8
Intercity to

City hall
0.02 (-1%-1%) 14 15.391 2

8
City hall to In-

tercity
-0.02 (-1%-1%) 14 13.942 2.02

9
Waterfront to

Intercity
0.02 (-1%-1%) 11 14.635 1.99

9
intercity to Wa-

terfront
-0.02 (-1%-1%) 12 13.943 2

10
Confederation

to City hall
0 (-1%-1%) 9 7.838 2.04

10
City hall to

Confederation
0 (-1%-1%) 9 8.196 2.03

11
Waterfront to

Winsdor
0.86 (-1%-1%) 8 5.058 2.09

11
Winsdor to Wa-

terfront
-0.86 (-1%-1%) 8 5.708 2.07

12 Loop 0 (-1%-1%) 10 9.751 2.02

13
Waterfront to

Dawson
-0.87 (-1%-1%) 7 7.048 2.01

13
Dawson to Wa-

terfront
0.87 (-1%-1%) 10 9.970 2.01

14
City hall to Air-

port
0.07 (-1%-1%) 9 10.157 2

Continued on next page
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Table 3.1 – continued from previous page

Route

(Line)
Direction

Topology

Grade %

Rolling

grade

Number

of Stops
Length

Energy

Rate

kWh/Km

14
Airport to City

hall
-0.07 (-1%-1%) 5 6.315 1.99

16
Confederation

to City hall
0 (-1%-1%) 4 4.165 2

16
City hall to

Confederation
0 (-1%-1%) 4 4.165 2

We can calculate the daily worst-case energy consumption amount by obtaining the β

value for all Thunder Bay’s transit network lines (routes). The daily working activity

consists of 33 activities, shown in Figures 1, 2, and 3, activity blocks containing scheduled

services.

With the worst-case energy consumption rate determined for all lines (routes) and their

corresponding lengths, we can calculate the daily worst-case energy consumption for the

entire transit system. Figure 3.3 illustrates the estimation of daily worst-case energy

consumption for all activity blocks within the Thunder Bay transit system. Consequently,

the total estimated daily worst-case required energy amounts to 17,612 kWh.

Figure 3.3: Estimated daily worst-case energy consumption for the Thunder Bay
transit system’s activity blocks

In summary, we utilized the BEB energy consumption estimator, developed through a

data-driven approach, to determine the worst-case energy consumption rate for transit
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system lines (routes). Using this rate, along with the lengths of each route and their

corresponding service schedules (activity blocks), we estimated the daily worst-case energy

consumption for the entire transit system, specifically for the city of Thunder Bay. The

total estimated daily worst-case required energy is 17,612 kWh.



Chapter 4

Planning for Off-service Charging

4.1 Introduction

Off-service charging planning is crucial for electrifying transit systems. It involves

strategically scheduling the charging of BEBs during off-peak hours, typically overnight,

when the electricity demand is lower. This approach helps minimize disruptions to transit

operations while ensuring that BEBs are adequately charged to meet their daily service

requirements.

By implementing optimized off-service charging plans, transit agencies can achieve several

benefits. They can maximize fleet availability by ensuring that BEBs are fully charged

and ready for service during peak operating hours, thereby minimizing downtime and

improving service reliability. Additionally, they can realize cost savings by optimizing

charging infrastructure and leveraging off-peak electricity rates to reduce operational

costs associated with BEB charging. Efficient off-service charging planning also enables

grid integration by balancing the demand for electricity from BEB charging with the

capacity of the local power grid. This helps avoid overloads and ensures grid stability,

contributing to a more reliable and sustainable transit system overall. The primary

objective of off-service charging planning is to optimize charging infrastructure utilization

and minimize operational costs while meeting the energy demands of the transit fleet.

Optimization entails determining the minimum number and location of charging sites,

scheduling the charging sessions to coincide with periods of low electricity demand, and

considering factors such as battery capacity, route schedules, and depot capacities.

This chapter proposes the CGC model for strategically placing off-service charging sites.

The aim is to balance the demand for electricity from BEB charging with the capacity of

the local power grid, thereby avoiding overloads and ensuring grid stability. The proposed

29
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algorithm is evaluated by the placement of charging sites for two different capacities of

the local power grid. The chapter introduces a charging mechanism for BEBs during

off-service overnight charging in the second phase. The last part of the chapter discusses

the transition from diesel buses to fully electrified ones, utilizing the off-service charging

approach. This allows transit planners to calculate the required BEBs and assign them to

fulfill the diesel-fueled transit system’s activity blocks by the proposed CACA algorithm.

4.2 Brief Introduction to Clustering

Clustering is a fundamental technique in unsupervised learning that is used to group

similar data points. The goal is to partition a set of data points into clusters, where

points within the same cluster are more similar than those in other clusters. Various

clustering algorithms exist, each with its approach to defining similarity and grouping

data points. Some standard clustering algorithms include K-means, hierarchical clustering,

and DBSCAN.

4.2.1 Agglomerate Clustering

Agglomerative clustering is a hierarchical clustering technique used to group similar data

points. Agglomerative clustering indeed follows a bottom-up approach. It begins by

considering each data point as an individual cluster and iteratively merges the closest

pairs of clusters until all points belong to a single cluster. This process is driven by

similarity measures, merging clusters based on proximity or similarity. The result is a

hierarchical clustering structure where the final, single cluster encompasses all data points.

Linkage, a crucial aspect of this process, determines how the similarity between clusters

is measured and influences which clusters are merged at each step. There are several

standard linkage methods used in hierarchical agglomerative clustering:

• Single Linkage (Nearest Linkage): This method calculates the distance between

the closest points in two clusters and considers that distance as the distance between

the clusters. Single linkage tends to produce elongated clusters and is sensitive to

noise and outliers. It is computationally efficient but can suffer from the chaining

effect, where clusters are merged based on just one or a few close points.

• Complete Linkage (Farthest Linkage): Complete linkage calculates the distance

between the farthest points in two clusters and uses that distance to measure

dissimilarity between the clusters. This method tends to produce compact, spherical

clusters and is less sensitive to noise than a single linkage. However, it can need
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help with elongated clusters and is computationally more expensive than single

linkage due to the need to consider all pairwise distances.

• Average Linkage: Average linkage computes the average distance between all pairs

of points in the two clusters being merged. This method balances the strengths of

single and complete linkage and is more robust to noise. It tends to produce clusters

of more uniform sizes and shapes, making it a popular choice in many applications.

d(Ci,Cj) =
1

|Ci||Cj|
∑
x∈Ci

∑
y∈Cj

d(x, y) (4.1)

Where Ci and Cj are two clusters. |Ci| and |Cj| are the number of data points in

clusters Ci and Cj, respectively. d(x, y) is the distance between data points x and

y, which is used as similarity metric.

The average linkage criterion computes the average distance between all pairs of

data points in clusters Ci and Cj. This formula calculates the distance between

clusters Ci and Cj, which is then used in the agglomerative clustering process to

determine which clusters to merge at each step.

• Centroid Linkage: Centroid linkage calculates the distance between the merged

clusters’ centroids (mean points). This method often produces clusters of approxi-

mately equal size and is less sensitive to outliers. It is computationally efficient and

can handle high-dimensional data well.

• Ward’s Linkage: Ward’s linkage aims to minimize the increase in variance when

merging clusters. It tends to produce clusters with relatively equal sizes and compact

shapes. While computationally more intensive than other linkage methods, Ward’s

linkage is proper when the goal is to identify compact, homogeneous clusters. Given

two clusters A and B, the distance d(A,B) in Ward’s method can be represented as:

d(A,B) =
|A||B|
|A|+ |B|

∥µA − µB∥2 (4.2)

where:

– |A| and |B| are the sizes of clusters A and B respectively.

– µA and µB are the centroids of clusters A and B.

– |µA − µB∥2 is the squared Euclidean distance between the centroids of clusters

A and B.

The choice of linkage method significantly impacts the resulting clusters’ characteristics,

including their shapes, sizes, and overall structure. Selecting a linkage method that aligns

with the data’s characteristics and the desired clustering outcome is essential.
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4.2.2 Evaluation Metrics

When evaluating clustering algorithms and benchmarking their performance, several

metrics can be used to assess the quality of the clustering results. Here are some

commonly used metrics:

• Silhouette Score (SS): This metric measures how similar an object is to its

cluster compared to others. It ranges from -1 to 1, where a high value indicates

that the object is well-matched to its cluster and poorly matched to neighbouring

clusters. The SS for a data point i is defined as:

SS(i) =
b(i)− a(i)

max{a(i), b(i)}
(4.3)

where a(i) is the average distance between i and all other points in the same cluster

(i.e., the intra-cluster distance), and b(i) is the minimum average distance from i to

all points in any other cluster (i.e., the nearest-cluster distance).

The SS for the entire dataset is the mean SS of all data points:

SS =
1

n

n∑
i=1

s(i) (4.4)

where n is the number of data points.

• Weighted Silhouette Score (WSS): We consider each data point’s weight to

compute a WSS.

WSS =

∑N
i=1w(i) · s(i)∑N

i=1w(i)
(4.5)

where N is the number of data points, w(i) is the weight of data point i, and s(i) is

the SS of data point i.

• Davies-Bouldin Index (DBI): This index computes the average similarity be-

tween each cluster and its most similar cluster, where lower values indicate better

clustering.

DBI =
1

k

k∑
i=1

max
j̸=i

(
avg(Ri) + avg(Rj)

d(Ci,Cj)

)
(4.6)

where k is the number of clusters, Ri is the intra-cluster distances for cluster i,

d(Ci,Cj) is the distance between the centroids of clusters i and j, and avg(Ri) is

the average intra-cluster distance for cluster i.
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4.3 Placement of Off-service Charging Sites by CGC Method

A BEB maintains a consistent energy consumption rate of β kWh/km. It has a battery

with the capacity of α kWh with Ω percent of charge available. We assume that all

variables affecting BEB energy consumption, such as consumption rate and route length,

remain constant. Therefore, BEBs assigned to fulfill an activity block’s charging needs

should consistently need charging at a specific constant terminal along the assigned

activity block path that the BEB will travel during the working day. This specific

terminal is referred to as the block’s dispatching terminal.

T is a set representing the transit network’s terminals.

T = {t1, t2, . . . , tq} (4.7)

Definition (Dispatching Terminals-D): The set of the transit network’s terminals

where BEBs are sent for charging:

D = {d1,d2, . . . ,dq}, ∀q ∈ T, & |D| < |T| (4.8)

Definition (Dispatching Rates(weights)-W): Set of dispatching rates associated

with transit network’s dispatching terminals:

W = {w1,w2, . . . ,wq}, ∀q ∈ T (4.9)

4.3.1 CGC Method

This section introduces the CGC method, which utilizes Agglomerative clustering [64]

to perform clustering for ideal charging sites’ placements. Agglomerative clustering

offers several advantages due to its hierarchical, proximity-based, and flexible nature.

Its hierarchical nature naturally creates clusters at different levels of granularity in

data grouping, facilitating decisions on charging site placements. Additionally, it is

proximity-based, allowing for the identification of close dispatching terminal clusters,

which minimizes travel distances for electric buses to and from charging sites.

Let D be the set of all BEB dispatching terminals as defined in (4.8). We initialize

individual clusters for each dispatching terminal:

C = {C1,C2, . . . ,Cn}, n = |D| (4.10)
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Each cluster initially contains only one dispatching terminal. Denote by dij to be the

distance between clusters Ci and Cj, and wi and wj to be the weight associated with

clusters Ci and Cj respectively. The objective function is to minimize the weighted sum

of distances while satisfying the constraints as follows:

Minimize Z =
∑
Ci∈C

∑
Cj∈C

dij · xij · wi · wj (4.11)

Subject to the following constraints:

• Binary Decision Variables: xij takes binary values, indicating whether terminals Ci

and Cj are clustered together.

xij ∈ {0, 1}, Ci,Cj ∈ C, (4.12)

• Cluster Size Constraint: Each new cluster should contain exactly two clusters.

• Maximum weight Clustering Constraint (4.14): The total weight of both clusters

merged at a location should not exceed K. Let Pf represent the available power at

the local grid, and Pc represent the charger power. The number of BEBs k that

can be charged simultaneously is determined by dividing the available feeder power

by the charger power.

K =
Pf

Pc
(4.13)

wi +wj ≤ K, Ci,Cj ∈ C, wi,wj ∈W (4.14)

• Symmetry Constraint (4.15): If clusters Ci and Cj are grouped together, it implies

that Cj and Ci are also grouped together.

xij = xji, ∀Ci,Cj ∈ C (4.15)

• Cluster selection constraint: This constraint ensures the selection of the cluster with

the maximum weight among all clusters in set G that have a distance to the selected

cluster i less than γ times the variance (γ ·Var(i)) (see Equation 4.17). It restricts

the total number of clusters with distances to cluster i less than its variance Var(i)

to be within the variance value for cluster Ci. This selection criterion includes all

clusters that satisfy the distance condition based on the variance.
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The objective function aims to minimize the weighted sum of distances by determin-

ing which two clusters should be merged together while considering the constraint on

the maximum total weight of two clusters K(4.13) that can be grouped at a single location.

G = {Ci, . . . ,Ck}, ∀Ck ∈ C (4.16)

Let dij represent the distance from cluster i to cluster j, and Var(i) is the variance of

distances from cluster i to all other clusters. distance between two clusters’ centroids is

considered as the distance between two clusters’ centroids.

xij = 1, ∀j ∈ C where wj +wi ≤ k & dij ≤ γ ·Var(i) (4.17)

4.3.2 Algorithm Design

The approach consists of three algorithms: the distance calculator algorithm, which

calculates the distance between two clusters, the clustering algorithm, and The CGC

algorithm, The higher-level algorithm 3 utilizes algorithm 2 iteratively to merge clusters

based on their weights and distances while adhering to specific constraints. This process

continues until no more clusters can be merged.

Algorithm 1 (Constraint Greedy Clustering): The algorithm takes as input a set

of dispatching terminals D and a set of terminal dispatching rates W; its purpose is to

find clusters of terminals that meet certain constraints. At the beginning of lines 1-4,

the algorithm Initializes empty sets to store the new clusters, old clusters, and their

dispatching rates (weights). (Each terminal in D is initially considered a cluster by itself.)

From lines 5-7, a while loop calls Algorithm 2 (described in the next section) to update

new clusters and their weights. the loop continues as long as the number of new clusters

is the same as the number of old clusters. The algorithm terminates when it is no longer

possible to merge any additional clusters.

Algorithm 1 Two Clusters Distance Calculation
Require: Two Clusters C1, C2

Ensure: The distance between clusters C1 and C2 is d(C1,C2)
1: C1 =

1
|C1|

∑
x∈C1

x, c2 = 1
|C2|

∑
x∈C2

x. ▷ Compute the centroid of each cluster
2: d12 = ∥c1 − c2∥. ▷ Calculate the distance between centroids

Algorithm 2 (Clustering Phase): It takes as input the current clusters Cold, the

current clusters’ weights Wold, and clustering constraints (4.12) and (4.14). At the

beginning of lines 1-3, the Algorithm Initializes empty sets to store clusters’ distances,

new clusters, and new weights. From lines 4-28, the algorithm starts clustering current
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Algorithm 2 Clustering
Require: Clusters Cold, weights Wold, Clustering Constraints
Ensure: Clusters set Cnew

1: dist← {}
2: Cnew ← {}
3: Wnew ← {}
4: while Cold is not empty do
5: Z← {}
6: G← {}
7: Select C1 from Cold such that w1 = min

W∈Wold

(w)

8: Cold ← Cold \ {C1} ▷ Remove C1 from Cold

9: for all C ∈ Cold do
10: d(C1,C)} ← Call Algorithm 3(C1,C)
11: dis← dis ∪ {d(C1,C)}
12: end for
13: µ = β ·Variance(dis)
14: G = {C ∈ Cold | d(C1,C) < µ}
15: for all C2 ∈ G do

C2 = argmaxC2∈G weight(C2)
16: if WC1 +WC2 ≤ k then
17: Z← {C1,C2}
18: Cnew ← Cnew ∪ {Z}
19: Wnew

C = WC1 +WC2

20: Wnew ←Wnew ∪ {Wnew
C }

21: Break;
22: end if
23: end for
24: if Z is empty then ▷ No new merge
25: Z← {C1} ▷ Create a new cluster containing only C1

26: Cnew ← Cnew ∪ {Z}
27: Wnew ←Wnew ∪ {WC1}
28: end if
29: end while

clusters in ascending order in their weights. Then, it solves the optimization problem

in (4.11) and returns the new clusters back to the algorithm 3. The output clusters will

be used for the next clustering step. from lines 7-8 inside the while loop, the algorithm

selects a cluster C1 from Cold with the minimum weight w1. and removes C1 from Cold.

From lines 9-14, the algorithm selects the closest cluster C2 to C1 for merging. from

lines 15-23, the algorithm merges the clusters C2 to C1 if it complies with the maximum

allowed weight for the newly created cluster mentioned at (4.14). from lines 15-23, the

algorithm finds no clusters that could be merged with C1, then it simply creates a new

cluster containing only C1 and adds it to Cnew.

Algorithm 3 (Two cluster distance calculator): Line 1 calculates the centroids

of two clusters, then line 2 calculates the distance between these centroids, which is
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Algorithm 3 Constraint Greedy Clustering
Require: Set of dispatching terminals D, Set of terminal dispatching rates W
Ensure: Clusters set C
1: Cnew ← {}
2: Wnew ← {}
3: Cold ← [d] for d in D
4: Wold ← [w] for w in W
5: while |Cnew| ̸= |Cold| do▷ Checking the number of clusters in the previous and new

steps.
6: Cnew,Wnew ← Call Algorithm 2(Cold,Wold)
7: end while

considered the distance between two clusters.

4.3.3 Model Evaluation

We started by identifying the dispatching terminals in the Thunder Bay transit network

to evaluate the system model. Thunder Bay transit network comprises seventeen routes

(lines) with fourteen terminals. Thirty-three buses fulfill the daily transit system’s activity

blocks. We identified the dispatching terminals for each activity block based on BEBs

with a battery capacity of 325 kWh. Clustering algorithms group data points based on

their similarities. K-means [66] is a clustering-based model. Therefore, we assess the

performance of the CGC algorithm by comparing its results to K-means clustering results,

serving as a benchmark for clustering performance. We then ran practical experiments

using K-means and CGC algorithms on the Thunder Bay dispatching terminals.

We utilize the Silhouette score [60], weighted Silhouette score, and Davies Bouldin Score

[14] as our clustering metrics. The Silhouette Coefficient, or the silhouette score, is a

metric used to measure the clustering quality. It produces a value between -1 and 1, with

1 indicating well-separated and distinct clusters. Since terminal weights are associated

with dispatching rates linked to distances travelled, we enhanced the Silhouette Score.

This enhancement involved calculating weighted distances instead of simple distances

between terminals and clusters, creating the weighted Silhouette Score. Additionally, we

employed the standard deviation of clusters’ weights to assess the evenness of weight

distribution within the clusters. Consequently, a lower standard deviation signifies a

higher degree of uniformity. The Davies Bouldin Score is 0.5 for K-means and 1 for CGC.

The Davies Bouldin Score is a clustering metric used to assess the quality of clusters

produced by clustering algorithms. It measures the compactness and separation between

clusters, with lower scores indicating better-defined and well-separated clusters.
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4.3.4 Constrained Greedy Clustering Experiment

We applied the CGC method to the Thunder Bay transit network’s terminals to create

groupings of the transit network’s dispatching terminals while considering dispatching

rates and specific constraints. We configured the algorithm with a hyperparameter,

γ = 0.5, to identify the closest clusters, and we established K = 15 to indicate the

maximum number of buses capable of simultaneous charging. Figure 4.1 depicts the steps

of clustering, and Figure 4.1e shows the output clusters. Table 4.1 shows the dispatching

terminals’ locations, associated dispatching rates, and the clusters to which they belong.

Table 4.2 shows the proposed charging sites’ locations according to the CGC model. Table

4.3 presents CGC characteristics.

Table 4.1: Clustered Dispatching Terminals by CGC Model

Dispatching Dispatching Latitude Longitude Cluster

Terminal Rate

Waterfront Terminal (1121) 9 48.43579 -89.21709 3

Shuniah & Erie (1337) 3 48.45814 -89.21461 4

Cowan & Hodder (1150) 8 48.47868 -89.18251 4

Sherwood & Valley (1418) 3 48.45223 -89.27195 3

Intercity Shopping Centre (1006) 7 48.40344 -89.24327 2

City Hall Terminal (1019) 2 48.38246 -89.2458 2

Confederation College (1231) 6 48.40297 -89.26967 1

Brown & Frederica (1269) 2 48.36553 -89.28146 1

Thunder Bay Airport(1522) 4 48.37245 -89.3112 1

Table 4.2: Charging Sites’ Locations

Charging Site Latitude Longitude Address

4 48.47326 -89.19126 459 Richard St

3 48.44098 -89.23375 74 Duke St

2 48.39868 -89.24429 SilverCity Thunder Bay Cinemas

1 48.38635 -89.28999 551 Riverview Dr W
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4.3.5 K-means Experiment

K-means requires the number of clusters as input. To determine this, we utilized the

elbow method [47] to find the appropriate number of clusters, the elbow method aims

to find the suitable number of clusters by plotting the Within-Cluster Sum of Squares

(WCSS)1 against the number of clusters and looks for an "elbow" point where the rate of

decrease sharply slows, which was determined to be four, Figure 4.2b. Subsequently, we

applied K-means clustering to the dispatching terminals, using the four clusters identified

through the elbow method. The resulting clusters are visualized in Figure 4.2a, and Table

4.5 presents the characteristics of the K-means clustering.
1WCSS measures the sum of the squared distances between each point in a cluster and the centroid of

that cluster. It quantifies the compactness of the clusters; lower WCSS values indicate more compact
clusters.

(a) City of Thunder Bay’s tran-
sit network terminals

(b) Dispatching terminals (c) CGC initial step

(d) First merging step (e) Second merging step (f) Charging sites at clusters
centroid

Figure 4.1: The steps’ results of the CGC algorithm on dispatching terminals
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Table 4.3: Characteristics of CGC

Metric Value

Silhouette Score 0.1

Weighted Silhouette Score 0.74

Davies Bouldin Score 1

Clusters’ weights Mean 11

Clusters’ weights Standard Deviation 1.4

Table 4.4: Clustered Dispatching Terminals by k-means Method

Dispatching Dispatching Latitude Longitude Cluster

Terminal Rate

Waterfront Terminal (1121) 9 48.43579 -89.21709 3

Shuniah & Erie (1337) 3 48.45814 -89.21461 4

Cowan & Hodder (1150) 8 48.47868 -89.18251 4

Sherwood & Valley (1418) 3 48.45223 -89.27195 4

Intercity Shopping Centre (1006) 7 48.40344 -89.24327 2

City Hall Terminal (1019) 2 48.38246 -89.2458 2

Confederation College (1231) 6 48.40297 -89.26967 2

Brown & Frederica (1269) 2 48.36553 -89.28146 1

Thunder Bay Airport(1522) 4 48.37245 -89.3112 1

(a) Clustered dispatching termi-
nals by K-means

(b) Elbow diagram

Figure 4.2: K-means clustering and the elbow method results
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4.3.6 Results Analysis and Discussion

Table 4.3 and Table 4.5 display the Silhouette scores for CGC and the K-means clustering

algorithms. The K-means Silhouette score is 0.4, while the CGC algorithm score is 0.1.

The results show that K-means clustering outperforms the CGC method, as indicated

by the Silhouette score and the Davies Bouldin Index. The higher Silhouette score

of K-means indicates that it generates well-defined clusters with distinct boundaries,

regardless of the dispatching terminal weights. The weighted Silhouette score for K-means

and CGC algorithm are 0.76 and 0.74, respectively. The weighted Silhouette Scores

for both the K-means and CGC algorithms are close. This indicates that the CGC

algorithm performs closely to K-means when considering terminal weights (dispatching

rate). Moreover, the lower Davies Bouldin Index for K-means indicates that it achieves a

better balance between the compactness of individual clusters and the separation between

them, resulting in more effective cluster separation. Clusters’ weights Standard Deviation

is 4.2 for K-means and 1.4 for CGC. CGC excels in maintaining consistency and uniformity

among cluster weights. This is reflected in its lower standard deviation for cluster weights,

suggesting that its clusters exhibit less variability in weight distribution. Given our

primary objective of adhering to power grid constraints, the uniformity observed in the

CGC method becomes valuable. Uniform clusters’ weights benefit consistent resource

distribution, aligning with our power grid needs.

While clustering aims to minimize the travelled distance by BEBs for charging, the

results demonstrate that slight compromises in clustering may not necessarily result in

a significant increase in energy consumption (travelled distance). Instead, optimizing

the clustering to distribute the charging load among sites promotes stability and reduces

fluctuation impacts on the power grid.

Table 4.5: Characteristics of the K-means Clustering

Metric Value

Silhouette Score 0.4

Weighted Silhouette Score 0.76

Davies Bouldin Score 0.5

Clusters’ weights Mean 11

Clusters’ weights Standard Deviation 4.2

In summary, comparing CGC and K-means clustering showed that a slight compromise

between their clustering efficiencies could result in effective charging load balancing. The

uniformity in clusters’ weights (dispatching rate) aligns with our specific requirements

for power grid constraints, achieving uniform power distribution among the charging
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sites. Ultimately, ideal placing off-service charging sites improves the overall system

performance. Additionally, CGC is a flexible method that considers any constraint in

each merging step. This flexibility enriches the transit system planner, who can define

and apply localized constraints related to the particular area separately.

It is worth mentioning that when selecting the location for the charging site and the

planner decides to utilize the current infrastructures, the proximity to charging site

placements is a crucial factor. Choosing a depot or garage as a charging site, which is

close to identified charging site placements, is advantageous as it eliminates the need to

construct new buildings. Therefore, the nearest depot or garage to the location of the

charging site placement is considered the best choice to minimize additional construction

efforts.

4.4 Off-service Charging Scheduling

4.4.1 Introduction

The overnight electricity rate typically offers lower costs compared to daytime rates,

making overnight charging the most cost-effective solution for fulfilling the daily energy

requirements of an electrified transit system. To effectively model overnight charging, we

analyzed the transit system’s energy consumption from the chapter 3. Such an analysis

provides valuable insights for transit system infrastructure planners, including energy

consumption levels within the system, their impact on the power distribution grid, the

minimum number of chargers required, and determining the minimum charger power

needed to meet charging time constraints. This section introduces an intelligent overnight

charging mechanism, the Priority Charging Mechanism (PCM), which charges BEBs

simultaneously using the minimum number of chargers to minimize infrastructure costs.

The model’s effectiveness is evaluated using accurate transit system data from Thunder

Bay.

4.4.2 SYSTEM MODEL

This section introduces a mechanism to determine the minimum number of chargers and

their power for overnight charging within a fully electric public transit system in the City

of Thunder Bay. Figures 1, 2, and 3 show the Thunder Bay City transit system activity

blocks. The proposed mechanism extracts daily service data from the diesel-fueled transit

system activity blocks and calculates the worst-case energy consumption for the BEBs
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assigned to the activity blocks. This worst-case energy consumption is the foundation for

planning the migration from diesel-fueled to electric-powered transit fleets.

4.4.2.1 Preliminaries

Before introducing the mathematical model, we outline the following assumptions:

• A service refers to a trip along a route, either starting from the starting terminal

and concluding at the ending terminal or vice versa.

• All fleet BEBs have specific schedules for their service times.

• Every BEB in the fleet departs from the depot at the start of the workday and

returns to the depot after completing its assigned services.

• Transit route or transit line typically refers to a specific path or track followed

by BEBs travelling between terminals. As the distances travelled for departure

and return services’ paths may vary, they are defined separately, with route length

denoted by superscripts 1 (for departure service path) and 2 (for return service

path).

• The transit system has one depot for all BEBs to stay overnight. A large fleet-size

transit network might have more than one depot. Overnight charging must occur

between tstart minutes and tend minutes, which is based on the most cost-effective

electricity rate.

• All chargers utilized in overnight charging operations have identical power ratings.

Furthermore, we set these chargers’ maximum output DC power at 175 kW. This

assumption is made to streamline the integration of all chargers into a single power

rack, thereby simplifying installation and reducing the complexity of cooling and

maintenance requirements.

• There is no restriction on the battery capacities of BEBs; they possess sufficient

battery capacity to fulfill their assigned activity blocks.

4.4.2.2 Charging Mechanism Overview

The charging mechanism divides the total available charging time into Q sessions. It

determines BEB priorities based on their energy requirements and available charging time.

Then, it selects Nch (number of chargers) BEBs with the highest priorities for the current

charging session. Subsequently, BEB priorities are recalculated based on the updated
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Figure 4.3: Overnight charging mechanism overview

BEB deployment, their state of charge (SOC), and the time required for departure. The

system selects Nch new BEBs for the next charging session. This process continues until

the last session, when all BEBs are expected to be fully charged.

The proposed overnight charging mechanism integrates all chargers into a single unit.

Therefore, maintenance, conditioning (cooling), and monitoring can be performed for one

unit instead of several charging boxes spread out of the depot. As shown in Figure 4.3, a

controllable switch connects the Nch available DC chargers to (Nch) BEBs from the n

available BEBs in a depot. (n) is the total number of working BEBs in the transit system

that stay at a depot overnight. There are three main units:

• The AC/DC unit encompasses the minimum number of chargers (Nch) required to

charge all BEBs in the transit system within a specific time frame. Every charger

is connected to the switch box and is controlled and monitored by the control unit.

• The switch box connects the output of (Nch) chargers to (Nch) out of the (n) BEBs

with higher priorities in each charging session. It is controlled and monitored by

the control unit.

• The control unit calculates the priorities of BEBs for every charging session based on

BEBs’ SOCs, monitors the AC/DC unit to ensure proper functioning and commands

the switch box to connect the (Nch) chargers to BEBs in each charging session.

4.4.2.3 Energy Consumption and Power Analysis

Each BEB must complete a block defined in activity blocks set BL. Therefore, each BEB

must have energy equal to the worst-case energy requirements in Equation (5.1). BEBs’

departure times from and arrival times to the transit network depot are presented by

Td = {tdbl1 , t
d
bl2

, . . . , tdbln} and Ta = {tabl1 , t
a
bl2

, . . . , tabln} respectively.
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According to assumption 4.4.2.1, each BEB performs one activity block. Therefore, the

energy required by a BEB to perform the activity block equals the calculated energy for

the assigned block.

Eb = {eb1 , eb2 , . . . , ebn}, ∀bn ∈ B (4.18)

ebn = ebln , ∀bn ∈ B, ∀bln ∈ BL (4.19)

Based on our assumption, the charging time for BEBs occurs between tstart and tend.

Therefore, the minimum power required to charge each BEB is given by:

Pbl = {pbl1 ,pbl2 , . . . ,pbln}, ∀bln ∈ BL (4.20)

pbln =
ebln

|tstart − tend|
(4.21)

We also assumed that all applied charger powers pch are the same. To this end, it is

required to select a charger power at least equal to the maximum power in Pb as defined

in Equation (4.20). It is the primary chargers’ power constraint that we must consider:

pch ≥ max{pbl1 ,pbl2 , . . . ,pbln}, ∀bln ∈ BL (4.22)

The second charger power constraint is established by a power electronics designer

responsible for designing and integrating the AC/DC chargers within the power rack.

Typical power for overnight charging ranges from Pmin to Pmax kW.

Pmin kW ≤ Pch ≤ Pmax kW (4.23)

We must choose the maximum allowed power to minimize the number of applied chargers.

The total required energy consumption by the transit system is calculated by summing

the energy requirements of all activity blocks in (5.1), given by:

Enetwork =

n∑
i=1

ebli (4.24)

The total energy Enetwork must be stored through overnight charging. Therefore, the

total required power Pnetwork is given by:

Pnetwork =
Enetwork

|tstart − tend|
(4.25)

Then, by choosing the chargers’ power Pch by complying with two constraints (4.22) and

(4.23), the number of required chargers Nch is calculated by:
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Nch =
Pnetwork

Pch
(4.26)

Now that we have the number of required chargers Nch and their power Pch, it is plausible

to introduce the transit system’s BEBs overnight charging mechanism.

4.4.2.4 Overnight Charging Algorithm Design

The proposed overnight charging method divides the available charging time into sessions

Ns in which each charging session time is given by:

Tse =
|tstart − tend|

Ns
(4.27)

BEBs are then charged during each session based on their charging priorities. The

priority-based charging concept assigns the charging priority to all BEBs defined by:

prn =
ebln
Tse

(4.28)

PR = {pr1, pr2, . . . ,prn} (4.29)

The approach consists of two main parts: the scheduler and the charging unit. The

scheduler tracks the departures and arrivals of BEBs, their priorities, and the order in

which they need to be charged. The charging unit simulates all charging sessions. The

number of charging sessions, denoted as Ns, is an algorithm hyperparameter manually

tuned to ensure that all BEBs are charged in the minimum number of sessions possible.

Algorithm 1 (Scheduler): The algorithm takes as input the set of BEBs required

rnergy Eb (5.3), the sets of blocks starting and ending times Td and Ta, the set of

BEBs B, the set of BEBs’ priorities PR, overnight charging start time tstart, overnight

charging stop timetend. At the Beginning from lines 1-14, the algorithm determines the

priority of BEBs by considering their energy requirements and the time available to charge

them from the charger. (Each indexed element in the set of priorities PR represented by

equation (4.29) corresponds to the priority of the BEB with the same index in the set of

BEBs (B). Line 15 stores the number of BEBs in the transit system, and line 16 initializes

the sorting indicator. From line 17 to 29, the algorithm sorts the set of priorities of BEBs

PR, the set of BEBs B, the set of required energy Eb, and the departure and arrival

time sets denoted by Td and Ta, respectively, based on priorities from high to low.

Algorithm 2 (Charging Unit): The algorithm takes as input the set of BEBs required

energy Eb, the number of charging sessions Ns, the charging session time Tse, chargers’

power Pch. At the beginning, line 1 declares the Charge set, which keeps track of the
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Algorithm 4 Scheduler

Require: Set of BEBs Required Energy (Eb), Set of BEBs (B) Sets of blocks starting
and ending times Td and Ta, Charging start time tstart, Charging stop time tend, Set
of BEBs’ priorities PR

Ensure: Sorted Sets B (BEBs) in descending order, PR (BEBs’ Priorities), Eb (BEBs’
Required energy)

1: for all bi ∈ B do ▷ Update the BEBs’ priorities
2: if tabli < tstart & tdbli > tend then
3: pri ←

ebi
|tstart−tend|

4: else if tabli > tstart & tdbli < tend then
5:
6: pri ←

ebi∣∣∣tdbli−tabli

∣∣∣
7: else if tabli > tstart & tdbli > tend then
8:
9: pri ←

ebi∣∣∣tend−tabli

∣∣∣
10: else
11:
12: pri ←

ebi∣∣∣tdbli−tstart

∣∣∣
13: end if
14: end for
15: n← |B|
16: sorted← false
17: while not sorted do
18: sorted← true
19: for i = 1 to n do
20: if pri < pri+1 then
21: Swap pri and pri+1

22: Swap bi and bi+1

23: Swap ebi and ebi+1

24: Swap tabli and tabli+1

25: Swap tdbli and tdbli+1

26: sorted← false
27: end if
28: end for
29: end while

BEBs scheduled to charge in the current charging session. Line 2 declares an indicator

that determines whether all charging sessions are completed, indicating whether all BEBs

are fully charged. Line 3-12, the algorithm receives the Nch number of BEBs with the

highest priorities by calling the algorithm one, simulates the charging sessions, updates

the charged BEBs required energy set after every charging session.
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Algorithm 5 Charging Unit

Require: BEBs Required Energy Eb, Number of Charging sessions Ns, Charging Session
Time Tse, Chargers’ Power Pch

Ensure: End of charging indicator CHARGED
1: Charge← {}
2: CHARGED← False
3: for j = 1 to Ns do
4: Call Algorithm 1
5: for j = 1 to Nch do
6: Charge← Charge ∪ {bj}
7: end for
8: Wait for Tse

9: for j = 1 to Nch do
10: ebj ← ebj − [Tse ×Pch]
11: end for
12: end for
13: CHARGED← True

4.4.3 MODEL EVALUATION

We initiated the process by computing the necessary energy for executing the Thunder

Bay transit system’s activity blocks, as outlined in chapter 3. The Thunder Bay transit

network comprises seventeen routes (lines) with fourteen terminals. Thirty-three BEBs

are allocated to fulfill the designated services outlined in the operational timetable blocks.

4.4.4 Energy Requirement Analyse

We estimated the worst-case energy consumption for all Thunder Bay transit system

activity blocks in chapter 3. In the worst-case scenario, 17,612 kWh is required to meet

the energy needs of all BEBs to fulfill all activity blocks throughout the working day.

Figure 3.3 depicts the daily worst-case energy requirements for activity blocks.

4.4.5 Charger Specifications Calculation

We investigated the best time interval for achieving the Thunder Bay transit system’s

daily energy requirement. Thunder Bay’s electricity rate adheres to the regulations set

by the Ontario province regarding cost, consequently, in relation to the daily energy

consumption of the transit system. The pricing structure follows an industrial tariff

plan, which operates hourly. The price for each hour is determined by the maximum

demand power recorded during that hour. Given the characteristic minimum demand for

electricity during overnight hours, we anticipate a similar pattern within Thunder Bay

City. As depicted in Figure 4.4, all BEBs remain stationed at the depot from 11 p.m.



Chapter 4. Planning for Off-service Charging 49

to 5:30 a.m., coinciding with the period of minimum electricity prices observed over the

24-hour cycle (Orange-color bars). According to equation (4.22), the minimum power

Figure 4.4: City of Thunder Bay BEBs deployment at the depot.

Figure 4.5: Hourly Ontario Energy Price

constraint is determined to be 123.64 kW. This constraint is associated with activity block

701, as Figure 3.3 illustrates. In this activity block, the assigned BEB requires 779 kWh

of energy to complete the task, which is the maximum activity block energy requirement

among all blocks. Based on the assumption, the maximum power constraint (4.23) is 175

kW. Table 4.6 displays the obtained results for the number of chargers corresponding to

various charger power levels ranging from 123.64 to 175 kW, as determined by constraints

established in the preceding step.

Table 4.6: Number of Required Chargers according to charger power

Charger Power (kW) Number of Chargers

175 15

150 17

125 20

4.4.5.1 Priority Charging Mechanism

The PCM is executed to model the charging of BEBs as they perform activity blocks, as

depicted in Figure 3.3. We utilize the block number to identify the BEB assigned to fulfill

each block. Charger power is set to 175 kW to utilize the minimum number of chargers.

Considering maximum BEBs’ availability at the depot and minimizing electricity costs,

charging time spans from 11 p.m. to 5:30 a.m. (390 minutes ). The charging session

duration is set to 13 minutes by manual tuning to maximize charging time utilization.
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Thus, we have 30 charging sessions. Figure 4.6 shows the number of charging sessions

each BEB in the transit system participates in.

Figure 4.6: Number of charging sessions each BEB in the transit system participates
in

In summary, we have outlined an intelligent overnight charging strategy by analyzing the

transit system’s daily energy needs and considering electricity pricing plans. This strategy

includes determining the system’s daily worst-case energy requirements, establishing the

start and end times for overnight charging, determining the minimum number of chargers

needed to minimize infrastructure costs, and specifying the minimum power capacity

for each charger (all with identical specifications). PCM facilitates the simultaneous

charging of all BEBs while considering their energy requirements and depot availability.

By rotating BEBs across chargers during charging sessions, PCM improves resilience to

charger failures and distributes potential disruptions across the network, minimizing the

effects of failure on a BEB.

4.5 Optimal Number of BEBs for Off-Service Charging

In previous sections, we established the locations of off-service charging sites and devised

an algorithm to charge BEBs efficiently. However, given that diesel buses typically

cover longer distances than BEBs, the deployment of BEBs necessitates more BEBs

to adequately service the transit system. Hence, we need to determine the minimum

required number of BEBs and develop an efficient approach to allocating these additional

BEBs to the various activity blocks within the transit system.

This section introduces a planning methodology to determine the minimum number of

BEBs required within a transit system by sharing them among its activity blocks. It

also emphasizes the efficient allocation of BEBs to transit system activity blocks by the

CACA, aiming to minimize the distances travelled by shared BEBs between activity

blocks. The model is assessed using actual transit system data from the City of Thunder

Bay.
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4.5.1 Introduction

The studies highlight a significant gap in addressing the off-service charging problem

without determining the minimum number of BEBs and allocation strategy to fulfill

the transit system’s daily activity blocks. This section aims to minimize the number of

BEBs required for off-service charging. To achieve this goal, we introduce a planning

algorithm that considers various factors, including the energy requirements of BEBs

and the similarities between the transit system’s activity blocks. The algorithm aims

to find the best configuration for the number of BEBs while simultaneously minimizing

their energy consumption to fulfill activity blocks. While optimization offers a powerful

solution, it often needs to be improved in terms of intuitive comprehension for planners.

Each modification to the transit system requires planners to re-optimize, potentially

resulting in entirely new solutions compared to previous iterations. Developing reliable

off-service charging planning can mitigate the impacts of potential malfunctions in BEBs’

operations and uncertainties arising from unpredictable service schedule delays during the

charging process. However, determining the minimum number of BEBs and the allocation

strategy for performing the transit system’s activity blocks presents a significant challenge,

requiring innovative algorithms to minimize infrastructure costs by reducing the required

BEBs and minimizing their energy consumption through minimized travel distances.

4.5.2 SYSTEM MODEL

This section introduces a planning algorithm to determine the number of BEBs and their

allocation to transit system activity blocks within a fully electric Thunder Bay City transit

system. The proposed planning approach relies on the worst-case energy consumption

scenario for all assigned BEBs. This worst-case energy consumption is the foundation

for planning the transition from diesel-powered to off-service charging electric-powered

transit systems, as detailed in Chapter 3. Notations introduced in Chapter 3 are utilized

for consistency and clarity.

The Off-service charging plan aims to determine the minimum number of BEBs required

to perform daily services, assigning them to activity blocks. To achieve this objective, we

divide each activity block’s energy requirements in the first step, as given by (5.1), by

BEB battery capacity α kWh. Equation (4.30) represents the number of BEBs needed

for that particular activity block.

NoBbln = ⌊ebln/α⌋ (4.30)
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The remainder energy, calculated by Equation (4.31), becomes the input for the Clustering

step.

erbln = ebln mod α (4.31)

We define a new set of activity blocks’ energy as Equation (4.32).

Ebl
R = {erbl1 , e

r
bl2 , . . . , e

r
bln}, ∀bln ∈ BL (4.32)

In the next step, we add extra BEBs to fulfill the activity blocks’ services to compensate

for the remaining energy. However, adding extra BEBs incurs significant costs to the

transit system, so it should be done one by one. Additionally, the added BEBs should

be utilized for the activity blocks with paths that have the minimum distances. This

ensures that the BEBs’ energy to change their paths is minimized. We can efficiently

manage the transit system’s energy consumption and operational costs by optimizing the

assignment of extra BEBs to activity blocks with minimal distance paths. Then CACA

clusters activity blocks whose paths are close to each other and ensures that the sum of

their remainder required energies does not exceed the battery capacity α of a single BEB.

Consequently, the number of clusters added to the sum of quotients, given by (4.30),

determines the minimum number of BEBs required for the operation.

4.5.2.1 Similarity Matrix

Each activity block encompasses two dimensions of data: temporal and spatial data. The

temporal dimension illustrates the service timing within a daily work schedule, while the

spatial dimension delineates the path that BEB must traverse during working hours. To

simplify the representation, we focus solely on the spatial dimension, condensing it into

a graph path within the transit network graph. Consequently, we obtain several paths

representing an activity block within the transit network graph shown in Fig. 4.7.

To measure the distance between two paths in a graph, we can utilize the Jaccard index

[27], which measures the similarity between the paths and can quantify their similarity

or dissimilarity. In the context of paths in a graph, we can represent each path as a set

of nodes or edges. Then, the Jaccard index between two paths can be calculated as the

ratio of common nodes to the total number of unique nodes across both paths.

We define a Similarity Matrix (SM) as a matrix in which the rows and columns represent

the activity blocks in the set BL. SM elements range from zero to one, representing

the similarity between two activity blocks’ paths (sub-graphs), where zero denotes no
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Figure 4.7: Thunder Bay transit network graph

similarity, and one indicates identical paths (sub-graphs).

SM =


s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
. . .

...

sn1 sn2 · · · snn

 (4.33)

In this matrix, sij represents the similarity between the activity block j path (sub-graph)

and the activity block i path (sub-graph). Each activity block includes several transit

network’s terminals. We define the set of nodes representing these terminals within the

activity blocks, as shown below

PNn = {t1, t2, . . . , tt}, ∀tt ∈ T, ∀n ∈ BL (4.34)

The Jaccard similarity score measures the similarity between two activity blocks by

comparing the sets of nodes within the blocks, denoted as PNblj and PNbli .

Sij =
|PNblj ∩PNbli |
|PNblj ∪PNbli |

(4.35)
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4.5.2.2 Constraint Affinity Clustering Algorithm

The CACA is designed to cluster the paths of activity blocks based on their similarity

while ensuring that the sum of their energy requirements does not exceed the battery

capacity α kWh of the BEB. The CACA identifies the activity block with the maximum

energy consumption from the new activity blocks’ energy consumption set (4.32). Next,

it aims to find an activity block with maximum similarities to this initial block. Suppose

the total energy consumption of the grouped activity blocks falls below the battery

threshold, which is α kWh battery capacity. In that case, these activity blocks are

grouped, and their energies are summed. This process continues iteratively until the

cumulative energy consumption reaches or exceeds the battery threshold. As a result,

the algorithm generates clusters of activity blocks that can be served by a single BEB,

ensuring efficient resource utilization and optimizing energy allocation for transportation

purposes. Algorithm 6 outlines the procedural steps of the CACA algorithm, offering a

clear and concise overview of its functionality.

Algorithm 6 Constraint Affinity Clustering Algorithm

Require: Activity Blocks’ Energy consumption Ebl
R , Activity Blocks Set BL Similarity

Martix SM, BEB battery capacity α
Ensure: The set of Clusters of Activity Blocks (C)
1: while BL is Empty do
2: C← {}
3: Let merged be true
4: while merged is true do
5: merged ← false
6: Let i = argmax{Ebl

R}
7: Let Ri be the ith row of Similarity Martix SM
8: j ← argmax{Ri}
9: if erbli + erblj ≤ α then

10: bli ← bli ∪ blj
11: BL← BL \ {blj}
12: erbli ← erbli + erblj
13: Ebl

R ← Ebl
R \ {erblj}

14: SM← SM \ {column(j)} ▷ Remove column (j) from similarity matrix
15: merged ← true
16: end if
17: end while
18: C← bli
19: BL← BL \ bli
20: BL← Ebl

R \ erbli
21: SM← SM \ {row(i)} ▷ Remove row (i) from similarity matrix
22: end while
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4.5.3 MODEL EVALUATION

We initiated energy calculations for the city of Thunder Bay transit system’s activity

blocks. The transit system consists of seventeen routes and fourteen terminals. Thirty-

three activity blocks fulfill the scheduled services.

4.5.3.1 Thunder Bay Transit System’s Energy Requirement Analysis

We consider a worst-case scenario where all BEBs within the Thunder Bay transit system

consume 1.9 kWh per kilometre. Consequently, 17,612 kWh is required to fulfill all

activity blocks throughout the working day. BEBs utilize a 600 kWh battery capacity,

with 20 percent reserved for State of Charge (SOC) backup, leaving 480 kWh available for

consumption. To determine the number of BEBs needed for each activity block (division

quotient) and the remaining energy amount for blocks-sharing BEBs, we divide the energy

requirements of the activity blocks by 480 kWh. The sum of division quotients for all

activity blocks equals 33, indicating that 33 BEBs are required. Figure 5.1 depicts the

activity blocks’ remainder energy, which extra sharing BEBs should address. This step

Figure 4.8: Activity blocks’ remainders energy.

calculated that 33 block-dedicated BEBs are required to perform each activity block,

leaving 23 activity blocks needing to be fully covered and needing additional BEBs. The

next phase involves determining the number of additional BEBs needed and how they

are allocated to these remaining activity blocks.
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4.5.3.2 Thunder Bay Transit System’s Similarity Martix

As previously mentioned, to determine the groups of activity blocks sharing a BEB to

fulfill their remaining services, which cannot be performed with activity block-dedicated

BEBs, we pass the activity blocks with remaining energy to the CACA. To apply the

CACA, we projected activity blocks onto a spatial dimension. Figure 4.7 shows the graph

of the city of Thunder Bay, while Figure 4.9 illustrates the structural similarity between

two activity block sub-graphs. The similarity matrix is constructed for activity blocks

Figure 4.9: Activity blocks 701 and 306 graphs similarity

that have energy remains. Table 4.7 shows a sample of the constructed similarity matrix.

Table 4.7: Activity Blocks’ Similarity Matrix Sample

Activity Block 701 306 202 902 702 203
701 1 0.34 0.14 0.125 1 0.14
306 0.34 1 0.25 0.58 0.34 0.25
202 0.14 0.25 1 0.4 0.14 1
902 0.125 0.58 0.4 1 0.125 0.4
702 1 0.34 0.14 0.125 1 0.14
203 0.14 0.25 1 0.4 0.14 1

4.5.3.3 Constrained Affinity Clustering Algorithm Results

We applied the CACA algorithm to the Thunder Bay Transit system’s activity blocks

outputs from the previous step. The algorithm aimed to create groupings of the transit
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system’s activity blocks while considering structural similarity and energy constraints,

configuring 480 kWh. As indicated in Table 4.8, there are five clusters, each representing

a group of activity blocks sharing one BEB to fulfill their services, which could not be

fulfilled by the dedicated activity block BEB. The fully electric transit system requires

Table 4.8: Activity Blocks Sharing BEBs

Cluster Activity Blocks Sum of Energy (kWh)
1 701, 306 480
2 702, 308, 802, 801 480
3 202, 203, 210, 901 472
4 903, 902, 302, 201,205,206 454
5 301, 104, 105 474

33 activity block-dedicated BEBs plus an additional 5 BEBs shared among the activity

blocks, resulting in 38 BEBs to fulfill the transit system’s daily services.

In summary, We formulated an off-service charging strategy through a comprehensive

analysis of the daily energy requirements of the transit system and careful consideration

of the transit system’s service timetable. This strategy includes assessing the transit

system’s daily worst-case energy needs and determining the minimum required BEBs

to minimize infrastructure costs. Additionally, we developed the clustering algorithm

(CACA) to ensure an effective solution for grouping activity blocks for shared BEB usage.

This algorithm minimizes travelling distances while considering energy balancing among

the shared BEBs within the transit system.



Chapter 5

Planning for Opportunity Charging

This chapter presents a three-step planning approach to determine the minimum number

of on-route charging terminals needed within a transit system. To effectively model

on-route charging, conducting a comprehensive analysis of the transit system’s energy

consumption is crucial, as detailed in Chapter 3. This analysis yields valuable insights for

infrastructure planners, including understanding energy consumption levels within the

transit system, determining the minimum number of charging terminals required, and

efficiently assigning transit system activity blocks to the charging terminals to balance

charging loads. The chapter emphasizes allocating transit system activity blocks to

identified chargers to maximize BEBs’ charging opportunities and ensure balanced energy

consumption between the charging terminals. Furthermore, the chapter proposes an

optimization method to adjust the timetables of inherited activity blocks from a diesel-

fueled transit system. This method aims to maximize charging opportunities at the

allocated terminals while reducing the simultaneous presence of BEBs at these terminals.

The model’s effectiveness is evaluated using actual transit system data from the Thunder

Bay transit system.

5.1 Charging Terminals Identification for Activity Blocks

5.1.1 Introduction

The literature review underscores a significant gap in addressing the on-route charging

problem without offering guidance on determining the minimum number of charging

terminals and assigning BEBs to them, considering the inherited timetables from the

diesel-fuelled transit system. This consideration is particularly favourable for transit

planners transitioning from a diesel-powered system to an electric one. We aim to

58
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maximize the opportunity for Battery BEBs to charge while minimizing the number

of charging terminals and ensuring energy balancing. To achieve these objectives, we

propose a planning approach that takes into account several factors, such as the energy

requirements for fulfilling the transit system’s activity blocks, the accessibility of all

transit system activity blocks to charging terminals, the number of stops each activity

block has at every charging terminal, and the total energy each charging terminal should

provide throughout the working day. The proposed method determines the minimum

number of charging terminals and allocates charging terminals to activity blocks for

charging BEBs. It aims to maximize the charging opportunities for BEBs while ensuring

energy balancing among the charging terminals. Since the activity blocks must be no

change when migrating from a diesel-fueled transit system to a fully electric one, we

suggest tuning the timing of activity blocks to maximize their charging opportunities.

5.1.2 SYSTEM MODEL

This section introduces an algorithm to determine the minimum number of terminals

for on-route charging within a fully electric transit system. The proposed planning

approach relies on the BEB worst-case energy consumption scenario. This worst-case

energy consumption is the foundation for planning the transition from diesel-powered to

on-route charging electric-powered transit systems, as detailed in Chapter 3. Notations

introduced in Chapter 3 are utilized for consistency and clarity.

5.1.2.1 Preliminaries

Before introducing the mathematical model, we outline the following assumptions:

• A service refers to a trip along a route, either starting from the starting terminal

and concluding at the ending terminal or vice versa.

• All fleet BEBs have specific schedules for their service times.

• Every BEB in the fleet departs from the depot at the start of the workday and

returns to the depot after completing its assigned services.

• A transit route or line denotes the path BEBs take between terminals. Departure

and return service paths are delineated separately with superscripts 1 (for departure)

and 2 (for return), reflecting potential variations in distance travelled.

• The worst-case energy consumption (caused by weather conditions, HVAC on and

driving habits) is α kWh per kilometre.



Chapter 5. Planning for Opportunity Charging 60

• All chargers utilized in on-route charging operations have identical power ratings.

• One BEB serves one activity block in the transit system and can charge at only

one charging terminal.

The set T = {t11, t12, . . . , tr1|2} represents all starting and ending routes’ terminals in the

transit system, where ∀r ∈ R. Subscripts one or two define the starting terminal or

ending terminal. L = {l11, l21, l12, l22 . . . , l1r , l2r}, ∀r ∈ R be Set of all distances from the

transit network routes’ initial terminals to their ending terminals (superscript 1) or from

the transit network routes’ ending terminals to their initial terminals (superscript 2).

As stated, each BEB must complete a single activity block defined in the activity blocks

set BL. Therefore, each BEB must have energy equal to the total energy requirement to

perform the assigned activity block’s services, as represented in Equation (5.1).

Ebl = {ebl1 , ebl2 , . . . , ebln}, ∀bln ∈ BL (5.1)

ebln = essi + . . .+ essj , ∀essj , . . . , e
s
sj
∈ Es (5.2)

According to our assumption 5.1.2.1, each BEB performs one activity block. Therefore,

the energy required by a BEB to perform the activity block equals the calculated energy

for the assigned activity block.

Eb = {eb1 , eb2 , . . . , ebn}, ∀bn ∈ B (5.3)

ebn = ebln , ∀bn ∈ B, ∀bln ∈ BL (5.4)

5.1.2.2 Opportunity Matrix

Each activity block consists of services related to various transit routes. Each route has

starting and ending terminals defined in the set T. Therefore, a BEB assigned to perform

the activity block will have stops at those terminals. These stops serve as opportunities

for BEB charging as the BEB completes service in the activity block and prepares to

start a new service defined within the activity block.

We define an opportunity matrix (OM) in which the rows represent the activity blocks in

the set BL, and the columns represent all terminals defined in the set T. Each value in

the matrix is a non-negative integer indicating how many daily stops the activity block

has at the terminal, with zero indicating that the activity block has no stop.
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OM =


o11 o12 · · · o1m

o21 o22 · · · o2m
...

...
. . .

...

on1 on2 · · · onm

 (5.5)

In this matrix, oij represents the number of daily stops at the terminal terminal j in the

activityblock i.

5.1.2.3 On-Route Charging Planing

An algorithm is proposed to find the on-route charging terminals within the set T,

determine the number of chargers at each location, and specify which BEBs should be

charged at each terminal to balance the charging load among the charging terminals.

The algorithm consists of two main steps: identifying candidate terminals for on-route

charging and determining which terminals should serve which BEBs.

• Determining Charging Terminals: We define the set of transit system terminals’

service indexes, which indicate how many activity blocks have the terminal as a

stop:

SI = {si1, si2, . . . , sit}, ∀t ∈ T (5.6)

The terminal service index is given by:

sit =

n∑
i=1

oit, where i denotes the rows in the OM (5.5) (5.7)

The approach starts by determining the minimum number of terminals as on-route

charging terminals by Algorithm 7. It ensures the minimum infrastructure cost for

on-route chargers accessible by all BEBs performing the transit system’s activity

blocks.

Algorithm 7 (Determining Charging Terminal(s)): The algorithm takes as

input the set of transit system terminals T, the set of transit system terminals’

service indexes SI, transit system activity blocks set BL, and the transit system

OM. The algorithm output is the set of terminals utilized for BEBs on-route

charging:

Tch = {tch1 , tch2 , . . . , tchn }, where n ≤ |T| (5.8)

From lines 1 to 13, the algorithm initially sorts the set of transit network terminals

T and their corresponding service indexes SI based on service index values in

descending order. From lines 14 to 25, the algorithm checks the accessibility of
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blocks to the terminal with the maximum index number, removes the blocks with

access to the terminal, and adds the terminal to the set of charging terminals. It

then checks the next terminal with the maximum index number until no more

blocks are in the set BL.

Algorithm 7 Determining Charging Terminal(s)

Require: The set of transit system terminals (T), the set of transit system terminals’
service indexes (SI), the set of transit system activity blocks (BL), the transit system
opportunity matrix (OM)

Ensure: The set of the minimum number of terminals for on-route charging (Tch) that
all activity blocks access them during their activities

1: Tch ← {}
2: n← |T|
3: sorted← false
4: while not sorted do
5: sorted← true
6: for i = 1 to n do
7: if SIi < SIi+1 then ▷ In descending order
8: Swap SIi and SIi+1

9: Swap Ti and Ti+1

10: sorted← false
11: end if
12: end for
13: end while
14: Taccess ← {T }
15: j = 1
16: while BL ̸= {} do
17: j = j + 1
18: Tch ← Tch ∪ {Taccess[j]}
19: for i = 1 to m do
20: if OM[i][j] ̸= 0 then ▷ block i has stop at the terminal j
21: BL← BL \ {BL[j]}
22: end if
23: end for
24: end while

• Allocating Charging Terminals to the Activity blocks: The charging ter-

minals are identified to cover all activity blocks in the transit system. We must

determine which charging terminal is responsible for charging each activity block.

This determination consists of three steps: identifying activity blocks with access

to only one charging terminal, identifying activity blocks with access to multiple

charging terminals with different opportunity indexes, and assigning activity blocks

with access to multiple charging terminals with equal opportunities using energy bal-

ancing. The first two steps are implemented by Algorithm 8, and the optimization

approach achieves the third step.
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Algorithm 8 (Charging Terminal(s) Allocations): From lines 1 to 4, the

algorithm creates some empty sets to keep the grouped activity blocks assigned to

the charging terminals in the set Tch.

From lines 8 to 16, the algorithm iterates through the terminals, checks the op-

portunity indexes, and keeps the indexes that are not zero for further assignment

purposes.

Allocating charging terminals to activity blocks with access to only

one charging terminal: In the first step, as shown in algorithm 8, Line 17

checks the opportunity index oij corresponding to each activity block(i) and all

charging terminals in set Tch. If there is only one charging terminal with a non-zero

opportunity index, lines 19-20, assign the activity block to that charging terminal

with a non-zero opportunity index, and then the assigned activity block is removed

from the set of activity blocks (BL).

Allocating charging terminals to activity blocks with access to multiple

charging terminals: In the second step, we identify the activity blocks with

access to two or more terminals. From lines 22 to 29, the algorithm checks if the

activity block has access to multiple charging terminals in Tch; if so, the block

is assigned to the terminal with the maximum opportunity index, and then the

assigned activity block is removed from the activity blocks set. This step has no

activity block assignment if the maximum opportunity index occurs more than

once. Such activity blocks are assigned in the third step using the energy-balancing

method.

Allocating charging terminals to remaining activity blocks by energy

balancing: The remaining activity blocks are assigned to the charging terminals

to minimize the variance of energy provided by chargers, Et is the amount of total

provided energy by charging terminal (t):

Minimize
1

N

N∑
t=1

(Ea
t − Ē)2,N = |Tch|

Ē =
1

N

N∑
t=1

Ea
t

(5.9)

The amount of energy that each charging terminal should provide to assigned blocks

is given by:
Ea
t = eblam + eblan + · · ·+ eblak

t ∈ {1, 2, . . . , |Tch|}

blm, bln,blk ∈ BL

(5.10)
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Algorithm 8 Charging Terminal(s) Allocations
Require: The set of transit system’s charging terminals Tch, transit system terminals’

service indexes (SI), the set of transit system activity blocks BL, the set of transit
system activity blocks worst-case energy consumption Ebl, Opportunity Matrix (OM)

Ensure: the sets of activity blocks assigned to all charging terminals for on-route charging
Tch

1: for i← 1 to |Tch| do
2: BLa

i ← {}
3: end for
4: Temp← {}
5: OMindex← {}
6: for i← 1 to |BL| do ▷ Loop through each row in OM
7: nonZeElInRow ← 0
8: for j ← 1 to |T| do ▷ Loop through each element in the row
9: if o[i][j] ̸= 0 then ▷ o[i][j] element row i and column j in matrix OM

10: if T[j] in Tch then
11: nonZeElInRow ← nonZeElInRow + 1
12: Temp← Temp ∪ j
13: OMindex← OMindex ∪ o[i][j]
14: end if
15: end if
16: end for
17: if |Temp| = 1 then
18: find index index in Tch such that Tch[index] = T[Temp]
19: BLa

index ← BL[i]
20: BL← BL−BL[i]
21: end if
22: if |Temp| > 1 then
23: imax ← argmax(OMindex)
24: if Mode(OMindex[imax]) > 1 then
25: find index index in Tch such that Tch[index] = T[imax]
26: BLa

index ← BL[i]
27: BL← BL−BL[i]
28: end if
29: end if
30: end for

5.1.3 MODEL EVALUATION

We began by calculating the required energy for operating the activity blocks of the

Thunder Bay transit system.

5.1.3.1 Energy Requirement Analysis

We considered a worst-case scenario where all BEBs within the Thunder Bay transit

system consume 1.9 kWh per kilometer. Consequently, 17,612 kWh is required to fulfill
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all activity blocks throughout the working day. Figure 5.1 illustrates the worst-case daily

energy requirements for the activity blocks.

Figure 5.1: Thunder Bay transit system activity blocks worst-case energy requirements

5.1.3.2 Identifying Charging Terminals for Thunder Bay Transit System

The on-route charging terminals candidates for the Thunder Bay transit system are routes’

starting and ending terminals. OM (see Equation 5.5) was then constructed. The Service

Indexes for these terminals are calculated by summing the matrix elements column-wise

in all columns representing the charging terminal candidates shown in Figure 5.2. As

shown in Figure 5.2, the Waterfront terminal (1121) has the highest Service Index among

all terminals, which is 28. Therefore, it should be the first choice for a charging terminal.

However, some activity blocks do not stop at the Waterfront terminal (1121). In such

cases, we must identify the charging terminal where those activity blocks have stops.

This terminal should have the highest service index after the Waterfront Terminal (1121).

According to Figure 5.2, two candidates after the Waterfront terminal, City Hall terminal

(1019) and Confederation College terminal (1231), have the same Service Index of 23, the

next highest index, following the Waterfront terminal Index. We selected the City Hall

terminal because it has a higher correlation with the Waterfront terminal1, This gives us

greater flexibility in assigning activity blocks to charging terminals, thereby achieving

more efficient energy balancing among the charging terminals.

5.1.3.3 Activity Blocks Assignment to Charging Terminals

Before assigning activity blocks to charge at the charging terminals, we remove the activity

blocks 401, 402, 403, and 904 that need low energy. We expect BEBs can complete those
1They have more shared activity blocks that stop at both terminals.
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Figure 5.2: Thunder Bay transit system On-Route charging terminal candidates’
Service Indexes

activity blocks with no need to charge along the way. The assignment of activity blocks

to utilize charging terminals begins by assigning activity blocks with access to only one

of the charging terminals. The results are displayed in Table 5.1. In the second step, we

Table 5.1: First Step of Activity Blocks Assignments to the Charging Terminals

Terminal Activity Blocks
Waterfront Terminal (1121) 210, 211, 201, 702, 701, 203, 202
City Hall Terminal (1019) 205, 206

investigated the activity blocks with access to multiple charging terminals to determine

how many stops they have in each terminal (see Figure 5.3). Then, we assigned blocks

to terminals with more stops, giving them more opportunities to receive charges. As

shown in Figure 5.3, activity blocks 801, 802, 901, 306, and 308 have more stops at the

City Hall terminal; therefore, their charging is assigned to the City Hall terminal, while

activity blocks 902 and 903 have more stops at the Waterfront terminal, so their charging

is assigned to the Waterfront terminal.

Table 5.2: Second Step of Activity Blocks Assignments to the Charging Terminals

Terminal Activity Block(s)
Waterfront Terminal (1121) 210, 211, 201, 702, 701, 203, 202, 902, 903
City Hall Terminal (1019) 205, 206, 801, 802, 901, 306, 308

In the third step, we assign the remaining activity blocks considering energy balancing as

defined in Equation 5.9. To solve this optimization problem, we utilized the ‘minimize‘
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Figure 5.3: The number of stops activity blocks with access to Waterfront and City
Hall terminals

function from the ‘scipy.optimize‘ package in Python. We experimented with various solver

methods, including SLSQP, L-BFGS-B, Nelder-Mead, Powell, TNC, and Trust-constr.

Among these, the Powell method yielded the best results. According to the optimized

results shown in Table 5.3, activity blocks 101, 301, 302, 303, 304, 305, 307, 309, and 310

are assigned to the City Hall terminal for charging, whereas activity blocks 102, 103, 104,

and 105 are assigned to the Waterfront terminal for charging.

Table 5.3: Third Step of Activity Blocks Assignments to the Charging Terminals

Terminal Activity Block(s)
Waterfront Terminal (1121) 210, 211, 201, 702, 701, 203, 202, 902, 903, 102, 103, 104, 105
City Hall Terminal (1019) 205, 206, 801, 802, 901, 306, 308, 101, 301, 302, 303, 304, 305, 307, 309, 310

5.2 Activity Blocks Tuning

This section introduces a systematic approach to optimize and adjust the transit system’s

timetable. The goal is to maximize opportunities for BEBs to meet their energy needs

through on-route charging during working hours while ensuring that the travel demands

of the transit system are fully addressed and not adversely affected. Adjusting an existing

timetable instead of designing a new one from scratch offers several advantages. It

ensures minimal disruption to passengers’ routines, avoiding confusion and inconvenience.

Additionally, this approach is more straightforward and quicker to implement than a

complete overhaul, allowing for a smoother transition. Moreover, adjusting an existing

timetable is less expensive than creating a new one from scratch, requiring fewer resources

for planning and implementation. Minimal adjustments also mean that staff need less

retraining than learning an entirely new schedule.
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Figure 5.4: Balanced energy provided by charging terminals to charge BEBs

This adaptive approach can optimize the use of existing charging infrastructure without

requiring additional investments. Changes can be made incrementally based on real-

world data and feedback, allowing for gradual and sustainable optimization. Moreover,

adjustments are grounded in historical data and operational insights, ensuring they are

informed by actual performance rather than hypothetical scenarios. Because the existing

timetable has been tested and validated, adjusting tends to yield more predictable and

manageable outcomes than designing a completely new timetable. This predictability

can help transit agencies implement changes with greater confidence and efficiency.

Minor adjustments to an existing timetable typically require less regulatory approval

than creating an entirely new schedule, saving time and administrative effort for transit

authorities. Furthermore, adjusting a timetable tends to be more acceptable to stake-

holders, including passengers, employees, and funding agencies, fostering support and

cooperation within the transit system. This scalability enables transit systems to adapt

dynamically to changing conditions and demands as they integrate electric buses, making

adjustments a practical, cost-effective, and less disruptive method to improve on-route

BEB charging opportunities. It uses existing infrastructure and data while maintaining

continuity, making it a more feasible and sustainable strategy for transit agencies.

Effective on-route charging is crucial to maximize the utility and efficiency of BEBs. One

promising approach to enhance on-route charging opportunities is through the temporal

dispersion of BEBs schedules. By tuning the departure and arrival times of buses, it is

possible to optimize the availability and utilization of charging infrastructure, extending
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the operational range of BEBs and minimizing service disruptions. This study explores

the potential of temporal dispersion in inherited transit system timetables to maximize

on-route BEB charging opportunities. We examine how adjusting the timing of BEBs

operations can alleviate the pressure on charging stations and ensure a more consistent

and efficient use of charging resources. Our research aims to provide actionable insights

for transit agencies seeking to enhance the sustainability and reliability of their BEB

fleets.

In the proposed model, we assumed that the charging terminals are defined (5.8), the

activity block allocations to the charging terminals are specified (5.11), and they are

fixed, which means all BEBs performing transit activity blocks always charge at specific

charging terminals. We define the set of charging terminals.

BLch
i = {bl1,bl2, . . . ,bln}, ∀bln ∈ BL i ∈ Tch,where n ≤ |BL| (5.11)

Considering the diesel-fueled transit system’s timetable and activity blocks, the BEBs

are supposed to stop at the allocated charging terminal at certain times, defined in a set

which is given by equation (5.12) and depicted in Figure 5.5.

ST
blj
chi

= {stbljchi1
, st

blj
chi2

, . . . , st
blj
chis
},where (s) is the total

number of activity block j daily stop times at charging terminal i
(5.12)

Figure 5.5: Activity block (j) stop times at charging terminal (i)

Then, we define a set which includes all activity blocks’ daily stop times at allocated

charging terminals which is given by equation (5.13) and depicted in Figure 5.6.
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STchi = {stchi1 , stchi2 , . . . , stchia},where (a) is the total

number of all activity blocks stop times at charging terminal i
(5.13)

Figure 5.6: All activity blocks’ stop times (accumulated) at charging terminal (i)

5.2.1 Activity Block Sinusoidal Model

The activity block stop times at the charging terminal have fixed time intervals 5.18.

Therefore, we can represent the stop times with a sinusoidal function (5.17) with a specific

frequency, phase shift, and activity starting and ending times, depicted in Figure 5.7.

Each block bln in BL comprises the daily services assigned to one BEB. The BEBs’

departure times from and arrival times to the transit network depot are presented by

Td = {tdbl1 , t
d
bl2

, . . . , tdbln} and Ta = {tabl1 , t
a
bl2

, . . . , tabln} respectively. Thus, Equation

(5.16) gives the phase of representing sinusoidal function.

TI
blj
chi

=
∣∣∣stbljchi2

− st
blj
chi1

∣∣∣ = ∣∣∣stbljchi3
− st

blj
chi2

∣∣∣ (5.14)

f
blj
chi

=
2π

TI
blj
chi

(5.15)
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Figure 5.7: A sinusoidal-modelled activity block

φ
blj
chi

=
π

2
−

2 · π · tdblj
TI

blj
chi

(5.16)

blj(t) = A(sin
(
2πf

blj
chi

t + φ
blj
chi

)
+ 1) ,Where A is the maximum

distance (km) - distance to charging terminal
(5.17)

5.2.2 Optimization Model

We charge the activity blocks’ BEBs at the stop times (sinusoidal maxima). These stop

times are BEBs’ opportunity to charge at the charging terminal. Therefore, to maximize

these opportunities, we should ensure that the activity blocks’ stop times are dispersed

along the time axis, minimizing stop times synchronicities without changing the service

frequency related to travel demand and the transit system response. As we modelled the

activity blocks’ timing and distance for charging terminals, we can determine the optimal

values of sinusoidal phase shifts while keeping the frequency unchanged. This approach

will enable us to achieve the best charging opportunities with minimal overlap by tuning

the timetable without altering service frequencies. For instance, Figure 5.8 illustrates

the synchronicity between two activity blocks, while Figure 5.9 demonstrates the process

of shifting phases to eliminate this synchronicity. We must mathematically define the

objective and constraints to formulate an optimization problem for sinusoidal phase shifts

such that their maxima are evenly distributed along the time axis.
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Figure 5.8: Synchronicity of activity blocks i and j stop times at the charging terminal

Let’s assume we have n sinusoidal functions in the activity blocks set belonging to the

specific charging terminal (5.11) given by (5.17).

The objective is optimizing the phase shifts φ
blj
chi

such that the maximum points of these

functions are evenly distributed along the specified time interval (working hours) [T1,T2]

on the time axis.

Determining the Number of Maxima: The number of maxima for each function

blj(t) within the interval [T1,T2] is given by:

T = |T2 − T1| (5.18)

mj =

⌊
T · fbljchi

2π

⌋
(5.19)

The maxima of blj(t) occur at:

tj,k =
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

, k ∈ {0, 1, . . . ,mj − 1} (5.20)

Objective Function: Minimize the total deviation of the time instances tj,k from evenly

spaced intervals within the specified interval [T1,T2].
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Figure 5.9: Phase shifting to eliminate the synchronicity of stop times

The objective function is formulated as:

Minimize
M−1∑
j=0

∣∣∣∣tj − (j TM
)∣∣∣∣ (5.21)

where M is the total number of maxima from all functions:

M =

n∑
i=1

mi (5.22)

and tj are the sorted maxima of all functions.

The optimization problem is formulated as follows:
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Minimize
M−1∑
j=0

∣∣∣∣tj − (j TM
)∣∣∣∣

Minimize
M−1∑
j=0

∣∣∣∣∣
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

−
(
j
T

M

)∣∣∣∣∣
subject to

tj,k =
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

, k ∈ {0, 1, . . . ,mj − 1}

φ
blj
chi
∈ [0, 2π], i = 1, 2, . . . ,n

(5.23)

This formulation aims to find the phase shifts φ
blj
chi

that minimize the deviation of the

maxima positions from their expected evenly spaced positions within the interval [T1, T2].

5.2.3 Optimization Model Transformation

The type of optimization described in Equation (5.23) is a constrained nonlinear opti-

mization problem. It involves minimizing an objective function subject to constraints

on the variables. The objective function aims to reduce the deviation of the maxima

positions from evenly spaced intervals, and the constraints ensure that the phase shifts

φ
blj
chi

are within the range [0, 2π]. In this section, we aim to transform the optimization

problem defined in Equation (5.23) to a more straightforward optimization problem to

solve.

Activity blocks’ timing and distance for charging at terminals are modelled as sinusoidal

functions, as shown in Equation (5.17). We aim to simplify the optimization problem

in two steps: first, by reducing the time interval without affecting the final result, and

second, by redefining the objective function.

Reducing the interval: The original optimization problem, as defined in Equation

5.23, aims to find the activity blocks phase shifts to evenly distribute the sinusoidal

maxima within the working interval (T), which is specified in Equation 5.18. Despite

numerical techniques being employed to solve the defined objective function, reducing

the interval can decrease the required time and resources to solve the problem. Since

the block activities have fixed frequencies over the working time, their maximum points’

relative positions to each other follow a repetitive pattern. The repetition frequency is the

least common multiple (LCM) of the activity block frequencies. Therefore, if we solve the

optimization problem for a period of LCM frequency, the result for the remaining total

time interval replicates the achieved result in a period of LCM frequency. Let FLCM be
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the LCM of the activity block frequencies {fbl1chi
, . . . , fblnchi

}. The new optimization period

is given by:

FLCM = LCM(fbl1chi
, . . . , fblnchi

)

TLCM =
1

FLCM

(5.24)

MLCM is the total number of maxima from all functions within time interval TLCM :

MLCM =
n∑

i=1

mLCM
i (5.25)

The updated definition of the optimization problem is as follows:

Minimize
MLCM−1∑

j=0

∣∣∣∣∣
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

−
(
j
TLCM

MLCM

)∣∣∣∣∣
subject to

tj,k =
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

, k ∈ {0, 1, . . . ,mj − 1}

φ
blj
chi
∈ [0, 2π], i = 1, 2, . . . ,n

(5.26)

Figure 5.10 depicts the new time interval and its replicas along the total time interval.

Figure 5.10: The new time interval and its replicas along the total time interval
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Redefining the objective function: To redefine a more straightforward objective

function, we utilize that evenly distributing the maxima along the time axis minimizes

overlapping sinusoidal functions and maximizes the area under the maximum function of

the sinusoidal functions. To mathematically prove that evenly distributing the maximum

points of the sinusoidal functions by phase shifting leads to an increased area under the

resulting maximum function, we analyze the overlap and distribution of the maxima.

Let us consider n sinusoidal functions given by:

fi(t) = Ai sin(ωit + ϕi), i = 1, 2, . . . ,n (5.27)

where Ai is the amplitude, ωi is the angular frequency, and ϕi is the phase shift of the

i-th sinusoidal function.

The resulting maximum function is defined as:

M(t) = max
i
{fi(t)} (5.28)

The area under M(t) over a period T is given by:

Area(M) =

∫ T

0
M(t) dt (5.29)

When the maxima of the functions fi(t) are not evenly distributed, there are intervals

where multiple functions contribute to M(t), causing more overlaps and leading to a lower

overall value of M(t).

If the maxima are evenly distributed, the contributions to M(t) are spread out, minimizing

the overlaps. This results in more intervals where a single function dominates, increasing

the values of M(t).

Each sinusoidal function fi(t) has a period Ti =
2π
ωi

. If we align the maxima of these

functions such that they are evenly distributed within a common period T (e.g., the least

common multiple of the individual periods), we can write:

ϕi =
2kπ

n
, k = 0, 1, . . . ,n− 1 (5.30)

where k is adjusted to distribute the maxima evenly.

The maximum function M(t) will have contributions from different functions at different

intervals, leading to:

M(t) = max
i
{Ai sin(ωit + ϕi)} (5.31)
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We aim to show: ∫ T

0
M(t) dt (5.32)

is maximized when the maxima are evenly distributed. By symmetry and periodicity:∫ T

0
max

i
{Ai sin(ωit + ϕi)}dt (5.33)

is maximized due to less overlap and more continuous contributions from individual

functions. For overlapping regions where multiple fi(t) contribute similarly, the integral

value is lower than for non-overlapping regions:∫ b

a
max{fi(t), fj(t)}dt <

∫ b

a
fi(t) dt +

∫ b

a
fj(t) dt (5.34)

Evenly distributing the maxima ensures minimal overlap, thus:

Area(M) =

∫ T

0
M(t) dt (5.35)

is maximized due to optimal phase shifts. By aligning phase shifts to evenly distribute

the maxima of fi(t), the area under M(t) increases. This is because the overlap between

different sinusoidal functions is minimized, and the intervals where individual functions

dominate are maximized.

Figures 5.11 (a), 5.11 (b), and 5.11 (c) depict three sets of phase shifts (π/4← π/8),

(π/2← π/8), and (π ← π/8) for two sinusoidal functions, along with their constructed

maximum functions and the area under the absolute difference of their maximum functions.

It is clear that evenly distributing the maximum points of the sinusoidal functions by

phase shifting leads to an increased area under the resulting maximum function.

(a) Phase shift π/4← π/8 (b) Phase shift π/2← π/8 (c) Phase shift π ← π/8

Figure 5.11: Three phase shifts maximum, functions and the area under the maximum
functions

Considering the fact of evenly distributing the sinusoidal functions and the area under

the constructed maximum function from them, We define a new function that, for each

point on the time axis, selects the maximum value among the sinusoidal functions as
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the function value. the new function Mi(t) that selects the maximum value among these

activity blocks sinusoidal functions in Equation (5.17) at time t is defined as:

Mi(t) = max{bl1(t),bl2(t), . . . ,bln(t)} ∀bln(t) ∈ BLch
i (5.36)

For a visual representation, Figure 5.8 illustrates the new function constructed from two

activity blocks in Figure 5.12.

Figure 5.12: Illustration of the constructed maximum function from two activity
blocks

Therefore, the optimization problem redefinition to find the optimal phase shifts aims to

maximize the area under the Mi(t) is given by:

Maximize Area(M) = Maximize
∫ TLCM

0
M(t) dt

subject to

tj,k =
π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

, k ∈ {0, 1, . . . ,mLCMj − 1}

φ
blj
chi
∈ [0, 2π], i = 1, 2, . . . ,n

(5.37)
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As a result we have optimized phase shifts φ
blj

∗

chi
in Equation (5.38) and the maximum

area A∗ in Equation (5.39).

φ
blj

∗

chi
= argmax

φ
blj
chi

(∫ 1
FLCM

0
max

i

(
sin
(
2πf

blj
chi

t + φ
blj
chi

))
dt

)
∀blj ∈ BL (5.38)

A∗ =

∫ 1
FLCM

0
max

i

(
sin
(
2πf

blj
chi

+ φ
blj

∗

chi

))
dt ∀blj ∈ BL (5.39)

At the end we calculate the new activity blocks timetable with respect to optimized phase

shifts given by:

tj,k =
π
2 + 2kπ − φ

blj
∗

chi

2πf
blj
chi

, Where tj,k ∈ T (5.40)

5.2.4 Optimization Solver Methods

According to Equation (5.37), the functions are sinusoidal, involve constraints, and have

some variables (activity blocks’ sinusoidal modells phase shifts). Therefore, we need

an optimization solver that can effectively handle both the smooth nature of sinusoidal

functions and the constraints. Gradient-based methods are generally efficient for smooth

and differentiable functions, and there are several solvers that can handle constraints.

These are brief descriptions of the solver methods utilized in this thesis.

• Nelder-Mead: The Nelder-Mead method, also known as the simplex method, is a

widely-used heuristic optimization technique for nonlinear optimization problems

without derivative information. Introduced by John Nelder and Roger Mead in 1965,

this method is particularly effective for minimizing or maximizing a function in a

multidimensional space [50]. The algorithm operates by constructing a simplex—a

geometric figure consisting of n+1 vertices for an n-dimensional problem—and

improving the simplex to converge toward the best solution. Its robustness and

simplicity make it a valuable tool for solving real-world optimization problems where

the objective function may be noisy or discontinuous. According to "Numerical

Recipes: The Art of Scientific Computing", the Nelder-Mead method remains a

fundamental algorithm in numerical optimization due to its ease of implementation

and ability to handle complex, multimodal landscapes [54]. Despite its heuristic

nature, the Nelder-Mead method has demonstrated remarkable efficacy in various

applications, including engineering design, economics, and machine learning.
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• BFGS (Broyden-Fletcher-Goldfarb-Shanno): The BFGS algorithm is a popular

iterative method for solving unconstrained nonlinear optimization problems. The

BFGS algorithm belongs to the family of quasi-Newton methods, designed to approx-

imate the Newton-Raphson method but with improved computational efficiency by

avoiding the direct computation of the Hessian matrix. Instead, BFGS updates an

estimate of the Hessian matrix using gradient information from successive iterations

[8].

In the BFGS method, at each iteration k, an update to the position vector xk is

calculated using:

xk+1 = xk − αkH
−1
k ∇f(xk) (5.41)

where αk is the step size determined by a line search, Hk is the current approximation

to the Hessian matrix, and ∇f(xk) is the gradient of the objective function at xk.

The Hessian approximation Hk is updated using:

Hk+1 = Hk +
yky

T
k

yTk sk
−

Hksks
T
kHk

sTkHksk
(5.42)

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).

This method balances Newton’s method’s fast convergence rates and the simplicity

of gradient descent.

• TNC (Truncated Newton): The TNC method is a popular iterative optimization

algorithm for solving unconstrained nonlinear optimization problems. It combines

the efficiency of Newton’s method in determining search directions with a trust-region

approach to manage step sizes and ensure convergence. The TNC is particularly

effective in scenarios where the Hessian matrix of second derivatives may be expensive

or impractical to compute directly. The algorithm approximates the Hessian matrix

using limited-memory techniques and adjusts step sizes dynamically based on the

objective function’s curvature and gradients. The steps of the TNC method can be

summarized as follows [49]:
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1. Compute gradient and approximate Hessian:

∇f(xk) (gradient at current iterate xk)

Bk ≈ ∇2f(xk) (approximate Hessian)

2. Solve the trust-region subproblem:

min
p

f(xk + p) subject to ∥p∥B ≤ ∆k

where ∥p∥B =
√
p⊤Bkp (trust-region radius ∆k)

3. Update parameters:

xk+1 = xk + pk

Adjust the parameters based on the step pk taken.

4. Convergence check:

Check for convergence based on predefined criteria.

• COBYLA (Constrained Optimization BY Linear Approximations): COBYLA is a

widely used derivative-free optimization method for solving nonlinear constrained

optimization problems. Unlike traditional methods that rely on gradients or Hes-

sians, COBYLA approximates the objective function and constraints using linear

approximations within each iteration [53]. This approach suits it, particularly

for scenarios where computing gradients could be more practical and costly. The

algorithm iteratively adjusts the solution by exploring the feasible region using

linear constraints and updating the approximation based on function evaluations.

Mathematically, COBYLA seeks to minimize an objective function f(x) subject to

nonlinear inequality constraints hi(x) ≤ 0 and equality constraints gj(x) = 0. The

main idea is to generate a sequence of iterates that improves the objective function

value while satisfying the constraints using linear approximations.

Minimize f(x) subject to hi(x) ≤ 0 and gj(x) = 0 (5.43)

• SLSQP (Sequential Least Squares Programming): SLSQP is a popular optimization

algorithm for solving constrained nonlinear optimization problems. It combines

the advantages of least squares techniques with sequential quadratic programming

methods to efficiently handle equality and inequality constraints. The algorithm

iteratively approximates the objective function and constraints using quadratic

models, adjusting iteratively to minimize the objective function while satisfying the

constraints [37].
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• Powell: Powell’s method, introduced by M. J. D. Powell in 1964 [52], is a numerical

optimization algorithm designed to find the minimum of a function without requiring

derivatives. It belongs to the class of conjugate direction methods and is particularly

effective for optimizing functions of several variables where direct computation of

gradients may be impractical or costly. The method iteratively explores directions

in the parameter space, adjusting its search based on the function evaluations to

efficiently converge toward the best solution.

• Trust-region constrained (trust-constr): Trust-constr optimization is a powerful

technique for solving nonlinear optimization problems subject to constraints. This

method is particularly effective when dealing with complex objective functions and

constraints that can be difficult to handle using traditional optimization methods.

The trust-constr approach iteratively refines a model of the objective function within

a trust region, a subset of the feasible region where the model is assumed to be

an accurate approximation of the objective function. This method balances the

exploration of the feasible space and the accuracy of the approximation, leading

to more robust solutions. Mathematically, the trust-region sub-problem can be

formulated as follows:

min
p

mk(p) = f(xk) +∇f(xk)
Tp+

1

2
pTBkp subject to ∥p∥ ≤ ∆k (5.44)

Here, mk(p) is the quadratic model of the objective function f around the current

iterate xk, ∇f(xk) is the gradient of the objective function, Bk is the Hessian

approximation, and ∆k is the radius of the trust region. The trust-region method

adjusts ∆k dynamically based on the agreement between the model mk and the

actual objective function f. Trust-region methods have shown significant advantages

over line-search methods, particularly in their ability to handle ill-conditioned

problems and to converge more reliably to a solution [75].

5.2.5 Evaluation Metrics

To evaluate the performance of the optimization, we measure the synchronicity and

temporal dispersion. By looking at the maximum of the histogram bar graph of the times

of BEBs presences at the charging terminal, we find the number of BEBs present at

the charging terminal at specific times. The maximum number points to the worst-case

scenario, representing the need for more chargers and power for charging the BEBs. For

instance, Figure 5.15 depicts a maximum of four, which means that at that time, we have

four BEBs at the Waterfront terminal.
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We propose the Temporal Presence Dispersion Index (TPDI) to quantify the variability

in distances between consecutive points along a time axis. It is designed to measure

how evenly these points (BEBs precences at the charging terminal) are distributed over

time by examining the differences between consecutive distances. TPDI quantifies the

spread of presences of BEBs at the charging terminal, indicates how much they are spread

out from previous and after BEBs’ presences at the charging terminal. More excellent

dispersion gives the BEBs more time (opportunities) for charging.

According to Equation (5.20), we define a set in Equation (5.45) that includes the maxima

of all activity blocks’ sinusoidal functions, which are considered as BEBs presence at the

charging terminal.

T =
{
tj,k | tj,k =

π
2 + 2kπ − φ

blj
chi

2πf
blj
chi

,

k ∈ {0, 1, . . . ,mj − 1}, j ∈ {1, 2, . . ., |BLch
i |}, tj,k ∈ T

} (5.45)

The set D encompasses the distances between consecutive BEBs presence times, given by:

D = {d2,d3, . . . ,di}

di = ti+1 − ti for ti ∈ T
(5.46)

Equation (5.47) calculates the differences between consecutive distances.

∆di = di+1 − di for i = 1, 2, . . . , |T | − 2 (5.47)

Equation (5.48) calculates the mean of the differences between consecutive distances.

∆d =
1

n− 2

n−2∑
i=1

∆di (5.48)

Equation (5.49) calculates the variance of the differences between consecutive distances.

σ2
∆d =

1

n− 1

n−1∑
i=1

(di −∆d)2 (5.49)

Therefore, TPDI is given by:

TPDI =
σ2
∆d

∆d
(5.50)
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A TPDI value close to 0 indicates a highly regular or evenly distributed pattern of BEBs’

presences at charging terminal over the working time, and higher TPDI values indicate

greater variability or clustering of BEBs’ presences at charging terminal over the working

time.

5.2.6 Model Evaluation

Referring to Table 5.3, we implemented the optimization model for the Waterfront charging

terminal. The BEBs fulfilling 13 activity blocks charge at the waterfront terminal. Figures

1 through 3 show the details of Thunder Bay City activity blocks, while Figure 6 depicts

the piece-wise sinusoidal-modeled activity blocks charging at the Waterfront terminal.

Figure 5.13 depicts the Thunder Bay City sinusoidal-modelled activity blocks charge at

the Waterfront terminal.

After modelling the activity blocks as piece-wise sinusoidal functions, we calculated the

LCM of the activity blocks’ periods and used that as a time interval in the optimization

process. LCM is 180 minutes. Therefore, we selected a 180-minute interval starting at 450

minutes and ending at 630 minutes, representing the active time for all activity blocks.

Figure 5.13: Sinusoidal-modelled Activity blocks charging at Waterfront terminal
within the 180-minute interval before the optimization

Figure 5.14 depicts BEBs’ presences at Waterfront terminal and maximum function

defined by Equation (5.36) within 180-minute interval before the optimization.

Figure 5.15 illustrates the synchronicity of activity blocks, showing the simultaneous

presences of BEBs fulfilling these activity blocks at the Waterfront charging terminal. The

maximum number of BEBs arriving at the Waterfront charging terminal together is four,
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(a) Maximum function (b) Maxima

Figure 5.14: Sinusoidal-modelled activity blocks maxima and maximum function
charging at the Waterfront terminal before the optimization

which poses a challenge for on-route charging. We will skip some charging opportunities

if we utilize fewer than four chargers. Skipping these opportunities might extend the

required charging time, which is undesirable for transit planners. Installing four on-route

chargers to accommodate all BEBs simultaneously would lead to high infrastructure costs.

Additionally, the power demand spikes when four BEBs charge simultaneously, which can

significantly increase electricity costs, especially during peak times.

Figure 5.15: Number of BEBs at the Waterfront charging terminal before the opti-
mization

According to Equation (5.37), the functions are sinusoidal, involve constraints, and have

some variables (activity blocks’ sinusoidal modelled phase shifts). Therefore, we need

an optimization solver that can effectively handle both the smooth nature of sinusoidal

functions and the constraints. Gradient-based methods are generally efficient for smooth
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and differentiable functions, and there are several solvers that can handle constraints.

We selected Python as the programming language for implementing the optimization

experiments. The minimize function in the scipy.optimize package provides several

solver methods for optimization problems. We experimented with some the available

methods. Table 5.4 demonstrates the results of different solver methods. Based on the

results for TPDI scores, Trust-constr outperforms the others with an index of 0.65, as

shown by the red background in Table 5.4. The maximum number of simultaneous BEBs

at the Waterfront terminal during working hours reached the achievable minimum, which

is one BEB.

Table 5.4: Scheduling Optimization Results with Different Solver Methods for Activity
Blocks Charging at the Waterfront Terminal

Solver
Method

Mean Dif-
ferences of
Neighbour
Distances

std of Dif-
ferences of
Neighbour
Distances

TPDI After
Opt

Max No.
of BEBs
Before Opt

Max No. of
BEBs After
Opt

Nelder-
Mead 1.44 1.40 1.36 4 1

Powell 3.88 3.43 3.04 4 2

BFGS 3.17 2.04 1.32 4 2

COBYLA 1.35 1.51 1.7 4 2

TNC 3.12 2.66 2.28 4 2

L-BFGS-B 2.16 1.74 1.40 4 2

SLSQP 2.65 2.22 1.87 4 2

Trust-
constr 1.30 0.92 0.65 4 1

Figure 5.16 depicts all activity blocks charging at Waterfront terminal modelled as

sinusoidal functions after optimization using the Trust-constr method, which achieved

the best result among the other methods. Figure 5.17 depicts the maxima and maximum

function within 180-minute interval after the optimization.

Figure 5.18 illustrates the synchronicity of activity blocks, showing the simultaneous

presences of BEBs fulfilling these activity blocks at the Waterfront charging terminal after

the optimization. The maximum number of BEBs arriving at the Waterfront charging

terminal together is one, a decrease from four before the optimization. We can charge all

BEBs at every opportunity without skipping any by installing one fast charger. Compared

to before the optimization, which required four fast chargers to avoid skipping charging
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Figure 5.16: Sinusoidal-modelled Activity blocks charging at Waterfront terminal
within the 180-minute interval after the optimization

(a) Maximum function (b) Maxima

Figure 5.17: Sinusoidal-modelled activity blocks maxima and maximum function
charging at the Waterfront terminal after the optimization

opportunities, the capital cost (CAPEX) and operating cost (OPEX) have decreased

considerably. Table 5.5 presents the time shifting required in each activity block to tune

the transit system’s timetable, considering the optimization results. The new tuned

timetable ensures that every BEB has maximum charging opportunity without changing

its service rate.

Referring to Table 5.3, we ran the optimization model for the City Hall charging terminal,

where BEBs fulfill 16 activity blocks charge. Figures 1 through 3 show the details of

Thunder Bay City activity blocks, while Figure 7 depicts the piece-wise sinusoidal-modeled

activity blocks charging at the City Hall terminal.

LCM of the City Hall charging terminal activity blocks’ periods is 300 minutes. Thus,

we selected a 300-minute interval starting at 500 and ending at 800, representing the

active time for all activity blocks as the optimization interval. Figure 5.19 shows all
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Figure 5.18: Number of BEBs at waterfront charging terminal after the optimization

sinusoidal-modelled activity blocks charging at the City Hall terminal modelled before

the optimization.

Figure 5.19: Sinusoidal-modelled activity blocks charging at City Hall terminal within
the 300-minute interval before the optimization

Figure 5.20 depicts the distribution of BEBs’ presences at the City Hall terminal over

300-minute interval (maxima) and the maximum function, as defined by Equation (5.36),

before the optimization.
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Table 5.5: Tuned Activity Blocks Charging at Waterfront Terminal

Activity block Time shifting (min)
Updated
Start Time
(min)

Updated
End Time
(min)

201 + 7 367 1111

702 + 3 343 1729

701 + 1 346 1393

203 - 8 377 1389

202 + 9 369 1412

902 - 8 377 1240

903 + 6 356 1404

210 - 4 396 1085

211 - 4 426 1085

102 + 8 350 1428

103 + 6 366 1111

104 + 6 363 1428

105 + 5 370 1400

(a) Maximum function (b) Maxima

Figure 5.20: Sinusoidal-modelled activity blocks maxima and maximum function
charging at City Hall terminal before the optimization

Figure 5.21 illustrates the synchronicity of activity blocks, showing the simultaneous

presences of BEBs fulfilling these activity blocks at the City Hall charging terminal. The

maximum number of BEBs arriving at the City Hall charging terminal together is three,

which poses a challenge for on-route charging. We will skip some charging opportunities
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if we utilize fewer than three chargers. Skipping these opportunities might extend the

required charging time, which is undesirable for transit planners. Installing three on-route

chargers to accommodate all BEBs simultaneously would lead to high infrastructure costs.

Additionally, the power demand spikes when three BEBs charge simultaneously, which

can significantly increase electricity costs, especially during peak times.

Figure 5.21: Number of BEBs at the City Hall charging terminal before the optimiza-
tion

Table 5.6 demonstrates the results of different solver methods. Based on the results for

TPDIs, Nelder-Mead outperforms the others with an index of 1.78, as shown by the red

background in Table 5.6. The maximum number of simultaneous BEBs at City Hall

terminal during the working hours reached the achievable minimum, which is one BEB.

Figure 5.22 depicts all activity blocks charging at City Hall terminal modelled as sinusoidal

functions after optimization using Nelder-Mead method, which achieved the best result

among the other methods. Figure 5.23 depicts the maxima and maximum function within

300-minute interval after the optimization.

Figure 5.24 illustrates the synchronicity of activity blocks charging at City Hall terminal,

showing the simultaneous presences of BEBs fulfilling these activity blocks at the City

Hall terminal after the optimization. The maximum number of BEB(s) arriving at the

City Hall charging terminal together is one, a decrease from three before the optimization.

We can charge all BEBs at every opportunity without skipping any by installing one

fast charger. Compared to before the optimization, which required three fast chargers

to avoid skipping charging opportunities, the capital cost (CAPEX) and operating cost

(OPEX) have decreased considerably.
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Table 5.6: Scheduling Optimization Results with Different Solver Methods for Activity
Blocks Charging at the City Hall Terminal

Solver
Method

Mean Dif-
ferences of
Neighbour
Distances

std of Dif-
ferences of
Neighbour
Distances

TPDI After
Opt

Max No.
of BEBs
Before Opt

Max No. of
BEBs After
Opt

Nelder-
Mead 2.30 2.02 1.78 3 1

Powell 3.72 3.12 2.61 3 2

BFGS 4.48 3.71 3.07 3 2

COBYLA 3.16 2.65 2.22 3 2

TNC 4.32 3.60 3.00 3 2

L-BFGS-B 4.79 3.92 3.2 3 2

SLSQP 4.53 3.18 2.23 3 2

Trust-
constr 3.29 3.07 2.86 3 1

Figure 5.22: Sinusoidal-modelled activity blocks charging at City Hall terminal within
the 300-minute interval after the optimization

Table 5.7 presents the time shifting required in each activity block charging at City Hall

to tune the transit system’s timetable, considering the optimization results. The new

adjusted timetable ensures that every BEB has maximum charging opportunity without

changing its service rate.

In summary, we have formulated an effective on-route charging strategy through a
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(a) Maximum function (b) Maxima

Figure 5.23: Sinusoidal-modelled activity blocks maxima and maximum function
charging at City Hall terminal after the optimization

Figure 5.24: Number of BEB(s) at City Hall charging terminal after the optimization

comprehensive analysis of the daily energy requirements of the transit system and careful

consideration of the transit system’s timetable. This strategy includes assessing the

transit system’s daily worst-case energy needs, determining the minimum number of

required charging terminals to minimize infrastructure costs and assigning service activity

blocks to charge terminals to maximize the opportunities for BEBs charging. Additionally,

we have implemented energy balancing between charging terminals, ensuring a strategic

solution for the power grid and transit system planners. Since the transit system activity

blocks are periodic time functions, we modelled them as sinusoidal functions, with their

maxima representing the times when BEBs are at the charging terminals.

To maximize the charging opportunities for each BEB, they need to be at the charging

terminal at intervals that maximize the temporal separation from the presence of other
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Table 5.7: Tuned Activity Blocks Charging at City Hall Terminal

Activity block Time shifting (min)
Updated
Start Time
(min)

Updated
End Time
(min)

205 + 6 361 1100

206 - 2 353 1142

801 - 11 359 1074

802 - 7 393 1113

901 + 7 362 1111

306 - 5 340 1378

308 - 28 332 1351

303 + 11 376 1406

101 + 1 351 1101

305 - 1 399 1383

301 - 26 319 1373

302 + 9 354 1235

304 + 19 374 1114

307 + 32 382 1141

310 + 6 401 1076

BEBs at the same terminal. We proposed an optimization method to achieve maximum

temporal dispersion, minimizing synchronicity. Therefore, without altering the activity

blocks’ service rate, we maximize their charging opportunities by slightly shifting the

timing of these activity blocks forward or backward. We evaluated the proposed method

using the Thunder Bay City transit system. The results show a considerable improvement

in the temporal dispersion of BEBs presences at the Waterfront and City Hall charging

terminals with only slight shifts in the activity blocks’ times.
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Conclusion and Research Directions

6.1 Conclusions

As many municipalities begin to migrate from diesel buses to fully battery electric bus

transit systems, transit planners need to understand the charging process, approaches, and

the advantages and shortcomings of each approach. They also need methods to adapt the

existing transit system for fully electric sustainable transportation without making exten-

sive changes that could negatively impact the current transportation demand. Considering

the two main BEB charging strategies—on-route and off-service charging—the thesis

predominantly focuses on practical deterministic optimization for BEB charging facility

planning specific to each strategy, assuming known input parameters and constraints

with certainty from diesel-fueled transit systems. The thesis addresses some problems

associated with each strategy.

we utilized the BEB energy consumption estimator, developed through a data-driven

approach, to determine the worst-case energy consumption rate for transit system lines

(routes). Using this rate, along with the lengths of each route and their corresponding

service schedules (activity blocks), we estimated the daily worst-case energy consumption

for the entire transit system. The total estimated daily worst-case required energy is

17,612 kWh.

Regarding off-service charging planning, this thesis addresses three key challenges faced

by transit planners in the migration of transit systems from diesel-fueled to fully electric

transit systems:

• The placement of charging sites.

• The BEBs charging mechanism.

94
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• Determining the minimum number of BEBs required to fulfill daily transit system

services.

Effectively placing off-service charging sites improves overall system performance. The

proposed charging site placement method, CGC, is a flexible hierarchical clustering

technique that can consider any constraint at each merging step. This flexibility benefits

transit system planners, allowing them to define and apply localized constraints specific to

particular areas. Load distribution is a pivotal constraint imposed by the power grid. The

results indicate that enhancing clustering characteristics aids in optimizing the transit

system’s charging load balancing among the charging sites. Comparing CGC and K-

means, clustering showed that a slight compromise between their clustering performance

could create an effective charging load balance. The uniformity in clusters’ loads aligns

with our specific requirements for power grid constraints, aiding in achieving consistent

resource distribution.

It is worth mentioning that when selecting the location for the charging site and the

planner decides to utilize the current infrastructures, the proximity to charging site

placements is a crucial factor. Choosing a depot or garage as a charging site, which is

close to identified charging site placements, is advantageous as it eliminates the need to

construct new buildings. Therefore, the nearest depot or garage to the location of the

charging site placement is considered the best choice to minimize additional construction

efforts.

The outlined overnight charging strategy includes:

• Determining the transit system’s daily worst-case energy requirements.

• Establishing the start and end times for overnight charging.

• Determining the minimum number of chargers needed to minimize infrastructure

costs.

• Calculating the minimum power capacity.

The proposed mechanism, PCM, facilitates the simultaneous charging of all BEBs while

considering their energy requirements and depot availability. By rotating BEBs across

chargers during charging sessions, PCM improves resilience to charger failures. It dis-

tributes potential disruptions across the chargers, minimizing the effects of any single

charger failure on a BEB.

We proposed the clustering method, CACA, to ensure an effective solution for grouping

activity blocks for shared BEBs usage. This algorithm minimizes travelling distances

while considering energy balancing among the shared BEBs within the transit system.
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Regarding on-route charging planning, this thesis addresses three existing problems

concerning transit planners in the migration of transit systems from diesel-fueled to fully

electric ones:

• Identifying suitable charging terminals among the existing infrastructure.

• Optimal allocating BEBs to the identified charging terminals.

• Adjusting the current transit system timetable to maximize BEBs’ charging oppor-

tunities and minimize the synchronicity of BEBs’ presence at charging terminals.

We proposed the transit system opportunity matrix to determine the minimum number

of required charging terminals that all activity blocks can use. Using a three-step method

-accessibility, number of stops, and energy balancing between charging terminals- we

efficiently assigned activity blocks to charging terminals to maximize opportunities for

BEB charging, which is a suitable solution for power grid and transit system planners.

To migrate from a diesel-fueled transit system to a fully electric one, maintaining the

inherited bus activity blocks facilitates the process. It can reduce the overhead cost

of rescheduling services. To that end, we modelled the transit system activity blocks

inherited from the diesel-fueled system as piece-wise sinusoidal functions, where the BEBs’

presences at charging terminals correspond to the sinusoidal-modelled activity blocks’

maxima. In the on-route charging strategy, BEBs’ presence is considered one of the BEBs’

charging opportunities. To maximize the charging opportunities for each BEB, it needs

to be at the charging terminal at intervals that maximize the temporal separation from

the presence of other BEBs at the same terminal. We proposed an optimization method

to achieve maximum temporal dispersion, minimizing synchronicity. Therefore, without

altering the activity blocks’ service rates, we maximize their charging opportunities by

slightly shifting the timing of these activity blocks forward or backward. Temporal

dispersion helps mitigate the concentration of BEBs at charging terminals, reducing the

demand for fast chargers at any given time. By spreading out the charging times, fewer

BEBs require charging simultaneously, which decreases the likelihood of congestion and

ensures that each BEB can access a charger when needed. This approach minimizes the

risk of missed charging opportunities and optimizes the utilization of available charging

infrastructure. Consequently, the system can operate more efficiently with fewer fast

chargers while maintaining effective and timely charging for all BEBs.

We evaluated the proposed method using Thunder Bay’s transit system. The results

show a considerable improvement in the temporal dispersion of the BEBs’ presence at the

Waterfront and City Hall charging terminals with only slight time-shifting of the activity

blocks.
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6.2 Research Directions

The expectation for BEB transit systems to utilize a combination of various charging

technologies arises from several factors. Different regions or transit systems may possess

diverse infrastructure capabilities and constraints. Incorporating a mix of charging

technologies provides flexibility to adapt to existing infrastructure and accommodate

future expansions. Operational efficiency is paramount in BEB transit systems. Different

charging technologies offer varying charging speeds, costs, and energy efficiency. By

integrating these technologies, BEB transit systems can optimize charging processes

to minimize operational costs and maximize efficiency. BEBs may operate on routes

with varying distances and schedules, necessitating different charging solutions to meet

their range requirements. Utilizing a combination of charging technologies allows greater

flexibility in addressing range limitations and optimizing charging schedules. Despite

these anticipated benefits, only a few studies have explored integrating different charging

technologies in BEB transit systems. This could be attributed to factors such as the

complexity of coordinating multiple technologies, limited availability of data on their

performance and interoperability, and the relative novelty of BEB technology in many

regions. Hence, further research is needed to investigate how to effectively coordinate

and integrate diverse charging technologies in BEB transit systems to realize their full

potential.

As transit system planners consider multiple criteria such as geographical location, traffic

patterns, passenger demand fluctuations throughout the day, and existing infrastructure

capacities in their planning processes, one promising avenue for future research is to

incorporate localized constraints rather than applying a single general power constraint,

as done in our work, during the hierarchical clustering merging process. Additionally,

exploring fuzzy clustering techniques could enhance the ability to accommodate varying

constraints and uncertainties in transit system optimization. Since delays are an insepa-

rable part of transit systems, they introduce uncertainty into our timetable. Conducting

future research on on-route charging scheduling that takes into account uncertainties in

the real world is a practical and significant endeavour.

Future research could explore incorporating stochastic elements into the timing of activity

blocks, accounting for variations such as delays that might differ for each activity block. By

modelling these uncertainties, researchers can develop more robust scheduling algorithms

that better reflect real-world conditions. This approach would enable transit systems

to adapt to unpredictable events and maintain the practical charging opportunities.

Investigating the impact of stochastic delays on the temporal dispersion of BEBs at

charging terminals could also help improve the resilience and efficiency of fully electric
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transit systems. Additionally, future studies could examine how stochastic modelling

influences the transit system’s overall performance and infrastructure requirements.

We plan to build comprehensive algorithms to assess the proposed models for larger public

transit systems where interlining routes and services are more complex than in the City

of Thunder Bay.
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Thunder Bay Transit System

Activity Blocks

Figure 1: Thunder Bay City activity blocks page one
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Figure 2: Thunder Bay City activity blocks page two

Figure 3: Thunder Bay City activity blocks page three



Topology Grade

The Topology Grade % represents the percentage of the route’s topographical difficulty

relative to its length. It is calculated by dividing the elevation change by the route length

and then expressing the result as a percentage. The formula for calculating the Topology

Grade % is given by:

Topology Grade % =

(
Elevation Change

Length

)
× 100 (1)

The City of Thunder Bay transit system comprises 17 lines: 1, 2, 3C, 3J, 3M, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, and 16. Lines 4, 6, and 12 feature a loop shape, meaning the starting

and ending terminals are the same. For the remaining lines, the length of routes and the

number of stops along the way may vary between the two directions, from starting to

ending terminals and vice versa. We calculate the routes’ elevation profiles, shown in

Figures 4 and 5.
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(a) Line 1 Southbnd (b) Line 1 Northbnd (c) Line 2 Westbnd

(d) Line 2 Eastbnd (e) Line 3C Westbnd (f) Line 3C Eastbnd

(g) Line 3J Westbnd (h) Line 3J Eastbnd (i) Line 3M Southbnd

(j) Line 3M Northbnd (k) Line 4 Loop (l) Line 5 Southbnd

(m) Line 5 Northbnd (n) Line 6 Loop (o) Line 7 Westbnd

(p) Line 7 Eastbnd (q) Line 8 Southbnd (r) Line 8 Northbnd

Figure 4: Lines 1, 2, 3C, 3J, 3M, 4, 5, 6, and 7 elevation profiles.
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(a) Line 9 Westbnd (b) Line 9 Eastbnd (c) Line 10 Westbnd

(d) Line 10 Eastbnd (e) Line 11 Eastbnd (f) Line 11 Westbnd

(g) Line 12 Loop (h) Line 13 Westbnd (i) Line 13 Eastbnd

(j) Line 14 Westbnd (k) Line 14 Eastbnd (l) Line 16 Westbnd

(m) Line 16 Eastbnd

Figure 5: Lines 8, 9, 10, 11, 12, 13, 14, and 16 elevation profiles.



Thunder Bay City Transit Activity

Blocks’ Sinusoidal Models

Table 1 encompasses the details of Thunder Bay City transit’s activity blocks charging at

the Waterfront terminal.

Table 1: Activity Blocks Charging at the Waterfront Terminal

Activity
block

Start Time
(min)

End Time
(min)

Duration
(min)

Time Inter-
val (min)

Phase shift
(rad)

201 360 1104 744 90 0.28π

702 340 1386 1046 30 0.5π

701 345 1392 1047 30 0.5π

203 385 1397 1012 90 1.17π

202 360 1403 1043 90 0.95π

902 385 1248 863 90 1.83π

903 350 1398 1048 90 1.61π

210 400 1089 689 60 0.5π

211 430 1089 659 60 1.5π

102 342 1420 1078 60 1.37π

103 360 1105 745 60 1.47π

104 357 1422 1065 60 0.47π

105 365 1395 1030 60 0.3π

Figure 6 shows Thunder Bay City Transit’s activity blocks piece-wise sinusoidal models

charging at the Waterfront terminal.
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(a) Thunder Bay transit net-
work activity block 201

(b) Thunder Bay transit net-
work activity block 202

(c) Thunder Bay transit net-
work activity block 203

(d) Thunder Bay transit net-
work activity block 210

(e) Thunder Bay transit net-
work activity block 211

(f) Thunder Bay transit net-
work activity block 701

(g) Thunder Bay transit net-
work activity block 702

(h) Thunder Bay transit net-
work activity block 902

(i) Thunder Bay transit network
activity block 903

(j) Thunder Bay transit network
activity block 102

(k) Thunder Bay transit net-
work activity block 103

(l) Thunder Bay transit network
activity block 104

Figure 6: City of Thunder Bay transit system piece-wise sinusoidal-modelled activity
blocks charging at Waterfront terminal

Table 2 encompasses the details of Thunder Bay City Transit’s activity blocks charging

at City Hall terminal.

Figure 7 shows Thunder Bay City Transit’s activity blocks piece-wise sinusoidal models

charging at the City Hall terminal.
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Table 2: Activity Blocks Charging at the City Hall Terminal

Activity
block

Start Time
(min)

End Time
(min)

Duration
(min)

Time Inter-
val (min)

Phase shift
(rad)

205 355 1094 739 30 1.17π

206 355 1144 789 30 1.5π

801 370 1085 715 150 0.3π

802 400 1120 720 150 1.9π

901 355 1104 749 150 1.5π

306 345 1383 1038 150 1.18π

308 360 1379 1019 150 1.31π

303 365 1395 1030 150 1.18π

101 350 1100 750 60 1.57π

305 400 1384 984 150 1.3π

301 345 1399 1054 150 1.57π

302 345 1226 881 150 0.91π

304 355 1095 740 150 0.9π

307 350 1109 759 150 1.31π

309 360 1131 771 150 1.5π

310 395 1070 675 150 0.3π
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(a) Thunder Bay transit net-
work activity block 205

(b) Thunder Bay transit net-
work activity block 206

(c) Thunder Bay transit net-
work activity block 801

(d) Thunder Bay transit net-
work activity block 802

(e) Thunder Bay transit net-
work activity block 901

(f) Thunder Bay transit net-
work activity block 306

(g) Thunder Bay transit net-
work activity block 308

(h) Thunder Bay transit net-
work activity block 303

(i) Thunder Bay transit network
activity block 101

(j) Thunder Bay transit network
activity block 305

(k) Thunder Bay transit net-
work activity block 301

(l) Thunder Bay transit network
activity block 302

(m) Thunder Bay transit net-
work activity block 304

(n) Thunder Bay transit net-
work activity block 307

(o) Thunder Bay transit net-
work activity block 309

Figure 7: City of Thunder Bay transit system piece-wise sinusoidal-modelled activity
blocks charging at the City Hall terminal
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