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Abstract

The drastic growth in the conventional transportation system raises serious air pollu-

tion concerns. Eco-friendly vehicles, in contrast, have been introduced as an alternative

to alleviate such environmental issues. To support the Canadian government’s goal of

achieving 100% sales of zero-emission vehicles by 2035, there is an increasing need for

advancements in charging infrastructure and the performance of Electric Vehicles (EVs).

These improvements aim to address range anxiety which is the primary concern of EV

consumers who fear running out of electricity during a journey and being unable to find

a charging point. However, so far, the main investment focus has been on the installation

of Fixed Charging Stations (FCSs) which requires significant budget contributions and

proper charging station placements. Therefore, to achieve higher EV popularity, this work

aims to elevate user satisfaction and alleviate Range Anxiety by developing an intelligent

system to manage EV charging demands, accurately estimating State of Charge (SoC) lev-

els, and offering user-centric suitable service recommendations. Nevertheless, the scarcity

of EVs historical data for Artificial Intelligence (AI)-based predictions poses a significant

difficulty. To mitigate the aforementioned concern, we present a model based on Deep

Transfer Learning (DTL) between domain-variant data sets, to reduce the need for the

existence of a vast amount of EV data, including driving characteristics and patterns.

Furthermore, the accurate proposed DTL-based energy consumption estimation mech-

anism allows us to introduce an optimized Federated Learning (FL)-based recommendation

system. Our intelligent system identifies nearby charging sources while preserving user pri-

vacy, which is a crucial aspect of the Internet of Things (IoT) framework security. Since the

focus of this system is to increase the recommendation performance, we go beyond FCSs

by integrating recently developed flexible Mobile Charging Stations (MCSs) to enhance the

functionality of our system for EV consumers. This system prioritizes user satisfaction by

balancing the desired charging outcomes with minimal inconvenience and expenses among

all types of available charging services. Hence, it alleviates range anxiety and enhances
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the overall user experience within the EV ecosystem. We further investigate the inherently

dynamic functioning environment of MCSs, which is influenced by inconstant user pref-

erences, energy demands, and charging service availability, to ensure cost efficiency and

fairness. Therefore, in this thesis, we develop an optimization FL-based mechanism that

enables decentralized learning with minimal data transfer to maximize the potential profit

of MCSs while optimizing their daily operational efficiency.
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Chapter 1

Introduction

The transition from gasoline-powered vehicles to Electric Vehicles (EVs) is a major shift

in the automotive industry. This shift aims to reduce environmental impacts and enhance

energy efficiency. However, several critical challenges impede this transition. These include

cost and development, range anxiety, limited driving ranges, and inadequate charging in-

frastructure. Addressing these challenges is essential to encourage widespread EV adoption

and realize their benefits, such as reduced greenhouse gas emissions and less reliance on

fossil fuels.

The cost of EVs is a critical factor influencing consumer adoption. While EV prices

have decreased over the years, they are still generally higher than those of traditional In-

ternal Combustion Engine (ICE) vehicles. The higher upfront cost can be attributed to

several factors, namely, (a) battery costs, (b) manufacturing costs, and (c) economies of

scale. Many governments offer subsidies, tax credits, and other incentives to lower the

effective cost of EVs for consumers. However, in addition to the cost barriers, there are

several economic and developmental challenges that need to be addressed for the successful

integration of EVs into the mainstream market. Developing a robust charging infrastruc-

ture requires substantial investment. For instance, Canada is investing $1.2 billion to build

84,500 chargers by 2029 to support the growing number of EVs [1]. Figure 1.1 illustrates

the projected Honda Civic Sedan, and Nissan Leaf vehicle prices from EF2018’s Reference
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Figure 1.1: Historical and projected costs of mid-sized Nissan Leaf EVs compared to
traditional Honda Civic vehicles in Canada.

Case collected from the National Energy Board (NEB) of Canada [2] for the years 2020,

2030, and 2040. The graph reveals that while ICE car prices are generally lower than those

of EVs, the cost of ICE vehicles slightly increases over time, whereas the price of EVs

decreases.

Regardless, range anxiety, the fear of running out of battery power during a journey,

remains a major concern for potential EV buyers. While current EV companies’ navi-

gation systems suggest chargers along the route, they could benefit from more advanced

algorithms that consider user driving habits, real-time traffic, and alternative charging

options, including third-party stations. This issue has deteriorated because of the lack

of Charging Station (CS) infrastructure compared to the growing number of EVs, espe-

cially in remote areas. The long time required for a full charge further complicates this

problem. Prolonged wait times and a lack of available charging spots, especially during

peak hours, make the situation worse. By ensuring that EV users have access to reliable

and optimized charging recommendations, the proposed system directly addresses range

anxiety and improves the overall EV user experience. These challenges highlight the need

for an intelligent charging source recommendation system to improve the EV experience
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by enhancing charging accessibility and efficiency.

Current research on EV aspects such as charging service recommendation, charging

scheduling, CS selection, and route optimization often falls short because they lack com-

prehensive models. These models should accurately consider the behavioral patterns of

EV users, including travel times, energy requirements, battery capacity, and charging in-

tervals. Additionally, existing deep learning models need large and diverse datasets, which

are often unavailable. This leads to inadequate solutions that fail to address the real-world

complexities of EV energy consumption.

Developing accurate energy consumption estimators is a significant technical challenge.

These estimators need to predict EV power needs based on various correlated factors.

This involves capturing the dynamic nature of EV driving behaviors. Another challenge

is integrating these insights into a system that can effectively optimize charging schedules

and station selection. Ensuring data privacy and security is also crucial, and consequently,

collecting and analyzing sensitive user data, such as location and charging habits, poses

significant risks.

Addressing the above-mentioned challenges is essential for several reasons. First, ac-

curate energy consumption models and optimized charging solutions can reduce range

anxiety, making EVs more appealing to potential buyers. For instance, by using the pro-

posed system to accurately predict energy consumption and recommend optimal charging

sources, users can confidently plan their journeys, knowing they will not run out of bat-

tery unexpectedly. Second, promoting EV adoption can significantly reduce greenhouse

gas emissions and fossil fuel dependency, contributing to a cleaner and more sustainable

environment. Finally, developing intelligent energy management and charging source rec-

ommendation systems and secure data handling mechanisms will push the boundaries of

current technological capabilities and enable innovation in the automotive and energy sec-

tors.

Therefore, in this thesis, we propose several solutions to these challenges. First, Deep
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Transfer Learning (DTL) can improve the accuracy of energy consumption estimations by

leveraging knowledge from related domains. This reduces the need for extensive datasets

and computational power, enabling more precise and efficient predictions. Second, inte-

grating Mobile Charging Stations (MCSs) into the existing infrastructure offers a flexible

and cost-effective alternative to Fixed Charging Stations (FCSs). MCSs can be deployed

quickly in response to demand, reducing the stress on the existing fixed infrastructure

and providing a solution to the lack of charging stations in underserved areas. MCSs can

address temporary needs and enhance the overall Quality of Experience (QoE) for EV

owners, especially in underserved areas.

Third, the Internet of Things (IoT) ecosystem transforms EVs into intelligent entities

capable of near-real-time communication with the grid and other infrastructure compo-

nents. Fog computing supports this by processing data locally, reducing latency, and

improving system responsiveness. Fourth, Federated Learning (FL) offers a collaborative

approach to machine learning where raw data remains decentralized, enhancing privacy

and security. This is particularly important in IoT applications, ensuring that sensitive

data is protected while still enabling accurate and personalized charging recommendations.

Finally, integrating blockchain technology into the EV recommendation system further

enhances data security and integrity. Blockchain provides a tamper-proof and transparent

method for verifying transactions and ensuring the authenticity of data exchanges. This

mitigates risks associated with data breaches and unauthorized access. By ensuring that

charging data is secure and trustworthy, users can rely on the system to provide accurate

and timely recommendations, further enhancing their confidence and reducing range anx-

iety. Together, these solutions aim to address the key challenges in EV adoption, improve

user experience, and promote sustainable transportation solutions.

To sum up, widespread EV adoption links to overcoming significant technical and infras-

tructural challenges. Addressing range anxiety, optimizing energy consumption, enhancing

charging infrastructure, and ensuring data privacy are critical. By leveraging advanced
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technologies such as DTL, MCSs, fog computing, FL, and blockchain, we can develop a

robust and intelligent energy management and recommendation system. This system will

not only improve the EV experience by providing reliable and secure charging solutions but

also contribute to environmental sustainability by encouraging the use of cleaner energy

sources and reducing greenhouse gas emissions. This thesis aims to provide comprehensive

solutions to these challenges. It will contribute to the advancement of the EV industry

and the realization of its environmental benefits. Furthermore, this chapter details the

motivations, objectives, and contributions of this thesis.

1.1 Motivations

One side of an efficient energy management and recommendation system is dedicated

to minimizing EV owners’ range anxiety, and it is one rising challenge related to EVs’

widespread public adoption. Minimizing this potential concern, which is impacted by effi-

cient optimization of factors including charging scheduling, charging source selection, range

estimation, CSs placement, and route selection, is a promising answer to support compre-

hensive switching over EVs[3, 4]. The first two optimization factors (charging scheduling

and charging source selection) are considered important ones since they directly impact

users’ QoE [5, 6]. Charging scheduling focus is to schedule a suitable charging time period

for EVs while charging source selection aims to recommend an optimal charging source for

an EV when it requests charging. These two challenges are similar to some extent as we

can classify charging scheduling and charging source selection into temporal scheduling and

spatial scheduling, respectively [7]. The key objective of charging scheduling is to mitigate

the impact of EVs’ energy demands on the grid while maintaining user satisfaction. In con-

trast, the charging source selection aims to minimize the overall charging time consisting

of driving time, queuing time, and charging time at a station [8]. Therefore, it is critical to

recommend EVs with an ideal charging source to improve user QoE by minimizing overall

charging time. Moreover, the charging source selection affects more or less other issues.

For instance, it affects EVs routing optimization, and CSs placement [5].
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Considering the range anxiety issue, which according to a study affects almost around

50 percent of EV owners [9], a reliable recommendation system must identify the param-

eters with the highest impact on EV charging consumption and scheduling. It is not

efficient to present spatial charging scheduling algorithms without precisely analyzing EV

behavioral patterns and estimating energy consumption [10]. Constructing an optimized

energy consumption estimator model can be achieved by detecting the correlation between

EV driving behaviors and energy consumption and capturing the extent of the influence

of these factors on charging scheduling performance. To initial the behavioral analysis,

the model needs to establish some necessary characteristics that can better help us un-

derstand the travel pattern and charging pattern, such as the travel times of EVs during

a given day, the required energy for travel of EVs (kWh/km), the percentage of remain-

ing battery capacity before charging, the duration between two adjacent charging events,

the starting time period of the day when EVs receive electricity from the grid, and so

on [11, 12]. However, the absence of a dedicated model tailored for precise estimation of

EV energy consumption arises from the inadequacy of available real-world EV datasets or

the constraints imposed by sparse and limited datasets. This deficiency in relevant data

hinders the development of a reliable model capable of accurately predicting EV energy

consumption.

Another problem that we will consider investigating a proper solution for, is finding

an alternative approach to identify energy resources rather than FCSs. The inadequacy

of the low growth rate of FCSs with respect to EVs should be addressed before deploying

large-scale EVs on the road. On the other hand, such a significant surge of EVs can result

in power grid overloading and quality degradation [13]. Therefore, a systematic strategy is

required to prevent potential EV buyers from ending up fully discharged on the road with

no FCSs around them or in a long queue to get charged in order to widen the customer

adoption of EVs. The utility grid and EV owners can benefit from a substitute available

option for energy transferring among electricity prosumers to mainly provide a feasible EV

fueling method that will be beneficial for the utility grid and EV owners [14]. When an

EV needs power refilling, the fastest way to find energy sources to recharge is to search for
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any surrounding available electricity provider, and not only FCSs. Consider an EV with

low battery status in a rural area where no FCS is placed for miles. However, an intelligent

charging source recommendation system that integrates MCSs can employ a user-centric

approach in EV charging to maximize user satisfaction while minimizing associated costs.

In this case, a win-win situation will be created for both the EV and the MCS operator,

which willingly participates in order to increase its income by selling some amount of its

available battery energy.

Thus, these intelligent charging source recommendation models need centralized control

units that can collect and process the required data with data exchange mechanisms to

extract more comprehensive and related features of EVs, FCSs, MCSs, power distribution

networks, and road networks [15]. However, with ever-increasing data security and user

privacy protection regulations, sharing such private data (identity of drivers, location,

charging status, etc.) can raise privacy concerns [16]. If malicious users get access to this

valuable data, they can use such information to extract patterns of EV owners’ lifestyles

and behavior preferences, such as commute habits [17]. These centralized units can suffer

from a single-point-of-failure and cause service downtime, which will degrade the QoE

for time-sensitive models and can not offer scalability and acceptable latency. Due to

transmission delay, limited bandwidth, and unstable connections, traditional centralized

unit solutions are not practically applicable for an efficient near-real-time system [18].

Based on the above, some novel algorithms are needed to solve challenges related to

an optimized, reliable, accurate, and secure EV charging source recommendation system.

These identified issues can directly impact the performance of the EV industry if not

addressed duly. Therefore, in the following section, we will present our approach and

solutions to overcome the aforementioned critical issues related to developing an intelligent

EV recommendation system.

7



1.2 Objectives

The overarching goal of this thesis is to solve issues in intelligent charging source recom-

mendation systems for EVs that will promote the reduction of EV owners’ range anxiety.

To achieve that, we pursue the following objectives:

Objective 1: Solve the data deficiency issue of the accurate energy consumption estima-

tion algorithm.

• Define a detailed analysis of EV behavior to detect correlated parameters with the

highest impact on the EVs’ energy consumption.

• Design a Recurrent Neural Network (RNN)-based DTL algorithm to mitigate the

issue of poor generalization to unseen and future input data.

• Design a refined domain adaptation mechanism to prevent the transfer of non-related

feature parameters between distinct domains.

Objective 2: Enhance the QoE and well-being of EV users during charging.

• Design an accurate charging source recommendation algorithm incorporating MCS.

• Design a user-centric approach to optimize EV charging considering user satisfaction

and cost minimization.

Objective 3: Improve MCS operators’ QoE and performance.

• Design an algorithm to optimize MCSs’ daily operation costs.

Objective 4: Improve user data security for EV charging source recommendation algo-

rithm.

• Design a secure mechanism leveraging collaborative FL to protect user data privacy.
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• Develop a secure system utilizing blockchain around distributed fog nodes, ensuring

that only authorized aggregators can access the shared parameters.

All of the above-mentioned objectives are interconnected by the shared goal of de-

signing an intelligent recommendation system for EVs that addresses data deficiencies

in energy consumption estimation, improving user experience and operational efficiency,

and ensuring data security. Each objective offers specific improvements: accurate energy

consumption predictions through RNN-based algorithms, enhanced user satisfaction with

charging recommendations, cost-effective MCS operations, and secure data sharing via FL

and blockchain. These enhancements collectively aim to improve the overall efficiency, user

experience, and security of EV systems.

1.3 Methodology

Objective 1:

This thesis approaches addressing EV users’ range anxiety issues from a different per-

spective. Accurate energy consumption and State of Charge (SoC) estimation are vital for

reducing range anxiety in EVs by providing reliable predictions of remaining driving range

and battery status. This predictability allows drivers to plan routes and charging stops

effectively, builds confidence in the vehicle’s capabilities, optimizes charging schedules, and

maintains battery health. To this end, we design an algorithm based on an energy-aware

driving pattern analysis of EVs leveraging a DTL-enabled approach to evaluate different

energy consumption levels. Investigating and performing an in-depth EV driving behav-

ioral analysis to obtain energy consumption patterns and consequently detect the effective

weighted factors is the primary component of optimally planning a CS selection mechanism

[19].

This analysis focuses on identifying the highly correlated parameters from the prepared

datasets to estimate EV charging consumption, properly schedule EV charging plans, and
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find the most relevant charging points according to EV requirements. By considering the

accuracy and high-correlation nature of the analysis, leveraging the DTL technique is a

promising solution to strengthen the learning approach by transferring a trained model on

one task to a second related task to minimize the requirements of large-scale datasets and

high computational power devices [20]. Furthermore, To prevent the transfer of non-related

feature parameters between distinct domains, a domain adaptation technique is incorpo-

rated within the DTL framework, ensuring that only relevant features are transferred,

thereby enhancing the accuracy and relevance of the model.

In addition to the DTL algorithm, this thesis incorporates a BiLSTM-based approach

to further enhance the accuracy and generalization of EV energy consumption and SoC

estimation. The BiLSTM algorithm processes data bidirectionally, capturing both past

and future contexts, which is crucial for understanding complex temporal dependencies

in EV energy consumption patterns. By considering information from both directions,

the BiLSTM can identify intricate correlations and trends that single-directional models

might miss. This bidirectional processing, combined with the inherent ability of LSTMs to

manage long-term dependencies and mitigate vanishing gradient issues, ensures that the

model can effectively learn from extensive sequences of data. Consequently, the BiLSTM-

based methodology improves the robustness and reliability of predictions, addressing the

challenge of poor generalization to unseen and future input data.

Objective 2:

Regrettably, the FCS infrastructure and availability have not kept pace with the growth

of the EV industry. We design a charging source recommendation algorithm by integrating

MCS infrastructure into the recommendation system, filling the gap left by insufficient

and costly Fixed/Stationary CSs, especially in remote areas. These MCSs are generally

equipped with wheels and are movable which provides flexibility and convenience to lessen

the cost of FCS installations [21]. They are excellent replacements for certain circumstances

or temporary needs, in order to improve the overall EV ownership QoE, mainly for urban

EV owners who are being affected by the lack of charging accessibility.

10



To integrate this alternative portable energy unit into the EV charging infrastructure

effectively, our intelligent recommendation algorithm encompasses both types of energy

units (fixed and mobile) [22]. This algorithm primarily prioritizes the well-being of EV

owners by suggesting the most appropriate energy source based on the heuristic greedy

optimization function that makes local optimal choices with the hope of finding a global

optimum and aims to enhance the amount of electricity an EV can acquire from a given

charging service. Consequently, our proposed user-centric algorithm tailors the recommen-

dations to the specific preferences of the EV owner, such as traveling time, waiting time,

and energy unit price.

Objective 3:

The environment in which the recommendations operate is dynamic. Factors such as

user preferences, energy demand, and availability of charging services can change rapidly.

We design a heuristic greedy optimization method that makes local optimal choices with

the hope of finding a global optimum and can adapt to these changes and optimize cost

efficiency and fairness among MCS operators. To increase how much money a MCS makes

each day, the driver or operator’s choice to accept a charging request becomes a stochastic

optimization problem where there are random variables in the measurements provided. It

depends on whether they think they will get a better offer soon or not. It also depends on

where the MCS will end up after delivering energy, in a busy area with a higher number

of requests or in a quieter place with fewer EVs needing a charge. Moreover, deciding

where to park when not in use and idle also needs to be addressed for a MCS, which

further involves considering whether to move to a different location after completing an

energy-transferring task from the MCS to an EV battery [23, 24]. This integrated method

adds an extra feature of the energy delivery recommendation optimization by minimizing

MCSs’ self-charging costs during their idle time and ensuring the operation cost fairness

between the MCSs and FCSs. In other words, it aims to maximize the potential profit of

these stations while optimizing their daily operational efficiency.

Objective 4:
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To effectively tackle the challenges related to user data privacy, we incorporate a new

form of distributed machine learning, FL. The primary purpose of FL is to enable a new

paradigm of industrial informatics where collaborative learning of a shared model occurs

on IoT devices (e.g. EVs, mobiles, etc.) without sharing private data. In other words, raw

data are protected from leaving distributed datasets to jointly train a machine learning

model. Therefore, by applying such an innovative approach to our EV charging source

recommendation system, we can minimize private data leakage concerns among EV owners.

As we use FL, all stages of behavioral analysis and model training take place within

each data holder’s space, and no private information is shared with others. FL was first

categorized into different domains based on the data partitioning and common training data

samples between data owners (parties). For our proposed secure intelligent recommender

model aiming to optimally charge EVs and select the best charging source for them, Vertical

Federated Learning (VFL) is used, in which different data holders (FCSs, MCSs, EVs, and

electricity providers) own different sets of attributes but share the same samples of training

entities [25]. It is the master point(s) responsibility to obtain and join the locally trained

model parameters and then send back the computed output to identified parties to make

the scheduling and recommendation. If we replace the conventional training model with a

VFL technique for this example, the master point(s) only needs to gather locally calculated

parameters from each side, update the global values, and send the results back to each one

of them[26].

The VFL model will operate efficiently as long as the master point(s) is available and can

respond with the minimum communication delay. Instead of building a centralized master

point(s) aggregator [16], a lightweight decentralized fog-based architecture can alleviate the

issues regarding single-point-of-failure or long communication delays for a near-real-time

energy management system. Furthermore, fog infrastructure is easier to set up in new

areas as the number of cloud service providers and industrial applications is rising steadily,

resulting in relieving some concerns about communication infrastructure scalability and

location management [27]. In our model, a fog architecture is used to provide low end-to-

end latency by bringing cloud computing services closer to the source of information, which
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is a more suitable system for future industrial mobility [28]. This architecture allows our

model to address scalability as the number of EVs increases and the requests for energy

allocation increases, by utilizing decentralized fogs which can be installed almost in any area

covered by an Internet connection. However, As EVs might be moving while sending their

requests, they must be connected to an authorized trusted fog residing in the area. These

fogs are responsible for parameter exchanging and model updating among participating

parties. Therefore, their truthfulness must be verified by our energy management system.

To this end, we propose a protection layer using blockchain technology which can also

increase the reliability of the system [29]. Integrating blockchain to transparently evaluate

the truthfulness of available master point(s) is one solution provided in this thesis to design

a tamper-proof network of trusted fogs for our proposed model.

Figure 1.2 summarizes the thesis objectives, methods, and resulting publications.
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Figure 1.2: Flowchart of the objectives, methods, and publications.
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1.4 Contributions

The main contributions of this thesis based on each objective are summarized in this

section.

Objective 1:

(a) We develop an AI-powered energy consumption detector designed for EVs. Leverag-

ing time-series deep learning techniques to capture the dynamic data of vehicles more

precisely, we aim to enhance the accuracy of our proposed detector. While most of

the existing studies focused on analyzing a restricted set of vehicle characteristics, our

approach’s significance is to perform a detailed analysis on two real-world datasets

with wide-ranging internal/external elements to detect parameters with the highest

impact on energy consumption.

(b) To address the challenge of learning over-fitting in the constrained EV target dataset,

our approach involves the design of a deep transfer learning model. This innovative

solution entails the transfer of knowledge acquired from a large-scale dataset of elec-

tric buses (source) to the EVs (target) dataset. Remarkably, this marks the first

instance of leveraging AI to transfer learned knowledge between these distinct do-

mains. The significance of this methodology lies in its ability to mitigate the issue of

poor generalization to previously unseen and future input data. Furthermore, it es-

tablishes a pathway for facilitating knowledge transfer across the domains of electric

buses and electric vehicles, thereby enhancing adaptability and robust performance.

(c) We employ a refined domain adaptation mechanism by identifying highly corre-

lated energy consumption parameters between source and target datasets, optimizing

compatibility through non-parametric distance probability measurements. This en-

hancement using an optimized discrepancy loss function, prevents the transfer of
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non-related feature parameters between distinct domains, prioritizing the precision

of the adaptation process. In addition, we conduct an extensive and comprehensive

simulation and evaluation of the proposed scheme’s performance. This evaluation,

bench-marked against various existing frameworks, demonstrates the practicality and

effectiveness of our approach in real-world scenarios. The results underscore the

scheme’s superior performance compared to established methodologies.

Objective 2:

(a) In this thesis, we introduce a recommendation system that goes beyond traditional

fixed charging stations. By including the mobility and flexibility of MCSs, the pro-

posed system offers a comprehensive solution to the challenges faced by urban EV

owners, providing a more adaptable and convenient charging infrastructure. This

addresses the challenges associated with the lack of charging accessibility in urban

areas and offers diverse services to enhance the QoE for Intelligent Transportation

Systems (ITS).

(b) The user-centric approach in EV charging aims to maximize user satisfaction while

minimizing associated costs. Therefore, we formulate an optimization function within

the recommendation system that prioritizes user satisfaction. It contributes to the

well-being of EV consumers by addressing an optimization problem that considers the

desired charging level and minimizes costs related to waiting time, charging service

fees, and travel distance. By balancing the desired charging outcomes with minimal

inconvenience and expenses, this contribution aims to alleviate range anxiety and

enhance the overall user experience within the EV ecosystem.

Objective 3:

(a) We introduce an on-demand mobile charging service system that aims primarily at

minimizing daily operational costs incurred during self-charging, while simultane-

ously optimizing total profits to the highest degree possible.
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(b) Define a stochastic optimization approach for accepting charging requests. This

function helps operators decide whether to accept charging requests based on the

probability of receiving better offers and the potential future demand in different

locations. It also optimizes idle parking strategies, determining if and when the MCS

should relocate to areas with higher expected demand after completing a charging

task.

Objective 4:

(a) Within the security perspective, this thesis introduces a robust recommendation sys-

tem that combines the efficiency and security of fog computing within the IoT net-

work. This approach not only improves the responsiveness of the recommendation

system but also ensures the privacy and security of sensitive user data through the

utilization of Federated Learning (FL). We propose a VFL algorithm to train a rec-

ommender system for EVs to find the most relevant charging sources according to

their requirements. This algorithm allows EVs and charging sources to collaborate

in a learning system based on the distinctive attributes residing on each side. The

significance of this system lies in the fact that only the learning parameters are shared

between the parties to update the locally trained models inside each party without

revealing any private information.

(b) We design a secure mechanism surrounding the fog nodes to allow only authorized

aggregators to have access to the shared parameters. This mechanism preserves pri-

vacy by ensuring that every fog node must first register into a distributed blockchain

network to become verified by others. The importance of this new architecture is

that it prevents malicious users from entering into the fog network for data theft or

data tampering attacks.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: Background and Related Work. The chapter begins with an overview

of the research background, providing context and foundational knowledge necessary for

understanding the subsequent sections. It then presents a detailed review of the related

works and previous studies, which is classified into three major parts depending on the

objectives that our thesis follows. It covers an overview of EV behavioral analysis, charging

source recommendation and selection models, and MCSs scheduling. Additionally, the

security perspective is reviewed in each category, considering the implementation of FL

and blockchain technologies.

Chapter 3: Deep Transfer Learning for Detecting Electric Vehicles Highly

Correlated Energy Consumption Parameters. This chapter investigates DTL to

identify critical parameters influencing EV energy consumption. It outlines the methodol-

ogy for applying DTL and domain adaptation to enhance prediction accuracy by transfer-

ring relevant features. The chapter also highlights the use of BiLSTM to improve general-

ization to new data, resulting in more reliable energy consumption estimates and optimized

EV energy management.

Chapter 4: Smart Vehicles Recommendation System for Artificial Intelli-

gence enabled Communication. This chapter focuses on developing a recommendation

system for smart vehicles, utilizing AI to enhance charging source selection accuracy. It de-

tails the integration of AI techniques to provide personalized recommendations for vehicle

users. The chapter highlights the use of both FCSs and MCSs to improve the accuracy and

efficiency of recommendations, thereby enhancing user experience and overall effectiveness

in the smart vehicle ecosystem.
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Chapter 5: Empowering Consumer Electric Vehicle Mobile Charging Ser-

vices with Secure Profit Optimization. This chapter addresses the optimization of

mobile charging services for EVs to maximize profitability. It explores strategies for ef-

ficient decision-making to enhance daily revenue, incorporating optimization to handle

uncertainties in charging requests and future demand.

Chapter 6: Blockchain and Federated Learning for Electric Vehicle Charging

Source Recommendation. Presents a blockchain-based recommender system utilizing

FL to suggest proper charging sources for EVs demanding battery power. This proposed

mechanism mainly focuses on keeping entities’ data safe and unrevealed by only sharing

locally trained parameters among trusted nodes within the transportation network and

energy distribution network.

Chapter 7: Conclusion and Future Research. This section provides a compre-

hensive summary of the research conducted in this thesis, highlighting key findings and

contributions. It also outlines potential future research directions, such as further enhance-

ments in EV energy consumption prediction models, advancements in MCS optimization

algorithms, and the integration of emerging technologies like advanced blockchain frame-

works and more robust federated learning techniques to enhance security and efficiency in

EV systems.

Finally, references are included.
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Chapter 2

Background and Related Work

2.1 Introduction to Chapter 2

This chapter outlines the essential terminologies and foundational concepts of IoT in

EVs in Section 2.2.1, emphasizing AI-driven energy management techniques like DTL and

MCSs in Sections 2.2.2, and 2.2.3. It also reviews the security risks associated with IoT

networks and discusses security solutions such as FL and blockchain, specifically in the

context of EV networks in Section 2.2.4. Furthermore, we continue with a comprehensive

exploration of the latest studies available by thoroughly organizing them based on their

discussed subjects and the proposed solutions they offer. This chapter serves as a thorough

examination of the current landscape of research within the domain of Intelligent Trans-

portation Systems. We begin our investigation with a concentrated effort on examining the

driving and charging behaviors demonstrated by EVs in Section 2.3.1. Various methodolo-

gies and models were explored to precisely estimate energy consumption and SoC battery

levels of EVs, with the aim of establishing a more streamlined platform for EV navigation

and alleviating concerns regarding range anxiety. Subsequently, our discussion expands to

encompass an in-depth investigation into various methodologies aimed at recommending

suitable charging services to EVs, all aimed at enhancing the overall QoE for EV owners.

Moreover, security considerations and concerns are reviewed in each section to highlight

their importance. Within Section 2.3.2, we study and explore several methods available
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in detail, for suggesting energy service providers, catering to both stationary and mobile

charging services that are located close to the geographical coverage and energy demands

of EVs. Then in Section 2.3.3, we undertake a review of the previous literature about the

optimization of mobile charging station profitability. Here, we delve deep into an extensive

array of studies that focused on strategically deploying these stations along optimal routes

and aligning them with the unique and specific energy demands encountered.

2.2 Thesis Background

The background section of this thesis provides the foundational context necessary to

understand the scope and significance of the research. By presenting a thorough overview of

the relevant background, this section aims to equip the reader with the essential knowledge

needed to appreciate the relevance and implications of the research findings.

2.2.1 Role of Internet of Things in Electric Vehicles

The rapid development of the EV industry has shown the ability to reduce some of the

serious environmental issues in the transport sector, such as air pollutant emissions, energy

consumption, and the availability of fossil fuels [30]. Eco-friendly EV industrial technology

is believed to have a significant impact on addressing these environmental problems [31].

Therefore, the use of EVs should be encouraged by promoting the advantages over conven-

tional vehicles, including zero emissions, a cleaner environment, lower fuel cost, comfort,

and better driving experience, etc., to protect environmental sustainability.

However, many consumers have not adopted EVs appropriately due to a few barriers

in the way of the success of EVs which need to be eliminated, such as lower cruising

ranges, the inadequate number of charging locations, and lack of proper fast charging

systems [11]. In some areas, the low ratio of CS infrastructure to the number of EVs is

one of the main concerns that decreases the popularity of EVs among the public. In other

areas, the spread of the CSs is not satisfactory for making EVs a good alternative for long-
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Figure 2.1: General aspects of IoT-based EV energy management system.

distance journeys. Since an EV requires more time to become fully charged [32], unavailable

charging spots may stay unavailable for some periods and cause long waiting times for

vehicles, especially in peak hours, resulting in a lack of supply for EVs [30]. Therefore, in

order to motivate EV buyers and encourage the willingness to switch from gasoline-based

vehicles to the new industrial era of EVs, designing an intelligent energy management

system is necessary to improve the quality of the EV experience. Figure 2.1 illustrates the

fundamental components and interactions within an IoT-based energy management system

for EVs. This general setup highlights the integration of IoT technology in managing and

optimizing EV performance and QoE.

EVs are advanced technologies that depend on extensive data to perform at their best.

They monitor various performance metrics such as speed, acceleration, and mileage. They

also manage battery usage and charging, send fault alerts, and utilize predictive mainte-

nance systems to prevent issues. An accurate energy management scheme for EVs requires

designing a data-driven model based on information exchange among different parties (EVs,

charging sources, cloud infrastructure, and power grids) to efficiently handle EVs’ energy

demands and adequately manage their electricity utilization [27, 5]. Implementing IoT in

EVs allows companies to gain valuable insights that can significantly enhance and person-

alize the customer experience. By leveraging data collected from IoT devices, companies

can improve vehicle performance, anticipate maintenance needs, and offer tailored services

to increase overall EV customer satisfaction.
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Research in IoT for EVs focuses primarily on two areas. The first is developing fast

communication platforms to facilitate efficient data exchange. The second is creating

precise software to optimally manage electricity usage and recommend the best charging

sources. This work concentrates on the latter direction, which requires a precise energy

consumption estimator.

2.2.2 Deep Transfer Learning

DTL is used to improve the accuracy of behavioral analysis, in which the obtained

knowledge from one setting is transferred and exploited in another setting [33]. Existing

deep learning models need large and diverse datasets to detect rare events, and they perform

re-training of already-trained data that requires a vast amount of computational power [34,

35]. DTL, on the other hand, can accomplish precise learning by reducing the amount and

quality of required information in addition to offering a way to build models on previously

obtained knowledge and not initiating the whole learning procedure from scratch [36, 37].

Figure 2.2: In the DTL mechanism, learning a new task relies on the previous learning
tasks. Freezing the layers of the pre-trained model is to prevent them from being updated
during training. Then additional layers on top of the pre-trained network are added for
the specific task.
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Transfer learning is a popular approach where pre-trained models developed for a task

are re-purposed and utilized as a starting point for a model on a related second task to speed

up training and improve learning performance [38]. If the first task’s learned features are

general and suitable to both the base and target tasks, then transfer learning allows rapid

progress and improvements in learning the target task. Figure 2.2 is a simple illustration of

the overall transfer learning process. When we adapt the pre-trained model to the target

(after loading the source model with all its layers), we opt to freeze initial (general) layers

and fine-tune more specific layers to preserve the efficacy of fragile co-adaptation. Freezing

the layers of the pre-trained model is to prevent them from being updated during training.

This is where the deep adaptation happens by disabling gradient tracking.

Transfer learning involves initially training a model on a source domain, trying to learn

the source task that holds a vast amount of labeled data. Subsequently, the knowledge

acquired during this pre-training phase is applied to a target domain, trying to learn the

target task with only limited labeled data. The general steps in a transfer learning process

are as follows:

1. Pre-training a large-scale source domain dataset, which typically is computationally

expensive and can be a time-consuming process.

2. Trained weights, parameters, and features are extracted from the early layers of the

source model using the extractor function.

3. Pre-trained, and domain compatibility is examined with an optimized implemented

loss function.

4. Task-specific final layers are adjusted to the target model.

2.2.3 Mobile Charging Stations

A portable energy unit, commonly referred to as a MCS represents an innovative form

of EV charging infrastructure equipped with one or more charging ports. A MCS grants
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EV owners the flexibility to access EV charging services at times and locations that suit

their preferences [39]. The concept stems from the notion of giving a new lease of life

to a battery that retains a moderately good or healthy state, allowing it to serve beyond

its original role in an EV. This re-imagining could manifest in various forms, such as a

versatile high-speed charging station or a mobile charging robot, ensuring the battery’s

extended and useful existence. MCSs are mobilized in reaction to two distinct types of

requests, those originating from overwhelmed FCSs, and requests initiated by EVs.

Based on existing literature, three variants of mobile charging services are identified,

which encompass vehicle-to-vehicle energy transfer systems, truck/van-based mobile charg-

ing stations, and portable charging solutions [40].

In Figure 2.3a, we can observe a truck MCS with mounted energy storage, which is

designed to visit EVs at specified locations where they request, as a dependable source of

roadside assistance, providing on-demand charging services. However, to prepare for future

services, these truck MCS units must replenish their batteries at a designated charging

depository at scheduled timelines.

Figure 2.3b displays two different portable MCS technologies. One of them involves

an electricity storage unit mounted on a trailer, which can be transported by a vehicle to

charge electric vehicles at specific locations. The second technology resembles a robotic

unit capable of autonomous movement towards electric vehicles, or a lightweight battery

storage unit equipped with wheels and ports, allowing it to be manually moved or controlled

for convenient recharging.

Lastly, in Figure 2.3c, a third type of MCS system (also referred to as a Peer-to-Peer

(P2P) power exchange) is depicted, featuring a configuration with two EVs. One of these

EVs has a substantial amount of electricity stored in its battery, while the other is on the

verge of running out of charge and urgently in need of a power transfer.
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(a) A truck mobile charging station example with four installed batteries showing different levels
of charge.

(b) A portable mobile charging station example that can be moved by a vehicle (on the left), or
an autonomous/movable light battery carried toward an EV (on the right).

(c) A Vehicle-to-Vehicle (V2V) energy transfer that is considered to be a peer mobile charging
station.

Figure 2.3: Different categories of types and technologies for mobile charging stations.

2.2.4 Data Security in Electric Vehicles IoT Network

The IoT networks within the EV ecosystem are susceptible to various security risks,

including data breaches and unauthorized access. These vulnerabilities can compromise

user privacy, disrupt vehicle operations, and lead to significant financial and safety issues.

This is why it is important to take into account the data holders’ willingness to share their

personal information with other entities, as there are some confidentiality concerns.

However, data owners are reluctant to share private information with the system to pro-

tect their privacy. To ensure an accurate recommendation, it is essential to facilitate the
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Figure 2.4: Security Problem Statement: An unsafe example scenario of a conventional
recommender model, sharing all consumer electronic entities’ (EV, FCS, and MCS) sensi-
tive and private information to the centralized module.

exchange of comprehensive and relevant data related to EVs, charging sources, power dis-

tribution networks, and road networks as a whole. To deal with this issue, newly proposed

systems need to apply rigorous data security algorithms to keep the users’ information safe.

In order to gain a deeper comprehension of the security concern in the EV ecosystem,

Figure 2.4 illustrates an insecure scenario where a traditional machine learning model

makes use of three consumer electronics datasets originating from FCSs, MCSs, and EVs,

each having varying features. The primary objective of the recommendation model is to

choose the optimal charging source for an EV with a supply request by collecting the usable

private attributes from all three participants.

2.2.4.1 Federated Learning

Originally, FL was proposed by Google Artificial Intelligence (AI) in 2016 [41]. The

main idea of FL is to form distributed machine learning models based on distributed data

sets across multiple devices (entities) while preventing data leakage. In other words, data

owners can keep their private data yet still participate in collaborative learning strategies

[42]. Figure 2.5 illustrates the basic architecture for a FL system used in the EVs energy
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Figure 2.5: An example of a general federated learning framework for secure data exchange
between different entities.

sector data exchange.

One of the essential features of FL is privacy. There are some privacy techniques used

in FL that can provide meaningful privacy guarantees. Differential Privacy is one of the

security models, which is also known as k-Anonymity. This method adds noise to the data

to hide sensitive information from other entities to make them incapable of restoring the

data [43]. Another line of work is Secure Multi-party Computation (SMC) which provides

a data security framework to ensure complete zero-knowledge among parties except for

input/output data. This model involves complicated computation protocols to guarantee

high security with the cost of inefficiency [44]. Homomorphic Encryption is also adopted

in FL to secure users’ private information by exchanging training model parameters under

an encryption mechanism. In this model, neither data nor the training model itself are

transmitted. Homomorphic Encryption is widely used for training data on the cloud as

it allows data to be encrypted and out-sourced to commercial cloud environments for

processing, all while encrypted [42].

FL is classified into three categories based on the distribution characteristics of data.

Horizontal Federated Learning, also known as sample-based FL, is used in cases of datasets

where samples are different but they share the same feature space. For instance, two
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branches of an insurance company may have different users (sample ID space), but the

features in the business are similar [45]. On the other hand, in scenarios with datasets

sharing the same sample ID space but distinct feature space, Vertical Federated Learning

or feature-based FL is applicable. For instance, an insurance company and a car-rental

company datasets may likely include similar users residing in an area; therefore, the two

companies’ sample ID spaces may have a large intersection, however, their feature spaces

differ [46]. In order to use both parties’ data to process a computation, we need to build a

model to collaboratively aggregate different features for similar samples. The last category

defines a scenario in which datasets are distinguished in both sample ID space and feature

space. Federated Transfer Learning can be applied to an example of two different companies

located in geographically distributed areas with a small intercession among user groups [47].

Optimizing the large-scale communication bandwidth between entities and the aggre-

gator server is necessary among all FL models. Also, FL models are required to provide

security for the central server to protect model parameter aggregation [48].

2.2.4.2 Blockchain

Blockchain technology was first introduced in 2009 to describe the basis of developing the

Bitcoin digital currency [49]. This can be another approach to reduce security threats to the

private information of data owners based on Blockchain technology, which uses a complex

system to record information in a digital ledger of transactions distributed and duplicated

across the blockchain network. Each node (a computing system holding the distributed

ledger) within the network receives a copy of the ledger hence, making it impossible to

penetrate the network and forge the stored data [50].

The blockchain structure links each block to the preceding block under a cryptographic

signature system; therefore, a chronological chain of blocks is generated containing transac-

tions. Before granting permission to a node to add a new block in the chain, consensus on

the validity of data must be reached among other nodes, which requires a certain effortful

mechanism and particular conditions. The consensus is necessary to guarantee authenticity
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and to replicate other blocks, and also to avoid forking (i.e. the possibility of generating

the same block by different nodes) [51].

Three main consensus protocols have been introduced to facilitate agreement among

fully decentralized nodes by considering the validity of transactions. Proof of Work (PoW)

performs computationally complex operations on each newly added block. Nodes compete

with each other to solve these complex operations, which is a cryptographic puzzle, to be

able to add a new block into the blockchain. The purpose of this puzzle is to generate

a hash value with several leading zeros that is lower than a target for the hash. The

lower the target, the smaller the set of valid hashes, and the harder it is to generate

one. In practice, this means a hash that starts with a very long string of zeros. The PoW

guarantees immutability for the blockchain as to alter a block, all subsequent blocks must be

altered, which is computationally infeasible. However, due to enormous computing power,

it requires vast energy consumption with low transaction throughput [50]. To address the

non-scalability and energy-intensive issues of PoW, the Proof of Stake (PoS) protocol was

introduced as an alternative solution. In the PoS consensus algorithm, validators lock

up a stake and are randomly selected based on the staking amount of the participating

validators to add a new block to the blockchain network. PoS is considered a cleaner and

faster protocol than PoW since it requires lower computation power and higher transaction

throughput [52]. A symbolic comparison between these two protocols is shown in Figure

2.6. The other consensus protocol is called Delegated Proof of Stake (DPoS) in which

delegates vote for their favorite validators to generate new blocks in a blockchain network.

As each representative has the power to vote proportional to the size of the stake in

the network, this protocol is less likely to become centralized, and it is considered the

democratic version of the PoS protocol. Accordingly, due to the fact that DPoS needs

less number of trusted nodes to verify data in each new block of the network chain, it can

handle a higher number of transactions with faster confirmation times than PoW and PoS

[29].

In order to automate the execution of an agreement to receive a certain outcome among

all participants, Smart Contracts are embedded into the blockchain network as simple com-
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Figure 2.6: The PoS protocol is an alternative solution for a less wasteful validation algo-
rithm.

puter programs that run when conditions are met. Smart contracts are sets of IF/WHEN-

THEN rules written in codes that require an exact sequence of actions to execute predefined

agreements. Once a transaction is complete, the blockchain will be updated, and conse-

quently, the transaction will become unalterable [53].

2.3 Related Work

By examining prior studies, this section aims to identify gaps in the literature, highlight

significant contributions, and establish the context for the present research.

2.3.1 Electric Vehicle Behavioral Analysis

Analyzing EV driving behavior characteristics is an essential task for future energy

planning and resource allocation optimization. It is stated that the energy consumption of

an EV can be determined by its driver, vehicle status, and traffic conditions.

Considering EVs in the public transportation sector (electric buses), the study proposed

in [54] compared the relationship between the intensity of micro-trips for electric buses

and the performance of energy consumption. The experimental results showed that the

influence of the high-intense micro-trips is significantly larger than the low-intense micro-

trips. In [55] a Markov Decision Process-based model was developed to investigate the
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electric bus network to understand its operating and charging patterns, and further verify

the necessity and feasibility of a near-real-time charging scheduling. They designed a data-

driven near-real-time charging scheduling system by taking factors of electric bus spatial-

temporal charging distribution and time-variant electricity pricing into account and gained

a dramatic reduction in the charging costs. Literature [56] studied electric bus energy

consumption and battery capacity for various forms of transit services. They introduced

a framework for determining the appropriate e-bus battery size with a comprehensive

analysis and evaluation of real-world operational circumstances. Moreover, [57] presented

a method to schedule electric buses under micro-driving behavioral analysis. The authors

indicated the fact that electric buses have longer charging times and shorter cruising ranges

than personal EVs. They designed a heuristic optimization model based on the genetic

algorithm to estimate the scheduling by considering all bus transportation planned tasks.

Most studies of obtaining the correlation between EV energy consumption and driv-

ing characteristics focused on classifying and optimizing energy consumption from driving

styles, driving behaviors, and driving cycles. Authors in [58] proposed an energy-aware

driving behavior analysis to determine a near-real-time energy consumption indicator based

on EV wheel cycles every three seconds. This study showed that EV acceleration and lane-

change behaviors are strongly connected to energy consumption. Other driving analyses

focused on analyzing the effect of the driving styles on the EV battery aging and then

classifying the driving styles based on the average acceleration in three categories namely,

gentle, mild, and aggressive. They showed that the traffic flow can affect the driving accel-

eration style and consequently, the style can have a considerable impact on the electricity

consumption by vehicles [59]. In [60] a large network of real EV datasets is utilized to

analyze EV charging behaviors based on some extracted features, such as the time of EV

connection to the charging point, duration of the connection, and the amount of consumed

electricity during the charging. The statistical probability model is then used for voltage

distribution investigation and the voltage unbalance factor calculation.

Other literature in [61] studied the impact of EV charging/discharging behavior on

energy load uncertainties. This study assessed the stochastic EV charging/discharging
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pattern with probability density function and Monte Carlo method by proposing three sce-

narios from a real distribution network in the UK. Their experimental results showed that

EV charging has an adverse impact on power efficiency, thermal stress, and voltage drop.

Similarly, authors in [62] offered insights into a flexible charging scheduling for EVs to bal-

ance the load pressure on the grid. Their studies are based on four categories of real-world

charging stations, and they tried to optimize the charging time using the sequential least

square quadratic (SLSQ) optimization technique. Chen et. al. [63] analyzed EV traveling

behaviors to propose a dynamic optimization model for CSs placement and construction.

They also introduced the charging scarification coefficient and queuing theory for charging

demand determination.

One recent study [64] analyzed charging influential factors to develop a model of EV

charging choice estimations. In this study, several factors, such as vehicle attributes, travel

information, and charging point arrival activities and satisfaction were considered and as

a result, two primary patterns were established to improve EV owners’ attractions and

charging service levels.

Up to now, the literature on studies has aimed to devise efficient energy consumption

patterns based on EV datasets. However, the scarcity of available datasets can influence

the outcomes of the analysis. Alternatively, employing transfer learning can help alleviate

this constraint.

In this case, one recent study measured the capacity of Li-Ion batteries used in EVs

with a proposed transfer learning deep neural network model to predict the battery cycles

considering three outside temperatures for a missing target dataset [65]. Another transfer

learning technique [66] is applied to a multi-layer 1-dimension Convolutional Neural Net-

work (CNN) model in order to monitor EV battery SoC levels, energy, and temperature.

Their end-to-end framework collects battery cycles’ current, voltage, temperature, and

differential temperature only to facilitate EV battery efficient operation. Article [34] in-

troduces an approach to transferring knowledge from ICE/Hybrid Electric Vehicle (HEV)

data to EV data using a deep Bidirectional Recurrent Neural Network (BiRNN). Their ap-

proach presents a fine-grained trajectory segmentation method to develop an adaptive esti-
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mation model capable of handling various driving trajectories, enhancing model versatility.

Moreover, in [67], the authors introduced a Controllable Deep Transfer Learning model to

predict SoC in batteries, catering to short and long-term estimations, especially for cells

with limited charging history. In their model, the controllable Multiple Domain Adaptation

(MDA) technique is used between historical and target cells using two LSTM networks.

It aims to improve SoC estimation accuracy and computational efficiency, demonstrating

significant performance improvements over existing methods in experiments.

Table 2.1 summarizes the main contributions, benefits, and limitations of major EV

charging and driving behavior analysis in previous studies.
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Table 2.1: Comparison of EV driving and charging behavior analysis.

Ref. Article Proposed Solutions Benefits Limitations

[54] • Micro-trips intensity for elec-

tric buses.

• Real-world data evaluation.

• Scalable to other types of

EVs.

• Small number of feature anal-

yses.

[59] • EVs battery aging perfor-

mance by driving style.

• Improving EV battery life cy-

cle.

• Not enough feature extrac-

tion.

[58] • EVs near-real-time energy

consumption indicator.

• Proving strong correlation. • Small number of feature anal-

yses.

[60] • EVs charging behavior eval-

uation.

• Real large dataset analysis. • No consideration of other fac-

tors and features.

• Simple probabilistic analysis.

[61] • Monte Carlo analysis of EV

charging/discharging behavior.

• Real case studies evaluation.

• Applicable for other case

studies.

• Simple probabilistic analyti-

cal model.

• Not considering fast charging

modes.

[63] • Multistage CSs placement

with EVs traveling behavioral

analysis.

• Improving that optimization

performance.

• Real case studies.

• No discussion about charging

scheduling.

[57] • Electric bus charging

scheduling with heuristic ge-

netic algorithm optimization

based on micro-driving behav-

ioral analysis.

• Real case studies based on

Beijing Public Transport data.

• Introducing trip buffer time

concept.

• Minimizing total scheduling

cost.

• Estimating only electric

buses’ trip times.

• No discussion about traffic

flow.

• Not considering other charg-

ing modes.

[64] • EVs behavioral analysis

based on mixed choice models.

• Considering the heterogene-

ity of features.

• Real case studies and survey

design.

• No discussion about the

model computation cost.

[55] • Markov Decision Process for

near-real-time e-bus charging

schedule.

• Reducing electric bus fleet

charging costs.

• Near-real-time pricing-aware

scheduling.

• No traffic flow impact analy-

sis.

[65] • Li-Ion battery cycle predic-

tion with DTL.

• Real dataset evaluation. • Limited number of feature se-

lection.

• No domain adaptation con-

sideration.

[66] • Multi-task 1D CNN DTL-

based to monitor SoC.

• Facilitates EV battery effi-

cient operation.

• Complexity of implementa-

tion.

• No consideration for domain

adaptation.

[67] • EV battery cell-to-cell varia-

tions estimation with DTL.

• Generalizability improve-

ment of the data-driven model.

• Missing large-scale data anal-

ysis.

36



2.3.2 Electric Vehicle Charging Source Selection

2.3.2.1 Fixed Charging Stations

A personalized charging source recommendation model requires information from sep-

arate entities such as EV status and location, user’s private data, and charging source

details [68]. Any previous studies focused on answering the question of how to find the

best charging source that satisfies user requirements depending on the current available

charging capacity and location of an EV. In this case, in the literature [69], the Exponential

Harris Hawks (EHH) optimization method is used to identify the suitable FCS for EVs

by prioritizing FCSs based on four stages of driving, planning, scheduling, and charging.

They evaluated their proposed optimization algorithm through the highest SoC, shortest

driving distance, and longest average queue time. In [3] used a hybrid decision-making

algorithm based on the measurement theory from quantifiable metrics (Charging Time,

Maintenance Cost, etc.). [70] investigated the charging scheduling of when to charge for

EVs already been parked at FCSs, but to improve the charging QoE, they also focused on

charging recommendations to optimally recommend charging spots to EVs concerning the

service waiting time.

Other literature focuses on increasing the recommendation accuracy by mixing features

from both EVs and FCSs platforms. The work in [10] developed an application to notify a

driver to look for a FCS, find the nearest FCS, and reserve a charging slot by gathering the

data from both platforms through GPS and asking the driver to enter some information

into the publicly available websites. In [71] a system for electric ride-sharing was proposed

to reduce the idle times while recharging. One competitive model was developed in [6] to

recommend FCSs to EVs by focusing on charging demand prediction, different offers from

FCSs, and users’ satisfaction with their arrivals to the FCS. In 2021, one literature [72]

studied the impact of a charging station scheduling and reservation approach to prioritize

EVs charging demands at a FCS. Some charging scheduling algorithms were designed in [73]

to achieve the load balance on the FCS side by considering different factors, such as current

traffic, EV battery capacity, FCS power constraints, etc. Furthermore, a decentralized
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charging recommendation framework for on-the-move EVs was proposed in [74]. In this

strategy, the EV’s parking deadline is also considered to enhance the estimation of FCSs

charging queuing and charging availability.

In addition to the private electric cars, some literature has studied different approaches

to build a pricing-aware fast FCS locator for electric taxis in urban areas to increase the

profit by considering the peak hours, traffic and road conditions, and high taxi-demand

locations [75]. Zhang et. al. [76] proposed a recommendation strategy to assign e-taxis the

best charging location at the best time. For the charging-time modeling, they computed

factors, such as electric taxi unit time revenue, charging capacity, charging process duration,

and time-of-use electricity cost. Charging location modeling, on the other hand, needed

the computation of other factors including driving time, queuing time, charging capacity,

and charging time.

Table 2.2 summarizes the main contributions, benefits, and limitations of major FCS

recommendation models for EVs.
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Table 2.2: Comparison of FCS recommendation mechanisms for EVs.

Ref. Article Proposed Solutions Benefits Limitations

[5] • Detecting potential factors

affecting FCS recommenda-

tion.

• Prioritizing parameters.

• Optimizing the search-based

EVs constraints.

• No consideration of data se-

curity.

• Evaluation over a small

dataset.

[70] • FCS reservation management

and multi-objective slot alloca-

tion for EVs.

• Lower average waiting time. • Considering assumptions and

constraints for evaluations.

• Only focusing on urban ar-

eas.

• No consideration of data se-

curity.

[4] • Collaborative filtering. • Utilization of road, station,

and EV conditions.

• Evaluation over a small

dataset.

• No consideration of data se-

curity.

[6] • Competitive charging sched-

ules in EVs network.

• Maximize the total revenue

collected from all EVs.

• Robust bidding algorithm.

• No consideration of EVs and

data security.

• No discussion about the al-

gorithm execution time.

[77] • Planning of EVs solar FCSs. • Promote solar energy con-

sumption and decrease energy

costs.

• Minimize peak-hour energy

consumption.

• Discussion about the feasibil-

ity and scale of the algorithm.

• No consideration of data se-

curity.

• Only available for on-site in-

stallation.

[32] • Urgency first charging

scheduling policy.

• Maximize FCSs utility and

benefits.

• Maximize EV charging effi-

ciency.

• Evaluation over a small

dataset.

• No consideration of data se-

curity.

[11] • Multi-Phase Markov Deci-

sion Process for FCSs recom-

mendation.

• Reduce algorithm complexity

and computation delay.

• Implement dynamic recom-

mendation modeling.

• Lack of real-world dataset for

evaluation.

• No consideration of data se-

curity.

[75] • Markov Decision Process for

electric taxis spatial-temporal

net revenue estimation.

• Near-real-time recommenda-

tion.

• Utilizing real gasoline taxis

GPS trajectories dataset.

• Not considering traffic infor-

mation.

• Neglecting FCS waiting time

effect on the revenue.

• No discussion about data se-

curity.

[76] • Electric taxi charging loca-

tion and time modeling.

• Computing different effective

factors.

• Real data set evaluation.

• Improving electric taxi users’

satisfaction and revenue.

• No discussion about model

computation complexity.

• Neglecting users’ data secu-

rity protection.
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Although these authors have improved the performance of the recommender system,

they neglected the fact that data holders are reluctant to share private information with

third parties due to some privacy concerns. In [78] FL was used to predict EVs network en-

ergy demand. They proposed an energy-demand learning-based prediction from the FCSs

side consideration, in which one central FCS provider collects all FCSs information and

performs the learning process. Their model is based on FL therefore, no private infor-

mation was shared. To improve their model performance, the learning model was based

on the FCSs clustering algorithm, which could improve the accuracy of prediction and

minimize the communication overhead. Authors in [79] proposed a near-real-time FL to

predict autonomous vehicles’ steering wheel angle prediction. They included a sliding train-

ing window to minimize communication overhead and maximize near-real-time streaming

data rate. One recent research has addressed the above issues by implementing VFL in

a recommender system while the data is kept with data holders and only some training

parameters are shared among the platforms [80]. The problem is that the parameter ag-

gregator node is centralized, and it can result in some communication issues and reduce

the QoE for a near-real-time model.

Speaking of privacy, there is other research about securing the data from malicious

attacks while being transmitted between platforms by using blockchain technology [81].

The study in [82] designed a FL blockchain-enabled model to address centralization and

security issues that exist in autonomous vehicle communication. However, when using FL

for large-scale applications, other arising challenges such as network and communication

limitations must be considered and addressed. For example, in [83], the authors proposed

a framework based on blockchain to reserve the optimal FCS, verify parties, and pay the

charging price through smart contracts. However, this work lacks the evaluation results

of the proposed model. Blockchain is also integrated into [84] to design a secure network

of a virtual power plant to store/broadcast the power consumption prediction training

models performed by a FL framework. It should be mentioned that by increasing the

number of blocks, the massive memory size will reduce the model performance. The

work in [52] introduced a blockchain FL architecture for on-device machine learning to
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reduce communication latency by optimizing the block generation rate. This work provided

rewards proportional to the training sample sizes to motivate devices.

Table 2.3 summarizes the previously proposed data-privacy protection approaches of

FCSs recommendation systems for EVs.

Table 2.3: Comparison of secure FCSs recommendation mechanisms for EVs.

Ref. Article Proposed Solutions Benefits Limitations

[82] • Blockchain-based FL for au-

tonomous vehicles.

• High level of data protection.

• Optimal block arrival rate.

• Low throughput due to net-

work delay and forking.

[85] • Joint decentralized federated

energy learning and multi-

principal one-agent contract-

based method.

• Maximizing FCSs utility and

profit.

• Secure local predictions.

• Reducing communication

overhead among FCSs.

• Centralized aggregation

node.

[80] • VFL-based FCSs recommen-

dation with Homomorphic En-

cryption.

• Secure cross-platform archi-

tecture.

• Centralized aggregation

node.

• Higher communication delay.

[83] • Blockchain-based FCSs rec-

ommendation.

• Ensuring the privacy of user

data.

• Low transaction overhead.

• Lack of real-world dataset for

evaluation.

• No discussion about the al-

gorithm execution time.

[86] • FL for EVs energy predic-

tion.

• Lightweight secure architec-

ture to faster generate a global

model.

• Accurate prediction.

• Incentivizing algorithm for

FCSs.

• No discussion about the fea-

sibility of the algorithm in the

actual environment.

[87] • EVs charging program based

on blockchain.

• Secure charging payments.

• Minimizing EVs costs.

• Fully decentralized.

• Lack of scalability evalua-

tion.

[78] • Clustering-based FL EVs en-

ergy demand prediction.

• Secure data sharing.

• Evaluating on real data set.

• Relying on a central aggrega-

tor.

[79] • Near-real-time FL AEVs

steering wheel angle predic-

tion.

• Minimizing communication

overhead.

• No user private data reveal-

ing.

• No discussion of algorithm

implementation on a real

dataset.

• Centralized aggregator.
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2.3.2.2 Mobile Charging Stations

Several prior studies have proposed diverse solutions to mitigate range anxiety, reflect-

ing the heightened interest in the realm of FCS recommendations for EVs. However, the

primary objective is to meet the electricity demands of EVs without depending exclu-

sively on forthcoming amenities. Consequently, to efficiently manage and synchronize the

frequent charging needs of EVs, introducing an alternative charging service could prove

highly advantageous [88].

In that instance, [24] proposed a new model to increase EVs access to the proper MCSs

by optimizing the EV allocation to the scheduled MCS at the optimal location. The study

in [89] also, tried to design a scheduling and routing optimization model to reduce the

long waiting times and overcrowding while charging EVs in their demands. They applied

a modified version of the heuristic and genetic algorithm to address the NP-hard nature

of the main problem. In order to find a well-suited MCS among the list of recommended

ones, literature [90] proposed an auction-based mechanism to allow the EVs to bid on the

MCSs’ suggested prices to maximize the fairness of the MCSs network.

Table 2.4 summarizes the previously proposed MCS integration into the recommenda-

tion system for EVs.

Table 2.4: Comparison of existing literature reviews covering MCSs integration into the
recommendation system, and our work.

Problem Statement
Paper
[24]

Paper
[89]

Paper
[90]

Paper
[91]

Our
Work

Mobile Charging Station Recommendation ✓ ✓ ✓ ✓ ✓

Decentralized Network - - - ✓ ✓

Secure Communication - ✓ - ✓ ✓

Fixed & Mobile Sources - - - - ✓
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2.3.3 Mobile Charging Station Performance Optimization

Typically, literature concerning MCSs can be divided into two main groups of study:

modeling and organizing [23, 92, 21], assignment and functioning [23, 24, 93, 89, 94].

The modeling and designing research category focuses on designing innovative electronic

components and developing frameworks for MCS. The assignment and functioning group

deals with the practical aspects of MCS operations, including the assignment of charging

tasks, routing, scheduling, and day-to-day functioning. Research in this category aims

to develop algorithms and strategies to manage the dynamic nature of MCS operations,

optimize service delivery, and ensure cost-effectiveness. Here we conduct a more compre-

hensive analysis that underscores the strengths of our proposed framework in comparison

to existing optimization models that fall into the assignment and functioning category.

The [92] study introduced a novel modeling approach for MCSs by replacing conven-

tional batteries and motors with advanced components: an enhanced Interior Permanent

Magnet (IPM) motor and Lithium Ferro Phosphate Battery. Their evaluation revealed

that the IPM motor was selected due to its high torque capabilities and consistent perfor-

mance across varying speeds. The authors from [95] suggested an enhancement to their

optimization algorithm aimed at reducing operational expenses for commercial delivery

fleets. Their focus was primarily on addressing the routing problem within specified time

windows while also considering the utilization of mobile battery charging and swapping

services. In a different study [24], researchers aimed to introduce a multi-stage framework

for intelligent EV parking. They seek to optimize parking operations by managing energy

allocation, sales, and demand equilibrium, while also maximizing profits for parking own-

ers. This was achieved by integrating MCSs to enhance revenue opportunities and improve

scheduling accuracy.

Another investigation [93] introduced a recommendation model tailored for EVs, taking

into account MCSs to address deficiencies in charging infrastructure. The study devised

an optimized EV travel path aimed at reducing both charging duration and expenses. Ad-

ditionally, it explored the role of MCSs in energy demand load balancing within the smart
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grid. [89] in their investigation, attempted to devise a model for optimizing scheduling

and routing to alleviate extended wait times and congestion during EV charging sessions.

They tackled the inherent complexity of the problem by employing a customized version of

heuristic and genetic algorithms. The researchers in [94] presented an innovative approach

to MCS modeling for energy delivery within a designated coverage area through systematic

point visits. They leveraged energy-restricted unmanned aerial vehicles (UAVs) alongside

unmanned ground vehicles (UGVs) acting as MCSs. Their methodology involved formu-

lating an optimization problem aimed at achieving steady allocation cycles across separate

routes.

Additionally, in another study [23], researchers examined a novel model of MCS utilizing

hydrogen fueling instead of electricity to enhance charging delivery and infrastructure,

thereby mitigating range anxiety. They employed a heuristic algorithm to optimize the

operation of these MCSs, exploring various service scenarios, such as several vehicles and

several path-traveling algorithms. Moreover, the work by Liu et al. [91] aimed to decrease

the inactivity of MCSs by advising them to EV owners wanting to cut down on charging

expenses. They suggested a forecast model using FL to recommend the best places to

put MCSs, learning from past travel routes. It becomes apparent that their emphasis was

on predicting optimal routes for moving MCSs to minimize idleness while preserving user

privacy. Despite their focus on minimizing EV costs, the consideration of FCSs, in some

cases a more economical option, was overlooked.

Based on the reviewed literature, we outline the findings in Table 2.5 and highlight

their strengths and areas where improvements are needed and proposed by our study.
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Table 2.5: Comparing existing literature reviews in MCSs performance optimization stating
their strength and limitations.

Ref. Article Proposed Solutions Benefits Limitations

[95] • VNS method for EV time-

window routing.

• Synchronized MCS for

recharging/swapping.

• Reducing operational ex-

penses while maintaining an

optimal fleet size.

• Does not examine MCS profit

optimization.

• The effectiveness of their

method is not compared with

other routing algorithms.

[93] • EV charging scheduling opti-

mization with trajectory anal-

ysis.

• Range anxiety mitigation

with MCSs.

• Not considering and review-

ing MCS profit optimization.

• Data security concern is not

addressed.

[24] • Energy balance for a smart

EV parking, and profit maxi-

mization.

• Considering MCSs and in-

creasing their accessibility.

• Energy management and

load balance optimization.

• Does not examine MCS profit

optimization itself.

• Data security concern is not

addressed.

[89] • Addressing a complex op-

timization problem for MCS

traveling with a meta-heuristic

genetic algorithm.

• MCS performance improve-

ment.

• Not a decentralized model.

• Neglecting security concerns

addressing.

[94] • Introducing UAV-UGV

MCSs route planning.

• Optimized robust traveling

algorithm.

• Increasing the energy-

delivering performance by

team collaborative patrolling.

• Centralized network and un-

safe for data sharing.

• UAV-UGV MCSs benefit es-

timation is not discussed.

[23] • An alternative Hydrogen

MCSs with operation opti-

mization.

• EV cost minimization.

• Range anxiety alleviation for

hydrogen EV energy demands.

• Insecure data exchange.

• HMCSs profit optimization is

not discussed.
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2.4 Chapter 2 Summary

Building a suitable transportation infrastructure for EVs is one of the main conducive

factors to enable the widespread use of EVs. While the number of EV owners is growing,

coordinating the charging source foundation with the continuous improvement of the EV

industry is essential. However, since improving the CS infrastructure and deploying new

stations and chargers are time-consuming and high-priced, the critical concern is to address

EVs charging demands without waiting for future facilities. Therefore, to better guide and

coordinate the frequent charging requirement of EVs, developing intelligent charging source

recommendation schemes can provide satisfaction for EV owners [96].

Taking into account different usage charging demands, researchers should implement

customized charging strategies according to the purpose of travel. For personal EVs,

factors including driving distance, EV charging capacity and remaining, charging cost,

etc., can have an impact on the allocation of efficient CSs [97]. A practical charging source

recommender should be able to address challenges for on-the-move EVs, such as where to

charge and how to optimally find the charging source with the least waiting time inside

the service queue to receive the required energy [5].

The comprehensive review of the latest studies within the domain of ITSs highlights

several significant advancements and persistent challenges in EV management. Our inves-

tigation began with an in-depth analysis of EV driving and charging behaviors, emphasiz-

ing the importance of accurately estimating energy consumption and SoC levels. Various

methodologies and models have been explored, demonstrating their effectiveness in stream-

lining EV navigation and alleviating range anxiety. Additionally, security considerations

have been integrated into each section to underscore their critical role in maintaining the

integrity and reliability of the systems.

Subsequently, the exploration extended to the selection of energy service providers,

focusing on both stationary and mobile charging services. The studies reviewed have

proposed numerous innovative approaches to recommending suitable charging stations,
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enhancing the overall user experience. By leveraging optimization algorithms and data-

driven models, these approaches have shown promise in reducing charging times, mini-

mizing queuing, and improving the efficiency of charging infrastructures. However, the

implementation complexity and the need for extensive datasets remain notable challenges,

necessitating further research into scalable and accessible solutions.

Finally, the review delved into the optimization of MCS performance. The studies cov-

ered various aspects, including the strategic deployment of MCSs, scheduling, and routing

optimization, and the integration of advanced technologies blockchain. These efforts aim

to address range anxiety and enhance the profitability of mobile charging services. Despite

the progress, there is still a need for more robust models that can handle near-real-time

data and adapt to dynamic conditions. By examining the comparative analysis presented

in this chapter among various prior studies and their focal points, it becomes evident that

this thesis strives to address the gaps observed in those preceding works.

47



Chapter 3

Deep Transfer Learning for Detecting

Electric Vehicles Highly Correlated

Energy Consumption Parameters

3.1 Introduction to Chapter 3

Energy consumption estimation for EVs is essential to address the major challenge of

limited driving range by providing improvements in EV cruising range and eco-driving

behavior. However, it is hard and costly to collect a comprehensive dataset from different

vehicle types that can reflect the overall driving characteristics, which introduces challenges

for model training. Hence, the insufficiency of EV data training samples might have an

adverse impact on the accuracy of the estimation method.

In this chapter, we introduce an estimator method inspired by the DTL paradigm

which is capable of achieving high prediction accuracy under vehicle dynamic working

conditions despite insufficient data. We mainly aim to identify the highly correlated energy

consumption parameters by transferring the knowledge from the electric bus base model

to the EV target model with reduced and scarce datasets. The findings from this phase

of our model will then be used to analyze EV driving behaviors in order to enhance the
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driving patterns to become more eco-driving behaviors.

We present details of the DTL problem formulation for energy consumption estimation,

our proposed algorithm, and compare it with state-of-the-art RNN-DTL algorithms, and

discuss the trade-off between model performance and efficiency.

3.2 System Model and Problem Formulation

In this section, we describe the problem of RNN embedding in the DTL mechanism with

domain variant feature parameters, along with the key performance metrics for evaluating

our accurate energy consumption estimation problem.

Figure 3.1 shows the primary steps followed in our model to ensure efficient information

transfer at deeper network levels over feature values with stronger similarity and correlation

and smaller discrepancy. The presented model’s main steps are described in detail as

follows.
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Figure 3.1: Model framework. The Deep Recurrent Neural Network (BiLSTM) Transfer
Learning technique is implemented to estimate EV energy consumption based on learned
and trained parameters from electric bus energy consumption. Feature Domain Adaptation
and correlation between the source (electric bus) and target (EV) data is used to optimize
the model performance with generated discrepancy losses.
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3.2.1 Data Normalization

The captured datasets from electric buses and EVs consist of numerical values with

different scales, including parameters like speed, mileage, SoC, temperature, and more.

Therefore, analyzing and training these datasets requires normalizing feature values to

construct standard data with common data ranges and distributions.

In the first step of building our model, we utilized Linear Scaling and Z-score normaliza-

tion techniques to better transform the numeric data values with easier data comparability.

Linear Scaling when values are roughly distributed over a fixed range.

x̂ =
x− xmin

xmax − xmin

. (3.1)

And Z-score to indicate how far the original score value resides from the mean value.

x̂ =
x− µ

σ
, and, x̂error =

x− µ
σ√
n

, (3.2)

where x is the raw data, µ is the mean value, σ is the standard deviation. Accordingly,

x̂error indicates the standard error of the mean to also capture the error margin for future

analysis by including the dataset feature’s total sample size n.

3.2.2 Training Source and Target Models

The energy degradation process of EV batteries is strongly associated with the historical

consumption path. EV batteries’ SoC generates time-series data at various cycles that

are closely linked to the preceding cycles. Therefore, we utilized the LSTM algorithm,

which is an enhanced version of the RNN, with feedback connections to provide long-

term memories by memorizing values from the previous series. In LSTM, each cell at

time t has three gate functions (it input gate, ft forget gate, and ot output gate) to prevent

training explosion/vanishing gradient, and to improve the estimation accuracy by acquiring

temporal dependencies between series. The flow of data in the network, and the values of
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these gates are classified and limited in the range of [0, 1] with a sigmoid activation function

(Sig()). The mathematical functioning of LSTM gates and memory cells are described as

follows [34]:

it = Act(Whiht−1 +WXiXt + bi), (3.3)

ft = Act(Whfht−1 +WXfXt + bf ), (3.4)

ot = Act(Whoht−1 +WXoXt + bo), (3.5)

where Xt is the input data (i.e. electric bus and EV features; longitude, latitude, temper-

ature, etc.). W and b are weights and biases of the network parameters, and ht−1 is the

network hidden layer at the prior cycle. By calculating it and ft, the final memory cell

state can be derived from equation (3.6).

ct = ftct−1 + ittanh(Whcht−1 +WXcXt + bc). (3.6)

Lastly, the hidden state ht is computed from the result values of the final memory cell

and output gate from equation (3.7), and passed to a Fully Connected Layer (FCL) in

order to convert ht into the anticipated output.

ht = ottanh(ct). (3.7)

To capture the whole information in the input layer of vehicle data, subsequent and

previous information is evenly influential for better knowledge extraction. Therefore, the

BiLSTM method, which constitutes putting two LSTMs together, is implemented in the

learning phase. This structure enables the network to read input data in both forward and

backward directions in order to capture sequential knowledge from past series to future

(left to right), equation (3.8), and also from future to past (right to the left), equation

(3.9).
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h⃗t = f (⃗ht−1 − xt), (3.8)

←−
h t = f(

←−
h t+1 − xt). (3.9)

And as the last step, the final output of BiLSTM is computed by combining both

forward and backward activations, equation (3.10).

ht = [⃗ht,
←−
h t]. (3.10)

Given a normalized source electric bus input data and SoC output values Dsc, and

target EV input data and SoC output values Dtg, the next step of our proposed model is

to train each domain separately. Domain adaptability is one important factor to consider

before applying transfer learning from the source domain,

Dsc = {x(sc)
n , y(sc)n }, n ∈ {1, 2, ...,N},

to the target domain,

Dtg = {x(tg)
m , y(tg)m },m ∈ {1, 2, ...,M}.

Where x
(sc)
n and x

(tg)
m are source and target input data, respectively, y

(sc)
n and y

(tg)
m are

available true source and target SoC values. Accordingly, the size of two domains are

defined with N and M, where,
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N(source)≫M(target),

Dsc and Dtg consist of sequential data with time-series dependencies. To this end, the

BiLSTM recurrent neural network is applied to catch the temporal relativity between data

more precisely.

Each domain (source and target) will apply the feature-specific training model using

equation (3.10) to generate the BiLSTM hidden layer output hsc and htg, respectively.

Transfer learning from the source domain of electric buses to the target domain of EVs

involves leveraging the knowledge gained from electric bus operational data to improve

the performance and efficiency of EV models. In this approach, a deep BiLSTM network

trained on electric bus data, which includes extensive information on driving patterns,

energy consumption, and charging behaviors under various conditions, is adapted to work

with EV data. Consequently, transfer learning in this algorithm involves initially training

a model on the source domain,

D(source) = {X(source), g(source)(X)},

trying to learn task T (source), that holds a vast amount of labeled data. Subsequently,

the knowledge acquired during this pre-training phase is applied to the target domain,

D(target) = {X(target), g(target)(X)},

trying to learn task T (target),with only limited labeled data. The transfer learning process

generally involves the following steps:

1. Pre-training: A large-scale dataset from the source domain is used to pre-train a
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model. This step is often computationally expensive and time-consuming.

2. Feature Extraction: Trained weights W (source), parameters θ(source), and features

are extracted from the early layers of the source model using the extractor function

A(X : W, θ)source.

3. Compatibility Check: The pre-trained weights W (source), and parameters θ(source)

are examined for compatibility with the target domain using an optimized discrep-

ancy loss function L.

4. Adaptation: The final layers of the model are adjusted to be task-specific for the

target domain.

Equation (3.10) is then passed to the fully connected layer to estimate electricity usage

of electric buses or EVs at the present moment ( ˆEC(sc) and ˆEC(tg), respectively), as shown

in equation (3.11):

ˆEC(sc) = WFCLhsc + bFCL,

ˆEC(tg) = WFCLhtg + bFCL.

(3.11)

3.2.3 Facilitating Domain Adaptation and Transfer Learning

ˆEC(sc) will generate more valid estimation results as it is the outcome of a deep analysis of

the large-scale electric bus dataset. However, ˆEC(tg) might be over-fitted due to insufficient

EV input data since it is trained and informed with too few data sets and might fail to

fit for further unseen observations. Hence, transferring the pre-trained WFCL and bFCL

source model parameters into the target model and replacing its over-fitted parameters is

the main step of this proposed study.

Transferring the trained parameters between two different datasets with distinguished

feature scopes raises a concern about selecting a proper parameter similar to the target
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domain. Domain Adaptation and the rationale behind it involves introducing a loss to the

fine-tuned model as a means of regulating the distribution divergence within two domains.

Consequently, the elements that contribute to this process include establishing a loss func-

tion for calculating the distance, and creating a training model with a modified forward

pass incorporating this loss function.

To alleviate this concern, we utilized the Maximum Mean Discrepancy (MMD) mech-

anism, equation (3.12), to estimate feature distribution distances as a means to enable

feature comparison before transferring their trained parameters.

The MMD is a classification accuracy metric to calculate the distribution dependability

and similarity among groups of samples. In the proposed deep transfer learning mechanism,

the similarity between transferable features should be captured to facilitate a fine-tuned and

effective transfer of pre-trained learning parameters. Hence, before transferring features

among domains at the deeper layers of the training network, their correlation needs to be

measured to build a manageable domain-constant attribute transition.

To calculate the distance between two features’ similarity, MMD compares the difference

between the mean likelihood distributions of their data points, as shown in equation (3.12).

M̂MD
2
(hsc, htg) =

∣∣∣∣∣∣∣∣ Nsc∑
n=1

ϕ(., h
(hsc)
n )

Nsc

−
Mtg∑
m=1

ϕ(., h
(htg)
m )

Mtg

∣∣∣∣∣∣∣∣2
H

=
Nsc∑
n,m

ϕ(h
(hsc)
n , h

(hsc)
m )

N2
sc

− 2

Nsc,Mtg∑
n,m

ϕ(h
(hsc)
n , h

(htg)
m )

NscMtg

+

Mtg∑
n,m

ϕ(h
(htg)
n , h

(htg)
m )

M2
tg

,

(3.12)

where hsc and htg are the source and target features at the deep layer to be compared with

the second-norm MMD in Hilbert space H. The size and number of comparable features

are defined as Nsc and Mtg for the base and target domains, respectively. Function ϕ(.) is

the Hilbert embedding kernel that preserves density estimations of similarity between two

input features.
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Accordingly, we adapted and optimized the target model’s loss function (L) to equation

(3.11) to compute the error between estimated EC(tg) and actual EC(tg), while considering

the discrepancy loss function to produce smaller values, which indicates a stronger correla-

tion between feature F distributions. In this context, the parameter λ serves as a trade-off

parameter utilized to balance and optimize the overall loss of the model.

Ltg =
1

FM

F∑
f=1

M∑
m=1

(EC
(tg)
f,m −

ˆ
EC

(tg)
f,m)2 + λ.M̂MD

2
(hsc, htg). (3.13)

3.2.4 Implementation of the BiLSTM-DTL Algorithm

The overall approach of our proposed model is illustrated in Algorithm 1. The assump-

tion is that we already estimated the source (electric bus) energy consumption metrics.

Lines 2 to 9 show the target training steps. From lines 10 to 16, the transfer learning

phase with feature correlation considerations are displayed.

Generally, from the Algorithm 1 perspective, our proposed model’s computational com-

plexity is efficient, and it is in the order of O(T ∗M), which is relative to the number of

training epochs (T ) and input data (M).

3.3 Model Evaluation and Results Analysis

In this section, we present the performance evaluation of our model and analyze the

outcomes of our experiments. Also, we will showcase the effectiveness of our proposed

approach and provide insights into the achieved results.

3.3.1 Datasets

1) Source Dataset: The primary dataset used in this research is collected from ten electric

buses with the same characteristics (weight, capacity, size, battery, and engine power),
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Algorithm 1 : Highly-correlated energy consumption parameters with DTL

Given: Normalized Dtg = {x(tg)
m , y

(tg)
m }, hsc, W

(sc)
FCL, b

(sc)
FCL, initialized network learning

parameters

Output: ˆEC(tg), Ltg , corr(fsc, ftg)

1: for t = 1 : ephocs do
2: for m = 1 : M do
3: Compute forward LSTM:
4: h⃗m = f (⃗hm−1 − xm)
5: Compute backward LSTM:

6:
←−
h m = f(

←−
h m+1 −mt)

7: Combine h⃗m and
←−
h m to get hm = [⃗hm,

←−
h m]

8: Identify feature discrepancy:

9: mmd = M̂MD
2
(hsc, htg)

10: if mmd < threshold then
11: Transfer W

(sc)
FCL, b

(sc)
FCL

12: Estimate
ˆ

EC
(tg)
m = w

(tg)
FCLhm + b

(tg)
FCL

13: Re-train the target model

14: Re-estimate ˆEC(tg) = W
(sc)
FCLhtg + b

(sc)
FCL

15: end if
16: Calculate target loss function Ltgm

17: end for
18: end for

including a total of 2022 trips on consecutive and separate trips in China between 2017 and

2018. Table 3.1 shows a sample example of this dataset. In this dataset, there are 54 interior

and exterior features captured from the operating electric buses [98]. The sensor device

data were captured every 10 seconds to report bus conditions at different vehicle statuses

(charging/driving). Accordingly, e-bus energy consumption and effectiveness weights of

features were computed and analyzed in the first phase of the model, then the trained

parameters were used to enhance the energy estimation accuracy of the insufficient EVs

(target) dataset. A brief description of the raw data in this dataset is displayed in Table

3.2.

2) Target Dataset: As part of our study, we utilized an open real-world driving dataset,

Vehicle Energy Dataset (VED), consisting of the collection of fuel and power data of 383

personal vehicles [99]. More precisely, in this dataset, there are 264 ICE vehicles, 92

HEVs, 24 Plug-in HEVs, and 3 EVs providing dynamic and static data. Our research
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benefited from the 4,721 km mileage in 495 recorded trips from three EVs driving in

Ann Arbor, Michigan in 2018. EV-related captured static/dynamic parameters include

longitude, latitude, velocity, exterior air temperature, supplementary power, and battery

data. Table 3.1 shows a sample example of this dataset, and a brief description of the

raw data in this dataset is displayed in Table 3.3. To better analyze the performance

and functionality of our proposed model, we utilized a second real-world EV dataset in

our study. EV data #2 is a distinct set of EV metrics, encompassing parameters like

Time, Speed, Current, Voltage, Accelerator Pedal Position, Cell Temperature, Cell Relative

Humidity, Dynamo-meter Tractive Effort[N], and SoC levels, collected from the Nissan Leaf

Test dataset [100]. A sample data selected from this dataset is displayed in Table 3.1, EV

Data 2.
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Table 3.1: Samples of the source (electric bus) and target (EV) datasets.

Electric bus Data

Time Speed [km/h] Mileage SoC [%] Temp. [°C] Alt. [m] Wind Speed

20180130070522 31 649190.0 98.0 4.8 5.437 2.4

EV Data 1

Trip # Timestamp [ms] Latitude [°] Longitude [°] Speed [km/h] Temp. [°C] SoC [%]

1558 5400 42.27725417 -83.76251167 54.29 5 96.3414

EV Data 2

Time [s] Speed [m/h] Cell Temp. [°C] Voltage [V] Accel. Pedal [%] Current [A] SoC [%]

8.8 1.648 21.326 383.661 5.404 2.768 73.90
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Table 3.2: Source Dataset Description.

Property Available Values

Number of electric buses 10

Total trip duration (h) 1,617.6

Total covered mileage (km) 36,396

Speed range (km/h) [0, 78]

Temperature scope (◦C) [3.9, 37]

SoC range (%) [17, 100]

Table 3.3: Target Dataset #1 Description.

Property Available Values

Number of electric passenger vehicles 3

Total trip duration (h) 542.56

Total covered mileage (km) 4,721

Speed range (km/h) [0, 132.13]

Outside Temperature (◦C) [-15.5, 36]

Heater power range (watts) [0, 4250]

SoC range (%) [9.63, 100]
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3.3.2 Results and Analysis

Based on the collected data from electric buses and electric passenger vehicles, a sample

historical driving pattern is pictured in Figure 3.2. In both figures, the SoC degradation

of vehicles’ batteries (in orange color), and vehicles’ speed (in blue color) are depicted

for one randomly selected e-bus 3.2a and EV 3.2b over a period of driving. For the e-

bus, the correlation between battery level and speed is captured over one-day of driving

of approximately 170 kilometers. On the other hand, an adverse impact of speed on the

battery level for an EV is reported over a nine-minute trip.

(a) Battery status for one electric bus, according to the vehicle’s speed over time.

(b) Battery status for one electric vehicle, according to the vehicle’s speed over time.

Figure 3.2: The illustration of remaining battery charge (in %) of one e-bus in a one-day
trip, and one EV in an eight-minute trip, in relation to the vehicle speed.
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The previous analysis of the impact of speed on the SoC was just one simple example

to demonstrate the importance of an accurate investigation and estimation of energy con-

sumption factors. A more complex impact demonstration instance is Figure 3.3, in which

the relation between driving location, speed, and SoC is depicted. As can be seen, the

battery level degradation is higher on urban roads (approximately 0.6%) as EV drivers are

more likely to have higher vehicle speeds. On the other hand, EVs lose battery power more

slowly while driving in downtown areas with more limited vehicle speeds.

Figure 3.3: The impact of driving location on an EV battery discharging level. Routes are
taken from the different roads of the real-world target dataset. Urban routes (with higher
speed limitations and stronger wind pressure) require more electricity from EV batteries.

3.3.3 Experimental Setup

The implementation of this model is done by using TensorFlow and Keras libraries in

Python programming language. All the experiments are conducted on a Mac Book Pro M1

GPU with 16 GB of RAM. The settings of the experiment’s hyper-parameters are tuned
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with a sequence length of 24, batch size of 128, learning rate of 0.001, Adam Optimizer,

64 nodes in BiLSTM layer units, with the ReLU activation function.

3.3.4 Hyperparameters Fine-Tuning

There are various methods for hyperparameter tuning, including grid search, random

search, and more advanced techniques like Bayesian optimization or genetic algorithms.

From the aforementioned methods, we utilize grid search since it is capable of exploring

a larger number of hyperparameters in the most accurate prediction. The comprehensive

and straightforward nature of grid search lies in its ability to consistently examine given

hyperparameter combinations, leaving no possibilities missed. This approach not only

delivers a clear guideline for optimization but also enhances preciseness by enabling a

structured exploration. Grid search offers a distinct advantage by effortlessly allowing

parallelization and efficient resource allocation, as each evaluation remains independent.

Here for this research, after the model performance analysis, we set up the hyperpa-

rameter tuning loop by implementing a loop that iterates over different combinations of

hyperparameters. Then we train the model on the training set and evaluate its perfor-

mance on the validation set using the chosen metrics. The hyperparameters shown in

Table 3.4 are tuned and evaluated in their scopes over the grid search cross-validation

hyperparameters fine-tuning technique. The optimal values for the batch size, number of

units in the model’s layers, model’s learning rate, activation function, and optimizer are

decided after evaluating our model with the hyperparameters range values and comparing

the Mean Squared Error scores after each run. the results are illustrated in Figure 3.4.
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Table 3.4: Hyperparameters Search Range

Hyperparameter Name Grid Search Range

Training batch size [128, 256, 512]

Model’s layers units [32, 64, 128]

Learning rate [0.001, 0.01, 0.1]

Learning activation function [ReLU, Tanh]

Training optimizer [Adam, SGD, Adamax]

Figure 3.4: Hyperparameters fine-tuning evaluation with GridSearch cross-validation.
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3.3.5 Performance Evaluation

To validate our model’s prediction performance, we utilized the following metrics based

on the true energy consumption values from our database and estimated results from our

proposed system.

Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(ECob − ˆECi)
2. (3.14)

Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(ECob − ˆECi)2. (3.15)

Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE =
1

n

n∑
i=1

(
2|ECob − ˆECi|
|ECob|+ | ˆECi|

)×%. (3.16)

Mean Relative Percentage Error (MRPE)

MRPE =
1

n

n∑
i=1

(
|ECob − ˆECi|

ECob

)×%. (3.17)

where n is the total number of test dataset, ECob is observed energy consumption, and

ˆECi is estimated energy consumption.

The summary of the prediction performance of our system is presented in Table 3.5.

We compared our model with 4 baseline machine-learning algorithms, namely Least Abso-

lute Shrinkage and Selection Operator Regression (LASSO Reg.), Support Vector Machine

(SVM), Linear Regression, and LSTM, and 2 TL models with different domain adapta-

tion approaches, namely, Euclidean Distance in Mapped Correlation Alignment-based TL

(TL Euc), and Deep Adaptation Network-based TL (TL DAN). The experimental results
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show that we could gain better performance among traditional and TL-based algorithms,

and enhance the model operation by applying the optimized knowledge transferring with

the following evaluation metrics values of 0.1237 for MSE, 0.1331 for RMSE, 0.3432 for

SMAPE, 0.2443 for MRPE, and 0.9056 for R2 score (The higher the R2 values, the more

goodness in model’s fit measurement.) This comparison evidently shows the impact of

transferring pre-trained knowledge from a large-scale dataset into an insufficient missing

dataset, considering the feature space compatibility.

Table 3.5: The proposed model’s performance comparison.

Method MSE RMSE SMAPE MRPE R2

Non-TL Models

LASSO
Regression 0.8125 0.9014 1.0326 1.0805 0.7946

SVR 0.7312 0.8551 0.9202 0.9249 0.8152

Linear
Regression 0.7197 0.8483 0.9282 0.9518 0.8181

LSTM 0.7046 0.8394 0.9483 06192 0.8939

TL-Based Models

TL Euc 0.3626 0.3506 0.6539 0.6534 0.8589

TL DAN 0.3345 0.1601 0.3977 0.3969 0.8944

Our Model 0.1237 0.1331 0.3432 0.2443 0.9056
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Accordingly, in Figure 3.5, a bar graph vividly depicts the performance comparison of

our model with two distinct sets of existing approaches. In the upper section of the graph,

our model’s performance values, shaded in black color, are compared with those of four

basic machine learning models. Simultaneously, the lower section contrasts our model,

again highlighted in black color, with two TL-based algorithms. The evaluation metrics

employed for comparison encompass MSE, RMSE, SMAPE, and MRPE loss function,

and R2 Score metric (also known as the coefficient of determination) which evaluates the

goodness-of-fit of a model. It measures how well the predicted values from the model

approximate the actual values of the target variable. Across all metrics and comparisons,

the proposed model consistently outperforms the alternatives, underscoring its superior

performance in the evaluated scenarios.

Achieving the proposed model’s performance results is mainly based on the source

electric bus dataset. In Figures 3.6a and 3.7a the prediction accuracy of the source and

target models are analyzed. The analysis shows that our base model is capable of estimating

the accurate future energy consumption values given the unseen/simulated dataset for other

regions planning to adopt electric personal/public transportation. Another evaluation is

conducted focusing on the prediction residual errors, and the experimental results are

shown in Figures 3.6b and 3.7b, for electric buses and EVs, respectively.
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Figure 3.5: Illustration comparing the performance of our model with two distinct groups
of existing approaches.
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(a) Source Model Energy Prediction Accuracy

(b) Source Model Energy Prediction Residual and Error

Figure 3.6: Energy consumption prediction performance and residual for the source electric
bus dataset model.
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(a) Target Model Energy Prediction Accuracy

(b) Target Model Energy Prediction Residual and Error

Figure 3.7: Energy consumption prediction performance and residual for the target EV
dataset model.

Figure 3.8 compares feature scores within our target dataset (EVs) before and after

applying the pre-trained parameter transfer learning. The score list of impactful features

changed after transferring the knowledge from electric buses into our EVs dataset.

By replacing feature weights with more accurate ones from our trained source model,
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we could gain a higher score for Battery Voltage and Heater Power which might be more

important features in EV power degradation. The target dataset includes 12 features re-

lated to EVs, however, in our analysis, we picked 7 of them with higher gained weights than

the threshold p = −16 from the target model. This means that Figure 3.8 only visualizes

the important factors affecting EVs energy consumption by removing other insignificant

features.

In order to better analyze the impact of the features on the proposed model’s prediction

accuracy, we used the SHAP Python library to illustrate the effect of the features on our

model’s output in Figure 3.9. SHAP values show how much a given feature changed our

prediction, compared to if we made that prediction at some baseline value of that feature.

The summary shown in Figure 3.9 gives a global interpretation of the permutation feature

importance, which involves systematically excluding individual features from the input

feature set, and assessing the extent to which the model’s performance declines as a result

of each feature’s removal. The implemented SHAP graph here involves understanding

the contributions of individual features of EVs to the model’s energy consumption (SoC)

estimation. Starting with the features listed on the y-axis, each bar represents a different

feature, and the length of the bar indicates the magnitude of its impact on the model’s

predictions. Checking the direction of each bar, a bar extending to the right suggests a

positive contribution to the prediction, while a bar extending to the left indicates a negative

contribution. The longer the bar, the greater the impact of the corresponding feature on

the prediction. Features with longer bars have a more substantial influence on the model’s

output. Here, the attributes Trip, Timestamp, Latitude, and Longitude have the lowest

effect on our model’s performance, so they are not shown in Figure 3.8 as the important

features set.

72



(a) Target Data Important Features Before Transfer Learning

(b) Target Data Important Features After Transfer Learning

Figure 3.8: Important factors on energy consumption for EVs. The level of factors changed
after transferring prior parameters weight knowledge from the electric bus model.
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Figure 3.9: SHapely Additive exPlanations. SHAP values explain how much each feature
contributes to the output of the model’s prediction. Positive values show positive effects
on the model’s performance.
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In our study, we also employed a heat-map graph in Figure 3.10 to illustrate the corre-

lation and similarity between two distinct feature spaces: EVs features on the y-axis and

electric buses with 33 features on the x-axis. This graphical representation serves as a vi-

sual tool to identify highly correlated features that are well-suited for our transfer learning

approach between the e-bus dataset and EVs. The Figure provides an insightful overview

of the relationships between the feature sets, helping us pinpoint features that exhibit

strong correlation and similarity, thereby informing the selection of optimal features for

the transfer learning model. This approach ensures that the knowledge transfer between

the e-bus and EV datasets is built upon features that demonstrate significant inter-domain

compatibility, contributing to the efficacy of our proposed transfer learning methodology.

Figure 3.10: Heat-map depicting the correlation of features between the source (electric
bus) and target (EV) domains, with the x-axis representing the source domain and the
y-axis representing the target domain.

As the final approach to evaluating our proposed solution, we analyzed the improve-

ment of the training evaluation metrics before and after applying the TL method to our

target domain. Figure 3.11 illustrates the effectiveness of the transferred pre-trained knowl-
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Figure 3.11: Comparing the training metrics in our model before (blue) and after (green)
applying the transfer learning technique.

edge from the source domain (electric bus) into the target domain (EV) model’s training

evaluation metric functions (Loss, Root Mean Squared Error, Symmetric Mean Absolute

Percentage Error, Mean Relative Percentage Error, and R2 Score, respectively). As shown

in this Figure, the loss range is drastically improved from [0.560, 0.585] to [0.1060, 0.1090]

by approximately 0.46 on average, as well as the RMS Error by 0.62, SMAP Error by

0.137, MRP Error by 0.076, and R2 Score by 0.48. In this Figure, we assessed the model’s

performance on the initial target dataset.

Additionally, to better illustrate the practicality of our proposed model, we conduct a

thorough evaluation of its performance on a second, more constrained EV dataset, as de-

picted in Figure 3.12. The line graph within this Figure presents the decreasing loss values

before TL on the left y-axis and after TL on the right y-axis across 20 training epochs. The

graph distinctly shows that the loss values diminish further after employing our proposed

TL-based framework, highlighting its effectiveness in enhancing model performance.
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Figure 3.12: Performance evaluation of the proposed model on the supplementary EV
dataset. The line graph illustrates the decreasing loss values after applying TL on the
right y-axis compared to the left y-axis range values over 20 training epochs.

3.4 Chapter 3 Summary

To construct an effective energy consumption detector for EV power management, a

comprehensive model is essential to reduce range anxiety among EV owners. In this study,

we identified the parameters with the highest impact on EV charging consumption and

scheduling, both while parked and during journeys. Given the challenge of insufficient

available datasets, we employed the DTL technique to mitigate the issues of inadequate

and sparse data. We used the MMD method to compute feature distribution differences,

capturing highly correlated attributes before transferring knowledge among datasets. Our

analysis included diverse driving areas such as rural regions, urban routes, and highways,

allowing us to evaluate the impact of traffic density and speed on EV power consumption.

This comprehensive approach enabled us to model energy consumption more accurately, ad-

dressing critical variables like stop-and-go traffic, continuous high-speed travel, and mixed

driving conditions.

Additionally, we implemented a multi-task learning framework to enhance the predictive

capabilities of our model. By pre-training on a large-scale source domain dataset and

extracting trained weights, parameters, and features from the early layers of the source
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model, we ensured a robust foundation for transfer learning. These pre-trained components

were then evaluated for domain compatibility using an optimized discrepancy loss function.

Adjusting task-specific final layers to fit the target model allowed for precise adaptation

to the unique characteristics of EV datasets. This methodological exactness, combined

with detailed consideration of various driving environments, resulted in a powerful tool

for predicting EV energy consumption, ultimately supporting more efficient EV power

management and reducing range anxiety for EV owners.
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Chapter 4

Smart Vehicles Recommendation

System for Artificial

Intelligence-enabled Communication

4.1 Introduction to Chapter 4

In this chapter, we provide a model for a secure recommendation system for EV consumer

electronics. Our model considers both fixed and mobile charging locations, with a focus

on optimizing the well-being of EV consumers and owners. Unlike traditional methods

that involve direct data sharing among data holders during model training, our approach

employs a secure VFL technique. This ensures that data from EVs and charging sources

remains within their respective platforms, thereby enhancing data security and privacy. By

leveraging the strengths of FL, our system facilitates the training of models without the

need for raw data exchange, ensuring that sensitive information is kept secure. The best

solution to a recommendation system should achieve a more optimal distribution of EVs

within designated areas, addressing the pressing issue of limited charging infrastructure

and improving the overall charging experience for EV users.

In this chapter, we delve into an extensive analysis of the fundamental knowledge pre-
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requisites for immersing ourselves in this study. Our exploration encompasses foundational

definitions and crucial theoretical frameworks, equipping our readers with the essential re-

sources to approach upcoming discussions with a profound understanding and clear insight.

4.2 System Model and Problem Formulation

In this section, we present an in-depth explanation of the structure and operational

process of our system. Our approach’s objective is to optimize EV owners’ satisfaction by

minimizing their costs to gain the desired level of power supply, implementing a securely de-

centralizing FL recommendation model, taking into account both stationary/fixed charging

stations and mobile charging stations.

Figure 4.1 illustrates the key steps in our model designed to ensure an efficient charging

source recommendation system with secure data sharing within the IoT network for EVs,

encompassing both Fixed and MCSs. The primary steps of the presented model are detailed

as follows.
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Figure 4.1: Consumer electronics recommendation model framework with secure federated
learning-based decentralized fog-edge network communication, considering both fixed and
mobile charging points for an EV with charging demand.
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4.2.1 Intelligent User-centric Recommendation

In our system design, we consider three primary elements: EVs, FCSs, and MCSs. The

set of EVs is denoted as:

{vi ∈ EV = {v1, v2, ..., vi}},

where vi represents an individual EV within the system. Similarly, we have the set of FCSs

denoted as:

{csj ∈ FCS = {c1, c2, ..., cj}},

with csj representing each FCS available for use. Additionally, we include MCSs, repre-

sented as:

{msk ∈MCS = {m1,m2, ...,msk}},

where msk signifies each MCS in the system. These elements form the foundation of

our system architecture, enabling the efficient recommendation and utilization of charging

sources within the IoT network for electric vehicles.

The distance between the current location of an EV and the charging source location

is Λ(vi,x), with the service fee Φx, where x ∈ {csj,msk} is either a FCS or a MCS.

Each charging source in the service area has an availability indicator ρ. For a FCS,
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ρcsj = ⟨n, q.(
−→
treq), t⃗⟩,

shows the number of empty charging spots (n) at station csj, the number of EVs waiting

outside the station to get charged (q) with their charging request times (
−→
treq) at station csj,

and the remaining charging session time at the occupied spots by EVs (⃗t = [t1, t2, ..., tS])

at station csj with the total number of S charging spots. And for a MCS,

ρmsk = ⟨n′, q′.(
−−→
t′req′), t⃗

′, δ⃗⟩,

where, n′ is the number of idle battery(ies) mounted at station msk, q
′ shows the number

of EVs waiting to get charged at station msk with their charging request times (
−−→
t′req′), then

t⃗′ = [t′1, t
′
2, ..., t

′
B] shows the remaining charging session time at the busy batteries by EVs

installed at station msk with the total number of B batteries, and δ⃗ displays the remaining

capacity of battery(ies) at station msk.

First, we need to calculate the availability indicator ρx for both a FCS csj and a MCS

msk to indicate the charging source availability ratio.

For a FCS with the station availability parameter, we are looking for higher values in

ρcsj :

n = S −
S∑

s=1

os, (4.1)

ρcsj = n− q − (
S∑

s=1

ts.os +

q∑
req=1

treq). (4.2)

Referring to the equation (4.2), we have os which is a binary decision variable that

equals 1 if spot s is occupied and 0 if it’s empty.
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os ∈ {0, 1}, for s = {1, ..., S}.

In order to calculate the availability indicator ρcsj , shown in equation (4.2), we need to

define constraints ensuring the applicability of the proposed availability indicator param-

eter, as follows.

1. Each EV must be assigned to exactly one spot (if allocated):

S∑
s=1

os.vi = 1, for i = {1, ..., q}.

2. The total number of spots allocated cannot exceed the number of empty spots:

S∑
s=1

os ≤ n.

3. If os = 1 (spot s is occupied), then it must be allocated to exactly one EV:

q∑
i=1

vi.os = os, for s = {1, ..., S}.

4. Each EV can only be assigned to a spot if there’s enough time to charge before the

EV’s remaining charging time expires:

ts ≤ R.(1− os), for s = {1, ..., S},

where R is a very large positive number, and this constraint ensures that if os = 1,

then ts must be less than R, allowing charging to complete.
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Similarly, for a MCS with the source availability parameter, we are looking for higher

values in ρmsk :

n′ = B −
B∑
b=1

ab, (4.3)

ρmsk = n′ − q′ − (
B∑
b=1

t′b.ab +

q∑
req′=1

t′req′) +
B∑
b=1

δb. (4.4)

Considering the availability indicator parameter ρmsk in equaiotn (4.4) for a MCS, we

define the following variables:

• ab: Binary decision variable that equals 1 if battery b is active and 0 if it’s idle.

ab ∈ {0, 1}, for b = {1, ..., B}.

• mk,t: Binary decision variable that equals 1 if MCS msk is moving at time t, and 0

is it not moving.

mk,t ∈ {0, 1}, for MCS = {m1,m2, ...,msk}.

• mB
k,i,t: Binary decision variable that equals 1 if MCS msk with B batteries is assigned

to charge EV i at time t.

mB
k,i,t =


0, if ∀ab = 0,

1, if ∃ab = 1,

for i = {1, ..., q} b = {1, ..., B}.
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• mk,j,t: Binary decision variable that equals 1 if MCS msk is charging itself at a FCS

j at time t.

mk,j,t ∈ {0, 1}, for FCS = {c1, ..., csj}.

Then to compute the availability indicator ρmsk as illustrated in equation (4.4), it is im-

perative to establish constraints that guarantee the suitability of the proposed availability

indicator parameter. These constraints can be defined as follows.

Constraints (1), (2), (3), and (4) are similar to the FCS.

5. If ab = 1 (battery b is actively charging an EV), then the remaining capacity of the

battery must be greater than zero:

δb ≤ R.(1− ab), for b = {1, ..., B}.

6. Each MCS should exclusively be in one of two states: either linked to a FCS within

the microgrid or actively recharging EVs. A third state is also included in this

constraint to more efficiently restrict a MCS.

mB
k,i,t +mk,j,t +mk,t = 1.

The probability ratio of a charging source to be chosen is a softmax function Px where

x ∈ {csj,msk}. To formulate Px, we use a utility-based approach where we compute

a utility value based on distance Λ(vi,x) and charging service fee Φx, which needs to be

minimized as a cost that an EV must pay to reach its preferred battery SoC level. The

Service Area (SA) parameter in equation (4.6) ensures that only charging sources located
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near the requested EV will be taken into account within the recommendation model by

limiting the distance to be less than the threshold τdis. Then, we calculate the probability

of selecting a charging source based on the different utility values that an EV will receive

for the source x compared to the other sources.

Px =
expx U(vi)∑SA
x=1 expx U(vi)

. (4.5)

SA = c ∪m =

{x | x ⊂ FCS = {c1, c2, ..., cj} ≤ τdis}

{x | x ⊂MCS = {m1,m2, ...,mk} ≤ τdis}

. (4.6)

Since Px may recommend either a MCS or a FCS, we are adding a selection constraint

on the Px proportional to the availability of each charging source (overall waiting time for

an EV to start the charging state). Here we say the source availability indicator ρx ≥ z,

where z is the threshold of availability value calculated from equations (4.2) and (4.4) for

FCS and MCS, respectively, which is a selection constraint as follows:

x =


FCS, if z ≥ ζ

MCS, if z ≥ κ

.

Equation (4.7) defines a utility function for each EV vi which requests to be charged

at the preferred battery percentage SoCsit. Reaching the desired SoC level costs the EV

to travel to the charging source x location by UD with Λ(vi,x) ≤ τdis, which is a threshold

for distance to limit the number of charging sources (Fixed and Mobile) to the ones in

the vicinity of the service area. Traveling to the location of the charging source results

in the EV experiencing a reduction in its SoC, incurring an energy consumption cost

ranging between [0.125, 0.19] kWh per kilometer on average. This cost is influenced by
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the driving pattern and speed [101]. To incorporate this cost into the utility function

U(vi), we introduce the term ”unit of energy consumption” (unit(EC)). Additionally, the

EV, denoted as the energy requester vi, is required to pay the charging service fee UF , as

specified by the service provider. The SoC level decreases with every kilometer traveled to

the charging source, and the difference between the current SoC and the desired amount

is added to the requested quantity, leading to an increase in the charging service fee.

Accordingly,

argmax
∀x∈SA

U(vi) = SoCsit − [Υ1UD(Λ(vi,x)) + Υ2UF (Φx)], (4.7)

argmin
∀x∈SA

[Υ1UD(Λ(vi,x)) + Υ2UF (Φx)]. (4.8)

In this context, Υ1 and Υ2 serve as weights to balance the significance of distance

and charging fees for each EV. To maximize the utility function of EV vi, minimizing the

associated costs is imperative. Essentially, the closer the charging source and the lower

the fee, the more cost-effective the EV becomes. The system regulates and selects these

weights based on the longest distance threshold (τdis) that an EV can cover given its current

battery SoC. This approach allows the system to prioritize charging source assignments

in urgent scenarios by emphasizing the distance utility function—achieved by setting Υ2

to zero—since selecting the nearest charging source becomes crucial for maximizing U(vi).

These two utility function values are calculated from equations (4.9) and (4.10) for distance,

and equations (4.11) and (4.12) for fee.

argmin
∀x∈SA

UD(Λ(vi,x)) = R× (2× atan2(
√
h,

√
(1− h)), (4.9)
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h = sin2(
∆lat

2
) + cos lat1 × cos lat2 × sin2(

∆lon

2
), (4.10)

which is the haversine formula for computing the great-circle distance between two coor-

dinates, representing the shortest path across the Earth’s surface [94].

argmin
∀x∈SA

UF (Φx) = [Quantity of Electricity(kW )]× [Unit Price($)], (4.11)

Qty of Etc(kW ) = SoCsit − SoCcurrent + (unitEC × Λ(vi,x)). (4.12)

where the result of this calculation represents the cost that must be paid for the electricity

requested/consumed in dollars ($) for a given amount of electricity usage, measured in

kilowatts (kW).

4.2.2 Secure Data Sharing with Federated Learning

One significant aspect of the FL approach lies in its capacity to maintain the confidential-

ity of all raw training data, including feature names and values, within the devices owned

by the data providers, as highlighted in [91]. Within the realm of smart grids, data is

inherently partitioned across various data-holding entities. Recognizing this fundamental

characteristic in data analytics simplifies the process of establishing a collaborative learning

model for discerning shared information among disparate data holders, particularly when

dealing with data samples that exhibit similarity.

This distinction can be categorized into two primary types of collaborative learning

settings. The first category involves parties with distinct sets of training samples, yet they

share the same feature attributes and labels. On the other hand, the second category,

known as Vertical Federated Learning as mentioned in [102], encompasses different data
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providers possessing unique feature sets for the same set of data samples. Consequently, to

train a model, the aggregator must combine features from these distinct parties, all while

ensuring that raw data remains confined within their respective platforms.

Using Vertical FL in our recommendation model, we have d = {1, ...D} number of data

holders with a local dataset Dd including EVs, FCSs, and MCSs. Each entity has its own

local model, θE, θC , θM for an EV, FCS, and MCS, respectively. These local models at each

entity are trained using their own data Dd. Each entity’s training model tries to minimize

the training loss L, by applying the additive homomorphic encrypted function [[HM ]], as

represented below:

θ∗E = argmin
θE

[[L(θE,DE)]], (4.13)

θ∗C = argmin
θC

[[L(θC ,DC)]], (4.14)

θ∗M = argmin
θM

[[L(θM ,DM)]]. (4.15)

Then, the model updates, such as gradients, are securely shared with the aggregator

node, which collects model updates from all entities and computes the weighted average

to create a global model, as follows:

θglobal =

∑
wE × θE +

∑
wC × θC +

∑
wM × θM∑

wE + wC + wM

, (4.16)

where wE, wC , and wM represent the weights assigned to each entity, reflecting its contri-

bution to the global model. The aggregator node sends the updated global model θglobal

back to the entities, and each entity receives the global model, refines its local model,

and generates recommendations using its updated local model, shown in equations (4.17),
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(4.18), and (4.19), with ϑ as a hyperparameter that controls the extent to which the global

model is incorporated.

θE = (ϑ× θE) + ((1− ϑ)× θglobal), (4.17)

θC = (ϑ× θC) + ((1− ϑ)× θglobal), (4.18)

θM = (ϑ× θM) + ((1− ϑ)× θglobal). (4.19)

The underlying goal of minimizing these training losses is to enhance the efficiency of

each entity in making charging-related decisions for EVs, based on the local models of

FCSs, and MCSs within the FL framework. The FL process iterates over several rounds,

with each round involving local model training, model sharing, global model update, and

local model refinement.

4.2.3 Implementation of the Secure Intelligent Recommendation

Algorithm

Algorithm 2 illustrates the steps of the developed system, which allows participant en-

tities to safely share their personal data. This process aims to identify the most suitable

charging source for an EV while considering the desired SoC battery level, all while mini-

mizing travel expenses and service fees.

Examining Algorithm 2, the efficiency of our proposed model becomes apparent as

it demonstrates commendable computational complexity. The scalability of the model is

reflected in its time complexity, denoted by O(V ∗ (C +M)). Here, V signifies the number

of EVs, while C and M represent the cumulative count of charging sources. This time
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complexity analysis underscores the model’s ability to handle an increasing number of EVs

and charging sources without a disproportionate increase in computational demands. The

linear relationship between time complexity and the variables V, C, and M underscores

the scalability of our algorithm, ensuring that as the system grows, the computational load

remains manageable. This scalability is particularly crucial for real-world applications

where the number of EVs and charging sources may vary dynamically, and our model

adapts seamlessly to these changes while maintaining efficient computational performance.

92



Algorithm 2 : Secure charging source recommendation for consumer electric vehicles

Given: SoCsit, θE, θC , θM ,Υ1,Υ2, z
Output: Charging Source Px, EV Utility U(vi)

1: for each EV i do
2: Receive FL global model θglobal
3: for each FCS j do
4: Receive FL global model θglobal
5: Compute Availability Indicator ρcsj
6: Compute local model θ∗F
7: Broadcast the secure local model θ∗F parameters
8: Calculate the distance utility function
9: argminUD = R× (2× atan2(

√
h,

√
(1− h))

10: Calculate the fee utility function
11: argminUF = [Qty of Etc(kW )]× [Unit Price($)]
12: Calculate EV utility function
13: argmaxU(vi) = SoCsit − [Υ1UD +Υ2UF ]
14: end for
15: for each MCS k do
16: Receive FL global model θglobal
17: Compute Availability Indicator ρmsk

18: Compute local model θ∗M
19: Broadcast the secure local model θ∗M parameters
20: Calculate the distance utility function
21: argminUD = R× (2× atan2(

√
h,

√
(1− h))

22: Calculate the fee utility function
23: argminUF = [Qty of Etc(kW )]× [Unit Price($)]
24: Calculate EV utility function
25: argmaxU(vi) = SoCsit − [Υ1UD +Υ2UF ]
26: end for
27: Choose a source based on the probability scores
28: Px = expx U(vi)∑SA

x=1 expx U(vi)

29: subject to ρ ≥ ζ and ρ′ ≥ κ
30: Compute local model θ∗E
31: Broadcast the secure local model θ∗E parameters
32: end for
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Accordingly, the sequence diagram in Figure 4.2 provides a detailed view of the steps

involved in our recommendation model. It shows how EVs initiate requests to locate and

access nearby charging spots. This diagram highlights the interaction between the EVs and

the charging infrastructure, ensuring an efficient and secure process for energy acquisition.

This systematic flow of actions underscores the model’s capability to dynamically allocate

charging resources based on the near-real-time demands of EVs, enhancing overall charging

efficiency and user experience. The shaded area in this diagram represents the secure data

transfer process, where local models from each entity are needed to update the global

model, which is the recommendation.

Figure 4.2: A diagram that shows the order of actions in the suggested recommendation
model, where requests come from EVs to get energy from nearby charging spots, which
can be either fixed or mobile.

As can be seen in Algorithm 2, and Figure 5.1, FL is used to enhance the security

of our recommendation model. This approach leverages the power of fog-computing de-

centralized learning by training the model locally on each charging source and EV data

without centralizing sensitive information and the risks of data breaches and privacy vi-
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olations. Furthermore, the FL-enabled model makes it a robust and secure solution for

optimizing EV charging recommendations while safeguarding sensitive data. This not only

bolsters the security of the recommendation system but also promotes trust and coopera-

tion among charging providers, ultimately fostering a more secure and efficient EV charging

infrastructure.

4.3 Model Evaluation and Results Analysis

In this section, we evaluate the performance of our model and analyze the results of

our experiments. We will also demonstrate the effectiveness of our proposed approach and

offer insights into the outcomes achieved.

4.3.1 Datasets

To analyze the proposed model, we are using a simulated dataset for MCSs that reflects

real-world data from the city of Ann Arbor in MI, USA. This dataset includes various

parameters and scenarios to ensure the model’s robustness and applicability. Additionally,

a list of real FCS data has been gathered to provide a comprehensive overview of the existing

infrastructure. We also incorporate collected EV datasets from [103], which include both

static and dynamic data of EVs driving in Ann Arbor, Michigan in 2018. This rich dataset

allows us to capture the variability in EV usage patterns, charging behaviors, and mobility

trends, thus enabling a thorough evaluation of the model’s performance under diverse

conditions. The combination of simulated and real-world data ensures that our analysis is

grounded in practical realities, enhancing the reliability and validity of our findings.

4.3.2 Results and Analysis

Figures 4.3a, and 4.3b illustrate a part of the participants’ geographical distribution on

the map, featuring 6 EVs with charging requests at different locations, 7 FCSs positioned

in distinct areas, and 4 MCSs scattered across various locations within the city scope.
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Specifically, in Figure 4.3b EVs are represented by a blue color, FCSs by a red color, and

MCSs by a green color.

(a) A region of the dataset is chosen to display the grid-based distribution of labeled EVs, sta-
tionary SCs, and MCSs in our specific scenario.

(b) A region of the dataset is chosen to display the grid-based distribution of labeled EVs,
stationary SCs, and MCSs in our specific scenario.

Figure 4.3: Distribution of labeled Electric entities in a selected region of Ann Arbor city,
illustrating their spatial arrangement and density.
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4.3.3 Experimental Setup

To confirm the consistency and trustworthiness of the model outcomes, we conducted

the experiments iteratively, implemented in Python programming language on a MacBook

Pro M1 with 16 GB of RAM. Multiple runs were performed to ensure the robustness of

our findings, and various metrics were used to assess the model’s accuracy and efficiency.

The iterative approach allowed us to fine-tune the model parameters and optimize the

performance, providing a comprehensive evaluation of its capabilities.

4.3.4 Performance Evaluation

In the first part of the proposed algorithm, the availability indicator parameters ρ and ρ′

for the FCS and MCS, are calculated. These values then will be used in the recommenda-

tion step as a constraint to limit the number of suggested charging sources. In Figure 4.4,

an EV can decide which charging source to choose by analyzing its availability values. The

ranked list of suggested charging sources is subjective to these parameters’ values, which

shortens the list to the ones that EV desires. Here the values are scaled from the range

[-1.89, 6.6] to [18.11, 26.6] for better illustration in this Figure.

Table 4.1 presents the actual availability values for these seven FCSs. As discussed, the

values are determined based on the current availability attributes of these FCSs, providing

a comprehensive overview of their readiness for serving EVs. Specifically, the availability

parameter values reflect factors such as the number of available charging slots, the average

wait time, and the queue list at each station.

For instance, FCS #1 has an availability parameter value of 0.58, indicating a relatively

low readiness level, possibly due to limited available slots or higher usage demand. On the

other hand, FCS #2 shows a high value of 5.8, suggesting a higher availability, likely due

to more available slots or efficient service times. Negative values, such as -1.89 for FCS

#3, might indicate stations that are currently very crowded or non-operational affecting

their service availability.
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Figure 4.4: Availability Indicator values (ρ for FCS, and ρ′ for MCS) to an EV with the
charging request. The size and color of the points (which have been enlarged for finer
illustration), show the range of the sources’ availability.

Table 4.1: Fixed Charging Stations Availability Values

Charging Service Index Availability Parameter Value

FCS #1 0.58

FCS #2 5.8

FCS #3 -1.89

FCS #4 2

FCS #5 1

FCS #6 1.32

FCS #7 -1.07

Table 4.2: Mobile Charging Stations Availability Values

Charging Service Index Availability Parameter Value

MCS #1 3.5

MCS #2 6.56

MCS #3 6.6

MCS #4 1.02

In the same manner, in Table 4.2, a similar approach is taken to list the scaleless

availability values for the other four MCSs. The values in this table are derived from the

current availability features and the remaining battery SoC of the MCSs. For example,
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MCS #1 has a value of 3.5, which reflects its readiness to provide charging services based

on its battery SoC and mobility status. Higher values, such as 6.6 for MCS #3, indicate a

higher capacity to serve EVs, whereas lower values, like 1.02 for MCS #4, suggest limited

availability possibly due to lower SoC or higher current demand.

Together, these tables offer valuable insights into the readiness and capacity of both

FCSs and MCSs in the specified scenario.

Moreover, Figure 4.5 illustrates the total utility achieved by EVs for a given SoC from

each EV to maximize their battery levels. The shaded area represents the difference be-

tween the SoCsit value and the received SoC value at each charging source, highlighting

the efficiency of the charging process. The Figure shows the maximum utility values gained

for every six EV consumer electronics from the MCSs and FCSs, demonstrating how the

system effectively meets the requested SoC levels (indicated by the dashed red line) from

their current SoC. This visual representation underscores the model’s ability to manage

and optimize charging resources, ensuring EVs receive the necessary energy to maintain

optimal performance.

To demonstrate the optimization performance of our models, we contrast the charg-

ing source recommendation for EV #3 using a straightforward distance-based selection

method, without considering other critical factors, with our proposed optimized utility

approach. As depicted in Figure 4.6, the distance between the MCSs and the EV is set to

0 since the MCS will drive to the EV, making them the initial preferences. However, the

green line represents the waiting time in minutes that an EV must endure to receive the

desired charging level.
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Figure 4.5: Gained maximum utility values for every 6 EV consumer electronics from the
MCSs and FCSs to get to their requested SoC level (dashed red line) from their current
SoC.
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Figure 4.6: Total gained utility (SoC%) of EV consumer #3, comparing the simple dis-
tance based charging source selection, and our optimized recommendation.
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To better evaluate the efficacy of the proposed optimized charging source recommenda-

tion, we employed two distinct scenarios illustrated in Figure 4.7. In Figure 4.7a, wherein

the nearest charging source is obligatory, MCSs represented by charging sources 1 to 4 re-

ceive the highest recommendations due to the convenience of drivers not having to travel;

the source can instead move to their location. Subsequently, FCSs #1, #3, and #6 are

recommended, capitalizing on their proximity to EV #3. Conversely, Figure 4.7b depicts a

scenario where drivers can set parameters to minimize waiting time and identify the most

cost-effective options. In this context, FCS #4 emerges as a prominent recommendation

for EVs, having 7 out of 10 available spots and an occupied spot with a charging time of

less than 5 minutes. Among the MCSs, source#3 earns higher recommendations, featuring

2 out of 3 idle batteries and the other being available in less than 12 minutes, and an

attractive price of 0.72$/kWh (which is taken from the simulated dataset for this MCS in

our scenario), surpassing the other three MCSs in terms of affordability.
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(a) Electricity Urgency scenario where the closest charging source must be recommended.

(b) Most-available-cheapest scenario to recommend.

Figure 4.7: The likelihood of suggesting a charging source in (a): when the nearest charging
source is mandated for recommendation due to the pressing electricity demand for EVs,
and in (b): when an EV seeks the most available and cost-effective charging source for
efficient charging.
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Finally, in this section, we present Figure 4.8 which compares the computation delay in

centralized and FL environments with varying numbers of EVs. The left y-axis represents

the computation delay in seconds, showcasing the computation efficiency of both central-

ized and FL recommendation approaches. The right y-axis represents the differences in

computation delay between the two approaches, providing insights into the performance

gap across different numbers of EVs. As can be seen, the FL model demonstrates superior

computation times compared to the centralized approach. With FL, the computation times

range from 0.0022 to 0.0056 seconds, outperforming the corresponding times in the central-

ized model (ranging from 0.0457 to 0.0709 seconds). This substantiates the efficiency and

effectiveness of the FL model, making it a compelling choice for optimizing computation

dynamics in EV charging recommendation systems.

Figure 4.8: Comparative computation times in seconds in Centralized vs. Federated Learn-
ing with Differences in second across 6 numbers of EVs. The graph highlights the impact of
computation efficiency and the corresponding differences between the two recommendation
approaches.
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4.4 Chapter 4 Summary

Based on the insights gathered from our research on the integration of a secure rec-

ommendation system for EVs, leveraging both Stationary CSs and MCSs, along with the

implementation of advanced fog-based recommendation frameworks, we draw several con-

clusive remarks.

Firstly, our study in this chapter underscores the pressing need for innovative solutions

to address the challenges faced by EV owners, particularly concerning the accessibility

and availability of charging infrastructure. The introduction of MCSs alongside traditional

FCSs presents a promising avenue to mitigate range anxiety and enhance the QoE for urban

EV users. By incorporating mobility and flexibility into the recommendation system, we

offer a comprehensive approach that adapts to the dynamic needs of EV owners, thereby

enabling a more user-centric charging ecosystem.

Secondly, our research highlights the significance of integrating secure fog-based recom-

mendation systems within the IoT paradigm. By leveraging the power of fog computing at

the network’s edge, we ensure low-latency data processing, near-real-time decision-making,

and enhanced data aggregation, all crucial elements for optimizing the efficiency and re-

sponsiveness of the recommendation system. Moreover, our approach prioritizes user pri-

vacy and data security through the utilization of FL, thereby addressing growing concerns

surrounding data protection and safeguarding user privacy in the IoT ecosystem for EVs.

In conclusion, this study contributes to the advancement of ITSs by proposing a robust

recommendation framework that not only enhances the accessibility and efficiency of EV

charging but also prioritizes user satisfaction and data security.
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Chapter 5

Empowering Consumer Electric

Vehicle Mobile Charging Services

with Secure Profit Optimization

5.1 Introduction to Chapter 5

In this chapter, we present the development of an optimized mobile charging service

system designed to minimize operational costs and maximize profits for MCSs within the

Consumer IoT framework. Developing an on-demand mobile charging service system aims

primarily at minimizing daily operational costs incurred during self-charging, while simul-

taneously optimizing total profits to the highest degree possible. This initiative focuses on

enhancing the performance and functionality of MCSs.

Our approach integrates FL with fog computing to enhance the security and reliability

of vehicle communication, prioritizing user data confidentiality. By replacing traditional

centralized models with FL, we mitigate data leakage risks and improve the overall security

and responsiveness of the recommendation system. This collaborative profit optimization

system effectively addresses key challenges in EV charging infrastructure, ensuring secure

and efficient interactions within the consumer electronics network. Through these innova-
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tions, we enhance the user experience by providing a more secure, efficient, and responsive

mobile charging service system.

5.2 System Model and Problem Formulation

Within this section of our study, we represent the architecture and mathematical depic-

tion of a model designed to enhance the performance and profitability of MCSs, while also

attempting to fulfill as many charging requests by EVs as feasible.

Similar to many edge consumer electronic devices [104], MCSs require the use of a smart

system to oversee the charging process and determine the optimal locations for deploying

them to provide energy to EVs. To enhance the solution in this co-management situation,

the suggested system needs the capability to address queries regarding the optimal place-

ment and dispatch of a MCS to provide energy to an EV, while also minimizing the idle

time of MCSs.

To mathematically denote entities and system’s items, similar to chapter 4, we used a set

of I number of EVs as {v1, v2, ..., vi}, i ∈ I, and vi ∈ EV to be the entity demanding energy

from a MCS. Each MCS is identified from a set of K number of MCSs as {m1,m2, ...,msk},

k ∈ K, and msk ∈ MCS to be the entity responding to energy-delivery request and also

requesting electricity from a FCS. The last entity providing energy is indicated within a

set of J number of FCSs as {f1, f2, ..., fj}, j ∈ J , and fj ∈ FCS.

The primary purpose of the system is to increase the entire amount of profit a MCS

msk can gain by increasing the number of service deliveries, and less self-charging payments

from the equation (5.1).

maxProfit
(total)
k =

I∑
i=1

Profit(msk, vi)−
J∑

j=1

Cost(msk, fj). (5.1)

In general, the primary factors influencing the optimal dispatch of a MCS msk for

energy delivery and self-charging scheduling revolve around the SoC level of the MCS
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battery(ies), with the overall count of installed batteries B, along with the charging prices

(Φ) they offer to other EVs or they must pay to FCSs. This Φ can be calculated from

equation (5.2) for each MCS msk, by multiplying the amount of energy (Qnt) by unit

price, as follows.

Φ = Qnt (kW )× Selling Price ($). (5.2)

The Profit(.) function here aggregates the revenue earned by the MCS msk from each

EV vi it served. Therefore, by increasing the number of EVs receiving assistance, the

MCS is able to correspondingly enhance its profit. To refine the optimization process,

we introduced two principle constraints into the system to mitigate the occurrence of

inaccurate results.

1. We assume that during the transit of a MCS to an EV or a FCS, the sole expense

caused is the travel time, with no associated energy consumption cost, as these MCSs

are typically moved by ICE vehicles.

2. Once a charging phase begins, whether it is initiated at a FCS for self-charging

purposes or with an EV for energy delivery, it cannot be interrupted.

Whenever there is a request for charging from an EV vi, denoted as ri, the system

collects the required data and generates a set consisting of the quantity of electricity needed,

available start time, departure time, and location, respectively, as shown in equation (5.3).

ri =< Qnt, tstarti , tendi , [lat, long] >, (5.3)

Λ(vi,msk) = R× (2× arctangent2(
√
h,

√
(1− h)), (5.4)

h = sin2(
1

2
∆lat) + [cos (lat1)× cos (lat2)× sin2(

1

2
∆long)]. (5.5)
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Equations (5.4), and (5.5) demonstrate the calculation of the distance Λ(.) between the

EV vi and the MCS msk by utilizing the provided latitude and longitude data. Similarly,

the Haversine formula is used to calculate the most direct route over the surface ground

[94].

The system then proposes those requests ri to the MCS by identifying candidates closer

to the MCS and subjecting them to the optimization constraints applied to the Profit(.)

function in equation (5.1). These constraints include:

• Each MCS msk can be in one of three phases: en route or idle, self-charging at a FCS

fj, EV vi charging. It cannot be engaged in more than one phase simultaneously.

K∑
k=1

msk +mkj +mki = 1,∀j ∈ J,∀i ∈ I. (5.6)

• The energy requested by an EV vi must always be lower than the remaining energy

stored in the battery of the MCS msk.

Qntvi <
∑

bmsk ,∀b ∈ B. (5.7)

• The timestamp of the energy request submitted to the system by an EV vi must

always precede the dispatch time for a MCS msk.

trequesti < tdispatchk ,∀i ∈ I,∀k ∈ K. (5.8)

• In our optimization model, we incorporate a priority factor to address EVs with

battery SoC levels below a specified threshold (τSoC) within our model.

On the other hand, when the SoC level of each MCS msk, falls below a predetermined

threshold (τSoC) each MCS, equipped with a b number of batteries, b ∈ B, must initi-

ate self-charging. Subsequently, it must identify and travel to a FCS fj for the purpose

of recharging. Therefore, the msk demanding recharging will be provided with a list of

available FCSs in the area selected by msk.
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This aspect of the MCS msk affects its operational expenses, as it incurs costs for

recharging and becoming ready to provide service to other EVs. Hence, the second segment

of the optimization problem centers on minimizing the Cost(.) function in equation (5.1),

enabling the MCS to minimize expenses and maximize profits.

The creation of a list of suggested accessible FCSs, as facilitated by our model, depends

on several factors, including the number of occupied charging spots, the number of vehicles

waiting in line (q) along with their respective charging session durations (twaiting)(if all spots

are occupied), the remaining time for ongoing charging sessions (t), price per charging unit

and the distance to the MCS msk, which is obtained from equation (5.4).

fj =< S, o⃗s, t⃗, q,
−−−−→
twaiting, $$, [lat, long] >, (5.9)

where os is a categorical parameter that represents whether spot s is occupied (assigned a

value of 1) or empty (assigned a value of 0).

Each FCS fj with the aggregate quantity of S charging plugs is required to share this

information as a set with the system. Generation of an optimized solution for msk in

selecting a recharge location by minimizing the total cost it will pay is the main objective

in the Cost(.) function definition, used in the primary optimization function (5.1).

However, to enhance the performance of our system optimization, we conducted an

additional analysis considering the waiting time at a FCS fj as another factor influencing

the total profit earned by the MCS. This factor is denoted as the station’s crowdedness or

accessibility value (ρfj), which is calculated by equation (5.10) and subsequently used as a

subjective in the creation of the suggested list.

ρfj =
S∑

s=1

ts.os +

q∑
waiting=1

twaiting. (5.10)

Therefore, the higher the ρfj value, the more crowded the station is, which leads to

becoming less available and in a lower rank of the suggested list.

Our mathematical model contributes to the optimization of MCS operations by for-
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mulating the problem of profit maximization through a combination of energy delivery

to EVs and self-charging from FCSs. The model takes into account various operational

factors such as energy requests, battery levels, charging prices, and travel distances. The

primary objective is to maximize the total profit (Profit
(total)
k ) for each mk by increasing

service deliveries and minimizing self-charging expenses. In order to provide economic jus-

tification, the selling price (ϕ) per unit of energy is determined based on market conditions,

demand, and operational costs. This price ensures that the MCS can cover its expenses

while making a profit. Also, charging prices at FCSs are considered to ensure that the

self-charging costs do not exceed the revenues earned from delivering energy to EVs.

There might be scenarios where the MCS might incur losses or negative utilities. These

scenarios include (a) High self-charging costs at FCSs due to increased demand or higher

prices. (b) Low demand for energy from EVs, resulting in fewer service deliveries. (c) Long

travel distances to deliver energy or reach FCSs increase operational costs. To address these

scenarios, our model incorporates constraints and optimization techniques to minimize

losses. We include a priority factor for EVs with low SoC levels to ensure that the MCS

can prioritize high-demand requests. Additionally, the model evaluates the crowdedness

value (Cfj) of FCSs to avoid long wait times and high costs.

To further enhance the mathematical modeling, we proposed adding the following equa-

tion (5.11) to capture the dynamics of losses and negative utilities and adjust to minimize

losses and optimize profits under varying operational conditions.

Lossk =

J∑
j=1

(
Cost(mk, fj)×

twaitingj

T

)
−

I∑
i=1

Profit(mk, vi),
(5.11)

where Lossk represents the potential losses for MCS mk, twaitingj is the waiting time at

FCS fj, T is the total operational time, Cost(mk, fj) and Profit(mk, vi) are as previously

defined.

Up to this point in our system model, we clarified the profit optimization undertaken for
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the MCSs registered in our model. In order to ensure system safety and protect user data,

we integrated FL as a recognized method to strengthen the security of a distributed model

across the CIoT network [105][106]. By employing FL, each MCS can learn from decentral-

ized data without sharing sensitive information, thus maintaining privacy while benefiting

from collective insights. This approach allows each MCS to make more informed decisions

regarding charging/discharging scheduling and service delivery, ultimately maximizing its

own profit [106].

FL as demonstrated by its utilization of a secure framework and the integration of ho-

momorphic encryption, serves as a potent security remedy within the proposed model [107].

The application of homomorphic encryption to the parameters transmitted during the FL

process is an essential element in fortifying the security landscape. By allowing compu-

tations to be executed on encrypted computed data on-device, homomorphic encryption

ensures that sensitive information remains confidential during transmission. This inherent

privacy-preserving feature significantly mitigates the risk of data exposure, unauthorized

access, and potential breaches [108]. As a result, FL not only provides an innovative ap-

proach to collaborative model training but also establishes itself as a proactive security

measure, fostering a secure environment for the exchange of model updates and contribut-

ing to the overall robustness of the proposed model.

In the FL setup for the MCS profit optimization model, since each entity (MCS, FCS,

EV) computes its own local model with distinct datasets, the choice of parameters must

align with the characteristics of the individual datasets and the overall model structure.

The implementation setup involves configuring each entity to perform local computations.

FL involves communication between entities and aggregator nodes, so the setup in-

cludes defining the security measures (homomorphic encryption), and the frequency of

model updates, as they are responsible for appropriately balancing the contributions from

different entities. Similar to chapter 4, section 4.2.2, we will utilize the VFL formulation to

securely enable data sharing between the entities. Equations (4.13) to (4.15) represent the

mathematical formulations used in FL local training (θ, θ∗) before sharing the private data,

to enforce security measures with the additive homomorphic encrypted function [[HMθ,θ∗ ]]

112



on our model with three decentralized private local datasets Dmcs, Dfcs, and Dev.

Similarly, equation (4.16) is used to update the global model θglobal, and then By receiv-

ing the global model, entities refine and update their local models, as shown in equations

(4.17) to (4.19).

5.2.1 Implementation of the Secure Profit Optimization Algo-

rithm

The sequence diagram in Figure 5.1 shows the steps in the recommendation and profit

optimization model for MCSs. This involves four key entities: MCS, FCS, EV, and a

Fog Node. The process starts with registering these entities. After registration, EVs send

energy requests to nearby MCSs to recharge. The optimization algorithm then recommends

an action. If an MCS has a low battery of less than the threshold, it suggests an FCS for

recharging. If the MCS is ready, the model directs it to an EV with a charging request.

Based on this, the MCS selects either an FCS or an EV. Fog Nodes help by ensuring smooth

communication and coordination among EVs and charging services, therefore, optimizing

the energy supply process. The practicality of the proposed model lies in its ability to act as

an intelligent system that continuously updates and refines models, allowing it to adapt to

changing conditions in near-real-time for efficient and responsive operations. Additionally,

the system must monitor MCS operational costs and assist operators in maximizing their

profits.

Algorithm 3 illustrates a comprehensive approach aimed at optimizing profit margins

within the domain of MCSs for consumer electronics. The algorithm not only focuses on

maximizing profitability but also emphasizes efficient resource allocation. By strategically

allocating resources, the aim is to incentivize the widespread adoption of MCSs as a reliable

asset for charging station infrastructure consumers. This entails not only considering im-

mediate profitability but also fostering a sustainable ecosystem where MCSs play a central

role in meeting the evolving needs of consumers and the broader energy landscape.

The algorithm incorporates various factors such as demand forecasting, dynamic pric-

113



Figure 5.1: Sequence diagram showing the actions in the MCS optimization process. It
includes registration, EVs sending requests, and the algorithm directing MCSs to either
recharge at FCSs or service EVs, with Fog Nodes enabling communication.

ing models, and intelligent scheduling algorithms to ensure that MCSs operate at peak

efficiency while maximizing revenue streams. Additionally, it takes into account factors

such as energy efficiency, infrastructure costs, and user preferences to strike a balance be-

tween profitability and consumer satisfaction. Through this approach, the algorithm seeks

to establish MCSs as indispensable components of the consumer electronics ecosystem,

driving both economic growth and environmental sustainability.

The time complexity calculated from the model’s proposed algorithm is represented by

the expression O(M ∗ (V +C)), where M denotes the quantity of MCSs, and V and C sym-

bolize the combined total of profit-influencing elements from EVs and FCSs, respectively.

The evaluation of the model’s time complexity and scalability ratio is especially important

for scenarios where the overall number of EV charging requests and energy services may

change actively, the system’s perfect adjusting enhances its computational performance.
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Algorithm 3 : Secure MCSs consumer electronics profit optimization

Given: Φ, < r >,< f >, θmcs, θfcs, θev, θglobal
Output: MCS Profit(total)

1: for each MCS k do
2: Collect θglobal initial parameters
3: if |r| > 0 then
4: for each EV i do
5: Collect θglobal initial parameters
6: Check Qnti
7: Compute distance
8: Λ(v) = R× (2× arctangent2(

√
h,

√
(1− h))

9: Calculate θev local model
10: Publish encrypted [[θev]] parameters
11: end for
12: end if
13: if |bk| < τSoC then
14: for every FCS j do
15: Collect θglobal initial parameters
16: Compute crowdedness value
17: ρj =

∑S
s=1 ts.os +

∑q
waiting=1 twaiting

18: Compute distance
19: Λ(f) = R× (2× arctangent2(

√
h,

√
(1− h))

20: Calculate θfcs local model
21: Publish encrypted θfcs parameters
22: end for
23: end if
24: Compute Φ+ = Qnt (kW )× Selling Price ($)
25: Calculate Profit(msk) function
26: subject to τdist
27: Compute Φ− = Qnt (kW )× Selling Price ($)
28: Calculate Cost(msk) function
29: subject to τdist
30: Compute maxProfit(total)

31: end for
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5.3 Model Evaluation and Results Analysis

In this section, we will conduct a performance evaluation of our model and examine the

outcomes of our experiments. Furthermore, we will demonstrate the effectiveness of our

proposed approach and offer insights into the attained results.

5.3.1 Datasets

To demonstrate the efficacy of the proposed model in this chapter, it underwent testing

using the same case study from chapter 4 section 4.3.1, based on a real-world dataset

sourced from Ann Arbor City in Michigan, during 2018. The collected dataset features

both static and dynamic data from consumer electronics activities [103]. On that account,

Table 5.1 displays a representative sample extracted from the available datasets for MCSs,

FCSs, and EVs. It provides insight into their structure and contents and serves as a

valuable resource for understanding the characteristics and dynamics of the MCS, FCS,

and EV ecosystem.

Table 5.1: Consumer Electronics dataset samples.

MCS

Time Lat/Long [deg] Fee [$] Max Power [kW] Battery # Start/Stop Sess. [h] SoC [%]

12:36:08 [42.28,-83.74] 1.6 25 2 [13:24,13:50] [92,86]

FCS

Lat/Long [deg] Fee [$] Spots # Type Available # Start Sessions [h] End Sessions [h]

[42.23,-83.76] 0 2 Slow 1 [9:46,10:12] [10:43, -]

EV

Time Speed [km/h] Outside Temp. [c] Voltage [V] Current [A] Lat/Long [deg] SoC [%]

20180609051222 27.02 9 374.5 15.5 [42.22,-83.72] 48.78
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5.3.2 Experimental Setup

Constant testing of experimental results was undertaken to guarantee the reliability and

precision of the model’s outcomes. These experiments were conducted using the Python

programming language on a MacBook Pro equipped with an M1 chip and 16 GB of RAM.

The effectiveness of our proposed model is evident in its notable computational efficiency

and scalability.

5.3.3 Performance Evaluation

In this study, we accurately examined different aspects of our proposed optimization

model. We carried out experiments to assess the performance of the model in diverse

scenarios and to ensure the efficacy of incorporating federated learning as a replacement

for the conventional centralized architecture by having the users’ data and computation

on-device.

The analysis shown in Figures 5.2, 5.3, and 5.4 sheds light on the relationship between

the booking times for charging services requested by EVs and the resulting revenue at-

tainable by an MCS through its charging fee structure through different timing scenarios.

It explains how the timing of these booking requests directly impacts the potential profit

generated by the MCS, particularly MCS #4, which serves as the focal point of the study.

Each booking period from the 6 EVs within the service zone of MCS #4 is examined, along-

side the corresponding charging fees offered by the station. This overall view allows for a

refined understanding of how variations in booking times influence the revenue potential

of the MCS.

Figure 5.2 presents the scenario under normal traffic conditions, showing the profit

generated based on the booking times with a selling price of $2.5. This Figure comple-

ments the analysis by incorporating data on MCS #4’s driving distance to deliver charging

services to the 6 EVs, along with their respective booking request times. This addition un-

derscores the various natures of profit optimization for MCSs and highlights the fact that
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while charging fee offerings play a principal role in determining potential revenue, other

factors such as travel distance must also be taken into account. The travel time required

for MCS #4 to reach each EV is a determinant of operational costs and, consequently,

overall profitability.

In Figure 5.3, the scenario during peak hours is depicted, where the demand for charging

services is higher, resulting in increased profits from $2.5 to $2.8 as shown by the adjusted

booking times and fees. Figure 5.3 continues to emphasize the importance of travel distance

in profit optimization under these conditions.

Furthermore, Figure 5.4 illustrates the off-peak hours scenario, where the demand for

charging services is lower. The impact of reduced booking times on profit is evident in this

figure with a price of $2.0. This Figure maintains the focus on travel distance, reinforcing

its significance in the overall profitability of MCS #4 during off-peak hours.
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Figure 5.2: Depiction of the relationship between the booking times for charging requests
from 6 EVs within the service zone of MCS #4 and the potential profit generated based
on a charging price of $2.5 during normal traffic conditions. The figure also shows the
corresponding traveling distances for MCS #4 to deliver charging services to these EVs,
illustrating how both booking times and travel distances influence the MCS’s profitability.
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Figure 5.3: Representation of the interaction between the booking times for charging
requests from 6 EVs within the service zone of MCS #4 and the potential profit generated
at a charging price of $2.8 during peak hours. This figure includes the travel distances
for MCS #4 to reach each EV, highlighting the impact of higher demand periods on both
profit and operational logistics.
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Figure 5.4: Visualization of the relationship between the booking times for charging re-
quests from 6 EVs within the service zone of MCS #4 and the potential profit generated
at a charging price of $2.0 during off-peak hours. The figure also details the traveling
distances for MCS #4 to provide charging services, emphasizing how reduced demand and
travel requirements affect the MCS’s overall profitability during less busy times.
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Utilizing the charging/discharging scheduling mechanism to maximize profit for MCSs

proposed in this study by considering profit-influencing parameters, Figure 5.5 illustrates

the operational scheduling scenario for MCS#1 during peak hours operation, strategically

selecting 2 adjacent EVs for service delivery after checking SoC level to fulfill the service.

Initiating with energy provision to EV#1, succeeded by EV#4, the MCS stands to earn $90

approximately (normal hours $1.6, peak hours $1.8, and off-peak hours $1.2). Following

this, in order to be able to continue the service delivery, the MCS is confronted with the

decision of where to recharge itself, as the SoC level is reaching its minimum threshold.

Given the present position of the MCS, the system presents a choice among 3 proximate

FCSs, taking into account their queue times and charging prices. Here, using the color-

coded arrows, for clarity, the system outlines the available options, ordered from the closest

most available to the furthest least available, arranged in a left-to-right sequence.

Figure 5.5: The operational scheduling scenario for MCS#1 selecting 2 nearby EVs for
service delivery. By providing energy to EV#1 followed by EV#4, the MCS can earn $90
during peak hours. Subsequently, the MCS must decide where to recharge itself, selecting
from 3 nearby FCSs based on their queue times and charging prices. The color-coded
arrows indicate the available options, extending from the nearest to the most distant,
arranged from left to right.

122



Additionally, Figure 5.7 shows the optimized profit for each MCS. It analyzes the energy

buying and selling between MCSs, EVs, and FCSs at different locations. Each subplot

represents one of the four MCSs that highlights three key metrics: profit (the income from

selling energy to EVs), cost (the expense of recharging at different FCSs), and total profit

(net profit, calculated as profit minus cost).

The bar graphs in each subplot show these metrics for each MCS when choosing from

seven different FCSs. Moreover, each subplot includes a line graph that shows the distance

between the MCS and each FCS. This helps to understand how distance affects costs and

total profit. Figure 5.7 tries to underline the importance of strategic choices for MCSs

to maximize profit. By selecting the best FCSs for recharging, MCSs can balance energy

costs with revenue from EVs. The distance to each FCS and the station’s crowdedness

value impact the cost and influence the overall profit margins.

For clarity, we included the geographical distribution of EVs and charging sources in

our scenario, as illustrated in Figure 5.6.

Figure 5.6: Distribution of labeled Electric entities in a selected region of Ann Arbor city,
illustrating their spatial arrangement and density.
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Figure 5.7: Optimized profit for each MCS by analyzing energy transactions with EV and
FCSs at various locations. The subplots show profit, cost, and total profit (net profit) for
each MCS when choosing from seven different FCSs. FCSs 1, 5, and 6 offer free charging,
but they may be far and crowded, potentially leading to time wasted traveling there.
The line graph in each subplot represents the distance between the MCS and each FCS,
highlighting the spatial considerations influencing costs and profits.
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Figure 5.8: Total distance, time, and money saved by EVs using nearest MCSs instead of
traveling to nearest FCSs, highlighting the benefits of MCSs in the ITS.

Lastly, Figure 5.8 demonstrates the benefits of MCSs in terms of distance, time, and

money saved for EVs when these EVs choose to have the nearest MCSs come to them

instead of going to the nearest FCSs.

Here to evaluate the Distance Saved, Time Saved, and Money Saved parameters, we

calculated the distance from each EV to the nearest FCS, to compare the distances. The

Time Saved parameter uses the average travel speed ([30-50] km/h in city roads in Ontario

[109]), and the differences in waiting times at the nearest charging sources, as shown in

equation (5.12)

time saved =
max(distance saved, 0)

average speed
+(fcs waiting time−mcs waiting time). (5.12)

The Money Saved parameter is then calculated considering the driving cost per kilo-

meter, which as reported is on average 12 cents/km [110]. Equation (5.13) explains the

used variables for this parameter.
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money saved = max(distance saved, 0)× cost per km+

(fcs charging price−mcs charging price).

(5.13)

As illustrated, these results highlight the advantages of using MCSs in terms of reducing

travel distance and saving time, though they do not significantly lower costs for EV users.

5.4 Chapter 5 Summary

In conclusion, this chapter has highlighted the importance of enhancing EV charging in-

frastructure within the CIoT network through the integration and extension of MCSs. Our

primary aim was to emphasize the need to incorporate dynamic factors into the stochastic

optimization problem faced by MCS drivers and operators to achieve the highest possible

daily profits. By proposing a secure and optimized approach, we sought to maximize profit

potential while reducing operational costs. To address data sharing security concerns, we

integrated FL for data privacy and proposed a fog-edge communication framework to en-

hance communication. These contributions have significantly improved the efficiency and

capabilities of MCSs within the CIoT network, ensuring a consumer-centric, secure, and

reliable experience.

Moreover, a prudent approach to maximizing profitability requires balancing potential

profits with logistical considerations. This includes evaluating the revenue potential of each

charging request and factoring in the distance to be traveled by the MCS. By integrating

these insights into their decision-making processes, MCS operators can devise strategies

that optimize profit margins by minimizing driving distances while capitalizing on lucrative

charging opportunities. Ultimately, this nuanced understanding of the relationship between

booking times, charging fees, travel distances, and profitability empowers MCS operators

to make informed decisions that enhance financial success and operational efficiency.
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Chapter 6

Blockchain and Federated Learning

for Electric Vehicle Charging Station

Recommendation

6.1 Introduction to Chapter 6

In this chapter, we introduce a secure mechanism for fog nodes, granting access only

to authorized aggregators who manage shared parameters. This mechanism enhances pri-

vacy by requiring fog nodes to register within a distributed blockchain network, ensuring

verification by other network participants. This architecture is pivotal in preventing ma-

licious users from infiltrating the fog network to conduct data theft or tampering attacks.

This proposed approach decentralizes the aggregator role, traditionally vulnerable to sin-

gle points of failure, by employing decentralized fog nodes located near data holders (EVs,

FCSs, MCSs). It improves communication latency for near-real-time applications by re-

ducing communication delays and access latencies, creating a flexible and scalable network

of aggregators.
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6.2 System Model and Problem Formulation

In this section, the architecture, and workflow of our proposed system, which is based

on the idea of securely decentralizing a VFL model by integrating blockchain and fog

technologies, is described in detail.

Distributed fog-based nodes are designed to manage training parameters exchanged

among all the parties in our system. A distant computation center infrastructure might

not perform well for a near-real-time interactive system such as a recommender for on-

the-move EVs. Shifting to the fogs is one possible solution to increase an end-to-end

response time by locally processing the parameters at the edge of the network within the

geographical location of EVs [28]. Flexible high-performance fogs can reduce traffic and

computing loads on the central server since they are provided with storage and processors

to aggregate and analyze localized training models.

Let C̄ = {C1,C2,CP} be the set of fogs that perform the decentralized local model

aggregation task in our recommender system. As the fogs are responsible for parame-

ter exchanging between entities, blockchain can help enhance the fog network reliability

by recording and sharing the list of only validated nodes via a distributed ledger. The

blockchain can create a secure network consisting of only trusted data aggregators. It

facilitates tracking the security of our distributed scalable network of fogs [81] By doing

so, the authenticity of an aggregator node Cp ∈ C within the set of fogs is proven, and

no misleading user can alternate the network to steal or tamper the data. Integrating

the blockchain into the proposed recommendation system assures the data providers (i.e.,

FCSs, MCSs, EVs) to connect to a tamper-proof network of distributed fog nodes. Be-

low is the overall operation of the blockchain-based fogs (fogChain), implemented in the

proposed system model.

1. Requests for adding a new fog node Cnew to the blockchain are submitted by gen-

erating a new transaction TX from a cloud Service Provider (SP) in a new area,

which includes the actual transaction information and the hashed value hash(TX).

128



When Cnew wants to be registered as a new fog node in the recommender system, it

generates a TX using its public (PBK) and private (PK) keys, Figure 6.1. All the

transactions are first entered into the transaction pool (mempool) to be validated by

the blockchain network.

Figure 6.1: New transaction generation by a new fog node.

2. We defined tpool as the waiting time for initiating the block-mining process by the

blockchain miners. After tpool period, a miner node Cminer, which is one of the

fog nodes, is selected randomly to validate, verify, and authenticate the TX. In our

system, one Cminer is picked randomly to avoid forking (as there is always a possibility

of generating the same block by different miners) and to prevent delays in the near-

real-time system performance. Then Cminer picks available transaction(s) from the

mempool and place them into a block bready. There might be one or maximum T

number of transactions inside the bready, depending on the scale of our recommender

system. When bready is created, it will be broadcasted to all the other nodes.

3. Cminer starts mining bready using the data stored in the block header, which holds the

previous block’s hash, nonce, and the Merkle tree root hashed value H(TX1...TXj).

This value is the combined hash of all the transactions, and it is calculated using the

following equations.

129



H(TX1 + TX2) = H(hash(TX1) + hash(TX2)),

...

H(TXj−1 + TXj) = H(hash(TXj−1) + hash(TXj)).

(6.1)

Having this iterative process from TXj all the way back to the TX1 confirms the

integrity of the blockchain network.

4. The miner Cminer stops its proof-of-work after the final generated size of the hash

satisfies the target value. The newly generated block bnew is then propagated into

the blockchain system, and Cminer broadcasts an acknowledgment message to all the

other nodes to update their ledger.

The framework of the implemented fogChain recommendation system is provided in

Figure 6.2. As can be seen from this depiction, there are two main parts in this collaborative

learning system, the VFL Model Training and the Secure Communication with fogChain.

Figure 6.2: Proposed model architecture. The VFL-based fogChain framework is used to
establish a decentralized secure communication between parties.
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6.2.1 Implementation of the fogChain Algorithm

The top layer in Figure 6.2 describes the security layer mechanism applied in this work.

Charging services and EVs can connect to the nearby fogs through an Access Point (AP)

to exchange their locally computed parameters with other parties. The fogs communicate

periodically after the period of τperiod to keep themselves updated on charging sources

status and the recently trained global model. While Cp is performing a recommendation

training model, another fog node Cminer has been selected randomly to authenticate the

registration of the new fog by mining the block bready. When a new block has been added to

the ledger, then the information inside the block is available to the fogs, charging sources,

and EVs. The fog nodes responsible for passing the data between parties are irreplaceable

by other fake nodes since all nodes have been authorized and recorded in a transparent

public ledger [111].

Accordingly, the overall procedure of the secure fogChain framework is shown in Algo-

rithm 4 which illustrates the process of generating the secure blockchain-based fog network

C̄ in which the participating fogs are registered and verified via the blockchain. The reg-

istration requests are stored inside the mempool at line 2. Then at tpool, the miner node

(Cminer) generates a new block bready from lines 4 to 8. Cminer verifies bready by mining the

target hash value at line 10. At this time, Cminer adds the newly authorized block bnew to

the ledger by broadcasting the bnew and an ACK message inside C̄ from lines 12 to 16.
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Algorithm 4 : fogChain

Given: miner node Cminer, TX
Output: bnew

1: for each transaction TX do
2: Add TX to mempool
3: end for
4: if timer = tpool then
5: A miner node Cminer is selected randomly
6: Cminer picks TX from mempool
7: Cminer generates block bready
8: end if
9: while hash satisfies do
10: Cminer mines bready
11: end while
12: Cminer creates a new block bnew
13: Cminer broadcasts bnew to the network C̄

14: Cminer sends an ACK message into C̄

15: Updates the public ledger
16: Network size + 1

6.3 Model Evaluation and Results Analysis

In this section, we will showcase the effectiveness of our proposed approach by analyzing

the results of our experiments. Through evaluating our model’s performance, we aim

to offer insights into the outcomes achieved and demonstrate the efficacy of our secure

algorithm.

6.3.1 Datasets

For the purpose of this chapter we conduct the analysis based on 20 FCSs selected from a

real dataset, gathered from Dundee city in Scotland between June and September in 2018,

including FCS id, the history of charged vehicles, cost, longitude, latitude, etc. In this

experiment, 50 EVs data with id, battery capacity, remaining battery, longitude, latitude,
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charging duration, etc., is utilized. Ten fog nodes are located in different positions to cover

fast communication over the geographical area. These fogs are securely recorded inside the

blockchain.

6.3.2 Performance Evaluation

In this section, we assess the effectiveness of our proposed algorithm. By conducting sev-

eral experiments, we analyze various metrics to determine the model’s accuracy, efficiency,

and scalability. The results are then compared based on different scenarios to highlight

improvements and validate the advantages.

Figure 6.3 compares the execution time of the secure recommender system for a different

number of FCSs and EVs. This Figure shows that the system running time increases

linearly as the number of participating parties increases. The process starts with 5 EVs

and 1 FCS, and it is scaled to 50 EVs and 20 FCSs.

Figure 6.3: The secure recommender system execution time with different numbers of EVs
and FCSs.
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As our system is designed to be secure from attackers outside the fog network, preserving

the security of the aggregator nodes is assured while scaling up the network inside the

blockchain. If there is a new registration of a fog node into the network, a miner node

must validate the new transaction to be recorded transparently inside a new block in the

ledger. Therefore, the validation time increases as the number of nodes (fogs) increases.

The security of the fogChain is proved, since the consensus algorithm is determined to

be tamper-proof [112]. However, by increasing the number of fogs, mining a new block’s

execution time also increases.

Figure 6.4 shows the mining execution time to add a new block inside the public ledger.

The results are generated by a modified version of a blockchain network simulator (Hy-

perLedger Fabric) to see the impact of the ledger size on the new block-generating time.

As the miner node Cminer is selected randomly in fogChain, we analyzed the block mining

process within five iterations at each size of the network and recorded the minimum and

maximum execution time in that Figure. When the network size is small, the variance of

recorded mining time is short, and around 22 seconds. By adding more fog nodes to the

network C̄ from 6 to 10, the variance of generating a new block increases too.

Figure 6.4: New block mining execution time by scaling the fogChain from two fog nodes
to ten.
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6.4 Chapter 6 Summary

This chapter aims to design a secure recommendation system for EVs to find the best

charging source. A decentralized fog-edge architecture is employed as aggregators to help

summarize and transmit encrypted training parameters among FCSs and MCSs and EVs,

enabling the selection of the most suitable charging service based on an EV’s requirements,

charging point status, and vehicle status. Replacing centralized units with fog nodes pro-

vides a scalable infrastructure for both private and public EVs within a specific area,

ensuring a flexible and efficient network.

To further enhance the security of the fog-based network, nodes are protected against

malicious users through the integration of blockchain technology. This ensures that no

unauthorized device can enter the chain, as the blockchain-enabled network (fogChain) is

tamper-proof and transparent to all other blocks (fog nodes). Consequently, this architec-

ture not only secures data transmission and storage but also maintains the integrity and

reliability of the network. By leveraging these advanced technologies, our system offers a

robust, scalable, and secure solution for EV charging infrastructure.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In recent years, the promotion of EVs by various governments has aimed to reduce carbon

emissions and improve air quality. However, this shift has introduced significant challenges,

particularly the imbalance between electricity demand and energy production, especially

during peak hours. Addressing these energy congestion issues is crucial for achieving net-

zero emission goals and increasing the public’s adoption of EVs. Another key challenge

is the mismatch between the number of charging facilities and the locations where EVs

need to charge. Given the substantial time and financial investments required to expand

EV charging infrastructure, researchers are exploring practical solutions to mitigate range

anxiety for EV owners.

Effectively managing EV energy consumption and demand, optimally scheduling charg-

ing times, and accurately locating ideal charging sources can significantly alleviate pressure

on smart grids. To enhance the performance and applicability of these solutions, an in-

depth analysis of EV driving behavior and energy consumption patterns is essential. By

identifying the most impactful factors, optimal demand-side energy scheduling can be im-

plemented to systematically control energy loads and reduce peak demands. Proposing

effective EV charging strategies requires an intensive analysis of behavioral characteristics

to accurately predict charging loads and identify the best charging stations for EVs in
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need.

An accurate charging service recommendation system must aggregate parameters from

various entities, including EVs, charging sources, power distributors, and producers, to

provide comprehensive energy scheduling, demand estimation, and charging source recom-

mendations. However, increasing data security and privacy protection requirements limit

the sharing of data between different entities and institutions. To overcome this, a rec-

ommendation system must ensure user data privacy. FL offers a promising solution by

enabling cross-platform joint data analysis without data leaving its original platform. This

approach only requires the sharing of locally trained parameters, which are aggregated and

updated centrally before being distributed back to participating platforms.

While centralized aggregators in an FL-based energy management system can intro-

duce a single point of failure, replacing them with decentralized fog nodes enhances perfor-

mance by reducing communication delays and ensuring constant availability. Integrating

blockchain technology further secures the fog-based network by preventing unauthorized

access and ensuring transparent and tamper-proof monitoring of activities.

In conclusion, this thesis aims to develop a comprehensive intelligent secure recom-

mendation system for EVs. The system will analyze behavioral factors affecting energy

consumption, optimize a secure decentralized charging scheduling mechanism, and design

an accurate user-centric distributed charging source selection algorithm while ensuring data

security and privacy. Additionally, a lightweight blockchain-based security layer is added

to the model. This approach leverages a decentralized fog architecture and FL to provide a

scalable, efficient, and secure solution for managing EV energy consumption and charging

infrastructure.

The following section summarizes our plan for future work to further enhance the

proposed system.
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7.2 Future Research Directions

While this thesis presents a comprehensive and secure recommendation system for EVs,

several areas require further investigation to enhance and expand the proposed solutions.

Future research could focus on the following directions:

• Recommendation System Performance: We plan to further explore the poten-

tial scalability of the system to larger EV networks and discuss the potential impact

of different user preferences on the recommendation outcomes. Also, to compare

MCS service performance to other research, in terms of economic factors, and differ-

ent pricing models. In this regard, further research on scenarios could be done where

a MCS might incur losses or negative utilities. Moreover, additional in-depth analysis

of Autonomous MCSs that rely on batteries rather than ICEs for their operations

could be performed.

• Integration with Renewable Energy Sources: Further studies could examine

the integration of renewable energy sources, such as solar and wind power, into

the charging infrastructure. This would involve developing algorithms to predict

renewable energy availability and optimize EV charging schedules accordingly.

• Enhanced FL Techniques: Improving FL techniques to handle more complex

data scenarios and increase the robustness of the learning process is essential. This

includes developing methods to handle heterogeneous data and ensuring scalability

as the number of participating entities grows.

• Cybersecurity Measures: Strengthening cybersecurity measures to protect against

emerging threats in EV charging networks is vital. Future research could develop

advanced encryption techniques and intrusion detection systems to safeguard data

privacy and network integrity.

• Advanced Behavioral Analysis: A deeper more advanced analysis of EV driver

behavior using machine learning and big data analytics could yield more accurate
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predictions of energy consumption patterns. Future research could focus on person-

alizing recommendations based on individual driving habits and preferences.

• Blockchain Scalability and Efficiency: Addressing the scalability and efficiency

challenges of blockchain technology is crucial. Future work could explore lightweight

consensus algorithms and sidechain technologies to reduce the time needed for mining

and verifying transactions within the fog network.

• Advanced Communication Technologies: Investigating the role of advanced

communication technologies, such as 6G and beyond networks, in enhancing the

performance of EV charging systems is crucial. Future research could explore how

ultra-fast, low-latency communication can improve near-real-time data exchange and

coordination between EVs, charging stations, and the grid.

By addressing these future research directions, the potential of intelligent and secure

EV charging systems can be fully realized, providing the way for more sustainable and

efficient transportation solutions.
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Södersten. A battery electric bus energy consumption model for strategic purposes:

Validation of a proposed model structure with data from bus fleets in china and

norway. Transportation Research Part D: Transport and Environment, 94:102804,

2021. 58

[99] Geunseob Oh, David J. Leblanc, and Huei Peng. Vehicle energy dataset (ved), a

large-scale dataset for vehicle energy consumption research. IEEE Transactions on

Intelligent Transportation Systems, 23(4):3302–3312, 2022. 58

[100] D3 2013 nissan leaf sv. https://www.anl.gov/taps/d3-2013-nissan-leaf-sv.

Accessed: 2023-12-08. 59

[101] Virta.global. Ev charging - how much electricity does an elec-

tric car use? Available online: https://www.virta.global/blog/

ev-charging-101-how-much-electricity-does-an-electric-car-use. Ac-

cessed on 12 2023. 88

152

https://www.anl.gov/taps/d3-2013-nissan-leaf-sv
https://www.virta.global/blog/ev-charging-101-how-much-electricity-does-an-electric-car-use
https://www.virta.global/blog/ev-charging-101-how-much-electricity-does-an-electric-car-use


[102] Zeinab Teimoori, Abdulsalam Yassine, and M Shamim Hossain. A secure cloudlet-

based charging station recommendation for electric vehicles empowered by federated

learning. IEEE Transactions on Industrial Informatics, 2022. 89

[103] Geunseob Oh, David J Leblanc, and Huei Peng. Vehicle energy dataset (ved), a

large-scale dataset for vehicle energy consumption research. IEEE Transactions on

Intelligent Transportation Systems, 23(4):3302–3312, 2020. 95, 116

[104] Jia-Hao Syu, Jerry Chun-Wei Lin, Gautam Srivastava, and Keping Yu. A com-

prehensive survey on artificial intelligence empowered edge computing on consumer

electronics. IEEE Transactions on Consumer Electronics, 69(4):1023–1034, 2023.

107

[105] Preeti Rani, Chandani Sharma, Janjhyam Venkata Naga Ramesh, Sonia Verma,

Rohit Sharma, Ahmed Alkhayyat, and Sachin Kumar. Federated learning-based

misbehaviour detection for the 5g-enabled internet of vehicles. IEEE Transactions

on Consumer Electronics, pages 1–1, 2023. 112

[106] Mohammad Kamrul Hasan, Nusrat Jahan, Mohd Zakree Ahmad Nazri, Shayla Is-

lam, Muhammad Attique Khan, Ahmed Ibrahim Alzahrani, Nasser Alalwan, and

Yunyoung Nam. Federated learning for computational offloading and resource man-

agement of vehicular edge computing in 6g-v2x network. IEEE Transactions on

Consumer Electronics, pages 1–1, 2024. 112

[107] Hafsa Bousbiat, Roumaysa Bousselidj, Yassine Himeur, Abbes Amira, Faycal Ben-

saali, Fodil Fadli, Wathiq Mansoor, and Wilfried Elmenreich. Crossing roads of

federated learning and smart grids: Overview, challenges, and perspectives. arXiv

preprint arXiv:2304.08602, 2023. 112

[108] Xinran Zhang, Zheng Chang, Tao Hu, Weilong Chen, Xin Zhang, and Geyong Min.

Vehicle selection and resource allocation for federated learning-assisted vehicular net-

work. IEEE Transactions on Mobile Computing, 2023. 112

153



[109] DestinationOntario.com. Rules of the road. https://www.destinationontario.com/en-

ca/travel-resources/rules-of-the-road#: :text=Speed125

[110] EnergyRates.ca. How much does it cost to charge an electric car? the true costs of

powering an ev. https://energyrates.ca/how-much-does-it-cost-to-charge-an-electric-

car-the-true-costs-of-powering-an-ev/#: :text=Let’s125

[111] Hemant Ghayvat et al. Cp-bdhca: Blockchain-based confidentiality-privacy pre-

serving big data scheme for healthcare clouds and applications. IEEE Journal of

Biomedical and Health Informatics, 2021. 131

[112] Hassan Mansur Hussien, Sharifah Md Yasin, Nur Izura Udzir, and Mohd Izuan Hafez

Ninggal. Blockchain-based access control scheme for secure shared personal health

records over decentralised storage. Sensors, 21(7):2462, 2021. 134

154


	Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	Motivations
	Objectives
	Methodology
	Contributions
	Thesis Organization
	List of Publications
	Journal Papers
	Conference Papers


	Background and Related Work
	Introduction to Chapter 2
	Thesis Background
	Role of Internet of Things in Electric Vehicles
	Deep Transfer Learning
	Mobile Charging Stations
	Data Security in Electric Vehicles IoT Network
	Federated Learning
	Blockchain


	Related Work
	Electric Vehicle Behavioral Analysis
	Electric Vehicle Charging Source Selection
	Fixed Charging Stations
	Mobile Charging Stations

	Mobile Charging Station Performance Optimization

	Chapter 2 Summary

	Deep Transfer Learning for Detecting Electric Vehicles Highly Correlated Energy Consumption Parameters
	Introduction to Chapter 3 
	System Model and Problem Formulation
	Data Normalization
	Training Source and Target Models
	Facilitating Domain Adaptation and Transfer Learning
	Implementation of the BiLSTM-DTL Algorithm

	Model Evaluation and Results Analysis
	Datasets
	Results and Analysis
	Experimental Setup
	Hyperparameters Fine-Tuning
	Performance Evaluation

	Chapter 3 Summary

	Smart Vehicles Recommendation System for Artificial Intelligence-enabled Communication
	Introduction to Chapter 4
	System Model and Problem Formulation
	Intelligent User-centric Recommendation
	Secure Data Sharing with Federated Learning
	Implementation of the Secure Intelligent Recommendation Algorithm

	Model Evaluation and Results Analysis
	Datasets
	Results and Analysis
	Experimental Setup
	Performance Evaluation

	Chapter 4 Summary

	Empowering Consumer Electric Vehicle Mobile Charging Services with Secure Profit Optimization
	Introduction to Chapter 5
	System Model and Problem Formulation
	Implementation of the Secure Profit Optimization Algorithm

	Model Evaluation and Results Analysis
	Datasets
	Experimental Setup
	Performance Evaluation

	Chapter 5 Summary

	Blockchain and Federated Learning for Electric Vehicle Charging Station Recommendation
	Introduction to Chapter 6
	System Model and Problem Formulation
	Implementation of the fogChain Algorithm

	Model Evaluation and Results Analysis
	Datasets
	Performance Evaluation

	Chapter 6 Summary

	Conclusions and Future Research
	Conclusions
	Future Research Directions

	References

