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ABSTRACT   

Keywords: Forest Volume Estimation, Remotely Piloted Aircraft System (RPAS), Ground 

survey, LiDAR, STEMS, Bill of Lading (BOL)  

Accurate volume estimations are pivotal for effective forest resource management, 

influencing stakeholders throughout the forestry industry. Traditionally, estimations relied on 

stem diameter measurements and geometric assumptions. However, advancements in remote 

sensing have revolutionized volume calculations, offering new possibilities for precision and 

efficiency. This thesis delves into volume estimations within the Romeo Mallette Forest of 

Northeastern Ontario’s Boreal Forest, employing a multifaceted approach that includes ground 

surveys, Ontario Forest Resource Inventory (FRI) data, and Remotely Piloted Aircraft System 

(RPAS)-based remote sensing. The objectives encompass evaluating the accuracy of FRI data, 

assessing ground surveys' precision, investigating RPAS. Additionally, the study aims to leverage 

FPInnovations' Single Tree Metrics and Stand assessment (STEMS), a pre-harvest inventory tool 

that utilizes consumer-grade RGB imagery from an RPAS, and to scrutinize the variance between 

estimated volumes and actual mill volumes. The study meticulously evaluates the efficacy of the 

STEMS algorithm against ground surveys and FRI merchantable volume estimates, utilizing the 

final Bill of Lading (BOL) as the control measurement. Remarkably, the initial RPAS flight path, 

harnessing STEMS technology, emerged as the most precise in estimating merchantable volume, 

yielding 129 m3/ha compared to the final BOL measurement of 122 m3/ha. In contrast, ground 

surveys anticipated 134 m3/ha, while the FRI data was the only underestimation at 106 m3/ha. 

This singular study underscores the potential of STEMS in accurately estimating merchantable 

volumes in forestry, signaling a significant advancement in volume estimation methodologies. 
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INTRODUCTION 

The sustainable management of forest resources is imperative for the forestry industry, 

with accurate measurements of round wood volumes serving as a cornerstone for effective 

decision-making. These measurements hold significant implications for various stakeholders 

within the forest ecosystem, including forest managers, owners, harvesting companies, haulers, 

private purchasers, and processors (Moskalik et al., 2022). Traditionally, estimating the volume 

of trees in forestry has relied on stem diameter measurements and geometric assumptions, often 

supplemented with conversion factors to calculate volume and load weight (Moskalik et al., 

2022; An & Froese, 2023). However, advancements in technology, particularly in the realm of 

remote sensing, have introduced new avenues for achieving highly detailed spatial data about 

forested landscapes. 

Technological innovations, such as RPAS-based remote sensing and Light Detection and 

Ranging (LiDAR), offer unprecedented opportunities to enhance the accuracy and efficiency of 

volume estimations in forestry operations (An & Froese, 2023). These technologies provide 

comprehensive insights into the physical surface of objects like trees, facilitating more precise 

volume calculations compared to traditional methods. In particular, the utilization of LiDAR and 

RPAS-based techniques has gained prominence due to their ability to deliver quick and detailed 

assessments of forested areas, thereby mitigating the need for labor-intensive ground surveys, 

especially in challenging terrain. 

The importance of accurate volume estimations is underscored by their pivotal role in the 

forestry industry, particularly in the context of establishing Annual Work Schedules (AWS). 

Forest managers are tasked with determining the required quantities of wood from mills, 

necessitating precise estimations to identify specific forest blocks that can fulfill these demands 
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effectively. Failure to achieve accurate estimations can lead to disruptions in supply chains, 

impacting both forest management practices and industrial processes. 

Against this backdrop, this thesis aims to investigate the accuracy of various methods of 

volume estimations in a specific forest unit, the Romeo Mallette Forest in Northeastern Ontario. 

Leveraging publicly available Forest Resource Inventory (FRI) data, ground surveys, and RPAS-

based remote sensing techniques, this study seeks to evaluate the effectiveness of different 

approaches in estimating tree volumes. Furthermore, it endeavors to analyze the variance 

between these estimations and the volumes documented in the final Bill of Lading (BOL) 

provided by the mill, thereby contributing to the discourse on optimizing volume estimation 

methodologies in forestry operations. 

The primary objective of this study is to determine the accuracy of volume estimations using 

various methods, including ground surveys, FRI’s data, and a simple RPAS-based remote sensing 

technique, in the Romeo Mallette Forest in northeastern Ontario’s boreal forest. Specifically, the 

objectives are as follows: 

1) Evaluate the accuracy of FRI data in estimating tree volumes within the forest unit. 

2) Assess the accuracy of ground surveys, encompassing measurements of mortality, 

defects, height, and diameter at breast height (DBH), in estimating tree volumes. 

3) Investigate the accuracy of FPInnovations' proprietary single-tree-based image 

processing algorithm (STEMS) in calculating volume based on images acquired from the 

RPAS. 

4) Analyze the degree of variance between volume estimations obtained through different 

methods and the volumes documented in the final BOL provided by the mill. 
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Through these objectives, this study aims to contribute valuable insights into the accuracy 

and efficacy of various volume estimation techniques, thereby informing forest management 

practices and enhancing operational efficiency in the forestry industry. 

We hypothesize that the ground surveys will exhibit the highest overall accuracy in 

volume estimation when compared to other methods, including FRI data, and RPAS imagery 

with the incorporation of FPInnovations' STEMS algorithm. This expectation is grounded in the 

assumption that ground surveys, despite their labor-intensive nature, provide direct and detailed 

measurements of key parameters such as mortality, defects, and precise height, and DBH 

measurements which are crucial for accurate volume calculations. 

Although RPAS technology provides rapid and extensive aerial coverage, extracting 

detailed inventory information from RPAS imagery may pose challenges for STEMS volume 

estimations. Furthermore, the utilization of FRI data, raises concerns due to the absence of 

Ontario’s newest term 2 enhanced FRI (T2 eFRI) program which utilizes an advanced LiDAR 

systems to derive volume estimates. Additionally, potential limitations associated with image 

processing algorithms, especially when applied to data obtained from a consumer-grade RPAS, 

must be considered. 

Overall, we hypothesize that ground surveys will demonstrate the highest degree of 

accuracy in estimating tree volumes within the Romeo Mallette Forest, the FRI data, then 

STEMS estimate derived from the RPAS imagery. These hypotheses will be empirically tested 

and analyzed to provide insights into the effectiveness of different volume estimation methods in 

the context of forestry operations. 
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LITERATURE REVIEW 

History of volume estimations 

Volume estimations have played a pivotal role in Canadian forestry practices since the 

late 19th century. With the acquisition of forestlands through crown grants in 1858 and the 

subsequent granting of timber rights between 1865-1907 via leases and licenses, the need to 

identify prime stands containing significant volume became imperative (Parminter, 2000). This 

period marked the emergence of timber cruising, initially conceived to stake timber claims and 

facilitate the sale of rights to local mill owners (Parminter, 2000). However, during this era, 

volume calculations were fraught with speculation due to limited available information, resulting 

in heavy reliance on guesswork (Parminter, 2000). 

In response to the challenges posed by speculative estimations, British Columbia 

established the Department of Forest, headed by a Chief Forester, to oversee forest inventory 

activities (Parminter, 2000). A first in Canadian history. The Chief Forester was tasked with 

developing a comprehensive program to inspect, survey, cruise, and evaluate forest lands within 

the province, reflecting a recognition of the critical need for accurate forest inventory 

information (Parminter, 2000). During this period, skilled timber cruisers emerged as key figures 

capable of generating detailed reports describing available harvest volume, species breakdown, 

expected timber quality, and development prospects (Parminter, 2000). 

These historical developments laid the foundation for the traditional methods still 

employed in forestry today. Despite advancements in technology and methodologies, the 

fundamental principles of accurate volume estimation established during this era continue to 

inform contemporary forest management practices.  
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Traditional Methods  

Traditional ground surveys, often termed timber cruises, utilize various sampling 

techniques to gather precise inventory data. Among these, fixed-area plots (FAPs) and prism 

cruising stand out as prominent methods (Keene & Barlow, 2019). 

FAPs, including fixed-radius plots, systematically count and record trees within a 

consistent spatial area, ensuring reliable estimations of the overall tree population (Packard & 

Radtke, 2007). These plots offer statistical and operational advantages, particularly in estimating 

total tree numbers (Packard & Barlow, 2007). Unlike Variable Radius Plots (VRPs), which are 

adept at estimating stand basal area and volume, fixed-radius plots simplify tree tallying, 

ensuring equal probability of inclusion (Packard & Radtke, 2007). 

Prism cruising involves using wedge prisms to identify and tally "in" trees whose 

refracted section overlaps the non-refracted portion of the main bole (Keene & Barlow, 2019). 

This method, when multiplied by the basal area factor (BAF) of the prism used during the plot, 

provides estimates of stand basal area and volume (Keene & Barlow, 2019). 

However, traditional ground techniques face challenges in accurately capturing the 

complex variation in log shapes, sizes, and defects, especially in forests with diverse log lengths 

(Li et al., 2015). Fixed taper equations, commonly used in traditional methods, may lack 

precision, and their reliance on DBH and height relationships can lead to less accurate estimates 

(Li et al., 2015). 

Moreover, traditional methods are labor-intensive, time-consuming, and prone to large 

errors, particularly in commercial volume estimates (Dassot et al., 2011). To improve volume 

estimation accuracy, various formulae such as Smalian, Bruce, Huber, and Newton are 
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commonly used (Li et al., 2015). Each formula has distinct characteristics and limitations, with 

Smalians tendency to overestimate volume due to its assumption of a paraboloid log shape being 

noteworthy (Li et al., 2015). 

Formulae for calculating volumes 

Once the critical data has been collected from a traditional ground survey, a formula to 

calculate the volume will have to be selected. The most commonly used formulae for estimating 

merchantable volume include Smalian, Bruce, Huber, Newton, and Conical each offering distinct 

characteristics and limitations (Li et al., 2015). 

 Smalian's formula tends to overestimate volume due to its assumption of a paraboloid 

log shape (Li et al., 2015). Bruce's butt log formula, a modification of Smalian's, adjusts weights 

in the large-end-diameter (LED) and small-end-diameter (SED) to account for changes in the 

butt portion (Li et al., 2015). Huber's formula assumes that the average cross-sectional area of 

the tree is at the midsection, which may not hold true for every tree (Li et al., 2015). Newton's 

formula is considered the most accurate but requires measurements of LED, SED, and mid-

length diameter (MED) (Li et al., 2015). Despite its tendency to overestimate volume, Smalian's 

formula remains widely used (Li et al., 2015). 

Alternatively, the conical formula offers a simpler approach, particularly useful when less 

data is available. However, choosing the appropriate formula can be complex, as it requires 

consideration of factors such as log shape, data availability, and desired accuracy. 

The complexity of selecting proper volume calculation methods underscores the need for 

improved techniques in forestry inventory. Remote sensing, for instance, can provide valuable 

insights by predicting volumes through analysis of aerial or satellite imagery. These advanced 



15 
 
 

techniques offer the potential to enhance accuracy, efficiency, and sustainability in forest 

management practices, thereby mitigating the limitations associated with traditional ground-

based methods. 

Remote sensing  

Remote sensing was a technology developed around 1960 taking aerial image a step 

further by utilizing methods and technologies for sensing the earths surface (Moore, 2009). 

Remotes sensing techniques harness electromagnetic energy to measure the physical properties 

of distant objects, mixing both traditional photography with more advanced methods of utilizing 

various parts of the electromagnetic spectrum (Moore, 2009).  

The historical origins of remote sensing backed to photography, with subsequent 

developments tied to World War II, where the emergence of radar, sonar, and thermal infrared 

detection systems came to popularity (Moore, 2009). Remotes sensing has become a 

fundamental tool internationally, with applications spanning from groundwater exploration, 

mapping snowfields, delineating flood areas, and calculating inventories of natural resources 

(Moore, 2009).  

The most notable advantage to remote sensing technologies is the ability to collect data at 

a relatively cheap cost (Moore, 2009). These tools became even more valuable when 

incorporated with and aerial object like a plane, satellites and now RPAS (Moore, 2009).  

Aerial imagery emerged in 1858, thanks to a French balloonist Gaspard-Felix 

Tournachon, and it involved using balloons and kites to capture images from elevated 

perspectives (Kraetzig, 2020). Over time the process evolved into capturing images from an 

airborne platform, such as a RPAS or plane (Kraetzig, 2020). Natural resource management has 
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long depended on the use of aerial imagery, as it’s been a critical tool for FRI in Ontario, as well 

as being used for monitoring and assessing resources (Hall, 2003).  

These images serve as a valuable resource, commonly employed for manual delineation 

and various other applications (Hall, 2003).  Aerial imagery doesn’t require the costly scanning 

required to function remote sensing systems, making them more efficient for mass landscape 

analysis as aerial imagery continues to excel in terms of spatial resolution, data storage and 

hardcopy output capabilities (Hall, 2003). 

Requirements for photogrammetry algorithm to produce accurate estimates 

 To ensure the accuracy and reliability of forest inventory estimates, photogrammetry 

algorithms must meet several key requirements. Firstly, high-quality imagery is essential, with 

images needing to be of sufficient resolution and clarity to enable precise measurements of tree 

dimensions and structures (Mulverhill et al., 2019). Additionally, there should be adequate image 

coverage to capture the entire tree canopy and stem from multiple angles, minimizing occlusions 

and ensuring comprehensive data acquisition (Mulverhill et al., 2019). Incorporating known 

scale references, such as fixed scale bars within the image frame, is crucial for accurately scaling 

the resulting point clouds (Mulverhill et al., 2019).   

These references provide a means of calibrating the photogrammetric reconstruction, 

enabling precise measurements of tree dimensions (Mulverhill et al., 2019). Moreover, 

photogrammetry algorithms should be optimized to handle the complexities of forest 

environments, including variations in lighting conditions, occlusions, and irregular tree shapes 

(Mulverhill et al., 2019). Advanced algorithms capable of robust feature detection, point cloud 
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generation, and geometric modeling are necessary for accurate tree dimension estimation 

(Mulverhill et al., 2019). 

Validation and calibration procedures are essential to assess the accuracy and reliability 

of photogrammetry algorithms. Validation involves comparing algorithm outputs with ground-

truth measurements to ensure accuracy, while calibration procedures refine algorithm parameters 

for specific forest conditions and tree species (Mulverhill et al., 2019). Cost-effectiveness and 

accessibility are also crucial considerations, with photogrammetry algorithms needing to utilize 

affordable hardware and software solutions to enable widespread adoption by forest managers, 

researchers, and practitioners (Mulverhill et al., 2019). By meeting these requirements, 

photogrammetry algorithms can provide accurate and efficient means of estimating forest 

inventory parameters.  

Ontario Forest Resource Inventory (FRI) 

Ontario’s FRI program, established in 1946, represents a pioneering effort aimed at 

meticulously identifying and mapping forest stands across the province (MNR, 2023). Initiated 

by the Ministry of Natural Resources (MNR), this comprehensive endeavor has been pivotal in 

gathering crucial data pertaining to the composition, distribution, and age structure of Ontario's 

diverse forest ecosystems (MNR, 2023). 

Initially launched with a 20-year cycle, the FRI program evolved over time, driven by 

advancing technological capabilities and evolving resource management needs (MNR, 2023). 

Subsequently, the inventory cycle was halved to a more frequent 10-year interval, allowing for 

more timely and accurate assessments of Ontario's forest resources (MNR, 2023). 
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Covering over 555,000 square kilometers of forest and wetland areas, Ontario's FRI holds 

significant legal importance under the Crown Forest Sustainability Act (1994) (MNR, 2023). It 

serves as a cornerstone for informed resource management and land use decision-making 

processes, ensuring sustainable utilization of forest resources (MNR, 2023). 

Traditionally reliant on a combination of field surveys and aerial photo-imagery, the FRI 

has embraced technological advancements to enhance precision and efficiency. Presently, 

advanced technologies such as Single-Photon LiDAR and optical imagery are employed for 

comprehensive assessments (MNR, 2023). This involves sophisticated data processing to 

generate terrain and canopy models, followed by rigorous quality assessment procedures (MNR, 

2023). 

The FRI provides invaluable information on tree species composition, height, age, and 

density, facilitating informed resource management decisions and sustainable land use practices 

(MNR, 2023). These data sets not only support provincial mandates but also meet federal and 

international reporting requirements, underscoring their significance on multiple levels (MNR, 

2023). 

Every 10 years, the Ministry of Natural Resources creates a new forest management plan, 

wherein updated inventory data from the FRI plays a crucial role (MNR, 2023). Compliance with 

the Crown Forest Sustainability Act (1994) mandates adherence to the requirements outlined in 

the Act, ensuring responsible forest management practices (MNR, 2023). 

The FRI continuously undergoes refinement and enhancement through consultations and 

product development efforts. Draft FRI Packaged Product data sets are provided for consultation 

and product development purposes, with attributes and algorithms subject to evolution over time 
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(MNR, 2023).  A final version of the FRI structure and content will be made available after the 

requisite consultations are complete (MNR, 2023).  

To enhance accessibility and utility, the FRI data sets are now available through a web 

service, facilitating visualization and geoprocessing. This expanded accessibility ensures broader 

engagement and utilization of the invaluable data resources provided by Ontario's Forest 

Resource Inventory program (MNR, 2023). 

Light Detection and Ranging (LiDAR)  

LiDAR, the optical counterpart of radar, operating off the principle of emitting 

electromagnetic pulses towards objects, and measuring the time it takes for pulses to return, 

allowing for precise distance calculations (Moore, 2009; Bogue, 2022). LiDAR systems 

composed of an infrared (IR) laser source and a silicone avalanche photodiode detector, in 

combination the system scans the laser beam in two dimensions, LiDAR then generates a point-

cloud into 3D imagery (Bogue, 2022).  

LiDAR is an active remote sensing system, that generates its own energy, specifically 

light, to measure objects on the ground (Wasser, 2023). It works by emitting laser lights that 

travel to the ground and reflects off surfaces like buildings and tree branches (Wasser, 2023). The 

reflected light returns to the LiDAR sensor, where it's then recorded (Wasser, 2023).  

The system calculates the time taken for the emitted light to travel to the ground and 

back, using this information to determine distance and subsequently convert it into elevation 

(Wasser, 2023). Key components include a GPS for location identification and an Inertial 

Measurement Unit (IMU) for determining the plane's orientation in the sky (Wasser, 2023).  
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For the context of forest management in Ontario, LiDAR technology is being introduced 

as a significant advancement in the forest inventory process (Bilyk et al., 2020) The 

implementation of Term 2 eFRI (T2 eFRI) in 2018 marked a historic shift, as it represents the 

most substantial change in forest inventory in Ontario since the inception of aerial photography 

in 1926 (Bilyk et al., 2020).  

This innovative approach utilizes SPL across all the Sustainable Forest Licenses (SFLs) 

in Ontario (Bilyk et al., 2020). This technique differs from conventional LiDAR, as SPL employs 

a single pulse split into 100 beamlets, enabling more efficient coverage of larger areas (Bilyk et 

al., 2020). Additionally, SPL uses the green portion of the electromagnetic spectrum, providing 

advantages such as potential assessment of near-shoreline riparian areas. LiDAR systems record 

the return of light energy in two ways, Discrete Return LiDAR records individual points for 

peaks in the waveform curve, known as returns (Wasser, 2023).  

It typically records 1-4 returns per laser pulse. Full Waveform LiDAR, on the other hand, 

captures a distribution of returned light energy, offering more complex data but potentially 

capturing more information (Wasser, 2023). Comparison LiDAR data, whether in discrete or full 

waveform, are commonly stored as LiDAR point clouds in .las format, supported by ASPRS 

(Wasser, 2023). Another format, .laz, is a compressed version of .las, developed by Martin 

Isenberg (Wasser 2023).  

LiDAR data attributes vary based on the collection and processing methods. Each point 

has X, Y, and Z values. Intensity represents recorded light energy, classification, an additional 

step, categorizes points based on the reflected object type, such as "vegetation" for trees or 

"ground" for terrain (Wasser, 2023). Some datasets classify as "ground/non-ground" or specify 



21 
 
 

infrastructure reflections, while others categorize vegetation types (Wasser, 2023). 

Understanding these attributes is an important factor for utilizing LiDAR data.  

Challenges to LiDAR volume estimates 

LiDAR technology has become indispensable in forest inventory and canopy 

characterization (Dassot et al., 2011). However, its effectiveness hinges upon careful 

consideration of measurement patterns and device specifications aligned with study objectives 

(Dassot et al., 2011). Commercially available LiDAR sensors typically have a small footprint 

characterized by small diameter beams, which can pose challenges in capturing the tops of trees 

(Suarez et al., 2005). This limitation can impact the reconstruction of a three-dimensional tree 

canopy structure, 19 necessitating adjustments in measurement density to achieve accurate 

estimations (Suarez et al., 2005). Spatial resolution requirements for accurately retrieving the 

morphology of individual trees are suggested to be around 10 cm (Suarez et al. 2005).  

Furthermore, Airborne Laser Scanning (ALS) provides pointwise sampling rather than 

full area coverage, necessitating interpolation of laser data for conversion to an image. However, 

the gridding process introduces errors into the tree canopy model (TCM) due to interpolation 

method and grid spacing choices, influencing canopy dimensions and tree height estimates 

(Suarez et al. 2005; White et al., 2014). Accurate estimation of TCM dimensions relies on a good 

approximation of the ground cover beneath the canopy. In small-footprint LiDAR systems, only 

the gaps in canopy cover allow laser shots to reach the ground, requiring spatial interpolation 

techniques for terrain modeling (Suarez et al., 2005). 

 Similar to other remote sensing approaches weather conditions also pose significant 

limitations, as adverse weather like heavy rain, fog, and low hanging clouds can affect LiDAR 
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pulses due to refraction, while direct sunlight can cause data acquisition failures, especially in 

infra-red sensors (Suarez et al., 2005; Guo et al., 2022; Malta et al., 2023). Vegetation density 

also impacts LiDAR pulse penetration, potentially hindering accurate ground readings (Suarez et 

al., 2005; Arkin et al., 2021).  

Moreover, ALS often intercepts a substantial number of LiDAR returns, limiting the 

amount of information obtained, particularly regarding understorey vegetation, and hindering a 

comprehensive depiction of forest state (Suarez et al., 2005; Arkin et al., 2021). Cost is another 

significant challenge, as LiDAR acquisition and processing expenses can be considerable.  

Equipment costs, licensing fees, and human resources add to the financial burden, 

making widespread adoption challenging (Tassel, 2021; Arkin et al., 2023). Additionally, data 

storage and processing generate large amounts of high-resolution point clouds, requiring 

specialized knowledge and skills, which can be a barrier for individuals without expertise 

(Suarez et al., 2005; Arkin et al., 2021; Malta et al., 2023).  

Ability to capture 3D  

LiDAR technology operates by transmitting and receiving up to 500,000 pulses of laser 

light per second, providing an exceptional level of detail for creating high-resolution 3D 

depictions of forests (Wulder et al., 2012). Through this rapid pulse rate, LiDAR captures 

reflective objects with precision, enabling the generation of detailed maps that vividly represent 

the three-dimensional structure of the forest environment (Wulder et al., 2012).  

Forest structure and wood fibre attributes can also be depicted in the 3D imagery 

allowing for various wood fiber properties like wood density and fibre dimensions to be 

identified (Wulder et al., 2012). This information on fiber quality adds a new dimension to the 
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current Forest Resource Inventory, which already consists of various tree and landform attributes 

(Wulder et al., 2012). Furthermore, the emitted light pulses can penetrate the tree canopy through 

gaps, allowing for both vertical and horizontal forest structure (Guo et al. 2022). Allowing for 

direct measurements of various forest structures. 

LiDAR outperforms other remote sensing systems in predicting forest structural 

attributes, with high sampling density, which enables a three-dimensional analysis, and 

facilitating the detection of individual tree crowns and their dimensions (Suarez et al., 2005). 

Researchers have successfully estimated stem diameters and retrieved vertical forest canopy and 

understory vegetation structures using LiDAR data (Suarez et al., 2005). Techniques like canopy-

based quantiles have been employed to estimate mean tree heights at the stand level, providing 

valuable insights into stand parameters such as mean height, canopy depth, or leaf area index 

(LAI) (Suarez et al., 2005).  

Remotely Piloted Aircraft Systems (RPAS)  

Over the past decade, the integration of RPAS with machine learning techniques has 

gained significant traction in the forestry sector (Eugenio et al., 2021). Eugenio et al. (2021) 

applied a systematic approach to identify relevant scientific articles published between 2000 and 

2019, utilizing databases such as Web of Science (WoS) and Scopus (Eugenio et al., 2021). 

Criteria for article selection included relevance to RPAS applications in forest areas, integration 

of machine learning techniques, and availability of data on parameters such as sensor types, 

algorithms used, and application areas (Eugenio et al., 2021).  

Eugenio et al. (2021) reviews a range of machine learning algorithms commonly applied 

in remote sensing for forestry applications, including Random Forest (RF), Neural Networks 
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(NNs), Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (k-NN), and 

Logistic Regression (LR) (Eugenio et al., 2021). Each algorithm has strengths, limitations, and 

typical applications in forestry (Eugenio et al., 2021).  

A total of 57 articles met their selection criteria, indicating a significant increase in 

publications on RPAS applications in forestry from 2017 to 2021 (Eugenio et al., 2021). RF 

emerged as the most frequently used algorithm, followed by NNs and SVM, with RGB sensors 

being the predominant choice for RPAS platforms, followed by multispectral and LiDAR sensors 

(Eugenio et al., 2021).  

Applications of RPAS and machine learning were found to be used in forestry, for the 

purpose of forest inventory and measurement, plant health assessment, ecology, conservation, 

and land use/ land cover analysis (Eugenio et al., 2021). Forest Inventory and Measurement: RF 

is widely utilized for growth rate prediction, biomass estimation, species classification, and 

forest restoration assessment (Eugenio et al., 2021). Plant Health: Machine learning techniques 

aid in early insect attack prediction, severity estimation of damage caused by beetle attacks, and 

canopy cover monitoring (Eugenio et al., 2021).  

Ecology and Conservation: NNs are employed for deforestation monitoring, post-fire 

vegetation loss assessment, and palm tree detection (Eugenio et al., 2021). Land Use and Land 

Cover Patterns: Algorithms like RF are instrumental in urban vegetation classification, tree and 

herbaceous vegetation separation, and gross primary productivity monitoring (Eugenio et al., 

2021). Other Applications: Machine learning algorithms are applied to seedling planting 

inventory, tree stump detection and segmentation, and mounds identification in forest sites 

(Eugenio et al., 2021).  
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Their review identified several challenges in the integration of RPAS and machine 

learning, including high computational costs, segmentation scale determination, spectral 

heterogeneity, and the need for improved model accuracy and real-time detection features 

(Eugenio et al., 2021). Eugenio et al. (2021) states that addressing these challenges and 

leveraging all the opportunities that RPAS presents with machine learning integration will be 

important in advancing forest monitoring and management practices (Eugenio et al., 2021). 

Challenges and Variations in Estimating Timber Volumes 

Estimating timber volumes presents challenges influenced by various factors, as 

highlighted in studies by Keys and McGrath (2002). Existing volume tables, based on tree height 

and diameter at breast height (DBH), may not universally represent geographical and climatic 

variations, leading to inaccuracies in volume measurements. Furthermore, differences in wood 

density among species and the impact of harvesting systems on usable wood volumes add 

complexity to estimation processes (Keys & McGrath, 2002). 

Accurate volume estimations are crucial for informed forest management decisions, 

contributing to harvest forecasts, forest fire fuel load predictions, and assessments of forest 

productivity and carbon storage (GC, 2022). These estimations empower decision-makers with 

comprehensive insights, enabling holistic forest management approaches that balance ecological 

health, economic sustainability, and environmental conservation (GC, 2022). 

Differences in growth patterns between softwood and hardwood 

Hardwood and softwood trees exhibit distinct growth patterns, influenced by their 

reproductive mechanisms and ecological roles. Hardwood trees, characterized by deciduous 

shedding of leaves, grow more slowly, resulting in denser wood suitable for various applications 
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such as furniture and flooring (Cwynar, 2021; Laver, 2022). In contrast, softwood trees, which 

retain their needles year-round, grow faster, producing lighter and less dense wood primarily 

used in construction and structural applications (Cwynar, 2021; Laver, 2022). 

Understanding the density variations between hardwoods and softwoods is essential for 

accurate volume estimation in forestry (Canning, 2023). Hardwoods contribute significantly to 

total forest volume due to their higher densities, while softwoods, being less dense, are more 

prevalent in forests but contribute differently to overall volume (Canning, 2023). 

Impact of Growth Characteristics on Volume Estimation 

Tree growth characteristics, including tapering, forking, leaning, irregular shapes, 

buttressing, stem splitting, and variation in growth rates, significantly influence volume 

estimation in forestry (West, 2015). Tapering of tree trunks requires measuring diameter at 

various heights to account for volume distribution accurately. Additionally, factors such as 

forking, leaning, and irregular shapes necessitate precise measurements to avoid 

underestimation. Variation in growth rates across different parts of the tree also impacts volume 

distribution and shape, requiring consideration during estimation processes (West, 2015). 

Bill of Lading (BOL)  

A BOL is a legal document issued by a carrier to a shipper, detailing the type of load 

(species, etc.), quantity of goods, the location the load was loaded at such as block ID, forest unit 

etc., and the destination of the goods (Tarver, 2023). It serves multiple functions, acting as a 

document of title, a receipt for the shipped products, and a contract outlining the terms and 

conditions of transportation (Tarver, 2023). This document must accompany the shipped goods 

through out the entire journey, as they are signed by authorized representatives from the carrier 
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(harvesting contractor), shipper (hauling company), and receiver (lumber mill) (Tarver, 2023). 

Properly managed BOLs help track shipments to their origin, allowing for proper certifications to 

be stamped on the final product (SFI, CSI etc.) (Tarver, 2023). 

Previous research on various estimation methods 

 Ground surveys 

 Nakajima et al. (1996) investigated the accuracy of four ground survey methods used for 

estimating forest stand values. The methods under investigation are point sampling (PS), line 

sampling (LS), circular plot (CP), concentric circular plot (CCP), for estimating the current 

values of stems, basal area, and volume per hectare (Nakajima et al. 1996). Data was collected 

from the Takakuma Experimental Forest in Kagoshima Prefecture, Japan, on two occasions 

(Nakajima et al., 1996). The methods were evaluated for their utility in continuous forest 

inventory (CFI) for forest management (Nakajima et al., 1996). 

Each method was systematically compared based on their accuracy in estimating forest 

parameters. For PS and LS, a basal area factor of 4 was utilized, while CP had a fixed-radius plot 

with a radius of 6 meters (Nakajima et al., 1996).  CCP employed two concentric circles with 

radii of 5 and 10 meters, corresponding to different plot sizes (Nakajima et al. 1996).  The 

sampling intensity was set at 12 samples, and the systematic sampling process was applied 10 

times for each method (Nakajima et al., 1996). 

Results showed variations in accuracy across different variables. CCP demonstrated 

slight superiority over the other methods for estimating basal area and volume, while CP was 

slightly better for estimating the number of stems (Nakajima et al., 1996).  However, no 

significant differences were observed in sampling errors among the four methods. Therefore, the 
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selection of the most appropriate method should consider factors beyond sampling error, such as 

cost and suitability to stand conditions (Nakajima et al., 1996). Highlighting the importance of 

considering individual stand characteristics, such as structure and topography, and purpose when 

choosing a ground-survey method. 

Terrestrial photography using photogrammetry methods 

Another study conducted by Malta et al. (2023) introduces a method for accurately 

estimating the diameter, total height, and volume of Pinus pinaster (maritime pine) trees from 

terrestrial photographs collected using a Sony Nex-5 with a 18-55 mm lens. Species like Pinus 

pinaster are crucial in Mediterranean forests for wood production and reforestation efforts. This 

method involves placing reference targets on the trees of known dimensions and using a deep 

learning neural network, specifically Mask R-CNN, to extract the tree trunk and targets from the 

background (Malta et al., 2023).  

The dimensions of the trunk are then estimated based on the dimensions of the targets, 

resulting in less than 10% estimation errors for diameter, height, and volume (Malta et al., 2023). 

The research methodology involved selecting the Mask-RCNN deep learning model for its 

ability to perform object detection and instance segmentation, enabling the detection of pine trees 

and targets in images and defining their contours (Malta et al., 2023). Various measurements, 

including total height and tree diameters, were taken using both destructive and non-destructive 

methods (Malta et al., 2023).  

The data analysis involved calculating the error in estimating the tree's diameter, height, 

and volume using the Mask-RCNN model (Malta et al., 2023). The results indicated that there 

were no significant differences between the measured and estimated values of DBH, height, and 
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volume (Malta et al., 2023). The quality of the masks generated by the Mask-RCNN model was 

found to be very high, with accuracy close to 100% in terms of tree coverage.  

Tree diameter estimation using the Mask-RCNN model resulted in an average error of 

approximately 4%, while tree height and volume estimations also showed promising results, with 

errors within acceptable ranges (≤10%) (Malta et al., 2023). Offering a time-efficient and cost-

effective alternative to traditional measurement methods for estimating tree volume, particularly 

for small forest owners (Malta et al., 2023). The Mask-RCNN model demonstrated high 

accuracy in estimating tree biometric characteristics from photographs, with potential 

applications in sustainable forest management practices (Malta et al., 2023).  

RPAS using photogrammetry  

Research conducted by Young et al. (2022) explored the utilization of RPAS imagery and 

photogrammetry for estimating forest metrics, especially in structurally complex conifer forests. 

Their study investigated the influence of various parameters, such as flight altitude, gimbal pitch, 

and image overlap, on the accuracy of forest metric estimation. Higher flight altitudes, typically 

around 120 meters, combined with adequate image overlap have been identified as contributing 

to better tree mapping accuracy (Young et al., 2022).  

Moreover, Young et al. (2022) delved into different photogrammetry processing 

techniques to create accurate 3D representations of forest environments. Techniques such as 

generating canopy height models (CHMs) with appropriate upscaling and employing variable 

window filters for tree detection have been shown to enhance accuracy (Young et al., 2022). 

Additionally, various tree detection algorithms, including CHM-based Variable Window Filter 
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(VWF) methods, were evaluated for their effectiveness in identifying individual trees within 

RPAS-derived imagery (Young et al., 2022).  

These algorithms play a critical role in producing accurate tree maps, with certain 

methods consistently demonstrating superior performance based on accuracy metrics like the F 

score (Young et al., 2022). Furthermore, Young et al. (2022) have compared RPAS-derived tree 

maps with ground reference maps created through traditional field survey methods to validate 

accuracy and understand technology strengths and limitations. Moreover, researchers have 

developed methods for accurately measuring tree heights using RPAS-derived imagery and 

CHMs, despite inherent biases the mean absolute height error was relatively small at 1.8 meters 

or 9% of tree height (Young et al., 2022). The study's algorithm for matching SfM-detected trees 

with ground-measured trees showed that the mean height difference was only 9%, suggesting 

accurate matching overall. (Young et al., 2022).  

RPAS using LiDAR  

A study conducted by Arkin et al. (2021), explores the potential of using high-density 

LiDAR point clouds obtained from RPAS to characterize forest canopy fuels at the individual 

tree level. It introduces a novel automated method to detect and quantify live crown fuels within 

trees by analyzing the density and vertical arrangement of LiDAR points. The research compares 

results from RPAS LiDAR point clouds with manual measurements derived from ground-based 

LiDAR point clouds in a dry forest system in British Columbia (Arkin et al., 2021).  

The findings demonstrate strong agreement between the automated method and manual 

measurements, indicating RPAS LiDAR's potential for accurately characterizing crown fuels 

across large areas (Arkin et al., 2021). The methodology involves initial point cloud processing, 
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individual tree segmentation, live branch cluster extraction and analysis, validation, and accuracy 

assessment (Arkin et al., 2021). Validation data collected from ground-based LiDAR point 

clouds support the reliability of the automated method (Arkin et al., 2021).  

The study's accuracy assessment involves cluster matching, cluster-level validation, and 

tree-level validation, revealing favorable trends in cluster matching accuracy and agreement in 

cluster-level metrics (Arkin et al., 2021). However, variability is observed in tree-level metrics, 

specifically within lower crown features, due to differences in point cloud quality and collection 

methods between RPAS LiDAR and ground-based LiDAR (Arkin et al., 2021).  

Overall, the research highlights RPAS LiDAR's capability to accurately characterize 

crown fuels within individual trees, providing valuable insights for wildfire behavior modeling 

and forest management strategies (Arkin et al., 2021). It’s limitations in capturing lower levels of 

canopy limits it’s potential in accurately estimating volume.  

Aircraft with LiDAR  

White et al. (2014) produced a study using a fixed-wing aircraft to collect ALS data for 

the use of enhancing their forest inventory. The study focuses on the Hinton Forest Management 

Area in Alberta, Canada, aiming to develop an enhanced forest inventory using ALS data and 

validate the estimates against post-harvest metrics (White et al., 2014).  

The research employs ALS data and an area-based approach, utilizing ground reference 

data collected through the permanent growth sample (PGS) program (White et al., 2014). ALS 

data is processed to compute canopy height and density metrics, and a Random Forest (RF) 

model is developed to estimate coniferous merchantable volume (White et al., 2014).  
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Validation of the ALS-based estimates is conducted using weight-scale data (White et al. 

2014). Weight scaling is a method used for estimating timber volume based on weight-to-volume 

ratios (White et al., 2014). In the Hinton FMA, 272 coniferous forest stands were harvested 

between 2008 and 2010, with merchantable weight scale volumes calculated based on cut-to 

length harvesting practices (White et al., 2014). These weight scale estimates were used as a 

reliable, industry-relevant source for validating the estimates derived from ALS data and cover 

type adjusted volume tables (White et al., 2014).  

With results showing that conventional methods tend to underestimate coniferous 

merchantable volume, while ALS-based estimates provide a closer match to post-harvest 

measurements (White et al., 2014). Comparisons between ALS-based and conventional estimates 

relative to weight scale data showed that ALS-based estimates overestimated by 0.6%, while 

conventional methods underestimated by 19.8% (White et al., 2014). The study highlights the 

accurate estimates of ALS-based estimates when incorporating reliable weight-scale calculations.  

Terrestrial LiDAR (TLS) 

In another study conducted this time by Panagiotidis and Abdollahnejad (2021) the goal 

was also to accurately determine the merchantable height and diameter of trees using TLS data, 

focusing on the random sampling consensus method (RANSAC) for stem modeling. Using TLS 

data from two plots containing both deciduous and coniferous trees and found that the RANSAC 

method performed well with low bias and high accuracy for both tree types (Panagiotidis & 

Abdollahnejad, 2021). 

Additionally, they observed a high correlation between their proposed method and actual 

log lengths, as well as the ability to analyze stem curvature changes at different heights 
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(Panagiotidis & Abdollahnejad, 2021). This study highlighted the applicability and efficiency of 

TLS in forest inventories, reducing reliance on conventional field methods (Panagiotidis & 

Abdollahnejad, 2021).  

Building upon previous research emphasizing the importance of accurate forest 

inventories for sustainable forest management, and showing traditional methods often result in 

biased estimations, necessitating research into a more reliable technique (White et al., 2014; 

Panagiotidis & Abdollahnejad, 2021; Malta et al., 2023).  

Panagiotidis & Abdollahnejad (2021) found that previous studies have shown the 

effectiveness of TLS in various forest structural metrics. However, challenges in extracting forest 

attributes from TLS data and data acquisition protocols persist (Panagiotidis & Abdollahnejad, 

2021). To address these limitations, Panagiotidis & Abdollahnejad (2021) used dense TLS point 

clouds with the RANSAC method to extract merchantable volumes of European oak and Norway 

spruce trees.  

Results showed a high correlation between estimated and measured merchantable volume 

for both deciduous and coniferous trees (Panagiotidis & Abdollahnejad, 2021). Although the 

RANSAC method slightly overestimated merchantable volume, the difference was negligible 

and statistically insignificant for coniferous trees (Panagiotidis & Abdollahnejad, 2021). Analysis 

revealed a significant relationship between log lengths and bias, suggesting that longer logs led 

to greater overestimation (Panagiotidis & Abdollahnejad, 2021).  
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MATERIALS AND METHODS 

Location selection  

The research site within the Romeo Mallette Forest was chosen based on the 2023/24 

Annual Work Schedule (AWS). Block 483 was selected due to its strategic placement along the 

Gogama Unit Road, a primary branch road known for its accessibility, facilitating easy 

navigation and data collection efforts. Initially encompassing a total area of 95.84 hectares, 

subsequent harvesting revealed that only 79.89 hectares had been harvested. Consequently, all 

volume calculations based on volume per hectare were adjusted by multiplying them by 79.89 to 

accurately determine their total volumes.  

Site characteristics 

 The selected research area (figure 1), encompasses a total land area of 95.84 hectares. 

This site is classified under specific silviculture ground rules. Specifically, it falls within the 

category of Mix Hardwood Class Two (MH2), incorporating extensive silviculture practices 

classified as Class One (EXTN1). Furthermore, the future forest to be re-established at this site is 

anticipated to primarily consist of Poplar Class One (PO1) species. 
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Figure 1. Illustration of the selected forest block. 
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FRI DATA  
The FRI data used in this study was obtained through collaboration with one of the 

stakeholders of the forest license.  It should be noted that the Romeo Malette Forest is one of 

the only forest management units in Ontario that has been subjected to Ontario’s T2 eFRI 

resulting in the acquisition of high-resolution data for forest analysis and management. The 

LiDAR imagery can be found on (https://geohub.lio.gov.on.ca/maps/lio::forest-resource-

inventory-term-2-t2-2018-2028/about). The research utilized a combination of ground surveys 

and aerial imagery to gather FRI data for volume estimates, as the volume estimates using T2 

eFRI have not yet been produced and likely will not be available until 2028.  

GROUND SURVEY 

 Ground surveys were undertaken to assess the natural stand conditions, investigate tree 

species distribution and composition, and document relevant tree-level attributes within the study 

area. To achieve this, circular ground plots covering an area of 400 square meters, with an 11.28-

meter radius, were systematically established throughout the research site. The sampling 

intensity is 0.375%. 

A total of nine circular ground plots were strategically positioned across the research site 

to provide comprehensive coverage. Within each ground plot, data collection followed a 

systematic approach. Information recorded for individual trees included species identification, 

azimuth (compass direction), distance from the center of the plot, tree status (e.g., live or dead), 

presence of any tree defects along with their type and position on the tree, degree of lean if 

applicable, DBH, and tree height. This detailed data collection process aimed to capture a 

comprehensive understanding of the forest ecosystem and facilitate accurate assessments of tree 

volumes and health.  

https://geohub.lio.gov.on.ca/maps/lio::forest-resource-inventory-term-2-t2-2018-2028/about
https://geohub.lio.gov.on.ca/maps/lio::forest-resource-inventory-term-2-t2-2018-2028/about
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Data analysis 

Following data collection, all trees were aggregated. From here, defective trees were 

excluded from the final volume estimations, as defective trees would likely be ignored during 

harvest. Volume calculations were performed using a simplified approach, akin to calculating the 

volume of a cone. The formula employed for volume calculation is as follows: 

 𝑇𝑟𝑒𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚3) =
𝑇𝑟𝑒𝑒 𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 (𝑚2)×𝑇𝑟𝑒𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚)

3
  

RGB IMAGE ACQUISITION FROM RPAS AND PRE-PROCESSING 
The study employed a RPAS, specifically a Mavic 2 Pro RPAS equipped with a high-

resolution camera, to capture detailed imagery for survey purposes. Prior to conducting survey 

missions, preliminary steps were taken to ensure effective planning and execution. This included 

installing Map Pilot Lite for DJI from the App Store onto an iPad. 

For mission planning, the survey area was identified considering relevant terrain and 

features. Mission planning was conducted using the Map Pilot’s interface, resembling Google 

Earth. Boundary markers were placed on the interface to define the survey area, and flight 

altitude was adjusted to 80 meters to ensure detailed capture. The flight path direction was set 

according to the layout of the survey area, and the mission was saved for subsequent execution. 

During flight execution, the planned mission was uploaded, and the programmed flight 

path was verified to ensure an 80% overlap. The flight was launched, with proper home point 

setup for automated return. The RPAS ascended and configured the gimbal for optimal image 

capture while navigating along the predetermined flight path, capturing images at specified 

intervals. Upon completing the survey mission, the RPAS returned to the home point for landing. 
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Following imagery collection, the data was transferred for processing. This involved 

transferring imagery to a USB drive for subsequent processing using a Maps Made Easy account. 

Imagery uploads and processing included selecting the appropriate workflow and providing 

project details. Processed imagery was verified for accuracy and processing times varied based 

on internet speed and file quantity. 

Upon completion of processing, an email is sent containing links to the processed 

imagery and associated tools. Alternatively, processed imagery could be accessed by logging into 

the Maps Made Easy account, providing convenient access for analysis and further utilization. 

The Map Detail page provided comprehensive information about processed imagery, including 

timestamps, job details, pixel size, area coverage, and elevation range, facilitating detailed 

analysis and interpretation. Processed files, including GeoTIFF files, are downloadable from the 

Map Detail page, allowing integration with GIS systems and the creation of various mapping 

products. 

The survey parameters included flying at a height of 80 meters with an 80% overlap to 

ensure comprehensive coverage and data accuracy. The data collected was subsequently 

analyzed using STEMS. 

SINGLE TREE METRICS AND STAND ASSESSMENT (STEMS)  

STEMS, is a RGB image based pre-harvest inventory tool that generates both spatial 

maps and aspatial summaries. This innovative tool boasts to estimate key tree parameters like 

geo-position, species, total tree height, basal area, volume, as well as aggregation summaries at 

various spatial units - like grid, stand, block. Leveraging this information alongside local 

allometric equations, STEMS is able to calculates the merchantable volume of a stand.  
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To effectively utilize STEMS, users must first ensure access to both RGB imagery and 

the corresponding point cloud data. Acquiring high-quality RGB imagery involves conducting an 

RPAS flights over the target forested area, while the generation of the point cloud necessitates 

software tools capable of processing this imagery suitable at producing precise 3D models. Once 

this data is obtained, users will need to have a client account with FPInnovations, the developer 

of STEMS. Account setup involves registering for a client account if not already done so and 

completing necessary authentication procedures. 

Upon accessing their FPInnovations client account, users can navigate to the STEMS 

section within the platform. Here, they can upload the acquired RGB imagery and corresponding 

point cloud data following provided instructions. Within the STEMS interface, users integrate the 

uploaded data and initiate processing and analysis procedures guided by on-screen prompts and 

guidelines. Once processing is complete, users can access the generated volume estimates and 

analysis results provided by STEMS. 

Under this study, all results were provided by FPInnovations, the developers of the 

STEMS model.  

Harvesting process  

The designated research block was subjected to a clearcut harvesting system. Under this 

method, the entire stand of trees within the block was harvested, leaving a minimum of 25 

SPH, as required from the Ministry of Natural Resources (MNR). The harvesting process 

involved cutting the trees in a "cut-to-length" manner. This approach ensured that the harvested 

wood was processed into manageable log lengths at the stump, optimizing transport and 

handling. 



40 
 
 

Wood stacking and transport  

Once felled and processed, the harvested wood was stacked at the roadside, strategically 

for ease of loading onto the log trucks. These log trucks were responsible for transporting the 

harvested wood to the designated mills for further processing (hardwood and softwood species 

were sent to different mills).  

BILL OF LADING (BOL)  

To ensure precise tracking and measurement of the harvested volume from the designated 

study block, a comprehensive BOL was meticulously prepared and assigned to each log truck. 

This document played a pivotal role in maintaining accurate records and facilitating data 

collection throughout the harvesting process. 

Scale data collection 

After all timber from the study block was delivered, each individual BOL issued to log 

truckers was systematically amalgamated into a Scaling Data System. This consolidation process 

encompassed all BOLs for both softwood and hardwood species from Romeo Mallette Block 

483.  

 

RESULTS 

The total volume estimates obtained from various methodologies as seen in table 1 and 

figure 3, including FRI, ground survey, STEMS, and the final BOL data. Notably, the data reveal 

that STEMS provides the closest estimate to the BOL, with a total volume estimate of 10,354 m³, 

closely aligning with the actual volume from the BOL, which stands at 9,747 m³. 
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Table 1. Total volume estimates compared to the final BOL (m3). 

  Softwood Hardwood Totals 

FRI 6,598.0 1,928.0 8,526.0 

Ground Survey 10,122.0 655.0 10,777.0 

STEMS 8,076.0 2,278.0 10,354.0 

BOL 8,698.0 1,049.0 9,747.0 
 

 Figure 2. Total volume and species distribution (m3). 

 

The differences in total volume (m³) compared to the BOL is outlined in table 6. Notably, 

STEMS demonstrates the smallest variation from the BOL, with a minor difference of 607 m³. In 

contrast, the ground survey overestimated the total volume by 1,030 m³, while FRI 

underestimated it by 1,221 m³ relative to the BOL. 
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Table 2. Total volume difference from BOL(m3). 

 Softwood Hardwood Totals 

FRI -2,100.0 879.0 -1,221.0 

Ground Survey 1,424.0 -394.0 1,030.0 

STEMS -622.0 1,229.0 607.0 
 

 

Table 3 and figure 4 presents the volume per hectare (m³/ha) derived from FRI, RPAS, 

ground survey, and STEMS, compared with the volume per hectare obtained from the BOL. The 

analysis reveals that both STEMS and the ground survey yielded the closest volume estimates, 

with 129.7 m³/ha and 134.9 m³/ha, respectively. These values closely approximate the volume 

per hectare indicated by the final BOL, which stands at 122 m³/ha. 

Table 3. Volumes per hectare compared to BOL (m3/ha). 

  Softwood Hardwood Totals 

FRI 82.6 24.1 106.7 

Ground Survey 126.7 8.2 134.9 

STEMS 101.1 28.5 129.6 

BOL 108.9 13.1 122.0 
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Figure 3. Volume per hectare by species (m3). 

 

The differences in volume per hectare (m³/ha) compared to the BOL can be seen in table 

4. The data highlights that RPAS exhibited the largest disparity from the BOL, while STEMS 

demonstrated the smallest variation, differing by only 7.6 m³/ha. Additionally, the ground survey 

recorded a difference of 12.9 m³/ha, and FRI underestimated volume by 15.3 m³/ha relative to 

the BOL.  

Table 4. Volume difference per hectare from BOL(m3).  

 Softwood Hardwood Totals 

FRI -26.3 11.0 -15.3 

Ground Survey 17.8 -4.9 12.9 

STEMS -7.8 15.4 7.6 
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Table 5 illustrates the percent change from the BOL, offering insights into the magnitude 

of differences between various methods and the BOL. FRI underestimates by 12.5%. In contrast, 

the STEMS estimate demonstrates the smallest percent difference, with only a 6.2% difference 

from the BOL. With the ground survey presenting a 10.6% difference. 

Table 5. Percent change from BOL (%). 

 Softwood Hardwood Totals 

FRI -24.1 83.8 -12.5 

Ground Survey 16.4 -37.6 10.6 

STEMS -7.2 117.2 6.2 
 

 

 

DISCUSION 

Total volume estimates compared to BOL 

The comparison of total volume estimates from different methodologies, as shown in 

table 1, highlights significant variation in estimation accuracy. Surprisingly, STEMS provides the 

closest estimate to the BOL, with only a minor difference of 607 m³ overall, representing a 

deviation of merely 6.2% from the actual volume. This finding aligns with previous research by 

White et al. (2014), which demonstrated the accuracy of remote sensing-based programs in 

volume estimations, particularly when compared to conventional ground surveys. 

These results contradict my initial hypothesis, suggesting that ground surveys would 

provide the most accurate estimate, while STEMS would exhibit the greatest deviation. 

Furthermore, the literature review supports the idea that traditional methods, like ground surveys, 

often lead to biased estimations (Nakajima et al., 1996). While ground surveys offer valuable 



45 
 
 

ground truthing, they may still overestimate or underestimate volume parameters due to inherent 

limitations in sampling intensity and coverage. 

Volume per hectare compared to BOL 

Table 2 provides a comparison of volume per hectare estimates. With STEMS showing 

closer alignment than ground surveys compared to the BOL in volume per hectare estimates, 

with differences of 7.6 m³/ha and 12.9 m³/ha, respectively. These deviations represent 6.2% and 

10.6% from the BOL volume per hectare. These findings suggest the superior accuracy of remote 

sensing-based methods in capturing spatial variability within forest stands. This observation is 

consistent with the findings of Young et al. (2022), who also emphasized the achievable accuracy 

of remote sensing-based estimations. These results further contradict the hypothesis as the FRI 

data showed a 15.3 m3/ha difference from the BOL, the largest deviation at 12.5%.  

Volume difference from BOL 

Figure 3 illustrates the differences in total volume estimates compared to the BOL across 

different methodologies. STEMS demonstrates the smallest variation from the BOL, with a 

difference of 607 m³, representing a deviation of 6.2% from the BOL volume. In contrast, ground 

surveys tend to overestimate total volume by 1,030 m³, corresponding to a deviation of 10.6% 

from the BOL volume. Conversely, FRI underestimates total volume by 1,221 m³, indicating a 

deviation of 12.5% from the BOL volume. These findings are consistent with the literature 

review, which highlights the strengths and limitations of various estimation methods. 

Volume difference per hectare from BOL 

Figure 4 presents the differences in volume per hectare estimates compared to the BOL. 

FRI exhibits the highest deviation from the BOL, with an average difference of 15.3 m³/ha, from 
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the BOL volume per hectare. In contrast, STEMS demonstrates the smallest deviation, with an 

average difference of 7.6 m³/ha, from the BOL volume per hectare. This remains consistent with 

These outcomes align with findings from the literature review, which highlight the 

strengths and limitations of various estimation methods. Ground surveys offer valuable ground 

truthing but may suffer from biases in estimation accuracy (Nakajima et al., 1996). RPAS-based 

surveys, while providing accessibility and efficiency, may overestimate volume parameters 

related to broadleaved species due to challenges in capturing lower canopy levels (Young et al., 

2022). Malta et al. (2023) presented a photogrammetry method, called Mask R-CNN model, 

which displayed similar levels of accuracy as STEMS at estimating tree biometric characteristics 

from photographs, offering another cost-effective alternative to traditional measurement 

methods.  

 

CONCLUSION 

In conclusion, this study aimed to assess the accuracy of various methods in estimating 

tree volumes in the Romeo Mallette Forest. Accurate volume estimates are crucial for effective 

forest management practices and decision-making processes. Contrary to our initial hypothesis, 

the results revealed that STEMS, a remote sensing-based method, provided the closest estimates 

to the BOL. This finding challenges the conventional belief that ground surveys would offer the 

most accurate estimates. Moreover, remote sensing-based methods, such as STEMS, 

demonstrated superior accuracy in capturing spatial variability within forest stands compared to 

ground surveys and FRI data. 
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Underscoring the importance of embracing technological advancements, particularly in 

remote sensing, to enhance the accuracy and efficiency of volume estimations in forestry 

operations. Furthermore, the study highlights the need for further research to explore the 

potential of emerging technologies and methodologies, such as photogrammetry, in improving 

volume estimation accuracy. 

In conclusion, this study illuminates the intricate dance between technological 

advancements and forestry management, compelling foresters to conscientiously explore 

innovative avenues in their quest to harmonize resource utilization with environmental 

preservation. 
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