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Abstract of the Dissertation 

Due to energy, environment, and food problems, research on microalgae is increasingly 

gaining attention. Microalgae can utilize photosynthesis to synthesize and accumulate 

various valuable bioproducts such as lipids, proteins, polysaccharides, pigments, and can 

also absorb and fix carbon dioxide. Therefore, efficiently, and cost-effectively cultivating 

specific algae species has become a crucial goal. However, various challenges hinder the 

development of algae during cultivation. This study focuses on the indoor and outdoor 

cultivation of two marine microalgae, Chrysotila (Pleurochrysis) dentata and 

Nannochloropsis oceanica. 

For the cultivation of Chrysotila (Pleurochrysis) dentata, optimal indoor cultivation 

conditions were determined with a light cycle of 18 hours light / 6 hours dark, pH of 8.5, 

and salt concentration of 2.5 %. When Chrysotila (Pleurochrysis) dentata formed a 

symbiotic system with the bacterium Nitratireductor aquibiodomus, a ratio of 8:2 (algae to 

bacteria) resulted in optimal accumulation of dry weight, chlorophyll α, and calcium 

carbonate, while ratios 6:4 was more suitable for lipid accumulation. In the experiment on 

the impact of microplastics polyethylene terephthalate (PET) on Chrysotila (Pleurochrysis) 

dentata, it was observed that low concentrations of plastic (5-15 mg/L) promoted algae 

growth. However, high concentrations of microplastics (20-50 mg/L) slowed algal growth. 

In the case of marine microalgae Nannochloropsis oceanica, chlorophyll fluorescence 

analysis indicated that 0.5 g/L urea was suitable for Nannochloropsis oceanica cultivation. 

However, it is advised to avoid using ammonium chloride as a nitrogen source due to its 

strong inhibitory effect on Nannochloropsis oceanica. Maintaining the salt concentration 
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between 2.5 % and 3.5 % during cultivation is recommended. Outdoor cultivation 

experiments revealed that increasing the initial inoculation amount of Nannochloropsis 

oceanica effectively mitigated growth inhibition during cloudy weather. Nannochloropsis 

oceanica shows slower growth in winter. However, it can still grow in low temperatures, 

and overcast conditions with an initial inoculation concentration exceeding (OD 680：1.0). 

Additionally, the results of 185 days of semi-continuous cultivation showed that the 

cultivable temperature range for Nannochloropsis oceanica was 5-30 °C, with the optimal 

cultivation temperature range being 14-25 °C. Nannochloropsis oceanica can accumulate 

lipids at low temperatures. The study also utilized a low-cost 150 L linear low-density 

polyethylene (LLDPE) plastic tank for outdoor cultivation, and an analysis of the results 

revealed that the low-cost, small-volume cultivation equipment exhibited significant 

advantages in terms of growth rate and biomass productivity compared to the 700 L tank, 

making it more competitive. However, it is crucial to note that the 150 L tank is more 

susceptible to environmental influences, leading to significant fluctuations in chlorophyll 

fluorescence efficiency during semi-continuous cultivation, indicating stress. In contrast, 

such stress conditions were almost nonexistent in the 700 L tank. 

Moreover, a novel in situ real-time oxygen release rate measurement method was 

developed. This approach provided real-time information on algae oxygen release rates. 

Whether cultivating Nannochloropsis oceanica in a 700 L tank or a 150 L tank, shading 

during the summer was proven effective in mitigating the inhibitory effects of strong light 

and high temperatures, thus extending the year-round outdoor cultivable time. 

Nannochloropsis oceanica exhibited a certain degree of cold tolerance, allowing for a 



 

 iv 

potential extension of cultivation time in winter. Additionally, when temperatures dropped 

below 5 °C, reducing the frequency of semi-continuous cultivation was recommended. 

From results, the cultivation cost of N. oceanica ranged from $3.35 to $11.89 per kilogram, 

the price is lower than the current market price (Alibaba 2024 April price: USD $20.19 to 

$35.34 per kilogram). 

Overall, this study delved into the challenges and solutions of indoor and outdoor 

cultivation of marine microalgae, refining the cultivation conditions for two marine 

microalgae and identifying potential application areas. A new microalgae photobioreactor 

design was created, and a novel real-time oxygen release rate monitoring method was 

established, providing new perspectives for future algae research. 
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Introduction of the Thesis 

The successive occurrences of the petroleum crisis, food crisis, and climate crisis have 

prompted people to actively seek solutions. Microalgae, due to their ability to fix carbon 

dioxide through photosynthesis, rapid growth, and the accumulation of valuable products 

such as lipids, proteins, polysaccharides, and pigments, have garnered significant attention. 

However, the reality is that our understanding of algae is still in its early stages, and even 

within the research community, it remains a niche species. Cultivation techniques pose 

numerous challenges that require ongoing refinement and improvement. 

In algal cultivation, research on indoor cultivation and the cultivation of marine 

microalgae in inland areas is relatively limited. Most studies on marine microalgae rely on 

coastal regions (Boruff et al., 2015; Barakoni et al., 2015). However, coastal cultivation of 

marine microalgae also faces challenges, particularly susceptibility to contamination by 

other microorganisms or algae in marine environments, which can impact production 

efficiency. In practical production processes, the majority of commercial cultivation 

employs open systems, inevitably leading to contamination by bacteria or other algae, 

affecting product quality. Hence, research on the symbiosis of bacteria and algae and their 

mutual interactions becomes significant. In some cases, the presence of an appropriate 

number of bacteria can even promote algal growth and development, and can be set as 

symbiotic systems, such symbiotic systems have been utilized for wastewater purification 

such as farm wastewater (Ramanan et al., 2016; Saravanan et al., 2021; Sun et al., 2022; 

Humenik et al., 1971; Johnson et al., 2020). 

Furthermore, marine pollution, especially the presence of microplastics, has an impact 
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on the growth and development of microalgae. Scholars have reported that microplastics 

have entered human bloodstreams, indicating their entry into the food chain cycle (Leslie et 

al., 2021). Whether primary producers such as microalgae are affected by microplastics 

remains unclear. 

In outdoor cultivation, the weather and the location of cultivation systems have a more 

pronounced impact on algae cultivation. Designing low-cost, efficient light cultivation 

systems has been a focal point of this research. Currently, most algae cultivation systems are 

set up in open areas without shading (Osama et al., 2021). However, even in shaded areas, 

the slow diffuse sunlight intensity is higher than indoor artificial lighting. In densely 

populated areas, where land is precious, efficiently utilizing various lands to produce 

microalgae not only enhances land use efficiency for producing high-value-added products 

but also contributes to carbon sequestration and air purification, yielding multiple benefits. 

Additionally, in outdoor environments, fluctuating conditions necessitate effective 

monitoring of algae growth status and the development of corresponding strategies for 

different weather conditions. The use of chlorophyll fluorescence technology to detect plant 

stress has been widely studied. Analyzing the intensity and specific parameters of 

chlorophyll fluorescence provides crucial information about algae' s growth status, 

photosynthetic efficiency, stress response, and other important physiological aspects (Xing 

et al., 2007; Samuelsson et al., 1977). 

Experiments were conducted using two characteristic marine microalgae, Chrysotila 

(Pleurochrysis) dentata and Nannochloropsis oceanica. Chrysotila (Pleurochrysis) dentata 

is of interest due to its ability to absorb environmental carbon sources, forming calcium 
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carbonate shell, and its high lipid content, making it a focus in recent years for carbon 

sequestration applications. Nannochloropsis oceanica, on the other hand, is a commonly 

used feed algae (Li et al., 2020; Gong et al., 2020; Ashour et al., 2019). 

In summary, this experiment aims to address challenges faced by microalgae, such as 

symbiosis with bacteria, microplastic pollution, the design of novel photobioreactor, and 

considerations for large-scale outdoor cultivation. The goal is to refine solutions to potential 

challenges in practical production and contribute to the advancement of algology, explore 

the feasibility of cultivating marine microalgae in inland areas. 
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Chapter 1. Literature review：Overview of marine microalgae 

1 Introduction 

Microalgae also called unicellular algae, is one of the earliest organisms on earth. Their 

simple structure, single cell or single cell population, contained chlorophyll α can through 

photosynthesis autotrophic life, widely distributed in fresh water and seawater, individuals 

generally in a few microns or even dozens of microns. The earth currently known more than 

30, 000 kinds of microalgae, accounting for 70 % of the global known algae species 

(Guschina et al., 2006). Microalgae in the ocean are the main primary producers in the marine 

ecosystem. Due to their small individuals, fast growth rate, short reproductive cycle, and 

strong adaptability to the environment, they play an extremely important role in the energy 

flow and material cycle of the marine ecosystem. Among all marine microalgae, Chrysophyta, 

Rhodophyta, Cyanobacteria, and Chlorophyta are the most commonly cultivated algae 

species. 

Microalgae contain chlorophyll, phycobiliprotein, and other light-absorbing pigments, 

they possess an effective photosynthetic biological system. They can efficiently utilize solar 

energy, reduce carbon dioxide, and convert inorganic salts into organic compounds through 

photosynthesis. It is precisely due to their high efficiency in fixing and utilizing carbon 

dioxide that makes them one of the effective ways to reduce the Earth's greenhouse gases. 

In addition to these attributes, they also have many more valuable features (Figure 1). 1. 

Algae, due to their shorter cell cycle, are easier to cultivate on a larger scale. 2. Algae 

demonstrate good adaptability and can be cultivated in large quantities in artificial seawater 
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through artificial cultivation. Some single-water algae can also be cultivated in saline water 

after artificial cultivation. 3. Microalgae cells contain proteins, fats, and carbohydrates 

(Markou et al., 2013; Parjikolaei et al., 2013; Manirafasha et al., 2016). They can also 

synthesize and accumulate specific bioproducts in large quantities under special induced 

environments, making them important resources for food and bioenergy in the future. 4. 

Moreover, because of the unique living environment of marine microalgae, it can synthesize 

many bioactive substances with unique structures and physiological functions (such as 

fucoxanthin). This makes them a promising source for future medicines, health products, and 

chemical raw materials (Ma et al., 2020; Markou et al., 2013; Skjånes et al., 2013; Cardozo et 

al., 2007).        

 

Figure 1 Several algal products and applications (Diaz et al., 2023) 

2 Bioactive species of marine microalgae 

2.1 Fatty acid 

The lipid content and fatty acid composition of microalgae change with variations in the 
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external environment and nutritional conditions. In most types of microalgae, the total lipid 

content exceeds 10% of their dry weight (Song et al., 2013; Huerlimann et al., 2010). Among 

them, unsaturated fatty acids with four to five double bonds, such as eicosaenoic acid (EPA), 

docosahexaenoic acid (DHA), and arachidonic acid (AA) (Figure 2), are not only components 

of animal and plant cell membrane structures but also play crucial physiological roles (Cheng 

et al., 2002; Banerjee et al., 2002; Koletzko et al., 1996). For example, EPA and DHA can 

lower blood lipids, reduce blood pressure, decrease cholesterol, prevent thrombosis, inhibit 

platelet aggregation, relax blood vessels, and are used in the prevention and treatment of 

inflammation, cancer, rheumatoid arthritis, and diabetes (Figueras et al., 2012; Machado et al., 

2011; Taneda et al., 2010; Koller et al., 2014; Camacho et al., 2019). DHA is an important 

structural lipid found in the gray matter of the brain (Balakrishnan et al., 2021; Bradbury, 

2011). It is also related to the development and formation of the retina (Bazan et al., 2005; 

Querques et al., 2011). It plays an important role in people with cardiovascular diseases 

(Breslow, 2006; Holub et al., 2009; Yamagata, 2017). It promotes the growth and 

development of brain cells, improves brain function, and can be used to prevent central 

nervous diseases and treatment (Camacho et al.,2019; Koller et al., 2014).  



 

 30 

 

Figure 2 Polyunsaturated fatty acids (PUFAs) synthesis, including the production of 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (Calder, 2019). 

Most higher plants and humans lack the necessary enzymes to synthesize 

polyunsaturated fatty acids (Nakamura et al., 2001). Humans must intake fatty acids from 

food. Currently, humans primarily obtain them from deep-sea fish. Using algae to produce 

fatty acids has several advantages (Behrens et al., 1996; Griffiths et al., 2011). 1: The PUFA 

content of some microalgae can reach 5 % to 6 % of dry weight, and its relative content is 

higher than that accumulated by fish through the food chain (Hempel et al., 2012). 2: PUFA 

produced from algae has no fishy smell and does not contain cholesterol (Remize et al., 2021). 

3: The types of PUFA contained in some algae are relatively simple, making it easier to 

separate and purify single components (Guedes et al., 2011). 4: Algae grow quickly and can 

be cultivated using various incubators, and large-scale production can be achieved through 

precise control (Jayaraman et al., 2015; James et al., 2010). 5: Genetic modification can be 

carried out to increase its specific PUFA production (Ruiz-Lopez et al., 2015; Qi et al., 2020).  
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2.2 Polysaccharide 

Polysaccharides are natural macromolecular substances widely present in microalgae 

and are an important component of all biological organisms. They exhibits unique biological 

activity, can enhance the body's immune function, and participates in various crucial life 

processes (Feng et al., 2023; Liu et al., 2020). Microalgae polysaccharides are a type of 

organic matter synthesized by microalgae through photosynthesis and metabolism, and the 

majority of it possesses biological activity. In recent years, microalgae polysaccharides have 

emerged as a research hotspot. These polysaccharides exhibit various physiological functions, 

including antiviral, anticancer, anti-radiation damage, anti-aging properties, as well as the 

ability to lower blood lipids and regulate the body's immune system (Mader et al., 2016; 

Mishima et al., 1998; de Jesus Raposo et al., 2013). For example, Yim et al. extracted the 

sulfated exopolysaccharide p-KG03 from the red tide microalga Spirulina, which has 

anti-encephalomyocarditis virus (EMCV) activity. There is also a Spirulina platensis 

polysaccharide (PSP) that can interfere with the adsorption of herpes simplex virus HSV-1 to 

host cells (Hong et al., 2002; Liu et al., 2020). 

The polysaccharides produced by these algae also have a wide range of applications in 

the food, cosmetic, and pharmaceutical industries (Majee et al., 2017; Muthukumar et al., 

2021). 

2.3 Microalgae pigment 

Due to changes in environmental conditions, the types and content of pigments in algal 

cells may vary. In addition to chlorophyll, microalgae have a variety of accessory pigments 
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and secondary pigments, such as phycobilin, carotenoids, astaxanthin, and rock yellow 

pigments (Zhang et al., 2018; Gilbert-López et al., 2015).  

These natural pigments can enhance the utilization efficiency of light energy by algae, 

and some can also protect them (Ramanna et al., 2017). Some pigments also have biological 

activity, for example, carotenoids can delay aging, slow down cardiovascular disease, and 

enhance the body's immune response (Maria et al., 2015; Tan et al., 2019; Riccioni et al., 

2011; Alishahi et al., 2015; Gui et al., 2022). β-carotene, astaxanthin, etc. are all carotenoids 

(Figure 3). β-carotene can be converted into vitamin A in the human body (Lin et al., 2015).  

 

Figure 3 Structural representations of key functional carotenoids present in microalgae. 

Carotenes include β-Carotene (A), while xanthophylls comprise Lutein (B), Zeaxanthin (C), 

Astaxanthin (D), Fucoxanthin (E), Violaxanthin (F), β-Cryptoxanthin (G), and Canthaxanthin 

(H) (Ávila-Román et al., 2021). 

Among known algae, the highest β-carotene content is 9 % and 0.17 % of the cell by 

volume in Dunaliella salina and Spirulina platensis, respectively (Sui et al., 2019; da Costa 

Ores et al., 2016). Astaxanthin is a natural red pigment with strong antioxidant and anti-tumor 

activity and can enhance the body's immune response (Raza et al., 2021; Faraone et al., 2020). 
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It has broad application prospects in the food, feed, and pharmaceutical industries (Olaniran 

et al., 2023; Oslan et al., 2021). Microalgae rich in astaxanthin include Chlorella zofingiensis, 

Chlamydomonas nivalis, and Haematococcus pluvialis (Liu et al., 2014; Remias et al., 2005; 

Dong et al., 2014). Among them, they can accumulate large amounts of carotenoids under 

specific conditions, of which more than 75 % is astaxanthin, with a content exceeding 2 % of 

the cell dry weight (Shah et al., 2016; Orosa et al., 2001). Rock yellow pigments refer to a 

type of yellow-brown pigment in some algae that can be used as a pigment or a source of 

xanthophylls for animals and humans (Prasanna et al., 2007). Fucoxanthin is widely present 

in the algae, and includes various carotenoids and xanthophylls that have yellow-orange 

colorations (Maoka et al., 2020; Shahidi et al., 1998). Fucoxanthin has a wide range of 

antioxidant, anti-obesity, anti-diabetes, anti-inflammatory, and also has therapeutic and 

preventive effects on various cancers and tumors (Méresse et al., 2020; Bae et al., 2020). The 

current market price is relatively high, reaching US $ 40,000-80,000 /kg, and the price is still 

increasing (Abu-Ghosh et al., 2021; Joel, 2016). 

2.4 Phycobiliprotein 

Zeaxanthin is a water-soluble pigment protein primarily found in blue, red, cryptic, and 

a few dinoflagellates (Roy et al., 2011; Larkum et al., 2016). It serves as a collective term for 

phycocyanin (PC), phycoerythrin (PE), allophycocyanin (AP), and phycoerythrocyanin. In 

red and blue algae, diverse phycobiliproteins come together to form highly organized 

supramolecular complexes known as phycobilisomes, connected by linkage peptides, as seen 

on Figure 4 (Manirafasha et al., 2016; Parjikolaei et al., 2013). These complexes are anchored 
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to the surface of the light-harvesting membrane, functioning as the primary light-harvesting 

and supplementary light-harvesting pigment systems (Lokstein et al., 2021; Simkin et al., 

2022).  

Cryptic and certain dinoflagellate species possess soluble phycobiliproteins that bind to 

photosynthetic pigments. These proteins then form complexes with the chlorophyll protein 

complex, creating a supplementary light-harvesting pigment system (Larkum et al., 2016; 

Satpati et al., 2020). The types and content of phycobiliproteins vary in different algae 

(Osório et al., 2020). Phycocyanin and allophycocyanin are prevalent in both blue and red 

algae (Chandra et al., 2017). Phycoerythrin only appears in red algae and some blue algae 

(Sfriso er al., 2018; Tan et al., 2022). 

 

Figure 4 Schematic diagram of phycobilisome structure (Vernès et al., 2015). 

Zeaxanthin can be used as a natural pigment in food, cosmetics, dyes, and other 

industries, and can also be used to make fluorescent reagents for clinical medicine, 

immunology, biochemistry, and biotechnology research fields, with high development value 

(Imchen et al., 2023; Prasanna et al., 2007). It is mainly used in the following applications: 1. 

Natural pigments. Replace artificial dyes used in cosmetics and food additives. For example, 
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extracted from Spirulina platensis powder is a type of open-chain tetrapyrrole 

chromophore-containing phycobiliprotein (Ding et al., 2017). 2. Medicine. Phycobiliprotein 

can stimulate human B lymphocyte proliferation and improve the body's immune response 

(Chang et al., 2011). R-phycoerythrin can produce a specific immune response with insulin 

antibodies, which has a certain therapeutic effect on diabetes (Wang et al., 2020). 3. 

Fluorescent probe. After phycobiliprotein is covalently linked with other proteins, the 

fluorescence quantum yield and emission spectrum remain unchanged (Sun et al., 2003).  

In addition, phycobiliprotein has stable properties, high fluorescence quantum yield, low 

background interference, and easy linkage with biotin, antibodies, and glycoproteins (Pereira 

et al., 2020; Grabowski et al., 1978; Manirafasha et al., 2016; Glazer et al., 1990; Fairchild et 

al., 1991; Vinothkanna et al., 2020). It can be used as a new generation of fluorescent probes 

in clinical diagnosis, immunology, cell biology, histology, molecular biology, etc., replacing 

isotopes and enzymes as markers (Qiang et al., 2021; Sekar et al., 2008). 

2.5 Toxin 

Human beings have learned about shellfish toxins from poisoning incidents caused by 

eating toxic shellfish (Kao, 1993). However, research has found that the toxins are formed 

after the shellfish filter-feed toxic microalgae, causing the accumulation of microalgal toxins 

in the body or undergoing some chemical transformations (Landsberg, 2002). Microalgae are 

the initial producers of toxins (Hégaret et al., 2009). Currently, approximately 70-90 different 

microalgae species have been identified as toxin producers, with dinoflagellates comprising 

the majority, contributing to about 75% of the total. Additionally, certain species of 
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cyanobacteria and diatoms are capable of toxin production (Caruana et al., 2018; Lassus et al., 

2015). Based on the clinical symptoms of poisoning, microalgal toxins can be categorized 

into several types, including paralytic shellfish toxins, diarrhetic shellfish toxins, neurotoxic 

shellfish toxins, memory-loss shellfish toxins, and fish maw toxins (Caruana et al., 2018; 

Lassus et al., 2015; Caruso et al., 2015).  

Microalgal toxins are harmful to humans, but they are only intermediate metabolites in 

the growth process of algae and have biological activity and high development potential 

(Caruana et al., 2018; Lagos, 1998; Plumley, 1997). For example, some microalgal toxins are 

effective detoxification drugs that have certain effects on analgesia and anesthesia, 

spasmolysis, cough relief, and anticancer (Ismail et al., 2017; Luozao et al., 2022; Ślusarczyk 

et al., 2021; Stein et al., 1984; Keshri, 2012; Viviani, 1992). Selenium toxin mainly acts on 

ion channels in the nervous system and has a good cardiotonic effect (Araie et al., 2016; Ding 

et al., 2023). Diarrhetic toxin and active ingredient soft sponge acid are strong carcinogenic 

factors with unique carcinogenic mechanisms (López-Rodas et al., 2006; Cordier et al., 2000; 

Park et al., 2000). Unlike other carcinogens, they inhibit phosphatase activity, which is of 

great significance in studying cancer mechanisms and developing new anticancer drugs 

(Windust et al., 1996; Luu et al., 1993). Paralytic shellfish toxin has specific binding ability 

to sodium ion channels and is an important tool for molecular biology research (Zhang et al., 

2013; Durán-Riveroll et al., 2017; Cusick et al., 2013). 
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3 The application potential of the microalgae 

3.1 Medical applications 

Microalgae not only have rich nutritional value, but also are a very rich resource of 

high-value chemicals and medicines (Rahman, 2020; Barkia et al., 2019; Leu et al., 2014; 

Chew et al., 2017). Algal cells contain certain components that are difficult to obtain from 

other organisms, such as unsaturated fatty acids, astaxanthin, beta-carotene, and various 

bioactive substances, which have therapeutic and medicinal value (Leu et al., 2014; Chew et 

al., 2017). Currently, the use of microalgae to produce polyunsaturated fatty acids such as 

gamma-linolenic acid, EPA, and DHA can prevent and treat cardiovascular diseases, cancer, 

and regulate the function of the central nervous system and visual nervous system (Ma et al., 

2020; Kumar et al., 2019; Ulmann et al., 2017). Among them, the unsaturated fatty acids in 

spiral algae are mainly linoleic acid and gamma-linolenic acid, which have the effect of 

reducing blood plasma cholesterol levels (Ulmann et al., 2017; Horrobin et al., 1987).  

Currently, it is found that gamma-linolenic acid can also inhibit the reproduction of 

cancer cells (Jiang et al., 1997; Hrelia et al., 1996). Applying Dunaliella salina to obtain 

beta-carotene, clinical confirmation adds beta-carotene can successfully treat hereditary 

photosensitive diseases (Sui et al., 2019). It is a prerequisite for vitamin A, and in large 

amounts can prevent and cure vitamin A deficiency (Ismail et al., 2012; Marinoa et al., 2020). 

At the same time, it also has anti-cancer, prevention of cardiovascular glaucoma and immune 

function (Emtyazjoo et al., 2012; Badr et al., 2014). Beta-carotene has the antioxidant effect 

of eliminating oxygen free radicals, which can prevent aging, and can prevent and treat 
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tumors (Chen et al., 2021; Pryor et al., 2000).  

Astaxanthin also belongs to carotenoids, which can be obtained from Haematococcus 

pluvalis (Figure 5). It has a strong antioxidant ability to eliminate free radicals produced by 

ultraviolet radiation in the body, regulate and reduce these damages caused by photochemistry, 

and has a good therapeutic effect on skin cancer caused by ultraviolet radiation (Shah et al., 

2016). Spiral algae water-soluble polysaccharides and glycoproteins have the effects of 

anti-radiation, anti-oxidation, improving immunity, promoting lymphocyte transformation, 

and inhibiting cancer cell proliferation (Zheng et al., 2023; Sun et al., 2022; Sajadimajd et al., 

2019). Among them, phycocyanin has been used as a tracer and immunofluorescent agent in 

clinical medicine and as an anti-tumor drug (Jiang et al., 2017; Braune et al., 2021). Chlorella 

vulgaris cell digestion efficiency is low, which can be used as a food fiber to treat 

gastrointestinal system diseases (Panahi et al., 2016; Lv et al., 2022). 

 

Figure 5 Astaxanthin molecular structure (Gammone et al., 2015). 

3.2 Food applications 

After the First World War, in order to solve the shortage of protein, European scientists 

were the first to develop and study microbial protein feed (Adedayo et al., 2011; Ugalde et al., 

2002; Belasco, 1997). Their representatives are yeast and Chlorella. Now the practical 

microalgae that achieve mass production are only Spirulina platensis, Spirulina maxima and 

Dunaliella tertiolecta (Koller et al., 2014; EL-SAYED et al., 2018; Vonshak et al., 1988; 
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Borowitzka, 1990). Among them, Spirulina sp. contains more calcium, phosphorus, 

potassium, magnesium than milk, and is rich in trace elements, enzymes, and natural 

pigments, but the cholesterol content is very low (da Costa Ores et al., 2016). Therefore, 

Spirulina sp. has long been recommended by the Food and Agriculture Organization of the 

United Nations as the ideal health food for humans in the 21st century (Anvar et al., 2021). 

The annual output of global edible microalgae is only about 6000 tons (Faried et al., 2017). 

Microalgae are widely used in the food industry (Torres et al., 2020). Tableyogurt-shaped 

jujube powder can be used to produce food microalgae concentrated extraction liquid, which 

can be used as health food and food processing raw materials (Angiolillo et al., 2015). 

Microalgae contain a variety of nutrients and bioactive substances, which have the 

characteristics of health care and functional foods (Sun et al., 2018). Since the 1970s, Japan, 

the United States and Europe have successively developed health food products such as 

Spirulina platensis, Spirulina maxima and Dunaliella tertiolecta tablets or capsules, and have 

achieved mass production and sales (Lupatini et al., 2017; Wang et al., 2020). 

3.3 Feed 

Microalgae can be used as a potential protein source for various animals due to their rich 

nutritional value and ability to photosynthesize, release oxygen, and improve water quality 

(Yaakob et al., 2014). In addition, their moderate size allows them to be used directly as live 

feeds for aquatic animals such as mollusks, crustaceans, and sea cucumbers (Sun et al., 2018). 

They can also be used to cultivate zooplanktonic feeds such as rotifers, which serve as prey 

for larval stages of commercial aquatic animals such as shrimp, crab, and fish fry (Muller et 
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al., 2003; Zmora et al., 2013). Microalgae play an indirect role as feed in this process.  

Currently, the following microalgae species are cultivated and used as feed: Tetraselmis, 

Spirulina, Scenedesmus, Chlorella, and Isochrysis (Guedes et al., 2012; Nagappan et al., 

2021). Microalgae can also be used as feed additives due to their rich nutritional value, such 

as Chlorella being a potential protein source for various animals, and their high 

concentrations of valuable pigments such as β-carotene, astaxanthin, lutein, and fucoxanthin 

(Wang et al., 2018). These pigments are essential for the coloration of ornamental fish, 

shrimp, crab, salmon, and poultry yolks (Pasarin et al., 2018). 

3.4 Pigment 

Microalgae pigments play an important role in photosynthesis. Due to different species 

and environmental conditions, the types, and contents of pigments in microalgae cells may 

vary (Begum et al., 2016; Kuczynska et al., 2015). In addition to chlorophyll, diatoms also 

have a variety of accessory pigments and secondary pigments, such as phycobilin, 

carotenoids, etc. These natural pigments can not only promote the utilization efficiency of 

light energy by algae but resist the impact of sunlight rays and certain natural pigments also 

have biological activity and certain development and application value (Heydarizadeh et al., 

2013; Patel et al., 2022). For example, carotenoids can scavenge free radicals, delay aging, 

slow down the deterioration of cardiovascular diseases, and enhance the immune system 

(Patel et al., 2010). Beta-carotene, astaxanthin, and zeaxanthin are all carotenoids. 

Beta-carotene can be converted into vitamin A in the human body, enhance immune function, 

and prevent diseases. It can inhibit the relaxation of alveoli in mammals and mice, prevent 
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the cancer of hamster ovarian cells, and also be used as a food colorant in the food industry 

(Prasanna er al., 2007; Lin et al., 2015; Jomova et al., 2013; Kennedy, 1991). 

 Astaxanthin is a natural red pigment with strong antioxidant and anti-tumor activity 

and can increase the body's immunity and has a wide application prospect in food, feed, and 

medicine (Zhang et al., 2015; Ambati et al., 2014; Faraone et al., 2020). Microalgae rich in 

astaxanthin mainly include Chlorella vulgaris, Euglena gracilis, and Haematococcus 

pluvialis, among which Haematococcus pluvialis cells can accumulate a large number of 

carotenoids under specific conditions (Vidhyavathi et al., 2008; Cuellar et al., 2015; Boussiba, 

2000). Among them, more than 75 % is astaxanthin, with a content exceeding 2 % of the cell 

dry weight (Nobre et al., 2006). Zeaxanthin has positive effects on cardiovascular diseases 

protection and improving vision and immunity (Ribaya et al., 2004; Li et al., 2023; Bouyahya 

et al., 2021). 

3.5 New energy 

In the current world, the main fossil energy sources, such as oil, natural gas, and coal, 

are non-renewable resources, and their reserves have been decreasing and are expected to be 

exhausted in the near future (Arutyunov et al., 2017). In addition, the extraction and use of 

fossil energy also cause serious pollution to the environment (Omer, 2009). For example, in 

the oil and natural gas industry, there is a substantial risk of fuel leakage during extraction, 

transportation, and storage, especially in marine oil extraction and transportation. (Walker et 

al., 2019; Govorushko, 2013). In addition, in the refining process of oil and natural gas, a 

large amount of waste gas, wastewater, and toxic organic matter will be generated (Fakhru et 



 

 42 

al., 2009). The use of refined oil will also lead to the emission of pollutants such as nitrogen 

oxides, hydrogen sulfide, sulfur dioxide, and greenhouse gases such as carbon dioxide, which 

will harm the environment and climate (Lin et al., 2009; Szklo et al., 2007). In view of the 

limitations of fossil energy and environmental issues, exploring renewable and clean energy 

has become an urgent task. 

Although wind energy, solar energy, and hydrogen energy have made some development 

and application, there are still many shortcomings and limitations to make up for the shortage 

of fossil energy and replace fossil energy (Turkenburg et al., 2000; Halkos et al., 2020). 

Photosynthesis is a process that higher plants, algae, and cyanobacteria on Earth have the 

ability to perform. Through photosynthesis, plants can use natural light energy to take carbon 

dioxide in the air as the main raw material, and synthesize various organic compounds, 

carbohydrates, and lipids to meet their own growth needs. If these organic molecules are 

extracted, they can be made into various required bioenergy. Therefore, renewable biofuels 

produced based on green plants are highly regarded. 

Currently, the main types of biofuels produced globally include bioethanol, biodiesel, 

biohydrogen, and biogas (Demirbas, 2017). The sources of traditional biofuels are all food 

crops, and there are two main production methods: one is to produce bioethanol using corn or 

sugar cane as raw materials; the other is to produce biodiesel using soybean, palm oil and 

other oil crops as raw materials (Somma et al., 2010; Braide et al., 2016; Bušić et al., 2018; 

Pimentel et al., 2005). However, these crops are traditionally seen as food sources. If used in 

large quantities for biofuel production, it may have an impact on food supply (Rosillo et al., 
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2009; Meira et al., 2015; Pimentel et al., 2008). 

In addition, lignocellulose, which has a wide range of sources, can also be used as a raw 

material for bioethanol production (Balat, 2011). When using these raw materials to produce 

bioethanol, the proportion of cellulose, hemicellulose, and lignin in the crop has a certain 

impact on the production efficiency of bioethanol (Limayem et al., 2012; Balat, 2011; Mood 

et al., 2013). At the same time, to release fermentable components, complex pretreatment of 

raw materials is required, which has high costs and requires a large amount of enzymes 

during fermentation (Mood et al., 2013; Kong et al., 2011; Kucharska et al., 2018). These 

issues still need further research and solutions. At present, the production cost of biodiesel is 

relatively high, and large-scale application is still in its infancy. According to statistics, the 

main component of biodiesel preparation cost is raw material cost (Moser, 2009). Therefore, 

seeking low-cost oil and fat raw materials has become a key link in the development of 

biodiesel research and application. 

Currently, there is a contradiction and competition between many plant resources that 

can be used for the production of biofuels and food supply. Therefore, algae with 

photosynthetic systems and high oil content have great potential in the production of biofuels. 

Many algae have extremely high lipid content, and this special chemical property of lipids 

makes it possible for algae to produce biodiesel (Fon et al., 2013; Huang et al., 2018; Li et al., 

2008; Gouveia et al., 2009). The oil content in some algae can reach 80 %, and it can also 

reach 20 % to 50 % in common varieties (Song et al., 2008; Singh et al., 2011). As a 

sustainable energy source, biodiesel can be added to diesel at any ratio and applied to diesel 
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engines (Hoseini et al., 2017). Compared with wood, algae grow in a water environment and 

can grow vertically without lignin crosslinking (Jones et al., 2012). Therefore, the lignin 

content in algae is low, and the ratio of lignin to hemicellulose in algae is also low. In 

addition, the sugar content in algae is high, which can be used for fermentation production of 

bioethanol (Li et al., 2014). 

The cost of algal biodiesel is directly proportional to the efficiency of carbon 

sequestration by algae. Algae have the following advantages in producing bioenergy 

(Dalrymple et al., 2013; Kumar et al., 2020; Fortier et al., 2017; Smith et al., 2010; Moreira et 

al., 2016): 1. It can grow in wastewater, reclaimed water, and salt water, saving freshwater 

resources. 2. It has high biological yield and does not conflict with agricultural production. 3. 

While producing biofuels, high value-added products can be provided through other means. 4. 

Algae has a low demand for land. 5. Recover carbon dioxide in the air sufficiently to achieve 

green and renewable. 

Biodiesel produced from algae has several advantages: 1. Biodiesel is easily 

decomposed by bacteria in the environment. Regular fossil fuels, especially diesel with 

complex components, and are not easily biodegradable (Griffiths et al., 2011; Datta et al., 

2019; Zhang et al., 1998; Marchal et al., 2003). 2. Typically, biodiesel does not contain sulfur, 

aromatic hydrocarbons, or heavy metals (Tomic et al., 2014). It has high flash point, low 

toxicity, and low VOC content (Kralova et al., 2010). Biodiesel is less toxic to aquatic 

organisms than regular diesel (Khan et al., 2007). 3. It has good engine cold start 

performance. It can be used directly in existing diesel engines without any modifications 
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(Jiaqiang et al., 2019; Wang et al., 2000). Due to its ignition point of about 150 °C, which is 

higher than the ignition points of regular fossil fuels by 50 °C, it has good safety performance, 

making it easy for safe transportation and storage (Dharma et al., 2016). 4. Biodiesel is also 

an excellent lubricant that can effectively reduce wear on injectors, engines, and connecting 

rods, prolonging their service life (Gupta et al., 2021). In addition, studies on exhaust 

emissions from biodiesel have shown that the emissions of carbon monoxide, HCW, aromatic 

hydrocarbons, sulfur oxides, and carbon particles decrease as the biodiesel content in the fuel 

increases (Correa et al., 2006; Dincer, 2008). As a substitute fuel for diesel vehicles, biodiesel 

has lower emissions of toxic organic compounds, particulate matter, carbon dioxide, and 

nitrous oxides compared to regular diesel (Agarwal et al., 2011; Xing et al., 2002). 

Microalgae can convert the energy of photosynthetically active radiation into biomass 

through photosynthesis. They can also carry out heterotrophic metabolism in dark conditions 

and synthesize lipids (Chisti, 2007). However, the essence of bioenergy is an energy 

conversion process. Therefore, using artificial energy to cultivate microalgae is meaningless 

in the commercial production of bioenergy. The only way to achieve the commercial 

production of microalgae biodiesel is to use natural light for photosynthetic growth and lipid 

accumulation (Chisti, 2007). Currently, the main purpose of most commercial microalgae 

cultivation is to obtain relatively high-value co-products such as beta-carotene, lutein, 

astaxanthin, etc. Few companies currently produce commercial microalgae biodiesel due to 

high costs. However, the potential of microalgae as a clean energy source for the future is 

widely recognized (Greenwell et al., 2010; Chisti, 2010; Chisti, 2008). Whether microalgae 
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biodiesel can be commercialized in the near future depends on the resolution of key issues. 

These include finding a high-yielding oil-producing species suitable for large-scale 

cultivation and reducing the cost of such cultivation. The cost of microalgae biodiesel is 

mainly influenced by factors such as the oil production capacity of the algae, the performance 

of the cultivation system, and the cost of separation and extraction (Chisti, 2007). Currently, 

the academic community is conducting extensive research on these aspects, and the core issue 

lies in how to improve the oil production capacity of microalgae. This can be divided into 

two aspects: how to increase the growth rate of microalgae and how to increase the oil 

content of cells. Factors that affect the growth rate of microalgae include light intensity, 

temperature, PH, salt concentration, nutritional factors, and carbon dioxide concentration. 

Factors that affect lipid accumulation in microalgae include nutritional factors, temperature, 

light, salt concentration, and trace elements. 

4 Culture mode of the microalgae  

The foundation of the development of the microalgae industry lies in ensuring an 

adequate supply of biomass fuel, and the choice of microalgae cultivation model has a crucial 

impact on increasing the biomass yield of microalgae. Therefore, the cultivation model of 

microalgae has always been the core focus of research. At present, the mainstream cultivation 

models of microalgae include batch culture (i.e. one-time culture), fed-batch culture, 

semi-continuous culture, and continuous culture (Lee et al., 2015; Zhu et al., 2015; Peter et 

al., 2022; Zheng et al., 2013). 
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4.1 Batch culture mode 

Batch cultivation of microalgae has advantages such as simple operation and low cost, 

and is widely used in laboratories (Dębowski et al., 2020; Rawat et al., 2013). Under different 

conditions, such as light intensity, culture medium composition, pH value, and harvest time, 

the accumulation law of specific components in microalgae cells can be studied and the 

optimal culture conditions can be optimized. This provides a practical research method for 

artificial regulation of microalgae growth and improvement of specific product synthesis 

(Hiavova et al., 2015). The synthesis of some components in microalgae cells is closely 

related to the growth stage. In different growth stages, the content of each component in cells 

varies greatly (Fidalgo et al., 1998). For example, the total lipid content of some microalgae 

in the stationary phase is significantly higher than that in other stages. It is reported that the 

total lipid content at the end of the stationary phase is higher than that at the end of the 

logarithmic growth phase (Mansour et al., 2003). The lipid yield of Robaina at the stationary 

phase is 30 times that at the end of the logarithmic growth phase, while the total lipid content 

of Derxiat at the stationary phase is 1.3 times that at the logarithmic growth phase (Dunstan 

et al., 1993; Miller et al., 2014). Most microalgae can achieve massive accumulation of 

specific components under induced conditions, that is, in nutrient-limited or deficient 

conditions, they can synthesize large amounts of specific components (Yaakob et al., 2021; 

Rodolfi et al., 2009). Batch cultivation is conducive to strictly controlling induction 

conditions and is helpful to obtain target products. 

In recent years, using microalgae to treat wastewater has become a research hotspot, 
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aimed at removing pollutants such as nitrogen, phosphorus, or heavy metals from wastewater 

to reduce pollutant concentrations to meet discharge standards. Batch cultivation has 

advantages in this regard and can effectively remove pollutants, especially divalent metal ions, 

whose removal ability is better than that of other cultivation modes (Hmmouda et al., 1995; 

Smori et al., 2013). 

In summary, batch cultivation has simple operation and low cost and has wide 

applications in studying the growth and specific substance accumulation of microalgae. 

However, in batch cultivation, microalgae quickly consume nitrogen and phosphorus 

nutrients, which may lead to insufficient nutrition in the culture solution and limit algal cell 

growth and proliferation (Droop, 1975). Under these conditions, algal cells can accumulate 

specific substances such as oil and carotenoids. In recent years, batch cultivation has been 

widely used in two-step large-scale cultivation of cells for specific products. The first step is 

to provide sufficient nutrients for batch cultivation to accumulate high biomass; the second 

step is to achieve nutrient deficiency or limitation to increase the content of specific target 

products in microalgae cells. Therefore, batch cultivation has unique applications in 

large-scale cultivation for inducing oil production, astaxanthin production, carotenoid 

production, etc (Wehrs et al., 2019; Quinn et al., 2012). 

4.2 Fed-batch culture mode 

Fed-batch cultivation, also known as batch feeding cultivation, is a cultivation method in 

which one or more nutrients are added to the culture medium during the cultivation process 

(Minihane et al., 1986; Zheng et al., 2013). This technique is widely used in the cultivation of 
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microorganisms, animal, and plant cells, and has also been widely applied in the cultivation 

of microalgae (Yamanè et al., 2005; Coelho et al., 2014). 

In the cultivation of microalgae, nitrogen and phosphorus are the most important 

nutrients for the growth of microalgae, and they are also the nutrients that are consumed the 

fastest and most prone to deficiency during the growth process of microalgae. Adding too 

much nitrogen and phosphorus at one time may have inhibitory and toxic effects on the 

growth of microalgae (Yaakob et al., 2021). Therefore, using a fed-batch cultivation model 

can effectively avoid substrate volition and toxic effects, promote cell growth and metabolism, 

and obtain higher biomass and metabolites (Chen, 1996; Scherholz et al., 2013). 

Compared to batch culture, fed-batch culture can significantly increase the cell density 

and final biomass of microalgae (Shi et al., 2002). In addition, fed-batch culture plays an 

important role in enhancing the synthesis of specific metabolites in algal cells. Limiting 

fed-batch is a commonly used fed-batch culture method, which limits the concentration of 

nutrients in the culture solution by adding nutrients in low amounts. Limiting fed-batch of 

specific nutrients can promote the accumulation of specific substances in algal cells (Jeffryes 

et al., 2013; Wang et al., 2017; Dębowski et al., 2020).  

Fed-batch cultivation is divided into two methods: constant-rate feeding and 

variable-rate feeding. Constant-rate feeding is a method of gradually adding nutrients to the 

culture solution at a uniform flow acceleration, while variable-rate feeding is a method of 

nonlinear feeding based on the growth characteristics of the cultured organisms. Because 

variable-rate feeding can adjust the nutrient concentration in the microalgae culture solution 
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in real time based on the growth status of the algal cells, creating a more suitable 

environment for the growth of microalgae or the synthesis of certain metabolites, it is more 

suitable for high-density cultivation than constant-rate feeding, and is more conducive to 

biomass accumulation (Yamanè et al., 2005; Geada et al., 2017). 

Through fed-batch cultivation, especially variable-rate fed-batch cultivation, the 

concentration of nutrients in the algal cell growth process can be effectively regulated, 

maintaining the concentration of nutrients in the nutrient solution at an appropriate level 

(Geada et al., 2017). This can not only alleviate the inhibitory and toxic effects caused by 

high initial nutrient concentrations, greatly shorten the lag phase of algal growth, but also 

effectively solve the problem of nutrient limitation in batch cultivation, ensuring the 

continuous supply of nutrients (Geada et al., 2017; Panikov, 1995). Moreover, the addition of 

nutrients in the fed-batch cultivation mode is simple and easy to operate, which can stimulate 

the high accumulation of secondary metabolites while increasing the biomass of algal cells 

(Cao et al., 2022; Sun et al., 2021). In the cultivation of microalgae, especially in 

high-density cultivation, fed-batch culture plays an important role (Zheng et al., 2013). 

4.3 Semi-continuous culture pattern 

Semi-continuous cultivation is a cultivation method based on one-time cultivation. 

When the algal cells reach a certain concentration, a certain amount of algal solution is 

harvested and supplemented with an equal amount of culture medium to continue cultivation. 

Semi-continuous cultivation is not only widely used in large-scale cultivation, but also a 

common cultivation mode in microalgal laboratory research (Solís et al., 2021; Benvenuti et 
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al., 2016; Gojkovic et al., 2021; Hewes, 2016). During semi-continuous cultivation, the use of 

fresh culture medium to replace equal amounts of original culture medium at regular intervals 

increases the nutrients in the culture medium, reduces the biological density, increases the 

light transmittance, and thus enhances the photosynthetic efficiency of the algal cells, 

resulting in faster growth rate and better growth condition of the algal cells (Hewes, 2016; Fu 

et al., 2012; Liu et al., 2019; Han et al., 2016). 

The renewal rate, as one of the most important parameters in the semi-continuous 

cultivation mode, has a significant impact on the growth and intracellular biochemical 

components of microalgae. In many cases, the renewal rate of semi-continuous cultivation of 

microalgae is 20 % to 30 % (Fábregas et al., 1998). For example, H. pluvialis and freshwater 

microalgae. At a renewal rate of 20%, the cell yield reaches a maximum, significantly higher 

than other renewal rates (Gonçalves et al., 2022; Luo et al., 2016). 

In recent years, there have been more and more studies on the application of 

semi-continuous cultivation in the accumulation of microalgae oil (Hsieh et al., 2009; Ho et 

al., 2014). Practice has proved that the semi-continuous cultivation mode is one of the best 

cultivation methods for the large-scale production of biodiesel from microalgae (Ashokkumar 

et al., 2014; Boonma et al., 2019; Dębowski et al., 2020). Under the semi-continuous 

cultivation mode, the optimal renewal rate of different microalgae varies, and the optimal 

renewal rate of microalgae in different cultivation systems also varies greatly (Imamoglu et 

al., 2010; Rosales et al., 2004; Luo et al., 2016). Therefore, in semi-continuous cultivation, it 

is necessary to select the appropriate renewal rate according to different seeding and 
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cultivation systems to improve the biomass production of large-scale cultivation of 

microalgae. 

4.4 Continuous culture mode 

Continuous culture is a cultivation method that maintains a stable growth environment 

for cells in the reactor by adding fresh culture medium to the cultivation system at a constant 

flow rate and removing culture medium at the same flow rate (Del Río et al., 2015; Bougaran 

et al., 2010; Palmer et al., 1975). This stable environment helps cells grow and metabolize in 

a relatively constant state, allowing for stable, high-speed cultivation of microalgae or the 

production of large amounts of metabolites (Palmer et al., 1975). The dilution rate is a key 

parameter in a continuous culture that has a significant impact on biomass production, cell 

yield, and metabolite accumulation of microalgae (San et al., 2013). Within an appropriate 

range of dilution rates, the biomass of microalgae increases as the dilution rate increases; 

however, if the dilution rate is too high, the cells cannot grow sufficiently and are washed 

away, resulting in a decrease in biomass. Research shows that each microalgae has an optimal 

dilution rate for continuous culture (Pereira et al., 2018; Sánchez et al., 2008). 

During continuous cultivation, when microalgae cells are exposed to a specific dilution 

rate, their growth and metabolic activities are relatively stable. This environment is conducive 

to the efficient synthesis of certain important metabolites by microalgae cells. Compared to 

batch cultivation, continuous cultivation is more conducive to the accumulation of certain 

intracellular metabolites in microalgae cells. Therefore, continuous cultivation has unique 

advantages in stabilizing high-yield microalgae biomass and producing certain important 
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metabolites (Peter et al., 2022; Fernandes et al., 2015). 

Different cultivation modes have significant effects on the accumulation of microalgal 

biomass and the synthesis of intracellular metabolites. Therefore, selecting an appropriate 

cultivation mode, especially based on the requirements of the target product, can improve the 

microalgae biomass and the yield of the target product (Dębowski et al., 2020). This helps to 

reduce the cultivation cost of energy microalgae, shorten the cultivation time, and provide 

strong support for the development of the energy microalgae industry. With the advancement 

of science and technology, the microalgae industry will receive more attention, and the 

cultivation mode will play an increasingly important role in the industrialization process of 

microalgae. 

5 Culture equipment for the microalgae 

5.1 Photobioreactor 

Light bioreactors are devices specifically designed for the cultivation of photosynthetic 

microorganisms and tissues or cells with photosynthetic capabilities. Their structure is similar 

to that of general bioreactors, with regulation and control systems for culture conditions such 

as light, temperature, dissolved oxygen, carbon dioxide, pH, and nutrients. However, unlike 

bioreactors used for microbial fermentation, light bioreactors are primarily concerned with 

the efficiency of light energy absorption and do not require an aseptic operation, eliminating 

the need for equipment sterilization systems in the design (Posten et al., 2009; Yusoff et al., 

2019; Xu et al., 2009). Ideal light bioreactors should have high light energy utilization 

efficiency, which can reach 18 % under ideal conditions, and allow continuous or 
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semi-continuous cultivation around the clock to achieve high density cultivation of 

microalgae and high biomass production yields per unit area or volume (Pulz et al., 2006). 

Research on light bioreactors began in the 1940s, when the main goal was to cultivate a 

large number of microalgae and explore whether they could serve as a future food and fuel 

resource for humans. Since the 1950s, people have developed various closed light bioreactors, 

such as horizontal tubular, vertical tubular, and flexible belt types. However, these pioneering 

works were neglected for a long time and were only used as samples (Borowitzka et al., 2012; 

İhsan et al., 2020). 

Open-pond cultivation systems have developed well due to their advantages of simple 

technology, low investment, easy construction, and simple operation (Dragone et al., 2010). 

They have been successfully used for large-scale cultivation of various microalgae such as 

Spirulina, Chlorella, achieving good results (Costa et al., 2019). 

Despite the rapid progress in the research on light bioreactors, there is still a significant 

gap between land-based bioreactors and fermentation industries. Firstly, there is currently no 

mature light bioreactor product that can be produced in batches. Users can only make their 

own according to their understanding and needs, leading to a stagnant development status of 

the light bioreactor industry. Secondly, there is a significant difference between design 

concepts and practical applications. So far, there is a lack of truly industrialized products. 

Finally, due to the limited number of microalgae that can be cultivated on a large scale and 

the lack of in-depth research on the application of light bioreactors for cultivating microalgae, 

especially in the industrial cultivation of transgenic algae, it has limited the development of 
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light bioreactors (Yusoff et al., 2019). 

To further promote the development of light bioreactors and applied research on 

high-density cultivation of microalgae, efforts need to be made in the following areas: 

1. Strengthen the research on the design and manufacturing of light bioreactors to 

improve light energy utilization efficiency and cultivation efficiency. 

2. Explore efficient cultivation methods and optimize cultivation conditions for different 

microalgae species. 

3. Strengthen the research on microalgae transgenic technology and apply it to improve 

the production quantity and quality of microalgae. 

4. Promote industrial production and application of light bioreactors to accelerate the 

rapid development of the microalgae industry. 

5.1.1 Open mode photobioreactor 

Open pond photobioreactors, also known as open pond culture systems, have significant 

advantages such as simple structure, low cost, and easy operation (Benemann, 2008).  

 

Figure 6 Race pound reactor (Rayen et al., 2019). 
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These reactors can be categorized into four main types: open pond reactors, raceway 

pond reactors, circulation pond reactors, and shallow pond reactors. Among them, the most 

typical and commonly used open pond culture system is the raceway pond reactor designed 

by Oswald in 1969 (Borowitzka et al., 2012; Chisti, 2013). 

This system mainly consists of a closed elliptical ring water tank, and the culture 

solution inside the tank is driven by a set of paddles. Nutrients required for microalgae are 

added online, for example, in front of the rotating paddles (Figure 6). Simultaneously, mature 

biomass can be harvested behind the rotating paddles. The design of the rotating paddles 

facilitates the thorough mixing of microalgae and the necessary nutrients, carbon dioxide, and 

other gases, preventing the settling of microalgal cells.  

Since the development of open pond culture systems, there have been some 

improvements in aspects such as mixing and online detection systems, but the overall 

structure has not changed significantly. It is the oldest type of algae cultivation reactor, more 

accurately described as a microalgae cultivation system. The application of such cultivation 

systems in production typically involves circular shallow ponds with an area of 1000 to 5000 

square meters and a culture depth of 15 centimeters. The rotation of the impeller circulates 

the culture solution in the pond, preventing algal settling and improving the light energy 

utilization efficiency of algal cells (Borowitzka et al., 2012; Costa et al., 2019; Benemann et 

al., 1996; Sreekumar et al., 2016).  

Despite various attempts by scholars to increase mixing effects and induce turbulence, 

such as using drag baffles, continuous flow, tidal aeration, liquid injection, helical propellers, 
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stirring pump circulation, and relying on gravity-driven flow, or even utilizing natural sources 

like wind and sunlight, as well as animals or humans, the system still has many weaknesses, 

including susceptibility to contamination and unstable cultivation conditions. Consequently, 

its photosynthetic efficiency remains low, resulting in low cell density of cultivated algae, 

typically ranging from 0.1 to 0.5 g/L (Kumar et al., 2015; Shen et al., 2009).  

Although there have been numerous studies and improvements in the design and 

application of open pond systems since their introduction, they still have several 

shortcomings. Firstly, they are vulnerable to environmental influences, making it difficult to 

maintain suitable temperature and light conditions. Secondly, they may be prone to 

contamination by dust, insects, and miscellaneous microbes, making it challenging to 

maintain high-quality monoculture. Additionally, their light energy and carbon dioxide 

utilization rates are not high, preventing high-density cultivation. These factors contribute to 

low cell cultivation density, leading to higher harvesting costs (Lee, 2001; Borowitzka, 1999; 

Sreekumar et al., 2016).  

Furthermore, microalgae suitable for large pond cultivation must be species capable of 

rapid growth in extreme environments, limiting the use to a few microalgae such as Spirulina, 

Chlorella, and Diatoms that can tolerate extreme conditions. For microalgae requiring mild 

cultivation conditions and having weaker population competition abilities, closed 

photobioreactors are the preferred method of cultivation (Borowitzka, et al., 2012). But now, 

more open-pond systems have been developed to meet various cultivation (Andersen, 2005; 

Sreekumar et al., 2016). However, the primary reason for the continued widespread use of 
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open pond culture systems is their low cost, which aligns better with the current stage of 

algae production and development. Although closed cultivation can ensure optimal growth 

conditions for algae, its drawbacks are evident, including the inability for large-scale 

production, increased costs, and hindrance to the widespread adoption of algae production at 

the current stage, making it less attractive to potential investors. 

5.1.2 Closed mode photobioreactor 

A closed cultivation system or photobioreactor is typically constructed using transparent 

materials, offering excellent light transmittance (Koller et al., 2015; Benemann, 2008; 

Grobbelaar et al. 2009). Apart from harnessing solar energy and possessing certain flexible 

characteristics, it shares many similarities with traditional bioreactors used in microbial 

fermentation. Despite having a history of 50 years, closed photobioreactors have garnered 

increased attention in the past decade, with numerous related patents emerging since the 1990 

s (Masojídek et al., 2010). 

In comparison, closed photobioreactors exhibit the following characteristics (Grobbelaar 

et al. 2009; Chacón et al., 2010; Yen et al., 2019): 

Pollution-free, capable of achieving singular and purebred cultivation. 

Cultivation conditions are easy to control. 

High cultivation density, facilitating easy harvesting. 

Well-suited for light exposure to all microalgae, especially conducive to the production 

of metabolic products of microalgae. 

Highlights include a higher ratio of lighted area to cultivation volume and efficient 
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utilization of light energy and carbon dioxide. 

In contrast to open cultivation systems, closed systems face greater limitations on 

cultivation scale (Fernández et al., 1999). In recent years, the development and utilization of 

closed photobioreactors have progressed rapidly, achieving high-density commercial 

cultivation (Dogaris et al., 2015). Common types of closed photobioreactors include 

pipeline-based, flat-panel, columnar acoustic, stirred, fermenter, and floating thin-film bag 

systems (Chang et al., 2017; Lehr et al., 2009; Koller et al., 2015; Pulz, 2001; Yen et al., 

2019). 

5.2 Major advantages and disadvantages of open and closed photobioreactors 

According to structural characteristics, open photobioreactors typically adopt a raceway 

pond structure, which is relatively simple, easy to scale up, and cost-effective. However, due 

to their relatively small area and volume, they exhibit lower light utilization efficiency 

(Chang et al., 2017; Xu et al., 2009; Grobbelaar, 2009). In contrast, closed photobioreactors, 

represented by a closed tubular structure, have a more complex design, are challenging to 

scale up, and are associated with higher costs. However, they boast a larger area and volume, 

resulting in higher light utilization efficiency (Chang et al., 2017; Xu et al., 2009; Grobbelaar, 

2009). 

Regarding cultivation characteristics, open photobioreactors are simple to operate but 

challenging to control in terms of cultivation conditions and growth parameters. The 

cultivation environment is unstable, prone to contamination, and achieving sterile cultivation 

is difficult. Additionally, they have lower carbon dioxide utilization efficiency, higher 
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evaporation of moisture from the culture medium, and lower productivity (Chang et al., 2017; 

Xu et al., 2009; Grobbelaar, 2009; Yen et al., 2019; Pulz, 2001). 

Closed photobioreactors are similarly easy to operate, with easy control over cultivation 

conditions and growth parameters. They provide a stable cultivation environment, are more 

easily controlled for contamination, and facilitate sterile cultivation. They exhibit high carbon 

dioxide utilization efficiency, lower evaporation of moisture from the culture medium, and 

higher productivity (Chang et al., 2017; Xu et al., 2009; Grobbelaar, 2009; Yen et al., 2019; 

Pulz, 2001). 

In terms of production costs, open photobioreactors have lower costs but produce 

products of relatively lower quality. In contrast, closed photobioreactors have higher 

production costs but correspondingly higher product quality. 

In summary, open and closed photobioreactors each have their advantages and 

disadvantages (Chang et al., 2017; Xu et al., 2009; Grobbelaar, 2009; Yen et al., 2019; Pulz, 

2001). Open photobioreactors offer the advantages of simple structure, ease of scaling up, 

and lower costs, but with relatively lower light utilization efficiency. Closed photobioreactors, 

on the other hand, have the advantages of a larger area and volume, higher light utilization 

efficiency, but with a more complex structure, challenging scaling-up processes, and higher 

costs. In terms of cultivation characteristics, closed photobioreactors are more easily 

controlled for cultivation conditions and growth parameters, enabling sterile cultivation and 

improved carbon dioxide utilization efficiency. In production costs, open photobioreactors are 

more cost-effective but produce products of relatively lower quality, while closed 
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photobioreactors have higher production costs but correspondingly higher product quality. 

Summary 

Algae, as a class of organisms with tremendous potential, are poised to play a significant 

role in future development, spanning a wide range of fields such as food, energy, medicine, 

and environmental protection. In the realm of food, algae, rich in proteins, vitamins, and 

minerals, are considered a crucial component of the future food industry. It is anticipated to 

become a primary raw material for a variety of food products, including algae proteins and 

algae oils, meeting the growing demand for healthy and nutritionally rich food. 

Simultaneously, algae are set to experience opportunities in the energy sector. With its fast 

growth, high biomass, and oil-rich characteristics, algae are well-suited for bioenergy 

production. The renewable energy derived from algae, such as biodiesel and bio-natural gas, 

boasts lower carbon emissions and environmental impact, heralding a revolutionary shift in 

traditional energy industries. In the field of medicine, ongoing research into algae is 

uncovering its richness in bioactive substances with antioxidant, anti-inflammatory, and 

anti-tumor properties. Widely applied in pharmaceutical research and production, it is 

anticipated that more algae-based formulations will enter the market, contributing to the 

prevention and treatment of various diseases. The environmental role of algae is expected to 

intensify, given its capacity to absorb significant amounts of carbon dioxide while releasing 

oxygen. The large-scale cultivation and application of algae are envisioned as crucial 

measures for mitigating climate change and improving ecological conditions. 

The future cultivation methods of algae are poised to make progress in multiple facets. 
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Optimization of light exposure and engineering design will focus on enhancing 

photosynthetic efficiency, ensuring appropriate light conditions at different growth stages. 

Biotechnology and genetic improvement techniques will be employed to enhance traits, such 

as stress resistance, growth rate, and yield. Emphasizing the principles of a circular economy, 

efforts will be directed toward comprehensive nutrient utilization from waste and sewage, 

lowering cultivation costs. The introduction of large-scale production and automation systems 

will enhance efficiency, reduce labor costs, and ensure consistency in product quality. The 

development of versatile algae cultivation systems will cater to diverse application needs, 

including symbiotic cultivation with other organisms for resource complementarity and 

efficient utilization. 

In conclusion, through scientific research and technological innovation, harnessing algae 

resources is crucial for driving sustainable development across various industries. The future 

algae industry should resonate with diversification, efficiency, and sustainability, emerging as 

a vital force in addressing challenges related to food, energy, medicine, and the environment, 

contributing significantly to the progress of human society. 

Knowledge gap 

Currently there are several knowledge gaps: 1. Large-scale algal cultivation is mostly set 

up in limited area (coastal areas). 2. There are various photobioreactors for different 

situations, and the production cost is high. 3. Algae cultivation price still high (land 

occupation, hydro costs etc.). 4. There is a lack of real-time detection methods during the 

algae growth process. 
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Objectives of the work 

As marine pollution continues to intensify, the breeding of marine microalgae and 

cultivation in inland areas has become a new direction. The experiment selected two types of 

marine microalgae, Chrysotila dentata and Nannochloropsis oceanica as research subjects. 

Chrysotila dentata is a marine microalga that is rich in oil and can absorb carbon dioxide to 

synthesize CaCO3 shells (coccoliths) and has various application potentials; Nannochloropsis 

oceanica is widely used in aquacultural feed. The cultivation of both algae faces different 

problems: Chrysotila dentata is more fragile and requires harsher growth conditions. As for 

the outdoor cultivation of Nannochloropsis oceanica, the selection of photobioreactor and 

cultivation sites has always been an important part of its production process. So, this 

experiment has the following goals: 

⚫ Explore the optimal product accumulation conditions and growth conditions of 

Chrysotila dentata, and the effect of light on its calcium carbonate and lipid 

accumulation. 

⚫ Explore the growth and accumulation of valuable products of Chrysotila dentata in 

the presence of bacteria. 

⚫ Explore low-cost nitrogen sources in the process of Nannochloropsis oceanica and 

the feasibility of outdoor small-scale breeding. 

⚫ Explore the advantages and disadvantages of new photobioreactor and low costs 

photobioreactor, as well as the growth changes and oil accumulation of 

Nannochloropsis oceanica in outdoor long-term cultivation. 
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Chapter 2 Optimization of Chrysotila dentata Lipid and Calcium Carbonate 

Production: Influences from Polyethylene Terephthalate and Algae-Bacterial Symbiotic 

System 

Abstract 

The marine microalgae Chrysotila dentata shows potential for producing oil and fixing 

carbon dioxide to calcium carbonate, making it a promising candidate for carbon 

neutralization applications. However, cultivating this species both indoors and outdoors 

presents many challenges. Our study illustrated the optimal photoperiod for C. dentata 

growth is 18L/6D, with a culture pH of 8.5 and a salt concentration of 2.5 %. The optimal 

algal-bacterial ratio for the Algal-Bacterial Symbiotic System (ABSS) with Chrysotila 

(Pleurochrysis) dentata and Nitratireductor aquibiodomus was determined to be 8:2. We also 

examined the impact of microplastic PET on the ABSS. A suitable amount of micro-PET 

(5-15 mg/L) promotes rapid algae growth, but high concentrations of microplastic (20-50 

mg/L) slow the algal growth. 

  

 

 

Keywords: Chrysotila dentata, Nitratireductor aquibiodomus, lipids, calcium carbonate, 

Algal-Bacterial Symbiotic System (ABSS), carbon neutralization
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1 Introduction 

Due to energy crises, food shortages, and carbon dioxide emissions, microalgal studies 

have become more and more popular. As essential primary producers, microalgae exhibit 

rapid growth, generating rich organic matter through photosynthesis. Algae also remove 

carbon dioxide and nutrients from water, releasing oxygen into the atmosphere and 

accumulating various lipids, proteins, and carbohydrates (Rai et al., 2000; Judd et al., 2015; 

Singh et al., 2013; Li et al., 2008; Rahman, 2020; Barkia et al., 2019; Leu et al., 2014; Chew 

et al., 2017). Almost 70 % of the oxygen in the atmosphere is contributed by algae, 

surpassing the combined contribution of all forests (Rai et al., 2000; Proksch, 2013). 

Algae can survive in wide array of different environments, including forests, under polar 

ice sheets, in subglacial soil, in the hottest and driest deserts, in swimming pools, aquariums, 

and waterways (Williamson et al., 2020; Andersen, 1992; Chapman et al., 2006). Their 

structure, it enables algae not only to survive in extremely harsh environments but also to 

produce high-value biomass (Seckbach, 2015).  

The marine microalgae Pleurochrysis dentata, also known as Chrysotila dentata 

(Andersen et al., 2015), can utilize bicarbonate in the environment to synthesize CaCO3 shells 

(10 % of algal dry weight). Additionally, its lipid content can reach 33.61 % of the algal dry 

weight (Marsh, 1999; Marsh, 2003; Chen et al., 2019). Due to its excellent carbon dioxide 

fixation ability and high oil production rate, C. dentata holds potential applications in carbon 

neutralization and biofuel production (Moheimani, 2005; Nimer & Merrett, 1993; Sikes et al., 

1980). 



 

 108 

Many photoautotroph organisms in the dim sea are not green because surface water 

absorbs red and violet light, which chlorophyll cannot efficiently absorb. In the deep ocean, 

algae and phytoplankton rely on accessory pigments, also called 'mask pigments' to harvest 

blue and green light and then transfer that energy to chlorophyll molecules for photosynthesis 

(Rowan, 1989; Haxo, 1960). Accessory pigments can mask the green appearance of 

chlorophyll. As a result, the algae have a yellow-brown or red appearance (Calkins, 2011; 

Haxo, 1960). Light has been shown to be linked with the occurrence of algal bloom and algal 

growth. (Zhou et al., 2008; Zhou et al., 2018; Riebesell et al., 2007). C. dentata presents a 

brown color, and the optimal photoperiod for its indoor growth is unclear.  

Since the industrial revolution, burning of fossil fuels has affected marine pH, impacting 

the marine ecosystem (Fabry et al., 2008; Riebesell et al., 2007). Previous studies have 

investigated the CaCO3 accumulation of C. dentata in different pH environments (Song et al., 

2014). However, during algal cultivation, medium evaporation can lead to an increase in salt 

concentration (The typical ocean salinity is 3.5%). Therefore, identifying algae with wide 

salinity tolerance poses a challenge in both indoor and outdoor microalgae cultivation (Belay, 

1997; Packer, 2009). Microalgae with broad adaptability to salt concentration can be 

cultivated over a wider range and in different regions, exhibiting good adaptability to 

variations in salt concentration caused by evaporation and precipitation. Furthermore，after 

several generations of indoor cultivation, algae may show a weakened state, possibly leading 

to death (de Oliveira, 2020). The hypothesis suggests that the presence of bacterial pollution 

may lead to the algal death. Previous studies reported that bacteria are present in 
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open-raceway ponds and all types of open cultivation systems (Benemann, 1996; Huntley et 

al., 2007; Packer, 2009). Nitrifying bacteria oxidize ammonia nitrogen into nitrite and nitrate 

ions, which are widely used in aquaculture (Urakawa et al., 2020). 

Nevertheless, marine microalgae cultivated in inland and small-scale indoor conditions 

still have challenges. Therefore, this experiment focuses on investigating suitable conditions 

for the indoor cultivation of C. dentata and algae-bacterial symbiotic system. 

The optimal photoperiod for C. dentata growth was determined, aiming to                                                                 

accumulate more valuable bioproducts. This experiment further explores the accumulation of 

lipids and CaCO3 under different salt concentrations. This research also investigates whether 

Nitratireductor aquibiodomus promotes or inhibits the growth of C. dentata and the changes 

in algal biomass under symbiosis. 

2 Methods and materials 

2.1 Algal and bacteria strain  

Chrysotila (Pleurochrysis) dentata was kindly provided by Dr. Fan Lu, Hubei University 

of Technology, China. Whereas bacterial strain Nitratireductor aquibiodomus was isolated 

from the previous C. dentata culture medium. 

2.2 Lipid measurement 

The chloroform-methanol extraction method was used for algal lipid content 

measurement (Bligh & Dyer, 1959). The procedure is as follows: 

Dried algal powder (0.01 g) was transferred to a 1.5 mL centrifuge tube (T0). Then 

chloroform, methanol, and water were added to make the volume ratio of 1:2:0.8. Following 
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thism the solution was mixed by a sonicator at 30 KHz for 30 seconds. After that, the solution 

was vortexed for 3-5 minutes. Then, centrifugation was done at 13,800 g for 3 minutes and 

the supernatant was transferred to a 15 mL tube. The above process was repeated three times. 

All supernatants were combined in the 15 mL tube, then water and chloroform were added, to 

make the final chloroform: methanol: water volume ratio was 1:1:0.9, mixed well and stood 

the 15 mL tube until the liquid layers separated. The bottom layer was then transferred to a 

pre-weighed tube (M1) and placed it in a fume hood overnight. Dried the tube (M1) in oven 

at 105 ℃ until the weight stabilized. The tube was weighed and recorded as M2 (g). To 

calculate the total lipid content, use the following equation:  

  

2.2 Optimization of cultural conditions 

2.2.1 Algal culturing and sample collection under different photoperiods, pH, and 

salinity 

C. dentata was cultured in f/2 medium (Chen et al., 2019) under six different 

photoperiods: 10L/14D, 12L/12D, 14L/10D, 16L/8D, 18L/6D, and 20L/4D, each with three 

repetitions. Similarly, the cultural conditions for C. dentata were optimized under five 

different pH values of the f/2 medium were set: 6, 7, 8, 8.5, and 9, and six different salinity 

concentrations (Instant Ocean® sea salt): 1.5 %, 2.5 %, 3.5 %, 4.5 %, 5.5 %. The initial cell 

number of algae was 1×106 per liter. Algal samples were collected on Day 0, Day 10, Day 15, 

Day 20, Day 25, and Day 30. For the determination of algal weight, 200 mL of algal medium 

was collected by centrifugation at 2400 g for 10 minutes and then dried in a 105 ℃ oven for 
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24 hours. 

2.2.2 Algal culturing and sample collection under different algae bacteria ratio 

The 11 algal-to-bacterial inoculation ratios (Table 1) were created to investigate the 

influence of bacteria on algal growth. The algae and bacteria were cultivated in 2 L of f/2 

medium with an 18-hour light/6-hour dark cycle, pH of 8.5, and a salt concentration of 2.5 %. 

Algae and bacteria in the logarithmic growth stage were selected, and both were present at a 

cell number of 1×106 per liter. 

Table 1 The ratio of Chrysotila dentata and Nitratireductor aquibiodomus 

Chrysotila dentata: Nitratireductor aquibiodomus volume ratio 

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10 

2.3 Algal culturing and sample collection under different concentrations of PET 

In this experiment, polyethylene terephthalate (PET) powder (Goodfellow™, England) 

with a maximum particle size of 300 microns and white color was used. Different 

concentrations of microplastic PET (0 mg/L, 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L, 

30 mg/L, 35 mg/L, 40 mg/L, 45 mg/L, 50 mg/L) were added to the culture medium to explore 

the effects of microplastics on algae-bacteria symbiosis. Based on the results from 

optimization of cultural conditions, a 2.5 L glass photobioreactor was used for the experiment 

with 2 L of f/2 medium, 18-hour light/6-hour dark cycle, pH of 8.5, 2.5 % salt concentration, 

and an algae-to-bacteria volume ratio of 8:2. 

2.4 Calcium carbonate measurement 

The ethylenediaminetetraacetic acid (EDTA) complexometric titration method was used 

for calcium content measurements (Chen et al., 2019). The procedure is as follows:  
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In a 1.5 mL centrifugation tube (T1), 1 mL of 75 % ethanol was mixed with 0.01 g of 

dry C. dentata powder to start the decolorization steps. T1 was then transferred to an 80 ℃ 

water bath for 30 minutes followed by centrifugation at 13,800 g for 3 minutes with the 

resulting green supernatant being discarded. This step was repeated until the solution became 

colorless. 1.5 mL of HCl (2 N) was added into the decolorized sample in T1 and then 

incubated in an 80 ℃ water bath for 30 minutes to remove CO2. After that, the supernatant 

was collected by centrifugation at 13,800 g for 3 minutes. Then, the EDTA complexometric 

titration method was used to measure calcium ions in the supernatant [35]. Supernatant (1 mL) 

was mixed with 800 μL of dd-water, 4.5 mL of calcium indicator ammonium triacetate 

(20 %), and 1 mL of NaNO3 (20 %). Then the pH was adjusted between 12.5 and 13. After 

that, 200 μL of calconcarboxylic acid (5 mg/mL) was added followed by 0.02 M of 

EDTA · 2Na added drop by drop until the color changes red to blue (the color was maintained 

for at least 30 seconds). Using the following equation calcium ion content (mg/L) was 

calculated: 

  

M: standard solution molar concentration of EDTA. 

a: The volume (mL) of used EDTA during the titration. 

V: Sample volume (mL). 

The atomic weight of calcium: 40.08. 

2.5 Scanning electron microscope (SEM) 

The Scanning Electron Microscope (SEM) was used to observe the CaCO3 shell of C. 
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dentata (Calvert et al., 1976). The steps used are as follows: (1) Fixed C. dentata cells using a 

2.5 % to 3 % concentration of glutaraldehyde with a pH ranging between 6.8 and 7.4. C. 

dentata cells were placed in the glutaraldehyde fixation solution for 30 minutes (Chen et al., 

2019). (2) The fixed C. dentata cells were then dehydrated using gradient concentrations of 

ethanol (50 %, 60 %, 70 %, 80 %, 90 % and 100 %), with a soak time of 15 minutes for each 

concentration. (3) These samples were kept in -80 °C freezers until use. (4) Before SEM 

analysis, the samples were transferred from -80 °C freezers to a freeze dryer (LABCONCO 

freezone 12, Kansas City, MO, USA) for 24 hours. 

2.6 Chlorophyll α measurement 

The chlorophyll α content of C. dentata was measured using the methanol extraction 

method (Chen et al., 2008). In this experiment, a quicker chlorophyll α measurement method 

was used. The steps are as follows: 

C. dentata (1 g) was collected by centrifugation at 13,800 g for 3 minutes and discarded 

the supernatant. The collected algae were mixed with 1 mL of methanol and placed in a 50 ℃ 

water bath for 5 minutes, vortexing occurred 2-3 times during the water bath. Then, the 

sample was immediately cooled to room temperature, and centrifuged at 13,800 g for 3 

minutes. The supernatant was transferred into a 1.5 mL centrifugation tube, and then 

methanol was added to make the final volume 1 mL. The above steps were repeated until the 

samples were not green. The optical density of the methanol extract was measured against a 

methanol blank at 665 nm and 750 nm using an Epoch™ Microplate Spectrophotometer 

BioTek®. The chlorophyll α concentration was determined by using the following equation:  
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U = the final methanol volume 

V = the sample volume. 

2.7 Box-Behnken design (BBD) for optimizing the bioproduct production. 

The optimization of growth conditions for algal dry weight, lipid content, calcium 

content, and chlorophyll α in the culture medium was conducted using the Response Surface 

Methodology (RSM). Based on the results of single-factor experiments, the Box-Behnken 

design (BBD) was employed, selecting three factors with three levels each. The RSM model 

was constructed using Design-Expert 10 software (Stat-Ease, Inc., USA), incorporating the 

BBD table. To assess the goodness of fit of the second-order polynomial model equation, an 

F-test was conducted with the R² coefficient and lack of fit set at a significance level of 5 %. 

Additionally, the highest production of algal dry weight, lipid, calcium, and chlorophyll α, 

along with the corresponding culture conditions, was calculated based on the RSM model. 

2.8 Statistical Analysis 

All experiments were conducted in triplicate. The results obtained from these triplicates 

underwent statistical analysis using the one-way ANOVA function in IBM SPSS® software. 

For comparison, we employed Duncan’ s multiple-range test, with a significance level 

(P-value) set at 0.05. The statistical significance results for CaCO3, lipid, and chlorophyll α 

contents are individually reported in the supplementary information file.  
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3 Results and discussion  

3.1 The results of optimum photoperiod for C. dentata growth 

The algal samples were collected on day 0, day 10, day 15, day 20, day 25, and day 30. 

After 30 days of cultivation, the highest algal dry weight (0.24 g/ 200 mL) was observed in 

the 20L/4D photoperiod, higher than the other photoperiod groups. 

 

Figure 1 Bioproducts of C. dentata under different photoperiods. a: Algal dry weight. b: 

Lipid content. c: Calcium carbonate content. d: Chlorophyll α 

However, rapid growth does not necessarily translate to better accumulation of other 

bioproducts. Algae tend to consume energy rather than accumulate substances during rapid 

growth (Packer, 2009). Our results also support this perspective; the lowest lipid 

accumulation in C. dentata occurs under the 20L/4D photoperiod (Figure 1-b). When the 

photoperiod is 14L/10D, C. dentata exhibits the highest lipid content on the 15th day, 
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constituting 39.22 % of algal dry weight, which is higher than the known 33 % lipid content 

of C. dentata (Moheimani et al., 2006). The second-highest lipid content was observed under 

18L/6D photoperiod, at 34.18 %. 

From figure 1-c, C. dentata accumulated more CaCO3 when the light period was long. 

Under the 20L/4D photoperiod, C. dentata exhibits the highest calcium content on day 15, 

reaching 7.97 % of the algal dry weight. The second-highest calcium content was observed in 

18L/6D photoperiod, which took 6.55 % of the algal dry weight. 

The hypothesized function of C. dentata' s CaCO3 shell was to shield it from external 

mechanical forces (Chen et al., 2019). However, the results of this experiment showed 

another potential function of the C. dentata shell. It may serve to protect C. dentata from 

light damage by blocking strong light and reducing the impact on coccolith. 

Thus, scanning electron microscopy (SEM) was used on C. dentata cultivated under 

different photoperiods to assess potential alterations in the thickness of the CaCO3 shell. 

Algae from Day 15 were selected for SEM analysis. Based on the SEM results (Figure 2), we 

utilized the thickness of the outer tube of the V unit coccolith as the criterion. 

The coccolith thickness was found to increase with prolonged illumination duration. 

Specifically, under a 20L/4D light cycle, the outer tube of the V unit measures 132 nm 

(Figure 2-f). In contrast, the thickness is reduced to 70.7 nm under a 10L/14D light cycle 

(Figure 2-a), and the second thickest outer tube is observed under an 18L/6D photoperiod, 

measuring 98.5 nm. The result indicates that the most suitable light intensity for C. dentata 

CaCO3 shell accumulation is under a 20L/4D photoperiod. 
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a: 10L/14D b: 12L/12D 

  

c: 14L/10D d: 16L/8D 

  

e: 18L/6D f: 20L/4D 

  

Figure 2 Coccolith thickness of C. dentata grown under different photoperiods. a: 10L/14D; 

b: 12L/12D; c: 14L/10D; d: 16L/8D; e: 18L/6D; f: 20L/4D. 

Our findings confirm that the photoperiod influenced the shell thickness of C. dentata. 
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This also presented new ideas for improving the carbon fixation capacity of C. dentata, which 

was to extend the photoperiod appropriately or place the cultivation photobioreactors in an 

open area with more light. Further research is needed to determine whether C. dentata can 

mitigate the damage caused by excessive light by increasing the thickness of its shell. 

The results for chlorophyll α exhibited a similar trend to that of the algal dry weight. 

Under the 20L/4D photoperiod, C. dentata showed the highest chlorophyll α content, at 

4.00mg/g (Figure 1-d). The second-highest chlorophyll α content, at 2.04 (mg/g), was 

observed under the 18L/6D photoperiod on day 30. The experimental results showed positive 

correlation between light intensity and chlorophyll α content. 

3.2 Optimization of cultural conditions 

3.2.1 The results of optimum pH values for C. dentata growth 

At a pH of 9, C. dentata exhibited the highest dry weight, with the second-highest dry 

weight observed in C. dentata grown in a medium at pH 8.5 (Figure 3-a). One fascinating 

observation from this experiment was that C. dentata autonomously regulated the pH of its 

surrounding environment (Figure 4). Previous studies have highlighted that Emiliania huxleyi 

produces dimethylsulfur (DMS) during its growth (Van Rijssel et al., 2002). Dimethyl 

sulfoniopropionate (DMSP) is commonly found in marine phytoplankton cells. After 

decomposition, it can be converted to DMS and enters the atmosphere which forms acid rain 

(Charlson et al., 1987; Kirst et al., 1991; Cuhel et al., 1987; Van et al., 2002; Stefels, 2000). 
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Figure 3 Bioproducts of C. dentata under different pH values. a: Algal dry weight. b: Lipid 

content. c: Calcium carbonate content. d: Chlorophyll α 

From Figure 4, the pH value in the pH 9 group consistently decreased. The other four 

experimental groups’ pH values were increased from day 0 to day 5. After day 5, the pH 

values gradually decreased, and stabilized around 7.5 by day 30. We hypothesized that after 

day 5, C. dentata begins to secrete dimethylsulfur (DMS) during its growth (Need to be 

verified in future experiments). 
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Figure 4 The changes of medium pH value when C. dentata growth. 

In Figures 3-b and 3-c, When the medium pH value was 8.5, it showed the highest lipid 

and CaCO3 content, reaching 33.88 ± 1.95 % and 11.08 ± 0.73 % of algal dry weight, 

respectively. Conversely, when the medium was adjusted to a pH of 6, the content of both 

lipid and CaCO3 was relatively low. 

The results of pH on chlorophyll α content differed from the results of pH on lipid and 

CaCO3 content. The optimum pH environment for C. dentata chlorophyll α accumulation was 

at pH of 8.5 (12.64 mg/mL). The lowest amount of chlorophyll α appeared at pH 6 on day 30. 

3.2.2 The results of optimum salinity for C. dentata growth 

The salt concentration was not constant, whether in a laboratory culture, an outdoor 

open culture, or the natural marine environment, factors such as natural evaporation, river 

estuary discharge, and rainfall contribute to continuous salinity fluctuations (Summer et al., 

2005). The experiment cultured C. dentata at different salt concentrations to observe the 

effects of salt concentration on algal growth. According to the results of figures 5, C. dentata 

salinity tolerance range was 1.5 % to 3.5 %. High salinity levels, such as 4.5 % and 5.5 %, 
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have an inhibitory effect on the growth of C. dentata. 

As shown in Figure 5-a, the optimal salinity for achieving the highest C. dentata dry 

weight was 2.5 %, reaching 0.1696 g on day 25. Interestingly, when salinity was 4.5 % and 

5.5 %, the algal dry weight remained almost unchanged. 

 

Figure 5 Bioproducts of C. dentata under different salt concentrations. a: Algal dry weight. b: 

Chlorophyll α. c: Lipid content. d: Calcium carbonate content. 

The C. dentata cultures exhibited the highest chlorophyll α content (6.86 mg/g) when 

cultivated with 2.5 % salinity on day 25. In contrast, when the salinity was set at 3.5 %, the 

chlorophyll α content only reached 5.65 mg/g on day 25. Notably, elevated salinity levels, 

such as 4.5 % and 5.5 %, were found to inhibit the accumulation of algal chlorophyll α. 

The lipid content of C. dentata increased from day 0 to day 10 across all five salinity 

levels (Figure 5-c). However, a notable difference emerged after day 10: the lipid content in 
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the 3.5 %, 4.5 %, and 5.5 % salinity groups began to decrease, while the lipid content in the 

1.5 % and 2.5 % salinity groups continued to increase. From Figure 5-c, the optimal salt 

concentration for lipid accumulation was 2.5 %, at 32.57 % of algal dry weight. 

Under five different salinity conditions, CaCO3 content exhibited an increasing trend 

from day 0 to day 10 in all five groups (Figure 5-d). However, after day 10, the CaCO3 

content showed a decreasing trend in the 1.5 %, 2.5 % and 3.5 % salinity groups. However, in 

the 4.5 % and 5.5 % salinity groups, the CaCO3 content remained stable after day 10. When 

salinity was 3.5 %, the highest CaCO3 content reached was 9.68 % of C. dentata dry weight 

on day 15, then the CaCO3 content began to decrease. 

In summary, the optimal salt concentrations for algal dry weight, chlorophyll α and lipid 

accumulation were 2.5 %, for calcium accumulation a salinity of 3.5 %. Although it is 

generally recommended to use a salinity of 3.5 % for the f/2 medium, our results indicated 

that the standard f/2 medium salinity was not suitable for C. dentata. 

3.4 Optimization of algal dry weight, lipid content, calcium content, and chlorophyll α 

content using response surface methodology 

Response surface methodology (RSM) is a commonly used statistical approach for 

optimizing the production of bioproducts. It not only provides guidance during the 

optimization process but also explains the interactions among several factors. Response 

surface methodology plays an important role in the algae-related industries, enabling 

large-scale production of specific products.  
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Table 2 Box-Behnken design for optimizing bioproducts from C. dentata. 

Run 

A: 

Photoperiod 

(h) 

B: 

pH Value 

C: 

Salinity (%) 

Algal dry 

weight (g) 

Lipid 

content % 

Calcium 

content % 

Chlorophyll 

α content 

1 16 8 2.5 0.5573 31.9 8.81 1.57 

2 20 8 2.5 0.6456 32.22 9.43 2.58 

3 16 9 2.5 0.6499 32.36 9.51 2.62 

4 20 9 2.5 0.67 32.59 9.63 2.67 

5 16 8.5 1.5 0.4866 31.76 8.6 1.23 

6 20 8.5 1.5 0.5833 32.02 9.11 1.79 

7 16 8.5 3.5 0.5891 32.12 9.29 1.99 

8 20 8.5 3.5 0.6899 32.97 9.93 2.99 

9 18 8 1.5 0.4915 31.85 8.72 1.39 

10 18 9 1.5 0.5667 31.97 8.96 1.66 

11 18 8 3.5 0.6709 32.71 9.73 2.7 

12 18 9 3.5 0.6723 32.86 9.86 2.87 

13 18 8.5 2.5 0.7499 33.89 10.71 3.89 

14 18 8.5 2.5 0.7293 33.51 10.41 3.71 

15 18 8.5 2.5 0.7351 33.62 10.52 3.75 

16 18 8.5 2.5 0.7598 33.97 10.89 3.98 

17 18 8.5 2.5 0.7403 33.72 10.65 3.79 

For instance, optimizing the conditions for algae lipid accumulation can facilitate the 

production of biodiesel, and further optimization for algae metal adsorption enhances its 

application value (Hallenbeck et al., 2015；Hasnain et al., 2023; Jaafari et al., 2019). In other 

fields, such as optimizing the production conditions of enzymes, RSM has also found 

extensive application (Bandal et al., 2021). After further optimization through BBD and 

design matrix, the production results of algal dry weight, lipid content, calcium content, and 

chlorophyll α content are detailed in Table 2.   

The photoperiod (A: 16 hours, 18 hours, 20 hours), initial medium pH (B: 8, 8.5, 9), and 

salinity (C: 1.5 %, 2.5 %, 3.5 %) were selected as independent factors, while algal dry weight, 

lipid content, calcium content, and chlorophyll α content were set as response values. 
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Following statistical analysis using response surface methodology, the relationship between 

algal dry weight, lipid content, calcium content, and chlorophyll α content and individual 

factors can be expressed by the following formulas:  

 

The results of the analysis of variance (ANOVA) for the model are presented in 

supplementary material Table S1 to 4. The R-squared values for algal dry weight (0.9795), 

lipid content (0.9744), calcium content (0.9759), and chlorophyll α content (0.9872) indicate 

that many of the response values (dependent variables) can be explained by the independent 

variables and the equation.  

The p-values for the regression and lack-of-fit tests for the four bioproducts were all 

greater than 0.001. Based on the results of lack of fit, the results for algal dry weight (0.0947), 

lipid content (0.4944), calcium content (0.5751), and chlorophyll α content (0.1223) 

suggested that the established quadratic equation was relatively reliable in explaining the 

impact of these independent factors on bioproduct production, and there was no lack of 

fitness issues. 
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 Photoperiod vs pH Photoperiod vs salinity pH vs salinity 

A
lg

al
 d

ry
 w

ei
g

h
t 

 

   

L
ip

id
 c

o
n

te
n

t 

   

C
al

ci
u
m

 c
o
n
te

n
t 

 

   

C
h
lo

ro
p
h
y
ll

 α
 

   

Figure 6 The 2-D counter plots of the established RSM model indicate the interaction 

between different individual factors. 

The 2D contour plots of the equation in Figure 6 illustrated that optimal values for algal 

dry weight (0.755 g), lipid content (33.787 %), calcium content (10.697 %), and chlorophyll 
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α content (3.913 mg/g) can be achieved under the tested conditions (Photoperiods: 18.485 L; 

pH value: 8.549; Salinity: 2.604). Additionally, the elliptical shape of all contour plots 

suggested that these variables were influenced by the interaction between independent factors. 

The equation and contour plots illustrated that the duration of light exposure had the most 

significant impact on dry weight, lipid content, calcium content, and chlorophyll α content. 

Next in significance were the pH value and salinity. However, this did not imply that salinity 

and pH had an insignificant impact on the products; on the contrary, all three factors played a 

crucial role in the accumulation of products, as indicated by the results.  

Based on the equation within the range of the BBD design, it was predicted that under 

the conditions of 18 hours of light, medium pH 8.5, and 2.5 % salinity, the highest dry weight 

of C. dentata could reach 0.7595 ± 0.09 g, the highest lipid content of dry weight could reach 

33.97 ± 0.77 %, the highest calcium content could reach 10.89 ± 0.74 % of algal dry weight, 

and the highest chlorophyll α content possible is 3.98 ± 0.94 mg/g. It was anticipated that the 

impact of cultivation conditions on the production of these various components might be 

slightly flexible, depending on the target product. 

This finding held significant implications for algal cultivation in controlled indoor 

small-scale environments. However, if we contemplate expanding the cultivation setting to 

the outdoors, a more comprehensive consideration of factors such as natural patterns and 

economic costs is required for a better optimization of cultivation conditions to adapt to 

diverse environments. This systematic optimization approach is poised to enhance the 

efficiency and sustainability of algal production, offering valuable guidance for future 
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research and industrial applications. 

3.5 The results of optimum algae and bacteria ratio for C. dentata growth 

During the algal culturing process, algae appeared to being poor state after several 

generations of cultivation, and in some cases, they even died, blocking the culture 

continuation. It was speculated that the algal mediums were contaminated by bacteria, 

leading to weakened growth and eventual death (Ji et al., 2018; Li et al., 2023; Saravanan et 

al., 2021). A bacterial strain, Nitratireductor aquibiodomus, was subsequently isolated from 

the suboptimal algal culture medium, confirming the speculation. 

 

Figure 7 Bioproducts of C. dentata under different algal- bacterial ratios. a: Algal dry weight. 

b: Chlorophyll α. c: Lipid content. d: Calcium carbonate content. 

The challenge in algae application production is the presence of bacteria, and whether 

the relationship is symbiotic or competitive needs exploration. In this experiment, symbiosis 
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tests were conducted using marine microalgae C. dentata and bacteria Nitratireductor 

aquibiodomus to examine the changes in biological products under different algal-bacterial 

inoculation ratios and the growth status of algae. 

According to the results in Figure 7-a, except for the algal-bacterial 0:10 group, all other 

groups exhibited increasing dry weight from day 0 to day 25. The group with algal-bacterial 

ratio of 9:1 showed the highest dry weight on day 25 (0.17 g). The dry weight ranking from 

high to low on day 25 was as follows: 9:1 > 8:2 > 7:3 > 6:4 > 5:5 > 10:0 > 4:6 > 3:7 > 2:8 > 

1:9 > 0:10. 

  

Figure 8 The growth situation of different algal- bacterial ratio on Day 10 (From left to right: 

10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10). 

Photos taken on day 10 (Figure 8) revealed interesting phenomena. When algal-bacterial 

ratio was 10:0, the algal showed light yellow color. The population of C. dentata was higher 

from an algal-bacterial ratio 9:1 to 5:5 than 4:6 to 0:10. 

The results from chlorophyll α analysis indicated that the combination of C. dentata and 

N. aquibiodomus could influence chlorophyll α accumulation (Figure 7-b). The highest 

chlorophyll α content was 8.06 mg/L and observed when the algal-bacterial ratio was 8:2 on 

day 30, followed by 7.17 mg/L with 7:3 algal-bacterial ratio. From Figure 7-c, the 6:4 group 

exhibited the highest lipid content on day 10, accounted for 33.95 % of the dry weight. The 
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second highest lipid content on day 10 was observed in the 7:3 group at 33.38 %, followed by 

the 8:2 group at 33.05 %.  

These findings suggest that the growth of C. dentata was not entirely independent of N. 

aquibiodomus. Compared to the group without bacteria, when C. dentata inoculation was 

high, N. aquibiodomus could coexist and even promote the growth of C. dentata. However, 

excessive inoculation of N. aquibiodomus could inhibit the growth of C. dentata. The results 

indicated that C. dentata' s lipid accumulation was influenced by N. aquibiodomus, especially 

from 0 to 10 days, when N. aquibiodomus enhanced lipid accumulation. Excessive bacteria 

could induce stress on C. dentata growth, leading to nutrient accumulation in algae to survive. 

This explained why, after 10 days, the group with a larger bacterial content showed a 

downward trend in lipid content. 

In the figure 7-d, a peak was observed on day 10. Among these, the highest 

accumulation of CaCO3 occurred when the algal-bacterial ratio was 8:2, accounted for 

10.83 % of the dry weight. Followed by ratio 9:1, where CaCO3 accounted for 10.09 % of the 

dry weight. The 10:0 group contained 8.62 % of dry weight in CaCO3. After day 10, the 

accumulation of CaCO3 continued to increase in most groups where bacteria dominated. 

However, in groups where algae were predominant, the accumulation of CaCO3 gradually 

decreased. All groups began to level off at day 15. Also, it was evident from Figure 7-d that 

the optimal algal-bacterial ratio for CaCO3 content accumulation is 8:2 on day 10. 
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3.6 Effects of polyethylene terephthalate on algal-bacterial symbiotic system. 

 The algal growth under different PET concentrations 
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Figure 9 The algal growth under different PET concentrations on day 10, 15, 20, 25, 30 

(from left to right the PET concentration is 0 mg/L, 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 

mg/L, 30 mg/L, 35 mg/L, 40 mg/L, 45 mg/L, 50 mg/L). 

Through the four tests conducted under the conditions of a photoperiod of 18L/6D, pH 

of 8.5, 2.5 % salinity, and an algal-bacterial ratio of 8:2, the impact of microplastic PET on 

the growth state of the algal-bacterial symbiotic system was observed. Photobioreactor 

images from the experiment are shown in Figure 9 which illustrates PET concentrations from 

20-50 mg/L slow the growth of C. dentata, primarily by blocking light. Interestingly, 

concentrations around 5 mg/L to 15 mg/L promoted C. dentata growth (Figure 9). 

The algal-bacterial symbiotic system containing a high concentration of PET showed 
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significant growth starting from day 20. This may have been due to PET providing an 

attachment for algae. The size of microplastic PET used in this experiment was 300 microns, 

significantly larger than C. dentata (around 5 microns) cell size. The microplastic’ s larger 

size offered attachment points for C. dentata, potentially reducing damage caused by shear 

forces (Packer, 2009). This phenomenon also provides insight into how microplastics enter 

the food chain. Algae predators consume the mixture of algae and microplastics, with the 

microplastic eventually entering the human body through the food chain (Leslie et al., 2022).  

This finding suggests a novel approach to microplastic collection, using algae to capture 

microplastics and subsequently recovering the algae-microplastic mixture. 

Alternatively, the ABSS may have degraded PET as a carbon source which merits 

further exploration in future research. Nevertheless, when micro-PET concentration was 50 

mg/L, it could inhibit the growth of C. dentata by obstructing light and diminishing 

photosynthetic efficiency. In contrast, C. dentata growth slowed down due to microplastic 

PET blocking light, but bacteria N. aquibiodomus remained unaffected. When the population 

of N. aquibiodomus exceeded that of C. dentata, as suggested by our Algal-Bacterial ratio 

experiment, N. aquibiodomus could inhibit the growth of C. dentata, presenting a challenging 

situation for the algae. 

On day 10, algal dry weight revealed a small peak (Figure 10-a), with concentrations of 

5 mg/L, 10 mg/L, and 15 mg/L of PET in the medium exhibiting high dry weights of 0.0649 

g, 0.0726 g, and 0.0627 g, respectively. This phenomenon occurred because the low 

concentration of microplastic PET minimally blocks light, and concurrently provides an 
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attachment point for C. dentata, enabling faster growth. In contrast, when the microplastic 

PET concentration was 0 mg/L, the dry weight was 0.0439 g, indicating slower dry weight 

accumulation in the absence of micro-PET. This observation indicated that C. dentata 

experienced accelerated growth in the presence of attachment points, or that proper shading 

was beneficial for C. dentata growth. On day 30, the highest dry weight was observed when 

the microplastic PET concentration was 25 mg/L, at 0.1787 g (Figure 10-a). 

 

 

 

 

Figure 10 Bioproducts of C. dentata under different PET concentrations. a: Algal dry weight. 

b: Chlorophyll α. c: Lipid content. d: Calcium carbonate content. 

From day 0 to day 10, the medium containing 15 mg/L micro-PET exhibited the highest 

chlorophyll α content (Figure 10-b), measuring 0.9962 mg/g. By day 30, the chlorophyll α 

content peaked at 5.4673 mg/g, which was observed in the medium with 25 mg/L micro-PET. 
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The second-highest chlorophyll α content was 4.4712 mg/g, occurring at 20 mg/L 

microplastic PET.  

The lipid content revealed three peaks (Figure 10-c): the first on day 10, the second on 

day 20, and the third on day 25. Without microplastic PET in the medium, the highest lipid 

accumulation occurred on day 10, accounting for 10 % of algal dry weight. Across all groups, 

the medium with 20 mg/L PET exhibited the highest lipid content on day 20, reaching 

18.98 %. On day 25, the medium without any micro-PET displayed the highest lipid content 

at 17.24 % of algal dry weight. On day 10, high concentrations of micro-PET (30-50 mg/L) 

inhibited lipid accumulation. Microplastics obstruct light, reducing photosynthesis efficiency 

(Liu et al., 2019). 

On day 10, the maximum accumulation of CaCO3 was 7.1 % when the PET 

concentration was 10 mg/L (Figure 10-d). On day 15, the content of CaCO3 decreased when 

the medium contained 0 mg/L and 30 mg/L to 50 mg/L of micro-PET. However, in the 

medium with lower PET content (5 to 25 mg/L), the CaCO3 accumulation slightly decreased. 

From day 10 to day 30, CaCO3 levels remained between 5 % and 7 %. 

Combined with previous results (Figures 1-c, 3-c, 5-d, 7-d), the general trend of CaCO3 

accumulation peaks from day 10 to 15 and then stabilizes. However, the amount of CaCO3 

fluctuates after day 15 In the culture medium containing PET. It was speculated that high 

PET concentrations caused collisions with each other, resulting in the detachment of algae 

attached to the microplastics.  

Previous studies showed that the shell of C. dentata is formed by many coccoliths 
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crossing over each other (Chen et al., 2019; Kazuko et al., 2011). This structure implied that 

even if one or two coccolith fall off, it did not impact the whole, and the alga could 

synthesize the coccolith again. In other words, C. dentata undergoes a cycle of shading 

coccoliths, followed by a regrowth of the coccoliths, and then a shading of coccoliths again. 

This explains why the results show fluctuations up and down. 

Conclusion 

The optimal culture condition for C. dentata was photoperiod 18L/6D, pH 8.5, salinity 

2.5%. And the optimum algal-bacterial ratio of C. dentata to N. aquibiodomus is 8:2.  

Microplastics (micro-PET) had impact on algal-bacterial growth. Interestingly, 5–15 

mg/L of microplastics promoted algal growth. However, high concentrations of microplastics 

(20-50 mg/L) slow the algal growth. 
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Supplementary materials 

Table S1. The Analysis of Variance table for the RSM model of algal dry weight. 

  

Table S2. The Analysis of Variance table for the RSM model of lipid content. 

  

  

Table S3. The Analysis of Variance table for the RSM model of calcium content. 
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Table S4. The Analysis of Variance table for the RSM model of chlorophyll α content. 
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Chapter 3. The Optimal Cultivation of Nannochloropsis oceanica and Outdoor 

Small-scale Breeding Throughout the Four Seasons  

Abstract 

Microalgae, due to their rapid growth, ability to absorb carbon dioxide, and high lipid 

accumulation, have the potential to address energy, climate, and food crises. We analyzed 

various culture conditions affecting a feed algae species, Nannochloropsis oceanica. The 

results indicated that 0.5 g/L of urea was a suitable nitrogen source for N. oceanica 

cultivation, while using ammonium chloride should be avoided. The salt concentration for 

cultivation should be maintained between 2.5 % and 3.5 %. Outdoor experiments revealed 

that N. oceanica is a cold-tolerant algae species; excessively high temperatures (over 30 ℃) 

are not conducive to its cultivation. It is recommended to provide adequate shading during 

the summer. Chlorophyll fluorescence provides real-time monitoring of growth inhibition 

factors, aiding in timely adjustments to cultivation conditions. 
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1 Introduction 

Nannochloropsis oceanica is a type of microalgae belonging to the Chlorophyta phylum, 

widely found in marine and freshwater environments. Nannochloropsis oceanica is typically 

spherical or elliptical, with a small diameter (Heimann et al., 2015). It is widely distributed in 

various water bodies globally, especially in warm marine environments. Nannochloropsis 

oceanica exhibits strong adaptability to light and moderate salinity levels, allowing it to 

thrive and reproduce in diverse aquatic environments (Martínez et al., 2014; Bartley et al., 

2013; Wahidin et al., 2013). Nannochloropsis oceanica has garnered attention in 

biotechnology due to its rapid growth and rich lipid content. The lipids, primarily 

triglycerides (TAGs), can be extracted to produce biofuels such as biodiesel or other valuable 

bioproducts (Ma et al., 2016). Additionally, biomass derived from Nannochloropsis oceanica 

can be utilized as bait, feed, and biofertilizer. It serves as an excellent source of omega-3 

polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA), and is recognized as 

one of the most promising producers of EPA (Sukenik et al., 1989; Renaud et al., 1991). 

Since the late 1980s, N. oceanica has emerged as the primary algae employed in 

numerous aquaculture hatcheries across Europe. This species has effectively supplanted 

commonly used algae such as Isochrysis galbana and Monochrysis sp., significantly 

contributing to EPA levels in the food web (Sukenik et al., 1993; Lubzens et al., 1995, 1997). 

Cultivating N. oceanica serves two main purposes: (1) serving as the primary or partial feed 

for rotifer production; and (2) feed for aquatic farm and creating a "green water effect" in fish 

larval ponds (Lubzens et al., 1995). 
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Currently, several standard cultivation methods exist, including (1) using polyethylene 

bags of 100 or 150 liters, (2) using polyethylene bags or transparent fiberglass columns of 

400-800 liters for batch or continuous cultivation, (3) utilizing large outdoor circular or 

rectangular ponds (e.g., from 8000 to 300,000 L), which can be outdoor ponds (Renaud et al., 

1991) or outdoor racetrack ponds (Lubzens et al., 1995; Hoffman, 1999). 

Chlorophyll fluorescence analysis is a technique for determining and diagnosing plant 

activity based on the principles of photosynthesis. By utilizing chlorophyll within plant cells 

as a natural probe, this method facilitates the study and detection of the photosynthetic 

physiological status of plants, as well as the influence of external factors on them (Murchie et 

al., 2013; Kalaji et al., 2017; Daley, 1994). Its advantages, such as rapidity, sensitivity, and 

non-invasiveness to cells, make it an exceptional tool for investigating plant photosynthesis 

(Ni et al., 2019). With the ongoing development of modulated fluorescence techniques, the 

application scope of chlorophyll fluorescence has progressively expanded into various fields, 

including plant ecology, agronomy, forestry, limnology, and environmental science (Murchie 

et al., 2013).  

The chlorophyll fluorescence technique allows for real-time assessment of the 

photosynthetic efficiency in algae (Kumar et al., 2014; Oxborough et al., 2004). By 

measuring chlorophyll fluorescence parameters, it provides a comprehensive understanding 

of their utilization efficiency of light energy and the overall health of the photosynthetic 

process (Solovchenko et al., 2022). In algal cultivation, facing various environmental 

stressors such as high temperature and high salinity, the chlorophyll fluorescence technique 
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can monitor the impact of these stressors on algae, aiding in identifying their physiological 

status and adaptive capabilities (Bazzani et al., 2021).  

Obtaining sodium nitrate in some countries and regions is difficult due to cost and safety 

concerns. Therefore, choosing more economical nitrogen sources for algal cultivation has 

become a significant issue. Thus, the objectives of this experiment are to find the optimal 

nitrogen sources and salinity for N. oceanica growth by using the chlorophyll fluorescence 

technique, and exploring the feasibility of outdoor small-scale breeding across all seasons. 

2 Methods and materials 

2.1 Algal strain 

Marine algae N. oceanica was kindly provided by Dr. Lu Fan, Hubei University of 

Technology, China. 

2.2 Algal cell optical density measurement  

  The 5 mL algae liquid was measured every day using a UV spectrophotometer to 

determine its optical density at 680 nm (OD 680). 

2.3 Algal cultivation 

 This experiment was conducted indoors and outdoors, cultivating N. oceanica using an 

f/2 medium with 3.5 % salinity (Sea Salt), in a 700 mL columnar bioreactor (Guillard, 1975). 

Indoor cultivation involved 24-hour exposure to fluorescent light (3000 Lux) and aeration 

(0.6 L min-1). The outdoor experimental part relied on natural light and air pump for 

cultivation. 
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2.4 Algal cell count 

At the initial stage of cell counting, there was no need to dilute when the cell 

concentration was low. The mixed algae solution (10 μL) was taken onto a Hemocytometer, 

covered with a cover slip, and the algae were counted in 25 large grids. When the 

concentration was high, the algal concentration solution was diluted until the number of algae 

in 25 large grids was about 100. The dilution factor was recorded, and the cell number was 

obtained using the following formula: 

  

2.5 Chlorophyll α measurement 

The chlorophyll α determination was performed by methanol extraction method (Chen et 

al. 2008). Algae liquid (1 mL) was centrifuged (13,800 g, 1 min), and the supernatant was 

discarded. Methanol (1 mL) was added to pellets, then heated in the water bath (50 ℃, 5 min) 

and vortexed 1-2 times. The mixture was cooled at room temperature (25 ℃) and centrifuged 

again (13,800 g, 1 min). The green supernatant was measured at 665 and 750 nm using 

spectrophotometer. The chlorophyll α content was calculated according to the following 

formula： 

  

U：the final methanol volume. 

V: the sample volume. 

2.6 Algal dry weight measurement 

The algae solution was dried in oven (80 ℃) for 24 h and cooled down at room 
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temperature in a drying dish with Jin Teng brand microporous filter membrane filter paper 

(0.45 μm pore size; diameter 50 mm) and pre-weighed (m1) for further uses. Then, the algal 

solution (5 mL) was pumped onto a filter paper and washed with 0.65 M ammonium 

bicarbonate solution to remove the salt. The filtrate was dried at 80 ºC overnight, cooled and 

weighed to obtain the constant weight (m2). Measurements were done in triplicate at each 

time interval, and the final dry weight of algae (DCM, g/L) was calculated using the 

following formula: 

  

2.7 Chlorophyll fluorescence assay 

Utilizing the WATER-PAM system (WALZ Photosynthesis Instruments) for Pulse 

Amplitude Modulation (PAM) in the determination of algae chlorophyll fluorescence 

efficiency: 

1. The 5 mL algal sample stood in darkness for 20 minutes. 

2. After the dark adaptation, the algal sample was introduced into the fluorescence 

detector to commence the chlorophyll fluorescence measurement. 

2.8 Effect of urea on N. oceanica growth 

 Three urea concentrations (0.1, 0.5, and 0.2 g/L) were selected. Sodium nitrate was 

used as the control group, and a blank control was also set. The culture medium was 

composed of an f/2 medium and corresponding modifications to the nitrogen source. PAM, 

OD 680, cell number and Chlorophyll α were estimated from day 0 to 10, and algal dry weight 

was determined on days 0, 3, 5, 7 and 9. 
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2.9 Effect of ammonium chloride on N. oceanica growth 

Seven groups of nitrogen sources were established as follows: 0.1 g/L NaNO3 (tube 1), 1 

g/L NaNO3 (tube 2), 2 g/L NaNO3 (tube 3), 0.16 g/L NH4Cl (tube 4), 1.56 g/L NH4Cl (tube 5), 

3.18 g/L NH4Cl (tube 6), and 0 % nitrogen (tube 7).  

PAM and OD 680 measurements were conducted from days 0 to 7 and algal dry weight, 

cell number, and chlorophyll α were assessed on days 0, 1, 3, 5 and 7. Algae were cultivated 

in a 3.5 % salinity environment. The well-grown algal liquid (250 mL, grown indoors) was 

collected. After centrifugation (1200 g, 10 min), the supernatant was discarded, and f/2 

medium with the appropriate nitrogen source concentrations (using None Nitrogen f/2 

medium for one wash) was added. The mixture was transferred to a 700 mL glass 

photobioreactor with continuous air pumping. 

2.10 Comparative effect study of sodium nitrate, urea, and ammonium chloride on 

optimal N. oceanica growth 

As seen in results from 2.8 and 2.9 that optimal N. oceanica growth was observed at 1 

g/L NaNO3, 0.5 g/L Urea, and 0.16 g/L NH4Cl. This study compared these nitrogen 

concentrations to identify the optimum nitrogen source.  

The experiment was conducted under 3.5 % salinity f/2 medium conditions, 1.0 g/L 

NaNO3, 0.5 g/L Urea, and 0.16 g/L NH4Cl. Culture without nitrogen was used as the control 

(None N). 
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2.11 Effect of high ammonium chloride concentrations on algal chlorophyll 

fluorescence. 

Table 1 Measurement timetable for chlorophyll fluorescence measurement. 

 Day 0 (October 16） Day 1 Day 2 

Measurement time 8:00 8:30 9:00 10:00 12:00 16:00 20:00 8:00 8:00 

1.0 g/L NaNO3 0 h 1/2 h 1 h 2 h 4 h 8 h 12 h 24 h 48 h 

 Day 0 (October 17） Day 1 Day 2 

Measurement time 8:00 8:30 9:00 10:00 12:00 16:00 20:00 8:00 8:00 

0.16 g/L NH4Cl 0 h 1/2 h 1 h 2 h 4 h 8 h 12 h 24 h 48 h 

 Day 0 (October 18） Day 1 Day 2 

Measurement time 8:00 8:30 9:00 10:00 12:00 16:00 20:00 8:00 8:00 

4.76 g/L NH4Cl 0 h 1/2 h 1 h 2 h 4 h 8 h 12 h 24 h 48 h 

The effect of the high concentrations of ammonium chloride on N. oceanica chlorophyll 

fluorescence was observed (results of 2.9). The effect of high ammonium chloride 

concentrations on photosynthetic efficiency was investigated in the present study.  

Algae were cultured in 3.5 % salinity f/2 medium with different nitrogen sources 

(NaNO3 1.0 g/L, NH4Cl 0.16 g/L, and NH4Cl 4.76 g/L). The chlorophyll fluorescence 

efficiency was evaluated at 0, 1/2, 1, 2, 4, 8, 12 and 24 h, and days 2 and 3. Since the 

measurement of a single sample takes a long time, day 0 measurements of different 

concentrations are selected on different days. The timetable for measuring chlorophyll 

fluorescence efficiency is presented in Table 1. 

2.12 Effect of salt on N. oceanica growth 

N. oceanica was cultured indoors at different salt concentrations, and the differences in 

its chlorophyll fluorescence efficiency were monitored. Salt concentrations were selected (0, 

0.5, 3.5 and 5.1 %). PAM measurements were taken at various time points (0, 1/6, 1/2, 1, 2, 3, 
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4, 8, 12, 24, 48, 72, 96, 120, 144, 168. 192, 216 and 240 h). Well-grown algal liquid (500 mL) 

was obtained through centrifugation (1200 g, 30 min). After removing the supernatant, f/2 

medium with the appropriate salinity concentrations was added. The mixture was transferred 

to a 700 mL glass photobioreactor with continuous air pumping (0.6 L/min). PAM 

measurements at 0 h served as baseline. The nitrogen source was NaNO3 at 1.0 g/L. 

2.13 Variations in N. oceanica growth with various initial inoculation concentrations 

throughout four seasons in outdoor conditions 

Four algal concentrations were selected and cultivated in 700 mL bioreactor with 

continuous aeration. The cultivation conditions were as follows: The light exposure was 9 am 

- 3 pm, 7 am - 6 pm, 8 am - 3 pm and 10 am - 2 pm, respectively, in spring, summer, autumn 

and winter. Daily weather conditions, outdoor and water temperatures, light intensity, and 

overall weather conditions were recorded. 

2.13.1 Spring experiment (March 27-April 3)  

Four initial OD 680 values of N. oceanica were selected (0.2606, 0.5886, 1.1144, and 

2.1341), and chlorophyll fluorescence efficiency measurements were conducted daily at 9 am, 

2 pm, and 6 pm. OD 680, cell numbers, algal dry weight, and chlorophyll α were also 

evaluated.  

2.13.2 Summer experiment (June 26- July 3) 

Four different initial OD 680 values (0.2621, 0.5962, 1.0252, and 2.0474) were selected, 

and chlorophyll fluorescence efficiency measurements were performed daily at 9 am, 2 pm, 

and 6 pm. OD 680, cell numbers, algal dry weight, and chlorophyll α were also assessed.  
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2.13.3 Fall experiment (October 31- November 13) 

Four different initial OD 680 values (0.2388, 0.5839, 1.0152, and 2.0693) were selected, 

and chlorophyll fluorescence efficiency measurements were carried out daily at 9 am, 2 pm, 

and 7 pm. OD 680, cell numbers, algal dry weight, and chlorophyll α were also evaluated. 

2.13.4 Winter experiment (December 27-January 3) 

Four different initial OD 680 values (0.2096, 0.498, 1.1755, and 1.8976) were selected, 

and chlorophyll fluorescence efficiency measurements were conducted daily at 9 am, 2 pm, 

and 7 pm. OD 680, cell numbers, algal dry weight, and chlorophyll α were assessed. 

2.14 Statistical Analysis 

All experiments were conducted in triplicate, including sampling from three individual 

points and measurement was conducted in triplicate. The results obtained from these 

triplicates underwent statistical analysis using the one-way ANOVA function in IBM SPSS® 

software. For comparison, we employed Duncan’ s multiple-range test, with a significance 

level (P-value) set at 0.05. The statistical significance results for CaCO3, lipid, and 

chlorophyll α contents are individually reported in the supplementary information file.  

3 Results and Discussion 

3.1 Indoor experiment 

3.1.1 Effect of urea on N. oceanica growth  

After conducting a 10-day test on nitrogen sources, as depicted in Figures 1-a and 1-c, it 

became clear that the optimal nitrogen source shifts over time. From day 1 to day 4 (Figure 

1-b), NaNO3 at 1.0 g/L (Control) emerged as the most effective for N. oceanica. After day 4, 
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the 0.5 g/L urea as nitrogen source also conducive to N. oceanica growth same as control 

group (1.0 g/L NaNO3), while 1 g/L NaNO3 continued to sustain robust algal growth. 

However, an excess of urea (2 g/L) exhibited an inhibitory effect on N. oceanica. 

 

Figure 1 Bioproducts and chlorophyll fluorescence efficiency of N. oceanica under different 

urea concentrations. a: Optical density OD 680. b: Chlorophyll fluorescence efficiency Fv/Fm. 

c: Algal dry weight. d: Chlorophyll α. Control was 1.0 g/L NaNO3. 

However, the low urea concentration (0.1 g/L) exhibited growth-promoting effect in the 

first four days. Still, a decline started on day 6, reaching a low level by day 10. The cell 

growth with 2 g/L urea in the initial four days resembled that of the low-concentration urea 

culture, indicating an inhibitory effect on algae growth at 2 g/L. On the other hand, using 0.5 

g/L urea, compared to sodium nitrate with the same molar mass of nitrogen, demonstrated a 

similar cell growth and did not exhibit inhibitory effects on algae. From a cost perspective, 
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0.5 g/L urea seemed more suitable for the cell growth of N. oceanica (Figure 1-a). 

Figure 1-c shows dry algal weight increased effectively during the first five days at 0.1 

g/L urea. However, after five days, the dry weight ceased to increase, indicating that the 

nitrogen source was essentially depleted, and the algae ceased to grow. This result suggests a 

cost-saving approach—implementing continuous nitrogen supplementation. Nitrogen can be 

replenished in the culture medium on the day 5 or earlier, around the 4th day, to achieve 

sustained growth. From the perspective of dry weight, 0.5 g/L urea still demonstrated 

favorable results. Figure 1-d reveals that 0.5 g/L urea promoted a higher chlorophyll 

accumulation than the control group with sodium nitrate. Moreover, urea's cost-effectiveness 

was higher than sodium nitrate in this context. On the other hand, 2.0 g/L urea inhibited the 

accumulation of chlorophyll α in N. oceanica. The efficiency of chlorophyll photosynthesis is 

presented in Figure 1-b. In the initial 8 h, the photosynthetic efficiency of algae was inhibited 

due to the recent inoculation into the new culture medium. The control group, using sodium 

nitrate as the nitrogen source, showed the quickest recovery of photosynthetic efficiency, 

followed by 0.5 g/L urea and then 0.1 g/L urea. However, 2.0 g/L urea continuously inhibited 

the photosynthetic efficiency of algae for the first 72 h, with Fv/FM slowly increasing only 

after 72 h, and the increase remained marginal until 240 h. At 0.1 g/L urea, the cultured algae' 

s photosynthetic efficiency started declining after 144 h. Combining the results of chlorophyll 

α content (Figure 1-d), cell numbers (Figure 1-b), and daily photos (Figure 2), it is evident 

that nitrogen deficiency led to cell death and yellowing, which was the reason for Fv/FM 

value decreases. 
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Normal algae growth increased chlorophyll fluorescence efficiency to a good level 

(Fv/Fm>0.6) within 24 h after incubation under sufficient nutrient conditions. However, the 

chlorophyll fluorescence efficiency of algae was inhibited within 72 h safter inoculation 

under nutrient excess or deficiency (Figure 1-b). This provides valuable guidance for future 

monitoring of algae in commercial cultivation. Through chlorophyll fluorescence analysis, 

potential issues can be identified within the initial cultivation period (within 24 h), allowing 

for a prompt response and determining whether re-inoculation is necessary. 

      

Day 0 Day 2 Day 4 Day 6 Day 8 Day 10 

Figure 2 Color changes of N. oceanica under various nitrogen sources. In each picture and 

from left to right: NaNO3 (1 g/L), urea (0.1 g/L), urea (0.5 g/L), urea (2 g/L), and no nitrogen 

source. 

Changes in algae during the cultivation process were presented in Figure 2. By day 10, 

only the control group and culture with 0.5 g/L urea showed deep green color, while the 

others exhibited light green or yellow color. This result has a similar trend with chlorophyll α. 

Combined with the results of chlorophyll fluorescence efficiency (Figure 1-b), 0.5 g/L urea 

and 1.0 g/L sodium nitrate will not inhibit N. oceanica, while low and high concentrations of 

urea showed inhibition on N. oceanica growth. 

Urea is an inexpensive nitrogen-containing fertilizer that is water-soluble. However, 
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excessive use of urea can lead to environmental pollution, soil alkalization, and 

eutrophication of water bodies. Our results indicated that an appropriate urea concentration 

(0.5 g/L) can effectively cultivate N. oceanica. This contributes to cost savings in future 

industrial production and demonstrates that 0.5 g/L urea does not significantly impact the 

chlorophyll photosynthetic efficiency during the cultivation of N. oceanica. Hence, it can be 

used with confidence. 

3.1.2 Effect of NaNO3 and NH4Cl on chlorophyll fluorescence efficiency and growth of N. 

oceanica 

By combining the data from Figures 3-a, when the sodium nitrate concentration was 1 

g/L, N. oceanica exhibited optimal cell growth, with an OD 680 reaching 3.16 on day 7. 

However, 2 g/L sodium nitrate culture slightly inhibited N. oceanica cell growth. Due to an 

insufficient nitrogen source, the culture with 0.1 g/L sodium nitrate had an OD 680 value of 

2.77 on day 7. 

 

Figure 3 Bioproducts and chlorophyll fluorescence efficiency of N. oceanica under different 
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nitrogen sources. NaNO3 0.1 g/L (No. 1), NaNO3 1 g/L (No. 2), NaNO3 2 g/L (No. 3), NH4Cl 

0.16 g/L (No. 4), NH4Cl 1.56 g/L (No. 5), NH4Cl 3.18 g/L (No. 6). a: Optical density OD 680. 

b: Chlorophyll fluorescence efficiency Fv/Fm. c: Algal dry weight. d: Chlorophyll α. 

A more potent growth inhibitory effect occurred at 3.18 g/L ammonium chloride (OD 680: 

1.87) on day 7. N. oceanica reached the highest OD 680 value on day 6 at 0.16 g/L NH4Cl 

(2.52) and then 3.18 g/L NH4Cl (2.14) (Figure 3-a). However, a high ammonium chloride 

concentration (3.18 g/L) exhibited a pronounced inhibitory effect on algal proliferation. The 

growth of N. oceanica was also hindered at 1.56 g/L NH4Cl. Cell dry weight results of N. 

oceanica are presented in Figure 3-b. Sodium nitrate (1 g/L) enhanced the yield of N. 

oceanica, reaching 0.0195 g on day 7. In contrast, the cultivation of N. oceanica at 0.16 g/L 

NH4Cl only resulted in a dry weight of 0.0155 g. Figure 3-c revealed that the accumulation of 

chlorophyll α was inhibited when NH4Cl were 1.56 and 3.18 g/L. This further impacted the 

growth and development of algae, as confirmed by the results from Figure 3-a and 3-b, the 

inhibitory effect could be associated with the nutrient excess caused by the high ammonium 

chloride concentration, affecting physiological algae status. 

Sodium nitrate (1 g/L) rapidly restored chlorophyll fluorescence efficiency within the 

first day of cultivation, reaching a maximum Fv/Fm value of 0.62 on day 4 (Figure 3-d). 

Similarly, 0.1 g/L sodium nitrate did not exhibit inhibitory effects on chlorophyll fluorescence 

efficiency. However, 2 g/L sodium nitrate inhibited chlorophyll fluorescence efficiency after 

the fourth day, decreasing continuously from 0.666 to 0.287 from days 4 to 7 (Figure 3-d). 

These results suggest that the high concentration of algae obstructed chlorophyll 
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photosynthetic efficiency, leading to the observed decline (Figures 3-c and 3-d). Ammonium 

chloride (0.16 g/L) reduced algae photosynthetic efficiency in the initial three days, 

recovering to a relatively normal range by day 3. Higher NH4Cl concentrations (1.56 and 

3.18 g/L) consistently reduced N. oceanica photosynthetic efficiency. A brief increase was 

observed on days 5 and 6, followed by a subsequent decline. However, all three ammonium 

chloride concentrations had inhibitory effects on the growth and photosynthetic efficiency of 

algae. This indicates that ammonium chloride is not the most suitable nitrogen source for N. 

oceanica cultivating. 

Day 0 Day 1 Day 2 Day 3 

    

Day 4 Day 5 Day 6 Day 7 

    

Figure 4 Color changes of N. oceanica under various nitrogen sources from days 1 to 7. In 

each picture, from left to right: no nitrogen source, 0.1 g/L of NaNO3, 1.0 g/L of NaNO3, 2.0 

g/L of NaNO3, 0.16 g/L of NH4Cl, 1.56 g/L of NH4Cl, 3.18 g/L of NH4Cl. 

As can be seen from Figure 4, when sodium nitrate is used as the nitrogen source, the 
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algae appear dark green on the day 10. When NH4Cl is used as the nitrogen source, even low 

concentrations of NH4Cl will cause the algae to appear dark green. Light green, combined 

with the chlorophyll fluorescence efficiency results and chlorophyll results, we can find that 

ammonium chloride as a nitrogen source has an inhibitory effect on the photosynthesis 

system of N. oceanica. 

In future industrial-scale production of N. oceanica, careful consideration should be 

given to choosing nitrogen sources to reduce or avoid using ammonium chloride to ensure 

that the algae maintain a healthy growth status and optimal photosynthetic efficiency. This 

discovery holds essential guidance and insights for the large-scale cultivation and widespread 

application of N. oceanica. As researchers and industrial practitioners strive for sustainable 

development and efficient production, selecting nitrogen sources should be a focal point to 

advance algal biotechnology' s feasibility and successful application. 

3.1.3 Comparative analysis of three optimal nitrogen concentrations for sodium nitrate, 

Urea, and chloride ammonium 

Urea and sodium nitrate exhibited excellent growth-promoting effects, while the growth rate 

of N. oceanica was relatively slower when ammonium chloride was used as a nitrogen source 

(Figure 5-a). Cultivating with 0.5 g/L urea yielded a maximum OD 680 value of 3.1555 on day 

7. The OD 680 value was 3.0882 when 1 g/L sodium nitrate was used. In contrast, OD 680 was 

2.8184 at 0.16 g/L ammonium chloride. During the same cultivation period, urea promoted N. 

oceanica growth pronouncedly. Sodium nitrate exhibited similar results, while ammonium 

chloride inhibited the growth of N. oceanica (Figure 5-a). These findings have practical 
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significance for optimizing cultivation conditions and enhancing biomass production. 

 

Figure 5 Bioproducts and chlorophyll fluorescence efficiency of N. oceanica under different 

nitrogen sources. a: Optical density OD 680. b: Chlorophyll α. c: Algal dry weight. d: 

Chlorophyll fluorescence efficiency Fv/Fm. e: Cell numbers. 

Sodium nitrate enhanced the cell growth of N. oceanica at 0.5 and 1 g/L (Figure 5-e). 

The maximum cell growth of N. oceanica (2.46×106) was reached on the 7th day at 1 g/L 

sodium nitrate, while the maximum cell growth was 2.42×106 when urea was used at 0.5 g/L. 

However, 0.16 g/L ammonium chloride inhibited cell growth from the first day of cultivation.  

N. oceanica reached maximum dry weight of 0.0171 and 0.0169 g on day 7, respectively, 

when 0.5 g/L urea and 1 g/L sodium nitrate were used. However, the dry weight was 0.0141 

on day 7 at 0.16 g/L ammonium chloride (Figure 5-b). Ammonium chloride inhibited 
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chlorophyll α accumulation in N. oceanica, even at a concentration as low as 0.16 g/L (Figure 

5-c). However, 0.5 g/L urea and 1.0 g/L sodium nitrate did not inhibit chlorophyll 

accumulation. We observed the highest chlorophyll α accumulation of 1.9696 and 1.9477 

mg/L on the 7th day, respectively, when 0.5 g/L urea and 1.0 g/L sodium nitrate were used. 

The chlorophyll α accumulation at 0.16 g/L ammonium chloride on day 7 was 1.6014 mg/L. 

Urea (0.5 g/L) and sodium nitrate (1 g/L) did not inhibit photosynthetic efficiency in N. 

oceanica, which was gradually stabilized after day 3. However, 0.16 g/L ammonium chloride 

inhibited the photosynthetic efficiency with a declining trend in Fv/Fm from days 0 to 3 

(Figure 5-d), suggesting that ammonium chloride could cause permanent damage to the 

photosynthetic system of N. oceanica. Figure 6 revealed that the green intensity of N. 

oceanica cultivated with ammonium chloride was not as pronounced as when N. oceanica 

was cultivated with sodium nitrate and urea. We observed a yellowish N. oceanica in the 

absence of nitrogen. This highlights the crucial role of nitrogen as an indispensable nutrient 

in algae cultivation and health. Moreover, chlorophyll fluorescence detection is a simple, 

convenient, and efficient method for monitoring the status of algal growth during cultivation. 

        

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Figure 6 Color changes of days 1 to 7. In every picture, from left to right: 1 g/L NaNO3, 0.5 

g/L urea, 0.16 g/L NH4Cl and no nitrogen source. 
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3.1.4 Effect of high ammonium chloride concentrations on photosynthetic efficiency 

 

Figure 7 Bioproducts and chlorophyll fluorescence efficiency of N. oceanica under different 

ammonium chloride (0.16 g/L and 4.76 g/L). a: Chlorophyll fluorescence efficiency Fv/Fm 

of 24 h. b: Chlorophyll fluorescence efficiency Fv/Fm from day 0 to 7. c: Optical density OD 

680. d: Cell numbers e: Algal dry weight. f: Chlorophyll α. 

Ammonium chloride previously inhibited the photosynthetic efficiency of N. oceanica. 

Therefore, a higher ammonium chloride concentration was used, and the photosynthetic algae 

efficiency was intensively monitored during the initial inoculation phase. In Figure 7-b, 4.76 

g/L ammonium chloride led to a gradual decrease in the photosynthetic efficiency of N. 

oceanica from 1440 min. The photosynthetic efficiency was also inhibited at 0.16 g/L 

ammonium chloride at 2880 min. For more detailed understanding of what transpired within 

the initial 24 h of inoculation, Figure 7-a displays changes in Fv/Fm over 1440 min. At the 
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60-minute, N. oceanica cultivated under high ammonium chloride concentrations did not 

exhibit a peak (i.e., photosystem II repair peak).  

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 
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Figure 8 Color changes of N. oceanica under ammonium chloride as a nitrogen source. 

In other words, the high concentration of ammonium chloride exerted a pronounced 
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inhibitory effect on the photosynthetic efficiency of N. oceanica from the initial stages, with 

the absence of the first peak (photosystem II repair peak). In Figure 7-c, ammonium chloride 

promoted the N. oceanica growth in the initial two days. However, 4.76 g/L ammonium 

chloride inhibited the N. oceanica growth from days 2 to 7. Ammonium chloride also 

inhibited the cell growth at 0.16 g/L. In Figure 7-d, 4.16 g/L ammonium chloride 

pronouncedly inhibited cell accumulation from the second day, with total inhibition on day 7. 

Furthermore, 0.16 g/L ammonium chloride inhibited the later stages of cell accumulation, 

with maximum cell count occurring on the sixth day at 2.10×106. The cell counts with 1 g/L 

sodium nitrate reached 2.73×106 on day 7. 

In Figure 7-e, the dry weight on 7th day was 0.0116 g when 1 g/L sodium nitrate was 

used. With a nitrogen source of 0.16 g/L ammonium chloride, the dry weight on the 7th day 

was 0.0091 g, while under cultivation with a high concentration of ammonium chloride (4.76 

g/L), the dry weight of N. oceanica decreased to 0.0021 g on day 7. 

By combining Figures 7-f and 8, the 4.76 g/L ammonium chloride inhibitory effect on N. 

oceanica became more apparent. Initially, ammonium chloride enhanced the growth of N. 

oceanica in the early stages. However, this effect diminished over time. From the results of 

chlorophyll fluorescence in Figure 7-b, we can infer that using ammonium chloride as a 

nitrogen source could be detrimental to N. oceanica. Even though ammonium chloride can 

rapidly supply nitrogen initially, continuous cultivation of N. oceanica with ammonium 

chloride as the nitrogen source could lead to inhibitory effects. 
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3.1.5 Effect of salinity on N. oceanica photosynthetic efficiency 

In the artificial cultivation process of N. oceanica, changes in salt concentration in the 

culture medium may occur due to evaporation, rainfall, and other factors. Analyzing and 

monitoring N. oceanica cultivated under various salt concentrations through chlorophyll 

fluorescence techniques is vital in practical production. 

 

Figure 9 Bioproducts and chlorophyll fluorescence efficiency of N. oceanica under different 

salinity. a: Optical density OD 680. b: Cell numbers. c: Algal dry weight. d: Chlorophyll α. 

Figures 9-a and 9-b display OD 680 and cell count numbers of N. oceanica under various 

salinity conditions. Salinity 3.5 % was more conducive to the growth of N. oceanica. N. 

oceanica exhibited greater tolerance under the higher salt concentration of 5.1 % compared to 

the low salt concentration of 0.5 %. When the salt concentration was 3.5 %, the cell count of 

N. oceanica on the 7th day was 2.75×106, whereas, at the high salinity (5.1 %), the cell count 

of N. oceanica was 1.91×106. The cell counts numbers followed the order from high to low: 

3.5 % > 5.1 % > 0.5 % > 0 %. In Figure 9-c, after the 5th day, a cessation of increased dry 

weight was observed when N. oceanica was cultivated under 0.5 % and 5.1 % salt 
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concentrations, showing an inhibitory effect. 

From Figure 9-d, when the salinity was 3.5 %, N. oceanica accumulated 0.1585 mg/L of 

chlorophyll α on the 10th day. In contrast, N. oceanica cultivated under 5.1 % salt 

concentration reached a maximum chlorophyll α content on the 8th day at 0.05 mg/L. Under 

0.5 % salt concentration, the maximum chlorophyll α content was observed on the 6th day at 

0.0445 mg/L. The synthesis of chlorophyll α was inhibited without salt in the culture 

medium. 

 

Figure 10 Fv/Fm of N. oceanica under salinity. a. The results of Fv/Fm in the initial 24 hours 

after inoculation. b. The 11 days results of Fv/Fm. 

Figure 10 (a and b) presents the effect of salinity on N. oceanica chlorophyll 

fluorescence. The stress effect at a low salt concentration (0.5 %) was similar to that of 

salt-free algae culture within the initial 120 min. The effect of 3.5 % and 5.1 % salt 
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concentrations on the algae showed similarities in the first 60 min (Figure 10-a). Looking at 

the overall trend over 10 days, except for the 3.5 % salt concentration group, algae in the 

other groups were all affected and stressed. The photosynthetic efficiency was inhibited after 

4320 min (day 3, Figure 10-b). After 10 days of cultivation, salinity at 0, 0.5 and 5.1% 

inhibited the maximum photosystem II photochemical efficiency. 

In particular, a salinity of 5.1 % inhibited Fv/Fm results in 48 h (Figure 10-b). However, 

when algae were transferred to a new medium, whether the medium was suitable or not, it 

inhibited the maximum photosystem II photochemical efficiency. 

      

A B C D E F 

Figure 11 Color changes of N. oceanica under salinity. Day 0 (A), Day 2 (B), Day 4 (C), Day 

6 (D), Day 8 (E), Day 10 (F). Each picture is 0 %, 0.5 %, 3.5 %, and 5.1 % from left to right. 

Algae cultured with 3.5 % salinity appears greener than the other three cultures after day 

2. This suggests that the optimal salinity concentration for the growth of N. oceanica is 3.5% 

(Figure 11). From Figure 11, where the algae still maintain a green appearance even in culture 

media with high salt concentration (5.1 %) or low salt concentration (0.5 %). This 

phenomenon could be misleading, and an accurate assessment of algae growth status 

becomes challenging without integrating this information with other data and chlorophyll 

fluorescence results. Hence, it is crucial to continually monitor changes in salt concentration 

in the culture medium during the practical large-scale cultivation of marine microalgae N. 
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oceanica. This monitoring should be complemented with chlorophyll fluorescence efficiency 

values (Fv/Fm) to evaluate their growth conditions comprehensively. 

3.2 Outdoor experiment 

The challenge of outdoor algae cultivation lies in the uncontrollable duration of sunlight, 

temperature fluctuations, and the impact of climate changes on the algae growth process. This 

challenge is particularly pronounced in small-scale cultivation. However, the advantages of 

small-scale outdoor cultivation are also significant. Firstly, it is characterized by meager costs. 

Secondly, the algae have adapted to the changing external environment, greatly enhancing 

their tolerance to environmental fluctuations. This adaptation reduces the time and expense of 

acclimating the algae to the environment when transitioning from initial inoculation to 

large-scale cultivation. 

3.2.1 Investigating the impact of various initial OD 680 levels on N. oceanica growth 

under outdoor spring conditions. 

The climate type at the experimental site is characterized as subtropical monsoon 

climate. In spring, despite the gradual warming of the weather, there is a significant 

temperature difference between day and night, and the weather is unstable. Rainy and 

overcast conditions can lead to drastic temperature fluctuations, affecting algae growth. 
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Figure 12 Outdoor weather changes of N. oceanica growth under spring outdoor conditions. 

From Figure 12, on the seeding day (day 0), the air temperature was 28.7 ℃, and the 

water temperature was as high as 29.2 ℃. However, subsequent rainy weather caused a sharp 

drop in temperature on the third day, with the lowest air temperature reaching 13.6 ℃ at 

18:00 on day 3 and the water temperature plummeting to 12.3 ℃. The temperature difference 

between air and water over these three days reached 16.9 ℃. The temperature gradually 

recovered over the next four days to an air temperature of 20 ℃ and a water temperature of 

25.9 ℃. The climate variations in this experiment exhibit typical spring characteristics, 

making it representative of the season.  

The impact of the subsequent climate changes on the photosynthetic efficiency of N. 

oceanica can be observed in figure 13-a. After the low temperatures on the 3rd day, the Fv/Fm 

values on the 4th day were affected.  
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Figure 13 Bioproducts and chlorophyll fluorescence efficiency results of various initial OD 

680 on N. oceanica growth under spring outdoor conditions. a: Chlorophyll fluorescence 

efficiency Fv/Fm. b: Chlorophyll fluorescence efficiency Fv/Fm of daily change. c: Optical 

density OD 680. d: Cell numbers e: Chlorophyll α. f: Algal dry weight. 

All four groups of algae at different initial concentrations were affected, but the high 

concentration (OD 680: 2) showed less impact than the other three groups. The photosynthetic 

efficiency was influenced by climate changes in the following order, from high to low: 2 > 

1 > 0.5 > 0.2 (Figure 13-a). From Figure 13-b, when the initial inoculation concentration was 

high (OD 680: 2), the chlorophyll fluorescence efficiency was less affected by external factors. 

However, when the initial inoculation concentration was OD 680: 0.2, the impact of external 

factors was stronger, especially during the morning and evening of the 2nd day, when the 
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photosynthetic efficiency underwent the most significant changes. Subsequently, it gradually 

returned to normal on the 2nd and 3rd days, but due to rainy weather and a decrease in 

temperature on these two days, on the 4th day, the chlorophyll fluorescence efficiency of the 

low-concentration group (0.2) is again stressed. On day 6, with the temperature rise, the 

chlorophyll fluorescence efficiency of the low-concentration group was again disturbed. 

Through this process, it can be inferred that the chlorophyll fluorescence efficiency of N. 

oceanica is disturbed when the environment undergoes drastic changes, and this impact 

becomes more pronounced when the initial inoculation concentration is low. 

From Figure 13-c, the high-concentration inoculation (OD 680: 2) had a decrease in OD 

680 values on the 3rd day after the low temperature, and fluctuations were observed in the 

following days. 

The cell numbers showed the most significant increase on the 1st day (Figure 13-d). 

Following rainy weather from days 2 to 3, the cell growth in the high-concentration group 

(OD 680: 2) stagnated and then gradually stabilized. This stagnation can be attributed to the 

high density of algae populations, leading to maximum saturation of resources. Similarly, the 

OD 680: 1 group experienced minimal growth during the rainy and cooler weather on days 2 

and 3 but resumed growth after the 3rd day (Figure 12). In contrast, both low-concentration 

groups (0.5 and 0.2) exhibited decreased cell numbers in the following four days. These 

observations suggest that the density of inoculation played important role in determining the 

growth response to environmental changes. 

The high-concentration group (OD 680: 2) rapidly accumulated chlorophyll α on day 3 
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(Figure 13-e). The rainy and cooler weather on days 2-3 inhibited the accumulation of 

chlorophyll α in N. oceanica. The remaining three initial inoculation concentration groups 

showed less noticeable accumulation of chlorophyll α. All four groups showed varying 

degrees of growth in dry weight accumulation but slowed growth (Figure 13-f). The growth 

rate was higher only on the 1st day, and the recovery was slower due to the rainy and cooler 

weather.  

 Day 0 Day 1 Day 2 Day 3 

    

Day 4 Day 5 Day 6 Day 7 

    

Figure 14 Color changes of N. oceanica under various initial optical densities in outdoor 

spring conditions. From left to right, the OD 680 values are 0.2, 0.5, 1.0, 2.0. 
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From the daily photo records (Figure 14), comparing the photos taken on day 7 to those 

on day 1, there is a slight deepening of color in each concentration group. This indicates that 

the abrupt temperature change in spring could slow the growth and development of N. 

oceanica but does not entirely hinder its growth. The spring weather is characterized by 

frequent changes, increased rainfall, and larger temperature variations between day and night. 

In this experiment, there was more rain and more considerable temperature fluctuations. Our 

results indicate that during periods of fluctuating weather, algae was inhibited and, in some 

cases, even stagnated. 

However, with the rise in temperature, N. oceanica gradually recovered and resumed 

growth. Moreover, results suggest that during spring cultivation, it is advisable to increase the 

initial inoculation concentration (at least OD 680 >1.0) to prevent algae from being adversely 

affected by changes in climate, ensuring their normal growth. This experiment also indicates 

that N. oceanica has good resistance to low temperatures. Future targeted improvements 

could potentially expand its cultivable range of latitude. For example, expand to 38 ° or even 

43 ° north latitude. 

3.2.2 Investigating the impact of various initial OD 680 levels on N. oceanica growth 

under outdoor summer conditions. 

The experimental site was deep inland but featured numerous rivers and lakes. Frequent 

rain, sultry and humid conditions, and little temperature difference between day and night 

characterized the summer in this region. For the summer experiment (Figure 15). The weather 

was consistently overcast, with continuous rainfall in the first five days of inoculation. From 
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days 1 to 4, the overall temperature ranged between 28 and 24 °C.  

  

Figure 15 Outdoor light and temperature changes of N. oceanica growth under summer 

outdoor conditions. 

However, the light intensity was low due to the persistent rain. On day 1, during the 

rainy weather, the maximum light intensity was 15,710 lux. From the fifth day, the weather 

cleared up, and on the sixth day, the temperature reached 33.9 ℃, the water temperature rose 

to 32.7 ℃, and the light intensity soared to 59800 lux. 

We observed that the relatively warm and overcast weather at the initial inoculation 

stage decreased the photosynthetic efficiency of N. oceanica (Figure 16-a). However, as N. 

oceanica gradually adapted to the environment, its chlorophyll fluorescence efficiency 

gradually recovered to higher levels by day 4. Conversely, the sunny weather starting from 

day 5 with a sharp increase in light intensity inhibited the chlorophyll fluorescence efficiency 

of N. oceanica. Nevertheless, on day 6, despite the continued sunny conditions, the upward 

trend in the curve showed that N. oceanica is gradually adapting to the intensified light 

conditions. 
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Figure 16 Bioproducts and chlorophyll fluorescence efficiency results of various initial OD 

680 on N. oceanica growth under summer outdoor conditions. a: Chlorophyll fluorescence 

efficiency Fv/Fm. b: Chlorophyll fluorescence efficiency Fv/Fm of daily change. c: Optical 

density OD 680. d: Cell numbers e: Chlorophyll α. f: Algal dry weight. 

From days 4 to 6 (Figures 16-a and 16-b), when the algae entered the high light 

exposure phase, the groups with low initial inoculation concentrations (OD 680: 0.2 and 0.5) 

exhibited higher chlorophyll fluorescence values. This contrasts with the two 

high-concentration groups (OD 680: 1 and 2), indicating that high-density algal cultures shade 

each other, leading to photosynthetic inefficiency. However, it is noteworthy that the higher 

concentration of algal cultures demonstrates greater environmental resilience despite the 

observed decrease in photosynthetic efficiency. 

Figure 16-c showed the continuous overcast and rainy weather during summer. Even in 
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the case of high initial inoculation concentration with an OD 680 of 2.0, where mutual shading 

among algae was more pronounced, there was still increased from OD 680 2.0474 to 3.394 on 

days 0 to 7. However, OD 680 increased from 2.1341 to 3.0155 during spring on days 0 to 7 

(Figure 13-c). The impact of overcast and rainy weather was more evident in algae with 

lower initial inoculation concentrations. 

The cell number results showed that the high inoculation concentration (OD 680: 2.0) had 

a decrease in cell numbers on the first day of inoculation (Figure 16-d). However, cell 

numbers resumed continuous growth, increasing by day 7. But the growth of OD 680: 1.0 

group was affected by overcast and rainy weather from days 0 to 5, showing a slow increase 

in cell numbers. 

The overall growth trend of chlorophyll α was slow (Figure 16-e), whether in the high or 

low inoculation concentration groups. Because the growth inhibition caused by overcast and 

rainy weather. In the OD 680: 2.0 group showed high algal dry weight accumulation (Figure 

16-f). The high-concentration group was less affected by overcast and rainy weather in the 

first three days and started growing from day 1. However, the dry weight accumulation was 

slow in the low-concentration group. 
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 Day 0 Day 1 Day 2 Day 3 

    

Day 4 Day 5 Day 6 Day 7 

    

Figure 17 Daily pictures of different initial OD 680 of N. oceanica growth under summer 

outdoor conditions. 

From Figure 17, the overall color was of day 7 was darker than days 0. From this, the 

clear weather conditions are preferable during the initial stages of algae cultivation (days 1-3). 

This facilitates favorable growth conditions for the algae right from the beginning. 

Conversely, in the initial growth stages, continuous overcast and rainy weather could inhibit 

algae growth, delaying the period of rapid growth and impacting the overall production 

efficiency. 
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3.2.3 Investigating the impact of various initial OD 680 levels on N. oceanica growth 

under outdoor Fall conditions 

The autumn climate characteristics in the experimental region exhibit significant 

temperature fluctuations, resembling a direct transition from summer to winter. Additionally, 

intermittent rainfall occurs, and the temperature difference between day and night increases, 

with a reduction in sunlight duration and intensity. The experimental duration was extended 

to 13 days to capture representative periods for this study. 

The weather conditions (Figure 18) reflected typical climate features of the local area. 

Clear skies and comfortable temperatures characterized days 0-5 (around 25 ℃), while days 

6-8 had a rapid temperature drop accompanied by overcast conditions from 22 to 6 ℃, and 

days 9-13 exhibited alternating patterns of rain and sunshine, reflecting fluctuating weather. 

From the initial inoculation on days 0 to 5 (120 h), the temperature decreased from 28℃ to 

18℃.  

  

Figure 18 Daily weather fluctuations of N. oceanica growth under fall outdoor conditions. N. 

oceanica was tested at 9 am, 2 pm, and 6 pm daily. 2 pm on day 0 was set as 0 h.  
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Overcast conditions with strong winds brought about a rapid temperature decrease from 

day 6 (144 h). Rain began on day 7 (168 h), leading to a drastic temperature drop. By 9 am on 

day 8 (192 h), the temperature was only 8 ℃, and the water temperature was 10.1 ℃. The 

highest temperature on day 4 (96 h) reached 28 ℃, resulting in a temperature fluctuation 

20 ℃ within four days. Days 9 and 11 (216-264 h) were clear, while days 10 and 12 (240-288 

h) were rainy, and day 13 (312 h) was overcast. We can say that from days 9 to 13, a typical 

autumn fluctuating climate was represented. 

Newly inoculated N. oceanica took two days to restore its photosynthetic system 

efficiency to relatively normal values from days 0 to 2 (Figure 19-a). However, the overall 

chlorophyll fluorescence efficiency in the high-concentration group remained lower. This can 

be due to the dense algal cells shading each other's light, coupled with the fact that the 

autumn sunlight intensity is not as strong as at different times, affecting the chlorophyll 

photosynthetic efficiency of the algae. Interestingly, the rapid temperature drops from days 6 

to 8 seems to have little impact on chlorophyll fluorescence data, but a considerable decline 

occurred on sunny day 9. Similar trends were observed in spring experiments, indicating that 

damage does not immediately manifest but becomes apparent on sunny days following 

overcast and rainy weather. The chlorophyll fluorescence efficiency remained consistently 

low during the repeated overcast and rainy weather from day 9 to 11, only recovering on day 

12. 
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Figure 19 Bioproducts and chlorophyll fluorescence efficiency results of various initial OD 

680 on N. oceanica growth under fall outdoor conditions. a: Chlorophyll fluorescence 

efficiency Fv/Fm. b: Chlorophyll fluorescence efficiency Fv/Fm of daily change. c: Optical 

density OD 680. d: Cell numbers e: Chlorophyll α. f: Algal dry weight. 

Daily Fv/Fm measurements showed a decrease in photosynthetic efficiency when light 

intensity was high (14:00). This could be likely attributed to the algae activating 

self-protection mechanisms in response to excessive light energy and potential oxidative 

damage under intense light (Wang et al., 2021). 

In Figure 19-c, we observed that the high-concentration group exhibited relatively slow 

growth while the low-concentration group showed rapid growth. But, after rapid temperature 

drop on day 8, the growth rate from days 9 to 13 considerably slowed, even showing a 
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declining trend. This indicates that the rapid temperature drop severely impacts the growth 

status of the low-concentration group. 

The cell number results revealed that the high-concentration cultivation group (OD 680: 2) 

displayed a limited increase in cell growth. This is attributed to cell density approaching 

saturation, leading to growth inhibition in algae. On day 9, a decline was observed in the OD 

680: 2 group, suggesting that rapid cooling could kill some cells. 

However, cell numbers recovered in the subsequent days due to the high algal 

concentration. In contrast, the low-concentration group (OD 680: 0.2) had a decrease in cell 

count following the temperature drop on day 9. This shows that the ability to handle big 

temperature changes was weak when inoculation concentration was 0.2. The concentration of 

0.5 also exhibited extremely slow or even stagnant cell growth after day 9. 

The low-concentration inoculation group (OD 680: 0.2) had a stagnation in chlorophyll 

accumulation after the rapid temperature drop on the 9th day (Figure 19-d). Subsequently, the 

alternating sunny and rainy weather further inhibited chlorophyll accumulation in the 

low-concentration group.  

There was no considerable increase in chlorophyll accumulation in the other inoculation 

concentrations in the first 7 days. This is attributed to the fact that, although sunny from days 

0 to 7, the light intensity was not very high, leading to a lack of considerable growth. 

The growth rate of the low-concentration inoculation group (OD 680: 0.2) was quite good 

in the first 9 days, but fluctuations were observed, indicating that lower initial inoculation 

concentrations are more sensitive to environmental changes (Figure 19-f). Even slight 
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variations could impact the dry weight accumulation of N. oceanica. After experiencing low 

temperatures on the ninth day, the dry weight accumulation showed stagnation and even a 

decline.  

The experimental group with an initial inoculation concentration of 0.5 trended similarly 

to the 0.2 concentration group. In the high concentration group (2), there was a decline in dry 

weight on day 9, while the 1 concentration group did not show a decline but rather a 

slowdown in growth. We speculate that the decrease in the dry weight of the 2-concentration 

group is due to the inability of older N. oceanica cells in the high-concentration group to 

withstand rapid temperature drops. Moreover, the previous higher concentration hindered 

effective photosynthesis and nutrient accumulation. The rapid temperature drop led to cell 

death and a decline in dry weight. In contrast, the 1.0 concentration group, with an 

appropriate cell density, could undergo sufficient photosynthesis. The higher number of new 

cells and the accumulation of nutrients in each cell, even with a rapid temperature drop, only 

slowed their growth and development without causing death. Therefore, the dry weight 

results only show a slowdown in growth in the 1.0 concentration group. 

Daily photo records showed a gradual increase in the cell density of N. oceanica from 

days 0 to 9 (Figure 20). However, after day 9, the cells in the culture started to turn yellow, 

indicating that the weather changes influenced their cell status. Thus, when cultivating algae 

strains in the fall, it is advisable to avoid low inoculation concentrations.  

The inoculation concentration was OD 680 > 1.0 can avoid the growth of N. oceanica 

from being inhibited due to the changes in fall weather, thereby avoiding losses. 
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Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

       

Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 

       

Figure 20 Color changes of different initial OD 680 of N. oceanica growth under fall outdoor 

conditions. 

3.2.4 Investigating the impact of various initial OD 680 levels on N. oceanica growth 

under outdoor winter conditions.  

The winter temperatures in the experimental area exhibited high humidity (Figure 21), 

low temperatures, and continuous overcast conditions, with more cloudy days than sunny 

ones. Days 2, 6, and 7 were sunny; during other periods, it was overcast. The highest water 

temperature recorded in this experiment was 13.2 ℃ on day 7, while the lowest water 

temperature occurred on day 2, reaching 3.3 ℃. The strongest illumination occurred on the 

2nd day, measuring 22000 Lux. 
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Figure 21 Daily weather changes of N. oceanica. The winter weather conditions were tested 

at 9 am, 2 pm, and 6 pm daily, and 2 pm on day 0 was set as 0 h. 

Over the seven days, the chlorophyll fluorescence trend (Figure 22-a) showed that 

winter inoculation, characterized by low temperatures and low light intensity, inhibited the 

photosynthetic efficiency from days 0 to 1. Following a sunny day on day 2, the chlorophyll 

fluorescence efficiency in all concentration groups increased until day 5. This indicates that 

low temperatures and low light did not kill N. oceanica; instead, it seems to have induced a 

state of dormancy in the cells. With the appropriate enhancement of light and temperature, N. 

oceanica resumed its activity. 

Compared to other seasons, most groups’ Fv/Fm decline in wintertime (Figure 22-b). 

This is analogous to algae experiencing a daily transition from low to high temperatures 

during the winter, similar to the decrease in Fv/Fm values observed when temperatures rise 

again after a cooling period in autumn (Figure 19-a). 
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Figure 22 Bioproducts and chlorophyll fluorescence efficiency results of various initial OD 

680 on N. oceanica growth under winter outdoor conditions. a: Chlorophyll fluorescence 

efficiency Fv/Fm. b: Chlorophyll fluorescence efficiency Fv/Fm of daily change. c: Optical 

density OD 680. d: Cell numbers e: Chlorophyll α. f: Algal dry weight. 

We observed that the growth of N. oceanica was considerably inhibited, regardless of 

whether the initial inoculation concentration was high or low (Figure 22-c). The 1.0 and 2.0 

groups showed slight growth, while the 0.2 and 0.5 concentration groups have almost 

stagnated. 

Regarding cell growth (Figure 22-d), the high-concentration group still had increased 

cell numbers. The primary growth occurred after the sunny day on the 2nd day, indicating that 

N. oceanica possesses a level of cold adaptation. As long as a certain level of illumination is 
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maintained, it can continue to grow even under lower temperatures. However, the algal cell 

concentration needed to be sufficient. Even with a particular illumination level, normal 

growth could not be sustained if the cell concentration was not high enough.  

The accumulation of chlorophyll α in the group with an OD 680 concentration of 1 

showed the best chlorophyll α growth (Figure 22-e). In the high-concentration group, the 

growth inhibition of chlorophyll α was attributed to the combination of low temperatures and 

the shading effect caused by the high cell concentration, hindering optimal light exposure. 

The low-concentration group was influenced by cold temperatures and low light intensity, 

resulting in limited accumulation of chlorophyll α. The trend in dry weight was similar to that 

of cell count (Figures 22-c and 22-f), indicating the suppression of low inoculation 

concentrations under winter climate conditions. On the other hand, high inoculation 

concentrations still exhibited a slow growth trend. 

From Figure 23, the two low-concentration groups (0.2 and 0.5) showed no big changes. 

In contrast, the most significant changes were observed in the group with the initial 

inoculation concentration of OD 680: 1. For 7 days, it gradually turned green, aligning with the 

results obtained from the measurement of chlorophyll α accumulation (Figure 22-e). 



 

 189 

Day 0 Day 1 Day 2 Day 3 

    

Day 4 Day 5 Day 6 Day 7 

    

Figure 23 Color changes of different initial OD 680 of N. oceanica growth under winter 

outdoor conditions. 

Conclusion 

The investigation into the indoor and outdoor cultivation of marine microalgae N. 

oceanica indicated that using 0.5 g/L urea as the nitrogen source for N. oceanica is highly 

suitable. However, avoiding using ammonium chloride as a nitrogen source for N. oceanica 

is important, as it strongly inhibits its growth and development. 

When cultivating N. oceanica in inland areas, the optimal salt concentration for growth 
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should be maintained below 3.5 %. To keep salinity within the 2.5 % to 3.5 % range to 

variations in salt concentration caused by evaporation and rainfall. 

Increasing initial inoculation mitigated cloudy weather effects. Summer shading 

enhanced growth efficiency. Winter's low temperatures and light slowed growth, but N. 

oceanica thrived with OD 680 exceeding 1.0. It's adaptable for year-round cultivation at 

30 °N in China, saving costs. Chlorophyll fluorescence proved effective for real-time 

monitoring of growth inhibitors like salinity and temperature. 
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Chapter 4. Growth and Chlorophyll Fluorescence Analysis of Algae Nannochloropsis 

oceanica in Outdoor 700 L and 150 L Water Tanks from Summer to Winter 

Abstract 

Cultivating marine microalgae inland can reduce influence from marine 

microorganisms. However, most marine microalgae are cultivated in coastal areas. In this 

experiment, two cultivation photobioreactors (PBRs) were compared for the 

semi-continuous cultivation of Nannochloropsis oceanica within 185 days. The new 

photobioreactor designed and tested showed good cultivation in partially shaded areas. 

Based on the innovative in-situ oxygen release rate (ORR) measurement method results, 

ORR was influenced by light intensity and temperature. The optimal temperature range for 

N. oceanica growth was 14-25 °C, showcasing cold tolerance and lipid accumulation at low 

temperatures. The maximum lipid content in 700-liter and 150-liter PBRs was 29 % and 

28 %, respectively. The 150-liter PBRs (US $ 11.89 per kilogram) was more susceptible to 

environmental influences. Moreover, should avoid high temperatures and cold overcast days 

in initial inoculation. 

  

  

  

  

Key words: Nannochloropsis oceanica, inland, outdoor, chlorophyll fluorescence, 

oxygen release rate 
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1 Introduction 

At present, the cultivation of marine microalgae is mostly conducted near coastal areas 

(Lu et al., 2021). However, cultivating marine microalgae near the coast is susceptible to 

affect from other marine algae and interference from various factors such as bacteria in the 

sea (You et al., 2021), which can adversely affect both yield and quality. Inland regions have 

a more favorable environment for the cultivation of marine microalgae (Barclay et al., 

1987). Even in open-air cultivation, the risk of influence from other algal species is reduced. 

Additionally, some inland areas may have large expanses of saline-alkali land that is 

unsuitable for traditional crop cultivation. Cultivating marine microalgae in these areas can 

enhance land use efficiency, to make barren land productive, for example, by using algae to 

produce oil (Liu et al., 2019). 

Most outdoor algae cultivation PBRs are typically established on vast land areas (Yen 

et al., 2019; Gupta et al., 2015). However, this often results in the significant allocation of 

land exclusively for algae cultivation, while the same land, if repurposed for agriculture, 

forestry, industry, or residential use, frequently generates higher economic value. 

Furthermore, as research on algae advances, algae exhibit enormous potential in areas such 

as wastewater purification and the absorption and fixation of greenhouse gas carbon dioxide 

(Zhang et al., 2021; Shen; 2014; Kong et al., 2021; Molazadeh et al., 2019). In certain 

specific conditions, there is a need for compact, efficient, and easily transportable 

cultivation devices. This allows for microalgae cultivation in specific locations, such as 

rooftops (Kumar et al., 2023), spaces between buildings and windows or (Kim, 2022; 

Negev et al., 2019), in a more daring assumption, potential future lunar bases, space stations, 
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and similar environments (Detrell et al., 2020; Detrell et al., 2021; Detrell et al., 2022). 

Therefore, efficiently cultivating algae in limited spaces, even in small or unused lands, to 

create more economic value, is a crucial focus of current research. 

The energy and business cycles exhibit a systematic relationship, and currently, new 

energy sources have become the primary driving force (Skare et al., 2021). Currently, 84% 

to 93% of funding in directions such as algae biodiesel production is allocated to basic costs, 

mainly stemming from energy consumption during cultivation, including electricity, water, 

and lighting (Maroušek & Gavurová et al. 2023). Translating algae technology into 

commercial dimensions poses a significant obstacle to the commercialization of microalgae, 

necessitating interdisciplinary research and discussion. Moreover, research on microalgae 

oil production is currently confined to laboratory scale, highlighting the importance of 

addressing the bottleneck of improving outdoor cultivation efficiency (Maroušek & 

Maroušková et al., 2023). Besides, currently common methods for outdoor cultivation of 

algae include the use of open pond reactors or raceway pond reactors (Borowitzka et al., 

2012; Chisti, 2013). Alternatively, users may design their own cultivation tanks according to 

their needs. Once these cultivation tanks are constructed, they are difficult to move and 

involve high costs, and overlooked the cost of electricity usage, etc. In addressing this issue, 

a key challenge is to design compact and efficient cultivation systems that maximize the 

utilization of limited spatial resources. Such technological innovations not only contribute 

to the sustainability of algae cultivation but also offer more flexible for algae production in 

sectors like agriculture and aquatic feed. In the future, through these innovative cultivation 

systems will efficiently utilize limited land resources, promoting the sustainable 
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development of the algae industry. 

During photosynthesis, chlorophyll molecules in the chloroplasts of plant cells absorb 

light energy. A crucial component of this process is Photosystem II (PSII), where light 

energy undergoes conversion into chemical energy. FV/FM is a specific measure that 

assesses the maximum efficiency of PSII in transforming light energy into chemical energy. 

(Krause et al., 1991; Krause et al., 1984). 

Fv (variable fluorescence): This indicates the variance between the maximum 

fluorescence level in the dark-adapted state and the fluorescence level in the light-adapted 

state. Fm (maximum fluorescence): This represents the highest measurable fluorescence 

level when all PSII reaction centers are closed, typically in the dark-adapted state. The 

FV/FM ratio offers insights into the efficiency of PSII in capturing and converting light into 

chemical energy during photosynthesis. A higher FV/FM ratio suggests efficient PSII 

operation, while a lower ratio may indicate stress or damage to the photosynthetic apparatus. 

Researchers commonly employ FV/FM measurements to evaluate the health and 

performance of plants, particularly under varying environmental conditions or stress factors. 

In this experiment, a new designed 700-liter (L) tank was compared with 150 L 

polyethylene (PE) plastic bucket obtained from the market for the outdoor cultivation of N. 

oceanica. Additionally, the chlorophyll fluorescence efficiency and growth status of N. 

oceanica over a six-month period in these two different cultivation PBRs were assessed. 

The aim was to identify a more cost-effective cultivation method and equipment for N. 

oceanica. 
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2 Methods and materials 

2.1 Algal cultivation 

To use f/2 medium to create artificial seawater for algae cultivation (Guillard, 1975), 

with 2.5% salinity, using 0.5 g/L urea as the nitrogen source. 

2.2 New designed photobioreactor (PBR) for algal cultivation 

In this experiment, an innovative toughened glass tank for outdoor cultivation was 

built. The tank was 5 meters long, 0.3 meters wide, and 0.66 meters high, featuring a sturdy 

9 mm glass thickness. The outer periphery of the overall structure was reinforced with a 

steel frame structure, positioned 30 cm above the ground. Drainage outlets were installed at 

both ends of the bottom. It offered transparency on its front, back, and top sides. The tank 

had the capacity to hold up to 1000 L of algal solution, Air was provided by a WL-550 

high-pressure scroll air pump (US $69.3, 550 watts: W, 220 Volt: V, Dongguan WeiLe 

Mechanical and Electrical Equipment Co., Ltd.) through 12 oxygen pump air stones (4 

L/min/each). No additional CO2 was supplied. The PBR individually occupies 1.5 square 

meters (m2). Each PBRS was spaced 1 meter apart (i.e., aisle), so a single PBR occupies 6.5 

m2. This approach holds the promise of achieving efficient algae cultivation in confined 

spaces, thereby enhancing the economic viability of algae production without wasting land 

resources.  

2.3 Semi-continuous cultivation (SCC)  

For SCC, it was carried out every 15 days, collecting 100 L algal liquid from 150L and 

700 L PBRs each time and adding new culture medium. In the event of special weather, the 

SCC time can be appropriately extended or shortened to observe the impact of inland 
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climate change on the outdoor culture of marine microalgae. 

2.4 Algal cell optical density measurement  

 The optical density of the algae liquid was measured every day, and 5-milliliter (mL) 

of algae liquid was taken for each measurement, and the OD 680 value was measured with 

UV spectrophotometer. 

2.5 Algal cell count 

Same as Chapter 3. 

Or the algal solution was diluted to approximately 100 cells in each of the 25 central 

grids, and counts were performed for all central 25 grids： 

  

2.6 Chlorophyll α measurement 

Same as Chapter 3. 

2.7 Algal dry weight measurement 

Algal weight was measured on Day 0, 1, 2, and 3. First, the drying process was 

initiated by placing the sample in an oven for 24 hours. Cooled to room temperature in a 

drying dish equipped with a microporous filter membrane filter paper (0.45 μm pore size; 

diameter 50 mm, Jin Teng brand). The dish was pre-weighed (m1). Pumped 5 mL of the 

algal solution onto the filter paper. Subsequently, the sample was washed with a 0.65 M 

NH4HCO3 solution to eliminate salt residues. The sample was then placed into the oven set 

at 80 degrees Celsius (℃) for an overnight drying period. After that cooled to room 

temperature, and a precise weighing was conducted to determine the constant weight (m2). 

To calculate the final dry weight (DCW, in g/mL) of the algae, three measurements were 
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performed each time, and the results were averaged for accuracy. This comprehensive 

procedure ensured the accurate determination of the algal dry weight, providing reliable and 

reproducible results. 

  

2.8 The chlorophyll fluorescence assay 

Same as Chapter 3. 

2.9 Algal growth rate (GR) and Biomass productivity determination (BP) 

The growth rate (μmax) was taken as the exponential growth stage and calculated using 

the following formula: 

  

The x2 and x1 represent the dry weight at time points t2 and t1. 

Biomass productivity (milligram/liter/day: mg/L/day) was calculated using the 

following formula: 

  

DWX and DW1 represent the dry weight (g/L) at time points TX and T1 respectively. 

2.10 Lipid measurement 

Lipid measurement was conducted using the chloroform-methanol extraction method 

(Chen et al., 2019). Weight W1 (10 mg) of fully ground dry algae powder and W2 of a 

pre-dried 1.5 mL centrifuge tube were prepared. Then, chloroform (385 μL), methanol (790 

μL), and water (316 μL) were added to the mixture to achieve a final volume ratio of 1:2:0.8. 

The extraction solution was shaken and centrifuged to collect it in a 15 mL tube. The above 
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steps were repeated for the lower sediment three times, reducing the number of repetitions 

as necessary. 

All the extraction solutions were combined, and chloroform and water were added to 

achieve a ratio of (1:1:0.9) (1185 μL of water, 1185 μL of chloroform). The mixture was 

shaken and mixed well then left to stand for 1-2 hours until clear layers appeared. The upper 

layer was the aqueous phase, containing salts and water-soluble substances, and the lower 

layer was the chloroform layer. The chloroform layer was collected into a centrifuge tube 

W2 that had been dried and weighed. It was evaporated at 105 °C to a constant weight and 

weighed again to obtain W3. 

The oil content of microalgae was calculated as following formula:  

 

X% was the percentage of lipids in the dry weight of microalgae, where W1 

represented the dry weight of algal powder, W2 denoted the pre-dried and weighed 

centrifuge tube weight, and W3 was the weight of the centrifuge tube containing lipids. 

2.11 Algal outdoor in-situ oxygen release rate (ORR) determination  

To facilitate in-situ monitoring of algae photosynthetic oxygen evolution rates, a novel 

in-situ ORR detection method was devised. Sodium sulfite was employed to absorb oxygen 

from the water, and by measuring the oxygen evolution of algae over a specific time period, 

the algae' s oxygen evolution rate was measured. This method allowed for the in-situ 

assessment of the photosynthetic activity of algae. The specific steps were as follows: algal 

solution (100 mL) was taken into a 250 mL flask, and the dissolved oxygen meter 

(JPBJ-609L, INESA instrument, Shanghai, China) was placed. Then, 30 μL of saturated 
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sodium sulfite solution was added to ensure that the dissolved oxygen level in the sample 

decreased to around 1 mg/L, but not to 0 mg/L, to avoid excessive sodium sulfite affecting 

later measurement of algal oxygen release. The system was covered to block light and wait 

until the dissolved oxygen content gradually stabilized. Once stabilized, the light cover was 

removed, and the increase in dissolved oxygen content was recorded for 15 seconds to 

obtain the in-situ ORR (mg/L/s). 

2.12 Statistical analysis  

All experiments were conducted in triplicates. Statistical analysis was performed on 

the results obtained from all triplicates using the one-way ANOVA function of the IBM 

SPSS® software. The comparison method selected was the "Waller-Duncan" with the level 

of significance (P-value) set at 0.05. 

3 Results and discussions 

3.1 700 L tank data 

Analyzing Figures 1-A and 1-B reveals that in the initial 50 days, temperatures were 

high with intermittent rains, leading to lower chlorophyll fluorescence levels. Additionally, 

Figure 2-B indicates a gradual rise in algae cell growth during this period, suggesting 

inhibition of N. oceanica growth by high temperatures, possibly due to adverse 

environmental conditions caused by high temperatures and rainfall. 

After 55 days, both PBRs exhibited rapid and stable increases in chlorophyll 

fluorescence, corresponding to the changing weather conditions depicted in Figure 1-A. By 

day 60, Fv/Fm values generally rose and stabilized, reflecting the cooler and more favorable 

autumn weather conditions. These conditions were conducive to improved photosynthetic 
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efficiency in algae cells. Conversely, high temperatures and rainfall adversely affected the 

growth of N. oceanica, leading to a decrease in chlorophyll fluorescence. As temperatures 

decreased in autumn, algae experienced better growth conditions, resulting in increased 

chlorophyll fluorescence values. 

 

Figure 1 Nannochloropsis oceanica growth in 700 L tank under outdoor conditions. A: 

weather conditions. B: Chlorophyll fluorescence efficiency (Fv/Fm: Fv is variable 

fluorescence, Fm is maximum fluorescence). C: Oxygen release rate (mg/L/s). D: Lipid 

content (% of algal dry weight). a, b, c, d, e are marked as significant differences in lipid 

content at each SCC run. The same letters indicate no significant differences, and different 

letters indicate significant differences. Data are reported as mean ± standard deviation of 

triplicates.  

Analyzing daily weather conditions, including water temperature in the culture tank 

and real-time air temperature (Figure 1-A), aided in determining optimal outdoor culture 

conditions. The 1st significant cell concentration (SCC) occurred on day 40 (Figure 2-A). 

Tank 700-1 removed 100 L of culture medium, then adjusted the volume to 700 L by adding 
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water and nutrients, while tank 700-2 only added nutrients. The 2nd SCC, conducted on the 

55th day, showed a decline in OD 680 value on the 62nd day, indicating rapid growth but 

insufficient nutrition. Consequently, the 3rd SCC was advanced to Day 65. Nutrients were 

replenished on day 75 after insights from the 2nd SCC. OD 680 peaked on day 81 (1.2968 in 

tank 700-1 and 1.0844 in tank 700-2) before rapidly declining due to a sudden temperature 

drop during rainy days. The water temperature dropped from 33.7 ℃ on day 81 to 24.2 ℃ 

on day 82, facilitated by the semi-enclosed system allowing rainwater to dilute the algae 

solution concentration. 

 

Figure 2 Bioproducts of N. oceanica growth under outdoor conditions in 700 L 

photobioreactor. A: Optical density OD 680. B: Cell numbers. C: Chlorophyll α. D: Algal 

dry weights. Data are reported as mean ± standard deviation of triplicates. 

On the 85th day, the 4th SCC was conducted. However, after day 85, the temperature 

dropped due to continuous rain. This weather affected low-concentration algae noticeably, 

causing a decline, while high-concentration algae were less affected and continued to thrive. 

After October 1st (Day 93), persistent rain led to a temperature drop. On the 99th day, the 

maximum water temperature was only 15.3 ℃. From algal OD 680 results, temperature 
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fluctuations had impact in the early growth stages. After algae adapted the growth 

conditions, they could still grow even with decreasing temperatures. On day 100, in the 5th 

SCC allowed to observe the GR of different concentrations of algae at low temperatures and 

determine whether high-concentration algae solutions could achieve higher cell 

concentrations at low temperatures. 

Day 0 Day 20 1st 

   

2nd 3rd 4th 

   

5th 6th 7th 

   

8th 9th 10th 

   

Figure 3 Pictures of the growth of N. oceanica with different initial OD 680 levels in a 700 L 

tank under outdoor conditions, the one in the front of the picture is 700-1, and the back is 

700-2 front tank is 700-1 . Except for day 0 and day 20, the rest of the pictures were taken 
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on the last day of each semi-continuous cultivation.  

On day 115, the 6th SCC began with temperatures averaging around 27 °C, 

accompanied by mostly sunny conditions, leading to increased algae growth. However, rain 

started on Day 127, causing a 10 °C temperature decrease and slowing down algae growth. 

By Day 130, the 7th SCC had commenced. The rainfall from Day 131 to 133, resulting in a 

decrease in air temperature from 22.2 to 6.5 °C, and water temperature dropped from 21.1 

to 4.9 °C. On the 145th day, the 8th SCC began with an average temperature of 16.12 ± 

3.65 °C and an average water temperature of 14.31 ± 3.04 °C during the subsequent 15 days 

of cultivation. Despite initial temperature fluctuations, the OD 680 values demonstrated fast 

growth from Day 145 to Day 159, as depicted in Figure 2-A. 

On Day 160, the 9th SCC commenced, coinciding with a temperature drop from 

24.1 °C to -5.7 °C by Day 174. Initially, there was growth in OD 680 values, but as 

temperatures decreased, growth plateaued. Below 6 °C, algal OD 680 values declined. On the 

175th day, the 10th SCC began with an initial temperature of -4.3 °C during inoculation and 

a water temperature of 4 °C. Subsequently, temperatures rose to 15.6 °C by Day 184, but 

OD 680 results showed a very slow increase in growth during this period. 

The highest OD 680 value occurred on the Day 114 which was the 5th SCC at 700-2, 

reaching 1.8076. According to Figure 2-A, the GR of the initially cultured algae was slow 

from day 0 to 40, attributed to factors such as rain, reduced sunshine, and higher 

temperatures (e.g., reaching 38.6 ℃ on day 13). The unstable temperature fluctuated 

violently, inhibiting algal growth. After 40 days, the SCC began, and the high-concentration 

algae began to grow rapidly. Between days 40 and 51, the weather was mostly cloudy with 
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occasional sunny, characterized by relatively stable temperatures and the absence of violent 

fluctuations. 

The highest cell number occurred on the 114th day in the 700-2 group, at 78.08 ×106. 

The weather conditions were clear, with water temperature of 21.2 ℃ and an air 

temperature of 23.1 ± 3.66 ℃. Through the results of Figures 2-B and 2-C, a similar overall 

trend throughout the 185 days of cultivation was observed. Starting from day 40, the 

average water temperature and air temperature during the 1st SCC (days 40-54) were 33.53 

± 2.50 and 34.18 ± 2.03 ℃, respectively (Table 1). From Figures 2-B, 2-C, and 2-D 

regarding cell numbers, chlorophyll α content, and dry weight. The growth of N. oceanica 

was continuously inhibited by high temperatures. This indicated that N. oceanica growth 

was suppressed when the temperature exceeded 33 ℃.  

Table 1 The average water temperature and air temperature at each semi-continuous culture 

stage. * 

Semi- 

continuo

us 

0 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Water ℃ 

33.4

1± 

2.71 

33.53±

2.50 

29.48±

3.16 

29.41±

5.08 

23.42±

3.63 

23.1±3.

66 

20.71±

4.56 

15.01±

5.50 

14.31±

3.04 

8.83±

6.18 

5.85±

2.41 

Air ℃ 

33.9

5±2.

02 

34.18±

2.03 

30.45±

3.06 

30.15±

4.65 

24.58±

3.28 

24.85±

3.24 

24.87±

3.98 

17.31±

5.64 

16.12±

3.65 

7.9±9.

36 

6.48±

6.16 

*Data are represented as mean ± standard deviation of each semi-continuous 

cultivation. 

During the 2nd SCC (Days 55-64), the average temperature decreased to 30.45 ± 

3.06 ℃. Cell numbers, chlorophyll α content, and dry weight showed rapid growth, 

indicating around 30 ℃ was optimal for N. oceanica growth, regardless of initial 
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inoculation concentrations. From the 2nd to the 10th SCC, average air temperature 

gradually decreased. N. oceanica tolerated low temperatures, able to grow above 5 ℃ 

(Figures 1-A, 2-A, 2-B, 2-C, and 6). The most suitable water temperature was around 25 ℃. 

On the 114th day, the highest chlorophyll α content (3.02 mg/L) was observed in the 700-2 

culture. 

Table 2 Semi-continuous cultivation of N. oceanica: highest growth rate and biomass 

productivity under 700 L outdoor cultivation. * 

Semi 

continuo

us 

Growth Rate (μmax: d
-1) Biomass productivity (mg/L/day) 

700-1 700-2 700-1 700-2 

0 1.86 ± 0.61 e 2.17 ± 1.12 a 2.65 ± 0.84 e 5.71 ± 1.72 a 

1st 5.20 ± 5.2 cde 4.09 ± 0.21 a 8.69 ± 4.12 de 16.67 ± 0.52 a 

2nd 10.35 ± 0.4 ab 3.41 ± 0.6 a 30.00 ± 2.63 bc 18.83 ± 2.98 a 

3rd 6.62 ± 2.21 bcd 5.00 ± 3.16 a 27.11 ± 9.28 bc 22.35 ± 11.3 a 

4th 8.31 ± 3.68 bc 4.36 ± 3.16 a 33.19 ± 13.77 bc 27.62 ± 21.33 a 

5th 5.06 ± 1.14 cde 4.22 ± 1.84 a 25.95 ± 6.04 bc 35.79 ±17.27 a 

6th 9.93 ± 3.01 ab 4.54 ± 3.47 a 38.32 ± 8.4 ab 26.9 ± 18.03 a 

7th 4.61 ± 0.99 cde 4.92 ± 3.93 a 18.99 ± 5.12 cd 27.29 ± 20.16 a 

8th 6.14 ± 0.45 bcde 3.50 ± 0.44 a 27.86 ± 1.69 bc 22.62 ± 3.22 a 

9th 13.52 ± 2.96 a 1.59 ± 1.11 a 49.33 ± 2.07 a 13.33 ± 9.31 a 

10th 3.24 ± 0.74 de 1.17 ± 0.63 a 9.33 ± 2.07 de 6.33 ± 3.39 a 

*Data are represented as mean ± standard deviation of triplicates.  

The letters a, b, c, d, e, etc. following the data indicate significant differences. Data 

with the same letter indicate no significant difference, while data with different letters 

indicate significant differences. 

Combining the results of dry weight from Figure 2-D, the calculations for the GR and 

BP of each SCC stage were calculated (Table 2). Under low initial inoculum concentration 

conditions, higher GR were observed. Correlating these observations with weather data, 

indicating that the temperature range of 5-30 ℃ was conducive to the cultivation of N. 
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oceanica. The maximum dry weight value occurred on the 114th day, specifically at the end 

of the fifth SCC, and its dry weight value, when converted, was 10.5 g/L. 

From Table 2, it was observed that when the algae concentration in the culture medium 

was higher, there was not much significant difference in the GR and BP at various SCC 

stages. This indicated that higher algal concentration provided better resistance to 

environmental seasonal changes. Furthermore, the highest BP was observed in the 9th SCC 

stages at 49.33 ± 2.07 mg/L/day, with temperature ranges concentrated between 14 to 25 ℃ 

during these periods. Therefore, N. oceanica can get a higher BP within this temperature 

range. These research findings provide valuable guidance for optimizing N. oceanica 

cultivation conditions and biomass productivity. Lipid accumulation remained low during 

the summer period (0-3rd of SCC) due to the hot and intense sunlight (Figure 1-D). 

However, as temperatures decreased in the fall, lipid accumulation increased. From the 5th 

SCC onwards, lipid accumulation continued to rise, showing an inverse correlation with 

decreasing temperatures. This suggests that outdoor low-temperature cultivation promoted 

lipid accumulation. The maximum lipid content, reaching 29 % of algal dry weight, 

occurred in the 10th SCC, consistent with previous research (Yuan et al., 2019). 

The in-situ ORR results reflected photosynthesis efficiency and plant or algae 

responses to environmental changes. ORR in high-concentration inoculation group 700-2 

surpassed low-concentration group. Figure 1-B's chlorophyll fluorescence efficiency, along 

with weather conditions in Figure 1-A, illustrated illumination's impact on ORR. Overcast 

or rainy weather decreased ORR, while intense illumination tended to increase it. 

From Figure 3，pictures were taken on the last day of each SCC, showing clear cell 
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density and health status through color variations. On the 10th SCC (Figure 3), poor overall 

growth conditions were roughly observed, with instances of cell adhesion, particularly after 

low temperatures. The 700 L tank, positioned between two buildings, allowed effective 

cultivation even in areas with weaker sunlight. Transparency on three sides facilitated this. 

Additionally, the SCC method enabled continuous N. oceanica production. 

3.2 150 L tank data 

 

Figure 4 N. oceanica growth in 150 L tank under outdoor conditions. A: weather conditions. 

B: chlorophyll fluorescence efficiency (Fv/Fm: Fv is variable fluorescence, Fm is maximum 

fluorescence). C: Oxygen release rate (mg/L/s). D: Lipid content (% of algal dry weight). a, 

b, c, d are marked as significant differences in lipid content at each SCC run. The same 

letters indicate no significant differences, and different letters indicate significant 

differences. Data are reported as mean ± standard deviation of triplicates. Data are reported 

as mean ± standard deviation of triplicates. 

From the weather results of the 700 L tank in Figure 1-A, it can be observed that there 

were differences compared to the weather results of the 150 L tank (Figure 4-A). The 
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distance between the positions of the 150 L tank and the 700 L tank was only 10 meters. 

However, the 700 L tank was situated in a location with more tree coverage and closer to a 

building, resulting in less sunlight exposure time compared to the 150 L tank. It can be seen 

that, before day 100, the light intensity measured at the location of the 700 L tank was 

higher than that at the location of the 150 L tank. This was because during the summer 

cultivation period, a sunshade canopy was installed above the 150 L tank to reduce 

excessive light and high temperatures. 

The light intensity of 150 L PBRs higher than 700 L PBRs after 100 days, due to the 

sun's angle changing during fall and winter, providing longer sunlight exposure with less 

obstruction. As fall progressed and trees shed leaves, obstruction further decreased. 

Comparing weather conditions, Fv/Fm, and oxygen evolution rate results (Figures 4-A, 4-B, 

4-C), it's evident that under similar conditions, the low inoculum concentration group 

exhibited lower oxygen evolution rates compared to the high inoculum concentration group 

(Day 100-185). Additionally, the 150 L PBRs with a sunshade canopy showed higher ORR 

during summer sunlight (Day 34), suggesting that strong light inhibits algal cells and 

shading helps decrease the damage. Fv/Fm results (Figure 4-B) indicate that chlorophyll 

fluorescence efficiency in the small 150 L tank was inhibited after each nutrient renewal. 

However, this impact was less pronounced in 700 L PBRs (Figure 1-B). Despite an 

additional cycle on Day 25 due to its smaller volume, SCC in the 150 L tank with a 

sunshade net facilitated good growth even under strong light exposure (Figure 5-A). 

Furthermore, when temperatures dropped, the rain shelter provided insulation, 

allowing N. oceanica to continue growing well even in cooler conditions. The highest OD 
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680 value, 2.1662, was recorded on the 19th day in the 150-2 group. Cell count results 

(Figure 5-B) showed that during summer, the shading canopy promoted rapid cell growth. 

However, as fall brought decreased sunlight intensity, the rain shelter began to inhibit cell 

growth. Interestingly, as leaves fell, improving light conditions, cell growth increased. 

Although the rain shelter provided insulation, the quick temperature decreased significantly 

impacted cell numbers. The maximum cell numbers, 6.03×108 cells, was recorded on Day 

144 in the 150-1 group. Chlorophyll α accumulation remained stable in the first 100 days 

due to shading canopies and rain shelters. However, chlorophyll α accumulation increased 

after temperature decreased (Day 130-150). Low temperatures during initial inoculation 

could inhibit chlorophyll α accumulation (Day 160 to 185). The highest chlorophyll α 

content, 4.00 mg/L, was recorded on Day 159 in the 150-1 group. 

 

Figure 5 Bioproducts of N. oceanica growth under outdoor conditions in 150 L 

photobioreactor. A: Optical density OD 680. B: Cell numbers. C: Chlorophyll α. D: Algal 

dry weights. Data are reported as mean ± standard deviation of triplicates. 

The highest GR (Table 3) was observed on the 4th SCC at 21.85 ± 2.61 d-1. In 150 L 

PBRs, it was showed that when the algae concentration was high, the difference of GR in 
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each period was not significant, indicating better environmental tolerance of 

high-concentration algae. Similar trends were observed in the BP results (Table 4), in the 

150 L PBRs, the highest BP (104.00 ± 24.59 mg/L/day) was recorded on the 9th SCC. 

Table 3 Semi-continuous cultivation of N. oceanica: highest growth rate under 150 L 

outdoor cultivation.* 

Semi 

continuous 

Growth Rate (d-1) 

150-1 150-2 150-3 150-4 

0 3.02 ± 0.7 a 4.05 ± 1.19 bcd 3.70 ± 0.89 cd 3.61 ± 0.77 ab 

1st 7.01 ± 2.99 a 1.55 ± 0.36 d 4.92 ± 3.24 cd 6.41 ±3.01 ab 

2nd 4.03 ± 2.68 a 4.42 ± 1.46 bcd 7.05 ± 3.67 bcd 7.19 ± 3.18 a 

3rd 7.13 ± 4.13 a 2.33 ± 0.27 bcd 2.82 ± 1.00 d 3.01 ± 1.47 ab 

4th 5.79 ± 2.75 a 7.28 ± 1.49 ab 21.85 ± 2.61 a 5.63 ± 2.74 ab 

5th 7.02 ± 4.16 a 6.8 ± 5.39 abcd 2.15 ± 0.5 d 3.97 ± 1.39 ab 

6th 8.85 ± 3.44 a 7.05 ± 4.05 abc 6.53 ± 1.75 bcd 7.36 ± 3.04 a 

7th 5.43 ± 2.47 a 7.26 ± 0.68 ab 5.47 ± 0.41 bcd 6.37 ± 4.37 ab 

8th 4.18 ± 0.31 a 3.55 ± 0.63 bcd 3.85 ± 1.08 cd 6.21 ± 0.57 ab 

9th 4.97 ± 2.93 a 10.58 ± 2.22 a 11.59 ± 0.65 b 8.06 ± 3.91 a 

10th 4.29 ± 4.65 a 4.73 ± 3.13 bcd 9.08 ± 5.31 bc 5.54 ± 2.63 ab 

11th 3.3 ± 2.08 a 1.79 ± 0.91 cd 1.88 ± 4.93 d 1.32 ± 1.08 b 

*Data are represented as mean ± standard deviation of triplicates. 

The letters a, b, c, d, e, etc. following the data indicate significant differences. Data 

with the same letter indicate no significant difference, while data with different letters 

indicate significant differences. 

Dry weight followed the same trend as cell count. In the 8th SCC, on day 150, N. 

oceanica reached its highest dry weight of 13.9 g/L in tank 150-1. The weather was clear, 

with water and air temperatures at 19.2 ℃ and 20.2 ℃, respectively. Comparatively, results 

from Table 2 indicate that even with shading canopy, the 150 L tank exhibited good growth 

rates during the hot summer months with intense illumination. In the 150 L-1 group, the 

maximum GR occurred during the 6th SCC and was 8.85 ± 3.44 per day (d-1). In the 150-2 
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group, the maximum GR was 10.58 ± 2.22 d-1, also appearing during the 9th SCC. The 

150-3 group reached its maximum GR of 21.85 ± 2.61 d-1 during the 9th SCC. Similarly, in 

the 150-4, the maximum GR occurred during the 9th SCC and was 8.06 ± 3.91 d-1. 

The BP in the 150 L tank was higher than 700 L tank, especially during the summer 

when the shading canopy was used. This effective increase in BP extended the cultivable 

period for N. oceanica. However, in both the 700 L and 150 L tanks, SCC conducted at 

temperatures below 5 ℃ inhibited growth, resulting in stagnation or decline. The 9th SCC 

in the 150-1 group showed the highest BP at 62.00 ± 37.22 mg/L/day, while in 150-2, it was 

104.00 ± 24.59 mg/L/day. Similarly, both 150-3 and 150-4 reached their peak BP values 

during the 9th SCC, recording 102.67 ± 9.18 mg/L/day and 68.1 ± 34.12 mg/L/day, 

respectively. 

Table 4 Semi-continuous cultivation of N. oceanica: highest biomass productivity (BP) 

under 150 L outdoor cultivation.* 

Semi 

continuous 

Biomass productivity (mg/L/day) 

150-1 150-2 150-3 150-4 

0 21.67 ± 5.47 a 30.33 ± 6.09 bc 28.00 ± 5.81 c 27.72 ± 4.33 b 

1st 41.39 ± 12.87 a 12.14 ± 2.21 bc 14.05 ± 4.71 c 21.85 ± 10.61 b 

2nd 24.52 ± 14.57 a 24.13 ± 10.04 bc 22.12 ± 12.28 c 26.19 ± 10.57 b 

3rd 41.93 ± 22.51 a 14.15 ± 3.14 bc 8.89 ± 1.72 c 10.44 ± 4.86 b 

4th 32.22 ± 15.25 a 38.00 ± 3.58 b 76.33 ± 19.64 b 17.00 ± 3.9 b 

5th 33.46 ± 19.1 a 27.74 ± 21.24 bc 7.11 ± 1.21 c 11.81 ± 2.56 b 

6th 34.76 ± 4.62 a 23.9 ± 5.72 bc 20.95 ± 2.75 c 25.24 ± 3.74 b 

7th 27.14 ± 11.3 a 30.24 ± 0.37 bc 20.24 ± 2.42 c 21.48 ± 12.41 b 

8th 29.29 ± 1.92 a 19.76 ± 3.69 bc 17.62 ± 4.25 c 23.57 ± 1.11 b 

9th 62.00 ± 37.22 a 104.00 ± 24.59 a 102.67 ± 9.18 a 68.1 ± 34.12 a 

10th 34.59 ± 36.83 a 39.33 ± 23.28 b 29.67 ± 18.81 c 18.00 ± 8.2 b 

11th 25.00 ± 14.94 a 7.67 ± 10.05 c 6.00 ± 15.28 c 3.00 ± 1.55 b 

*Data are represented as mean ± standard deviation of triplicates. 

 The letters a, b, c, d, e, etc. following the data indicate significant differences. Data 
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with the same letter indicate no significant difference, while data with different letters 

indicate significant differences. 

Day 0 1st 2nd 

   

3rd 4th 5th 

   

6th 7th 8th 

   

9th 10th 11th 

   

Figure 6 Picture of the growth of Nannochloropsis oceanica with different initial OD 680 

levels in a 150 L tank under outdoor conditions. 

Lipid accumulation under 150 L PBRs was illustrated in Figure 4-D. The lipid 

accumulation was lower in the summer when temperatures were higher. However, as 

entered the autumn and winter seasons, with decreasing temperatures, the lipid 

accumulation gradually increased. This trend was similar to the results in the 700 L PBRs, 
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indicating that lower temperatures were more conducive to inducing lipid accumulation in N. 

oceanica. In the 150 L PBRs, the maximum accumulation of lipids occurred during the 10th 

SCC, accounting for 28 % of algal dry weight. 

In Figure 6, the final states of each SCC on the last day were shown. The 150 L bucket, 

with only its opening exposed to sunlight, demonstrated minimal impact on growth as long 

as the stirring rate was maintained. However, the drawback of an open design was that 

rainwater was prone to entering the tank. To prevent rainwater ingress, a rain shelter could 

be added. Yet, small volume cultivation PBRs could not withstand prolonged exposure to 

rain, necessitating the addition of a rain shelter or transparent cover. 

The hydro costs during cultivation can be calculated, with electricity costing 

$ 1.83/day in the experimental area, totaling US dollar ($) 338.55 over 185 days. A single 

550-watt WL-550 high-pressure scroll air pump can provide air mixing for either 12 of 700 

L PBRs or 56 of 150 L PBRs, with electricity costs of $ 28.21 and $ 6.05 for each, 

respectively. Water was priced at $ 0.54 per ton, with consumption at 425 L ($ 0.23) for 

each 150 L PBR and 1700 L ($ 0.92) for each 700 L PBR. According to Table 2 and 4, the 

average algal yield was 371.16 g for 1700 L (700 L PBRs) and 527.78 g for 425 L (150 L 

PBRs). The costs for cultivating N. oceanica in 700 L and 150 L PBRs were 12.74 g/$ and 

84.04 g/$, respectively. Based on maximum BP, the cost of 700 L and 150 L PBRs was 

20.27 g and 298.09 g/$, respectively. If calculated at average BP as the lowest cost, the price 

would be $ 11.89 per kilogram (kg); if calculated at maximum BP as the lowest cost, the 

price would be $ 3.35/kg. Comparing with the current price of fish feeds such as Black 

Soldier Fly Larvae at $5.43/kg (Maroušek & Strunecký et al., 2023), N. oceanica remains 
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competitively priced. However, careful cultivation timing is crucial. Currently, N. oceanica 

is being sold on the Alibaba website for $ 20.19 to 35.34/kg, whereas the basic price 

obtained in this experiment was $ 11.89/kg, indicating its high competitiveness. 

From the results, it can be seen that both yield and electricity costs were the main 

factors influencing prices. Electricity was primarily used to power high-pressure scroll air 

pumps to provide agitation for the algae. Thus, two issues should be addressed in the future: 

1. Pay attention to the climate during cultivation to increase yield. 2. Developing a method 

for agitation without electricity could significantly lower cultivation costs in the future.  

Conclusion 

The N. oceanica cultivable temperature range was 5-30 ℃, the optimal cultivation 

temperature range was 14-25 ℃. It showed cold tolerance and ability to accumulate more 

lipid at low temperatures. The novel in-situ ORR measurement method can further monitor 

real-time growth conditions. The 150 L tank demonstrated higher GR (11.60 ± 0.007 d-1) 

and BP (104.00 ± 0.04 mg/L/day). But new designed 700 L tank was not susceptible to 

environmental influences. The algae price was US $ 11.89 /kg, which was cheaper than the 

current market price. The consumption of electricity increases the cost of cultivating 

microalgae. Using smaller PBRs at the same hydro price is more cost-effective. 

 



 

 218 

References 

Absher, M. (1973). Hemocytometer counting. In Tissue culture (pp. 395-397). Academic 

Press. 

Barclay, W. R., Terry, K. L., Nagle, N. J., Weissman, J. C., & Goebel, R. P. (1987). Potential 

of new strains of marine and inland saline‐adapted microalgae for aquaculture. 

Journal of the World Aquaculture Society, 18(4), 218-228. 

Borowitzka, M. A., & Moheimani, N. R. (2012). Open pond culture systems. In Algae for 

biofuels and energy (pp. 133-152). Dordrecht: Springer Netherlands. 

Chen, X., Kameshwar, A. K. S., Chio, C., Lu, F., & Qin, W. (2019). Effect of KNO3 on lipid 

synthesis and CaCO3 accumulation in Pleurochrysis dentata coccoliths with a 

special focus on morphological characters of coccolithophores. International 

journal of biological sciences, 15(13), 2844. 

Chisti, Y. (2013). Raceways-based production of algal crude oil. Green, 3(3-4), 195-216. 

Detrell, G., Helisch, H., Keppler, J., Martin, J., & Henn, N. (2020). Microalgae for 

combined air revitalization and biomass production for space applications. 

From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment, 

419-445. 

Detrell, G. (2021). Chlorella vulgaris photobioreactor for oxygen and food production on a 

Moon base—potential and challenges. Frontiers in Astronomy and Space 

Sciences, 8, 700579. 

Detrell, G., & Martin, J. (2022). Microalgae for Oxygen and food production on the Lunar 

or Martian surface–Impact of In-Situ Resources Utilization. 



 

 219 

Guillard, R. R., & Sieracki, M. S. (2005). Counting cells in cultures with the light 

microscope. Algal culturing techniques, 239-252. 

Gupta, P. L., Lee, S. M., & Choi, H. J. (2015). A mini review: photobioreactors for large 

scale algal cultivation. World Journal of Microbiology and Biotechnology, 31, 

1409-1417. 

Kim, K. H. (2022). Microalgae Building Enclosures: Design and Engineering Principles. 

Routledge. 

Kong, W., Shen, B., Lyu, H., Kong, J., Ma, J., Wang, Z., & Feng, S. (2021). Review on 

carbon dioxide fixation coupled with nutrients removal from wastewater by 

microalgae. Journal of Cleaner Production, 292, 125975. 

Krause, G. H., & Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology: II. 

Interpretation of fluorescence signals. Photosynthesis research, 5, 139-157. 

Krause, A. G., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. 

Annual review of plant biology, 42(1), 313-349. 

Kumar, S., Kubar, A. A., Sobhi, M., Cui, Y., Liu, W., Hu, X., ... & Huo, S. (2023). 

Regulation of microclimate and shading effects of microalgal photobioreactors 

on rooftops: Microalgae as a promising emergent for green roof technology. 

Bioresource Technology, 130209. 

Liu, X., Hong, Y., He, Y., & Liu, Y. (2019). Growth and high-valued products accumulation 

characteristics of microalgae in saline-alkali leachate from Inner Mongolia. 

Environmental Science and Pollution Research, 26, 36985-36992. 

Lu, X., Cui, Y., Chen, Y., Xiao, Y., Song, X., Gao, F., ... & Lu, Y. (2021). Sustainable 



 

 220 

development of microalgal biotechnology in coastal zone for aquaculture and 

food. Science of the Total Environment, 780, 146369. 

Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, P. H. (2019). 

The use of microalgae for coupling wastewater treatment with CO2 biofixation. 

Frontiers in bioengineering and biotechnology, 7, 42. 

Negev, E., Yezioro, A., Polikovsky, M., Kribus, A., Cory, J., Shashua-Bar, L., & Golberg, A. 

(2019). Algae Window for reducing energy consumption of building structures 

in the Mediterranean city of Tel-Aviv, Israel. Energy and Buildings, 204, 

109460. 

Shen, Y. (2014). Carbon dioxide bio-fixation and wastewater treatment via algae 

photochemical synthesis for biofuels production. RSC Advances, 4(91), 

49672-49722. 

Yen, H. W., Hu, I. C., Chen, C. Y., Nagarajan, D., & Chang, J. S. (2019). Design of 

photobioreactors for algal cultivation. In Biofuels from algae (pp. 225-256). 

Elsevier. 

You, X., Xu, N., Yang, X., & Sun, W. (2021). Pollutants affect algae-bacteria interactions: a 

critical review. Environmental Pollution, 276, 116723. 

Yuan, W., Ma, Y., Wei, W., Liu, W., Ding, Y., & Balamurugan, S. (2019). Sequential 

treatment with bicarbonate and low temperature to potentiate both biomass and 

lipid productivity in Nannochloropsis oceanica. Journal of Chemical 

Technology & Biotechnology, 94(10), 3413-3419. 

Zhang, S., & Liu, Z. (2021). Advances in the biological fixation of carbon dioxide by 



 

 221 

microalgae. Journal of Chemical Technology & Biotechnology, 96(6), 

1475-1495. 

Zou, N., & Richmond, A. (1999). Effect of light-path length in outdoor fiat plate reactors on 

output rate of cell mass and of EPA in N. oceanica In Progress in Industrial 

Microbiology (Vol. 35, pp. 351-356). Elsevier. 

  

 



 

 222 

Chapter 5. Conclusion and future studies 

1 Conclusion 

This experiment focused on cultivating two marine microalgae, Chrysotila 

(Pleurochrysis) dentata and Nannochloropsis oceanica, to advance algae research in 

addressing environmental, climate, food, and energy challenges. 

Chrysotila (Pleurochrysis) dentata, known for its ability to fix carbon dioxide and high 

lipid content of 33.61%, holds promise (Marsh, 1999; Marsh, 2003; Chen et al., 2019). 

Optimal indoor cultivation conditions include an 18L/6D photoperiod, pH 8.5, and 2.5% 

salt concentration. A positive correlation between coccolith thickness and light intensity was 

also discovered, suggesting a novel approach for carbon sequestration. 

To address pollution concerns in algae cultivation, we developed an Algal-Bacterial 

Symbiotic System (ABSS) with C. dentata and Nitratireductor aquibiodomus. Results 

showed varying algae growth with different algal-bacterial ratios, informing open 

cultivation monitoring. An optimal ratio of 8:2 was found, and co-cultivation with 

Nannochloropsis oceanica benefited C. dentata' s growth. 

Incorporating PET microplastics into the symbiotic system, the impact on microbial 

growth was investigated. Optimal microplastic levels (5-15 mg/L) facilitated algae growth, 

but higher concentrations hindered growth by blocking light. Notably, algae attached to 

microplastics entered the food chain when consumed by predators. 

For Nannochloropsis oceanica, small-scale indoor and large-scale outdoor cultivation 

experiments were conducted at 30 °N latitude. The findings from chlorophyll fluorescence 

analysis suggest using 0.5 g/L urea as the nitrogen source in commercial cultivation, 
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avoiding ammonium chloride due to its adverse impact on photosynthesis. Maintaining salt 

concentration between 2.5 % and 3.5 % is crucial due to natural evaporation and rainfall. 

The designed 700 L tank, featuring three transparent sides, facilitated favorable 

cultivation of Nannochloropsis oceanica, even in partially shaded areas. Outdoor 

experiments, conducted across summer, autumn, and winter, explored the cultivability of N. 

oceanica in temperatures ranging from 5-30 ℃, with the optimal range identified as 

14-25 ℃. The study introduced real-time monitoring techniques, including chlorophyll 

fluorescence analysis and a novel in situ oxygen release rate measurement method. Results 

demonstrated that the new 700 L tank design enabled efficient algae production under 

various light conditions. Notably, N. oceanica showed cold tolerance, with maximum lipid 

contents of 29.22 % and 28.57 % observed in the 700 L and 150 L setups, respectively. 

The 150 L LLDPE plastic bucket offered advantages of lower initial costs, higher 

growth rates, and biomass productivity. However, its susceptibility to environmental 

influences, particularly in smaller water volumes, led to significant fluctuations in 

chlorophyll fluorescence during semi-continuous cultivation. The larger 700 L tank showed 

greater resilience to climatic fluctuations but had drawbacks due to its larger size, making 

transportation inconvenient and maintenance costs relatively higher. In summary, shading 

measures during intense light and hot summer days, along with insulation below 5 ℃, are 

recommended to enhance year-round outdoor cultivability, especially for smaller setups. 

This experiment, studying Chrysotila (Pleurochrysis) dentata and Nannochloropsis 

oceanica, offers insights into algae production and applications in inland and indoor settings. 

It introduces a novel microalgae cultivation system and a new real-time oxygen release rate 
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monitoring method, advancing algae cultivation and commercial production. 

2 Future studies 

Chrysotila (Pleurochrysis) dentata has significant potential for carbon sequestration 

due to its ability to synthesize calcium carbonate (Moheimani, 2005; Nimer & Merrett, 

1993; Sikes et al., 1980). However, a fascinating research direction is how to stimulate 

continuous growth and shedding of Chrysotila (Pleurochrysis) dentata' s shell after it has 

fully formed, ensuring sustained carbon sequestration. This can be achieved through 

external interventions to induce the shedding of the calcium carbonate shell or through 

genetic engineering by modifying key synthetic codons in the V unit and R unit to alter its 

structure (Chen et al., 2019). From our current research, the addition of phenol to the culture 

medium can induce calcium carbonate precipitation in the culture medium of Chrysotila 

(Pleurochrysis) dentata (Figure 1), but the specific mechanism remains unclear and requires 

further investigation. 

 

Figure 1 Addition of phenol to the culture medium of Chrysotila (Pleurochrysis) dentata 

results in the precipitation of calcium carbonate at the bottom (highlighted in the red box). 

Additionally, the overall color of the algae is darker compared to the culture without phenol. 

But phenol is toxic. In the future, we hope to find an environmentally friendly reagent 

that can facilitate coccolith shedding without harming C. dentata, thereby enabling more 

carbon fixation. 
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At the current stage, outdoor cultivation of microalgae still faces numerous challenges 

(Xu et al., 2009; Yu et al., 2022; Brennan et al., 2010). The uncertainty of climate 

significantly affects algae yield, and many locations and regions are not suitable for 

traditional algae cultivation systems (Novoveská et al., 2023; Khan et al., 2018; Qari et al., 

2017). The development of low-cost, light-permeable, and environmentally resilient 

cultivation devices holds practical significance (Kose et al., 2017). In the future, we aim to 

design a cultivation system that provides adequate shading and insulation. Through 

comparative studies on the tolerance of different volumes of cultivation containers to 

environmental changes during outdoor semi-continuous cultivation, we hope to identify the 

optimal cultivation volume—one that is less affected by climate changes and exhibits higher 

biomass production. 

Since low temperatures can induce lipid accumulation in Nannochloropsis oceanica, 

but at the same time reduce the growth rate of algae, there is a need to find the optimal low 

temperature that induces lipid accumulation while maintaining a suitable growth rate. Then 

developing a new year-round algae production model, with spring and summer seasons 

dedicated to biomass production and autumn and winter seasons focused on lipid 

production. 

Furthermore, during our experimental process, we observed the need for optimization 

of microalgae harvesting methods. Finding a rapid, efficient, and cost-effective way to 

harvest algae is a significant challenge that requires resolution. 
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