L ——)
A\ 4
W

Exploring Name-based Bug Detection in Python
by

Subrata Das

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE FACULTY OF GRADUATE STUDIES
OF LAKEHEAD UNIVERSITY
IN PARTTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

2024
Lakehead University
Thunder Bay, Ontario, Canada



i

Examining Committee Membership

The thesis of Subrata Das, Exploring Name-based Bug Detection in Python, is approved:

Supervisor:

Supervisor:

Internal Examiner:

External Examiner:

Dr. Muhammad Asaduzzaman
Assistant Professor, School of Computer Science,

University of Windsor, Windsor, Ontario, Canada

Dr. Salimur Choudhury
Associate Professor, Department of Computer Science,

Queen’s University, Kingston, Ontario, Canada

Dr. Garima Bajwa
Assistant Professor, Department of Computer Science,
Lakehead University, Thunder Bay, Ontario, Canada

Dr. Zubair Md Fadlullah

Associate Professor, Computer Science,

Western University, London, Ontario, Canada



iii

ABSTRACT

Names of source code elements provide useful contextual information about the code and
development tasks. Prior studies leverage the similarity between the names of arguments
and method parameters to detect bugs that are caused by accidentally swapping arguments
while calling methods. This requires establishing the mapping between method calls and
their definitions. However, it is a challenging task to establish the mapping because of the
complexity involved with the process (e.g., missing external libraries). This thesis aims to
understand the performance of name-based argument-related bug detection techniques in
Python, a popular general-purpose, statically typed programming language.

Towards this direction, this thesis conducts a study that first investigates the similarity
between arguments and their method parameters in Python code. The above step fol-
lows by establishing the mapping of method calls to their definitions and evaluating the
performance of existing name-based techniques to detect swapping argument-related bugs
in Python. Finally, a technique has been developed that uses argument usage patterns
and expression types in source code with name-based similarity matching to improve the
performance of detecting argument-related bugs. Evaluation of the proposed technique
with a large collection of open-source Python projects shows that the technique can detect
argument-related bugs with high accuracy even when the method definitions are missing.
One potential solution to prevent argument-related bugs from occurring is to use code com-
pletion. An argument recommendation system suggests method arguments as a developer
types the code. Thus, the second part of the thesis focuses on completing arguments of
method calls. In particular, this thesis investigates the efficacy of large language models in

recommending arguments for API (Application Programming Interface) method calls.



iv

ACKNOWLEDGEMENTS

At the forefront of my gratitude, I extend sincere appreciation to my supervisors, Dr.
Muhammad Asaduzzaman and Dr. Salimur Chowdhury, whose unwavering guidance, in-
sightful recommendations, encouragement, and remarkable patience have been instrumental
in the fruition of this thesis. Their indispensable support has been pivotal, without which
this endeavor would not have come to fruition.

I would like to express my gratitude to Dr. Zubair Fadlullah (Western University) and
Dr. Garima Bajwa (Lakehead University) for their contributions to my thesis commit-
tee. Their guidance, evaluation, and insightful remarks helped this thesis to be completed
successfully.

I am also thankful and express my gratitude to the Department of Computer Science,
Lakehead University for their kind assistance in the form of scholarships, awards, and
bursaries, which allowed me to focus intently on my thesis work. I want to express my
gratitude to all of my friends and fellow Department of Computer Science staff who have
supported me along this journey. I am especially grateful to Kawser Wazed Nafi who
provided constant motivation, brilliant ideas, and expert advice to shape my ideas. I also
convey my gratitude to my lab mate and coworker, MD Anaytul Islam, as we worked
together to understand the modern field of software engineering. I thank Dr. Sheikh
Moniruzzaman, Pronab Ghosh, and Shouvik Paul for their prudent guidance.

I am deeply grateful to my friends in Thunder Bay for their unwavering support and
encouragement throughout my endeavors. I extend special thanks to Shofi Ahmed, Sakib
Ali, Waishari Das, Mostansir Nayeem, Prithu Aldrin Costa, Hasib Kamal, Nahiyan Al
Mahmood, Ragib Raonok, and Khandaker Billalur Rahaman for their invaluable friendship
and assistance. I am grateful to everyone for their participation in this thesis, even if they
are not named specifically. Your participation has been really helpful to my growth, both
personally and professionally.

This thesis is dedicated to my beloved father, Mr. Subodh Kumar Das, and mother,
Mrs. Kakali Biswas, whose unwavering inspiration and steadfast support have been the

guiding lights illuminating every step of my journey, both academic and personal.



Contents

Abstract iii
Acknowledgements iv
Table of Contents v
List of Tables ix
List of Figures xi
1 Introduction 1
1.1 Motivation . . . . . . . . . e e e e 1

1.2 Research objectives and significance . . . . .. ... ... ... ....... 5

1.3 Contributions of the Thesis . . . . . .. . ... ... .. ... ........ 6
1.4 Outlineof the Thesis . . . . . . . . . .. . .. . .. . ... . ...... 7

2 Related Work 8
2.1 Name-Based Bug Detection for JavaScript . . . . . .. . ... ... ..... 8
2.2 Name-Based Source Code Analysis and Bug Detectors . . . . . . ... ... 9
2.3 Parameter-Argument-Related Bug Detectors . . . . . . . ... ... .... 12
2.4 Usage Pattern-Based Source Code Analysis . . . . ... ... ... ..... 15
2.5 Deep Learning for Bug Detection . . . . . . . . ... .. .. ... ...... 17
2.6 Usage of Large Language Models . . . . . . . . ... ... ... ....... 18
2.7 Conclusion . . . . . . . . . . e e e e e e 19

3 Linking Method Calls to their Definitions 21
3.1 Introduction . . . . . . . . . . . e e e e 21
3.2 Dynamic Type Solving of Variables in Python . . . . . . . . ... ... ... 21
3.3 Linking Method Calls to their Definitions . . . . . ... . ... ... .... 25
3.3.1 Method Definition Pattern . . . . ... ... ... ... ....... 26

3.3.2 Method Call Patterns . . . . ... ... ... ... ... ... .... 27

3.3.3 Analysis 1: Method Call and Method Definitions in the Same File . 28



vi

3.3.4 Analysis 2: Both an import statement and method call sequence

(Outside the same file Method Call Mapping) . . . . ... ... ... 31
3.4 Example of Resolving Method Call . . . . . . . ... ... ... ....... 32
3.5 Result of Type Detection: . . . . . . ... . . . ... ... ... .. ..... 34
3.6 Evaluation Procedure: . . . . . . . .. .. .. ... ... ... . 35
3.6.1 Experimental Setup . ... . ... ... ... ... ... .. ..., 35
3.6.2 Evaluation Metrics . . . . . . .. . .. .. ... e 35
3.7 Result of Mapping Algorithm . . . . . .. ... ... ... .......... 35
3.8 Conclusion . . . . . . . . . e e e e e e 36
Exploring Name-based Bug Detection in Python 38
4.1 Introduction . . . . . . . . . . . e e e 38
4.2 Background . . . . . . ... 41
4.3 Data Collection . . . . . . . . . . . e e e 44
44 Methodologies. . . . . . . . . . . . e e 45
4.4.1 Data Extraction and Generalization . . .. ... ... ... ..... 45
4.4.2 Linking Method Calls to its Definitions . . . . . . . ... ... ... 46
4.4.3 Binder Generation . . . ... ... .. ... ... 00 46
4.4.3.1 Binder Generation for Correct Code Pattern . . . .. . .. 46
4.4.3.2 Swapping Argument Sequence for Wrong Code Pattern . . 53
4.4.4 Context Collection for Word2vec Model . . . . . . .. ... ... .. 53
4441 Context Collection for DeepBugs Model(DBM) . . . . . . . 54
4442 Context Collection for API Usage-Context Mode(AUM) . . 55

4443 Context Collection for Argument Usage Pattern with Parent
Information Model(AUCM Model) . . . . . ... ... ... 55

4444 Context Collection for Argument Usage Pattern with Parent
Information and Expression Type Information(AUCMET) 55
4.5 Experimental Setup . . . . . . . . . . .. ... 57
4.6 Evaluation Procedure . . ... ... ... ... ... ... . ... ... 58
4.6.1 Evaluation Metrics . . . . . . . . . .. .. ... e 59

4.6.2 RQ1: How do programmers use argument and parameter in Python? 59
4.6.2.1 Distribution of Lexical Similarity between a Parameter and

its Arguments in Python? . . . . . . . . . ... .. .. ... 60

4.6.2.2 What is the Length of Arguments and Parameters in Python? 62
4.6.2.3 What are the reasons for the dissimilarity of method argu-

ments and their corresponding parameters? . . . . . . . .. 64
4.6.2.4 Can we filter out the arguments that have lower similarity

values with their arguments? . . . . . . ... .. ... ... 65



4.7
4.8

4.6.3 RQ2: Effectiveness of the Proposed Technique . ... ... ... ..
4.6.4 RQ3: Impact of Different Source of Information . . . . . . . ... ..
4.6.5 RQ4:Performance Comparison Of AUCMET With Pre-Trained Code-
Bert . . . . e e
4.6.6 RQ5: Efficiency of the Proposed Technique . . . .. ... ... ...
4.6.7 Additional Analysis To Evaluate The Performance of AUCMET
4.6.7.1 Performance of DeepBugs on Python and AUCMET based

4.6.7.2 Performance of DeepBugs on Python and AUCMET based

on Context Length . . . . . . . ... ... ..........

4.6.7.3 Performance of DeepBugs on Python and AUCMET based

on Method Call Appearance in Training Examples . . . . .

Threats to Validity . . . . . . . . . . . . . . . . . ...

Conclusion . . . . . . . . e e e e

An Empirical Study of Argument Recommendation by LLM in Python

5.1
5.2

5.3
5.4
5.5

5.6

Introduction . . . . . . . . ..
Background . . . . . . . . ...
5.2.1 Statistical Language Models . . . . . . . ... .. ... ... .....
5.2.2 Code Completion in Python . . . . . . . ... ... ... .......
5.2.3 Argument Recommendation . . . . . . . ... ... ... .. .....
5.2.4 Usage of Large Language Model . . . . . ... ... ... ......
Research Significance . . . . . . . . . .. ... ...
Dataset . . . . . . . . . e e e e
Approach . . . . . . . . . . e
5.5.1 Data Extraction and Preprocessing . . . . . ... ... ........

5.5.1.1 Method Call Extraction . . . . . .. ... ... .......

5.5.1.2 Global Variable Extraction . . . .. ... ... .......

5.5.1.3 Determine The Scope Of The Method Call . . . .. .. ..
5.5.2 Context Collection . . . . . . .. . ... .. ...
5.5.3 Model Description And Using For Argument Generation . . . . . . .

5.5.3.1 Input Generation for Models for Evaluation: . . ... . ..
Evaluation Procedure . . .. . ... ... ... ... ... ... . ...
5.6.1 Evaluation Metrics . . . . . . .. . .. .. ... ...
5.6.2 Performance Comparison of CodeT5, CodeBERT, Code Llama Mod-

els .. e e e
5.6.3 Expression-wise Performance Comparison of CodeT5, CodeBERT,

Code Llama Models . . . . . . ... ... ... ... ... ......

vii

71
72
72

73

74

76
7
7

79
79
80
80
81
81
81
82
83
83
84
84
84
85
85
87
91
92
92

93



viii

5.6.4 Argument Precedence based Performance Comparison of CodeT?5,

CodeBERT, Code Llama Models . . . . ... ... .......... 96

57 Result . . . . . . e e e e 97
5.8 Taxonomy of Argument Types For Future Research . . . . ... ... ... 97
59 Conclusion . . . . . . . . . e e e e e e 98

6 Conclusion 100
6.1 Summary . . . . . . . . . . e e e e e e e e e e e e e e 100
6.2 Future Work . . . . . . . . e e e 101

A Installation of Modules and Environment Setup 103
A.1 Imstallation and Update Ubuntu . . ... ... ... ... .......... 103
A.2 Required Modules . . . . . .. . . . ... .. ... ... 103
A.3 Parsing With Python AST . . . . . ... . .. ... ... ... ...... 105
A.4 Downloading Projects from GitHub . . . . . . . .. ... ... ... ..... 109
A.5 Reproducing the study Exploring Name-based Bug Detection in Python . . 109

A.6 Reproducing the study Empirical Study of Argument Recommendation by
LLMin Python . . . . . . . . . . . . . e 110

Bibliography 111



List of Tables

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 4.1
Table 4.2

Table 4.3
Table 4.4
Table 4.5
Table 4.6

Table 4.7
Table 4.8

Table 4.9

Description of Updating the Knowledge Base for Type Detection . . .
Type Collection from Figure 3.2 . . . . . ... .. ... .. ......
Classification of Expression Type Extraction . . . ... ... ... ..
Expression Type of Value of Assignment . . ... ... .. ......
Manual Investigation Report of Mapping of Method Calls and their
Definitions (250 examples for each project) . . . ... ... ... ...

Generalization of Extracted Argument Names . . . . . ... ... ..
Binder Information for DeepBugs Model(DBM) and API UsageBased
Model (AUM) . . . . .
Binder Information for AUCM Model . . . . .. ... ... ......
Collected Context for AUCM Model . . . . . . ... ... .......
Collected Context for AUCMET . . .. ... ... ... ........
Collected Context for Latest and Parent Block Usage Context with
Expression type information (Contd.) . . . ... ... .........
Encoding of Tokens for AUCMET . . . ... ... ...........
Performance Comparison with DeepBugs Approach and AUCMET For
Mapped Method Calls . . . . . . ... . ... .. ... ... ......
Performance Comparison with DeepBugs Approach and AUCMET For
All Method Calls . . . . . . . . . .. .. . ... . ... ...

Table 4.10 Combination Of Different Source Information Of AUCMET . .. ..
Table 4.11 Analysis of Different Sources of Information . . . .. ... ... ...
Table 4.12 Performance Comparison of DeepBugs, AUCMET, Pre-trained Large

Table 5.1

Table 5.2
Table 5.3
Table 5.4
Table 5.5

Language Model-BERT . . . . . .. .. . ... ... ..........

Collected Context for Expression-based Analysis and Overall Perfor-
mace Analysis . . . . . . . . . ...
Expression Types With Their Examples In Python . . . .. ... ..
Expression Types with their examples in Python(contd.) . . ... ..
Over All Model Performace Model Performance . . ... ... .. ..

Expression wise- Model Performance . . . . . . . ... ... ......

ix

36

43

47
48
49
51

52
54

66

67

68

69

71



Table 5.6 Model Performance-Precedence-wise Result



List of Figures

Figure 1.1 Equally Typed Parameters . . . . . . . . .. ... .. ... ......

Figure 1.2 Swapping Argument Related Bugs . . . . . ... ... ... ..... 2
Figure 1.3 Library Mapping of Method Call . . . . . ... ... ... ...... 4
Figure 3.1 Example of Dynamic Type . . . . . . . . ... .. ... ... ..... 22
Figure 3.2 Example of Dynamic Type(contd.) . . . ... ... ... ... .... 23
Figure 3.3 Different Types of Method Calls . . . . . ... ... ... ...... 27
Figure 3.4 Method Call Pattern . . . . . . .. . . . ... ... ... .. ..... 28
Figure 3.5 Method call and its Corresponding Definition in the Same file . . . . 29
Figure 3.6 Example of self as a Receiver of A Method Call . . . ... ... ... 30
Figure 3.7 Import Statement Analyzer . ... . ... ... ... ... ...... 31

Figure 3.8 Usage of Import Statement Analyzer to Generate Binder for DeepBugs 31
Figure 3.9 Example of Mapping a method call to method definition from another

file . . . e e e 33
Figure 4.1 Method Call and its Mapped Definition . . . . . .. ... ... ... 39
Figure 4.2 Number of Examples Covered by Argument Count 1,23 . . . .. .. 44
Figure 4.3 Encoding of A Word Based on Different Expression Type . ... .. 56
Figure 4.4 Comparison of Encoding For Other Programming Language . . . . . 57
Figure 4.5 Work Flow Diagram . . . . . ... . . . ... . ... ... ...... 58
Figure 4.6 Lexical Similarity between Argument and its corresponding Parameter 59
Figure 4.7 Length of Argument Name by Characters . . . . ... ... ... .. 60
Figure 4.8 Length of Parameter Name by Characters . . . . . .. ... ... .. 61
Figure 4.9 Length of Parameter Name by Terms . . . . . . . ... ... .... 62
Figure 4.10 Length of Argument Name by Terms . . . . . . . . ... ... .... 63
Figure 4.11 Argument Average Similarity by Characters and Terms . . . . . .. 64
Figure 4.12 Parameter Average Similarity by Characters and Terms . . . . . . . 64
Figure 4.13 Performance of Both DeepBugs Model and AUCMET . .. ... .. 67
Figure 4.14 Accuracy of Expression Type-based Analysis (20<=Frequency) . .. 73

Figure 4.15 Accuracy of Expression Type-based Analysis (20<=Frequency) ... 74



Figure 4.16 Effect of Context Length on Performance For DeepBugs and AUCMET

....................................... 75
Figure 4.17 Average Method Call Frequency in Training Set Case . . . ... .. 76
Figure 5.1 An Example of Code Completion in Visual Studio Code and PyCharm
IDE . . e 80
Figure 5.2 An Example of Source Code for Context Collection . ... ... .. 82
Figure 5.3 Input Context Generation for Argument Generation Based Study with
CodeBert, Code Llama, CodeT5 . . . ... .. ... ... ...... 87
Figure 5.4 Input Context Generation for Argument Precedence Based Study with
CodeBert, Code Llama, CodeT5 . . . ... ... ... ........ 90
Figure 5.5 Categorization of Expression Type . . . . ... ... ... ...... 98
Figure A.1 Parsing With Python AST . . . . . . ... ... .. ... ....... 106
Figure A.2 Showing Instancesof aNode . . .. ... .. ... ... ....... 107
Figure A.3 Visiting A Parsed Node . . .. .. ... ... ... .......... 108
Figure A.4 Visiting A Parsed Node by Class method . . . . . . . ... ... ... 108
Figure A5 Result of Parser . . . . . . . . . . . . . . ... ... ... .. ..... 109
Figure A.6 Process of Git Repository Clone . . . . . . . . . . ... ... ..... 110



Chapter 1
Introduction

This chapter provides a brief introduction to the thesis and explains the significance of
the work. Section 1.1 describes the motivation for this thesis. The problem statement of
this thesis is delineated in Section 1.2. Section 1.3 explains the contributions of the thesis.

Finally, Section 1.4 provides an outline of the remaining chapters.

1.1 Motivation

Name-based source code analysis lies in how effectively the semantic meaning of identifier
names, such as variables, functions, classes, etc., can be used for different software engi-
neering tasks, such as the semantic representation of source code, bug detection, and type
prediction. Identifier names provide useful information about the pattern of a source code.
These identifier names are declared by the developers, which projects the understanding
and increases the readability of source code [1]. As an example, consider a code frag-
ment containing the following five different tokens: “sum”, “x”, “y”, “return” and “count”.
Therefore, the appearance of these names in a code fragment as tokens will define the fact

that the source code may return a value that can summate two variables. The names of iden-

€ example_funce @
5 bra » Downloac € Example_funce
int myFunction(int height, (int width) {

return x + y;'T' T
}

int main() {
printf("Result is: %d", myFunction(5, 3));
return 8;

}

1
2
3
4
5
B
7
8

Figure 1.1: Equally Typed Parameters

tifiers are static properties. Therefore, popular static tools are widely used based on source

code context. This name-based approach can detect bugs in dynamically typed languages



like JavaScript [2]. For the equally typed variables, this name-based analysis provides extra
information about the variables. As an example, in Figure 1.1, the method call “myFunc-
tion” has two parameters, “height”, “width” and both of them have the same type. As a
result, it is hard to detect any argument-related bugs from their type information. However,
the name-based analysis can provide extra information about the parameters. Therefore,

the name-based approach can be used for dynamically typed languages like Python and R.

& Exampie_chackgy

1 import pandas as pd

2 data = {
3 'Student ID': [181, 182, 103, 104, 185, 106, 107, 108, 189, 1108],
4 'Marks': [88, 92, 85, 74, 91, 78, 84, 89, 95, 87],
‘Student Name': ['Alice', 'Bob', ‘Charlie‘', 'David', 'Eva‘', 'Fiona', 'George', 'Hannah', 'Ian', 'Jack']
¥

7 df = pd.DataFrame(data)
def student_mark_check(df,student_id, student_name):
df_temp=df[df['Student ID'].apply(int)==student_id]
10 df_temp=df_temp[df_temp['Student Name']==student_name]
return df_temp['Marks'].to_list()
12 print(student_mark_check(df HPl,“Alice“)] Correct Argument Sequence
print(student_mark-check(lﬂ},df,"ALicc")) Wrong Argument Sequence
1]

Rurc Example_check

[88]
Traceback (most recent call last):
File "C:\Users\subra\PycharmProjects\New_home_Starting\Example_check.py", line 15, in <module>
print(student_mark_check(1081,df,"Alice"))
File "C:\Users\subra\PycharmProjects\New_home_Starting\Example_check.py", 1line 11, in student_mark_check
df_temp=df[df['Student ID'].apply(int)==student_id]

m o 2l e

Figure 1.2: Swapping Argument Related Bugs

This thesis focuses on Python, the most popular programming language, which is used
massively to build new software systems [3]. Python is a dynamic programming language
with imperative, logical, functional, and object-oriented features [4]. Name-base string
similarity and neural network-based embeddings of identifiers are mostly used to determine
the similarity between the names of identifiers, which generates a group of words of the
same meaning—converting the word to a similar vector space to preserve the meaning
and mapping to the identifiers which have an almost similar meaning. Besides, name-
based analysis is commonly used to fix faults by gathering information from the naming
convention of the identifiers. It provides a subtle understanding of how the name of an
identifier provides an important aspect of code structure that helps a programmer debug
the code. Other than that, a programmer can use the name-based analysis to generate
lexical similarity [5], which will add context-based information based on the usage of an
identifier. With the name of an identifier, programmers can add different properties, such
as type information, the behavior of the identifier, the location of the declaration, usage of
an identifier, the original meaning of the identifier, and how it is used in the source code

can be used in name based analysis.

C:\Users\subra\anaconda3\envs\New_home_Starting\python.exe C:\Users\subra\PycharmProjects\New_home_Starting\Example_che



Passing the correct argument to a method call is mandatory to execute a program
and generate the expected output. Calling a method multiple times is common in source
code development. The bugs related to a method call are mainly two types- incorrect
naming of the method call and incorrect passing of arguments to the method
call. The name of the method call and declaration must follow the same name while
calling the method. As the method call is always related to a method definition, there is
a slight chance of missing or misspelling the name of the method call at the time of call.
Our analysis of method call mapping showed that programmers are less likely to misspell
the name of a method. The second concern for a correct API call is the bug related to
the method arguments. The argument-related bugs are- passing wrong arguments, passing
arguments in the wrong sequence, and passing more arguments than required while calling
a method. A prior study on the argument-related bug focused on incorrectly swapping two
adjacent arguments drew our interest in studying the swapping argument-related bugs in
Python. For dynamically typed programming languages, it is difficult to determine the
exact variable type, and while passing the variable as an argument, programmers may
select the variable correctly but in the wrong sequence. In Figure 1.2, at line 12 we found

»

a method call, “student_mark_check” which will expect the first argument, “df” which is
a pandas Dataframe and the second argument is “101” which is an integer. The incorrect
sequence is (101, df,“Alice”). The IDE (Integrated Development Environment) did not
show any error or warning while writing the code. However, the IDE showed the following
error: “TypeError: “int” object is not subscriptable” while executing the code. Therefore,
while calling a method, the compilers are not getting the type information for the variables,
and if they are accidentally swapped, they cannot warn the programmers. The extracted
name contexts are treated as patterns. The existing name-based analysis only considered
the identifier names and their local context (see section -4.2). Therefore, this context of a
particular token suffered from the inconsistency of name and value as the local context does
not contain all the information for a token. This inconsistent data leads to false prediction
of a deep learning model. The swapping argument-related bug detection techniques used the
type of arguments to detect the swapping argument-related bugs. Though the model worked
effectively for statically typed languages, such as C, C++, and Java, there needed to be
evidence of performance for dynamically typed languages, such as Python and JavaScript.
The study of Pradel et al. [2] used the static type information from source code to build a
bug detector for JavaScript known as DeepBugs, which used 30% type information of the
variables from existing JavaScript source code. Meanwhile, in Python, the ratio of static
type is less than 10% for a large project (which contains 10k method calls). Therefore,
the existing swapping bug detection approach will not be effective for detecting argument-
swapping-related bugs for projects with more library method calls and definitions. Again,

the definitions of method calls can be located in different files or external libraries. Existing



approaches have yet to try to bring the method definition information from third-party

“ join ” method does not have a method definition in the same

libraries. In Figure 1.3, the
file. Therefore, to solve the method call mapping issues, we proposed an algorithm that
successfully mapped 80% of the method calls from both library and project method calls.
For type detection of variables, there were 40% call expressions of value. This mapping will
bring the method body, and the variable type will be detected from the return statement.

Therefore, body analysis and method mapping solve the dynamic type allocation.

& downloaderpy X ® nipathpy
# downloaderpy * & _download
346 def _download({name):

367 if total_parts » 1:
368 concatenated_folder_name = "{fname}.gz".format({fname=name)
369 concatenated_folder_dir = os.path.join(tmp_dir, concatenated_folder_name)
37 for part in range(®, total_parts):
371 url_data = "{base}/{fname}/{fname}.gz_0{part}".format(base=DOWNLOAD_BASE_URL
372
373 fname = "{f}.gz_@&{p}".format(f=name, p=part)
374 dst_path = os.path.join(tmp_dir, fname)
375 urllib.urlretrieve(
376 url_data, dst_gath,
377
378
& down
1le0
181

182 # Join Awo (or more) paths.
183 def join(path, *paths):

104 path = os.fspath(path)

185 if isinstance(path, bytes):
106 sep = b'\\’

107 seps = b'\\/'

188 colon = b':

189 else:

110 sep = "\\'

111 seps = "\\/'

112 colon = ":°'

Figure 1.3: Library Mapping of Method Call

We found a few studies on swapping argument-related bugs in Python from the above-
mentioned issues. Type detection for a variable faces complexity due to the maximum
detected value of variables being method calls, and as Python is a library-based program-
ming language, definitions of method calls can be found anywhere in the environment. A
mapping algorithm can resolve those method calls and bring out exact types from method
definitions. This provides additional context information for variables and supports the
model for detecting swapping argument-related bugs in Python. When a study showed
that 70% of the method calls were from external libraries or built-in methods, we worked
with usage context-based analysis. We found that the method argument is declared before

it is used for the dynamic programming language, regardless of the change of a variable.



Therefore, the pattern-based study showed that if the source code matches other source
codes, it must follow a pattern. Therefore, we got motivated to extract the name-based in-
formation and merge it with the local context to provide extended information. Our model
performed 10% more accurately than the existing model [2] (see the model description for
Python at -4.1). Again, this model faced large vocabulary issues and token usage ambiguity.
Similar to the embedding type information with the name-based analysis, we embedded the
expression type information, which performed better than all models.

While the first study of this thesis focuses on detecting bugs caused by incorrectly
ordered method arguments, the second study focuses on understanding the efficacy of pre-
trained models in recommending method arguments. Most pre-trained models are designed
to understand the context of source code and generate source code. Though those models
generated code segments from a given context, our study verifies whether these models can

generate arguments correctly or not.

1.2 Research objectives and significance

The most relevant study to this thesis was done by Pradel et al. [2] [6] for JavaScript. They
proposed a technique, called DeepBugs, that uses a machine learning model for detecting in-
correctly ordered argument-related bugs leveraging names in source code. Instead of relying
on manual coding, it uses a semantic representation to acquire bug detectors autonomously.
The bug detection process is cast as a binary classification problem, where a classifier is
trained to differentiate between correct and incorrect code. To address the difficulty of ac-
quiring diverse examples of correct and incorrect code for optimal learning, incorrect code
instances are generated by applying basic transformations to an existing code corpus. A
significant discovery from this work is that bug detectors trained on artificially introduced
bugs demonstrate effectiveness in detecting real-world bugs.

The preliminary objective of this thesis is to check the performance of the same process
for another dynamic programming language, Python. While applying the same approach
to the Python dataset, the lack of method definitions for the corresponding method calls
and lack of information on argument types are faced due to the severely dynamic nature
of Python. Therefore, our first approach is to resolve the mapping of method calls to
their definitions and gather as much information as possible for the deep-learning model.
However, the mapping algorithm brings out approximately 30% to 35% more examples
than the original DeepBugs Model (on JavaScript), and the maximum number of method
calls still needs to be explored. To mitigate this problem, this thesis proposed an approach
to detect argument-swapping-related bugs for Python by analyzing the argument usage
pattern, which is effective when the method definitions are missing.

Therefore, this thesis focuses on mapping method calls to their corresponding method



definitions, providing a warning if the sequence of the method arguments is incorrect. While
studying the approach, we observe the importance of vector generation from a given context.
Therefore, this thesis conducts an empirical study of how large language models perform
in the case of generating correct arguments for Python. We used three popular pre-trained
large language models to generate the arguments based on source code context. We studied
manually by collecting random samplings from those method calls. The study shows evi-
dence of the high efficiency of a large language model for some of the argument expression
types. These pre-trained models are well-trained by a large code corpus to understand the
contextual embedding of tokens with long-range dependencies. This provides support for
generating models to detect bugs [7] or generating a new segment [8]. In most cases, the
pre-trained model performs better than other deep neural networks, for example- Recur-
rent Neural Network (RNN) and BiLSTM-based methods. Our second study focused on
the performance of three pre-trained models for generating arguments from a given context.
Code completion is a software development process that significantly enhances developer
productivity by automating the task of predicting code sequences as developers write code.
Programmers use pre-trained models to reduce training time. Though using a pre-trained
model makes a system faster, we checked the performance of argument generation accuracy.
This empirical study also provides evidence on those expression types where the model failed
to generate the argument.

Results from the study showed that argument usage context consists of better semantic
information as it performed better than other models. Even when we added the struc-
tural information (in our study, expression type of tokens), it improved the performance
of the model and provided a better understanding of how the context information affects
the performance. Adding structural information helped to boost the performance-AUC
value increases from 87.87% to 96.94%. The result from our second analysis showed that

researchers should work with the poorly performed expression types.

1.3 Contributions of the Thesis

The contributions of the thesis are outlined as follows:

e Reimplement the DeepBugs approach for another dynamic programming language:

Python.
e Evaluate the performance of DeepBugs for Python.

e Investigate the impact of the presence of method definitions paired with method calls.
A noise injection technique is used to evaluate performance for all the method calls

where the performance is reduced drastically.



1.4

Develop a technique to detect swapping argument-related bugs for Python even if the

method definitions are missing.

Develop a technique to retrieve information on method definitions from the source
code for their corresponding method calls. This provides additional information for

code completion tasks and swapping argument-related bug detection.

Investigate the importance of different context information sources for detecting swap-

ping argument-related bugs.

Conduct an empirical study using four pre-trained large language models for complet-

ing augments from a given code context and analyze their performance.

Outline of the Thesis

Chapter 2 describes prior studies related to this thesis.
Chapter 3 explains the process of mapping method calls to their definitions.
Chapter 4 provides a detailed description of name-based bug detection in Python.

Chapter 5 describes an empirical study on the comparison of three language models

for generating argument sequences for Python.

Chapter 6 concludes the thesis by providing the significance of our work and outlining

future research directions.



Chapter 2

Related Work

This chapter describes prior studies that support this thesis. This thesis is entirely based on
the name-based analysis of the argument and its context. Therefore, this thesis is entirely
on different methodologies or approaches that work with the relation between argument and
parameter, detecting argument and parameter-related bugs, and the important features (i.e.,
Usage pattern-based context collection, mapping of method call and method definition),
usage of Deep Learning Approach in software bug detection, and usage of large language
models in software development. The following sections present a comprehensive summary
of related works from which the problem statement, motivation, and proposed approach in

the thesis engenders.

2.1 Name-Based Bug Detection for JavaScript

Pradel et al. [2] treated the source code in JAVAscript as a bunch of natural language
extracted method calls and their definitions from the same files and mapped them. There-
fore, they built a bug detector using the line’s local context, invoked the method call, and
declared the line context of the method definition. They tried making a pattern using
word2vec, where a simple neural network trains the correct and buggy code patterns to
detect swapping argument-related bugs. They generalized the tokens by removing unneces-
sary tokens and replacing frequently used tokens. Though their model works perfectly for
JAVAscript, it may not perform similarly for other languages. Therefore, we first choose
Python, the most popular language from the list of the TIOBE index [9]. Python is a dy-
namic language, and we used the same approach as DeepBugs to evaluate the performance of
their model for another dynamic language. We found the accuracy of DeepBugs for Python
was 61%. Therefore, the approach is structure and language-dependent. Consequently, we

proposed our technique to overcome the issues of DeepBugs.



2.2 Name-Based Source Code Analysis and Bug Detectors

The name-based analysis [10] is a practical approach to considering the source code as a pool
of information. A name-based analysis for equally typed arguments was described, where
the detection of bugs is done by inducing semantic information from the code context. When
it comes to equally typed arguments, there are issues in correctness with wrong orders and
program maintainability for using unusual arguments in bad order. Another minor issue
is poor understandability while using equally typed arguments in the same method call.
These issues got extreme as the usage of equally typed arguments is not described in the
code snippets. Their anomaly detection approach is a static analysis that gathers only the
names extracted from a given JAVA or C programming language. This module extracted
a set of arguments, which were name-based information. Therefore, a correct pattern of
argument usage is gathered from the real word source examples, which implies that the
position is fixed for that argument in the method call and definition pair. As it is an
equally typed argument, the detector will differentiate between two arguments by gathering
their name information from the line context. These names of arguments are converted to
their unique numeric identities by the TFIDF approach. Though this method is almost
accurate for static languages, it did not propose any information on how two arguments are
equally typed if the type information needs to be included. On the other hand, it was not
described if the method call has the same typed arguments and the same name. It leads to
an end while this approach has an equal name and unknown type.

Programmers are providing information about a script in their comments and identifiers
[4]. Their comments can easily help us understand the description of a program. DeepFix
was [3] an effective method for detecting several bugs in a statically typed language where
we need to train the model with a neural network and numerous faulty codes and correct
codes. We are motivated by their approach in this angle that a pattern must be followed
both in a buggy code and a correct code, which leads us to develop the wrong pattern from
a code segment synthetically. A study by [4] was conducted on 100 computer scientists to
give three names from a given code segment. They provided algorithms and snippets for
their analysis. They created three variants of each function by changing the English entire
word to a different name, a single-lettered name to a different letter, and the abbreviations
to a common word. Therefore, when a programmer chooses a name for a variable, he must
follow the categories mentioned above. Those three variants are not considered errors or
bugs and project the significance of individual variables in a program. Though their study
is based on JAVA, C, and C++, it is common for all static analysis events for dynamically
typed languages. This approach is effective, while a self-supervised learning algorithm will
learn from the code context and generate more data for recommendation. Patra et al.

worked with the Name-Value Inconsistencies in Jupyter Notebooks in their study [6]. Their



10

proposed technique proved that the name of a variable is almost similar to its assigned value.
They embedded 500k real-life name-value pairs from the Python source code and generated
a pattern to detect Name-Value Inconsistencies. Therefore the assigned value and the line
information can be used for determining and variable and its type which can be used for type
information for any dynamic programming language like Python.Our model collected the
assignment of those variables and generated embedding to detect their unique information
from the source code, Another name-based learning approach [11] was implemented to detect
bugs in JAVAScrpit projects. They described the problems of automatic bug detection
models based on buggy and correct code examples. They collected information from code
snippets to build correct and incorrect patterns for bug detectors of swapped arguments,
wrong assignments, wrong binary operators, and wrong binary operands. These patterns
are used as an input of an embedding generator to represent them in numeric format.
Therefore, the unique representation of every token preserves the semantic representations.
Their model worked well if data extraction was AST-based, which provided information
related to the node and was preferable for performance boosting. To recover the meaning
of variables that can be used as an argument, semantic information is gathered from mining
the features from code. Though it is a static analysis, it provides meaningful features for
bug detection. Therefore, using descriptive names or abbreviations is equally vital in their
model.

The effect of name translation for general programs is effective, and while it is a user-
defined code structure, it performs better. They converted the name-based approach [4]
to an analysis-based approach. The name of a keyword or element in a program can be
different from the actual name. Therefore, the structural relationship between the elements
can provide accurate information for that detection. They analyzed five open-source appli-
cations in JAVA and collected all the relations for class, method calls, and inner classes.
The relationship graph is introduced for all the instances of Figure Editors, MobileMedia,
JFtp, JHotDraw, and Health Watcher and collects the data accidentally.

A way [12] to represent the source code to make information retrieval easier was intro-
duced by reaching every entity in a source code, a novel approach to parsing the source code
and generating an abstract syntax tree. Their approach is to detect the code clone and clas-
sify the source code by grabbing data from AST. They collected statistical knowledge and
natural information from a code that captures lexical and statement-level features. This
approach supports the detection of code clones and code classification. When they used a
tree to connect the tokens from the abstract syntax tree, they captured most of the required
data to detect the type of source code. Therefore, it is an effective idea to grab information
from an AST to preserve lexical context.

Another promising approach to Java script programs to detect programming errors by a

static analysis was performed by Berkay et al [13]. Their approach is to generate a template,



11

which is actually a textual representation of code, error, and error fixes. These error fixes
are collected from the GitHub commits and their correct codes. To fine-tune the dataset,
they manually analyzed a technique to gather correct and relevant bugs to reduce false
positive results. As this model was developed with real-time bug examples and its fixes, it
performs better than other static analyzers, although the bug fixes were not related to data
flow in JAVAscript.

A machine learning approach was trained from a large-scale, real-life buggy dataset.
Miltiadis et al. algorithm was named BUGLAB [14], which has two models: the bug
detector model with an additional bug repair tool and an approach to generate bugs from
existing buggy files. They collected data from the code segments by an AST-based analysis
to build a bug detector. Their model gathers the variable misuse, argument swapping,
wrong operator, and wrong literals for Python programs. For their training model, they
used a 3.4k PyPI dataset and 600 random PyPI test packages for evaluation. They used a
GNN and GREAT transformer model to train the model [15] with real-world bug examples.
By processing and feature extracting, they augmented the training examples and trained
another similar model to reach new possibilities. This training model helps to generate
warnings and detect bugs for their model. To add another aspect, they localized a bug
from a code snippet. They concluded that repairing bugs rather than detecting them is
hard. The reason behind this is anomalies in a program bug can detect the bug, and the
possible repaired codes are endless. Therefore, understanding the context of the detected
bug is mandatory to select the repair categories. This reduced their accuracy to 63

Detection of any keyword in a source code is challenging when they hold almost the same
meaning but have different spellings—a technique [16] to collect the information for two dif-
ferent keywords with the same meaning. For example, programmers can use getvalue() and
getval() in the same context. Though they are lexically different, they can be used in the
same context or functionalities. Therefore, they proposed a technique to find the incorrectly
matched identifiers by analyzing their lexical similarity and semantics information. There-
fore, to collect data for their recommendation system, they gathered survey reports from
the developers, filled in the code blanks from the programmers, and gathered a candidate
list of similar parameters from the source code where they used the JAVAscript files. This
list of candidates is based on their context, the length of information, and word context
from five lines. Their analysis shows that the model “IdBench.” performed well when the
identifiers were from the same projects. Another aspect of their study is that none of the
models performed well for argument similarity-based studies except those models based on
training by the neural network. Though it does not perform well for dynamically typed lan-
guages, with its static analysis, the embedding can detect program anomalies and provides

a new aspect to generate embedding for name-based analysis.



12

2.3 Parameter-Argument-Related Bug Detectors

The authors in [17] worked with the lexical similarity of the argument and parameter in
Java programs. An argument with high similarity can be suggested in the same calling
scope, which detects program anomalies and recommends correct arguments from a similar
argument pool. They predicted that the parameters and arguments of the same name are
related and follow the same properties. Their empirical studies showed how the names
are similar to each other to build a pool of arguments with similar names. They collected
the length of each parameter and argument to determine the length distribution of the
arguments and parameters. After getting the name similarity and their length, their analysis
shows that those pairs have less lexical similarity and fewer characters. It implies that
the name was randomly declared, and there is no intention of using a similar parameter
name while calling the method. Therefore, their experiment has information about all
mapped parameters and their argument in JAVA real-world programs. Their hypothesis
is entirely based on lexical similarity. A method call has two dependencies. Firstly, those
features from a method definition of the corresponding method call, and secondly, the
surrounding context of the location of the method call. Any discord of the method call
may cause an anomaly, and while recommending the argument of a method call, this lexical
similarity solves most of the challenges. When a method is called, the programmer will get
suggestions of their arguments from the argument using their methodologies. pool. This
recommendation for method argument is based on three cases. When a method call is
inside the local scope, alternative arguments are only searched inside the similar argument
pools from the same field access. If the argument is in a method call with a receiver object,
the alternative arguments will be from similar arguments from the same object’s scope.
Their study shows that about half of the arguments do not have any alternatives. They
proposed two applications of their approaches and found significantly good results. For
anomaly detection tools in the Eclipse plug-in, the author chose a threshold to filter out the
arguments from the similar argument pool to make the recommendation accurately. This
will show a warning when the argument similarity is low and the difference between the
current and potential sets exceeds the threshold.

In their second application of argument recommendation [17], the argument slot that
must be filled is identified. A method definition will correspond to the method call, and they
suggest similar arguments based on the method parameter. Secondly, considering the scope
of a variable, the model will calculate candidate arguments and suggest an argument with
the highest similarity values from the argument pool from the same field scope. Though
the approach has higher accuracy, it has some restrictions in mining. Their analysis strictly
showed that about half of the method arguments do not have any alternatives, which implies

that if a method call or definition is entirely new, it will not recommend any argument or



13

detect any anomalies in the same project. On the other hand, the similarity values are
calculated both using the method parameters and the argument. Therefore, it is mandatory
to get a mapping of the method call with their method definitions and get information about
the parameters. Thus, if there is no mapping, wrong mapping, and any missing library for
a method call, it will ignore the anomalies and not recommend anything. Finally, it will
recommend nothing for those method calls if they are different than the parameters, even
though it is correct. Therefore, analyzing the code context and the usage of arguments for
recommendations will add a new filter for the recommendation system. Another similar
approach for detecting anomalies and code completion by parameter and argument name
similarities is analyzed in [17] for JAVA and C programming. They collected the method
parameters and arguments from a set of mapped method calls and definitions to calculate
the lexical similarity. Their concept is to find the appearance of a similar argument in the
peripheral of similar method parameters. The length of an argument is an essential feature
to be matched with the corresponding parameters. It was shown that the parameter with a
long length is prone to be much matched with the arguments with a long length. Although,
sometimes, programmers use the abbreviated form of parameters and arguments, which will
show more length inconsistencies and fewer similarities. This leads to a flaw in detecting
anomalies and recommendation-by-name similarity-based analysis.

Selection [11] of the correct argument is always challenging for long codes as it is im-
possible to track down all values and types of variables easily. A large-scale analysis of
the argument selection approach was studied to detect the defects in the correctness of
argument selection. This paper describes the importance of argument selection defects and
the result of wrong argument selection. Their approach started with finding the argument
and parameter name similarities described in [17]. The argument is controlled by using
identifiers, the scope [18] of those variables, the method’s name, and the class constructors.
They revised the history and found the argument and parameter-matching are inconsistent
in several method calls and definition pairs. Under different threshold values, they verified
the model, and their result showed that the ambiguity related to the argument name and
parameter is solved by considering the field scope of their method argument. Though the
method call and parameter are determined by using only name-based similarity, for simi-
lar code contexts where different variables are used for the same method, calls cannot be
discriminated against and detected as an error.

The works mentioned above have related inconsistencies, solved by introducing program
analysis and language models in a prior study [19]. This automatic recommendation of ar-
gument collects the syntactic type information and programming language-wise constraints
to gather correct variables. Their main concern is detecting the arguments using the ex-
pression types and their induced values. They collected the data from GitHub filtering by

stars, folks, and commits of repositories. Analyzing each project’s syntax, they collected



14

the type and field accessibility. The collected arguments and the parameters are in the valid
candidate list. Although all the arguments are candidates, they introduced a filter using
a language model and parameter similarity. The approach is effective as JAVA is a static
programming language where type information is collected by static analysis. It will not
show similar output for dynamically typed languages, i.e., Python and Javascript.

Swapping two adjacent arguments [20] is a common mistake when programmers build
large models. A static checker SWAPD was used to detect arguments swapping in C and
C++ code. To generate the warning report, they introduced three checking systems (cover-
based checker, sciatica vetting, and statistical checking). Similar to DeepBugs, they ex-
tracted names from C and C++ codes. The function names and argument positions are
collected to develop the statistical database. The term morpheme was introduced to define
the common terms in two arguments and parameters. The statistical database works on
top of the cover-based checker and provides information about arguments at the call site.
Therefore, a statistical checker will double-check the position and argument prone to be
swapped. They have an analysis based on name generalization, and to balance the recall
and precision, they have combined four stages of checking. Later on, for analyzing the code
sequence, they used the same code analysis as DeepBugs. However, their process was based
on the static typed language. Static bug detectors [21] are becoming popular because of
their consistent data types and usage. Andrew Habib et al. studied an extended version
of Defects4J Dataset on JAVA programs. The Defects4J dataset has real-world bugs, and
the data is widely used in all the bug detectors worldwide. Finally, this dataset has the
bug fixes with their corresponding bugs. They compared their model with Error Prone,
Infer, and SpotBugs to evaluate their analysis. They used the code that has the bug and
the after-bug-fixed code; the warning reported to the programmer before the bug led to
an error for that code. Then, in the last step, they manually investigate the candidates
generating bugs. Therefore, for a bug detector, they chose the candidates and differentiated
between bug and warning messages. Their main intention was to identify how many of the
594 bugs could be detected perfectly by line-based, automatic, and manual validation. To
detect the maximum number of bugs, users can use a combination of these three approaches,
which reduces false positive bugs from the dataset. They worked on static bugs but did not
provide any evidence of why the bugs were providing false positive results.

The authors worked with those method calls, which have multiple arguments but have
the same types in another study [22]. Using the semantic information from the compilers,
they extracted the meaning of identifiers to reduce argument selection defects. Though it
performs well for C and C++, it will suffer from type-related ambiguities for dynamically
typed languages.



15

2.4 Usage Pattern-Based Source Code Analysis

Usage patterns can be considered context to determine any token in a source code. A
study [23] introduced a process that analyzed the context of a code and generated vectors
from the usage pattern of the variable name. By capturing the semantic information from
the tokens, the authors of that study added the meaning of a variable with their traditional
vectors. Their approach performs well even though the variable names are poorly declared.
From the large JAVAScrpit code from online, they generated vectors using a simple RNN
model, which can be used for bug detection, malware detection, fixing syntactic errors, and
code clone detection. They collected data from a large dataset to determine the name of
their usage. This static analyzer tool is fully automated and provides the effectiveness of
naming functions and variables from their usage context. They compared their work with
JSNice and JSNaughty. They also analyzed whether the result was scalable or not. Using
third-party libraries is quite common nowadays. Therefore, it is challenging to identify
the right usage of a library in large software systems. Mohamed Aymen et al. [24] worked
on the detection of libraries by analyzing the usage patterns of those libraries. Though
they have collected usage patterns from the users or clients from the GitHub library, they
found that most libraries have consistent usage patterns in most projects. After collecting
the usage pattern from 6000 libraries from Github and Maven projects, they analyzed the
maxEpsilon values, determining the pattern usage cohesion metrics. Therefore, the mined
pattern from all the libraries with a threshold value provides a better system to detect the
correct library. Though these libraries change dynamically daily, the author considered a
universal structure that will be constant for every system. This approach effectively builds
usage patterns related to detection tools and conde completion contexts. Another study was
conducted to increase the semantic information from the code and support code suggestions
by mining the usage context, a n-gram topic model with its associated elements from the
same code. From the semantic information, anyone can understand the exact meaning of
the code. Therefore, it is effective for a bug detector to identify the pattern of elements
for code completion and source code repair. They collected semantic code tokens directly
associated with an ID, roles, data type, and especially data dependencies. In addition, they
collected the functionality of the token for the token. On the other hand, to preserve a
variable’s code context and meaning, they collected all the semantic information from the
code for a particular token by considering the variable’s scope or token. This scope will
show how these elements are used in their particular location only. Therefore, this local
context from the same file showed that the generated vector contains unique information,
which showed higher accuracy in real-life projects while working with tokens.

We are highly motivated by the works mentioned above and formulated our work based

on name-based analysis, bug detectors, swapping argument-related bug detection, natural



16

language processing for source code analysis, and finally, context collection based on us-
age patterns. We treated any source code in Python as a source of natural information
engendered by programmers. Therefore, first, we consider that the name of an identifier
or an argument contains valuable information for representing a source code. We preferred
to analyze and detect the bugs by accidentally swapping two adjacent arguments. Previ-
ous state-of-the-art work with JavaScript and proposed a technique to generate data from
existing source code synthetically. Our approach worked with many examples with all the
Python method calls. In contrast, their approach was limited to considering method calls
only from the same file with accurately mapped method calls. When we collected context
from the lines, an argument was found; we could not grab enough information from the local
context. Then, we brought up the usage context of the argument as a determining factor.
Our contribution is that without knowing the information of a method declaration for a
corresponding method call, how can we detect this swapping argument-related bugs for a
method call? We found that an argument is determined from the before lines of their in-
voked lines, and we collected them to train our model with the usage pattern. As Python is
a highly dynamically typed language, we have collected the expression type of an argument
for training the model with the information that this method took an expression previ-
ously; now, it might take a similar pattern or similar expressions for the same method call.
Another pattern-based study for generating the subsequent APIs was introduced in [25].
They collected all the related APIs from a source code and generated the graph-based oc-
currence flow for all of them. Mining the usage case scenarios and the specifications of an
API provided the model information about which API can be called after which API. These
use cases drove the model to generate frequently used APIs. They used a model checker,
which consist of data-flow-intensitive. When mining APIs, they subtly collected that API
usage sequence where the support value(determinator of choice of traces of API sequence)
is higher. Though their model is entirely based on static source code analysis, it shows
how the usage case scenario helps the API recommendation. Parameters contain promis-
ing information, which was used in another argument recommendation system [26]. Their
approach was to build a generalized database of argument usage patterns. Therefore, they
collected a one-to-one mapping of parameter usages for a method call. As the approach is
based on JAVA source code, it follows a one-to-one variable and types information data.
This information reduces the ambiguity of augment selection. Still, it is a prominent idea to
use the context that appears for a method argument and method call, which will be almost
the same for a similar method call. As mentioned above, these studies worked with API
calls and their sequence. In contrast, another study [27] [28] [29] focused on all the variables
by running the program and recording the changes in their values. Daikon’s output is used
for the generation of test cases, prediction of incompatibilities in component integration,

automation of theorem proving, repair of inconsistent data structures, and validation of



17

data stream integrity based on the variables’ usage from a source code.

2.5 Deep Learning for Bug Detection

In a project, a bug can be generated at anytime for several reasons, such as data incon-
sistency, wrong usage of variables, improper control statements, etc. However, it is an
ideal approach to study the generated errors by solving them manually with human inter-
action, which has the issue of time complexity and is strenuous. Therefore, deep-learning
techniques are used to build automated models from the source code. The name-based anal-
ysis [10] [4] [11] gave us leverage to treat the source code as a natural language example.
Therefore, this information from the source code can be used by extracting data token-wise,
and by using machine learning and deep learning or pre-trained models, an automated bug
detector can be built. A prior study [30] introduced how a deep learning model can detect
bugs from static source code information. The surrounding context of a token was collected,
and by word2vec, they transferred the code context to a vector space. This transformed nu-
meric data was used for a deep-learning model that can be used for bug detection. Besides,
the tokens of a source code need to follow a certain sequence. Changing the sequence of
these tokens will generate bugs or warnings during execution. Therefore, this study was de-
signed to collect static information from a source code and generate a warning when it finds
the wrong sequence of tokens in that code snippet. The study showed promising results
for Swapped arguments, Wrong assignments, Wrong binary operators, and Wrong binary
operands. It implies that name-based context information can detect bugs or warnings by
a static analysis. Again, the localization of bugs by information retrieval was described in
a study [31]. The static information from the source code and the textual similarity with
this infraction and bug report were collected as a feature to train a deep learning model.
Therefore, code retrieval is used to extract the feature from a source code, which is used to
detect bugs.

Another author, in their work [32], proposed a technique to tokenize the source code
and collect the required tokens as a feature. A Recurrent Neural Network (RNN) converts
these tokens into vectors. These vectors are called embeddings. When they represent the
source code as AST, CFG representation, it is easier to access the required fragments from
the source code. Therefore, these representations are used to normalize the source code and
to feed deep-leaning models.

These works are related to inconsistency and anomaly detection of method calls and their
arguments. Therefore, we proposed a technique based on the abovementioned approaches
and proved that a usage pattern of an argument as a variable is adequate for detecting
swapping argument-related bugs in Python. Our proposed technique performs well even if

the method definition is unavailable. On the other hand, our technique is good enough for



18

any large-scale studies.

After detecting anomalies regarding the method call and its argument, we are skeptical
about how to generate the arguments of a method call. For dynamically typed languages,
most of the compilers (i.g. Visual Studio Code, PyCharm, Jupyter Notebooks) follow the
pre-trained models and processing for suggesting code segments (especially- API suggestion
API argument competition). Therefore, we intend to investigate the accuracy of large-
language models and check manually whether these models can generate the argument list

ideally or not.

2.6 Usage of Large Language Models

In a recent study [33], the authors collected the partial codes from Java and all the ex-
pressions used in the arguments [34]. By filtering the argument and the scope of variables,
their model refined the list of possible arguments and generated a list of candidates. This
model takes an input sequence of partial cade, and the method the requested position of the
argument and generates the input query for an argument request. Their approach outper-
formed the GPT-2, CODETS5, and SLP. Our analysis checked whether the large language
model performs the same for the Python method calls. Code completion should be more
accurate when the used model has enough information to detect the pattern. This argu-
ment recommendation is also a specific type of code completion. In their study, another
author used the large language model to check the performance of generating code chunks
from a given partial code [35]. Transformer-based neural architecture was used to fine-tune
the model and create a segment for a given method call. This method of body completion
is a token-level completion, which performed well for Java, a statically typed language.
Therefore, large language models can generate tokens for dynamically typed languages. For
predicting the subsequent tokens [36] from the given code context, a study [35] conducted a
large-scale study comparing the performance of Deep Learning models and Large language
models, for example- BERT. The generated tokens were compared with the original tokens
by considering the BLEU score and Levenshtein distance. They conducted this analysis for
an Android dataset [37] and a JAVA dataset. They compared the RoBERTa model with
the typical t n-gram model and found that the RoBERTa generated better results for both
single and multi-tokens. Therefore, we are highly motivated to check the performance of
RoBERTa for the Python dataset. It was challenging to generate the whole line of code
sequence for Python. A study [38] was conducted to create an entire line from a given con-
text by neural language models. Their findings indicate that Transformer language models
consistently outperform RNN-based models across both datasets, aligning with prior re-
search in language modeling. The whole line was generated using GRU and Transformer
(GPT and GPT-2) [39]. They collected tokens from code segments and Syntax-based con-



19

texts from AST, which are used as input for the GRU+Token model, GRU+Syntax model,
TransformerLM+Token model, TransformerLM-+Syntax model, and according to their eval-
uation, Transformer language models are generating better results than the others. The
model must have the tokens to generate tokens from a given code context. It is impossible to
generate a name of an argument that is not even in the given context. This study [40] [41]was
designed to generate tokens using an LSTM model but providing all the local and global
variables candidates for a requested API. It is mandatory to get the argument prediction;
the argument must be in the context, and a rule-based data flow of variables is needed to
collect the context from the source code. Besides, a study introduced three types of query
procedures of language models. Left-to-right language Models, Masked Language Models,
and Encoder-decoder Models are used to generate tokens. As they are pre-trained models,
the authors have used them and built another model, PolyCoder, to develop on top of GPT-
2. Thus, large language models can be used Marcel et al. [42] described how context or
tokens are used for a code recommendation system. They proposed a technique to improve
the code completion system by collecting the frequency of the tokens, using the association
mining rule to collect those tokens that appear together. As their models used these tokens
for code completion, we have collected those contexts for our large language models, which
are highly frequent and associated with method argument. In a code-completion study,
Matteo et al. [43] used the RoBERTa model for training and generating code tokens. They
used masked tokens to generate code tokens, the BLEU score, and Levenshtein distance to
evaluate the predictions. Their study showed that for Python programming language, their
performance is higher than that of other n-gram models. Therefore, we used the RoBERTa
model for token generation and compared the generated tokes by calculating the BLEU

score and Levenshtein distance with developed arguments and original arguments.

2.7 Conclusion

Our thesis is to analyze the method calls and their arguments in Python. Most programmers
need to be made aware of an argument’s datatypes and expression types. Therefore, we
proposed our technique to verify the variables from the source code context and generate
a warning if there is a swapping argument-related issue. Though retrieving the method
definition is easy, it is challenging to map the method call to its actual definition. Our
approach also collected the method definition and mapped to its method call. This increases
the domain of our analysis and provides the model with extra information. Our proposed
technique dynamically collects the usage information of variables from the source code.
It proves that usage pattern study is one of the promising approaches to building a bug
detector and anomaly detection. Our study was used to support our later chapters on

argument generation from code context and calculate the performance of a large language



20

model for argument generation in Python by analyzing the scoped variable lists from the
source code. We also proposed a technique to verify where the large language models fail. To
the best of our knowledge, this is the first context-based bug detection and empirical study
of argument in Python. Pradel implemented this name-based learning approach to detect
bugs in JAVAScrpit projects. They described the problems of automatic bug detection
models based on buggy and correct code examples. They collected information from code
snippets to build correct and incorrect patterns for bug detectors of swapped arguments,
wrong assignments, wrong binary operators, and wrong binary operands. These patterns
are used as an input of an embedding generator to represent them in numeric format.
Therefore, the unique representation of every token preserves the semantic representations.
Their model worked well if there was data extraction with AST-based, which provided
information related to the node and was preferable for performance boosting. To recover
the meaning of variables that can be used as an argument, semantic information is gathered
from mining the features from code. Though it is a static analysis, it provides meaningful
features for bug detection. Therefore, using descriptive names or abbreviations is given

equal importance in their model.



21

Chapter 3

Linking Method Calls to their

Definitions

3.1 Introduction

Programmers declare variables and use functions very repeatedly. The correctness of a
program generally depends on the assignment of the variable type and passing a correct
typed variable as an argument to a method call. Therefore, we analyzed the induced type of
a variable and proposed a technique to detect the type from the source code context. While
investigating the type from an assignment operation, we found programmers are assigning
a method call as a value for a variable, and this method call points the definition to get
the returned value. Therefore, we proposed another approach that will bring the method
definition to its method call.

3.2 Dynamic Type Solving of Variables in Python

We are working on dynamically typed language. In Python, we declare a variable without
declaring its type. This type is assigned according to the data provided to the variable at
runtime. For example, in Figure 3.1, in the following code snippets, we have a variable
METADATA_FILE, defined at line no. 3, using the assignment operation. To detect the
variable type, we need to analyze the value assigned to the variable with its local field
access. The variable can get values anytime in the program and can be changed anytime,
anywhere in the code script. In the code snippet at segment 1 in Figure 3.1, the variable
METADATA_FILE got a value and was used in the function call “io.open”. Therefore, the
method call expects the string type or the path type as the first argument and the string
type as the second argument( here, it is ‘r’). In the code snippet in segment 2 at Figure
3.1, the variable METADATA _FILE is assigned three times and used in the function at



22

% Type_examplepy @ % Type_example_2py 4 ®
F: 3 data 3 12 3 clivian tch 3 dispatch > @ Type_axamplepy >
1 import io, json
2  #segment 1
3 METADATA_FILE = "zonefile_metadata.json”
4 with io.open(METADATA_FILE, 'r') as f:
5 metadata = json.load(f)
]
8

#sagment 2
METADATA_FILE = 3 # assigned an integer value
9 METADATA_FILE = metadata.split("'n") # assigned a value which is returned by metadata.split("\n")

1@ METADATA_FILE = "zonefile_metadata.json" # assigned a value which a string or a path type value

11 with io.open(METADATA_FILE, 'r') as f: # expects the 1st argument as path type & second arg as string
12 metadata = json.load(f)

13

14 #segment 3

15 METADATA_FILE = "zonefile_metadata.json"
16 with io.open(METADATA_FILE, 'r') as f:
17 metadata = json.load(f)

18
19 #segment 4
20 def method_metadata_fetch(METADATA_FILE):

21 data_path=METADATA_FILE
22 with ic.open(data_path , 'r') as f:
23 metadata = json.load(f)

24  method_metadata_fetch("zonefile_metadata.json")

Figure 3.1: Example of Dynamic Type

line no. 11. Therefore, the variable was changed to 3 types. In the example in Figure 3.1,
when the programmers analyze the code snippets, they will understand the code pattern
and the assignments of METADATA _FILE. In line 8 at segment 1 in Figure 3.1, the value
is assigned to the variable as an integer, and in the next line(9), it immediately changes
to a different expression (a method call). As this expression is a method call, the value
for METADATA FILE will be the method call’s return value. Therefore, the final value
from the usage pattern is the latest usage of the argument’s assigned value. We divided
our approach into three steps. First, we have extracted all the assignment variables. We
have also differentiated the variables based on the local and global variables. In segment 3
in Figure 3.1, the METADATA _FILE is a variable in the global scope of the variables and
has a method definition and has a parameter METADATA_FILE, which has scope under
the method definition “method_metadata_fetch”. We have determined the scope of the
variables and differentiated them to generate the argument usage pattern accurately. On
the other hand, in segment 4 in Figure 3.1, “data_path” is a local variable with scope only
from line no. 20 to line no 23. Another example is in segment 1 in Figure 3.2, where a value
is assigned to Sum, where it is the Binary operation. In the second line, Student_1_marks
is a returned value from “get_marks” and can be any type.

While generating the augment recent usage pattern and determining the argument type,
we found 24 expression types (see Table 3.3) frequently used in Python. However, these
expressions carry different values, which are the type-defining factors. We divided our type

information into two categories. They are basic types, secondary types, or inferred types.



23

® Type_examplepy ® % Type_esample_2py 4 @
» data » 13 » olivierverdier » dispatch » dispatch > % Type_sxample_2py » .
1 #segment 1
2  Sum= 5+6
3 marks= 78
4 Student_1_marks= get_marks(subject,marks)
5 def top_result ( Sum_value, marks):
] return Sum_value - marks
7 result_student_1= top_result { Sum, Student_1_marks)
g
9 #segment 2
18 name = None
11 axis_list = [1,2]
12 axis_list_processed = [1,2]+ other_arg
13  scope = whoosh.fields.STORED
14 #seg'nent“ém.m
15 def percentage_calculator(data, total):
16 return data/total*lee
17 student_1_marks=percentage_calculator(88,768)
18

Figure 3.2: Example of Dynamic Type(contd.)

e Basic Types: This type of information is visible and can be extracted by analyzing
the source code. These are also known as static types. These variables are indepen-
dent, and the inferred types are dependent on these independent types. We found that
11 expressions exactly followed the data type of the variable. String, List, Integer,
Dictionary, boolean, None, Tuple, float, Lambda, bytes, and Set(see Table 3.3) are
treated as basic types in Python programming language. In Figure 3.1, at line no 10,
the variable “METADATA_FILE” has taken the string as a value of the variable. For
example, a string must be enclosed with an inverted comma. If it is a byte type, it
must start with “b”. However, this approach is extended and used to detect the type
of binary operation. In that case, generally, we traverse the whole value of the assign-
ment to match any pattern(String, List, Integer, Dictionary, boolean, None, Tuple,
float, Lambda, bytes, Set) that is available or not. If any of the patterns are matched,
we directly assign the type of the matched pattern to the assigned variable or keep it

unknown.

e Secondary Types: Some of the expression types - Attribute, Call, BinOp, Starred,
Compare, UnaryOp, Lambda(see Table 3.3) - are considered Secondary types. Due
to the complex expression types and the internal operations in those expressions of
variables, the type of those assignments depends on those operations. For example,

we provided examples of their solving process in the table.

We collected the information as follows in Table 3.2. For a collection of this type, we
generated a knowledge base, which will be updated every phase with new examples. The

process is as follows-



24

Table 3.1: Description of Updating the Knowledge Base for Type Detection

Knowledge Base Description
(BT) Database with only Basic Types
(BT+NT) Database with Basic Types and Name Types
Database with Basic Types, Name Types
(BT+NT+AT) and Attribute Types
Database with Basic Types, Name Types
(BT+NT+AT+ST) Attribute Types and Subscript Types
(BT+NT-+AT-+ST-+CT) Database with Basic Types, Name Types

Attribute Types Subscript Types and Call Types

1. First, we made a database(BT)3.1 with all assignments with the basic type on their

right side as the value of the assignment.

2. We took all the assignments with the “Name” type expressions as values. After
extraction, we checked the right-side names to the left side of the assignment database,
where we saved the basic types. If we found a direct match, we added them to the
previous database(BT+NT)3.1.

3. Then we picked all the all the assignments with the “Attribute” type expressions as
values. Then, we checked the class instances and the updated database (BT+NT+AT)3.1.

4. We picked all the all the assignments with the “Subscript” type expressions as values.
Then, we checked the usage of the name of the subscript and the updated database
(BT+NT+AT+ST)3.1.

5. Now, we used the mapping module to find out the method definitions and their
mapped method calls. We also collected the segment of a method definition block
and tracked it down from top to bottom to get the actual value of a return block of
a method definition. We used the technique of automatic return type detection ! to
gather all the return types of the method definitions. Then, we filtered out all the
method calls used as a value of the assignment. Typically, these method calls were
already mapped by our algorithm described in the section 3.3.1 and collected the type
of a method definition by following the process from 2. Thus, we gathered the type
of maximum number of mapped method calls from examples. Then, we updated the

database as (BT+NT+AT+ST+CT)3.1.

6. Therefore, our database (BT+NT+AT+ST+CT)3.1 gained the possible types of 60%

of the assignment from all project examples. Then, we used the database to solve

1http:-s ://papers.ssrn.com/sol3/papers.cfm?abstract_id=4088424
thtps ://papers.ssrn.com/sol3/papers.cfm?abstract_id=4088424


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4088424
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4088424

25

the binary operations as it combines multiple expression types. The combination of

expression types can be any of the type expressions with the binary operation. We

simplified the process by two steps from the equation 3.1.

4

Basic_Type, if Basic_type with other_Expression
Check
Type_of _BinOP = < Dataset
forType
| oftheEzpression, Any Expression with Any Expression.
(3.1)
Table 3.2: Type Collection from Figure 3.2
Segment
no . Assigned Assigned value Probable value
from Variable name value (Expression Type) | Type
Figure p yp yp
3.2
1 Sum 5+6 Binary operation int
Have to find
get_marks the return
Student 1 marks (subject, Method Call value of the
marks) method call
the get marks
name None NoneType NoneType
axis_list 1,2 List List
2 1,2]4+ (must be
axis_list_porcessed other_arg List + Name a list)
whoosh.fields. ; Depending on the
Seope STORED Attribute sourcecode

3.3 Linking Method Calls to their Definitions

This section describes the process of linking method calls to their definitions.

This is

required to support the implementation of DeepBugs, a state-of-the-art name-based bug

detection technique. DeepBugs uses a semantic vector representation of method arguments

or method parameters. We implement DeepBugs for the Python programming languages

to compare with our proposed technique.

Significance :

B This approach will map the method call to its actual definition to generate a sequence




Table 3.3: Classification of Expression Type Extraction

26

calculator(80,700)

percentage_calculator(80,700)

Variable Variable Assigned value | Assigned value Detected
Type Name (Real) (Expression Type) Type
i 1 i=1 integer
st_name “Harry” st_name=“Harry” String
2;?;:1‘3{ greeting b“Hello, world!” Ef:ji-(;zlllfc;g,:worl q” byte
Subscript
arr_val arr_c[3] arr_val=arr_c[3| check code
lines
ip_seq (1, 2) ip_seq=(1, 2) Tuple
trigger True trigger=True Dictionary
Check class
schema whoosh.fields. schema= or objects
STORED whoosh.fields.STORED from code
Secondary .
lines
Types Name Expr
type_data msg type_data= msg check code
lines
constant
st marks— percentage_ st_marks= depending on

return type of

method call

content_string

contents % unit

content_string =
contents % unit

depending on
the left and right
part of binary
operator

of parameters and arguments.

B This approach will support solving the type of those assigned values, which are called

expression types.

3.3.1 Method Definition Pattern

Method definitions can be divided into two categories. It can be user-defined, which is

project-specific and declared by users, and the pre-defined or library functions used by
importing the libraries in a file. When we call a method, the IDE maps the method call

with its corresponding method definitions to use the arguments that can be passed to the

method definition as parameters. Therefore, it is challenging to map the method call with

the definition of the corresponding method.

Besides, the method definition can be declared in the same file or different files in the same

or another project. By the “import” keyword, we enhance the scope of a method definition




27

1 class Student:
2 def __init__ (self, name, age):
1 def factorial(n): 3 self.name = name
if n == B: 4 self.age = age
return 1
il

4 else:
def

5 return n * factorial(n - 1) a

7 # Example usage 18 return cls(name, date.today().year - birth_year)
8 print(factorial(5}) # Output: 120 11

12 def show(self):

2. Class Declaration
and itz Method Call

Figure 3.3: Different Types of Method Calls

(from another file) to the imported file. Our thesis proposed a rule-based heuristic approach
to link the method definitions (defined in the same file and the same project) with their
method calls. It implies that the method declaration can be in the same file where the
method is called in the different files in the same library. We aim to map the definitions
defined in a project locally with their corresponding method calls and build the correct
binder for the correct code pattern. We parsed the source code for each project, and our
code extractor module generated two files (Collection of method calls and collection of
method definition). We have another two modules that will collect the class information
and collect “connected files” of any files given a file path by its import statements. We
categorized the calls based on the location of the definition and method call. It implies that
the method declaration can be in the same file where the method is called in the different

files in the same library.

3.3.2 Method Call Patterns

In Figure 3.4, a very method called “Ixml.html. from string (page)” is shown in line 141. The
purpose of the method call is to parse the HTML content provided in the “page” variable
and return an Element object that serves as the root of the HTML element tree. This tree
can then be navigated and manipulated using various methods provided by the lxml.html
module. If we carefully look into the method call, we found the patten of a method call can
be a sequential call of python_library_name.submodule name(or class_name).function name.
This implies that the search string for a method dentition for a method call will use the
sequence of the method call followed by the import statement. Therefore, each call must
be related to:

B Only the method call sequence( Same File Method Call Mapping)

B Both an import statement and method call sequence( Outside the same file Method
Call Mapping)



28

Our proposed heuristic searching algorithm goes through both concepts and brings the
method definition with its call.

- SCRpRHNG-Oy = hernl_init_py = bmb_init__ gy

1 from abc import abstractmethod
2 import datetime

5 try:

4 import urlparse # pythonZ
= except ImpertError: # progmo:
6 import urllib.parse as urlparse

import warnings

import lxml.etree

10 import Lxml.html  lxml.html.fromstring(page)
. — Lronstringts
11 import requests 1 [

12 import six l nunction
102 @six.add_metaclass(_ScrapedMeta) i
103 class ScrapedPage(object): 5
104 _scrape_doc = None
185 scrape_url = None
106 scrape_args = [] .
187 scrape_arg_defaults = {} T e e Lt
1e8 scrape_headers = {} r
1@9 def fromstring(htnl, base_url=None, parser=None, Wvkw):
L. "evpapse the html, returning a single element/document....”""

110 > def __init_ (self, *pargs, **kwargs): - if parser is None:

parser = html_parser
131 if isinstance(html, bytes):
132 @pr‘oper‘ty el“.:is_fu!.!._ntm. = _looks_Like_full_html_bytes{html)

. : . is_full_html = _looks_Like_full_htel_unicode(ntwl)

133 : de-F scrape_SESSlon(SEI-F) . *5° doc = document_fromstring(htnl, parser=parser, base_url=base_url, #*+kw)
135 if is_full_html:

return doc
136 > def scrape_fetch(self, url): .- # atnerwise, lets parse it o

bodies = doc.findall( bady*)

139 if not bodies:

bodies = doc.findall('{¥skbody" % XHTHL_NAMESPACE)
148 def scrape_create_document(self, page): it bodies:...
141 return lxml.html.fromstring(page) — -

PR

Figure 3.4: Method Call Pattern

3.3.3 Analysis 1: Method Call and Method Definitions in the Same File

We aim to map the definitions defined in a project locally with their corresponding method
calls and build the correct binder for the correct code patterns. The method definition
can be declared directly in a module or class. First, the method calls and definitions were
collected from a file with their parameters and arguments. Then, we matched the name of
the method call to the name of the method definition. If the method definition is defined
in a class, then we match the name of the class name with the attribute name.

A method call can be called from a function definition, a class method, or an inheritance
of a class. In Figure 3.3, the first segment shows the function call and its declaration. We
denoted it as a direct function call. The second segment projected a class declaration at

line no. 1, which has a method declaration “calculate_age.” To access the method from



29

the class “Student,” we have to create an object of “Student” or use it directly by calling
“Student.calculate_age( )”. The third segment of Figure 3.3 showed the class inheritance
procedure where a class “LoginView” inherited the instances from another class “Redirec-
tURLMixin,” which implied that for the case scenario of inheritances, we have to look up
the inherited class for determining the scope of a method declaration. If a method definition
is located inside a class, we also collected the name of the associated class. Given a method

call without any receiver expression, we looked for a method definition outside classes in

@ Defintion_mapping.py @

: 2 Users » subra » Desktop » 4 Defintion_mapping.py >
class BinarySearch:

2 def init (self, arr):

3 self.arr = arr

a self.arr.sort()

=]

[ def search(self, target):

7 low, high = @, len(self.arr) - 1
8

9 > while low <= high: -

19

26 return -1 # Target not found

21

22 # Example usage with the class:

23

24 # Searching in a sorted list of integers

25 sorted_numbers = [11, 22, 25, 34, 64, 98]

26 target_number = 25

27

28 # Using the BinarySearch class

29 result_index = BinarySearch.search(target_number)
36

Figure 3.5: Method call and its Corresponding Definition in the Same file

the same file by comparing their name and number of parameters. If the method call has a
receiver expression, we determine whether the receiver expression matches the class name
located in the same file. If we find an exact match, we look for a method definition lo-
cated in the class whose name and number of parameters match the name and number of
arguments of the method call.

In this Figure 3.5, line 1 contains the class declaration “BinarySearch”, and line 6
contains the method declaration “search”. A method call was found at line 20, “Binary-

”

Search.search()” in the same file. We first mapped with the file name and then checked
if any instance was used in the method call. This brought up the method definition and
method call for the current file. After matching the file names, we perform a heuristic
mapping with the name of the method definition and the name of the method calls. We
have collected all the name-matched method definitions for that method call. This mapping
generated one method call mapped with one or many method definitions. We re-mapped
the mapped method calls and their definitions to remove this dilemma by matching the
attribute name of a method call with the class name of their corresponding method defini-

tions. As an example from the Figure 3.5, the first “search” keyword is matched directly



30

with the definition in the same file and then compares the attribute of “search” (in this case,
“BinarySearch” is the method attribute name ) with the class name of “search” (in this case
“BinarySearch” is the class name). Therefore, we collected mapping data in the same file.
We found that method calls and their mappings are only 5-7% of the total method calls.
The definitions of the unmapped method call are spread in different files and libraries. We
studied and retrieved the method definitions from different files in the same project.

If the receiver of a method call is “self”, the method definition and the method call
are located inside the same class scope. For example, consider the figure3.6, method call:

self.bool(). The method bool() and the corresponding definition must be located inside

1 class Stack:

2 def init (self) -> None:

3 self.items: list[Any] = []

4

5 def push(self, item: Any) -= Self:
6 self.items.append(item)

7 return self

8

9 def pop(self) -> Any:

10 if self. bool ():

11 - ~ return self.items.pop()

12 | else:

13 | raise ValueError("Stack is empty")
14 v

15 def bool (self) -> bool:

16 return len(self.items) = @

Figure 3.6: Example of self as a Receiver of A Method Call

the same class or any inherited class of the same class. We establish the mapping by
searching class methods in the current scope. If the heuristic approach of searching method
declaration fails, we further checked the inheritance of the class for class method declaration.
Our approach is based on the fact that the inherited class must be treated in the same
scope as the object of the child class. Therefore, in the third segment of Figure 3.3, any
object or instance of class “LoginView” must have the right to use the methods of class
“RedirectURLMixin”.

To resolve this class inheritance, we have first checked the same class for the method
call and the superclasses in the declaration of a class method. This extends the scope of
a class. In the third segment of Figure 3.3, The class “LoginView” is inherited from the
class “Redirect URLMixin.” Therefore, for mapping of the method, call “get_success_url” at
line no. 81 will first check the method definition inside the class “LoginView” and cannot
find the definition, and then it directly searches the inherited class “RedirectURLMixin”
and “FormView”. At line no. 40, the class “RedirectURLMixin” has the class method

“get_success_url,” which was mapped to the method call at line no. 81.



31

3.3.4 Analysis 2: Both an import statement and method call sequence
(Outside the same file Method Call Mapping)

If the method definition is not present in the current file, we import them from other files in
Python. These imports can be files, classes, a directory, or a particular method. Therefore,
when a file includes any import statement, it imports those modules, files, and the class, and
they must be considered a part of the same file even though they are from different locations.

When we get all the files connected to a file, we follow the same approach described at 77.

feessssssscsssseneae &
l from | directory ]Inporl file_name ]..,. File Path

from ﬁle name ]Inporl

[ ans : )
= Al s  Connected File List
—— L_ » fom |_fle name |impot | modue | Floist > SN ; o

from | directory | |rrml[ directory eﬂmﬂi method definitions)
Input b
File mmport file_name [--c-occecccciicaaioaaaaas Output
File Path

Search for __init__py
ﬂenlhetire:kxy

Import Statement Analyzer

"!Iﬂ dll’EctOI’,'

Figure 3.7: Import Statement Analyzer

First, we parsed a file, collected all the import statements, and gathered all the files
related to the import statements. If the files are in the scope of the project, we mention them
as connected files. Another major feature of Python is that Python has the “_init__py”.

When in a Python script there is an import statement pointing to a project’s directory, first

Import Statement > =
Analyzer —
e Get All the Connected

File List and Add
to the scope of the file

[

v

ge=:)

=
_ == — »Mapped Method Calls—Binder Generation
Search in the Collected
Method Definition Database
Method Calls
List

Figure 3.8: Usage of Import Statement Analyzer to Generate Binder for DeepBugs

we have to search the existence of the directory and secondly, in the directory, the existence
of the “__init__.py” file. In Figure 3.7, the module Import Statement Analyzer took a file
as an input and generated a list of connected files. This Analyzer was used to generate
binders for the DeepBugs model in Python (3.8). If the “_init_.py” file is available, we
need to parse the file collect the related Imports, and add them to all the files in the same



32

directory. It is a functionality or workflow related to all the files in a certain file directory.
After collecting the files connected with the particular files, we treated them as a part of
the same file and checked the module name and then the class name by following the ??
and collected the mapped method calls. As in Python, we found more than 60%-70% of
method calls are library imports, which we have mentioned as global imports, and the rest
of the 30%-40% of method calls are user-defined or local method calls. We got the correct
mapping of 80% of method calls out of all the local method calls, which are our correct code
examples. The binder generation process from the method call is described in the following

section.

3.4 Example of Resolving Method Call

We solved our collected method calls by using our above-mentioned approach in section
3.3.3 and section 3.3.4.

Method Call Mapping Rule-1: In the first segment of Figure 3.3, there are 3 method
calls at lines 5, 8, and 8. The methods call “print” and “factorial” are used. For “factorial”
we checked the file for method definition. As “factorial” does not have any Python library
or any sub-module with its block, it is a direct mapping to its method definition. Therefore,

we followed the steps-

e Match the outside class method definitions by their names and make a list of matched
method lists.

e Check the number of arguments of method calls and the number of parameters of the

matched definition.

e check the number of default variables for method definitions and ignore the list of
default variables for method call as it is passed automatically when a method is

called.

Result: We got a one-to-one mapping with “factorial” at line 8 to the definition at line 1 3.3

Method Call Mapping Rule-2: In Figure 3.5, we found a call at line 29. According to
the pattern of method call at 3.4, the method call “BinarySearch.search(target_-number)”
has two parts. The first part, “BinarySearch,” is the class or sub-module, and the second,

”

“search,” is the function. Therefore, we follow the following steps-

e Match the inside class method definitions by their names and list the matched method

lists with their class name. If it is an exact match, then get the list.

e Check the number of arguments of method calls and the number of parameters of the

matched definitions.



33

# scrapping.py = bl _init_py = lymi_init_py
from ahc impert abstractmethod
2 import datetime

191 class CssDate(Css):
192 def __init__(self, selector, date_format, *¥*kwargs):

193 self.date_format = date_format

194 super(CssDate, self).__init__(selector, #**kwargs)

195

196 ®f def cleanup(self, value, elements, scraped_page=None):

197 try:

198 return datetime.datetime.strptime(value, self.date_format)
199 except ValueErpor: ' o

200 return Noné

& scrapping.py . datetime.py

“1553® % class datetime(date):

1564 """datetime(year, month, day[, hour[, minute[, second[, micrasecond[,tzinfé
1569 of __slots__ = date.__slots__ + time.__slots__ E
1570

1571  * @] def __new__(cls, year, month=None, day=None, hour=0, minute=8, second=8,
1572 microsecond=0, tzinfo=None, *, fold=0):...

1947 @classmelthod

1948 * def strp%ime(cls, date_string, format):

1949 'string, formot -> new dotetime porsed from o string (like time.strptime()).'
1950 import _strptime

1951 return _strptime._strptime_datetime(cls, date_string, format)

Figure 3.9: Example of Mapping a method call to method definition from another file

e check the number of default variables for method definitions and ignore the list of
default variables for method call as it is passed automatically when a method is

called.

Result: We got a one-to-one mapping with “search” at line 6 to the definition at line

1 3.5 from the class at line no 1.

Method Call Mapping- Rule-3: In Figure 3.4, we have a method call at line 141,
and there is no definition or class method that follows the call pattern “lxml.html. from
string (page)”. Therefore, it is necessary to search through the import statement where we
found “import Ixml.html” and when we used our import statement analyzer from 3.3.4, we
found a set of list of connected files. As “import Ixml.html” is a directory, it has brought
the “_init__.py” file from the directory Ixml_htmland and parsed the file. Therefore, it came
under the scope of the current file “scrapping.py”. Then, we follow the same approach to

match the method call name with its definitions.



34

Result: we found the method call “Ixml.html.fromstring(page)” is mapped with the defi-
nition in the file “_init__.py” in the directory “\\Lib\\site-packages\\1xml\\html”.

Method Call Mapping- Rule-4: In Figure 3.9, at line 198 a method call is found
“datetime.datetime.strptime(value, self.date_format)” . As the method definition was not
found in the same file, we used the import statement analyzer tool to find the imported file
list and found that datetime.py is in the scope of the current file.

Result: We followed the method call pattern and found the “datetime” as a library. In the
library, the datetime.py file contains the class “datetime” where “strptime” is the function.

Therefore, we found a direct match using our approach.

3.5 Result of Type Detection:

Our type detection process used the mapping module to bring the type of method calls
with a return value from their definition block. We have chosen 5 Python projects that

have 8,664 assignment operations, which were described in Figure 3.4. We found most of

Table 3.4: Expression Type of Value of Assignment

Expression Type Expression e
of {)falue of Assf:ignment Count of {)/'alue of Kspignment Count
Call 3639 UnaryOp 72
Constant 1721 ListComp 50
BinOp 719 BoolOp 35
Name 664 JoinedStr 24
Subscript 585 IfExp 13
List 439 Compare 9
Attribute 297 DictComp 9
Dict 239 Lambda 4
Tuple 142 GeneratorExp 2
SetComp 1

the method calls, which are 42% of the total value type in the subject system. However, we
solved the basic types described in the section 3.2. Our approach successfully detects the
type of all Constant, Tuple, Dict, List, JoinedStr, BoolOp, SetComp, DictComp, Subscript,
and ListComp perfectly, leading to 3,204. Then, our mapping solved the issue of 3,639
method calls. Our mapping algorithm mapped 2,263(62%) method calls and generated the
type of that assignment operation. On the other hand, we found 394 Name expressions out
of 664 numbers of Names, which is 59% of the total Name expression. Besides, for attribute,

we found 77% type information, and for BinOp, we found 56% accurate values. Therefore,



35

our model achieved a generation of types for T0% of the assignments.

3.6 Evaluation Procedure:

In this section, we will evaluate the effectiveness of our mapping algorithm in terms of
accuracy (exact match of the method call to its definition) by manual study. Our evaluation

of the mapping algorithm discovered the following research question-

¢ RQ1: How effective is our mapping algorithm for random examples from four different

projects?

3.6.1 Experimental Setup

In our dataset, we have 2678 source files that have the extension “.py” or “.pyi”. We
used Python AST (see for detail A.3) for extraction of method call and method definition.
After extraction, we found 146k method calls, and by random selection, we selected 250
method calls. Before using the mapping algorithm, we used four individual environments

and installed all the required libraries.

3.6.2 Ewvaluation Metrics

We used the manual analysis to investigate the accuracy of our mapping. On 146k method
calls, we used our mapping algorithm and found that, on average, 3% of calls had multiple
mapping. We considered them as a missed example. Therefore, we only considered the

exact mapping of the method calls and their definitions.

A _ Number of Ezact Matched
CUTIY = Total Number o f Example

(3.2)

3.7 Result of Mapping Algorithm

We took four Python projects for our study. We considered these as they are popular li-
braries and had “requirement.txt file”, with more than a 500-star count, more than two

n3 , “numpy” 4 , “geikit-

commitors, and a working duration of more than one year - “pandas
image ”°,“GitPython”®. We installed all the required libraries mentioned in the “require-
ment.txt file”. When we installed these libraries, we collected all the environment paths.
As for mapping, we need the required paths to find the method definitions. While analyz-

ing the path variables, different path values for multiple created environments were used.

3ht tps://github.com/pandas-dev/pandas
“https://github.com/numpy/numpy

5http:-s ://github.com/scikit-image/scikit-image
Shttps://github.com/gitpython-developers/GitPython


https://github.com/pandas-dev/pandas
https://github.com/numpy/numpy
https://github.com/scikit-image/scikit-image
https://github.com/gitpython-developers/GitPython

36

Therefore, we configured the environment for each library and used our approach to check
the performance of the mapping algorithm. We found the method calls are related to seven

different path variables.

e Built-in method definitions and class methods found in -\python_stubs\1995209621\

builtins.py which contains built-in classes and functions such as - “len”, “min”

¥

“open”, “print”. It comes with the basic installation of Python.

e Exception and Error Handling We found some of the method calls are class

objects, which are “Error 7, “Exception ”,“write” and “read”.

e Installed Library Path: Rest of the method definitions are found in the installed
library. When we install a library via “pip3” it is added to a certain directory known
as \Lib\site-packages. We used our mapping algorithm to search for the method
definition in this path based on the library’s name and its calls.

Table 3.5: Manual Investigation Report of Mapping of Method Calls and their Definitions
(250 examples for each project)

Project Name | Accuracy(%)
pandas 83
numpy 81
scikit-image 85
GitPython 83

We collected 146k method calls and used our mapping algorithm. To find the efficiency
of our algorithm, we picked the 250 method calls to form each project. We verified the
performance of our model by manually checking the mapping of 1000 examples. First,
we opened up each example and checked the method definitions brought with the method
calls. We considered those method calls with a single mapping of method definitions. The
accuracy is shown in Table 3.5. We found our algorithm had an accurate mapping of

81%-85% cases on average.

3.8 Conclusion

Our import statement analyzer and mapping process solved two major issues. They can be
described in short-

e The process brings the method dentition to make the binder for method calls.

e For type solving of a variable, 42% of the values of assignments are from method

calls, and the types are solely dependent on the return value of a method definition.



37

Therefore, our approach provides, on average, 80% correct mapping of the method

calls and their definitions.

In chapter 4, we replicated a study called DeepBugs, where we needed to make a tuple
of method calls and their definitions. Our study showed that 70% of method calls are
connected with the library or any method definitions in the same project but in different
files. Therefore, it is mandatory to find those definitions. On the other hand, we found
approximately 42% of the values of assignments were from method calls. Therefore, to
replicate the DeepBugs and find the type of method calls of assignments, we used our
approach, which increased the mapped number of examples on average 15% more than the

DeepBugs.



38

Chapter 4

Exploring Name-based Bug
Detection in Python

4.1 Introduction

The names of identifiers (i.e., variables and methods) provide information about the seman-
tics of programs. Descriptive and meaningful identifier names not only assist in program
comprehension but can provide additional sources of information to support software devel-
opment tasks such as completing code, suggesting identifier names, and detecting incorrectly
ordered arguments of the same type. For statically typed languages (like C, C++, and Java),
the type information of variables is embedded in the source code itself, which can help to de-
tect incorrectly ordered arguments of different types. However, to detect incorrectly ordered
arguments of the same type, we need to rely on other information from the source code. The
problem is exacerbated in dynamically typed languages where type information is not even
available. The similarity between argument and method parameters and the usage patterns
of arguments can be leveraged to detect bugs caused by incorrectly ordered arguments. A
prior study by Pradel et al. [2] showed that we can leverage the identifier names to develop
a learning-based approach called DeepBugs that can detect argument selection defects. The
approach differs from other name-based bug detection techniques because it does not require
manually crafted rules to set argument values. The approach was evaluated using the 150K
JavaScript dataset. However, we found a gap in how they performed their analysis. Firstly,
the technique was evaluated using source code written in JavaScript. It is not clear whether
the performance of the technique can be generalized to other programming languages. Our
selection of Python is based on the fact that it is dynamically typed and the most popular
language in the TIOBE index. Secondly, the study only considers the method calls and
their definitions in the same file. During our study on the Python dataset, we found that

the definitions of more than 70% of all method calls that have more than one argument



39

& utilspy 6 X @ phrasespy 3 @
ta g ® ut @ vecat 1
1724 def prune_vocab(vecab, min_reduce, trim_rule=None):
1725 """Remove all entries from the “vocab™ dictionary with count smaller than “min_reduce”. --
1744 result = @
1745 old_len = len{vocab)
1746 for w in list{vocab): # make a copy of dict's keys
1747 if not keep_vocab_item(w, wvocab[w], min_reduce, trim_rule): # wvocab[w] <« min_reduce:
1748 result += wvocab[w]
1749 del vocab[w]
1758 logger.info(
1751 "pruned out %¥i tokens with count <=%i (before %i, after %i)",
1752 old_len len(vocab), min_reduce, old_len, len{vocab)
1753 b
1754 return result
# Ll py #* pheasecpy 1 @
-
422  class Phrases{_PhrasesTransformation):
423 """Detect phrases based on collocation counts."™"
424
a4z def init__
def
#static
def _learn_vocabisentences, max_vocab_size, delimiter, connector_words, progress_per):
sentence_ne, total words, min_reduce = -1, 8, 1
81 vocab = {}
B2 logger. info("collecting all words and their counts®)
583 for sentence_no, sentence in enume {sentences)
if sentence_no X progress_per == O:

loge: L
" RESS: at sentence #Xi, d %i words and %i word types”,

sentence_noc, total_words, len(vocab),

start_token, in_between = None, []
590 for word in sentence:
591 if word not in connector_words:
592 vocab[word] = vocab.get(word, @) + 1
593 if start_token is not None:

594 phrase_tokens = itertools.chain([start_token]l, in_between, [word])
joined_phrase_token = delimiter.join( s
vocab[join -
start_token, in_|
elif start_token is not None:

ase_token] = vocab

ween = word,

599 in_between. append(word)
total_words += 1

601 if len{vocab) > max_vocab_size:

6082 utils.prune_vocab{vocab, min_reduce}

o3 min_reduce += 1

Figure 4.1: Method Call and its Mapped Definition

are located in different files. It was not clear how that could affect the performance of the
technique. Thirdly and most importantly, there are a large number of library method calls
whose definitions are not present in the source code. For example, for our Python dataset,
86% of method calls are related to libraries, and 14% of those calls have more than one
argument. DeepBugs did not consider those method calls in their study as the definitions
of those calls are not located in the same repository where the method calls are located.
This motivated us to investigate the problem further, focus on identifying the performance
of DeepBugs for other programming languages, and investigate the importance of method
definitions for detecting bugs caused by incorrectly ordered arguments. A method call may
have multiple number of arguments. The value of the arguments comes from the variables
assigned in the source code before the line it used by calling a method or using an object of
a class. The variations of expression of an argument are described in Table 4.1. However,
the parameter and the method definition body decide which type of argument can be used
for the method call. We proposed a model to collect all the usage context of the argument
and used them to train a deep learning model. Our model did not use the method defi-

nition as the method definition may not be available in the environment. Therefore, our



40

model detects an argument swap by considering the name of a method call and the usage
context of an argument. Besides, from our model, the programmer will understand how
to write down a method body to consider the correct sequence of arguments. This usage
pattern of the method arguments is categorized into four types described in the section 4.2.
This chapter proposed a name-based bug detection tool using the argument usage context
from a given source code. We replicated the study of an existing approach, DeepBugs, for
Python and compared DeepBugs with our proposed model. We used 150k Python files for
our study and a Python AST parser for data extraction. The extracted data was used for
mapping method calls with their method definitions, context collection, generating correct
and wrong code sequences, and type detection. After collecting the information, we trained
models and evaluated our model by comparing the performance (accuracy, recall, precision)
with DeepBugs on Python. Next, we checked the performance of mapped and unmapped
method calls for both models. This showed the importance of mapping argument-related
bug detection. After comparing our model with DeepBugs, we concluded that our model
performed better than DeepBugs Model. This required an empirical study to find the rea-
son for getting high accuracy. This led us to conduct a qualitative study to discover the
reason for better performance. We combined different context-based models and showed
how the context information led to a better result. The trained model with only mapped
method calls and the model trained with all method calls performed almost the same, and
the proposed approach can be used for any large-scale study. Moreover, we checked the
overall and expression type-wise performance to ascertain the reason behind the variation
of the result. Our study also compared the importance of context for the detection of ar-
gument swapping by comparing our model with an existing pre-trained model (CodeBert).
Our model outperformed the model (trained from the vectors generated by CodeBert). We
evaluated our model with the data extracted from 150k Python files. Our model has an
accuracy of 90.79% with an 88% precision score. The contributions of this chapter are as

follows:

e Replicating the existing bug detector model for Python and Comparing it with our
proposed model. Both models considered the semantic information of tokens from

source code to determine the argument-related bugs for dynamically typed language.
e Showing the importance of different source information for training the model.

e Comparing with a model trained from a pre-trained model and our deep learning

model.
e Introducing variable and argument usage context for bug detection.

Thus, we structured the chapter as follows.



41

e section 4.2 described the terminologies we have used and the background of our study.
e section 4.3 contains the description of our dataset.

e We described the study procedure, experimental Setup, evaluation procedure and

results of our research questions in Sections 4.4, 4.5 and 4.6.
e We discussed threats to the validity of this study in section 4.7.

e Finally, Section 4.8 concludes the thesis and future research directions.

4.2 Background

This section defines the useful terms and context definition to understand the methodology

easily.

e Swapping Argument Issues in Python: A method call can take multiple argu-
ments for their method definitions. In this method, arguments are mostly defined or
assigned before they are used as arguments. This argument should pass in the correct
order or sequence to properly use its corresponding method definition. Therefore,
annotating the method argument is mandatory for all programming languages. To
describe our intention of the research, we took a well-known library project, “gensim,”
where the “phrases.py” file has a method call at line 602 “utils.prune_vocab” with its
two arguments “vocab” and “min_reduce”.In Figure 4.1, the method call is defined in
the “utils.py” file at line 1724. After getting the mapping with the method call and its
definition, this dynamically typed language will not show any error or warning even
if we swap the order of the arguments from utils.prune_vocab(vocab, min_reduce) to
utils.prune_vocab(min_reduce, vocab) at the compile time.When we run the program,
it will generate an error showing an error or warning that “data type inconsistent or
value error”. Therefore, the user and the programmer are unaware that they have
already swapped the argument, which may cause an error. We aim to collect the

static information and build a model to identify this error during code writing.

e Method Global Mapping: A method call must be mapped with its corresponding
method definitions. Though this mapping method is challenging for all compilers, we
proposed an alternative method to overcome this issue. In Figure 4.1, the method
call “utils.prune vocab(vocab, min reduce)” has its definition in a different file. In
the DeepBugs model, they mapped those method calls with a method definition that
is only in the same file. However, Python has a convention of calling methods from
other files through import statements. These import statements can import method

definitions from the same projects or the predefined library definitions. Following the



42

DeepBugs approach, we missed maximum method calls and definitions. Therefore,
we analyzed the import statements of each file and brought inter-project method
declarations in that file scope. The example in Figure 1 will be missed as the method

declarations are in “utils.py” and the method calls in “phrases.py” are in two different

files.

Local Context(LC): We collected the method call and its local contexts. A method
call and its surrounding ten tokens after and before are considered as local context.
Therefore, a local context consists of a total number of twenty-one tokens. When
we generate vectors for the name of a method call and its argument, we consider
this local context as we believe similar source code elements will appear in a sim-
ilar context [2]. Therefore, the method call and its argument will follow a simi-
lar context. From Figure 4.1, the local context for the argument “vocab ” from
“utils.prune_vocab(vocab, min reduce)” will be [ ‘min_reduce’, ‘min reduce’, ‘logger’,
‘info’, ‘len’, ‘vocab’, ‘total_words’, ‘sentence_no’, ‘utils’, ‘prune_vocab’, ‘min_reduce’,
‘vocab’, ‘return’, ‘min_reduce’, ‘vocab’, ‘total_words’, ‘def’, ‘add_vocab’ ‘self’ ‘sen-

tences’| (after removal of unnecessary tokens).

Argument Usage Context(AUC): To use an argument in a method call, the
programmer needs to declare it before the line it will use. The recent usage of
the method argument as a variable or any assignment is called the usage context.
In Figure 4.1, the method call “utils.prune_vocab(vocab, min reduce)” has an ar-
gument for “vocab” which has usage at lines 601, 596, 592, and 581. In line 581,
it has an expression as a dictionary definition; at lines 592 and 596, it was used

” is used as an argument of a

as an access to the dictionary; at line 601, “voca
method call. We have collected all the usage data, though we ignored the usage out-
side the method definition. As the variable “vocab” has scope inside the method
definition “_learn_vocab” at line number 579, we did not collect the context for
“vocab” outside the method definition. Therefore, for the word “vocab,” the col-
lected context will be the usage in the field scope and the line of the method def-
inition. Thus the context will be [[‘def’ ‘_learn vocab’ ‘sentences’ ‘max_vocab_size’
‘delimiter’ ’connector_words’ ‘progress_per’],[‘vocab’],[‘'vocab’ ‘word’ ‘vocab’ ‘get’,
‘word’],[‘vocab’ ‘joined_phrase_token’ ‘vocab’ ‘get’ ‘joined phrase_token’],[‘if” ’len’

‘vocab’ ‘max_vocab_size’]].

Line Context: We used the usage context of arguments as features for our model.
The line context implies all the tokens of a particular line. As an example of line con-

text at line no. 581 in Figure 4.1is [“vocab”,“word”, “vocab”, “get”, “word”, “0”,“1”].



43

Table 4.1: Generalization of Extracted Argument Names

Real Time Example of Arguments Extracted Expression
Name Type

make_pymodule_path( filename ) make_pymodule_path | Call

args . command command Attribute

_name__ _name__ Name

[variables [i] [k ] forkin i [j]] constant ListComp

[¢ —username=bob” , “~password=bar” | constant List

entry [ “author”] entry Subscript

!ambda x,y: map(lambdaz:z /y,x), Lambda Lambda

inv,1)

* matchers matchers Starred

( £’ {versionfile source }export-subst\n” ) constant JoinedStr

( “Admin” , “admin@localhost.local” ) constant Tuple

- max abs max abs UnaryOp

t in selected types for t in( sort to opts GeneratorExp GeneratorExp

( sorter . type ), 0)

{ ke}lf o (val if 151n5tanc? (val, hstl)else val dictComp DictComp

. split () )for key , val in queues . items () }

{ seclm’l‘da:ry uom qty” : 2, .seconda:r}i dict Dictionary

uom id” : self .secondary unit box 5 . id }

“Attempted to decode corrupted number” constant constant

_pc nam’e in set (settings . get ("installed _pe name Compare

packages’ , [ ]| )

2, €2 := int ( math . log2 ( base ) NamedExpr NamedExpr

» " "message or

( message or ”(no message)”) (no message)” BoolOp

self . assertEqual ( self . storage .filepath . .

(x=0,y=1,z=2, hashed =0Oxdeadbeef ) BinOp BinOp

await get ( context . query tree () ) await Await

{ str } constant Set

{ field name . split ( “” , 1)[ 0] for field

name in self. all field names } constant SetComp

yield from resp . read () YieldFrom YieldFrom

e Parent Context:(PC) A method call can be in the scope of a method definition, class
definition, conditional statements, or any loop statement. As a parent block context,
we collected the line context of a parent block and added it to the argument’s recent
usage context. In Figure 4.1, the latest usage of the argument “min_reduce” is found at
line no.580, and it is under the parent block at line no 579. therefore the parent context
will be [“def” ,“learn_vocab”

tor_words“, “progress_per”] and [ “sentence no”, “total_words”, “min_reduce”,“1”,“0”,“1”].

“sentences”, “max_vocab_size” ,“delimiter” , “connec-

? ¥

These contexts were used to train the vector model to build the actual usage pattern



44

of the method argument.

e Context Pre-processing: The source code comprised all types of tokens. Though
the tokens are important for executing the source code, for embedding generation,
these tokens are not important. These tokens generate data redundancy and ambigu-
ity in the code sequence. Therefore, we used a context pre-processor to remove some
unnecessary tokens from the source code. In Figure 4.1, we considered the segment
from line no 601 to 603 and collected the context as- [“utf8”,“if”,“len”,“ (”,“ vocab”,“

)7, % >7, “max_vocab_size”,“:” |“ utils.prune_vocab(vocab, min reduce)”,“ ” “ utils” ,“

.” , “prune_vocab” , “ (” , “min_reduce” , “,” , “‘ {lvocab?5 , [13 )” , “Hllll_l‘ec"llce” , l(+:?5 , “1”] .
These tokens are refined to [“if”, “len”, “vocab”, “max_vocab_size”, “utils”, “prune_
? ? ? ? ?

vocab”, “vocab”, “min reduce”, “min_reduce”, “1”].

4.3 Data Collection

For this study, we consider a collection of Python files collected from open-source GitHub
repositories. Our selection of the dataset is based on the fact that it is publicly available!,
consists of 150K Python files from 5958 repositories covering different domains, and is

used by prior studies [44]. Our dataset may contain duplicate source files. A prior study

Number of Examples Covered by Argument Count 1,2,3

-]

E

Cumulative Coverage Examples Covered (in percentage)

1 2 3
Mumbar of Argumants

Figure 4.2: Number of Examples Covered by Argument Count 1,2,3

by Allamins et al. [45] showed that code duplication negatively impacts the performance
of machine learning models on source code. We remove duplicate files from our dataset
to compare machine learning models more accurately. We used a code-deduplication tool
called CD4Py to detect near and exact duplicate Python source files?. Duplicate files are
detected as clusters, and each cluster represents duplicated files. CD4Py keeps one file from
each cluster and removes the others. We removed 24,504 (19.58%) source files by applying

1http ://files.srl.inf.ethz.ch/data/py150.tar.g=z
2https://github.com/saltudelft/CD4Py


http://files.srl.inf.ethz.ch/data/py150.tar.gz
https://github.com/saltudelft/CD4Py

45

the de-duplication tool. Our de-duplicated dataset consists of 125,496 source files. We used
the Python standard AST parser(see section A.3) to parse and collect our required features

from the source code.

4.4 Methodologies

4.4.1 Data Extraction and Generalization

To analyze and extract features from Python source code, we used Python AST parser®
and followed the process described at section A.3. We considered each Python file as a
single source of information and passed it directly to the Python AST to generate an AST
representation of the source code. This AST parser generated a node, a collection of objects
of expression types. We extracted two features (noted as objects in the node) from each
AST: i) Method Definition and ii) Method Call.

For the method definition, we collected the method name, the list of parameters, the
line number, the class information, and the file name (where the method definition
is declared). We also saved the whole node for further information for the function node
body. For method calls, we collected the method call name, the line number, the file
name where it was called, the list of arguments, and the method call’s parent block
information. In addition, we collected the local context by ten tokens after and before the
position [2] of the argument in the method call.

Then, we collected the usage pattern of the arguments by extracting the latest appear-
ance of those arguments in the same scope in the current file. An argument must be defined
before it is used; therefore, it has a validation of usage in the same scope it was declared.
For this step, we used the parent block information to collect the context by the local and
global usage patterns. To collect this usage pattern and appearance, we tokenized the whole
file and analyzed them with a name-based approach [26] [36]. To collect all the above in-
formation, we first tokenized the source code files and then used a name-based approach to
locate the code’s definitions, method calls, and tokens of their feature.

When we dug deeper into the script, we found that the arguments of a method call
are mostly a variable, a method call, or any expression type (see Table 4.1 to understand
different expression types ). To track down the variable’s value where assigned, we extracted
all the assignments related to that variable inside the project files. Besides, to map the
method calls with their respective method declarations in the source code, we parsed the
import statements of each Python script. These import statements implied how source
codes were connected and how their contents could be reused in another source code. We

discussed earlier in section 3.3.4 about the pattern of import statements.

3http:-s ://docs.python.org/3/library/ast.html


https://docs.python.org/3/library/ast.html

46

We collected all the expression types for the method arguments. At DeepBugs- [2], they
collected limited expression types, whereas we handled all the expression types described at
the Python AST%. We collected and generalized the tokens while working on name-based
analysis. Table 4.1 shows how we have collected the information from each argument.
Therefore, the generalized segment was treated as the actual name of the identifier, and
these were considered as the names of the features. We used those arguments that had
arguments more than 1. In Figure 4.2, we plotted the coverage of examples by their count
of arguments per example and found almost 91% of examples were covered by examples that
had many arguments less than 4. Therefore we conducted our study on swapping

arguments of first two adjunct arguments.

4.4.2 Linking Method Calls to its Definitions

Linking method calls to their definitions are required to support the implementation of
DeepBugs, a state-of-the-art name-based bug detection technique. DeepBugs utilizes se-
mantic vector representation of arguments of a method call and the formal parameters of
the called method. We implement DeepBugs for the Python programming language to
compare with our proposed technique. We followed the steps from the section 3.3. Though
our section 3.3 considered all of the method definitions from all the libraries and built-in
functions, we considered mapping of method calls from the same project for our study. To
compare with the existing approach (DeepBugs), we needed only those method calls that
had a mapping in the same file. Therefore, we collected the mapped method calls only for
the same project. After using the approach described in section 3.3, we found that 1,76,743
method calls were mapped successfully within the same project. These examples were used

to train the DeepBugs model to evaluate the performance of Python Language.

4.4.3 Binder Generation

After the method call and its definition collection, we changed the words to their vectors
by using the gensim word2vec® model. The Word2vec model will go through the context
and generate vectors from the code context. The binder is the collection of call and

definition features that will be used to detect swapping argument-related bugs.

4.4.3.1 Binder Generation for Correct Code Pattern

We have four different binders for four different models. This binder consists of the fea-
tures used in the model. Additionally, this binder indicates how the model should learn

the correct and wrong sequence. Our first model is the original DeepBugs model with the

4http:-s ://docs.python.org/3/library/ast.html
Sht tps://radimrehurek.com/gensim/models/word2vec.html


https://docs.python.org/3/library/ast.html
https://radimrehurek.com/gensim/models/word2vec.html

47

Table 4.2: Binder Information for DeepBugs Model(DBM) and API UsageBased Model

(AUM)
. . Context
Notation | Description Nz?a?:n Collected Context
[“in between”, “append”, “word”, “total words”,
“17 “if” “len”,“vocab” ,“max vocab_size",
MCn Method Call Name | MCyn_LC “utils“, “prune vocab”,“vocab”,“min_reduce”,
“min_reduce”,“1”,“logger” , “info”, “len“,
“vocab” ,“total words”,“sentence no”
MDy %Iae;sleod Definition MDy “def”, “prune_vocab”, “vocab”, “min_reduce”,
B T of “trim_rule”, “None”, “result”, “0”, “old_len”, “len”,
arameter 1 o ,
MDe; Method Definition MDe; “vocab”
Parameter 2 of
MDp, Method Definition MDp,
[“append”, “word”, “total words”,“1”,“if”,“len”,
A ¢ 1 of “vocab”,“max vocab size“, “utils”,
rgument 1 o
MCa, & MCy,_LC “prune vocab”,“vocab”,“min reduce”,
Method Call “min reduce”, “1“ ,“logger” , “info” “len
“vocab” “total words”, “sentence 110” “1“]
[“Word” “total words”,“1”,“if”,“len”, “vocab”
A £ 9 of “max vocab size”, “uti]s” “prune vocab”
rgument 2 o
MCa, Megtho d Call MCy, LC Vocab“ ,“min reduce”, “min reduce”,“1”,
“logger” , “info”,“len” , “vocab” , “total words“,
“sentence no” “1” ,“return”]
Type of Argument 1
MCastype | of Method Cal MCas1ype | Name
Type of Argument 2
MCasmype | ¢ Method Call MCh;-1ype | Name

following features in the binder:

Binder Generation For DeepBugs Model for Python(DBM): A correct code pat-

tern was gained by parsing the source code files and collecting the features for method

definitions and calls. After mapping the method call with the method definition, a correct

code pattern was generated by combining the features denoted at Table 4.1 in a certain

sequence.

(see Table 4.2 for Abbreviation of the notations).

Therefore, the correct code

pattern for the DeepBugs Model is addressed in the equation 4.1.

CorrectCodePattern(DBM) =

(MDy,MCn,MCy,,

(4.1)

MCuay, MCay Type, MCay Type, MDp,, M Dp,)




48

L1

In the example in Figure 4.1 the binder formation is [“prune_vocab”, “prune_vocab” ,“vocab”,

” W L1

“min reduce”,“Name”, “Name”, “vocab”, “min_reduce”] for the method call

“utils.prune_vocab(vocab,min_reduce)”

Binder Generation for Argument Usage Pattern with Parent Information and
Expression Type Information: Our study is based on the usage context of the argu-
ment. We proposed a solution to detect the argument-swapping-related bugs even if the
method call information is missing. Therefore, we generated three more binders for three

models where we did not consider the method definition. They are described below-

e Binder Generation for API Usage-Context : We built a binder for the API
Usage-Context Model(AUM) for the first usage-based model. In this model, we con-
sidered only API features. Our goal was to check the performance of the DeepBugs
Model to see if there was missing information on the method Definition. Therefore,
for this model, the correct code binder with notation(see Table 4.2 for Abbreviation

of the notations) was shown by the equation 4.2.

CorrectCodePattern(AUM ) = (MCn, MCy,, MCay, MCa; Types M Ca, Type)
(4.2)

Table 4.3: Binder Information for AUCM Model

Notation Description

MCy Method Call Name

MCy, LC Local Context of Argument 1 of Method Call

MCa, LC Local Context of Argument 2 of Method Call

MCa; _Type Type of Argument 1 of Method Call

MCa, Type Type of Argument 2 of Method Call

MCa,-PCLU | Parent Block and latest usage of Arg 1 of Method Call
MCa, PCLU | Parent Block and latest usage of Arg 2 of Method Call
MCa,-AUC | All usage Context of Arg 1 of Method Call
MCa,-AUC | All usage Context of Arg 2 of Method Call

In the example in Figure 4.1, for the method call “utils.prune_vocab(vocab,min reduce)”,
the binder formation is [“prune_vocab”,“vocab”,“min _reduce”,“Name”,“Name”].

This model only considered the method call name and its argument. When collect-
ing the context for this binder, we collected the local context of method call and its

argument.

e Binder Generation for Argument Usage Pattern with Parent Information:



49

Table 4.4: Collected Context for AUCM Model

Binder Token Line | Context
Collected Context
Features Name No. | Remark
[“in_between”, “append”, “word”
“total words” , “p” ?uifs ,“161]” , “vocab” .
Local “max_vocab_size, “ “utils®, “prune_vocab”
MCy_LC prune_vocab | 602 » o« ” P »own
Context “vocab”,“min_reduce” , “min_reduce” ,“1”,
“logger”, “info”, “len, “ “vocab”,“tota]_words“,
“ ”
sentence_no”|
[“append”,“Word”,“tota]_words“ {;1” “p “1811“
Local “vocab”,“max_vocab_size", “utils” “prune Vocab”
oca
MC,, LC vocab 602 Context “vocab” ,“min_reduce” , “min_reduce” ,“1”,
onte
“logger” , “info” ,“len”, “vocab”, “total_words” ,
“sentence_no” “1”]
“word” , “total_words”,“1”,“if” ,“len” , “vocab”,
Local “max_vocab_size”, “utils” “prune Vocab“ “vocab”
. oca
MC,, LC min_reduce 602 Context “min_reduce”, “mln_reduce
onte
417 “logger” , “info” , “len” , “vocab” , “total_words*“,
“sentence_no”,“1” “return”]
MCa, Type vocab 602 Name
MCa, Type min_reduce | 602 Name
Parent
ll'.f b b I3 W 1 ({53 } | “
. or’,"sentence no” ,“sentence in” , “enumerate”,
MCy, - PC_LU| vocab 583 | Line [ ’
Context Sentences ’]
onte
Line )
601 Context [“if”,“len”, “vocab”, “max_vocab_size” |
onte
Parent [“def”,“ learn_vocab”, “sentences”
MCy, PC_LU| min reduce | 579 | Line “max_vocab_size” , “delimiter”, “connector_words “
Context “progress_per’ ]
580 Line [“sentence_no”, “total_words”, “min_reduce”
Context “1”,“0”,“1“]
Line
MCx,-AUC | vocab 581 Context [“vocab”,“word”, “vocab”, “get”, “word”, “0”,“1” ]
onte
Line (43 ” W ” W 7w ” W N wun” wrn
592 Context vocab” , “word”, “vocab”, “get”, “word”, “0”,“1” |
onte
506 Line “vocab” , “joined_phrase_token”
Context ,“vocab” ,“get”, “joined_phrase_token”,“0” ,“1”]
Line )
601 Context [“if”,“len” , “vocab”, “max_vocab_size” |
onte
) Line “sentence_no” , “total_words”
MCa,-AUC | min reduce | 580 L . e oy e
Context min reduce”,“1”,40”,“1”]




50

We extracted context based on the argument usage (Argument Usage Context-Based
Model(AUCM)) to train the model with a better context. The information of an
argument of a method call is embedded in the context of the usage of that argument.
When we collected the latest usage of the argument, we collected the parent block
information and the latest usage of the name. The context of the parent block will
determine the argument’s usage based on their tokenized information. Besides, we
have collected the local context by extracting the information from 10 tokens after
and ten tokens before the argument in the method call. Next, we added the scope
of the variable information to the usage context to uniquely identify the local and
global variables. Therefore, the correct code binder for the argument usage context
of the method call will be in the section 4.3 (see Table 4.3 for Abbreviation of the

notations)-

CorrectCodePattern(AUCM) = (MCn,MCa, LC,MCa, LC, MCa, Type,

MCp, Type, MC o, - PC_LU, MCy, PC_LU MC4, AUC, MCy, AUC) (4.3)
Binder Generation for Argument Usage Pattern with Parent Information
and Expression Type Information(AUCMET): Based on the Argument Usage
Pattern with Parent Information, our second model suffered from the ambiguity of
tokens and uncontrolled vocabulary length. Therefore, we introduced the expression
type-based additional context for the Argument Usage Context Model with
Expression Type(AUCMET). This expression type was considered structural in-
formation. By adding the expression type information, we added the actual grammar
of a programming language. The model trained from this feature got enough infor-
mation about the correct sequence of every token. At the time of context collection,
we programmatically and implicitly added the expression type of each token to iden-
tify the tokens uniquely of identical names. This expression-type information was
collected by parsing every source code node and individually adding by considering
a token’s column offset. Therefore, our model got additional information for a bet-
ter understanding of the usage of tokens and correct usage patterns from the code

segment to capture the argument swapping.

For our model based on Argument Usage Pattern with Parent Information and Ex-
pression Type Information, our binder formation is descirbed in 4.4(see Table 4.5 for

Abbreviation of the notations)

CorrectCodePattern(AUCMET) = (MCyn_LC_ET,MC 4, LC_ET,
MCa, LC_ET,MCa, Type, MCay Type, MCa,_PC_LU_ET, (4.4)
MCy, PC_LU_ET,MCy, AUC_ET,MCy, AUC_ET)



51

Table 4.5: Collected Context for AUCMET

Binder

Features

Token

Name

Line

No.

Context

Remark

Collected Context

MCy_LC_ET

prune_vocab

602

Local
Context

[ “in_between#tcall”, “append#call”, “word#arg”,
“total_words#assign”, “l1#constant”, “if#IfExpr”,
“len#call”, “vocab#targ”, “max_vocab_size#un
known”, “utils#tcall”, “prune_vocab#call”

, “vocab#farg”, “min_reduce#targ”, “min_reduce+#
assign”, “l#constant”, “logger#tcall”, “info#tcall”,
“len#call”, “vocab#targ”, “total_words#arg”,
“sentence_no#arg” |

MCa, LC_ET

vocab

602

Local
Context

[ “append#call”, “word#arg”, “total_words#ass
ign”, “l1#constant”, “if#IfExpr”, “len#call”

, “vocab#targ”, “max_vocab_size#tfunknown”,
“utils#call”, “prune_vocab#tcall”, “vocab#targ”,
“min_reduce#arg”, “min_reduce#tassign”,
“l#tconstant” , “logger#call”, “info#tcall”,
“len#call”,

“vocab#targ”, “total_words#targ”,
“sentence_no#targ”, “l#constant”]

MCa, LC_ET

min_reduce

602

Local
Context

['word#arg”, “total words#assign”, “l1#constant”,
“YUAIfExpr”, “lendtcall”, “vocab#targ”,
“max_vocab_size#funknown”, “utils#tcall”,
“prune_vocab#-call”, “vocab#targ”, “min_reduce#
arg”, “min_reduce#tassign”, “l#constant”,
“logger#tcall”, “info#call”, “len#call”,
“vocab#targ”,

“total_words#arg”, “sentence_no#arg”,
“l#tconstant”, “return#return’]

MCa, Type

vocab

602

Name

MCA'z-Type

min_reduce

602

Name




52

Table 4.6: Collected Context for Latest and Parent Block Usage Context with Expression
type information (Contd.)

Binder Token Line | Context
Collected Context
Features Name No Remark orecte ontex
Parent [“for#For”, “sentence no#
583 Li nk ”, “sent nk “
MC,, PCLU ET | vocab ine u n0w1‘1} 3 sentence#u I:O“;Il, ,
Context | keyword”, ’enumerate#call”, “sentences#arg’|
Line [“if#IfExp”, “len#tcall”,
601 “vocab#targ”, “max vocab_
Context size#Name”]
[def#FuncDef”, “ learn_vocab#
Parent FuncDef”, “sentences#par”, “max_
. 579 Li b si ” “delimit ”
MCa, PCLU_ET | min_reduce ine :oca size#par”,“de 1121 ir#par ,
Context connector_words#par”, “progress_
per#par”]
[“sentence no#assign”, “total words
580 Line #assign”, “min reduce#tassign”,
Context “l#constant”, “O#tconstant”,
“l1#constant”]
Li .
581 Clcl)llftext “yocab” #assign
MCx, AUC_ET | vocab Line [“vocab#subscript”, “word#unknown”,
592 “vocab#call”, “get#call”, “word#arg”,
Context “Odtarg” “14arg]
[“vocab#subscript”, “joined phrase_
506 Line token#unknown”, “vocab#call”,
Context “get#call”, “joined phrase_token
H#arg”, “O#arg”, “1##constant’]
601 Line [“if#IfExpr”, “len#call”, “vocab
Context #arg”, “max vocab sizeFunknown’]
[“sentence no#assign”, “total words#
Line ##assign”, “min reduce#assign”
MCa, AUC_ET i d 5802 ’ ’
A2 fn-recuce Context “l#tconstant”, “O#constant”,

“l1#constant”]




53

4.4.3.2 Swapping Argument Sequence for Wrong Code Pattern

A Buggy code pattern can not be directly collected from the repository. Therefore, we
generated the wrong code pattern programmatically. According to DeepBugs [2], program-
mers are prone to errors for mixing up the arguments’ sequence while calling the module.
Besides, correct argument passing is mainly based on the number of arguments and the
values passed at the time of the call. We have swapped the sequence of the actual argument
and generated the buggy code sequence, and we followed the same context collected and
described at Table 4.2. The generated wrong binder for DeepBugs Model is described in

equation 4.5.

BuggyCodePattern(DBMW ) = (M Dy, MCn,MCa,, MCa,,

(4.5)
MCAz_Typm MCAl_’n’"ypea MDP] s MDF‘;)

Therefore the buggy code binder for the method call “utils.prune_vocab(vocab,min_reduce)”

in Figure 4.1 will be [“prune_vocab”, “prune_vocab”, “min_reduce”, “vocab”,“Nam

REI {3 N W

€”,“Name”, “vocab”, “min_reduce”].

Similarly, we generated a buggy code sequence for the API Usage-Context model(AUM) by

swapping two arguments, as described in the equation 4.6.
BuggyCodePattern(AUMW ) = (MCxn,MCa,, MCp,, MCay Type, MCa, Type) (4.6)

For the AUCM Model, we followed a similar approach to generate the buggy sequence, and
the formation (equation 4.7) of the AUCM is as follows:

BuggyCodePattern(AUCMW ) = (MCn,MCy, LC,MCn, LC, MCa, Type,

4.7
MC, Types MCp, PC_LU, MCy, _PC_LU, MC 4, AUC,MCy, AUC) .7

For our proposed model, we have used the binder formation at section 4.8, which con-

sidered the extended information by augmenting Expression type information with tokens.

BuggyCodePattern(AUCMETW ) = (MCy,MCy, LC_ET,MCy, LC_ET, MC 4, Type,
MCa, Type, MCa, PC_LU _ET,MCa, PC_LU_ET,MCx, AUC_ET,MCys, AUC_ET)

(4.8)
4.4.4 Context Collection for Word2vec Model

We collected context and tokenized them using a Python tokenizer [46]. We considered ten
tokens after and before the particular word and all the tokens from a line when collecting



54

the tokens. We described four types of context information in section 4.2. Now, according
to the requirements of binders for different models (described in section 4.4.3). Therefore,

our processed dataset was generated for four different models.

Table 4.7: Encoding of Tokens for AUCMET

Example gigl::smon Encoding

def _learn_vocab FunctionDef _learn._vocab#
FunctionDef

def _learn_vocab(sentences) | para sentences#para

vocab = {} Assign vocab+#£ Assign

count=1 Constant 1#Constant

vocab[word)| Subscript vocab#£Subscript

info call info#call

if word not in .

connector_words IfExpr i3 IfExpr

unigram -+ bigrams binop unigram#binop

if word not in

connector. words compare word#compare

c={1,2} Dict {1,2}#Dict

class student: ClassDef class#ClassDef

class student ClassDef student#ClassDef

unittest.test() Attribute unittest#Attribute

unittest.test() call test#call

def learn_vocab stared sentences#stared

(*sentences)

i=true boolean true#tboolean

any other tokens unknown tok_name#unknown

4.4.4.1 Context Collection for DeepBugs Model(DBM)

DeepBugs Model required eight features, and Table 4.2 showed the collected context for the
model. We followed the equation 4.1 and 4.5, and the collected context was denoted here
in Table 4.2. We collected only those tokens after the “def’ token for method definition.
Programmers can declare a function at any location of a source code. Therefore, it is
not mandatory to collect local context. Therefore, we only collected the information from
the method definition body. These contexts were trained individually to a word2vec model.
Therefore, we trained a new word2vec model for every new example and collected the vector
from the model. We used the word2vec model eight times for each example to train and
collect vectors for each feature. We wanted to compare DeepBugs and the AUCMET with

all method calls and only the mapped method calls; we used a constant vector of identical



55

length and filled in those examples where method definitions were missing. This helped us

consider all the examples and check the performance of DeepBugs.

4.4.4.2 Context Collection for API Usage-Context Mode(AUM)

The firm difference between the DBM model and the AUM Model is the removal of the
method definition. Therefore, we used the same context of the DBM Model after removing
features from the definition of the method. We followed the equation 4.2 and 4.6 for
collecting the contexts as per the description in section 4.2. The collected contexts were
at Table 4.2. Thus, we generated the vector for the DeepBugs Model and removed the
definition vector to generate data for the AUM model.

4.4.4.3 Context Collection for Argument Usage Pattern with Parent Informa-
tion Model(AUCM Model)

For all Method calls, we collected additional information, and these features were described
in Table 4.3. The collected context was described in Table 4.4. An argument must have to
be declared and assigned before it is used. Therefore, this model was built on top of how
an argument was used before a line of method call. As we did not provide any information

about the method definition, this model is suitable even if the method definition is missing.

For the Argument Usage Pattern with the Parent Information Model, we combine four
different features for each argument. First, we collected the line context of each argument.
Then, we checked which parent block the method call is situated. From the code segment in
Figure 4.1, for the first argument “vocab” of the method call “prune_vocab,” the argument
usage context found at lines no.581, 592, 596, 601 and the “min reduce” (at lines no.582)
before line 602. Our analysis determined the correct position of argument based on their
usage pattern. For the argument’s latest usage context with its parent block information,
for the first argument, “vocab” of the method call “prune vocab”, we collected context from
line number 583 as parent block information and context from line no 601 as argument latest
usage context. We collected the type of each argument by using the approach described in

section 3.2; therefore, for the first argument, “vocab,” the expression type is “Name.”

4.4.4.4 Context Collection for Argument Usage Pattern with Parent Informa-
tion and Expression Type Information(AUCMET)

Similarly, we augmented the expression type expression with Context of Argument Usage
Pattern with Parent Information to collect the additional information for our model. Table
4.5 showed the collected context for the Argument Usage Pattern with Parent Information

and Expression Type Information Model. Our tokenization process generated the token,



56

% utilspy & % phrasespy | @
) ) g % pt 5.y Ph @ _learn_voeab
422 class Phrases{ PhrasesTransformation):
423 """Detect phrases based on collocation counts.”""
424
425 > def __init_ (-
571
572 def _ str_ (self):
577 @staticmethod
578
579 def _learn_vocab(sentences, max_vocab_size, delimiter, connector_words, progress_per):
580 sentence_no, total_words, min_r‘edu_c_t_?_:__-l, @, 1 N
. s »
582 logger.info("collecting all words and their counts")
583 for sentence_no, sentence in enumerate(sentences):
584 if sentence_no % progress_per == @:
585 logger.info(
586 "PROGRESS: at sentence #%i, processed %i words and %i word types”,
587 sentence_no, total_words, len(vocab) =1|
588 ) h
589 start_token, in_between = None, []
590 for word in sentence:
501 if word not in connector_words:
5402 vocabffsubscript  of------ vocab[word] = vocab.get(word, @) + 1
543 if start_token is not None: "l /
594 phrase_tokens = itertools.chain([start_token], in_between, [word])
595 joined_phrase_token = delimiter.join(phrase_tokens)
596 vocab#subscript & ----------o- vocab[ joined_phrase_token] = vocab.get(joined_phrase_token, @) + 1
597 start_token, in_between = word, [] EH treat word as both end of a phrase AND beginning of another
508 elif start_token is not None: L ,’ vocabdatiribute ‘|
5099 in_between.append(word)
600 total, woeds. +x..1 o ]
681 if '_en(volcab'] > max_vocab_size:
602 utils.prune_vocab(vogab, min_reduce}
603 min_reduce += 1 * vocabarg

Figure 4.3: Encoding of A Word Based on Different Expression Type

and the AST parser provided the expression type information for the token. Table 4.7 in-
cluded the embedding process of expression type. We considered only those tokens related
to the method call, their definitions, and their features. As arguments were related to the
assignment expression, we considered the assignment expression, too. The data flow of a
source code was related to control and conditional statements, such as “if”, “for”, “elif”
which were also considered in the embedding. On the other hand, as an argument is most
likely to be a name, constant, attribute examples (see Table 5.2 for argument expression
type frequency), we considered all the embedding of a name and its usage perfectly. There-
fore, the same name can be embedded into an argument, name, call, or constant by the
place used.

Example of Encoding for a Token “vocab”: The token “vocab” was found in line
no. 581, 587, 592, 596, 601, and 603 in the Figure 4.3. Therefore, our encoding generator
built four encoding types for the token “vocab”. This helped our model to learn a specific
pattern based on the expression type of a token. At the time of training the context to

the word2vec model, the word2vec model learned four different usage contexts of “vocab”-

b ” b

“vocab” as an assignment, “vocab” as an argument, “vocab” as a subscript,“vocab” as an
attribute. Therefore, the first argument of the method calls at line no. 602. Adding

Encoding for Other Programming Language: In the given example in Figure 4.4,



1 def factorial(n)--—.... S

2 Tdf n o< 5 1.8

3 --\'F‘E.T,‘lzlr‘l'l “fFactorial does not exist for negative numbers"
4 elif n =28

: een ™ Function_def

7 result = 1

8 for 1 in range(l, n + 1):

9 result *= i

e return result

L _method_call
L2 # Example usage “
13 print{"The factorial of 5 is", factorial(5))

(@)

[ I T o N

57

public class FactorialCalculator {

public static void main(String[] args) { {nethOd_ca“
// Example usage “‘i
System.out.println("The factorial of 5 is " + factorizl(5));

‘method_modifier type method_def

public static ift ‘a::eryiel-:i-ft_"ﬁ')"-{-
“af (0 < 0) { " arg
"-.\thror.' new IllegalArgumentException

f“Egctorial does not exist for negative numbers");
} else i'F~.\l_:n = 8) {

. bype

return i z
} else 1 - access_modifier
int result = 1;
for (int 1 = 1; 1 <= n; i++) {
result *= i;

¥

return result;

}
’ (b)

Figure 4.4: Comparison of Encoding For Other Programming Language

segment-(a) shows a simple Python program, and segment-(b) shows a simple Java pro-

gram, which implies the same as a program at segment-(a). At line 1 in the segment-
(a), the encoding of definition is [“def#Function_def,” “factorial#Function def,” “n#arg”],
which implies that the method definition pattern should be (Function_def,Function_def,arg).
On the other hand, in line 8 in the segment-(b), we found the encoding could be [“pub-
lic#access_modifier” , “static#method_modifier” , “int#type” , “fatorial#method_def” , “int

#type” , “n#arg”] .

At line 13 for the segment-(a), “factorial” was encoded as “facto-

rial#method_call” and at line 1 it was “factorial#Function_def”. At line 5 for the segment-
(b), “factorial” was encoded as “factorial#method_call” and at line 1, it was “factorial##method_

def”; therefore, for the same name “factorial” we can encode the expression type which pro-

vides a unique representation of each token, and we believe that this will perform same as

Python to another language.

4.5 Experimental Setup

Our dataset consists of 125,496 source files. In total, the dataset contains 24.63 million lines

of code. We use the AST module® of Python to parse source files and collect the required

information. While the dataset contains 4.18 million method calls, there are 288k unique
method calls in them. 21.78% of method calls do not have any arguments, 47.27% of method

calls have only one argument, and 30.94% of method calls have more than one argument.

For our study, we consider only those method calls that have more than one argument.
We use 96,623 files for training and 28,873 files for testing. We use Gensim Word2Vec

implementation to detect embeddings’. For building the classifiers, we use machine learning

6http:-s ://docs.python.org/3/library/ast.html

7https ://radimrehurek. com/gensim/models/word2vec.html


https://docs.python.org/3/library/ast.html
https://radimrehurek.com/gensim/models/word2vec.html

58

Libenry mappiag
‘coliect Wethod Calla
proect 4
p A comstant S —
] " haem —_— ol
|, oeemoes | s p TR e
aproect | Pr——
PROJECT| <
ED= e e T T
|_=—2 5 Bt
Pyihon Parser calatcima | l
Fython Froject Using A3T | e e l
speest " suma Fila m“mul\ =
3 ith meshad e with ok sarma fla
cnlbect Impert __:-= = it ==
L imtemation -
fom ul the fikes fras |
[
ey g
T
P s the metted cun
e 3 Filex by maing commectad files i withther cihes e
| ok i cutput from it defnitiona
smpart analyzs
| T ——
e
usriws mathed
definkicns

Figure 4.5: Work Flow Diagram

models from the Scikit-learn® library. All experiments are conducted using a machine with
an AMD Ryzen 9 5900X processor, 135 GB of memory, and a Geforce GTX 1660Ti GPU.

4.6 Evaluation Procedure

In this section, we will compare AUCMET with DeepBugs and describe our approach’s
evaluation process. We also conducted an empirical study to understand the argument
expression type and its significance. This research work projects the following research

questions:

e RQ1: How do programmers use argument and parameter in Python?

e RQ2: How effective is our proposed technique (AUCMET) in detecting argument-
related bugs compared to DeepBugs?

e RQ3: What is the impact of different sources of information?

e RQ4: Can we use pre-trained word embedding in detecting argument-related bugs?

8https://scikit-lea:rn.org/stable/


https://scikit-learn.org/stable/

59

e RQ5: Is our proposed technique efficient enough to be used in practice?

The data and code examples related to the study are available online (on request) to support

any future replications.

4.6.1 Ewvaluation Metrics

We formulate the problem as a binary classification task. To evaluate the performance
of the techniques in distinguishing correct code from incorrect one (i.e., bugs created by
incorrectly swapping arguments), we consider precision, recall, and Fjscore. Precision
refers to the percentage of correct predictions among all predictions. Recall refers to the
percentage of correct predictions among all test cases. F1-score refers to the harmonic mean

of precision and recall. This is calculated as follows.

2xprecisionsrecall

F 1 Score = precision+recall

The goal of the classifier is not only to identify incorrect codes but also to detect those
codes that are correct. Thus, we reported precision, recall, and F score for both classes for

both mapped method calls and all method calls.

Argument and Parameter Similarity

60

0.5)
6)
7

[0.9-1)

[0.7-0.8)
[0.8-0.8)

[0.0-0.1)

[0.1-0.2)

[0.2-0.3)

[0.3-0.4)
0.5-0
V]

[0.4
[0.6-

Smﬁénty

Figure 4.6: Lexical Similarity between Argument and its corresponding Parameter

4.6.2 RQ1: How do programmers use argument and parameter in Python?

We conducted an empirical study on the name-based analysis of arguments and parameters
to verify the effect of argument and parameter names. This analysis exposed the similarity
between the argument and parameter names, the size of the argument, and the parameter

and expression type. Our study is based on the following analysis-



60

e What is the distribution of lexical similarity between a parameter and its arguments

in Python?
e What is the length of arguments and parameters in Python?

e What are the reasons for the dissimilarity of method arguments and their correspond-

ing parameters?

e Can we filter out the arguments that have lower similarity values with their arguments?

4.6.2.1 Distribution of Lexical Similarity between a Parameter and its Argu-

ments in Python?

Motivation:

The declaration statement encapsulates essential information about the method, includ-
ing its name and parameters. Notably, the parameters and their types are vital in guiding
how the method should be called. This linkage between a method call and definition is es-
pecially prevalent in modular programming paradigms like Python. If most of the method
parameters and arguments lie within a high similarity range, we can conclude that program-
mers are aware of using the correct arguments and parameters. As an example, in Figure
4.1, the first argument was “vocab,” and the first parameter was also “vocab,” which im-
plied that the developer already knew about the method and its functionality. Therefore,
we checked all mapped method calls and their method parameter to check how they use the

arguments.

1z

Arguments:

10

— ™ ™ b4 v ~ =] — " uy
© @ = 3 A a I 4 | P 3 3 b
o~

length of Names(Characters)

Values in Percentage
(-] -]

=

[N

Figure 4.7: Length of Argument Name by Characters



61

175 Parameters
15.0
125
u
o
m
=
[
= 10.0
&
E
w
ERR A
z
5.0
) I I I
0.0 . . - - - I e —
m +
= o

o~
length of Names(Characters)

Figure 4.8: Length of Parameter Name by Characters

The similarities between arguments and parameters preserve the correctness of the pro-
gram structure. Therefore, we intend to detect the name-based similarities so that we can
reduce anomalies and get an overview of method calling in Python.

Study Procedure: We collected those method calls from the 150k Python files with
method definitions. Thus, we had a pair of arguments and their corresponding parameters.
At the time of argument and parameter extraction, we followed the rules to generalize the
arguments. (see Table 4.1)

We simplified the complex expressions from our extracted data as complex expressions
are independent of name-based analysis for unpredictable usage of names. We used the term
similarity concept to determine the lexical similarity of arguments and parameters. Using
capital letters and underscores, we tore down the names of method calls and parameters.
Finally, we calculated the lexical similarity between an argument and a parameter using
the following formula 4.9.

First, to calculate the lexical similarity, we sum up the common terms between argu-
ment and parameter and parameter and argument. Then, we determined the total terms in
the argument and parameter. After that, we estimated the lexical similarity after dividing
the summation of common terms with the total terms of argument and parameter. For

illustration,

|comterms(arg, par)|+|comterms(par, arg)|

Term_lexi_simi(arg, par) = (4.9)

[terms(arg)|+|terms(par)]
Term lexi_simi( “count”, “totalCount”) = (1+41)/(14+2) = 0.67 . Another example is



62

lexicalSimilarity( “totalCount”, “totalCount”) = (242)/(2+42) = 1. Here, the value of lexical
similarity varies from 0 to 1, where 1 indicates the highest similarity between argument and

parameter.

Parameters

80
0
60
50

40

Values in Percentage

30

20

10

length of Names(Terms)

Figure 4.9: Length of Parameter Name by Terms

Result: Our analysis showed in Figure 4.6 that approximately 30% of parameters
and arguments had an exact match at their name; on the other hand, more than 60% of
arguments and parameters had a similarity range of 0 to 0.1. To find the reason for the low
similarity, we analyzed the length of the names of arguments and parameters.

Qur goal was to find any relation between the length of the argument and parameters
and their similarity. This analysis showed that programmers are not careful about choosing
the same name for arguments and parameters. Therefore, a direct approach to creating a
model with simple name-based mapping is ineffective for argument recommendation or bug

detection.

4.6.2.2 What is the Length of Arguments and Parameters in Python?

Motivation: Upon discovering a consistent distribution of similarities between arguments
and parameters, we focus on understanding the underlying reasons for these similarities.
Our analysis delved into character and word matches within each word. The primary deter-
minant of similarity lies in comparing the lengths of individual arguments and parameters.
Our motivation is rooted in exploring the relationship between length and similarity. This
investigation aims to uncover usage patterns and characteristics of method arguments and
parameters by examining how their lengths correlate with the observed similarities.

Study Procedure: For our study, we used only the mapped method calls from 150k



63

Arguments:

- ™~ m +
-

length of Names(Terms)

50

a0

30

Values in Percentage

)
(=]

Figure 4.10: Length of Argument Name by Terms

Python files. This length of an argument and parameter depicts how descriptive the names
are. As an example, a method call “sum(x,y)” has arguments x and y. A user cannot
understand these arguments as they are single characters. If the argument is descriptive,
for example, “sum(mark_1, mark _2)”, the user can easily understand that the method call
sum will add two marks. Another aspect of collecting the method arguments and param-
eter length is to show that the lexical similarity of parameters is low while the length is
small. We calculated the similarity for all the argument and parameter-mapped method
calls for our analysis. We made a cluster of arguments and parameters by their length and
generated average similarity values. While considering the term of arguments, Figure 4.10
showed that 50% argument names are only one term, which implies that the names are
descriptive, though Figure 4.9 showed the method parameter names are mostly one term
(80%). Therefore, we can decide that while choosing the name of an argument, the pro-
grammers are not checking the parameter names at all, rather than providing descriptive
names considering their programming context and skill for arguments.

Result: Our study shows that the length of the parameter and argument have chances
of high similarity. In contrast, the length is longer, and programmers should use descriptive
names to reduce errors related to argument selection. The programmers do not provide
descriptive names for arguments, and from Figure 4.7, almost 50% names of the arguments
are not descriptive (less than 11 characters). On the other hand, more than 80% parameter
names are less than 11 characters. Therefore, the programmers are very precise in providing

a name for method definitions.



64

Arguments:

length of Names|Characters)

=
=

ncwm

#yerage similarity in Percentage
[=] [=]

uv:rsn.

]

+
E Length of Mames (Terme)

Figure 4.11: Argument Average Similarity by Characters and Terms

Parameters:

~ ™ - i - ~ - o =] — ~

gt of B [Borrrn

= ] o
N =

#yerage similarity in Percentage

=
-

=]

length of Names|Characters)

Figure 4.12: Parameter Average Similarity by Characters and Terms

4.6.2.3 What are the reasons for the dissimilarity of method arguments and

their corresponding parameters?

Motivation: Our study shows that the arguments of a method call can be lexically dif-
ferent than its parameters. Those dissimilar arguments engender analogies in a software
system. Therefore, investigating the reason for dissimilarity will provide the programmer
with knowledge about choosing the names of arguments according to the method parame-
ters. Therefore, studying the reason for this dissimilarity is important.

Study Procedure: We filtered out all the dissimilar arguments and calculated the
average similarity to determine the reason. We found that most of the arguments have
single characters. The figure shows that the similarity value is inversely proportional to
the length of the argument and parameter pair. The discrepancy between arguments and
parameters is further exacerbated by the use of generic parameter names in methods of
collection classes. Approximately 39.6% of the arguments are mapped to parameters with

generic names like index, item, key, or value. These names are commonly employed in



65

methods designed to manipulate data collections. Despite the meaningful nature of these
parameter names, the corresponding arguments often differ significantly, as they typically
represent concrete values or indexes.

Result:We found approximately 75,335 parameters have a shorter name, and they pos-
sess a low similarity. This is the reason for the mismatch of parameters and argument
usage. In Python, methods are developed and used by others, which indicates that there
is no control over the naming of an argument. Though it is unpredictable, it is determined

by the length of an argument and its parameters.

4.6.2.4 Can we filter out the arguments that have lower similarity values with

their arguments?

Motivation:To develop an argument recommendation system for a given script, the pro-
grammer should train a system in such a way that the model learns from the exact names
of the arguments. This will be possible when we get similar argument patterns for multiple
method calls. Therefore, to build a recommendation system, we first need to collect all of
the usage of those augments and use them in a model for training. For this training process,
we need to use a filter that filters out weak and dissimilar arguments from our candidate list.
For recommendation, we collected data and treated them as natural language sources. It
will be efficient when trained with a list of filtered arguments with higher similarity values.

Study Procedure: We collected lexical similarity of all the parameters and arguments
from 150k Python files. We set a threshold value, which is 0.5. We kept those values that
have similarity values more than the threshold value. These are the candidate arguments
that can be used in the argument recommendation. Therefore, we have a pool of arguments
for each method call in the project that a programmer can use for method call completion.

Result: Though we can filter out the arguments with low similarity, we can
not build a recommendation system from the filter out candidate. In Figure 4.11
and 4.12, almost 90% argument and parameters had an average similarity of less than 0.5.
While using the filter, it removed almost 85% of the candidate arguments. Therefore, using

name-based similarity will not be enough to filter out arguments involving low similarity.

4.6.3 RQ2: Effectiveness of the Proposed Technique

Motivation:

We aim to investigate the Performance of the DeepBugs approach and the AUCMET for
Python Language. We are also interested in finding the performance of the AUCMET and
DeepBugs approach for mapped and unmapped method calls. If the AUCMET performs
well for all method calls, it will be verified that swapping argument-related bugs can be

detected even if the method definition is missing.



66

Approach: We divided our dataset into two categories- mapped method call and un-
mapped method call (see the section 3.3). The DeepBugs Model depended on both method
calls and method definitions. We found that 1,76,743 method calls have a mapping with
their method definition, which implies that 4.2% of total method calls can be mapped with
the exact project method definition. Among them, if we consider method calls with only
definitions in the same file, we get 67,930 method calls with a precise mapping in the same
file. We have collected and only mapped the method calls that have definitions in the same
project and generated our model to evaluate the performance of DeepBugs for Python.
Then, we filled the missing method definition feature with a constant value to use all the
method calls for comparison with our proposed technique. Therefore, first, we compared
our technique with the DeepBugs technique for those method calls that had exact mapping
with their method definitions. Secondly, we compared the performance of our model with
the DeepBugs approach for all the method calls from our dataset. Therefore we have built
two dataset: Only Mapped Method Call and All Method call.

Result: AUCMET performed better than DeepBugs Model. DeepBugs has a
claim for the accuracy of their model (the swapping argument-related bug detectors) for
JavaScript Source Code, which is presented in demonstrating a range from 89.06% [2] to
94.70%, whereas for the Pyhton dataset, the same approach has an accuracy of 70.51%.
The performance of DeepBugs and our model on Python is shown in Table 4.8. When we
used the AUCMET Model for those method calls, which had exact mapping, the accuracy
was 89% with an AUC score of 96.80%. Therefore, our model performed better than the
DeepBugs Model. In the AUCMET, we did not consider the method definition of a method
call and collected code context from the previously used code token, which implies that
it is possible to generate argument-swapping related bugs from the code context. For the
second comparison of our proposed technique (AUCMET) with the DeepBugs Approach,
we trained both of the models with all the method calls, and the performance is included
in Table 4.9. Besides, in Table 4.8, it was shown that for the prediction of correct sequence

of arguments, DeepBugs showed up with poor performance of 68% precision, whereas our

Table 4.8: Performance Comparison with DeepBugs Approach and AUCMET For Mapped
Method Calls

Pel‘;/fl‘::;;igce DeepBugs model AUCMET
Class Wrong ‘ Correct | Wrong ‘ Correct
Accuracy 70.51 89
precision 77 68 85 94
recall 62 82 95 83
fl-score 69 75 89 88
AUC 81.59 96.80




67

Table 4.9: Performance Comparison with DeepBugs Approach and AUCMET For All
Method Calls

Performance
Motrics DeepBugs model AUCMET
Class Wrong ‘ Correct | Wrong ‘ Correct
Accuracy 69.8 90.79
precision 69 73 94 88
recall 76 65 87 95
fl-score 72 69 91 91
AUC 79.73 97
DeepBug PR e AUCMET
odel Onl odel Onl
[1::'900, ?n%}f) (Téc?goEar ﬂggﬁe]' [4";497, g?"i)

DeepBug Model
AUCMET Model

Figure 4.13: Performance of Both DeepBugs Model and AUCMET

proposed technique showed a precision of 94%. For all the method calls, our dataset size is
19,51,736, which is 11 times larger than the dataset of mapped method calls. On the other
hand, for all of the method calls in our dataset, the DeepBugs approach for Python lost its
accuracy due to a lack of method definition information. Besides, in Figure 4.13, we showed
where the AUCMET performed better than the DeepBugs Model and successfully identified
47,497 cases, which is three times more than the correct prediction of the DeepBugs Model.
Surprisingly, our model performed almost similarly even though we trained our model with
copious amounts of vocabulary or tokens. Table 4.9 showed the effectiveness of our ap-
proach, covered the lack of method definitions and issues of dynamic type binding of method

arguments, and supported the large-scale study of source code context.

4.6.4 RQ3: Impact of Different Source of Information

Motivation: Our proposed technique considered three features of a method call and its
arguments. We considered different combinations of these features to find the impact of

the source of features. Sources of information implied the source of the context of a feature



68

Table 4.10: Combination Of Different Source Information Of AUCMET

c‘.:nz
a
o

Model Configuration

MCa, LC +MCp, LC

MCy_LC+MCy, LC +MCa, LC

MCN_LC+MCy, LC +MCp, LC+MCa, Type+MCa, Type

MCy_LC+MCa, AUC +MCa, AUC+MCa, Typet MCa, Type

MCy_LC+MCa, PCLU +MCjy, PCLU+MCa, TypetMCa, Type

MCy_LC+MCa, LC +MCp, LC+MCy, AUC +MCa, AUC
+MCy, PCLU +MCy, PCLU+ MCa, 1ype+MCa, Type

MCy_LC_ET+MC,, LCET +MCjy, LC_ET+MCy, Type+MCa, Type

MCy_LC_ET+MCy, AUC_ET +MCy, AUC_ET+MCy, 1ype+MCha, Type

O oo~ & |([Uk|Ww|N|—

MCy_LC_ET+MC,, PCLU_ET +MCy, PCLU_BET+MCxy, TypetMCa, Type

MCn_LC_ ET+MCy, LC ET +MCy, LC_ ET+MCy, AUC ET
+MCa, AUC_ET+ MCa; Type+MCa, Type

—
=

MCN_LC_ET+MCa, LC_ET +MCa, LC_ET+MCa, AUCET +
MCa, PCLU_ET+MCa, PCLU_ET+MCa, AUC_ET

—
=t

MCy_LC_ET+MC,, LC_ET +MCa, LC_ET+MC,, AUC ET +

12 MC,, PCLU_ET+MC,, PCLU_ET+MCy, AUC_ET+ MCy, 1ype+MCa, Type

(as an example- line number, tokens from that line). Our goal is to find the impact of the
context of these features. We collected contexts for the features ( described in the section
4.2). Therefore, we had local Context, Parent Context, Argument Usage context for Argu-
ment, and Method call. We checked 12 different combinations of models to investigate the
performance of the AUCMET. Table 4.10 showed the model description (for abbreviation
of notation at Table 4.10 and see the Tables 4.4, Table 4.5 for context information). We
trained 12 different models with the same training examples and tested with the same test
examples.

Study Procedure: Our first model combined the Local Context of first Argument of the
Method Call and the Local Context of second Argument of the Method Call. This model
showed an accuracy 4.11 of 62% with a recall of 80%(for wrong sequence) and 44% (for
correct sequence). This model gained information from the name-based argument local
context. However, from this model, we can only understand how the arguments should
be sequenced, though we did not get any idea with which method the arguments were
associated.

In our second model we added method call information with the first model, and we
intended to take method call information (local context of method call) to train the model
about which method argument was related to which method call. The accuracy of this
model was not increased significantly where the recall was 77% (for wrong sequence) and
50% (for correct sequence) 4.11. Therefore, the model started to learn the correct pattern

more accurately than the first model.



69

Table 4.11: Analysis of Different Sources of Information

Performance Metrics

Model | Class Accuracy | precision | recall | fl-score | AUC
U o] feeTa s
> oome] ™ fe Tw s
3 gg:;ft 70.42 ?,g gé g? 79.67
t fomer® e m 8
S o] [ Tw e
6 gg:;ft 77.94 ;g f,i ;g 87.87
T e ™ [w e
S fomerl®  w ot Tw %

O fomer|™ [ s T %
LT S L B i
U o] 1 f T e

o] ®  fer e fs %

In our third model, we introduced the type of information from the local context of the
method arguments; this information is important because, for a position, a specific type of
method argument should be used. Therefore, the model could distinguish the pattern of
an argument by its type. In Table 4.11, the third model had an accuracy of 70.42%, and
the recall value increased from 77% to 81% for wrong argument sequence and from 50% to
60% for correct argument sequence. Therefore, this model started performing better when
the argument was uniquely defined by its argument type.

We did not use the local context for the fourth and fifth models. Instead, we tried only
argument usage context. We collected two different usage contexts: Parent Usage Context
(PC) and Argument Usage Context(AUC) (see section 4.2). The fourth model considered
only AUC with the type of the argument, and the accuracy dropped to 68%, and both recall
and precision for both classes went down compared to the previous models. The fifth model
considered the PC, which also showed a comparatively lower range performance. Therefore,

while the model missed the local context, its performance decreased. This is because an



70

argument can be changed on any line in the source code, and for a certain name, it may
get the context multiple times. Therefore, the model was not learning perfectly when it did
not get the local context.

Learning from the result of the first five models, we trained our new model (Model 6)
with all the context from the features. Thus, model 6 first learned from the local context
to identify the usage at the location it used; then it looked up how it was used previously
from the AUC (see section 4.2) information, and as the last context, we added the parent
information, which limited the scope of the usage of the argument. From Table 4.11, Model
6 performed better than others for the above reasons. The accuracy for the unseen dataset
was 77.94%, and recall was 84% for the wrong sequence and 71% for the correct sequences.
Therefore, this could be our proposed technique with an AUC value of 87.87%.

When we went through example after example, we found our model performed well for
those unique examples, and the usage patterns differed. For example, a token was used
in five times in a source code before using it in as an argument method. Though the
usage contexts could be different, they were not always obvious. Therefore, the above-
mentioned models face ambiguity issues with the same name and context. Our source code
was encoded with their expression type information and generated the last six models at
Table 4.10. The model 7 at Table 4.10 was the extended version of the model 3, and
the accuracy increased from 70.42% to 74%. The reason, hidden behind the increment of
accuracy, was that the extended version of context carried the structural information, which
taught the model about the uniqueness of each token. Similarly, model 8 and model 9 are
the extended versions (added expression type) of model 4 and model 5, respectively. This
model improved their accuracy for both classes and worked perfectly fine. We built another
model with the local context and the Argument usage context with the type information
of the method calls and their arguments. This model was denoted as model 10, and it
performed better than other models with a 93% recall value for wrong sequence and a 93%
recall value for correct sequence and showed 81% accuracy (see Table 5.4).

Finally, we checked the performance of two models with all the context with their
extended-expression information. We also checked whether the argument type had an im-
pact on the performance or not. Our model 11 was built on the same concept as model 6
except for the type information, and the final model used all the context with expression
type embedded with the context. Table 5.4 showed the performance of those two models.
The model 11 showed an accuracy of 89.19% whereas the model 12 showed an accuracy of
90%. If we consider the recall for model 12 for the wrong sequence was 94% whereas model
11 showed 90%. Therefore, model 12 is our final model and is named the AUCMET .

Result:The AUCMET and model 11 performed better for detecting correct

and wrong sequence.



71

4.6.5 RQ4:Performance Comparison Of AUCMET With Pre-Trained Code-
Bert

Motivation: Pre-trained models are trained with huge and diverse datasets, and they
can be reused multiple times for machine learning and deep learning works. A pre-trained
model is already balanced with weight and bias, which can handle any similar real-time
data. CodeBert is a masked language model that can generate a token from a given context.
Therefore, they can be used to generate a vector, which can be used to train another deep-
learning model. This supports bimodal( which considers the relation between document

and code) and unimodal (which considers either code or documentation ).

Table 4.12: Performance Comparison of DeepBugs, AUCMET, Pre-trained Large Language
Model-BERT

Performance DeepBugs AUCMET Pre-trained
Metrics model Model Large Language
Model-BERT
Class Wrong ‘ Correct | Wrong ‘ Correct | Wrong ‘ Correct
Accuracy 69.8 90.79 71
precision 69 73 94 88 72 70
recall 76 65 87 95 69 73
fl-score 72 69 91 91 71 71
AUC 79.73 97 80.74

The chosen hyper-parameters for CodeBert training included a batch size of 2,048 and
a learning rate of 0.0005. Parameter updates were performed using the Adam optimizer,
with the number of warmup steps set to 10,000. The maximum sequence length was capped
at 512, and the training was designed to run for a maximum of 100,000 steps. It performed
better than other pretrained model because a combination of carefully chosen hyperparam-
eters, the use of advanced optimization techniques like the Adam optimizer, and strategic
decisions regarding the learning rate, batch size, and dataset configuration. Our goal was
to compare our AUCMET and pre-trained Model-CodeBert. We wanted to check the im-
portance of our collected context. If our AUCMET performed better than the model that
considered the information trained from an unknown source code context, it would be ver-
ified that the local context from a certain project is better than the unknown source code
context. On the other hand, the model performs faster than ordinary word2vec. Therefore,
if the accuracy of the generated model from the pre-trained vector is higher than our model,
our vector generation from the code context will be pointless.

Study Procedure: We used the same extracted data for this analysis. However, we
generated a new vector from a large language model. We used the CodeBERT model [47] [48]
to generate this vector. The CodeBERT model provides a vector from the context it trained



72

from for a word. Therefore, we used the same process to build correct and wrong code
examples and the same model for training and testing. The accuracy for the trained model
from generating vector by the Pre-trained model® is included here in Table 4.12. For context
collection, we used the binder information from Table 4.2, but we used only the name as a
query of the Pre-Trained Model. After getting the vector from the pre-trained Model, we
used the same sequence generator to generate the wrong examples for our new model.

Result: When comparing the three models, the AUCMET outperforms the
other two across all metrics. It has the highest accuracy, which indicates overall effec-
tiveness in classification, and the highest precision and recall. The AUCMET is excellent
at identifying true positives while minimizing false positives and negatives. The AUCMET
has an AUC value of 97, which supports the ability to distinguish between classes effec-
tively across various threshold settings. On the other hand, we found a 20% increment in
performance for each metric of the AUCMET to the pre-trained-embedding-based Model.

The Pre-trained Model-CodeBERT and the DeepBugs Model have similar performance
levels, with BERT having a slight edge in precision and AUC but lower recall than Deep-
Bugs. However, both are significantly less effective than the AUCMET.

4.6.6 RQ5: Efficiency of the Proposed Technique

Our approach involves extracting features, mapping the method call and its definitions,
context collection and context preprocessing, vector generation of features, training, and
testing of four different models. Our most time-consuming module is vector generation, as
we have generated vectors for 9 different features for our proposed model for each example,
and it took 5.9 days to generate vectors for our neural model. For each example, the features
Extraction took 13 ms, and the mapping of the method call and its definitions occupied
15-20 ms on average (based on the number of files in a project). Context collection and
context preprocessing consumed 13 ms per example, which is comparatively faster as we
have used one-time tokenization of the project. Within 97 minutes, training was taken on
our machine, which is comparatively faster. Testing of our model took 3 mins in total for
497 projects of 1,76,302 examples. Therefore, our proposed model can generate a warning

of swapping argument within 1.1 ms.

4.6.7 Additional Analysis To Evaluate The Performance of AUCMET

Our AUCMET performed better than other models. We checked the performance of the
AUCMET from the following three perspectives and showed where and why the AUCMET
failed to perform better than the DeepBugs Model.

ghttp:-s ://huggingface.co/docs/transformers/en/model_doc/bert


https://huggingface.co/docs/transformers/en/model_doc/bert

73

Accuracy of Expression Type (Frequency=100)

Method
—e— Deepbug Accuracy

100

v
g
W .__.
g
Z ~\..o
i
=
s/
=1
L7
T
/
¢
|
r

(%) Aseanay

50

o6 ##1duasqnse#1duosqns
SRTT#&adnL# &3 dnL

O ##ISN##150
04 T ## 31N QUITY# #SINQUITY
0LS##||eD##douE
oTs##bunsy#buus
ORTLT#H2I# #]ED
CEGF##||BD# saluey
999 ##1ED# #1d1Is50S
olc##doulg s #awen
rro##1duIsqns ##awey
209 ##1dUIsang # e
BETL#£#IUBISUODE 2N
BZE#4aENE#1dUISANS
OFTO##IURNEZ(E]
OEQTHFUMOLNUL # #1511
QES# #FUMDUNUNF#(23
OTBT# HuUMBUA U gapdnL
O7ROT ##IWENF #3UEN
OTHZ##IUENS#INGUITY
OTRTE##IUBISUOD# # JUBIS LD
Q0L #4#dOmg 4D
rEs#a#aweNs#dour
ATC##AIBUDIIIOFE#|[BD
OTO##1E3# 4350
BTO##IUEISUOD# #1abau
FTTDT##]|ED# #IULISUCD
LT #IWEN##IULISUOT
Zi0##1dUSONS# #IURISUOT
ATSTHA|IF#IINUIY
BLO#%||eD# 20U

FEEH eI gadnL
ara##2|dn]# #jueisuc
ATETH##ISN##1ED

PBEL# #IURISUOD #3dUdSANg
ZEG##2dnL 4 #aInguUIYy
opL##buLIS##ED
TLOT##IINCUITY # #]|ED
raR##2|dnL 4 pawey

OB #4154 £1UEISUOD
069##12/Q#£IULISUOD
OEDO##31NQUIIY# #1URISUCD
OBEG# #3NCLIIYE #2WEN
QEOT##2|dnL# #|2D

BEL ##IUEISUDD##doug
ZELL##URISUOD#£IINGUIY
E0EGT#FIUEISUOD# FIIED
ZIZT4#MRISUOD4 #BUINS
280 #IURISUCD # f3jdnL
ZeES##buLIS#£UEISUDD

Expression Type

=100}

Accuracy of Expression Type (20<Frequency<

\

|

.-,
—y
.

[ =

]
..p\
_ol.frlrrf.lu..
} e
{
L ] »
- :
b T
b
} .fv
._.F -\l.\)__.
o
S
- o
i
I
g 8 8 ”B 8 8
(%6} Aaeincoy

—o— AUCMET Accuracy

40

ag##doiieunsedofieun
az#zdofeunzadoug
D6 # #FUONF #AUDN
Bb##7 BN #EPIWE]
QL #FIURISUOT # #1210
OL##adnL#g1sn
ZEHFPRUEISH# (=D
FE##dojoogs#awen
FE4#AOUIER 101
Fr##1duIsqns##I1sn
gzawdofieuny gamey
vz #00WES #oU0N
Ze##iabauiz2doun
CEHFRINQUNY # 212 baju)
zr&#douigs #1duasgns
QE#HFISMH #fieuon Ia
DZ##ILIEGNS # gAY
GTH#IEOY##IE0Y
tr#adoileun##23Ingquiy
Ob# #3154 41abaqu|
PE##1NA# #1501
7iF#unsgne # s dnL
DZAFIEHLERGUIET]
64 £LMOUNUN # £2INLITY
QE#FEINGLY # gEpOwE]
ze#iabauig #duosgns
TERFLPQUET#FED
QL ##HF2INGIY # #UMOUYUR
gegdougs#buus
00T ##IUBISUOD# #URS| D0g
ZCH#HUPI|ODO##IUIEN
SF&#UEICOOEZ||ED
P #1dLI5NS # 4 BuLng
go##ldusgns#xdoug
gogzdoui@a#ajdnL
BEHFBINQLY # #SUON
FO4HIUDN#LIUEISUOD
go##fleuooig# #buus
TE# #1104 £ EUON2I0
00T##2dnig#dous
BT##sAA0# #IIED
o##aleduod g ||ED
B4 #DUDNAEIINQUITY
BTAFTPQWET##31N0LOTY
OE#FUMDLRUNEAdOUR
Db ##P3LEIS##IUEISUOD
oe#&#fieuonxa #a|dnL
Zo##120##bus
DE##12I0# #1dUdsqns
ZE##NED L4534
pa##saba#2buus
CL# IS FUMOUALR
I # #1954 #(1ED
TLE#I5 T4 #)dNL
gzt |eD# sdxay
SE##IINGUIYE £AEU0I
Fr##OuLISH#douEg
D& ##12Ba3u|# #3Inquily
arzzidulsgnsesumouun
FTAFUMOUN#F#EuLis
FE#HFDIURISH #IINOL
OE##2|dnL##uUmouiun

Expression Type

(20<=Frequency)

15

Accuracy of Expression Type-based Analys

Figure 4.14

4.6.7.1 Performance of DeepBugs on Python and AUCMET based on Expres-

.
.

Type

S10Nn

Both DeepBugs on Python and the AUCMET considered two subsequent arguments. We

found 326 combinations. Among them, 50 types are the most common (more than 100

frequencies, for example). In the Figure 4.14 in the first figure, for all of the categories,
the performance of DeepBugs is less than our AUCMET , and in the second figure, only

“call4+lambda” which has only 32 examples of “Dictionary + List” with 36 examples,

“Name + boolean” with 24 examples and “BinOp+ UnaryOp” with 26 examples per-

formed better than our model. Again, in Figure 4.15, “Name + IfExpr”, “Call+Boolop”
,“Call+ListComp” ,“List + UnaryOp”, and “unknown+ Dictionary” performed slightly



74

=20)

Accuracy of Expression Type {10<Frequency<

A
Vi

V

/\

....a...\...o...a
-

\

/

B ] 2 g
E]
(56) Azeanzay

p———

Za
<]
mw
=
Efm
Z
o =
g3
a
|
L I}
I

Method

20

$T##EPWETY #EPGLIE]
FL#FUEHDOGH FUES 00
214 #HNqUITY# gdodiewn
FT#2ARUONAH #UMOUNUN
TT#RdoAIBUNERIST

T4 #UES|00Q4 #IUBISUDT
OZ# #3210 #1303
Fl##aedund# saiedwod
rlzsalnLssaleduiog
ZT##dWoDIs# #4150

oz ##1dursqns ¢ gepgue]
P4 #dWOIISE#IED

DZ# #BUCN# #3dU5gns
ZT##2U0N# #BULLS
FL##AiRun)I0# #10ulsqng
BI##1210##120
oz#xadnL#20uus
ZT##IIO# gajdnL
TT#gaweNpdoiieun
TT# #EURdUWIDD# #IUEISUTD
ZL##10UDSGNS #4URU0NN
ZT#wdojoos#| e
Tla#Ieo|##buls

T2 #duI)#£IWEN

ST # #AIBUOIIITHF 15N

9T & Fumouyup &g 1abaqu)
T # §ABU0NI0# #1390
BL##|20##15
BT##uRdWOD##INGI0%N
oz#zdolieuns#1duosyrs
aT#gdovige 150
BT##ueajooqs #3dursqrs
+1##bugse glieuonng
OT# #FWEN# #UESH D0
IT##RPOWETE#S|dNL
TT##HNGUITYH #5204
TT2#anLE #a0Mu
TT##5a3fg4 #IUETSUDD

P €2 PETTEE 15

TT# #IUESU0]# #5374
TT##URISUDD R #135
TT#zdowgggasedwog

ZT# #azbagui ¢ sajdnL
ATEFUMOUNUNFRIUON
OZ# #||ED# #a1edwod

@
=

Expression Ty

=5)

Accuracy of Expression Type (Frequency=<

/

\/ \./
.
Method
—e— Deepbug Accuracy

—a— AUCMET Accuracy

[3%) Aaeanaoy

Z# #AWODNSIT# #UMOLEUN
ze#duosgns e #dofieun
tra sy o g cxap
r##1|ed# wdojoog
re#saufgsasanig

T #BUCN# #UED|DCG
zg#dooogs epguie)
z##pdojoogy gauocy
TH#IINGUITY £ #1200
TEFIWENF2I0008
+##1dDsgNs# aRdwoD
T # PO ## Usouun
pa#doug# #epawe]

b #DBLIEYS # 4 UMOLIRLI
#1204 #1dudsgns

& #3UDN# #UMDUHWN

£ E#IUDH # FIS0
p#sdofieuns gaucy
F##WeIsU0I¢ £dojog
rr2bunsEzepquen

4 #00j00G# #2N0URY
T #dWODNSM# #SWEN
PE#INEISU0D# # day

P #1SN# #1990

b #3(0NL4 #5314
tr#2buns#2do|o0g
F##0ULIS# FUMOUUN
rE#epquEI##doun
Fa#UrIINRIBUDR SIURISUCT
PHESIFCH FUMOUNUN

b #3UDN# #dDUR

i #UBS|O0GH#15T]
p##IR0Y##1dnL
FE#UMBUNUNF #5340

TH #1003 Fawey
T##dojoogs #euonng
TH#IRG|E #1501
CF#PBURISZE FEROWE]
r##pauRsHFdoug

Z# #UMOUNUN# #d0|000
Z##xa# #1dU0sgNS

z# #dx3I0jRI3UanE gaWEN

Expression Type

z##douig# gueajoog
TE#100) % £120310|
TS
T##5910##1d105qms
T#EEDAUIETE#IIISANS
za#ishajz z eunnig
z##doppoge #dour
za#dojoog2bulg

T4 #EPOWET# #1511
z##aedodg#aiey
T##adnL# glieuonng
Ta#paUEISH #buls
TE#ajdnL#auon
TwEauonz 0
ZH#HFUMOU{UN# #1210
T##IUENF #100
F##Ue3|00g##buULIS
z##pauelse #leuoiog
& #dwoqong # g awey
FE2INQUIIYE2d0|00G

(20<=Frequency)

is

Accuracy of Expression Type-based Analys

Figure 4.15

higher than our model. Among the 1,96,368 examples, 192 of our AUCMET performed

slightly lower than DeepBugs. On the other hand, for 1,96,176 method calls, the AUCMET
performed on average 20% higher than the DeepBugs model. These 0.09% examples are

unique an:

this context.

d negligible

m

4.6.7.2 Performance of DeepBugs on Python and AUCMET based on Context

Length

: To check the performance of the AUCMET and DeepBugs by the context,

ion

t

.

Motiva

we checked the performance of cases in both models that could successfully catch and put

to check whether the long context

, We aim

th that. Therefore

wi

the average context length

raining.

eded for better t
Study Procedure: We used our final model, discussed at 4.9, and took the result

for those test cases. Then, we collected all the context lengths with respect to individual

15 ne



75

Effect of Context Length on Accuracy

o098 33

Method
. AUCMET Accuracy

1000

901 38

800
761.17

600

Average Context length
3000
2.00
39808
7.32

400
250.00
7500
=0,
=70 50
285 00
317.00
95 00
35.00
272.00
26800
ELTEE]

206 57

I
-n.aa
-?2.22
-141 43
-
s
-as &0
-10 a0

b

=
B
i

Percentage Accuracy

Effect of Context Length on Accuracy

0

16
o
0
1
2
6
8
o
1
2
4
5
6
7

277.00

Methad
DeepBug Accuracy

250

200

177.50

150

139 89

Average Context length
10400

100.00

935

96.00

g 2 8 = B
100 = g 3 g 3 =
E Sl 2 g E B o= g 2 : =
i & §Toe . g8z C
[ e = .
o w DD: o
2 2 2 8 @ B 88 3
s s bz i = I o o
50 2 2 s .8
& Eg s = g 333
9 w H R
i1 o}
.
Oﬂ@'ﬂhgmlgﬂu\c—leﬁ‘@"‘mﬂﬂﬁwa mmmmmm q—m-or-mm—ngo
NN m o< LB - - T - - B I~ T - T~~~ B e R i R - B - - T - B T - -~ T -~ I ] 2

Percentage Accuracy

Figure 4.16: Effect of Context Length on Performance For DeepBugs and AUCMET

accuracy. We wanted to conclude the range of average length for which the result was
better.

Result: In Figure 4.16, we plotted accuracy against the average context length. We
found that accuracy was high for the lower context length. The AUCMET performed well
when the context length was below 400 tokens. However, we found an accurate performance
for 781.17 average tokens. We checked the number of examples for those test cases, which
was 37882. On the other hand, for the DeepBugs model, the average context length was
less than 150 tokens. If we compare the accuracy range with our model and the DeepBugs
model from 50% to 100%, the average context length will be less than 400 for The AUCMET
and less than 100 for the DeepBugs model. Therefore, a sound-long context of 400
tokens that are related to the method call and its argument will perform better

for swapping argument-related bugs.



76

Average Method Call Frequency in Training Set Case

Model
—— DeepBug Models
— AUCMET Models

n
=1
=]
=3

4000 4

3000

20004

1000

Awverage Frequency of Method Call In Training case

] 20 40 L) 80 100
Maodel Accuracy in Percentage

Figure 4.17: Average Method Call Frequency in Training Set Case

4.6.7.3 Performance of DeepBugs on Python and AUCMET based on Method

Call Appearance in Training Examples

Motivation : We wanted to check the performance of the AUCMET and DeepBugs Model
with respect to the appearance of method calls in the training segment. All of the method
calls in the training set are contextually unique; our goal is to check whether the method
call’s appearance controls our model’s performance.

Study Procedure: We collected the number of unique method calls from the training
set and collected the frequency of each method call. Our goal is to find the appearance of
examples in the training and test cases and check if there is any impact on the accuracy
of the frequency of method calls in the training set. We collected all the unique method
calls from the training and test examples. Then, we matched the method call name from
the test cases and matched it with the examples. After getting the matched examples,
we divided the dataset into two parts- the accuracy of the AUCMET with the appearance
of the method call and the accuracy of the DeepBugs Model with the appearance of the
method call. Then, we plotted the graph by using the average count of appearance of the
method, which calls for accuracy and accuracy. If the accuracy is 95% we collected all
the appearance counts of that method call, which are showing 95% accuracy. We followed
the same approach to collect the average count of Appearance in the training set for the
DeepBugs Model.

Result: Figure 4.17 shows the performance based on the average approaches of method
cal in the Training example. For both of the models, the accuracy is poor for both those
method calls that appeared less than 3000. On the other hand, it shows that it has 80%
accuracy even if it has less appearance of method call in the training set. Therefore, the

appearance frequency did not have any impact on the accuracy. The context of



7

a method call carries significant importance for bug detection.

4.7 'Threats to Validity

This section discusses threats to the validity of this study. Even though we covered the
research gap of large-scale study and language dependencies, to remove the complexity of
method call argument-related bug detection, we simplified the arguments in which expres-
sions are arbitrary and complex.

First, we consider a dataset consisting of 150,000 source code files written in Python
language. One can argue that the results we obtain may not generalize to other Python
projects or projects written in other languages. However, we would like to point to the fact
that we consider a large number of Python files that were collected from a large number of
projects. Thus, our results should largely carry forward.

Second, for the purpose of this study, we map method calls to their definitions. Method
calls, and their definitions are not necessarily in the same file. Incorrect mapping can intro-
duce bias in our findings. We investigated for a significant time to ensure the correctness
of the program. A manual investigation of randomly sampled 8000 method calls and their
definitions showed that our implementation can accurately map 85% of method calls. For
the remaining method calls, we received multiple mapping to method definitions. Thus, we
ignore those method calls from our analysis.

The performance of our technique depends on the word embedding technique and the
setting used to run the algorithm in this study. To simplify the implementation, we con-
sider the Word2Vec model, a popular word embedding technique used in many other prior
studies. One can argue that the model(s) performance can be affected by the selection
of the algorithm. We did not focus in this direction because our goal is to evaluate the
effectiveness of considering argument usage patterns. Thus, we did not consider that in this
study. Future research should focus in this direction.

Third, we only consider the lines before the target method call to collect the context
of the argument usage. However, it is also possible to consider the bottom lines. However,
the long code dependency on a token in a program was not considered here; this remains a

work in the future.

4.8 Conclusion

Our study investigates the effectiveness of the DeepBugs approach for Python. On the
other hand, it shows if the approach can be used for any dynamic programming language.
Our study showed that this approach can be replicated for other programming languages,

but the structural changes from programming language to language changed the result.



78

Therefore, we collected our features to cover all the implications for Python and showed
that usage context-based analysis of any token is effective for bug detection or anomaly
detection in Python. Our proposed dataset contains the mapping information using our
napping algorithm, which improves data collection. Besides, we solved the programming
vocabulary ambiguity, which shows a 10% better result than previous approaches. Therefore
we can concluded that it is not mandatory to map the method call to its definitions, the
usage pattern of a variable can be used to determine correct location of variable usage and
for very large scale study context length decreased the accuracy of bug detectors which
was solved by inducing structural information. This increased the accuracy from 69.8%
to 90.79%. The performance of AUCMET was the same for both mapped and unmapped
method calls. Therefore, for the smaller dataset (mapped method calls, which is 10% of the
whole dataset) , the AUCMET model showed an accuracy of 89%, and for all method calls,

it showed 90.89%, which removes the issue of a large-scale study.



79

Chapter 5

An Empirical Study of Argument
Recommendation by LLM in
Python

5.1 Introduction

Argument recommendation is one of the most important features of automatic code com-
pletion in Integrated Development Environments (IDEs), which is a part of Code comple-
tion [34] [49] [50] [51]. This feature can help the developer generate the next argument from
the code context. These Argument recommendation techniques are mostly based on the
context or previously written lines of code where the arguments are declared or used, which
is considered a static property in the source code. This has already been used for source code
modeling [34] [52] [49], code summarization [53] [54], code clone detection [55] [56] [33], and
program repair. Large language models like GPT-4, T5, LLAMA2, and so on are becoming
very popular for solving software engineering-related problems such as code completion or
code summarization. To the best of our knowledge, the capability of this pre-trained
LLM models to complete the argument list with an API call based on the current code
context has not yet been evaluated.

In this study, we aim to evaluate the efficacy of Large Language Models (LLMs) in
suggesting appropriate arguments for API calls during software development. These pre-
trained transformer models are trained with large-scale source code infractions and balanced
with learned biases and weights. Therefore, these models should be able to recommend
argument/s for an API call based on the given context. Training with our dataset will
consume time ( see section 4.6.6) for generating code tokens, and balancing those weights
and biases is challenging. Therefore, our study aims to investigate the performance of three

popular Pre-trained models, CodeBERT and Code Llama, for argument recommendation



80

in Python.

5.2 Background

5.2.1 Statistical Language Models

Large language models [52] are generally used to generate a sequence that depends on
another sequence. A source code token is directly related to the other sequences in the
same source code. Therefore, the probability of generating tokens from a given source code
is a statistical machine translation or source code generation task. Therefore, tokens with
possible candidates can perform better in this context from a given sequence and source
code. A language model compares a token sequence with its existing token sequence (the
processed tokens used for training the Model) to generate the nearest possible tokens. Given
a sequence of S_t, a Statistical language model for source code will provide a possible list,
P(S_t) which is determined by 5.1.

P(Sy) = Z P(swg|swg_1) (5.1)
k=1

In the equation 5.1, the sw implies the token sequence, and n is the number of tokes. As
the predicted token depends on the existing previous token, the statistical model calculates

the probability of the appearance of the next token from the previous tokens.

2 grmichep
import weakref
2 fron dispatch import saferef
ey saferef.Boundethodieakref) 3 WEAKREF_TYPES = (weakref.ReferenceType, saferef. BoundHethodWeakref)

, def _nake_id(target):

» id{target.im_func)) 5 if hasattr(target, 'in_func'):
2 return (id{target.im_self), id(target.in_func))
3 class signalfonject): 7 return id(target)

_dubugging = Fal
def _init
def

one)
Hone, wesk=True, dispatch_uid=Hone):

class Signal{object):

def sender=hane, =True, dispatch_uid=None): - nnmpsee class for all s.u;'\aLs L
def
def 1 named ) - 1 _debugging = False
daf e ars(self, senderiay): 5 def init (F.ﬁ.| ; ﬂl"D\rit = receiver
nons_sendariay = _make_id(Nona) def connect(self, receiyd MNone neli...
for | in salf.receivars: def disconnect(self, rece ™ self h_uid=None): ...
if r_senderkey == senderkey: 31 def send(sel?, senger, +4 " recelvers

* recelverkey

def send_robust(s€1f, ser e
= and i self
B L def _L:ve._recflwars(.c_ -
= anyne ¥5 = == Filter sequence of g q.n( abq) builting Fre=="""
. :::.‘ none_génderkey = _makw print(values, sep, end, fil. builtins
== eceivers = [] ® Exception builtins
= continsa for (receiverkey, r_z®sum(__ite ) wilting
= iF r_senderkey == oo o0 - T e
=alts : if isinstence( |
ode Exampie for IDE Code Compietion Exampie for PyCharm IDE

Figure 5.1: An Example of Code Completion in Visual Studio Code and PyCharm IDE



81

5.2.2 Code Completion in Python

Automatic code completion became a common feature in modern IDEs. It is also integrated
into most of the text editors. For the generation of the code completion model, a large
number of information must be used for training. Training is required to learn multiple
token sequences and programming patterns. When completing any partial code segment,
IDE usually suggests the name of variables, API name, Import statements, or any associated
code segments. In Figure 5.1, we showed a simple code completion technique integrated into
Visual Studio Code and PyCharm. At the backend of those, IDE uses large language models,
and for PyCharm, the model involved for code completion was trained with 100 million
parameters and a context length of 1,536 tokens', which is significantly large. Therefore,
code completion tasks can be done with the help of a Large language model. The code
completion can be done by a frequency-based approach or an alphabetical approach. We
are highly motivated to investigate the performance of a large language model for argument

completion from a given context.

5.2.3 Argument Recommendation

A correct argument passing supports the correctness of a program. For context-aware code
completion techniques, it is common to fill up the sequence from a given sequence. For
argument recommendation for a method call, IDE will list possible candidates of argument
from the list of variables. There can be multiple suggestions for filling up the argument. A
rule-based filter is used to reduce the candidate list, as this filter will eliminate unnecessary
variables from the list. A similarity-based approach [17], statistical model-based approach
[52], and determination of localness of API arguments [57] are the traditional approaches
for argument recognition. Code Llama provides a model for generating Python sequences
and provides four different models with 7B, 13B, 34B, and 70B parameters as source code
is a long context-sensitive source of natural language. It was trained with a long operating
sequence of context(up to 16384 tokens) and used a quadratic complexity of attention for
balancing the short to long contexts. This code LLAMA can be used to generate a sequence

from a given sequence that can be used for argument list generation.

5.2.4 Usage of Large Language Model

Existing popular language models are CodeT5, CodeBERT, and Code Llama, which are
used to generate code sequences. CodeT5 is an encoder-decoder model based on the T5
architecture [58]. This model can suggest identifier names with code and comments gen-

eration simultaneously. We suggest a new way to train models that consider identifiers,

'https://blog.jetbrains.com/blog/2024/04/04/full-line-code-completion-
in-jetbrains-ides-all-you-need-to-know/


https://blog.jetbrains.com/blog/

82

aiming to improve the alignment between natural language descriptions and programming
language code. We introduce a dual-generation task that simultaneously generates code
and comments. Qur model can handle both understanding and generating code, support-
ing multi-task learning. CodeBERT is a bidirectional Transformer model that is trained
using a multilayer Transformer model. The purpose of the model is to learn better from a
large number of unimodal codes and generate code sequences from a new context. Python
is one of the six programming languages, and the trained model can be fine-tuned to a new

context. This model can be used for code search and code-to-text generation tasks; we are

@ dispatcherpy 1 ®
F: > data > 12 > elivierverdier > dispatch > dispatch > @ dispatcher.py >
1 import weakref
2 from dispatch impert saferef
3 WEAKREF_TYPES = {weakref.ReferenceType, saferef.BoundMethodWeakref)
4 def _make_id(target):
5 if hasattr(target, 'im_func’):
[ return (id(target.im_self), id(target.im_func))
7 return id(target)
a class Signal{ohject):
g 3 R
17 _debugging = False
18 def _ init_ {self, providing_args=Nong)
19 3
25 self.receivers = []
26 if providing_args is None:
27 providing args = []
28 self.providing args = set(providing args)
29 > def connect{self, receiver, sender=Nonz, weak=True, dispatch_uid=None): --
95 > def disconnect(self, receiver=None, sender=Hone, wezk=True, dispatch uid=None): --
13@ » def send(self, sender, **named): --
156 » def send_robust(self, sender, **named): -
193 def live recelvers(self, senderkey):
194 > S e
288 none_senderkey = _make_id(None)
281 receivers = []
282
283 for {(receiverksy, r_senderkey}, receiver in self.receivers:
204 if r_senderkey -- none_senderksy or r_senderkey -- senderkey:
285 if isinstance(receiver, WEAKREF_TYPES):

Figure 5.2: An Example of Source Code for Context Collection

highly motivated to add this model to our study to check argument generation. Therefore,
to generate a sequence of arguments, we have to collect a code context and a usage context

of the variable of a source code.

5.3 Research Significance

Firstly, Our research was to check the overall performance of those three models and showed
whether the models have enough information or context to recommend any arguments for
a given method call; secondly, by identifying the categories where the models performed
the worst to discover the development gap and propose a research field to improve these

Pre-trained models. Thirdly, our approach also checked the performance of those three



83

models from the expression-type perspective and the precedence-based perspective.

5.4 Dataset

We collected Python projects from GitHub repositories based on specific criteria. A noble
approach introduced a list of projects that are considered engineering projects [59].

To pursue our study, we collected our projects from GitHub (see-A.4 to understand the
GitHub project download process) in a scrutinized way. We only considered projects with
certain features, such as proper documentation, updated test cases, and a structured project
management tool. To ensure these features, we collected our projects from the collection
of Engineering projects [59]. Researchers in these projects collected and categorized the
software repositories from GitHub using the following categories: belong to a community,
have continuous integration, documentation, history, issues, star count, license, unit testing,
and so on. The project list consists of 1,857,423 GitHub projects in different programming
languages.

On top of their published lists of projects, we first filtered out those projects with Python
as their primary language. As we worked with argument recommendations in the Python
programming language, we filtered out the projects developed in Python. This resulted
in 3,31,883 projects. Next, we checked whether the projects were forked projects or not
and whether those projects were deleted or not. This step filtered out 37,339 projects.
After this, we tried to select the active projects from the rest of the projects. To perform
this, we collected only those projects with at least one commitment since last year. This
step resulted in 14,437 projects. In addition to that, we considered a third metric: List of
Contributors. We only selected those projects that had at least two contributors. This step
gave us 10,717 projects in total. Finally, we have filtered out the projects by checking the
number of commits, which is more than 50. This resulted in 9181 projects.

After sorting them by star count, we took the top 5000 projects with the maximum star
count. The selected project list is shared with the community to support future research

and study, which is in the following link.

5.5 Approach

The raw source code cannot be used to conduct our study. This source code needs to be
extracted to collect features. Then, we must collect context from those features to generate
a source code segment from the language models. After collecting the code segment, we
have to collect the actual argument to compare with the real-time arguments. We followed

the steps to conduct our study as follows:

e Data Extraction



84

e Context Collection
e Model Description and Use for Argument Generation.

e Similarity Comparison

5.5.1 Data Extraction and Preprocessing

We used the dataset mentioned in the section 5.4 for our study. We extracted the method
call and its arguments for our experiment. Then, we used the method call and its context to
generate an argument and pre-trained models for argument generation. For input generation

of the pre-trained model, we followed the following steps:
e Method Call Extraction
e Global Variable Extraction
e Determine the scope of the method call

We must extract the method call and its relevant information from a source code for

our analysis.

5.5.1.1 Method Call Extraction

We used the Python AST Parser [60] and followed the process described in section A.3 for
method call extraction based on Python version 3.12. First, we parsed the entire file and
generated an AST to access the node for collecting method calls. For a method call, we
collected the line of method invocation, name of the file, number of arguments,
and the list of arguments. For the method call “isinstance” at line 205 in the Figure
5.2, the argument list is [“receiver”, “WEAKREF_TYPES”|, the number of arguments is
two and the file name is “dispatcher.py”. We collected the method called node for further
study as the node is an object that contains all the information encapsulated(see-A.2 for a

pattern of a node) in a specific class.

5.5.1.2 Global Variable Extraction

We collected all the global variables from each file. These global variables have their scope
everywhere in the file. It can be used inside any method definition.

Therefore, we extracted and added all the global variables to the method call context. As
an example from Figure 5.2, for the method call “isinstance”, we added line no. 3 where the
context is “WEAKREF_TYPES = (weakref. ReferenceType, saferef. BoundMethod Weakref)”

as an additional context. to collect information about the global variable of a source file, we



85

parsed? and visited those nodes classified as Assignment nodes. This generated a list of all
the variable assignments in a file. We generated a list of functions and class method ranges.
In Figure 5.2, when we collected all the assignments, the assignment operations at lines 5,
31, 33, and 34 were extracted in the source context. As the scope of assignment operations
at 31, 33, and 34 is only inside lines no. 24 to 34 for outside of the class method “__init__”
the variable cannot be used. Therefore, we removed those from the list of all variables, and

the retained list of variables was treated as global variables.

5.5.1.3 Determine The Scope Of The Method Call

We collected those contexts for each method call only in the same scope. In Figure 5.2,
for the method calls at line no 205, we had a method called “isinstance,” and it had two
arguments, “receiver” and “WEAKREF_TYPES”. In the context of that method call, we
collected the lines from 193 to 205. Therefore, for argument recommendation, we used
tokens only in the scope of the method definition. It is mandatory to consider the scope
of a variable as the usage of the variable outside the scope engenders software bugs [61].
Therefore, we considered the assignment operations in the same scope and the variable’s

global scope (see 5.5.1.2 for variable in global scope).

5.5.2 Context Collection

We considered those tokens as the context of a method call, which was only in the scope
of the definitions. This is known as a valid context. For the method call “isinstance”
and recommending the first argument, the collected context will be all of the tokens, the
lines from 193 to 205 until the token “receiver”. We collected the same tokens for the
second argument but up to “WEAKREF_TYPES”. For both contexts, we have added line
3 as there is a variable in the file that can be used everywhere. We have removed all the
comments from the context to remove the redundancy. These comments can be different
from program to program and create ambiguity. Our study has three analyses, and they
require two different contexts. We built the first dataset, which collects each argument, and
the context is just before the argument. Table 5.1 showed how much context we collected
for each argument for the given method call “isinstance” at Figure 5.2. The process of
argument context generation was described in Figure 5.3.

We used the context for argument expression-wise analysis for our third study and
generated the first argument. This first argument was added to the initial context to
generate a new context for the following argument. Therefore, the output from the three
models generated three different arguments for an initial position and then repeatedly added

to the initial context to generate the next argument. This method is called the Argument

thtps ://docs.python.org/3/library/ast.html


https://docs.python.org/3/library/ast.html

86

Table 5.1: Collected Context for Expression-based Analysis and Overall Performace Anal-

ysis

Feature

Token

Name

Expre
ssion
Type

Method
Call
Line

No

Context
Remark

Line

Collected Context

First
Argument

receiver

Name

205

Variable
Usage

8-17

[ WEAKREF_TYPES’,
‘weakref’, ‘ReferenceType’,
‘saferef’,

‘BoundMethod Weakref’],
[‘class’, ‘Signal’, ‘object’,
‘_debugging’, ‘False’]

Local
Context

205

[‘def’, ‘_live_receivers’, ‘self’,
‘senderkey’, ‘none_senderkey’,
‘_make_id’, ‘None’, ‘receivers’,
‘for’, ‘receiverkey’, ‘r_senderkey’,
‘receiver’, ‘in’, ‘self’,

‘receivers’, ‘if’, ‘r_senderkey’,

?
?

‘none_senderkey’, ‘or
‘r_senderkey’, ‘senderkey’,
4f’, ‘isinstance’ |

Second
Argument

WEAK
REF_TYP
ES

Name

205

Variable
Usage

8-17

[WEAKREF_TYPES’,
‘weakref’, ‘ReferenceType’,
‘saferef’, ‘BoundMethod
Weakref’],[‘class’, ‘Signal’,
‘object’, ‘_debugging’, ‘False’]

Local
Context

205

[‘def’, ‘_live_receivers’,

‘self’, ‘senderkey’,
‘none_senderkey’, ‘_make
_id’, ‘None’, ‘receivers’,

‘for’, ‘receiverkey’, ‘r_sende
rkey’, ‘receiver’, ‘in’, ‘self’,
‘receivers’, ‘if’, ‘r_senderkey’,

?
?

‘none_senderkey’, ‘or
‘r_senderkey’, ‘senderkey’, ‘if’

?

‘isinstance’, |




87

TYFES = {wsakref . RefarencaTysa, saferst BeaundithodNaskraf)

ER

22 _debugging - False

9

22 _debugging - False

Context for generating Second Argument

Figure 5.3: Input Context Generation for Argument Generation Based Study with Code-
Bert, Code Llama, CodeT5

Precedence approach which is shown in Figure 5.4.

5.5.3 Model Description And Using For Argument Generation

e CodeT5: This encoder-decoder model was built on copious code data extracted from
open-source GitHub repositories. This bimodal configuration takes a code segment
and generates relationships between each word. For casual text generation tasks,
it uses Text-Code Contrastive Learning (using a self-attention layer for a continuous
bidirectional approach) [62], a text-code Matching (calculating the semantics informa-
tion from similar code snippets), and an encoder-decoder for casual Large Language
model operation. This model is trained with a dataset comprising millions of func-
tions across multiple programming languages, including Python, Java, JavaScript,
Go, PHP, and Ruby, and can catch subtle differences in different programming syntax
and semantics. This model is used for Code Summarization, Code Generation, Code
Translation, and Code Defect Detection.

We provided the context for generating an argument from a given context up to the
argument we wanted to generate. First, we used the RobertaTokenizer tokenizer from
the codeb-base to tokenize the source code and collected the code context without

comments. After collecting the contexts, we inserted these contexts as a query for the



88

Table 5.2: Expression Types With Their Examples In Python

Name of Frequ
]i?xpres encies Example of Expression Argument
sion
discovery_responder
Name 8658988 ( msg , from_addr ) msg
Constant | 7372512 | TeP-msg - decode (“UTF-8") «“UTF-8”
== expected_response #
. sock = mock . create_autospec
Attribute | 2892357 ( socket . socket , instance — True ) socket . socket
return st . tuples ( st . just . .
Call 2338055 | ( ConvertChildrenToText ?t “.S_t]u:t (C(ljlonvezt()}hlldrenToText
( “StatusChange” ) ) , ArusAange
assert ( util . Metalnfo .
from_meta_info . « "
BinOp 840814 | ( meta_info [ “Metalnfo” | + E‘ meta_ulfo [ Metalnfo™ | +
“ ” —extra )
—extra” )
== expected
util . signal_strength_to_dbm
Subscript | 751429 | ( signal strength signal strength [ “SignalStrength” ]
[ “SignalStrength” | )
subprocess . check call ( [ “sudo” , [ “sudo” , “E” , “u” ,
. “E” |, “u” real_user , sys . real_user , sys .
List 611626 executable , sys . argv [0 ], executable , sys . argv
“build” | ) [0], “build” ]
Tuple 311092 | send_queue . put ( ( msg , addr ) ) ( msg , addr )
. self . record stats ( { "runs” : oy
Dict 285683 rendered placeholders } ) runs” : rendered_placeholders }
except ProviderNot
FoundException :
) self . stderr . write ( f“* No f“* No OEmbed provider
JoinedStr | 117070 OEmbed provider found found for *{url}’\n”
for *{url}’\n” )
except ProviderException as e :
def wrapper ( * args , ** kwargs ) :
Starred 108792 | return function ( * args , ** kwargs ) | * args
return wrapper
x =cls (nu, h = hstart , N = int
(np . pi/ hstart ) ) . x lastk = np
Compare | 89360 . where (f(x /np . max (K )) f(x/np.max (K)
==0)[0]iflen ( lastk ) >1:
@ unittest . skiplf
( not INTERNET ,
UnaryOp | 88796 ‘no internet’ ) def test_ not INTERNET

manpage_build_
without_warning ( self ) :




89

Table 5.3: Expression Types with their examples in Python(contd.)

Name of Frequ
]i?xpres encies Example of Expression Argument
sion
continue elements . extend
Genera ( ((child ,‘value ) : ( ( child , value ) for value
64175 | for value in value_or_list ) . .
torExp e in value_or_list )
if isinstance ( name ,
ConvertChildrenToText ) :
. ys =np . array ( [1lsq . update ( x) .
ListComp | 58402 [0] for xinxs]) [1sq . update (x ) [0 ] for x in xs |
first_name = factory . faker .
Faker ( “first_name’ ) , ,
Lambda 49090 . ( lambda n : ’c%d@foo.com’ % n )
email = factory . Sequence
( lambda n : “c%d@foo.com’ % n )
stylefile = url base_path =
BoolO 17173 | 0% - path . abspath If . base_path di
00T ( self . base_path or os . curdir ) Seit . base-patli or o8 . curdit
if not os . path . isabs ( stylefile ) :
) settings . load_profile ( “ci” ifos . | “ci” if os . getenv ( “CI” )
HExp 12192 getenv ( “CI” ) else “default” ) else “default”
Set 8240 set_attr_module({3, 4, 5, 6}) {3, 4, 5, 6}
. compared_value({num: num**2 for | {num: num**2 for num in
DictComp | 2592 num in numbers if num % 2 == 0}) | numbers if num % 2 == 0}
get_data_user . .
SetComp | 1388 ({mum**2 for num in numbers}) {num**2 for num in numbers}
Await 829 total_delay(await asyncio.sleep(2)) await asyncio.sleep(2)
Yield 223 user_IP_INFO( yield ip_address ) yield ip_address
YieldFrom | 11 pr(yield from subgenerator()) yield from subgenerator()




90

—_
impart weakref

i from dispatech import saferef R

A S ot et St Sttt CodeBERT N e D

: :

I:||:,|:I :
— - |
|

2 _debugging = False . CodeT3 > - nd preds F===== !

Argument i

|:‘H’:| '
: '
def live receivers({self, senderkey): | !
cotis {10
none_senderkey = _make_id(None}) v h
recaivers = [] e — v .
Vo i

for (r r » r_senderkey}, recelver in self recelvers: N

if r_senderkey = none_senderkey or r_senderkey == senderkey: o
if isinstance( [

— o 1

22 _dehugging = False vt
o |
E:{ F:: o '
o R
o H
def _live receivers{self, senderkey) v H
, e ke none_senderkey = _wake 1d(None) L
3 recaivers = [] [ '

w dispatch import saferef
r_senderkay], recelver
== none senderkey or
sinstancglecelver, Yg aus

in self.recaivers o !

TYPES = {weakref ReferenceType, saferef.BoundMethodWeakref)

none_senderkey = _make_id(Nane)

receivers = []

for | , r_senderkey], receiver in self.receivers:

nang_: & gendarkay == 4
Aracaiver, WEAKREF TV
aifcer whiwueak, cofsnee =

Generated Argument List

Argument List Generation

Figure 5.4: Input Context Generation for Argument Precedence Based Study with Code-
Bert, Code Llama, CodeT5

CodeT5.

e CodeBERT: CodeBERT is a transformer-based model with a bimodal architecture.
The same as CodeT5, it can be used for code summarization, Code Generation, Code
Translation, and Code Defect Detection. We used the same context extracted in the
previous section for the input of CodeBERT [48]. As the CodeBERT is based on
the contextual representation of each token and sequence, we used the context to
generate the argument sequence. This model generates n-numbers of candidates, and
any of them can be the argument. On top of BERT model [47] and the Roberta
[63], for source code generation, CodeBERT performs with a multi-layer bidirectional



91

Transformer model (the same RoBERTa-base architecture with 125M parameters).

e Code Llama: The Code Llama models come in various sizes, with parameter counts
ranging from 7 billion (7B) to 34 billion (34B) and even a larger variant with 70
billion (70B) parameters. These models are designed to handle a wide range of code-
related tasks, including code generation, code completion, and understanding natural
language instructions related to code. The architecture’s capacity to support large
input contexts is particularly noteworthy, with the models being trained on sequences
of 16,000 tokens and demonstrating improvements on inputs with up to 100,000 tokens.
This capability is crucial for processing complex codebases and providing relevant code

generations or completions based on extensive context.

We used the pre-trained and fine-tuned model from the hugging face library®. We
used the pre-trained model from three pre-trained models, the base version with 13B
parameters model [64]. We used the same context from the previous section 5.5.2.
This model does code infilling, which is used for code missing part generation from
the surrounding context, and long context fine-tuning, which generates the tokens
from a long sequence. Therefore, our collected context is used to create the sequence

effectively.

5.5.3.1 Input Generation for Models for Evaluation:

Earlier in our approach, we collected the code context by adding the usage context available
and the block information as input for our model. We used three different approaches to
generate the arguments for three different models.

For the first model, we generated the input token-wise. From the Figure 5.2, to generate
the first argument of “isinstance”, we collected the tokens before the argument “receiver”
with all the global variables (as example-WEAKREF_TYPES). For the generation of the
second argument, we used the tokens before “WEAKREF_TYPES” with all the global
variables (for example- “WEAKREF_TYPES”). Therefore, these three models get context
from one token after another token. Figure 5.4 shows how we collected and passed context
for three different models.

Qur second research question was to find the model’s performance for individual expres-
sion types. Our analysis showed that we had 26 commonly used argument expressions. For
your studies, we collected 200 unique examples from each expression type. Therefore, we
had 2600 unique calls with their expressions. We used the same approach described in the
previous section, though we sampled them for their expression types. Some expressions,
such as Name, constant, and Call, are important and relatively straightforward to generate.

On the other hand, some of the expressions are unpredictable, and we cannot generate

3http:-s ://huggingface.co/codellama/CodeLlama-13b-hf


https://huggingface.co/codellama/CodeLlama-13b-hf

92

them from a given code context. In the example in Table 5.2 and Table 5.3, we showed
different expression types with their examples. Therefore, we considered the 24 categories
of frequently used arguments from the 5000 Python projects. Therefore, we considered 200
examples from each category and generated a dataset for argument generation. We used
the same context and generated the arguments.

For our third analysis, we checked the performance of these three models for a precedence-
based result. We aim to check that these three models can generate the complete list of
arguments for a given method call. For this evaluation, we used a recursive generation of
context and checked the performance of these models. We took 5000 examples and used

them to generate one after another argument.

5.6 Evaluation Procedure

Our evaluation procedure is based on three performance analyses of the three-language

models.
e RQ1: Can we propose a taxonomy based on the expression type?

e RQ2: Can Large language Models perfectly recommend arguments from a given con-
text for Python Programming? What is the performance of pre-trained large language
models for generating any argument for any method calls in Python?-Comparison of

CodeT5, CodeBERT, and Code Llama models.

e RQ3: What is the accuracy of the pre-trained model for generating arguments indi-

vidually for each expression type?

¢ RQ4: How accurate are these language models’ performance in generating the list of

augments for that method calls?

5.6.1 Ewvaluation Metrics

We used string similarity matrices to check the exact match of the actual and generated
argument lists. If the similarity is greater than 0.5, we consider it a correct match. To
check the match for expression type base analysis, we considered manual analysis, where we
followed three rules to check the match of generated arguments. Firstly, we checked to see
if it matches the actual list of arguments. Secondly, we checked the generated argument list
with the global argument list. Thirdly, we checked the argument list with the local variable
list.



93

5.6.2 Performance Comparison of CodeT5, CodeBERT, Code Llama Mod

els

Motivation: CodeT5, CodeBERT, and Code Llama can generate tokens from a given
code sequence. We aim to use our collected context and check whether these models can
generate tokens from them. If we get tokens from each model, we compare the tokens after
identifying the argument list. We generated arguments for a method call regardless of their
position and expression types. In any project, the usage of the expression is indefinite.
Therefore, our first aim was to investigate the performance of overall method calls and
their arguments. For a given context, CodeBERT generated a single argument; codeT5+
generated two different argument recommendations. Code Llama generated a sequence of
tokens.

Study Procedure: We used the tokens passed to the three models and collected the
generated tokens for each model. We used the string similarity to check the match between
the generated tokens and actual arguments. For CodeBERT and codeT5+, we did not
process the generated tokens as they were the required tokens. On the other hand, we used
an AST parser to get the argument segment from the generated token Code Llama.

Similarity Comparison: Investigating whether the arguments match the original ar-
gument is time-consuming and complex. To overcome this complexity, we used Levenshtein
Distance and cosine similarity, Jensen-Shannon Divergence (JSD), and Jaccard similarity
analyzers to compare the similarities between ground truth and generated arguments. For
the Levenshtein distance, we considered two of the words from the context as input and cal-
culated the total number of single characters to change one word to another. This metric was
especially valuable in scenarios requiring the detection and correction of spelling variations,
like text editors, search engines, and data entry validation systems. The Jensen-Shannon
Divergence (JSD) is a technique for quantifying the likeness between two probability distri-
butions. It’s a smoothed and symmetrized adaptation of the Kullback-Leibler divergence
(KL divergence), which gauges the difference between one probability distribution and an
anticipated one. JSD is computed as the average KL divergences between the two distribu-
tions and their mean. In the equation 5.2, where M = (1/2)(P+Q).

JSD(PQ) = % « [KL(PM) + KL(QM)] (5.2)

The Jaccard similarity, or Jaccard index, is a statistical measure used to assess the
similarity between two sets. It is calculated as the size of the intersection of the sets
divided by the size of the union of the sets. Mathematically, given two sets of org_arg
and tokens, the Jaccard similarity JD(org_arg, tokens) is defined in the equation 5.3. Here,

|org_argntokens| implied that the number of elements common to both sets (the intersection



94

) and |org_argUtokens| represented the number of distinct elements in both sets (the union).

JD(org_arg,tokens) = |org_arg N tokens|/|org_arg U tokens| (5.3)

We set a threshold value of 0.5 and considered it a correct prediction if it is more than 0.5.
To check the similarity, this followed three steps (see 5.6.1). Cosine similarity was a method
for measuring the similarity between two non-zero vectors in an inner product space. It
computes the cosine of the angle between the vectors, yielding a value between -1 and 1.
A cosine similarity of 1 indicates that the vectors are identical, 0 signifies orthogonality
(perpendicularity), and -1 suggests that the vectors are in opposite directions (see equation
5.4). In the equation 5.4, (org_arg - tokens) is the dot product of the two vectors, the L2
norm (Euclidean length) of a vector org_arg is typically denoted as ||org_arg||, and similarly,
the L2 norm of a vector tokens is denoted as ||[tokens||. We calculated the similarity values
by considering the equations and used a threshold value greater than 0.5 to determine a

correct prediction.

cosine_similarity(org_arg, tokens) = (org_arg - tokens) /(||org-arg||||[tokens||)  (5.4)

Table 5.4: Over All Model Performace Model Performance

Model Performance
Similarity Evaluation
. CodeT5 | CodeBERT | Code Llama

Matrices

Levenshtein Distance [65] 45 46 59
Cosine similarity [66] 41 43 58
Jensen-Shannon Divergence (JSD) [67] 53 58 66
Jaccard similarity [68] 48 52 57

Result: All of the models performed poorly. The model CodeLama performed
more than other models. The result was checked manually after data generation, and if the
generated token was found in the context and if it was the name of a variable, we put that

in a match. Table 5.4 shows the result of each model to their similarity matrices.

5.6.3 Expression-wise Performance Comparison of CodeT5, CodeBERT,
Code Llama Models

Motivation: To investigate the performance of each expression type, we calculated the
accuracy for each type by manually validating 4800 examples. Our goal was to provide an

idea to notify the developers why and which type of expression type is hard to generate or



95

recommend.
Study Procedure: In the section 5.5.3.1, the collected results were split into expression-

wise. Then, we check which expressions can be detected by the Large language model Table

Table 5.5: Expression wise- Model Performance

Model Performance

Expression | 4 BERT | Code Llama | CodeT5
Type

Name 62 89 70
Starred 64 88 48
Subscript 42 87 39
Compare 51 83 48
Attribute 53 83 53
Call 42 80 56
Tuple 52 77 40
UnaryOp 46 46 26
List 25 45 22
Dict 25 44 25
Constant 15 43 22
BinOp 16 19 8
GeneratorExp 5 5 5
ListComp 0 0 0
DictComp 0 0 0
Await 0 0 0
BoolOp 0 0 0
Set 0 0 0
SetComp 0 0 0
IfExp 0 0 0
JoinedStr 0 0 0
Yield 0 0 0
Lambda 0 0 0

5.5 showed the performance of the Large Language model expression-wise. Our three models
performed well for Name, constant, and attribute types. However, the result is significantly
lower for complex expressions such as Lambda, BoolOp, IfExp,Set,DictComp, Yield, Set-
Comp Await, Yield, NamedExpr, and YieldFrom.

Result: The Table 5.5 showed the performance of each model for their expression
types. The table showed that for the first 13 expression type, the result was promisingly
good, whereas we found ‘BinOp’, ‘GeneratorExp’, ‘ListComp’, ‘NamedExpr’, ‘DictComp’,
‘Await’, ‘BoolOp’, ‘Set’, ‘SetComp’, ‘IfExp’, ‘JoinedStr’, ‘Yield’, ‘Lambda’ showed less than
30% accuracy. We tried our best to match the content of the global variable and generate

the sequence.



96

Reason of Low accuracy:

e “GeneratorExp”, “ListComp”, “SetComp”, and “DictComp” implied that a list com-
prehension returns a list, Set, and dictionary. The main advantage of a generator
expression is that it will not save the list in the memory. Therefore, this is a user-
defined and arbitrary list generator that depends on the usage context of a source code.
We manually investigated ten different generator expressions, “Dict Comparison” and

“List Comparison” which do not follow any pattern.

e The “await” keyword is used to pause the execution, and usage of this keyword entirely
depends on the user itself. Therefore, the usage of awaits as an argument is also
unpredictable. Similarly, the “yield” statement is used inside a function to return a
generator, which can be iterated to produce a sequence of values. Therefore, this can
be replaced by any loop statement. Thus, this cannot be understood by the Large

language model as those models cannot catch the context of a source code.

e “Lambda” Expressions are inline precise forms of complex expressions. When a large
language model generates a sequence from a context, it is unpredictable that this
complex expression must be kept short. Therefore, our existing Large language model
failed to generate these tokens. Similarly, “BoolOp” can not be expanded to multiple

lines and can be used arbitrarily.

5.6.4 Argument Precedence based Performance Comparison of CodeT5,
CodeBERT, Code Llama Models

Motivation: There can be multiple arguments in a method call. For a correct method call,
it is mandatory to pass the arguments correctly. Therefore, our third analysis checks the
performance of the models for precedence-based prediction analysis. We aimed to investigate
the performance of three models to detect all method arguments correctly. Our study also
checked whether different generated arguments changed the following argument. In the
given example, the first argument is “receiver”. If the model detects the first argument, it
will typically suggest the next one based on the context and patterns it learned. However, if
the first argument is incorrect, the model might still attempt to suggest the next argument,
but it might not be accurate due to the incorrect starting point.

Study procedure: We used a model for each example n number of times. Here, n is
the number of arguments in a method call. It is a recurrent combination of large language
models that generate and add an argument with the previous context. First, we collected the
context for the first argument by the above-mentioned process. Then, we fit that context,
which generated the first argument. After generating the first argument, we processed the

generated text to remove unnecessary tokens and added the predicted actual argument



97

Table 5.6: Model Performance-Precedence-wise Result

Model Performance
Similarity Evaluation
) CodeT5 | CodeBERT | Code Llama

Matrices

Levenshtein Distance 43 41 53
Cosine similarity 40 41 52
Jensen-Shannon Divergence (JSD) 51 52 61
Jaccard similarity 43 51 55

with the first context. This new context was used as an input to generate the following
argument. This approach generated a sequence of arguments with the same number of
method arguments in the actual method call. Our study then used the same similarity-

based approach with a manual study to check the performance.

5.7 Result

Table 5.6 shows the performance of those three models. We found that Code Llama pro-
duced the most correct prediction among the three models. Compared to the table 5.4,
the performance of the precedence-based model is less due to the dependency of the next
argument on the before argument. If the before argument is incorrect sequentially, the next
argument may lead to a wrong prediction. Besides, this sequence generation showed among
the 4800 examples, 2% of the results were in the wrong sequence of argument, which leads
to swapping argument-related bugs. The reason behind low accuracy is the combination
of different expressions, according to the combination of different expression types at 4.6.5,
which argument will be passed when and where is unpredictable. Therefore, Table 5.6
showed the performance of the three models is very poor, and a combination of those ex-
pression types will produce poor results. Based on the result, we built a classified taxonomy

found at 5.5. We categorized the examples based on the pattern of expression types.

5.8 Taxonomy of Argument Types For Future Research

We categorized all of the expressions into five major categories. These categories are-
e Variables
e Operations

e Sub-Functions

o Key-Value Pairs



98

Name
Constant
Compare Variables
Attribute
SetComp
Comparing Yield

ListComp
BinOp
DictComp
BoolOp
List Python Expressions
of Arguments
Operations Subscript
Tuple
UnaryOp
Dict
(Key, Value)
pair variables IfExp
GeneratorExp
Call
Set SubFunctions
Lambda
Starred

Figure 5.5: Categorization of Expression Type

e Comparing

According to Table 5.5, we found the categories Variables and operations are more
predictable and can be generated from a context. The large language models generate call
expressions as the calls are associated with code context. The models are trained based on
call-to-call dependencies. All of the models performed very poorly for compare operations.
From Table 5.3, we found examples of SetComp, ListComp, and DictComp where the
programmers are unsure of the logic they should use. Future models should be trained with
that context, mined from the documentation and source code context to solve this issue.
Therefore, future research can be carried out to predict the argument lambda statements,

SetComp, ListComp, and DictComp.

5.9 Conclusion

Large language models are trained with their context information. This context is quite

unknown to the user. Therefore, when we use the models, there is a high chance of passing



99

the wrong context sequence to generate an argument. Even if we passed the context cor-
rectly, how and what the parameters used to balance the weight of LLM are unknown to
the developer. For better performance, the model expects a similar context. It is tough to
predict when the arguments are highly complex and user-defined. On the other hand, the
frequency of complex argument expressions reduces the performance of the models. How-
ever, it performed better for call, name, and attributes as these methods’ arguments are
associated with context and follow a common usage pattern. Qur study showed which pat-
terns are intricate to determine, and this study can be extended by proposing extra feature
collection for those expressions so that they can be identified quickly. Our future work will
find the pattern and collect extended context as a feature for expressions with low accuracy.
Another aspect of our study is effectively using a large language model when variables or
tokens are commonly used. Fine-tuning these large language models is not quicker than

other deep learning techniques.



100

Chapter 6

Conclusion

This chapter discusses the summary of the studies presented in the previous chapters along

with future research directions.

6.1 Summary

Exploring name-based bug detection shows we can treat a source code as a regular textual
block. When we consider only the words of a source code, the performance drops as the
deep learning model cannot discriminate the nuance among the tokens. Therefore, extended
features or context must be introduced to identify the code tokens uniquely. Our thesis first
proved that an approach is not always effective for all the programming languages for
variation of structural information and grammatical patterns. Thus, this approach was
improved by adding and verifying extended features of the variable (usage context). This
introduced the importance of programming context and showed that better name-based
information could be hidden through a token. Though our approach did not consider
the method definition information, it followed the name-based approach for detecting the
swapping argument-related bugs by considering the name-based usage context information
from a source code. Besides, a token may have multiple uses, and to discriminate the name
information, we added the structural information to the tokens to identify those tokens
uniquely. We determined the difference between the variables for the same variable name
from the usage context. Finally, our thesis showed the importance of different sources of
information related to the features of the method call and investigated the performance of
various models based on source information. This thesis also showed the performance of
models based on the expression type of arguments and brought up that our model performs
for any expression type. Our thesis also conducted an empirical study to show which
expression types are hard to detect.

At first, our thesis solved and proposed a technique to detect the swapping argument-



101

related bugs in Python and reduce the complexity of dynamically typed programming lan-
guage (type dependency at run-type). Secondly, this thesis checks the performance of the
existing large language models in generating arguments. We implemented three different
techniques to test the performance of large language models from three aspects and also
showed the reason for the poor performance based on expression types. From this analysis,

we posit that all the expression types do not follow a specific pattern.

6.2 Future Work

This thesis not only proposed a technique for swapping argument-related bug detection in
Python but also opened some of the research fields for dynamically typed programming
languages. From our studies, we found several research gaps in dynamic programming
languages. Exciting opportunities for further advancement and refinement in this field of
study offer promising prospects for future research. Based on our search, the following

enhancements can be done:

e Exploring Other Programming Languages: The same as Python, this approach
can be used in another programming language- R, Ruby, Perl. As the structure of
Python is most likely to be Ruby and R, our next analysis is to find the performance

of those programming languages.

e Dataset Scalability: Our Data was trained on 2 million Python examples. Shortly,
we will propose our dataset, where we will check the performance of the AUCMET
Model for 10 million Python examples. If a larger dataset provides the same accuracy,
it can be derived that a large-scale study can be done with extra structural informa-
tion. Failing to reproduce the accuracy on a large scale may lead us to explore new

features and detect the expression where the process performs badly.

e Proposing Usage Pattern-Based Study for Dynamic Programming Lan-
guage:Our thesis is the first approach to consider the variable and argument usage
pattern to detect the bug, which can enhance usage pattern-based anomaly and bug

detection in any programming language.

e Comparing with LLM Models: Comparing the AUCMET Model with trending
large language models is not performed here; therefore, comparing the AUCMET
Model with LLM models will allow the researcher to enhance LLM in the near future.

e Vocabulary Size Scalability: The more training Examples, the more vocabulary
and variations will be found. If the large dataset generates any issue in performance,

one of the reasons can be the large scale of vocabulary, which can be handled by



102

considering a threshold value of a highly frequent list of vocabulary. Therefore, the
performance of the AUCMET Model can be tuned to the vocabulary size.

Tool Paper (ArgPatt): A warning-generating tool for Python can be built as
our trained model performed very well for unseen datasets. Therefore, it can be a
lightweight enhancement of any Python IDE, generating a warning when an argument

is called in the wrong sequence.

Argument Recommendation With LLM: Our Second work performed an em-
pirical study and showed that the performance is poor for some expression types.
Therefore, it can be a part of a new analysis of how to enhance the code sequence

generating for the arbitrary patterns in Python.



103

Appendix A

Installation of Modules and

Environment Setup

A.1 Installation and Update Ubuntu

Update Ubuntu Using the Command Line
For server environments or those who prefer using the terminal, we used to update Ubuntu

by following these steps:
1. Open your terminal.

2. First, update the package list to inform your system about the latest versions of
packages and their dependencies by running:

sudo apt update

3. Then, upgrade all the installed packages to their latest available versions with:
sudo apt upgrade

A.2 Required Modules

We used the following modules for our research-

e Abstract Syntax Trees AST !
Installation Command: pip3 install AST

1http:-; ://docs.python.org/3/library/ast.html#module-ast


https://docs.python.org/3/library/ast.html##module-ast

104

e Astor — AST observe/rewrite 2

Installation Command: pip3 install Astor

e Git clone 3
Installation Command: sudo apt update

sudo apt install git

e seaborn 4

Installation Command: pip install seaborn

e Matplotlib ®
Installation Command: python —m pip install -U matplotlib

e tokenize °
Installation Command: This is a built—-in Python Module which is

integrated with Python>=3.8

e tqdm ’
Installation Command: pip install tgdm

e pandas ®

Installation Command: pip install pandas

e numpy ?

Installation Command: pip install numpy

e scikit-learn 1°

Installation Command: pip install -U scikit-learn

e keras 11

Installation Command: pip install ——upgrade keras

e gensim 2

Installation Command: pip install gensim

pip install —-—upgrade gensim

thtps://astor.readthedocs.io/en/latest/

3https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu

“https://seaborn.pydata.org/

5https://matplotlib.org/

6https://docs.python.org/3/library/tokenize.html

"https://pypi.org/project/tqdm/

®https://pandas.pydata.org/

“https://numpy.org/
10https://scikit-lea:n.org/stable/index.html
11https://keras.io/api/1ayers/regulaIization_layers/dropout/
12https://radim:ehurek.com/gensim/models/word?vec.html


https://astor.readthedocs.io/en/latest/
https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu
https://seaborn.pydata.org/
https://matplotlib.org/
https://docs.python.org/3/library/tokenize.html
https://pypi.org/project/tqdm/
https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/index.html
https://keras.io/api/layers/regularization_layers/dropout/
https://radimrehurek.com/gensim/models/word2vec.html

105

e tensorflow 12

Installation Command: pip install tensorflow

e CodeT5-base 4
Command for Downloading Model :
tokenizer = RobertaTokenizer.from pretrained(’Salesforce/codet5-

base-multi-sum’)

model = TS5ForConditionalGeneration.from pretrained(’Salesforce/codet5-

base-multi-sum’)

e CodeBERT"®
Command for Downloading Model :
model = RobertaForMaskedLM.from pretrained(’'microsoft/codebert-
base-mlm’)
tokenizer = RobertaTokenizer.from pretrained(’'microsoft/codebert-

base-mlm’)

e codellamal®

Command for Downloading Model :

model = AutoModelForCausallM.from pretrained("codellama/CodeLlama-
Tb—hf")
model = accelerator.prepare ("codellama/CodeLlama—7b-hf")

e Accelerate 17

Installation Command: pip3 install accelerate

A.3 Parsing With Python AST

Every language has some predefined rules. These rules are mandatory to use a language
perfectly. Let’s think about languages like English, Bengali, or French. We need to generate
verbal speech using a rule known as grammar. Similarly, in the programming field, the
programmers follow specific rules so that both the programmer and compiler understand
the written script. Now, how will the grammar analyze the code script? Let’s think about
a method call in Python.
greet ("John")
But how does the compiler decode this line “greet(”John”)”? The compiler will read the

13http:-s ://www.tensorflow.org/install/pip

14http:-s ://huggingface.co/Salesforce/codetb-base-multi-sum
15http:-s ://huggingface.co/microsoft/codebert-base-mlm
1Ghttp:-s ://huggingface.co/blog/codellama

1?http:-s ://huggingface.co/docs/accelerate/en/index


https://www.tensorflow.org/install/pip
https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/microsoft/codebert-base-mlm
https://huggingface.co/blog/codellama
https://huggingface.co/docs/accelerate/en/index

106

word “greet” as a name, and then after that name, if it finds parentheses, it will expect

a list of arguments and a closing parenthesis. The reading pattern of a compiler will be

func_name (OPEN_PAREN arglist? CLOSE_PAREN)

greet("John") LEXER {

AST

Call({expr func, expr* args, keyword* keywords)

Figure A.1: Parsing With Python AST

Therefore, a typical parser consists of two components: a lexer and a parser. The

functionality of a lexer is to analyze the code script and tokenize that with respect to the
keywords and token. Then, it goes through the token sequence with respect to its grammar.
In the parser, the Syntactic and Semantic analyzer determine the meaning and the pattern.
During this parsing phase, the input’s syntactic structure is examined using a data structure
known as a parse tree or derivation tree. A syntax analyzer utilizes tokens to build a parse
tree, merging the predetermined grammar of the programming language with the tokens
from the input string. If there are any syntactic errors, the syntax analyzer will flag them
and report them as such. Semantic analysis involves validating the parse tree against a
symbol table to ensure semantic coherence. This step is also referred to as context-sensitive
analysis. It encompasses tasks like checking data types, verifying labels, and validating flow
control.
Extracting Features From Scripts: We treat the script as natural language. Therefore,
we generated an Abstract Syntax tree to traverse the individual tokens and collect data.
We used the Python “ast” library to collect the required information from the code. AST
module has a method parse(), which will compile a file and parse after checking lexical,
syntactic, and semantical errors. The parsing provides a class-wise token classification. As
Example: We want to generate an AST for a Python script. We will collect the file path
to open the file.

The patch.py file has the content as follows.

In the above example, the file is opened in the first line, and then the file is read by the
read() method, which takes the whole file as a text file. But we need to go through the code

as a collection of classes. To do that, we have used the ast.parse(), which goes through the



107

# parsing.py #

1 » Type_detection > testing » project_1 » ajul__pyradox » scripts > hoid > @ parsing.py ..
1 import ast
2 with open(r"fF:\Data_15-k\data‘data'@@\wikihouse\patch.py", encoding='utf-8') as f:
3 parentDict={}
4 code=Ff.read()
5 node=ast.parse(code)

® patchpy 4 @

F b Data 15k > data > data 3 00 > wikinouse > @ patch.py

B N

In 2 1 dmport astor l
print(astor.dump_tree(node))
Module(
body=[
If(
test=UnaryDp(op=Not,
operand=Compare(left=Name(id="third_party_dir']),
aps=[In],
comparators=[Attribute (value=Name(id="sys'), attr='path')])},
body=[
Expr(
value=Call(
func=Attribute(valvezAttribute(value=Name(id="sys'), attr='path'), attr='insert')
args=[Constant(valve=1, kind=None), Name(id='third_party_dir']],
keywords=[11)1,
orelse=[1]],
type_ignores=[])

Figure A.2: Showing Instances of a Node

text and collects the information by first tokenizing the code by the lexical analyzer and
later collecting the information of the code by building an abstract syntax tree. Typically,
Python has 19 classes. All the Python classes are part of the module as a form of parsed
tree, which refers to the Python source code or the current file. If we print the “node,” we
will see an AST class with the information of the certain file but as a parsed tree. Let’s
go through what is inside the ast.Module. No doubt! It will carry all the information in
the file as a parsed tree. To print the information in the ast.Module. We take help from
another library known as “astor” and the “actor.dump_tree()”

import astor

print (astor.dump_tree (node))

This will give a visual output of the AST tree as follows. Let’s match the AST with the
code snippets. In the code snippet, there is an “if” statement in the body of the module,
and when the code is parsed, the AST is generated in such a sequence that which node is
inside which node can be depicted. Thus, the snippets are as follows. A call node C an
Expression nodeC the body of If Expression C Body of module C Module.

Therefore, if we want to access any node, we must visit the nodes by their certain class.



108

Traversing or visiting a Node: In the AST library, we have a class known as class
ast.NodeVisitor. It walks the generated AST and invokes a predefined visitor function
for nodes. For example, if we want to visit a node with a method call, we must call the
visit_Call (self, node). Thus, we can add different visitors according to our needs
and jump to certain types of nodes to gather information.

Random visit: generic_visit (node)

This certain visit walks all the nodes, especially the children nodes, and reaches the leaf

node. This visitor calls visit() on all children of the node. Traversing through the node will

be implemented as follows.

e Define a class and extend the class “class_.name” by the ast.NodeVisitor (will

allow any modification of nodes).

e Define the visit() method in the class (class_name). As example

1 def visit_Call(sel¥, node):
2 # method body functionalities
3 return node

Figure A.3: Visiting A Parsed Node

e Define a variable to collect the required data from each iteration and save them. As
example
D: > Type_detection > testing » project_1 » ajul__pyradox » scripts » hoid > % parsing.py >

import ast
call_list_collector=[] #a list to collect all the visited call nodes.

1

2

3

4 class Class_as_parent(ast.NodeVisitor):
5 def visit_Call(self, node):

6 #method body functionalities

7 call_list_collector.append(node)
8 return node

Figure A.4: Visiting A Parsed Node by Class method

e By getting all the required nodes from a file, we will follow the abstract grammar to

learn the possible nodes found with the parent node and collect the data. As example:
If we use astor.dump_tree, we can see the node data inside the curtain call as follows:
e Now we know from the abstract grammar we have a function and an args (the ar-

gument list). To split them, we have our node analyzer function, which returns the

information based on the requirement. Therefore, if we run the call node_analyzer



Call_node

<ast

<ast.
<ast.
<ast.
<ast.
<ast.
<ast.

print(astor.dump_tree(df_call_merge['Call_node'][0]))

.Call

Call
Call
call
Call
Call
Call

object
object
object
object
object
object
object

at
at
at
at
at
at
at

0x0000D23392DF4730>
0x0000023392DF45E0>
0x0000023392DF430D0>
0x0000023392DF42B0>
0x0000023392DF4040>
0x0000023392DF3E80>
0x0000023392DF3A90>

Call(func=Name(id='require_setting'),

args=[Constant(value="'static_url_prefix', kind=None)]
keywords=[keyword(arg='default', value=Constant(value='/static/', kind='u'))1)

print(df_call_merge['Call_node']1[8])

print("line_number-->",df_call_merge['Call_node'][8].1lineno)

<ast.Call object at Ox0000023392DF4730>
line_numher--> 24

Figure A.5: Result of Parser

109

function, it will return the name of the function as “require_setting” and the argu-

ment value as [“static_url_prefix”].

e We can get the location or line number of the method call by using node_object.lineno

from the ast.Call object.

A.4 Downloading Projects from GitHub

We used the git library and git clone command to download the projects from GitHub.

Figure A.6 shows the source code of how we can download projects to the local machine.

A.5 Reproducing the study Exploring Name-based Bug De-

tection in Python

We have uploaded the dataset and the source code to the folder Google Drive “Exploring

Name-based Bug Detection in Python”!®. The execution workflow is given below-

Bhttps://drive.google.com/drive/folders/1J7YMyvUyoebd7PFUQny616cLAII_pzPy7usp=drive_link


https://drive.google.com/drive/folders/1J7YMyvUyoebd7PFUQny6I6cLAII_pzPy?usp=drive_link

110

1 > Users 0 subra o3 & Git_Repo_Downloaderpy
1 dmport pandas as pd -Higithub.com/pandas-devipandas.git
i import subprocess {'hK:Hgithub.com!numpymumpy.git
4  from tqdm import tqdm
5
6 df=pd.read_json('json_file_of_all_the_project_git_link',orient="index')
7 project_list=df[ 'projects’].to_list()
8 import os
9
18 save_path='[local_machine_save_path/'
11
12 for path in tgdm(project_list):
13 try:
14 username = 'user_name’
15 password = 'github_password’
16 print("path---->",path.replace("/","___ "))
17 os.makedirs(save_path+"/"+path.replace("/","___"))
18 dxp=save_path+"/"+path.replace("/","__")
1%
28 clone_command = f'git clone https://{username}:{password}@github.com/{path}.git {dxp}'
21
22 result = subprocess.run{clone_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
23 except Exception:
24 pass
25

Figure A.6: Process of Git Repository Clone

A.6 Reproducing the study Empirical Study of Argument
Recommendation by LLM in Python

We have uploaded the dataset and the source code to the folder Google Drive “Empirical
Study of Argument Recommendation by LLM in Python”19.

Opy tps://drive.google.com/drive/folders/11bSjKUKa7titY3GP9j7Z1kD10oXt0-hM?usp=drive_link


https://drive.google.com/drive/folders/1lbSjKUKa7titY3GP9j7Z1kDl0oXt0-hM?usp=drive_link

111

Bibliography

[

2]

&l

[4]

[5]

[6]

[7]

[9]

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the influence of identifier
names on code quality: An empirical study,” in Proceedings of the 14th Furopean
Conference on Software Maintenance and Reengineering, 2010, pp. 156—-165.

M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based bug detection,”
ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1-25, 2018.

R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing common C lan-
guage errors by deep learning,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, 2017, pp. 1345-1351.

D. J. Lawrie, C. Morrell, H. Feild, and D. W. Binkley, “What’s in a name? A study of
identifiers,” in Proceedings of the 14th International Conference on Program Compre-
hension (ICPC, 2006, pp. 3-12.

C. D. Newman, R. S. Alsuhaibani, M. L. Collard, and J. I. Maletic, “Lexical categories
for source code identifiers,” in Proceedings of the IEEE 2/th International Conference
on Software Analysis, Fvolution and Reengineering, SANER, 2017, pp. 228-239.

J. Patra and M. Pradel, “Nalin: learning from runtime behavior to find name-value
inconsistencies in jupyter notebooks,” in Proceedings of the 44th IEEE/ACM 44th
International Conference on Software Engineering, 2022, pp. 1469-1481.

S. Kim, J. Choi, M. E. Ahmed, S. Nepal, and H. Kim, “Vuldebert: A vulnerability
detection system using BERT,” in Proceedings of the IEEE International Symposium
on Software Reliability Engineering Workshops, 2022, pp. 69-74.

N. Ziems and S. Wu, “Security vulnerability detection using deep learning natural
language processing,” in Proceedings of the 2021 IEEE Conference on Computer Com-
munications Workshops, INFOCOM Workshops, 2021, pp. 1-6.

T. Index, “Tiobe,” 2021. [Online|. Available: https://www.tiobe.com/tiobe-index/


https://www.tiobe.com/tiobe-index/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

112

M. Pradel and T. R.. Gross, “Name-based analysis of equally typed method arguments,”
IEEFE Trans. Software Eng., pp. 1127-1143, 2013.

A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and Y. Arroyo-Paredes,
“Detecting argument selection defects,” Proc. ACM Program. Lang., pp. 104:1-104:22,
2017.

J. Gao, E. Xun, M. Zhou, C. Huang, J. Nie, and J. Zhang, “Improving query translation
for cross-language information retrieval using statistical models,” in Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2001, pp. 96-104.

B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning to fix coding errors with
a text-to-text transformer,” in Proceedings of the International Conference on Machine
Learning, 2021, pp. 780-791.

M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-supervised bug detection
and repair,” in Proceedings of the Advances in Neural Information Processing Systems

34: Annual Conference on Neural Information Processing Systems, 2021, pp. 27 865—
27 876.

M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial orders from
source code: from usage scenarios to specifications,” in Proceedings of the 6th joint
meeting of the European Software Engineering Conference and the ACM, 2007, pp.
25-34.

Y. Wainakh, M. Rauf, and M. Pradel, “Idbench: Evaluating semantic representations
of identifier names in source code,” in Proceedings of the 43rd IEEE/ACM International
Conference on Software Engineering, ICSE, 2021, pp. 562-573.

H. Liu, Q. Liu, C. Staicu, M. Pradel, and Y. Luo, “Nomen est omen: exploring and

il

exploiting similarities between argument and parameter names,” in Proceedings of the

38th International Conference on Software Engineering, ICSE, 2016, pp. 1063—1073.

B. Schwanke, Survey of scope issues in programming languages. Department of Com-

puter Science, Carnegie-Mellon University, 1978.

S. Nguyen, C. T. Manh, T. K. Tran, T. M. Nguyen, T. Nguyen, K. Ngo, and H. D. Vo,
“Arist: An effective API argument recommendation approach,” J. Syst. Softw., vol.
204, p. 111786, 2023.

R. Scott, J. Ranieri, L. Kot, and V. Kashyap, “Out of sight, out of place: Detecting
and assessing swapped arguments,” in 20th IEEFE International Working Conference
on Source Code Analysis and Manipulation, 2020, pp. 227-237.



(21]

(22]

23]

[24]

25]

[26]

[27]

28]

29]

[30]

31]

113

A. Habib and M. Pradel, “How many of all bugs do we find? a study of static bug detec-
tors,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 317-328.

R. Szalay, A. Sinkovics, and Z. Porkolab, “Practical heuristics to improve precision for
erroneous function argument swapping detection in C and C++,” J. Syst. Softw., vol.
181, p. 111048, 2021.

R. Bavishi, M. Pradel, and K. Sen, “Context2name: A deep learning-based approach to
infer natural variable names from usage contexts,” CoRR, vol. abs/1809.05193, 2018.

M. A. Saied, A. Ouni, H. A. Sahraoui, R. G. Kula, K. Inoue, and D. Lo, “Improving
reusability of software libraries through usage pattern mining,” J. Syst. Softw., vol.
145, pp. 164-179, 2018.

T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A statistical se-
mantic language model for source code,” in Proceedings of the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13, 2013, pp. 532-542.

M. Jimenez, C. Maxime, Y. Le Traon, and M. Papadakis, “On the impact of tokenizer
and parameters on n-gram based code analysis,” in Proceedings of the 2018 IFEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 437—448.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao, “The daikon system for dynamic detection of likely invariants,” Science of

computer programming, vol. 69, no. 1-3, pp. 35—45, 2007.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall, “Analyzing apis docu-
mentation and code to detect directive defects,” in Proceedings of the2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). 1EEE, 2017, pp.
27-37.

H. Zhong, N. Meng, Z. Li, and L. Jia, “An empirical study on api parameter rules,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 899-911.

M. Pradel and K. Sen, “Deep learning to find bugs,” TU Darmstadt, Department of
Computer Science, vol. 4, no. 1, 2017.

A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug localization with
combination of deep learning and information retrieval,” in 2017 IEEE/ACM 25th



32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

114

International Conference on Program Comprehension (ICPC). IEEE, 2017, pp. 218-
229.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk, “Deep
learning similarities from different representations of source code,” in Proceedings of

the 15th international conference on mining software repositories, 2018, pp. 542-553.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode compose: Code
generation using transformer,” in Proceedings of the 28th ACM Joint Meeting on Furo-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, p. 1433-1443.

A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the naturalness of
software,” Communications of the ACM, vol. 59, no. 5, pp. 122-131, 2016.

F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-trained language
model for code completion,” in Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering, 2020, pp. 473—485.

X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the nlp techniques for source
code data preprocessing,” in Proceedings of the 2014 3rd international workshop on

evidential assessment of software technologies, 2014, pp. 32-39.

H. Husain, H-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Code-

»

searchnet challenge: Evaluating the state of semantic code search,” arXiv preprint

arXiv:1909.09436, 2019.

W. Wang, S. Shen, G. Li, and Z. Jin, “Towards full-line code completion with neural
language models,” arXiv preprint arXiv:2009.08603, 2020.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAlI blog, vol. 1, no. 8, p. 9, 2019.

M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code completion by
jointly learning from structure and naming sequences,” in Proceedings of the 44th In-

ternational Conference on Software Engineering, 2022, pp. 401-412.

Y. Yang and C. Xiang, “Improve language modelling for code completion through
learning general token repetition of source code.” in SEKFE, 2019, pp. 667—777.

M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to improve code
completion systems,” in Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the foundations of soft-
ware engineering, 2009, pp. 213-222.



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

53]

115

M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk, M. D. Penta, and G. Bavota,
“An empirical study on the usage of BERT models for code completion,” in Proceedings
of the 18th IEEE/ACM International Conference on Mining Software Repositories,
2021, pp. 108-119.

V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code with decision
trees,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 731-747, 2016.

M. Allamanis, “The adverse effects of code duplication in machine learning models of
code,” in Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, 2019, pp. 143—
153.

“Tokenizer for python source,” 2023. [Online]. Available: https://docs.python.org/3/
library /tokenize.html

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang et al., “Codebert: A pre-trained model for programming and natural lan-
guages,” arXiv preprint arXiv:2002.08155, 2020.

Z.Tu, Z. Su, and P. Devanbu, “On the localness of software,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2014, pp. 269-280.

V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best choice for
modeling source code?” in Proceedings of the 2017 11th Joint meeting on foundations

of software engineering, 2017, pp. 763—773.

J. Li, Y. Wang, M. R. Lyu, and 1. King, “Code completion with neural attention and
pointer networks,” in Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, 2018,
pp. 4159-4165.

V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with statistical language
models,” in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, 2014, pp. 419-428.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in Proceed-
ings of the 26th conference on program comprehension, 2018, pp. 200—210.


https://docs.python.org/3/library/tokenize.html
https://docs.python.org/3/library/tokenize.html

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

116

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu, “Improving automatic
source code summarization via deep reinforcement learning,” in Proceedings of the
33rd ACM/IEEE international conference on automated software engineering, 2018,
pp. 397-407.

H. Wei and M. Li, “Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code.” in IJCAI 2017, pp.
3034-3040.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural source
code representation based on abstract syntax tree,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2019, pp. 783-794.

M. Asaduzzaman, C. K. Roy, S. Monir, and K. A. Schneider, “Exploring api method
parameter recommendations,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 271-280.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1-67, 2020.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for engineered
software projects,” Empirical Software Engineering, vol. 22, pp. 3219-3253, 2017.

“Python abstract syntax grammar-ast module.” [Online]. Available:  https:
//docs.python.org/3/library /ast.html

J. Bartlett, “Introducing functions and scope,” in Programming for Absolute Beginners:

Using the JavaScript Programming Language. Springer, 2022, pp. 133-143.

Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi, “Codet5+: Open
code large language models for code understanding and generation,” arXiv preprint
arXiw:2305.07922, 2023.

P. Delobelle, T. Winters, and B. Berendt, “Robbert: a dutch roberta-based language
model,” arXiv preprint arXiv:2001.06286, 2020.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
T. Remez, J. Rapin et al., “Code llama: Open foundation models for code,” arXiv
preprint arXiv:2308.12950, 2023.

D. K. Po, “Similarity based information retrieval using levenshtein distance algorithm,”
Int. J. Adv. Sci. Res. Eng, vol. 6, no. 04, pp. 06-10, 2020.


https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

[66]

67]

[68]

117

F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,” in Proceed-
ings of the Tth international student conference on advanced science and technology,

vol. 4, no. 1, 2012, p. 1.

V. U. Thompson, C. Panchev, and M. Oakes, “Performance evaluation of similar-
ity measures on similar and dissimilar text retrieval,” in Proceedings of the 2015 7th
International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K), vol. 1, 2015, pp. 577-584.

N. Pradhan, M. Gyanchandani, and R. Wadhvani, “A review on text similarity tech-
nique used in ir and its application,” International Journal of Computer Applications,
vol. 120, no. 9, pp. 29-34, 2015.



	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research objectives and significance
	Contributions of the Thesis
	Outline of the Thesis

	Related Work
	Name-Based Bug Detection for JavaScript
	Name-Based Source Code Analysis and Bug Detectors
	Parameter-Argument-Related Bug Detectors
	Usage Pattern-Based Source Code Analysis
	Deep Learning for Bug Detection
	Usage of Large Language Models
	Conclusion

	Linking Method Calls to their Definitions
	Introduction
	Dynamic Type Solving of Variables in Python
	Linking Method Calls to their Definitions
	Method Definition Pattern
	Method Call Patterns
	Analysis 1: Method Call and Method Definitions in the Same File
	Analysis 2: Both an import statement and method call sequence(Outside the same file Method Call Mapping)

	Example of Resolving Method Call
	Result of Type Detection:
	Evaluation Procedure:
	Experimental Setup
	Evaluation Metrics

	Result of Mapping Algorithm
	Conclusion

	Exploring Name-based Bug Detection in Python
	Introduction
	Background
	Data Collection
	Methodologies
	Data Extraction and Generalization
	Linking Method Calls to its Definitions
	Binder Generation
	Binder Generation for Correct Code Pattern
	Swapping Argument Sequence for Wrong Code Pattern

	Context Collection for Word2vec Model
	Context Collection for DeepBugs Model(DBM)
	Context Collection for API Usage-Context Mode(AUM)
	Context Collection for Argument Usage Pattern with Parent Information Model(AUCM Model)
	Context Collection for Argument Usage Pattern with Parent Information and Expression Type Information(AUCMET)


	Experimental Setup
	Evaluation Procedure
	Evaluation Metrics
	RQ1: How do programmers use argument and parameter in Python?
	Distribution of Lexical Similarity between a Parameter and its Arguments in Python?
	What is the Length of Arguments and Parameters in Python?
	What are the reasons for the dissimilarity of method arguments and their corresponding parameters?
	Can we filter out the arguments that have lower similarity values with their arguments?

	RQ2: Effectiveness of the Proposed Technique
	RQ3: Impact of Different Source of Information
	RQ4:Performance Comparison Of AUCMET With Pre-Trained CodeBert
	RQ5: Efficiency of the Proposed Technique
	Additional Analysis To Evaluate The Performance of AUCMET 
	Performance of DeepBugs on Python and AUCMET based on Expression Type:
	Performance of DeepBugs on Python and AUCMET based on Context Length
	Performance of DeepBugs on Python and AUCMET based on Method Call Appearance in Training Examples


	Threats to Validity
	Conclusion

	An Empirical Study of Argument Recommendation by LLM in Python
	Introduction
	Background
	Statistical Language Models
	Code Completion in Python
	Argument Recommendation
	Usage of Large Language Model

	Research Significance
	Dataset
	Approach
	Data Extraction and Preprocessing
	Method Call Extraction
	Global Variable Extraction
	Determine The Scope Of The Method Call

	Context Collection
	Model Description And Using For Argument Generation
	Input Generation for Models for Evaluation:


	Evaluation Procedure
	Evaluation Metrics
	Performance Comparison of CodeT5, CodeBERT, Code Llama Models 
	Expression-wise Performance Comparison of CodeT5, CodeBERT, Code Llama Models
	Argument Precedence based Performance Comparison of CodeT5, CodeBERT, Code Llama Models

	Result
	Taxonomy of Argument Types For Future Research
	Conclusion

	Conclusion
	Summary
	Future Work

	Installation of Modules and Environment Setup
	Installation and Update Ubuntu
	Required Modules
	Parsing With Python AST
	Downloading Projects from GitHub
	Reproducing the study Exploring Name-based Bug Detection in Python
	Reproducing the study Empirical Study of Argument Recommendation by LLM in Python

	Bibliography

