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Abstract

In the emergence of greener transportation, Electric Vehicles (EVs) play an important
role, expected to outnumber conventional vehicles in the near future. However, the
installation of Fixed Charging Stations (FCSs) is not keeping up with the increased
demand, especially outside urban centers. Such a challenge is prohibiting many users
from owning EVs because of range anxiety. This thesis proposes a novel cooperative
mechanism where EVs can access charging services such as Vehicle-to-Vehicle (V2V)
charging schemes, private smart Home Charging Station (HCS), or Mobile Charging
Station (MCS) to complement existing FCS services in certain regions. To this end, the
proposed mechanism divides each region into geographically distributed zones managed
by cloud-fog nodes for charging service coordination. In each zone, we employ the Hun-
garian matching algorithm to optimally match EVs with the available charging services.
Unlike recent approaches that establish a one-to-one matching between supplier EVs and
demanding EVs, our mechanism matches multiple demanding EVs to charging services
with a larger capacity to maximize the service offering. Comparing results with exist-
ing studies shows that our model outperforms prior approaches across critical factors.
Furthermore, our proposed matching algorithm prioritizes EVs requiring charge based
on their maximum travel range given their current State of Charge (SoC). To address
the challenge of accurately estimating EV driving range, we introduce an ensemble-
based Machine Learning (ML) model offering a compelling solution for enhancing the

estimation of EV driving range for practical applications.
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Chapter 1

Introduction

The rapid growth of urbanization and the expansion of the social economy have led
to a sharp increase in the number of vehicles in cities. Due to a lack of capacity,
however, roadways become congested, which causes a number of problems, such as traffic
accidents and environmental pollution [1]. In this evolving landscape, EVs are poised
to emerge as the primary choice for transportation, gradually replacing conventional
Internal Combustion Engine (ICE) vehicles [2]. EVs offer numerous advantages over
their ICE counterparts, including the utilization of renewable energy sources, reduced
dependence on fossil fuels, and zero Greenhouse Gas (GHG) emissions [3]. Indeed, given
the urgent and growing concern of global warming, EVs, through harnessing renewable
energy reservoirs, play a critical role in reducing GHG emissions, thereby combating
the adverse impacts of climate change [3, 4]. The utilization of renewable energy not
only helps mitigate the environmental footprint of transportation but also fosters energy

security and independence by reducing dependence on volatile fossil fuel markets.

As a result, EVs have attracted a surge in attention from both industrial stakeholders
and academic researchers. Their potential to revolutionize transportation by offering
cleaner, more sustainable alternatives to traditional ICE vehicles has spurred innovation
and investment in the EV sector. Furthermore, the expanding EV market has stim-
ulated advancements in battery technology, charging infrastructure, and energy man-
agement systems, driving down costs and improving performance. As societies embrace
a greener, more sustainable future, EVs stand poised to play a pivotal role in driving
this transformative shift toward cleaner, more environmentally friendly transportation
systems. Their widespread adoption represents not only a technological evolution but
also a fundamental reimagining of how we move people and goods in a manner that is

both ecologically responsible and economically viable.
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Looking toward the future, the trajectory of EV adoption appears promising. Projec-
tions suggest that by 2030, there could be approximately 250 million EVs available
annually, driven by national goals and increasing consumer demand [2]. The prolifer-
ation of EVs is expected to play a pivotal role in addressing climate change, as they

employ renewable energy sources to reduce GHG emissions [3], [4].

In response to these evolving dynamics, governments worldwide are rolling out policies
aimed at accelerating the transition to EVs. Nations such as Canada, the UK, and the
United States have set forth ambitious targets to phase out ICE vehicles and incentivize
the adoption of zero-emission alternatives [2, 5, 6]. Furthermore, proactive measures like
China’s decision to halt new investments in ICE production underscore a palpable shift

towards the widespread adoption of EVs [2, 5, 6].

The International Energy Agency (IEA) envisions a rapid expansion in the deployment of
EVs across global transportation networks, with expectations of a substantial reduction
in carbon emissions by the year 2050 [3]. This impending transformation holds the
promise of delivering significant benefits for power grid economics, fostering heightened

resilience, reliability, and sustainability [6].

1.1 Technical Challenges and Motivations

Although EVs are becoming more popular, the widespread adoption of EVs faces sig-
nificant obstacles. In the following, we will outline some of the technical challenges and
discuss the motivations behind addressing them. These challenges include range limi-
tations, extended charging times, and limited accessibility to FCSs [7-9]. Overcoming
these challenges will be crucial in realizing the full potential of EVs as a greener and

more sustainable mode of transportation.

Range anxiety, the concern that EV batteries may not provide sufficient range for desired
travel distances, stands as a major deterrent to widespread EV adoption. Despite offering
several incentives to entice people to purchase EVs, many users are still hesitant to buy
EVs because of range anxiety, while the price of higher-range EVs is beyond the reach of
average users [10]. This concern is particularly pronounced in rural and highway areas
where charging infrastructure is sparse, leaving drivers uneasy about their EV’s range

capabilities.

Addressing range anxiety necessitates the development of a robust and accessible charg-
ing infrastructure, crucial for accelerating EV adoption [10]. Additionally, to facilitate

the transition to EVs, electrical utility firms must invest in upgrading their network
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infrastructure and generation capacity [11], [10]. By reinforcing the resilience and relia-
bility of the power grid, such investments can support the seamless integration of EVs
into the transportation ecosystem, thereby fostering sustainability and reducing carbon

emissions.

To mitigate this range anxiety, it is essential to address two contributing factors that
exacerbate this concern. Firstly, there is an issue with the inadequate and uneven
availability of FCSs. Secondly, there is uncertainty surrounding the remaining range of
EVs, which intensifies anxiety among EV owners to rely on EV batteries over the long

term.

In the case of the former, a swift and effective solution involves the widespread de-
ployment of FCSs throughout the entire nation. However, the deployment of FCSs is
currently constrained to urban areas, where users often encounter long waiting times for
EV charging [12]. In rural and remote regions, the range anxiety issue is exacerbated
due to the high installation expenses associated with FCSs, extended travel distances,
and inadequate electrical grid coverage. Nevertheless, the substantial upfront costs and
the geographic remoteness of these areas may render the development of FCS networks

challenging and potentially unprofitable [10].

Furthermore, relying solely on FCSs presents several challenges, including high instal-
lation costs and geographical constraints that may hinder network expansion, possibly
making such efforts economically impractical. Moreover, the widespread deployment of
FCSs has implications for electricity distribution systems, potentially inducing new peak
loads and compromising power quality [13], [14], [15]. This could lead to power outages,
increased recharging demands, and undesirable harmonic distortions, all of which pose

risks to system reliability and efficiency [11], [10].

On the other hand, addressing the latter challenge, uncertainty in the remaining range
of EVs, research aims to explore advanced methods for accurately predicting the driving
range of EVs. Achieving a high level of predictive accuracy is paramount to instill con-
fidence in EV drivers, allowing them to plan their journeys with certainty and rendering
range anxiety a thing of the past. Concurrently, the precise prediction of EV driving
range has emerged as a pivotal research domain, given its significant implications for
vehicle usability and efficiency. This is precisely where ML models step into the forefront

of research [16].
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1.2 Research Approach

This study aims to tackle the technical challenges outlined earlier. This begins with
developing a suite of auxiliary technologies to bolster FCSs networks. One promising
solution involves exploring the bidirectional energy transfer capabilities of EVs, particu-
larly through V2V technology. This innovative concept allows for the exchange of energy
between EVs equipped with bidirectional energy transfer capabilities, such as the Ford
150 Lightning, effectively transforming them into mobile energy sources and reducing
dependence on fixed charging infrastructure [13, 17]. In practical terms, when an EV
faces a low charge and no nearby FCSs are available, a second EV with a surplus charge
can step in to provide the required energy through V2V technology [7]. As a result, V2V
technology emerges as a pivotal advancement towards realizing a highly secure and effi-
cient Intelligent Transportation System (ITS) [18-20]. By empowering EVs to function
as independent energy providers, detached from fixed charging infrastructure and grid
connections, V2V technology fosters the development of a viable commercial ecosys-
tem. This becomes particularly pertinent in scenarios where establishing permanent

infrastructure proves economically unfeasible [10, 21].

The practical implementation of V2V charging offers mutual benefits to both EVs with
charging needs, known as Demanding Charge EVs (DEVs), and those with excess charge,
referred to as Supplying Power EVs (SEVs). These benefits include seamless energy
transfer, reduced energy consumption when traveling to remote FCSs, and substantial
energy trading opportunities [11]. Furthermore, V2V mode provides greater temporal

flexibility, alleviating concerns about extended waiting times at FCSs [3, 4].

Similar to V2V, MCSs are also gaining attraction as a charging service for roadside as-
sistance making it a viable cost-effective and feasible alternative where charging stations
are not within reach [10], [21]. Indeed, V2V and MCSs bring flexibility and eliminate
the problem of prolonged charging times at FCSs [3], [4]. Such features make V2V and
MCSs an efficient highly secure technology for the future ITS [18], [19], [20].

This work innovative mechanisms whereby different EV charging options co-exist to
help users eliminate range anxiety and maximize their benefits. In reality, while V2V
technology holds promise, relying solely on it may not fully supplant fixed on-route
charging service providers like FCSs to accommodate the growing EV adoption. As
a response, our research introduces a model that integrates V2V with other charging
services, including smart homes equipped with charging stations and charging service

providers termed as HCS, along with MCSs.

One of the main challenges in this model is how to effectively match DEVs with the
available charging services from HCSs, FCSs, SEVs, and MCSs. This study proposes a
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novel matching mechanism where EVs utilize V2V, FCS, HCS, and MCS in a cooperative
fashion to supply the required charging service. The proposed mechanism divides the
available charging services into geographically distributed zones, and then employs a
Hungarian matching algorithm to optimally match EVs with the available charging
services. To facilitate the service seamlessly, we propose a cloud-based architecture
where cloud-fog nodes assist in making the right decision for users to access the most

suitable charging service in near-real time [22], [23].

This research also endeavors to confront the uncertainty surrounding the remaining
range of EVs. To achieve this, an ensemble-based ML model will be developed, capable
of accurately estimating the remaining range of EVs under various driving conditions
and environmental factors. This precise estimation will be integrated into the proposed
matching algorithm, which aims to prioritize EVs in need of charge based on their
estimated remaining range. By incorporating this precise estimation into the algorithm,
we can effectively identify and prioritize EVs with shorter remaining range, thereby
alleviating their heightened range anxiety and ensuring efficient utilization of charging

resources.

ML is a part of Artificial Intelligence (AI) that has changed many different industries
by using data to make smart predictions. When it comes to EVs, ML plays a pivotal
role in developing models adept at accurately predicting several parameters related to
EVs such as energy consumption prediction, traffic congestion prediction, vehicle range
prediction, etc. Regarding EV range prediction, these models analyze diverse factors
such as battery health, driving history, environmental conditions like weather and traf-
fic, drive cycle patterns (including speed profiles, braking, and acceleration frequency),
battery temperature, and auxiliary power usage (e.g., air conditioning, lighting, horn
usage). By synthesizing these multifaceted variables, ML models provide precise esti-
mations of the remaining range of EVs without requiring recharging [24-26]. Indeed,
EV range estimation is a complex problem influenced by numerous variables and this

ML approach aims to capture these intricacies [27, 28].

In the realm of EV range prediction, the utilization of big data holds significant im-
portance for building robust models. Hence, this study emphasizes the exploitation of
feature engineering and the generation of meaningful features through extensive data
analytics encompassing 35,000 data points, aimed at enhancing the prediction accuracy
of the models. Many contemporary algorithms prioritize the generation and analysis
of extensive datasets to enhance accuracy and performance [29]. With the increasing
proliferation of EVs and the urgent necessity to alleviate range anxiety among EV users,
precise and dependable driving range estimation assumes paramount importance. Big

data facilitates the incorporation of a diverse range of factors, including real-time traffic
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conditions, weather variations, and driver behavior, all of which influence energy con-
sumption and, consequently, the driving range. Leveraging a large dataset empowers
ML models to discern intricate patterns, adapt to dynamic driving scenarios, and furnish

more accurate predictions.

1.3 Major Contributions

The main contributions of this thesis are:

e Proposing a fog-based architecture where charging services are managed in differ-
ent geographical zones to facilitate coordination and information exchange during
the charging matching process. This is significant because in suburban and rural
areas charging services may sporadically exist. Therefore, fog nodes that are close
to the charging service can coordinate the exchanging of energy between adja-
cent zones and control the excess or shortage of energy in each zone in order to

maximize the number of charged EVs resulting in reducing range anxiety.

e Developing an approach for optimizing EV charging services through a novel
matching algorithm and addressing various practical scenarios. The algorithm
is based on cooperation between SEVs, FCSs, HCSs, and MCSs and considers
available charging services to achieve optimal matching for charging DEVs. It se-
lects the most suitable charging spot while considering constraints such as distance
and availability, thereby minimizing DEV costs while maximizing charging rates.
Furthermore, the proposed approach addresses practical scenarios based on the

number of DEVs and available charging services in each zone.

e Developing a mechanism that reduces the waiting time for DEVs to be charged
by considering the maximum capacity of each charging service. Waiting time is
an essential factor that should be reduced during the matching process. Decreas-
ing this time brings about decreasing cost for the DEVs as well as increases the

satisfaction of users.

e Integrating the ML techniques to accurately predict EV range utilized for priori-
tizing DEVs during the matching algorithm, thereby reducing range anxiety and
facilitating EV adoption. By considering factors like tire type, road condition,
and driving style, the study enhances prediction reliability. Diverse ML models
are employed and CV employment ensures robust evaluation. Utilizing a large
dataset, real-world experiments demonstrate practical applicability, while scala-

bility is enhanced by incorporating data from various EV models.
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1.4 Publication

Published

e Hosseini, S. and Yassine, A., 2022, December. A novel V2V charging scheme to
optimize cost and alleviate range anxiety. In 2022 IEEE Electrical Power and
Energy Conference (EPEC) (pp. 354-359). IEEE.

e Hosseini, S., Yassine, A. and Akilan, T., 2024, March. Ensemble-Based Robust
Model for Accurate Driving Range Estimation of EVs Leveraging Big Data. In
2024 IEEE 8th Energy Conference (ENERGYCON) (pp. 1-6). IEEE.
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1.5 Organization

This thesis is organized as follows:

e Chapter 1: Introduction -This chapter provides an overview of the thesis, outlining

its scope and key aspects.

e Chapter 2: Background and Related Work - This chapter offers brief descriptions
of fundamental concepts essential for understanding the thesis. It covers topics
such as V2V energy trading, bidirectional energy transfer capability in EVs, the
Hungarian matching algorithm, non-sequential regression ML model, and K-fold
CV. Additionally, it provides summaries of related work in the field, including V2V

energy trading in smart grids and recent EV remaining range prediction studies.

e Chapter 3: System model and problem formulation - This chapter presents the
overall architecture of the proposed system model. This chapter also describes the

formula used in the proposed matching algorithm in our proposed system model.

e Chapter 4: Driving range estimation with ensembled ML model -This chapter fo-
cuses on the development of an ensemble ML model aimed at accurately predicting
the range of EVs. Within the framework of our proposed matching algorithm, we
prioritize EVs requiring charge based on their maximum attainable distance with
their current SoC. Consequently, the ensemble ML model, developed for precise

range prediction, serves as a pivotal tool in prioritizing EVs effectively.

e Chapter 5: Cooperative fog-based en-route EV charging service - This chapter pro-
poses a novel matching algorithm based on Hungarian algorithm. It describes how
multiple charging services collaborate to optimize critical factors while charging
EVs. The chapter elaborates our proposed algorithm, complemented by thorough

discussions on simulation outcomes and numerical results.

e Chapter 6: Conclusion and Future Work - This chapter summarizes the conclusions
drawn from the thesis analysis and suggests potential future extensions to address

current limitations.



Chapter 2

Background and Related Work

In this chapter, we delve into the fundamental concepts utilized in our proposed system,
as outlined in Section 2.1. Following this, we provide a review of existing studies per-
taining to V2V energy trading and the integration of Al for predicting the remaining
range of EVs, as detailed in Section 2.2.

2.1 Background

In this section, we begin by discussing the concept of V2V energy trading, followed by
an exploration of EVs equipped with bidirectional energy transfer capability. Then, we
discuss the Hungarian matching algorithm used as a part of our matching algorithm.
Afterward, we review the concepts related to non-sequential regression ML models and
K-fold CV.

2.1.1 V2V energy trading

The V2V concept revolves around the interaction among EVs, enabling EV owners to
potentially sell their surplus energy to other vehicles to help meet energy demands.
V2V energy exchange can occur anywhere and at any time, offering greater flexibility.
However, effective energy management solutions are still required to efficiently allocate
potential excess energy and fulfill the energy needs of EV users. The motivation for
participating in V2V frameworks varies; EVs in need of energy are primarily driven
by the desire to meet their energy requirements, while those providing energy may be
motivated by monetary rewards or reciprocal altruism [30], [31]. EVs with surplus energy
and available time can exchange energy given that they are adequately compensated.

Moreover, this can be extended to a business model where the energy provider serves
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multiple EVs. Reciprocal altruism is another motivation, where an EV sells its energy
to another EV in need, with the expectation of receiving similar assistance in the future
[12].

Carefully designed mechanisms for intelligent charging and discharging behavior are es-
sential for realizing efficient and effective V2V solutions. Various aspects of the V2V
charging problem must be considered, including users’ privacy, data security, and cost
and profit models, before developing complete V2V solutions. Current research endeav-
ors in V2V solutions tackle a range of challenges, spanning several focal points such as
charging price optimization [32], [33], [34], efficient consumer/provider matching [8], [15],
[35], and user privacy and data security management [36], [37], [38]. The first research
problem focuses on optimizing charging costs for EVs by finding the optimal sched-
ule to reduce charging costs based on forecasted electricity prices while meeting EVs’
charging requirements [32], [34]. The second research problem aims to achieve efficient
and feasible matching between consumers (EV users requesting energy) and providers
(EV users with surplus energy willing to trade for profit), reflecting on factors such as
total charging cost, projected profit, system social welfare, or individual rationality of
EV users [8], [35]. The final research problem concentrates on developing solutions to
protect user privacy and data. Our research focuses on optimizing consumer/provider
matching, where our algorithm carefully weighs charging costs, supplier profits, time,
and charging rates while integrating cutting-edge technologies like Al into the matching

process.

2.1.2 EVs equipped with bidirectional energy transfer capability

EV battery chargers are categorized into on-board and off-board charging systems, with
options for unidirectional or bidirectional power flows [39]. Unidirectional systems are
preferred for their minimal hardware requirements, simplified interconnection, and lower
risks of battery degradation. Conversely, bidirectional systems offer distinct advantages
like power stabilization, Vehicle-to-Grid (V2G) technology integration, and controlled
power conversion. For instance, Level 3 high-power charging systems, especially those
equipped with three-phase bidirectional multilevel converters, are highly favored due to
their numerous benefits, including superior power quality, reduced harmonic distortion,
improved power factor, reduced electromagnetic interference noise, and consistent DC

output voltage [40].

The integration of bidirectional chargers in EVs unlocks various features and benefits,
with a notable emphasis on V2G technology. In V2G scenarios, EV batteries can feed
energy back to the grid during periods of low usage, thereby bolstering grid efficiency
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and stability. This capability enhances overall grid reliability and fosters a more resilient
power infrastructure. Moreover, bidirectional power flow facilitates other applications
such as V2V and Vehicle-to-Home (V2H). In the V2V scenario, local communities of
EVs can be established, allowing for the exchange of energy among vehicles for charging
and discharging purposes. These applications highlight the versatility and potential of
EVs with bidirectional power capabilities in contributing to energy management and
grid stability [40], [41], [42].

Bidirectional charging necessitates both compatible chargers and vehicles capable of
two-way charging. Even with a bidirectional charger equipped with its converter, the
functionality relies on the presence of vehicles capable of utilizing this feature effectively.
Notable examples of EVs equipped with bidirectional transfer capability include the
Nissan Leaf ZE1, Outlander PHEV, Hyundai Ioniq 5, KIA EV6, BYD Atto 3, BYD
Han EV, Ford F-150 Lightning, MG ZS EV (2022), and various VW ID Models. EVs
equipped with bidirectional charging capabilities signify a substantial leap forward in the
convergence of electric transportation and the wider energy ecosystem. Beyond merely
consuming electricity, these vehicles play a dual role by also bolstering grid resilience,
presenting diverse applications ranging from serving as backup power sources to actively

engaging in demand response initiatives.

The V2V capability can be realized with a bidirectional wireless charging system, wherein
the charger can transfer power from an energy source to a load, as well as from the bat-
tery load to the charging coil of another EV [41].Various methodologies for V2V wireless
power transfer are explored in [43], [44]. In wired connections for V2V power transfer,
both AC and DC charging equipment are utilized to charge an EV battery through
V2V operations. The conventional method involves AC V2V charging, necessitating
EVs equipped with on-board chargers and involving multiple conversion stages [32],
[45]. However, DC V2V charging is also feasible, employing either on-board [46], [47] or
off-board [48], [49] charging systems for EVs [50].

2.1.3 Hungarian Matching algorithm

In his renowned paper titled, The Hungarian method for the assignment problem [51],
Harold W. Kuhn introduced an algorithm for constructing a maximum weight perfect
matching in a bipartite graph. Kuhn charmingly recounts in his memoirs how the
insights of two Hungarian mathematicians, D. K ionig and E. Egerv iary, dating back to
1931, inspired the development of his algorithm, which he aptly named the Hungarian
method [52].
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The assignment problem, also known as the maximum weighted bipartite matching
problem, is an extensively studied problem with applications in various domains [53].
It can be defined as follows: given a group of workers, a set of jobs, and a series of
ratings indicating each worker’s suitability for each job, the objective is to determine

the optimal assignment of workers to jobs, maximizing the total rating [54].

The Hungarian algorithm solves the assignment problem in O(n?) time, where n is the
size of one partition of the bipartite graph. Existing algorithms for solving the assign-
ment problem assume the existence of a matrix of edge weights w;; or costs ¢;;, and
the problem is addressed based on these values. In cases where the sizes of the two
partitions of the graph are unequal, a common strategy involves inserting dummy nodes
with zero-weight edges to all nodes in the opposing partition [55]. Consequently, the
Hungarian algorithm consistently yields a complete matching, although this matching
may include zero-weight edges, representing no assignment. Each step of the Hungarian
algorithm requires O(n?) arithmetic operations, and with the appropriate data struc-
tures, the computational complexity of the entire algorithm across n stages is O(n?).
The Hungarian algorithm is provably complete and optimal [56]. We integrate the Hun-
garian algorithm into our proposed matching algorithm, and its details are outlined in
Algorithm 1. This algorithm aims to match the entities of task 1 with those of task 2.
For instance, it facilitates matching between a set of jobs (task 1) and a set of employees
(task 2) [56].

2.1.4 Non-sequential Regression ML models

Recently, the utilization of ML has surged across various scientific domains, offering
automated exploration of concealed patterns or correlations within datasets. This trend
has notably extended to fields like nondestructive testing, objective detection, time
series prediction, pattern recognition, and both classification and regression, thereby
presenting an appealing alternative to minimize manual labor across diverse domains
[57]. Among these, classification and regression stand ou