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Abstract

In the emergence of greener transportation, Electric Vehicles (EVs) play an important

role, expected to outnumber conventional vehicles in the near future. However, the

installation of Fixed Charging Stations (FCSs) is not keeping up with the increased

demand, especially outside urban centers. Such a challenge is prohibiting many users

from owning EVs because of range anxiety. This thesis proposes a novel cooperative

mechanism where EVs can access charging services such as Vehicle-to-Vehicle (V2V)

charging schemes, private smart Home Charging Station (HCS), or Mobile Charging

Station (MCS) to complement existing FCS services in certain regions. To this end, the

proposed mechanism divides each region into geographically distributed zones managed

by cloud-fog nodes for charging service coordination. In each zone, we employ the Hun-

garian matching algorithm to optimally match EVs with the available charging services.

Unlike recent approaches that establish a one-to-one matching between supplier EVs and

demanding EVs, our mechanism matches multiple demanding EVs to charging services

with a larger capacity to maximize the service offering. Comparing results with exist-

ing studies shows that our model outperforms prior approaches across critical factors.

Furthermore, our proposed matching algorithm prioritizes EVs requiring charge based

on their maximum travel range given their current State of Charge (SoC). To address

the challenge of accurately estimating EV driving range, we introduce an ensemble-

based Machine Learning (ML) model offering a compelling solution for enhancing the

estimation of EV driving range for practical applications.
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Chapter 1

Introduction

The rapid growth of urbanization and the expansion of the social economy have led

to a sharp increase in the number of vehicles in cities. Due to a lack of capacity,

however, roadways become congested, which causes a number of problems, such as traffic

accidents and environmental pollution [1]. In this evolving landscape, EVs are poised

to emerge as the primary choice for transportation, gradually replacing conventional

Internal Combustion Engine (ICE) vehicles [2]. EVs offer numerous advantages over

their ICE counterparts, including the utilization of renewable energy sources, reduced

dependence on fossil fuels, and zero Greenhouse Gas (GHG) emissions [3]. Indeed, given

the urgent and growing concern of global warming, EVs, through harnessing renewable

energy reservoirs, play a critical role in reducing GHG emissions, thereby combating

the adverse impacts of climate change [3, 4]. The utilization of renewable energy not

only helps mitigate the environmental footprint of transportation but also fosters energy

security and independence by reducing dependence on volatile fossil fuel markets.

As a result, EVs have attracted a surge in attention from both industrial stakeholders

and academic researchers. Their potential to revolutionize transportation by offering

cleaner, more sustainable alternatives to traditional ICE vehicles has spurred innovation

and investment in the EV sector. Furthermore, the expanding EV market has stim-

ulated advancements in battery technology, charging infrastructure, and energy man-

agement systems, driving down costs and improving performance. As societies embrace

a greener, more sustainable future, EVs stand poised to play a pivotal role in driving

this transformative shift toward cleaner, more environmentally friendly transportation

systems. Their widespread adoption represents not only a technological evolution but

also a fundamental reimagining of how we move people and goods in a manner that is

both ecologically responsible and economically viable.
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Looking toward the future, the trajectory of EV adoption appears promising. Projec-

tions suggest that by 2030, there could be approximately 250 million EVs available

annually, driven by national goals and increasing consumer demand [2]. The prolifer-

ation of EVs is expected to play a pivotal role in addressing climate change, as they

employ renewable energy sources to reduce GHG emissions [3], [4].

In response to these evolving dynamics, governments worldwide are rolling out policies

aimed at accelerating the transition to EVs. Nations such as Canada, the UK, and the

United States have set forth ambitious targets to phase out ICE vehicles and incentivize

the adoption of zero-emission alternatives [2, 5, 6]. Furthermore, proactive measures like

China’s decision to halt new investments in ICE production underscore a palpable shift

towards the widespread adoption of EVs [2, 5, 6].

The International Energy Agency (IEA) envisions a rapid expansion in the deployment of

EVs across global transportation networks, with expectations of a substantial reduction

in carbon emissions by the year 2050 [3]. This impending transformation holds the

promise of delivering significant benefits for power grid economics, fostering heightened

resilience, reliability, and sustainability [6].

1.1 Technical Challenges and Motivations

Although EVs are becoming more popular, the widespread adoption of EVs faces sig-

nificant obstacles. In the following, we will outline some of the technical challenges and

discuss the motivations behind addressing them. These challenges include range limi-

tations, extended charging times, and limited accessibility to FCSs [7–9]. Overcoming

these challenges will be crucial in realizing the full potential of EVs as a greener and

more sustainable mode of transportation.

Range anxiety, the concern that EV batteries may not provide sufficient range for desired

travel distances, stands as a major deterrent to widespread EV adoption. Despite offering

several incentives to entice people to purchase EVs, many users are still hesitant to buy

EVs because of range anxiety, while the price of higher-range EVs is beyond the reach of

average users [10]. This concern is particularly pronounced in rural and highway areas

where charging infrastructure is sparse, leaving drivers uneasy about their EV’s range

capabilities.

Addressing range anxiety necessitates the development of a robust and accessible charg-

ing infrastructure, crucial for accelerating EV adoption [10]. Additionally, to facilitate

the transition to EVs, electrical utility firms must invest in upgrading their network
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infrastructure and generation capacity [11], [10]. By reinforcing the resilience and relia-

bility of the power grid, such investments can support the seamless integration of EVs

into the transportation ecosystem, thereby fostering sustainability and reducing carbon

emissions.

To mitigate this range anxiety, it is essential to address two contributing factors that

exacerbate this concern. Firstly, there is an issue with the inadequate and uneven

availability of FCSs. Secondly, there is uncertainty surrounding the remaining range of

EVs, which intensifies anxiety among EV owners to rely on EV batteries over the long

term.

In the case of the former, a swift and effective solution involves the widespread de-

ployment of FCSs throughout the entire nation. However, the deployment of FCSs is

currently constrained to urban areas, where users often encounter long waiting times for

EV charging [12]. In rural and remote regions, the range anxiety issue is exacerbated

due to the high installation expenses associated with FCSs, extended travel distances,

and inadequate electrical grid coverage. Nevertheless, the substantial upfront costs and

the geographic remoteness of these areas may render the development of FCS networks

challenging and potentially unprofitable [10].

Furthermore, relying solely on FCSs presents several challenges, including high instal-

lation costs and geographical constraints that may hinder network expansion, possibly

making such efforts economically impractical. Moreover, the widespread deployment of

FCSs has implications for electricity distribution systems, potentially inducing new peak

loads and compromising power quality [13], [14], [15]. This could lead to power outages,

increased recharging demands, and undesirable harmonic distortions, all of which pose

risks to system reliability and efficiency [11], [10].

On the other hand, addressing the latter challenge, uncertainty in the remaining range

of EVs, research aims to explore advanced methods for accurately predicting the driving

range of EVs. Achieving a high level of predictive accuracy is paramount to instill con-

fidence in EV drivers, allowing them to plan their journeys with certainty and rendering

range anxiety a thing of the past. Concurrently, the precise prediction of EV driving

range has emerged as a pivotal research domain, given its significant implications for

vehicle usability and efficiency. This is precisely where ML models step into the forefront

of research [16].
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1.2 Research Approach

This study aims to tackle the technical challenges outlined earlier. This begins with

developing a suite of auxiliary technologies to bolster FCSs networks. One promising

solution involves exploring the bidirectional energy transfer capabilities of EVs, particu-

larly through V2V technology. This innovative concept allows for the exchange of energy

between EVs equipped with bidirectional energy transfer capabilities, such as the Ford

150 Lightning, effectively transforming them into mobile energy sources and reducing

dependence on fixed charging infrastructure [13, 17]. In practical terms, when an EV

faces a low charge and no nearby FCSs are available, a second EV with a surplus charge

can step in to provide the required energy through V2V technology [7]. As a result, V2V

technology emerges as a pivotal advancement towards realizing a highly secure and effi-

cient Intelligent Transportation System (ITS) [18–20]. By empowering EVs to function

as independent energy providers, detached from fixed charging infrastructure and grid

connections, V2V technology fosters the development of a viable commercial ecosys-

tem. This becomes particularly pertinent in scenarios where establishing permanent

infrastructure proves economically unfeasible [10, 21].

The practical implementation of V2V charging offers mutual benefits to both EVs with

charging needs, known as Demanding Charge EVs (DEVs), and those with excess charge,

referred to as Supplying Power EVs (SEVs). These benefits include seamless energy

transfer, reduced energy consumption when traveling to remote FCSs, and substantial

energy trading opportunities [11]. Furthermore, V2V mode provides greater temporal

flexibility, alleviating concerns about extended waiting times at FCSs [3, 4].

Similar to V2V, MCSs are also gaining attraction as a charging service for roadside as-

sistance making it a viable cost-effective and feasible alternative where charging stations

are not within reach [10], [21]. Indeed, V2V and MCSs bring flexibility and eliminate

the problem of prolonged charging times at FCSs [3], [4]. Such features make V2V and

MCSs an efficient highly secure technology for the future ITS [18], [19], [20].

This work innovative mechanisms whereby different EV charging options co-exist to

help users eliminate range anxiety and maximize their benefits. In reality, while V2V

technology holds promise, relying solely on it may not fully supplant fixed on-route

charging service providers like FCSs to accommodate the growing EV adoption. As

a response, our research introduces a model that integrates V2V with other charging

services, including smart homes equipped with charging stations and charging service

providers termed as HCS, along with MCSs.

One of the main challenges in this model is how to effectively match DEVs with the

available charging services from HCSs, FCSs, SEVs, and MCSs. This study proposes a
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novel matching mechanism where EVs utilize V2V, FCS, HCS, and MCS in a cooperative

fashion to supply the required charging service. The proposed mechanism divides the

available charging services into geographically distributed zones, and then employs a

Hungarian matching algorithm to optimally match EVs with the available charging

services. To facilitate the service seamlessly, we propose a cloud-based architecture

where cloud-fog nodes assist in making the right decision for users to access the most

suitable charging service in near-real time [22], [23].

This research also endeavors to confront the uncertainty surrounding the remaining

range of EVs. To achieve this, an ensemble-based ML model will be developed, capable

of accurately estimating the remaining range of EVs under various driving conditions

and environmental factors. This precise estimation will be integrated into the proposed

matching algorithm, which aims to prioritize EVs in need of charge based on their

estimated remaining range. By incorporating this precise estimation into the algorithm,

we can effectively identify and prioritize EVs with shorter remaining range, thereby

alleviating their heightened range anxiety and ensuring efficient utilization of charging

resources.

ML is a part of Artificial Intelligence (AI) that has changed many different industries

by using data to make smart predictions. When it comes to EVs, ML plays a pivotal

role in developing models adept at accurately predicting several parameters related to

EVs such as energy consumption prediction, traffic congestion prediction, vehicle range

prediction, etc. Regarding EV range prediction, these models analyze diverse factors

such as battery health, driving history, environmental conditions like weather and traf-

fic, drive cycle patterns (including speed profiles, braking, and acceleration frequency),

battery temperature, and auxiliary power usage (e.g., air conditioning, lighting, horn

usage). By synthesizing these multifaceted variables, ML models provide precise esti-

mations of the remaining range of EVs without requiring recharging [24–26]. Indeed,

EV range estimation is a complex problem influenced by numerous variables and this

ML approach aims to capture these intricacies [27, 28].

In the realm of EV range prediction, the utilization of big data holds significant im-

portance for building robust models. Hence, this study emphasizes the exploitation of

feature engineering and the generation of meaningful features through extensive data

analytics encompassing 35,000 data points, aimed at enhancing the prediction accuracy

of the models. Many contemporary algorithms prioritize the generation and analysis

of extensive datasets to enhance accuracy and performance [29]. With the increasing

proliferation of EVs and the urgent necessity to alleviate range anxiety among EV users,

precise and dependable driving range estimation assumes paramount importance. Big

data facilitates the incorporation of a diverse range of factors, including real-time traffic
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conditions, weather variations, and driver behavior, all of which influence energy con-

sumption and, consequently, the driving range. Leveraging a large dataset empowers

ML models to discern intricate patterns, adapt to dynamic driving scenarios, and furnish

more accurate predictions.

1.3 Major Contributions

The main contributions of this thesis are:

• Proposing a fog-based architecture where charging services are managed in differ-

ent geographical zones to facilitate coordination and information exchange during

the charging matching process. This is significant because in suburban and rural

areas charging services may sporadically exist. Therefore, fog nodes that are close

to the charging service can coordinate the exchanging of energy between adja-

cent zones and control the excess or shortage of energy in each zone in order to

maximize the number of charged EVs resulting in reducing range anxiety.

• Developing an approach for optimizing EV charging services through a novel

matching algorithm and addressing various practical scenarios. The algorithm

is based on cooperation between SEVs, FCSs, HCSs, and MCSs and considers

available charging services to achieve optimal matching for charging DEVs. It se-

lects the most suitable charging spot while considering constraints such as distance

and availability, thereby minimizing DEV costs while maximizing charging rates.

Furthermore, the proposed approach addresses practical scenarios based on the

number of DEVs and available charging services in each zone.

• Developing a mechanism that reduces the waiting time for DEVs to be charged

by considering the maximum capacity of each charging service. Waiting time is

an essential factor that should be reduced during the matching process. Decreas-

ing this time brings about decreasing cost for the DEVs as well as increases the

satisfaction of users.

• Integrating the ML techniques to accurately predict EV range utilized for priori-

tizing DEVs during the matching algorithm, thereby reducing range anxiety and

facilitating EV adoption. By considering factors like tire type, road condition,

and driving style, the study enhances prediction reliability. Diverse ML models

are employed and CV employment ensures robust evaluation. Utilizing a large

dataset, real-world experiments demonstrate practical applicability, while scala-

bility is enhanced by incorporating data from various EV models.
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optimize cost and alleviate range anxiety. In 2022 IEEE Electrical Power and

Energy Conference (EPEC) (pp. 354-359). IEEE.
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1.5 Organization

This thesis is organized as follows:

• Chapter 1: Introduction -This chapter provides an overview of the thesis, outlining

its scope and key aspects.

• Chapter 2: Background and Related Work - This chapter offers brief descriptions

of fundamental concepts essential for understanding the thesis. It covers topics

such as V2V energy trading, bidirectional energy transfer capability in EVs, the

Hungarian matching algorithm, non-sequential regression ML model, and K-fold

CV. Additionally, it provides summaries of related work in the field, including V2V

energy trading in smart grids and recent EV remaining range prediction studies.

• Chapter 3: System model and problem formulation - This chapter presents the

overall architecture of the proposed system model. This chapter also describes the

formula used in the proposed matching algorithm in our proposed system model.

• Chapter 4: Driving range estimation with ensembled ML model -This chapter fo-

cuses on the development of an ensemble ML model aimed at accurately predicting

the range of EVs. Within the framework of our proposed matching algorithm, we

prioritize EVs requiring charge based on their maximum attainable distance with

their current SoC. Consequently, the ensemble ML model, developed for precise

range prediction, serves as a pivotal tool in prioritizing EVs effectively.

• Chapter 5: Cooperative fog-based en-route EV charging service - This chapter pro-

poses a novel matching algorithm based on Hungarian algorithm. It describes how

multiple charging services collaborate to optimize critical factors while charging

EVs. The chapter elaborates our proposed algorithm, complemented by thorough

discussions on simulation outcomes and numerical results.

• Chapter 6: Conclusion and Future Work - This chapter summarizes the conclusions

drawn from the thesis analysis and suggests potential future extensions to address

current limitations.
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Chapter 2

Background and Related Work

In this chapter, we delve into the fundamental concepts utilized in our proposed system,

as outlined in Section 2.1. Following this, we provide a review of existing studies per-

taining to V2V energy trading and the integration of AI for predicting the remaining

range of EVs, as detailed in Section 2.2.

2.1 Background

In this section, we begin by discussing the concept of V2V energy trading, followed by

an exploration of EVs equipped with bidirectional energy transfer capability. Then, we

discuss the Hungarian matching algorithm used as a part of our matching algorithm.

Afterward, we review the concepts related to non-sequential regression ML models and

K-fold CV.

2.1.1 V2V energy trading

The V2V concept revolves around the interaction among EVs, enabling EV owners to

potentially sell their surplus energy to other vehicles to help meet energy demands.

V2V energy exchange can occur anywhere and at any time, offering greater flexibility.

However, effective energy management solutions are still required to efficiently allocate

potential excess energy and fulfill the energy needs of EV users. The motivation for

participating in V2V frameworks varies; EVs in need of energy are primarily driven

by the desire to meet their energy requirements, while those providing energy may be

motivated by monetary rewards or reciprocal altruism [30], [31]. EVs with surplus energy

and available time can exchange energy given that they are adequately compensated.

Moreover, this can be extended to a business model where the energy provider serves
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multiple EVs. Reciprocal altruism is another motivation, where an EV sells its energy

to another EV in need, with the expectation of receiving similar assistance in the future

[12].

Carefully designed mechanisms for intelligent charging and discharging behavior are es-

sential for realizing efficient and effective V2V solutions. Various aspects of the V2V

charging problem must be considered, including users’ privacy, data security, and cost

and profit models, before developing complete V2V solutions. Current research endeav-

ors in V2V solutions tackle a range of challenges, spanning several focal points such as

charging price optimization [32], [33], [34], efficient consumer/provider matching [8], [15],

[35], and user privacy and data security management [36], [37], [38]. The first research

problem focuses on optimizing charging costs for EVs by finding the optimal sched-

ule to reduce charging costs based on forecasted electricity prices while meeting EVs’

charging requirements [32], [34]. The second research problem aims to achieve efficient

and feasible matching between consumers (EV users requesting energy) and providers

(EV users with surplus energy willing to trade for profit), reflecting on factors such as

total charging cost, projected profit, system social welfare, or individual rationality of

EV users [8], [35]. The final research problem concentrates on developing solutions to

protect user privacy and data. Our research focuses on optimizing consumer/provider

matching, where our algorithm carefully weighs charging costs, supplier profits, time,

and charging rates while integrating cutting-edge technologies like AI into the matching

process.

2.1.2 EVs equipped with bidirectional energy transfer capability

EV battery chargers are categorized into on-board and off-board charging systems, with

options for unidirectional or bidirectional power flows [39]. Unidirectional systems are

preferred for their minimal hardware requirements, simplified interconnection, and lower

risks of battery degradation. Conversely, bidirectional systems offer distinct advantages

like power stabilization, Vehicle-to-Grid (V2G) technology integration, and controlled

power conversion. For instance, Level 3 high-power charging systems, especially those

equipped with three-phase bidirectional multilevel converters, are highly favored due to

their numerous benefits, including superior power quality, reduced harmonic distortion,

improved power factor, reduced electromagnetic interference noise, and consistent DC

output voltage [40].

The integration of bidirectional chargers in EVs unlocks various features and benefits,

with a notable emphasis on V2G technology. In V2G scenarios, EV batteries can feed

energy back to the grid during periods of low usage, thereby bolstering grid efficiency
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and stability. This capability enhances overall grid reliability and fosters a more resilient

power infrastructure. Moreover, bidirectional power flow facilitates other applications

such as V2V and Vehicle-to-Home (V2H). In the V2V scenario, local communities of

EVs can be established, allowing for the exchange of energy among vehicles for charging

and discharging purposes. These applications highlight the versatility and potential of

EVs with bidirectional power capabilities in contributing to energy management and

grid stability [40], [41], [42].

Bidirectional charging necessitates both compatible chargers and vehicles capable of

two-way charging. Even with a bidirectional charger equipped with its converter, the

functionality relies on the presence of vehicles capable of utilizing this feature effectively.

Notable examples of EVs equipped with bidirectional transfer capability include the

Nissan Leaf ZE1, Outlander PHEV, Hyundai Ioniq 5, KIA EV6, BYD Atto 3, BYD

Han EV, Ford F-150 Lightning, MG ZS EV (2022), and various VW ID Models. EVs

equipped with bidirectional charging capabilities signify a substantial leap forward in the

convergence of electric transportation and the wider energy ecosystem. Beyond merely

consuming electricity, these vehicles play a dual role by also bolstering grid resilience,

presenting diverse applications ranging from serving as backup power sources to actively

engaging in demand response initiatives.

The V2V capability can be realized with a bidirectional wireless charging system, wherein

the charger can transfer power from an energy source to a load, as well as from the bat-

tery load to the charging coil of another EV [41].Various methodologies for V2V wireless

power transfer are explored in [43], [44]. In wired connections for V2V power transfer,

both AC and DC charging equipment are utilized to charge an EV battery through

V2V operations. The conventional method involves AC V2V charging, necessitating

EVs equipped with on-board chargers and involving multiple conversion stages [32],

[45]. However, DC V2V charging is also feasible, employing either on-board [46], [47] or

off-board [48], [49] charging systems for EVs [50].

2.1.3 Hungarian Matching algorithm

In his renowned paper titled, The Hungarian method for the assignment problem [51],

Harold W. Kuhn introduced an algorithm for constructing a maximum weight perfect

matching in a bipartite graph. Kuhn charmingly recounts in his memoirs how the

insights of two Hungarian mathematicians, D. K Ìonig and E. Egerv Ìary, dating back to

1931, inspired the development of his algorithm, which he aptly named the Hungarian

method [52].
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The assignment problem, also known as the maximum weighted bipartite matching

problem, is an extensively studied problem with applications in various domains [53].

It can be defined as follows: given a group of workers, a set of jobs, and a series of

ratings indicating each worker’s suitability for each job, the objective is to determine

the optimal assignment of workers to jobs, maximizing the total rating [54].

The Hungarian algorithm solves the assignment problem in O(n3) time, where n is the

size of one partition of the bipartite graph. Existing algorithms for solving the assign-

ment problem assume the existence of a matrix of edge weights wij or costs cij , and

the problem is addressed based on these values. In cases where the sizes of the two

partitions of the graph are unequal, a common strategy involves inserting dummy nodes

with zero-weight edges to all nodes in the opposing partition [55]. Consequently, the

Hungarian algorithm consistently yields a complete matching, although this matching

may include zero-weight edges, representing no assignment. Each step of the Hungarian

algorithm requires O(n2) arithmetic operations, and with the appropriate data struc-

tures, the computational complexity of the entire algorithm across n stages is O(n3).

The Hungarian algorithm is provably complete and optimal [56]. We integrate the Hun-

garian algorithm into our proposed matching algorithm, and its details are outlined in

Algorithm 1. This algorithm aims to match the entities of task 1 with those of task 2.

For instance, it facilitates matching between a set of jobs (task 1) and a set of employees

(task 2) [56].

2.1.4 Non-sequential Regression ML models

Recently, the utilization of ML has surged across various scientific domains, offering

automated exploration of concealed patterns or correlations within datasets. This trend

has notably extended to fields like nondestructive testing, objective detection, time

series prediction, pattern recognition, and both classification and regression, thereby

presenting an appealing alternative to minimize manual labor across diverse domains

[57]. Among these, classification and regression stand out as specific forms of prediction

and represent core research directions in ML, statistics, and data mining. In regression

tasks, the primary objective is to train a model using available data to map inputs to

corresponding output values, thereby facilitating predictions [58].

ML typically falls into two primary categories: predictive or supervised learning, and

descriptive or unsupervised learning methodologies [59]. The following subsections offer

a concise explanation of both categories.
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Algorithm 1 Hungarian Matching Algorithm
Inputs :
1. Define the set of task 1 as M = {1, 2, ...,m} and the set of task 2 as N={1, 2, ..., n}.
2. Generate an n×m matrix known as the cost matrix. Each element in this matrix denotes the
cost associated with assigning a member from the task 1 set to a member from the task 2 set.
3. if n ̸= m then

3.1 Add columns or rows of zeros to the cost matrix so that there are at least as many
columns as rows.
3.2 Update m and n values.

end if
Steps :
1. for each, i ∈M do

Subtract the lowest row value from each row.
end for
2. for each, j ∈ N do

Subtract the lowest column value from each column.
end for
3. Cover the zeros with as few lines as possible.
3.1 if Number of Lines= Max(m,n) then

Go to Step 4.
else

3.2 Find the minimum number of the cells that are uncovered.
3.3 subtract that value from all uncovered cells.
3.4 Add that number to the cells wherever two lines intersect.

end if
4. Assignment of Zeros Sub-Algorithm
4.1 for each, i ∈M do

if a row has exactly one zero then
Assign it

else
leave the row for now

end if
4.2 If a cell has been assigned, close the row and column.
4.3 for each, j ∈ N do

if a column has exactly one zero then
Assign it

else
leave the column for now

end if
4.4 If a cell has been assigned, close the row and column.

end for

end for
Output:
Final optimal assignment between members of task 1 and task 2 sets.

1
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2.1.4.1 Supervised Machine Learning

Supervised ML, a widely employed technique, relies on guidance from a teacher or su-

pervisor who provides precise error measurements. These measurements aid in adjusting

parameters iteratively to minimize a global loss function. The process involves learning

a mapping function from input variables to an output variable, using labeled examples

from a dataset. The goal is to achieve accurate approximations of the mapping func-

tion for generalization to unseen samples. Supervised learning encompasses regression,

focusing on predicting continuous values, and classification, which involves categorizing

output variables [59].

2.1.4.2 Unsupervised Machine Learning

Unsupervised learning is distinguished by the absence of a supervisor, contrasting with

supervised learning, which relies on a supervisor and an objective function for learning

guidance. Algorithms in unsupervised learning autonomously explore data structures

without predefined correct answers. The dataset comprises unlabeled examples, where

each example is represented by a feature vector. The aim of unsupervised learning is to

develop models that transform feature vectors into useful values or vectors for practical

problem-solving, aiming to uncover interesting patterns within the data, a process known

as knowledge discovery. Unlike supervised learning, there are no prescribed patterns to

identify, and no explicit error metric to assess performance, making it a less well-defined

problem. Unsupervised learning problems encompass clustering, which identifies natural

groupings within data, and association learning, which uncovers insights, relationships,

and frequent patterns among different objects in the dataset, such as rules indicating

associations between items in transactional data [59].

2.1.5 K-fold Cross-Validation

K-fold Cross-Validation (CV) is one of the most common techniques for model evalu-

ation and selection in ML practice. It uses a combination of multiple tests to obtain

a stable estimate of the model error. This technique is particularly useful when there

is not enough data for a hold-out CV. The available learning set is partitioned into k

disjoint subsets of approximately equal size, where each subset is referred to as a fold.

This partitioning is done by randomly sampling cases from the learning set without

replacement. The model is trained using k− 1 subsets, collectively forming the training

set, and then applied to the remaining subset, denoted as the validation set, to measure

its performance. This process is repeated until each of the k subsets has been used as a
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validation set, ensuring that no two test sets overlap. The average of the k performance

measurements on the validation sets yields the cross-validated performance. Algorithm

2 provides a detailed description of this method [59], [60].

Algorithm 2 K-fold CV
Inputs :
dataset T , number of folds k, performance function error, computational models L1, . . . , Lm,
m ≥ 1.
Steps :
1. Divide T into k disjoint subsets T1, . . . , Tk of the same size.
2. for i = 1, . . . , k do

2.1 Tv ← Ti, Ttr ← {T − Ti}.
2.2 for j = 1, . . . ,m do

Train model Lj on Ttr and periodically use Tv to assess the model performance: Ev
j (i) =

error(Lj(Tv)).
Stop training when a stop-criterion based on Ev

j (i) is satisfied.

end for

end for
3. for j = 1, . . . ,m do

evaluate the performance of the models by: Ev
j = 1

k

∑k
i=1 E

v
j (i).

end for
2

As error measure functions, some of the common metrics used include Mean Squared

Error (MSE), which quantifies the average squared difference between predicted and

actual values; Root Mean Squared Error (RMSE), the square root of MSE, providing

a measure of error magnitude; Mean Absolute Error (MAE), calculating the average

absolute difference between predicted and actual values; and R-Squared (R2) Score,

indicating the proportion of variance in the dependent variable predictable from the

independent variable. The following equations represent the formulas for these error

metrics.

Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)

Root Mean Squared Error (RMSE):

RMSE =
√
MSE (2.2)

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.3)
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R-squared (R2) Score:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.4)

where n is the number of observations or data points, yi represents the actual observed

value for the ith data point, ŷi represents the predicted value for the ith data point, and

ȳ represents the mean of the observed values yi for all data points.

2.2 Literature Review

The literature contains numerous studies focusing on V2V energy trading systems, with

particular attention given to the development of energy management protocols aimed at

optimizing and regulating charging decisions for pairs of SEVs and DEVs. Furthermore,

as highlighted earlier, accurately predicting an EV’s remaining driving range is crucial

for alleviating range anxiety among drivers. To tackle this challenge, several research

efforts have concentrated on devising methods to estimate EV driving range using ML

models. For clarity, we categorize this section into two subsections: V2V energy trading

in smart grids and EV Remaining Range Prediction, where we provide detailed insights

into relevant works for each subsection.

2.2.1 V2V Energy Trading in Smart Grids

This subsection sheds light on the most significant related studies, highlights the main

shortcomings, and provides a comparison with the proposed work on V2V energy trading

in this thesis.

Authors in [33] present a communication framework based on VANETs, along with

two mathematical models and an optimization-based V2V charging strategy. They use

a distributed parking place reservation and centralized charging-discharging matching

scheme, as a first-come first-served technique, to reduce charging costs, improve energy

exchange efficiency, and coordinate the movement of EVs. However, the study falls

short in addressing the problem of maximizing the rate of charged EVs. The study in

[3] suggests a two-layer matching approach for a practical V2V optimization model. It

employs the Gale-Shapley game to produce stable matching between EVs and devises a

user satisfaction model to efficiently select EV pairs that obtain high user satisfaction.

The study considers aspects such as invested time, user satisfaction, system energy

efficiency, and social welfare, as well as the cost and profit of EV users. In [15] and [35],

researchers provide a flexible V2V matching algorithm-based energy management plan
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that incorporates various V2V matching algorithms, such as a weighted bipartite graph,

max-weight, and stable algorithms, to achieve some objectives, such as maximizing social

welfare and minimizing costs, by employing a weighted bipartite graph. This work,

however, does not consider nearby charging stations and only considers a specific case

of V2V energy trading where the number of DEVs and SEVs is equal. The work in [36]

suggests utilizing bichromatic mutual nearest neighbor assignments to efficiently match

consumer EVs with supplier EVs using V2V technology while maintaining privacy. The

matching algorithm assigns participants in a way that satisfies all parties involved in the

dynamic environment by allowing users to join or leave. The algorithm aims to decrease

the average user waiting time until they are matched.

An innovative energy trading strategy between two pairs of EVs is suggested in [34]

predicting the daily schedule and travels of a synthetic population for Flanders (Belgium)

using an activity-based approach, which greatly decreases the effect of the charging

process on the power system and benefits financially all users participating in the trading

process. Other studies such as [21], [61], and [32] have concentrated on developing

charging as well as energy management protocols based on using V2V along with vehicle-

to-other charging services to regulate and optimize the charging of EVs. The authors in

[32] suggest an offline optimal Mixed Integer Programming which validates the efficacy

of employing optimal EV charging schedule strategy with the choice of V2G and V2V

energy transfer. The strategy of energy transfer aims at enhancing energy utilization

and improving customer satisfaction. The work in [62] proposes an adaptive learning

approach for grid-connected charging station optimization, showing robust performance

in simulations under diverse conditions, including stochastic arrival/departure times and

various pricing models, with consideration for solar energy production. However, they

do not focus on charging costs and the rate of charging EVs.

Parallel to the studies mentioned above, several research efforts emphasize on mitigating

range anxiety by increasing the number of charged EVs. For example, the work in [10]

develops a V2V energy transfer mechanism to increase the number of charged EVs

using a limited number of charging trucks outfitted with a larger battery and a fast

charger. The work in [7] introduces a V2V charging architecture that matches supplier

EVs with EV drivers experiencing range anxiety using a maximum-weighted matching

algorithm managed by a location-based social networking system. It offers EV drivers

complete control while protecting their privacy. The study in [61] addresses methods

for optimizing charging strategies by proposing an algorithm based on matching theory.

The goal is to enable efficient collaboration between vehicle-to-charging station and V2V

charging systems while providing adequate charging services for EVs.
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Studies such as [63], [64], [65], [7], and [36] focus on investigating the privacy concerns

arising from the process of V2V charging. Researchers in [63] introduce a new consensus

mechanism and employ a Stackelberg game model-driven incentive mechanism to max-

imize the benefits of both sellers and buyers to reduce the cost of buyers and increase

the utility of sellers. The V2V system in work [64] ensures the protection of privacy for

EVs when they are charging and discharging energy, maintaining the confidentiality of

their location, time, and energy consumption details.

Study [66] suggests the establishment of an energy trading market for EVs that operates

on a double auction mechanism to improve social welfare. The main objective is to

facilitate the matching of consumers and providers within this market, with the ultimate

goal of maximizing the system payoff while ensuring the privacy of all participants. In

study [67], the authors propose an electricity trading architecture, utilizing blockchain

technology, that enables V2V and V2G transactions. This architecture ensures secure

information recording on the blockchain ledger. By incorporating a Bayesian game

framework, they introduce a two-way auction mechanism and a novel price adjustment

strategy, aiming to enhance social welfare and cost performance for both parties engaged

in energy trading.

Despite their advantages, one of the limitations of the above V2V energy-sharing meth-

ods is that during the matching process, they do not take into account both the benefits

of sharing energy and the need to alleviate range anxiety simultaneously. In [21], re-

searchers propose a trip-based probabilistic EV charging behavior model and a V2V

energy-sharing coordination technique. The proposed technique has three objectives:

maximizing the number of EVs matched with energy suppliers, prioritizing EVs with

surplus energy over charging stations during peak hours to alleviate energy demand from

the grid, and prioritizing supplier EVs with lower detour costs when multiple matches

involve the same number of supplier EVs. However, the authors consider a one-to-one

approach when assigning EVs. This means that each SEV can supply just one DEV.

In addition, it does not consider the charging cost as a performance measurement in

the simulations. Work [68] introduces a joint optimization problem to maximize social

welfare, addressing both the determination of unit prices and winners through a truthful

double auction approach. Additionally, the aim is to maximize the rate of EV charging

by purchasing energy from the power grid for auction losers. The study [69] introduces

V2V wireless power transfer, addressing hurdles in EV adoption like high battery costs,

insufficient charging infrastructure, and limited range. It evaluates V2V WPT perfor-

mance in three real scenarios, considering its potential to reduce EV battery sizes and

costs while enhancing system-wide energy savings to serve as much demand as possible.
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Table 2.1: Comparison between our work and existing studies for V2V energy trading

Objectives [33] [3], [36], [21] [32] [10] [7] [61] [63] [66] [67] [68] This
[15], [65] [69] Work
[35]

Minimizing Charging Cost ✓ ✓ – ✓ – – – – ✓ ✓ ✓ ✓ ✓
Maximizing the Rate of Charged EVs – – – ✓ – ✓ ✓ ✓ – – ✓ ✓ ✓

Minimizing the Waiting Time ✓ – ✓ – – – – – – – – – ✓
Cooperation between EVs and other charging services – – – ✓ ✓ – – ✓ – – – ✓ ✓
One-to-multiple approach when applying V2V – – – – – – – – – – – – ✓
Using Maximum Capacity of charging services – – – – – – – – – – – – ✓
Privacy-preserving Energy Trading Scheme – – ✓ – – – ✓ – ✓ ✓ ✓ – –
Employing Auction-based V2V Matching – – – – – – – – – ✓ ✓ ✓ –

The authors in [70] introduce a V2V WPT framework that enables EVs with low bat-

tery charge to link with high-charge vehicles while traveling in a platoon, eliminating

the need for stops at charging stations and dynamically extending EVs’ driving range.

None of the above-mentioned studies employ a one-to-multiple approach when assigning

SEVs and DEVs together. In our earlier study [71], we evaluated the V2V trading system

by taking into account a model with several zones where DEVs and SEVs would match

together in a one-to-one method to swap energy in a way of minimizing the cost of DEVs

as well as decreasing the range anxiety. Expanding on our previous work, this thesis

proposes a novel cooperative mechanism where EVs can access charging services such

as V2V charging schemes, private HCS, or MCS to complement existing FCS services

in certain regions. To better compare our work with existing studies, we summarize in

Table 1 the main aspects/categories that differentiate our work from previous studies

that are closely related to ours. Notably, ”this work” refers to the development of a

matching algorithm concerning energy trading within smart cities.

2.2.2 EV remaining range prediction

Accurately predicting an EV’s remaining driving range is crucial for alleviating range

anxiety, especially among EV owners with limited remaining range. Prioritizing Dy-

namic EVs (DEVs) based on their remaining charge can help address this issue, ne-

cessitating the development of an accurate EV range prediction method. To tackle this

challenge, several research efforts have concentrated on devising methods to estimate EV

driving range using ML models. Additionally, modeling an EV’s energy consumption is

essential for predicting its driving range, leading to two approaches for addressing range

anxiety: predicting energy consumption rates and directly predicting the remaining

driving range of EVs.
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2.2.2.1 Predicting the EV energy consumption rate

Numerous studies in the literature have focused on external factors affecting energy con-

sumption in EVs. These factors include temperature, auxiliary loads (such as lighting

and air conditioning), and road gradient, as explored in [72], [73], and [74]. However,

relying solely on external factors may not always yield precise results due to the chal-

lenge of comprehensively considering all external variables. Moreover, driver behaviors,

including driving patterns, speed, and acceleration, also play a significant role in energy

consumption.

Authors in [28] and [75] address EV range anxiety. The former combines real-world

driving data with geographic and weather information to predict energy consumption,

using Multiple Linear Regression (MLR) and a Neural Network (NN) to forecast driving

parameters. The latter suggests using Linear Regression (LR), Support Vector Regres-

sion (SVR), and an NN to connect future energy consumption to factors like velocity,

elevation changes, and past consumption. Both works focus on improving EV range pre-

dictions through data-driven approaches, with the former emphasizing real-time driving

parameters and the latter exploring future energy consumption factors.

In [76], a data-driven approach focuses on predicting EV demand through the analysis of

vehicular traffic data between origin-destination pairs, estimating energy consumption

per trip. [25] introduces a hybrid ML model for predicting EV trip power consumption,

incorporating historical trip features and a modified self-organizing map with Regres-

sion Trees (RT). [77] presents a probabilistic Bayesian approach to predict energy con-

sumption for road links and routes, enabling planning within a confidence interval, and

addressing energy demand uncertainty. These works collectively explore data-driven ap-

proaches to enhance EV energy prediction, emphasizing different aspects like demand,

power consumption, and probabilistic modeling. While [76] focuses on demand predic-

tion, insights from [25] and [77] could complement the broader understanding of energy

consumption modeling and its challenges.

2.2.2.2 Predicting direct EV driving range

Over the past decade, ML-based approaches have been employed for the direct remaining

driving range prediction of EVs. These approaches aim to enhance range prediction,

reduce driver anxiety, and improve energy management. For instance, the works [24],

[16], [78], and [79] primarily propose data-driven approaches for EV range prediction.

Authors in [24] introduce an innovative approach by proposing a blended ML model

designed to predict the remaining driving range of EVs based on historical driving data.
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Table 2.2: Comparison between our work and existing studies for EV range prediction

Objectives [24], 2020 [82], 2021, [16], 2021, [81], 2023 [80], 2019 [72], 2018 [75], 2014 This
[78], 2014 [27], 2019, [73], 2017 Work
[28], 2017 [83], 2015 [74], 2017
[25], 2023

Addressing diverse factors affecting EV range ✓ ✓ ✓ ✓ ✓ – – ✓
Choosing various ML algorithms – – – ✓ ✓ – ✓ ✓

Using a factor to compare ML models – – – – ✓ – – ✓
Applying big data analysis – ✓ – – – – – ✓

Applying criteria: accuracy, overfitting, inference time – – – – – – – –
Using data from real vehicles ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

They use two advanced ML algorithms, namely XGBoost and light XGBoost to find

the relationship between driving distance and a set of chosen features. These features

include the cumulative output energy of the motor and the battery, different driving

patterns, and the temperature of the battery. The study presented in [16] deploys the

MLR for predicting the EV range. It underlines the significance of data-driven solutions

and highlights the potential of ML in improving the accuracy of EV range estimation.

Similarly, the model in [78] focuses on computing the confidence level that a driver can

reach a particular destination with the available battery charge of the EV. It accounts for

various sources of estimation uncertainty, including the driver, environment, auxiliary

systems, and vehicle battery. The model uses efficient feature-based LR, providing

real-time updates for an attainability map. The authors in [79] propose a data-driven

approach for range prediction that adapts to changing conditions in real-time, without

relying on specific vehicle parameters. It uses ML techniques, specifically kernel adaptive

filtering, to adapt to changing conditions in real-time. This approach is evaluated on

data from nine vehicle trials, comparing it with other methods, including linear adaptive

filters and neural networks.

The above literature does not thoroughly address the challenges and trade-offs in select-

ing specific ML algorithms, which is a critical aspect of model development. In contrast,

[80] and [81] introduce a system to alleviate range anxiety in EV drivers through several

ML models. For example, researchers in [81] attempt to alleviate range anxiety through

ML and conduct a comparative analysis with various algorithms. They highlight the

significance of model selection, which is an aspect not thoroughly analyzed in the earlier

works. Hence, [80] applies MLR, MLP, deep MLP, RF, and AdaBoost ML models based

on features, like average speed, route type, and driving style for driving range prediction

accuracy.

A prevailing limitation in the mentioned research studies is the restricted dataset size.

The works [83], [82], and [27] utilize big data approaches to mitigate this issue. In [83], a

two-state solution is introduced. Firstly, it estimates battery pack life over 1600 cycles,

considering vital battery factors. Secondly, it delves into EV driving pattern analysis,

employing growing hierarchical self-organizing maps as a machine-learning technique

to cluster extensive EV data. It uses hierarchical self-organizing maps to analyze EV



Chapter 2. Background and Related Work 22

driving patterns, covering energy consumption, driving range, powertrain simulation,

and driving behavior. In [82], the focus is on accurately predicting the remaining EV

mileage using the XGBoost algorithm. It directly forecasts remaining mileage after

preprocessing real driving data, achieving high accuracy. This model is further enhanced

by expanding the dataset and adopting a model fusion strategy. In [27], the authors

leverage gradient-boosting decision trees to improve driving range prediction. These

works collectively tackle the challenge of enhancing range prediction for EVs. While

[83] handles battery life estimation and driving pattern analysis, [82] and [27] focus on

directly predicting remaining mileage. However, these works lack in-depth discussions

of various ML models.

To better compare our work with existing studies, we summarize in Table 2.2 the main

aspects/categories that differentiate our work from previous studies. It’s important to

note that in this table, ”this work” refers to the development of an ML method aimed

at predicting the range of EVs. This method is seamlessly integrated into our proposed

matching algorithm designed for energy trading within smart cities.

In comparison to existing works, our study endeavors to predict the driving range of

EVs by employing multiple ML models and harnessing a substantial dataset comprising

35,000 data points. This approach aims to bolster the robustness of our analysis while

leveraging various ML methods to yield more dependable predictions. Furthermore,

while previous research has primarily focused on specific models of EVs, our study

broadens the scope by incorporating data from various EV models, thereby enhancing

the breadth of analysis.

For instance, the methodology outlined in [80] lacks a comprehensive discussion on

critical issues such as overfitting and inference time, merely presenting CV results. Ad-

ditionally, the dataset utilized in their study is limited to approximately 3,000 instances.

In contrast, our research addresses these concerns by thoroughly examining overfitting

issues and reporting inference times to facilitate a comprehensive comparison between

models. We evaluate the models based on three key criteria: accuracy, inference time,

and overfitting, providing a more nuanced understanding. Moreover, we conduct a com-

prehensive evaluation using CV, as well as standard training and hold-out sets to ensure

the development of a more reliable model.
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Chapter 3

System Model and Problem

Formulation

This chapter introduces the proposed fog-based system model, detailed in Section 3.1.

This model is designed to manage charging services across different geographical zones,

aiming to enhance coordination and information exchange during the charging matching

process. In addition, in Section 3.2, we present the formulas related to the cost of DEVs

and the utility of sellers in charging services, which are essential components of our

proposed algorithm deployed within our system model for matching DEVs and available

charging services.

3.1 System Model

The system model shown in Figure 3.1 consists of EVs, HCSs, FCSs, MCSs as IoT

devices, and a fog computing-based control architecture. The system employs fog com-

puting for communication, in which the three main components of the architecture are

the cloud layer, fog layer, and IoT devices layer [84]. Several zones intersect in our

system, and each zone is controlled by fog nodes to capture IoT data streams produced

in real-time by IoT devices. The cloud layer conducts offline analysis and stores trans-

action history. The fog layer comprises fog nodes and fog controllers for decision-making

and responding to charging requests from DEVs. Fog nodes, represented by Road Side

Units (RSUs) installed at specific traffic lights within each zone, strategically cover des-

ignated areas, enabling local data collection and communication. Each RSU as a fog

node will have a defined geographic area, and vehicles and charging services that are in-

side that area will automatically be associated with the fog node. These RSUs establish
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Figure 3.1: SEVs, DEVs, MCSs, FCSs, and HCSs in several zones are modeled as
part of a system model for energy trading system managed by fog computing.

a mesh network, where each unit serves as a node capable of communicating with neigh-

boring RSUs within its range. Equipped with Dedicated Short-Range Communication

(DSRC) capabilities and ABB’s software applications, RSUs efficiently gather data and

commands from IoT devices via DSRC communication. ABB’s software, operational on

RSUs, conducts advanced analytics, including traffic congestion and energy consumption

predictions. Among these RSUs, one functions as a central RSU, overseeing the final

matching process. Following matching, the central RSU disseminates results to neigh-

boring RSUs, which, in turn, relay this information to IoT devices within their vicinity,

registered on those RSUs’ database systems. Additionally, fog controllers, acting as spe-

cialized RSUs with gateway functionality, establish communication links between central

RSUs in adjacent zones. Located at zone boundaries, these interconnection gateways

ensure seamless connectivity and data exchange between RSUs, acting as communica-

tion bridges. The dedicated RSU with gateway functionality serves as a fog controller,

managing inter-zone communication data routing, security features, and coordination

with adjacent zones. In contrast, zone RSUs concentrate on intra-zone communication

data processing tasks within their designated zones. The IoT devices layer encompasses

EVs equipped with ABB’s mobile application, and MCSs, HCSs, and FCSs equipped

with ABB’s charging station management software. This layer is designed to gather

data from diverse sensors such as GPS, speed sensors, and battery status sensors. All

IoT devices within this layer utilize DSRC modules for wireless communication with

nearby RSUs. Prior to connecting to the charging network, IoT devices are required to

register in the system’s database. EVs and MCSs initiate this registration process upon

entering the proximity of an RSU.
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Leveraging ABB software in our system model offers several advantages, including in-

dustrial compatibility and seamless integration across IoT devices and RSUs. The pre-

dictive capabilities embedded within ABB software, derived from analysis of historical

data and sensor inputs, enhance calculation accuracy and improve the matching process,

benefiting energy management and traffic flow. Addressing the challenges of scalability

and resource management, our distributed architecture, characterized by decentralized

decision-making, ensures effortless expansion and resource allocation as the number of

IoT devices increases, while minimizing latency for real-time data processing. Moreover,

the deployment of RSUs, exemplified by the AI-500-095 dual mode system, seamlessly

integrating with the AI-500-085 controller in traffic lights, provides a practical solution

with DSRC communication protocols for seamless integration into the fog-based archi-

tecture. Notably, as an illustration of the predictive capabilities embedded within ABB

software utilized in RSUs for predicting some concepts such as energy consumption,

traffic conditions, and the remaining range of EVs, we have developed an ML-based

prediction model specifically for estimating the remaining range of EVs. This predictive

model will play a key role in our proposed algorithm, where EVs will be authorized

based on their estimated remaining range.

The gathered data from DEVs include the quantity of energy demanded, routes, loca-

tions, and speed, and the data from SEVs include location, availability, speed, and the

amount and costs of energy supplied. The fog nodes also collect data from FCSs and

HCSs regarding the location, availability, quantity, and cost of energy.

Moving EVs can be classified into two groups based on their SOCs and energy demands:

SEVs and DEVs. The former can be encouraged by the sale of excess energy to DEVs for

additional fees, while the latter should be matched to an appropriate supplier to demand

energy for charging. The moving supplier EVs become accessible either at random known

as SEV or as dedicated roadside assistance known as MCS. In our model, we classify

SEVs as random charging services, and MCSs, along with FCSs and HCSs, as dedicated

charging services. In the EV network, MCSs play a significant role as they can supply

a substantial amount of external energy, surpassing the capacity of traditional SEVs.

When its SoC approaches a threshold limit, the DEV submits the charging request to the

nearest RSU through the ABB application. Utilizing our proposed matching algorithm,

the RSU makes a decision to match this DEV with the appropriate charging service and

transfers the results to EVs and charging services. DEVs paired with SEVs during the

matching process require an available location for mutual charging, which can also serve

as their designated Meeting Point (MP). For simplicity, in our model, we assume each

MCS in each zone has a fixed meeting location where DEVs can go for charging. In this

thesis, we use the term ”MP” to denote the meeting point for SEVs and we use the term

”MCSs location” to denote the meeting points for MCSs.
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Figure 3.2: Sequence Diagram for SEVs, DEVs, MCSs, FCSs, HCSs, and zones
services.

During the decision-making stage, the central RSU assigned to a particular zone utilizes

a matching algorithm called the Hungarian algorithm to pair DEVs with SEVs when

receiving charging requests from DEVs with a SOC below the threshold. In addition,

it will assign some of these DEVs to the dedicated charging service to charge. During

matching, the different numbers of DEVs and charging services can result in one of three

possible states: (a) DEVs greater than charging services, (b) DEVs equal to charging

services, and (c) DEVs smaller than charging services. Here, we take into account every

possibility. In the following sections, our method for allocating DEVs to the random and

dedicated charging services will be demonstrated. The DEVs then go to the associated

charging service place for mutual charging when the central RSU has transmitted the

pair-matching findings to the DEVs and charging services. For the lowest cost of the

entire system or to fulfill the special advantage of charging services or DEVs, it is feasible
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to match charging services and demanding charge EVs. Here, we examine the minimum

charging cost of DEVs.

As previously mentioned, our system involves multiple zones with intersections. These

zones can collaborate to optimize the number of matched EVs across all areas. Since the

fog nodes of different zones are interconnected, when a DEV sends its charging request

to a zone, the corresponding fog node can communicate with adjacent zone fog nodes.

This communication aims to identify available charging services, including unused SEVs

and unused MCSs that can move to the zone to function as additional SEVs or MCSs

if possible. Essentially, depending on the proximity, a zone can use charging services

from other zones to maximize the total number of charged EVs. Figure 3.2 shows the

interaction of the EVs and charging services with the fog services of the current zone

and the nearby zones.

3.2 Problem Formulation

In this section, we present the cost and utility of the participating parties in the proposed

model. We extend some of the mathematical models presented in [3], [6], and [15]. This

work focuses on fog-based development. Hence, it does not consider the integration of

multiple zones or a cloud system for integration of multiple zones.

In each zone, let J = {1, 2, ..., f} represents the set of DEVs, and the sets K =

{1, 2, ..., g}, I = {1, 2, ..., w}, H = {1, 2, ..., x}, and M = {1, 2, ..., y} represent the SEVs,
FCSs, HCSs, and MCSs charging services of the zone respectively. In addition, we con-

sider the set of MPs as L = {1, 2, ..., o}. In the following, we will outline a method for

prioritizing DEVs based on their maximum travel distance capabilities. Furthermore,

we formulate the cost of charging DEVs by the available charging services and the utility

derived from each specific charging service.

3.2.1 Prioritizing DEVs

In this section, we prioritize the DEVs based on the maximum distance they can travel

with their current SOC (soccj). This distance is defined as:

dthj = (soccj − Γ) dpredictedj (3.1)

where dpredictedj presents the predicted range or distance DEV j can cover in a single

charge (in km). In our system model, we assume that RSUs serve as fog nodes embedded
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within ABB software are equipped with ML capabilities. This enables them to predict

this parameter by considering a range of influencing factors. As an illustration of this

predictive capability, we have developed an ensemble-based robust ML aimed at precisely

predicting the driving range of EVs, harnessing big data. Further details regarding the

development of this model will be elaborated in Chapter 4.

(Γ) is the threshold that DEVs stay above before it enters into range anxiety. In our

mechanism, the DEV with the lowest dthj is given the highest priority among all the

DEVs when allocating charging services.

3.2.2 Cost model formulation

In this section, the charging cost of each service is discussed in detail.

• Cost of charging DEV j with SEV k at location l ∈ L:

In our model, both DEV j and SEV k should meet each other to complete the

charging process. The cost of charging DEV j with SEV k is denoted by cj,l and

is defined as:

cj,l = pk qj + ctj,l + ctij + csj (3.2)

where pk is the energy unit price determined by SEV k, and qj denotes the quantity

of energy required by DEV j to reach its desired SOC, as determined by the

following calculation:

qj = socrj b
c
j (3.3)

Here socrj is the percentage of the required state of charge for DEV j, and bcj is

the battery capacity (in kWh) of DEV j ∈ J . In (3.2), ctj,l is the cost of energy for

DEV j to travel from its current location to the meeting point l to obtain energy

from SEV k. The following formula presents its calculation:

ctj,l = p0 dj,l c
e
j (3.4)

where cej is the cost of energy consumption per kilometer (in kWh/km) of DEV

j. In our system model, RSUs function as fog nodes equipped with machine-

learning capabilities to predict energy consumption based on various influencing

factors. It is expected that EV owners will charge their vehicles at home at a

low cost, therefore, p0 is the original unit energy price for EVs. Additionally, the

available SOC for each SEV k is socak. To simplify the analysis, we assume that all

SEVs are fully charged when they are ready to supply the DEVs. Therefore, socak

is calculated as the difference between the initial SOC (100%) and the required
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SOC for subsequent trips after completing the charging process. dj,l is the distance

between DEV j and ML l. The cost of time for DEV j (ctij ) is calculated by adding

the driving time, charge duration time, and additional waiting time (twj ), and then

multiplying the result by the parameter α as value of time. For simplicity, we

assume that the value of time is the same for both DEVs and SEVs. The driving

time is the duration required for the EV to move from its current location to

the ML, while the charge duration time represents the time taken for the EV to

exchange energy during the charging process.

ctij = α (dj,l/vj + qj/λ re + twj + tidlej ) (3.5)

Here, vj represents the average speed of DEV j determined prior to executing

the matching algorithm, utilizing the speed limit on streets without traffic, while

tidlej denotes the idling time DEV j spends in traffic while traveling to the charging

location. λ expresses the ratio of actual energy transferred to total energy required,

also known as the V2V energy transfer efficiency. re (in kW), which is the same

for DEVs and SEVs, is the rate of energy exchange per unit of time. It is relying

on the bidirectional connector of the V2V energy exchange.

DEVs assigned to charging services will be charged according to their priority. In

situations where the charging location capacity is limited, certain DEVs within

a charging location may need to wait for others with higher priority to complete

their charging process. It imposes twj as an additional waiting time for DEV j.

Assume that DEV j at the designated charging location needs to wait for Z other

DEVs to complete charging. Under this assumption, the formula representing the

cost associated with the waiting time of DEV j at the charging location expresses

as follows:

twj =

Z∑
z=1

(qz/λ re) (3.6)

where qz denotes the amount of energy requested by DEV z for charging prior to

DEV j.

In (3.2), csj is an additional cost imposed on the DEV to compensate for the cost

of SEVs traveling to MLs to charge DEVs. It is defined as follows:

csj = ctk,l + ctik + cbk (3.7)

where ctk,l is the cost of energy for SEV k to travel to the ML l from its current

location, given as follows:

ctk,l = p0 dk,l c
e
k (3.8)
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Here cek is the cost of energy consumption per kilometer (in kWh/km) for SEV k.

In (3.7), ctik is the cost of time for SEV k determined by the following equation:

ctik = α (dk,l/vk + qj/λ re + tidlek ) (3.9)

where vk is average speed of SEV k calculated before initiating the matching

algorithm, utilizing the street speed limits in the absence of traffic, whereas tidlek

denotes the time SEV k remains stationary in traffic while en route to the charging

location. dk,l is SEV k and ML l distance. In (3.7), cbk shows the cost of battery

degradation for the SEV k as a result of discharging to the DEV j and is given as

follows:

cbk = cr θ qj (3.10)

where cr and θ are the cost of replacing the battery and the coefficient of battery

capacity degradation, respectively.

• Cost of charging DEV j with HCS h or FCS i:

FCSs and HCSs are other available charging services for charging DEV j. The

total cost to the DEV j of getting energy through FCS i is cj,i and through HCS

h is cj,h as follow:

cj,h = ph qj + p0 dj,h c
e
j + ctij (3.11)

cj,i = pi qj + p0 dj,i c
e
j + ctij (3.12)

where pi and ph denote unit energy trading price determined by FCS i and HCS h,

respectively. dj,i and dj,h are the distance between DEV j and FCS i, and between

DEV j and HCS h, respectively.

• Cost of charging DEV j with MCS m:

Our model considers MCSs as another available charging service so that MCS m

can charge up DEV j with the following cost:

cj,m = pm qj + p0 dj,m cej + ctij + cbm (3.13)

It is noteworthy that for MCSs, the waiting time for DEVs (twj in ctij in (5)) is

usually considered zero in simulations because DEVs arriving at the predetermined

meeting locations can access charging services immediately without waiting, thanks

to the organized nature of MCS operations. Here pm denotes the energy unit price

determined by MCS m, and cbm signifies the cost of battery degradation of MCS



Chapter 3. System Model and Problem Formulation 31

m given as follows:

cbm = cr θ qj (3.14)

The final cost of charging DEVs using available charging services is the summation of

cj,l, cj,i, cj,h, and cj,m.

3.2.3 Charging services utility

The utility acquired by any charging service (SEVs, FCSs, HCSs, and MCSs) for sup-

plying charging to DEVs is given as follows:

uchj = p qj − p0 qj/λ (3.15)

where p = pk for SEV k, p = ph for HCS h, p = pi for FCS i, and p = pm for MCS m.

3.3 Summary

This chapter illustrates our proposed system model and problem formulation, presenting

the formulas for the cost and utility of participants in our matching algorithm deployed

within the system model. Additionally, it introduces the formula for prioritizing DEVs

as a part of the initial step of our matching algorithm, which is based on the maximum

distance DEVs can travel with their current SoC. To enhance the accuracy of this pri-

oritization, we have developed an ML-based method to predict this distance based on

several influencing factors. The subsequent chapter will delve into this range prediction

and provide the prediction results. Following that, in Chapter 5, we detail the proposed

Maximum Capacity-Based Cooperative Algorithm, which is based on the aforementioned

formulas introduced in this chapter.
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Chapter 4

Driving Range Estimation with

Ensembled ML Model

The main objective of this chapter is to develop a predictive ML model for EV driving

range prediction, addressing a non-sequential regression problem. To ensure the robust-

ness and reliability of our estimation model, we undertake a series of crucial statistical

procedures, including data cleaning, scaling, and Exploratory Data Analysis (EDA).

This integration of ML techniques for precise EV range prediction will play a pivotal

role in prioritizing DEVs in Equation 3.1 in Chapter 3 as part of the initial steps of our

proposed matching algorithm. Further details on the algorithm will be provided in the

subsequent chapter.

4.1 Methodology

This section outlines our methodology, which involves several ML models, each under-

going a seven-phase process: data collection, initial data preprocessing, EDA, final data

preprocessing, feature engineering, K-fold CV, and model implementation for prediction.

Fig. 4.1 illustrates these phases. Following this methodology for each model, we record

and compare the results for both CV and prediction. Subsequently, we select the model

that yields the best results.

The proposed framework encompasses distinct phases, commencing with the data collec-

tion phase, where we offer a comprehensive overview of the dataset under investigation.

Subsequently, through EDA, we diligently address issues, like missing values, removal of

outliers, and feature dimensionality reduction. During the EDA step, we conduct final

data analysis using plots and statistical methods to inform subsequent phases. Encoding
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Figure 4.1: Flowchart illustrating the methodology of the applied ML model.

categorical data is performed in the final preprocessing phase followed by the feature

engineering phase, where we extract optimal features. Moving on to the CV phase, our

approach involves the unimodal building and evaluation, considering various ML models,

say, Extreme Learning Model (ELM), XGBoost, MLR, Multilayer Perceptron (MLP),

deep MLP, RF, AdaBoost, and SVR; through K-fold CV. Subsequently, in the model

implementation phase, we exploit the two best models for generalized model building

under an ensemble architecture.

4.1.1 Data Collection

Data plays a pivotal role in the field of predictive modeling. To examine the variables

influencing the driving range in real-world EV scenarios, we have utilized a dataset

encompassing twenty attributes as tabulated in Table 4.1. This benchmark dataset is

obtained from the authentic source https://www.spritmonitor.de.

4.1.2 Initial Data Preprocessing

The original dataset necessitated comprehensive preprocessing due to the presence of ir-

relevant information and missing values, making it a crucial initial step in our analysis.

During this phase, we systematically remove irrelevant features those lacking any pre-

dictive value for range estimation. The attributes that are removed before model build-

ing are as follows: manufacturer, odometer, version, fuel date, fuel note, model,



Chapter 4. Driving Range Estimation with Ensembled ML Model 34

Table 4.1: The attributes influencing the remaining range of EVs

Attributes Description

Input Variables

manufacturer The company or brand that produced the EV
model The specific make and model of the EV
version A particular variant or edition of the EV model
power(kW) The maximum power output that the motor can deliver under normal oper-

ating conditions in kW
fuel date The date on which the EV was fueled or charged
odometer The total distance that the EV has traveled since its initial use or since the

last reset
quantity(kWh) The total amount of energy consumed by an EV in kWh
fuel type The type of energy or fuel used to power the EV, which in this case is electricity
tire type The type of tires used on the EV, which in this case are winter, summer, and

all-year tires
city If EV drives in the city or not
motorway If EV drives in the Motorway or not
country roads If EV drives in the Country Roads or not
driving style The manner in which the EV is driven, which in this case are normal, moder-

ate, and fast
consumption(kWh/100km) The rate of energy consumption of EV in kWh per 100 kilometers. It represents

energy efficiency
A/C The use of air conditioning within the EV, which can impact energy usage
park heating The use of the heating system of the vehicle
avg Speed (km/h) The average speed at which the EV is driven in km/h
ecr deviation The Difference between the energy consumption rate recorded and the value

announced by the manufacturer
fuel note Additional notes or comments related to the EV’s fueling, charging, or perfor-

mance

Target Variable

trip distance(km) The range or distance that the EV can travel on a single charge in Km

fuel type, and ecr deviation. It’s important to note that we retain the power(kW)

feature as it provides valuable information about various EV models in our dataset. Ad-

dressing missing values involves a combination of removal and imputation. To handle

missing values in the avg speed (km/h) that has the highest number of gaps, we employ

the alpha trim mean with α = 0.1. Simultaneously, we remove rows with missing values

in other features.

Additionally, this phase involves the identification and treatment of outliers, which are

data points significantly deviating from the majority and capable of skewing statisti-

cal analyses. An initial EDA is conducted to gain insights into outliers for the features

trip distance(km), quantity(kWh), consumption(kWh/100km), and avg speed(km/h).

For the removal of outliers, we employed the interquartile range (IQR) method alongside

a specific outlier removal strategy based on the EDA results. The analysis indicated that

removing outliers based on EDA yielded superior results. Fig. 4.2 presents the initial

EDA for the mentioned features. As seen in our EDA analysis, data values exceeding

650 for trip distance(km), 110 for quantity(kWh), 70 for consumption(kWh/100km),

and 100 for avg speed(km/h) were considered outliers. Consequently, we systematically
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Figure 4.2: EDA for gain insights into outliers for trip distance(km), quantity(kWh),
consumption(kWh/100km), and avg speed(km/h) Features.

removed all these outliers from our dataset. The cleaned data was then saved as a CSV

file for further analysis.

4.1.3 Exploratory Data Analysis

We conduct comprehensive EDA encompassing univariate, bivariate, and multivariate

analysis. It involves understanding data distribution and characteristics, identifying

insignificant features, and selecting an optimal number of information-rich features. This

phase serves as a crucial preparatory step for the subsequent phases, namely feature
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Figure 4.3: Heatmap illustrating the correlation structure of the cleaned
dataset. Legend: POWER - power(kW), DIST - trip distance(km), QUANTY

- quantity(kWh), CITY - city, MOTOR - motor way, COUNTRY - country roads,
CONSUMP - consumption(kWh/100km), A/C - A/C, HEAT - park heating, and SPEED

- avg speed(km/h).

engineering and model building. For multivariate EDA, we employ data correlation

analysis on the cleaned data as illustrated via a heat map visualization shown in Fig. 4.3.

4.1.4 Feature Engineering

In real-world conditions, the driving range of EVs is influenced by a multitude of factors.

To mitigate overfitting, a limited set of features that do not increase the complexity of

the model is required. Consequently, a feature engineering process is crucial to further

identify the irrelevant attributes from the input set created after the initial data pre-

processing phase (cf. Section 4.1.2). Thus, we conduct two dimensionality reduction

techniques using Correlation Analysis (CA) and Principal Component Analysis (PCA).

The sanity analysis conducted using these methods shows that the models built CA-

based feature engineering achieve the best performances.
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Table 4.2: Ten-Fold CV results of various ML models considered in this study using
the entire dataset. The best performance is inked in blue.

Model Average MAE Best MAE Average R2 Best R2

ELM 12.357 11.818 0.894 0.909

XGBoost 12.373 11.872 0.904 0.918

MLR 16.628 16.035 0.853 0.868

MLP 12.635 12.046 0.901 0.913

Deep MLP 13.182 12.191 0.898 0.911

RF 10.274 9.816 0.919 0.931

AdaBoost 16.001 15.600 0.880 0.896

SVR 19.224 18.817 0.773 0.782

In the case of PCA technique, performance improvements vary across different ML mod-

els and with the number of principal components used in the PCA method. We initiated

with a smaller number of components and gradually increased them while monitoring

model performance. Ultimately, the best performance for PCA technique was achieved

with ten principal components. However, it’s noteworthy that the outcomes of CA anal-

ysis surpassed those of PCA method in both ten-fold CV and the final implementation

of ML models. Detailed results of ten-fold CV and the final model implementation for

PCA technique can be found in Appendix A.

Regarding CA technique, it was noted that tire type exhibits no significant correlation

with the target variable, trip distance(km). Hence, we opted to eliminate this feature

from consideration.

4.1.5 Cross-Validation

The models’ hyperparameter tuning is conducted through CV grid search, systemati-

cally. This process enhances the models’ performances, ensuring optimal parameter se-

lection to mitigate overfitting. The resulting hyperparameters are detailed in Table 4.3.

Subsequently, we assess the predictive performance of the tuned models through com-

prehensive experiments and standard statistical evaluation metrics, such as the R2 score

and MAE. The formulas for these metrics are detailed in Chapter 2.1 in Equations 2

and 2. For the convenience of the reader, we reproduce these formulas here.

These metrics provide valuable insights into the model’s robustness. For a given n

number of observations with yi representing the i-th instance of actual values of the

target variable, ŷi denoting the i-th instance of predicted values of the target variable,

and ȳ representing the mean of the actual values, the R2 score is calculated as in (4.1),

while MAE is computed as in (4.2).
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Table 4.3: Optimized values of the hyperparameters of various models used in this
work after CV-based grid search and fine tuning

Model Hyperparameters

ELM activation= ’tanh’,hidden layer sizes=(150,), alpha=0.01

XGB n estimators=100, learning rate=0.15, max depth=3

MLR -

MLP hidden layer sizes=(100,), max iter=1000, n iter no change=100,

activation=’relu’,alpha= 0.01, solver=’adam’

Deep MLP activation=’relu’,alpha=0.01, hidden layer sizes=(100, 50,13,7),

learning rate=’constant’,solver=’adam’

RF n estimators=250, max depth=10, min samples split=5,

min samples leaf=2

AdaBoost n estimators=200, learning rate=0.01, loss=’exponential’

SVR C=1, epsilon=0.5, kernel=’rbf’

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (4.1)

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.2)

We employ K-Fold CV for model evaluation, where the K is set to ten. The overall

performance of the model is calculated as the average across the ten iterations using the

entire dataset.

4.1.6 Final Predictive Model Implementation

In this phase, we choose the best models based on the K-Fold CV analysis given in

Table 4.2, for building stronger predictive models, including the ensemble-based strategy

using single mutually exclusive training (70%) and a hold-out (30%) sets created from

the dataset. The ensemble architecture exploits RF, XGBoost, MLR, and MLP in

combination with two models. Notably, for models, such as MLR, MLP, and Deep

MLP, we apply feature scaling to enhance their performance. These models benefit

from scaling to ensure uniformity in the impact of different features on the learning

process.

4.2 Experimental Results and Analysis

From Table 4.4, it is observed that the deep MLP model achieves the highest performance

without encountering overfitting issues. MLR, on the other hand, exhibits a minimal
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Table 4.4: Quantitative analysis of the final models built using single training and
hold-out sets and their performances. The best performances on the hold-out set are

inked in blue.

Model Training MAE Test MAE Training R2 Test R2 Inference Time (s)

ELM 12.195 12.649 0.894 0.888 57.2126

XGBoost 11.721 12.710 0.910 0.892 4.07593

MLR 16.259 16.490 0.855 0.832 3.97173

MLP 11.022 11.131 0.913 0.902 77.4339

Deep MLP 9.430 11.738 0.926 0.921 29.1965

RF 7.903 10.698 0.954 0.908 8.63254

AdaBoost 14.45 15.155 0.889 0.877 10.6481

RF and XGBoost 8.118 10.459 0.951 0.916 33.3540

MLR and XGBoost 11.759 12.656 0.905 0.909 9.69264

RF and MLP 8.691 9.5100 0.944 0.935 494.764

((a)) Driving range based on
quantity applying MLR (R2
score=0.832) and ensembled
model using MLR and XGBoost

(R2 score=0.909)

((b)) Driving range based on
average speed applying MLR
(R2 score=0.832) and ensem-
bled model using MLR and XG-

Boost (R2 score=0.909)

((c)) Driving range based on
quantity applying ensembled
model using RF and MLP (R2

score=0.935)

((d)) Driving range based on av-
erage speed applying ensembled
model using RF and MLP (R2

score=0.935)

Figure 4.4: Comparison between prediction and actual driving range wrt quantity and
average speed. Note that the input is a multidimensional data. So, for visualization

purposes, the plots consider a single attribute on the horizontal axis.
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inference time of ≈ 4 seconds. Similar to deep MLP, the RF model also records a

relatively good performance; however, there are discernible signs of overfitting. To

address this overfitting concern and enhance the accuracy of the predictions, we utilize

the ensemble technique by leveraging the strengths of the best individual models. For

instance, the integration of the RF with XGBoost, RF with MLP, as well as MLR with

XGBoost yielded noticeable improvements. Hence, the ensemble model with RF and

XGBoost still seems to experience overfitting to some extent, but the ensemble model

with RF and MLP considerably resolves the issue with compromising the inference

speed. On the other hand, the ensemble of MLR and XGBoost results in increased

prediction to an R2 score of 0.91 without facing overfitting issues compared to the

uni-modal MLR, with a reasonable inference time. Therefore, we identify this model

as the best choice for an accurate driving range estimation. Fig. 4.4(a) compares the

predictive performances of the unimodal MLR and the ensemble model using MLR and

XGBoost. For simplicity of visualization purposes, the plots are drawn based on the

consumed energy amount (quantity (kWh)). Similarly, Fig. 4.4(b) presents another

fitted line generated exclusively from the average speed value (avg speed). Notably, a

substantial correlation between the quantity and the driving range is evident. However,

this correlation is less pronounced when considering the average speed. Fig. 4.4(c)

showcases the results of the ensemble model using RF and MLP based on the total energy

consumed (quantity (kWh)). Similarly, Fig. 4.4(d) portrays the model’s performance

wrt the average speed (avg speed).

4.3 Summary

In this chapter, we provide a detailed overview of our ensemble-based ML model designed

for accurately predicting the range of EVs. This prediction played a crucial role in the

preceding chapter, where it was utilized for prioritizing DEVs as part of the initial

step of our proposed matching algorithm. The algorithm itself will be comprehensively

elucidated in the subsequent chapter.
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Chapter 5

Cooperative Fog-Based En-route

EV Charging Services

In this chapter, we outline the development of the proposed matching algorithm, which

aims to foster collaboration among various charging services, including SEVs, FCSs,

HCSs, and MCSs, to optimize the charging process for DEVs. The algorithm intro-

duces a strategic approach to address practical scenarios based on the number of DEVs

and available charging services within each zone, as elaborated in Section 5.1. Further-

more, in section 5.2, we present the evaluation results of our algorithm based on some

performance measurements and we will compare the results of our proposed match-

ing algorithm to an existing study which utilizes Gale-Shapley game based matching

algorithm.

5.1 Maximum capacity-based cooperative Algorithm

This section proposes a cooperative matching technique based on the Hungarian al-

gorithm called the maximum capacity-based cooperative algorithm. The subsequent

subsections detail the step-by-step procedure of the algorithm for each zone, as depicted

in Algorithm 3.

5.1.1 Initial assignment of DEVs to charging locations

This subsection presents a detailed explanation of steps 1 to 4 of Algorithm 1. During

the first step, the corresponding fog node determines the count of DEVs within each zone

and the availability of charging services. If the available charging services are insufficient
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to accommodate the DEVs, the fog node proceeds to communicate with adjacent zones.

This helps to see if they have available unused MCSs/SEVs interested in moving toward

the desired zone. To optimize cost efficiency, the distance between MCSs/SEVs and the

zone must not be farther than a threshold parameter, δ. The parameter δ is calculated

to be less than half the dimension of the zone, preventing excessive charging costs and

ensuring that the MCSs/SEVs are within a reasonable proximity to the target zone.

Thereafter, the fog node asks for notification from the nearby zones if such charging

services are accessible, adding them to the charging services. Based on this information,

the algorithm indicates f as the final number of DEVs and n as the total number of

charging services available. According to equation (3.1), in step 2, the dthj values of all

DEVs are calculated. The DEVs are prioritized accordingly, that is, the lower the value

the more priority DEV has. Furthermore, the algorithm calculates the distances between

all DEVs and all charging locations, as well as the distances between all SEVs and all

MPs. The algorithm then, in step 3, selects those MPs, FCSs, HCSs, and MCSs locations

with a distance less than dthj . Going to step 4, among the selected charging locations from

step 3, each DEV is initially assigned to the charging location that has the minimum

distance with respect to the DEV. Next, in step 5, we consider three aforementioned

states for our system model as (a) DEVs number < charging services number, (b) DEVs

number = charging services number, and (c) DEVs number > charging services number.

5.1.2 Implementation of states (a) and (b)

In states (a) and (b), there are sufficient charging services to charge all DEVs. Following

step 5.1, depending on the number of DEVs and charging locations, the ideal number

of DEVs that each charging location should accommodate is calculated under the two

following conditions: 1- No charging location is left without assigned DEVs, and 2- The

allocation of DEVs to each charging location is maximized. Based on these conditions, if

a charging location has excess DEVs, the algorithm proactively reassigns the DEVs with

lower priorities to the available unused charging locations with the shortest distance to

them.

For example, assume we have 5 DEVs and 7 charging locations, ideally accommodat-

ing 1 DEV each. Initially, we allocated these 5 DEVs to the charging locations based

on the minimum distance criterion in step 4. As a result, 3 DEVs were assigned to

the first location, 1 to the second, and 1 to the seventh, leaving locations 3rd-6th un-

allocated. Consequently, the 3 DEVs at the first location must wait for their turn to

charge, while the empty locations could have been utilized to charge them promptly.

To resolve this, 2 DEVs with a lower priority from the first location are reassigned to

charging locations 3rd to 6th, which are closest to them. This final assignment ensures
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each location accommodates only 1 DEV, minimizing waiting time, and optimizing the

charging process.

In the subsequent step 5.2 of the algorithm, if DEVs are assigned to MPs, the charging

cost is calculated, followed by the utilization of the Hungarian algorithm to pair them

with SEVs. Consequently, the paired DEVs and SEVs travel to the designated MPs to

initiate the charging process, following their assigned priorities. On the other hand, if the

DEVs are allocated to the FCSs, HCSs, and MCSs locations, the algorithm calculates

the cost of charging for each DEV. Subsequently, the DEVs proceed toward the charging

locations for being charged given their priorities.

5.1.3 Implementation of state (c)

In state (c), the available charging services are insufficient to accommodate all the DEVs.

To address this situation, we assume that some SEVs, such as the Ford F-150 Lightning,

possess a considerable battery capacity, enabling them to charge more than one DEV.

Consequently, our algorithm is designed to allow each SEV k, with the available state of

charge socak, to charge the maximum number of DEVs. To achieve this, we introduce a

parameter, defined as Itr = ⌈ fn⌉, (f represents the number of DEVs, while n represents

the number of available charging services). The parameter Itr is formulated to accom-

modate a specific scenario where the number of DEVs and available charging services

remains relatively constant within a limited time frame. We have defined this time frame

by restricting Itr as the iteration number for directing DEVs toward charging services

without updating the number of DEVs and charging services. After the designated it-

erations, the algorithm can be re-executed with updated values of f and n, allowing

for dynamic adjustment to any changes in the system’s parameters. This framework

allows us to explore how our algorithm can efficiently manage DEV charging within a

constrained time frame, as indicated by Itr=3. Additionally, by setting ’Itr’ to a value

no larger than 3, we aim to prevent a significant increase in the waiting time of DEVs,

as this ensures that the algorithm adapts to the initial conditions without excessively

prolonging the charging process. If Itr exceeds 3, the algorithm restricts its value to 3

and returns to steps 5.4 to 5.10 for further processing. As a result, the algorithm for the

state (c) has two possible values for Itr: Itr = 2 and Itr = 3.

During step 5.4, if the number of DEVs assigned to each FCS, HCS, and MCS location

in step 4, is not equal to Itr− 1, the algorithm proceeds to reassign DEVs to each FCS,

HCS, and MCS location to ensure that each of these charging locations accommodates

Itr − 1 DEVs. In step 5.5 of the algorithm, we focus on the DEVs that have not been

assigned to FCSs, HCSs, and MCSs locations in step 5.4. From this set of DEVs, we
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need to create a group of DEVs whose size matches the number of available SEVs to be

paired with. This group is formed as the first priority for matching with SEVs. With

this objective in mind, we conducted a comparison between two groups of DEVs, the

first group with a higher qj value and the second group with a lower qj value. we,

then, run our algorithm with the groups to get the results of the rate of charged DEVs.

Represented in Figure 5.1, the curves show that grouping DEVs with a greater value of

qj leads to more numbers of charged DEVs. For this reason, we adopt the algorithm in

a way that an equal number of DEVs with SEVs demanding higher qj values are chosen.

At present, an equal number of DEVs and SEVs are available for mutual charging on

MPs. In step 5.6 of the algorithm, if the MPs designated to accommodate the group

of DEVs created in step 5.5 are assigned to more than one DEV, any excess number

of DEVs at the MPs with lower priority will be reallocated to other MPs that have

the minimum distance to those DEVs. This reallocation guarantees that DEVs can be

charged promptly and efficiently, avoiding any unnecessary waiting time. The following

description outlines the process for all cycles of sending DEVs toward charging services,

2 cycles when Itr = 2 and 3 cycles when Itr = 3.

• First Cycle: During the first cycle of sending DEVs to charging services, in

step 5.7 of the algorithm, the matching process is performed by determining the

charging costs of pairing the grouped DEVs (from step 5.5) with SEVs. The

algorithm calculates the charging costs associated with each possible combination

of DEVs and SEVs. Subsequently, the Hungarian algorithm is utilized to optimally

match the DEVs with the available SEVs based on the calculated charging costs.

Once the pairing is complete, the DEVs and SEVs are directed toward the MPs to

commence the charging process. In parallel, among the DEVs assigned to FCSs,

HCSs, and MCSs locations, the algorithm calculates the charging cost for one DEV

at each charging location with higher priority. These DEVs then proceed to their

respective charging locations to initiate the charging process.

• Second Cycle: Following the aforementioned steps, there are still some DEVs

that remain uncharged. In order to address this, during steps 5.8 and 5.9, the

unmatched DEVs are identified, and the new SOC value for the SEVs is computed.

When Itr = 2, during the second cycle as the final step of the matching algorithm,

step 5.10.1 involves the computation of costs of charging unmatched DEVs with all

the available charging services. Subsequently, during steps 5.10.2 and 5.10.3, the

unmatched DEVs are paired with charging services using the Hungarian method,

aiming to minimize the total cost of the DEVs. In step 5.10.4, the matched DEVs

proceed toward the assigned charging services to undergo the charging process.
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During the second cycle of the charging process when Itr = 3, step 5.10.5 ad-

dresses the unmatched DEVs that have not been assigned to FCSs, HCSs, and

MCSs locations. For these unmatched DEVs, the algorithm calculates the charg-

ing costs associated with pairing them with SEVs that have a new SOC due to the

first cycle charging. Accordingly, Using the Hungarian Algorithm, the algorithm

attempts to optimally match a specific number of these unmatched DEVs with

SEVs, allowing them to travel to the location of the SEVs for charging. This step

ensures efficient utilization of SEVs to support the charging process for the re-

maining unmatched DEVs. Simultaneously, the algorithm calculates the charging

costs for other unmatched DEVs that have been assigned to each FCS, HCS, and

MCS location in step 5.4. These DEVs, now having a lower priority, proceed to

their respective charging locations for charging.

• Third Cycle: During the third cycle for Itr = 3, steps 5.8, 5.9, and 5.10.1 to

5.10.4 are repeated to address the remaining uncharged DEVs.

The flowchart illustrating the algorithm can be found in Figure 5.2.

5.1.4 Computational Complexity

The proposed algorithm consists of several loops that iterate over sets of DEVs, SEVs,

charging services, and main charging locations, with sizes denoted by f, g, w, x, y, and

b, respectively. Additionally, the steps involving distance calculations, charging costs,

and SOC computations for DEVs and SEVs involve linear-time operations based on

the sizes of the respective sets. The Hungarian algorithm used in Step 5.2.3 has a

time complexity of approximately O(n3), where n is the number of DEVs and SEVs

being matched. Overall, the algorithm is expected to have a O(n3) complexity of the

Hungarian algorithm used for assignment.

5.2 Simulation and Numerical Results

This section discusses the evaluation of the proposed model and the simulation results.

5.2.1 Simulation Parameters

In this study, we conducted a case study involving the simulation of a network of DEVs

and charging services within the Thunder Bay area. The area was segmented into

three zones: top, middle, and bottom. The locations of existing FCSs within the area
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Algorithm 3 Maximum capacity-based cooperative Algorithm

Inputs :
1. Set of DEVs J = {1, 2, ..., f}, set of charging
services including K = {1, 2, ..., g}, I = {1, 2, ..., w},
H = {1, 2, ..., x}, and M = {1, 2, ..., y}, and set of MPs
L={1, 2, ..., b}.
2. Initial Parameters includes p0, α, re, λ, cr, θ, and
Γ.
3. The dataset includes bcj (kwh) and cej (kwh/km) of
EVs.
4. Location of FCSs, HCSs, MCSs, SEVs, MPs, and
DEVs.
5. soccj and socrj of DEVs and socak of SEVs.
Steps :
1.1. for each unused SEV in adjacent zones do

if Distance between SEV and current zone< δ
then

K = {1, 2, ..., g + 1} ← K = {1, 2, ..., g}
end if

end for
for each unused MCS in adjacent zones do

if Distance between MCS and current zone< δ
then

M = {1, 2, ..., y + 1} ←M = {1, 2, ..., y}
end if

end for
1.2. Determine the final number of DEVs as f and the
total number of charging services available as n.
2. for each, j ∈ J do

2.1 Calculate dthj using (3.1) then prioritize DEVs
based on this value.
2.2. Calculate dk,l and Dis as dj,l, dj,i, dj,h, and
dj,m.
2.3. Calculate qj from (3.3).

end for
3. for each, a ∈ L, I,H,M do

if Dis < dthj then
Collect MPs, FCSs, HCSs, and MCSs loca-
tions as charging locations.

end if

end for
4. for each, j ∈ J do

Using Dis in step 2.2, choose the charging loca-
tions among collected MPs, FCSs, HCSs, or MCSs
locations with minimum distance.

end for
5. if n>=f then

5.1. for each, a ∈ L, I,H,M do
Replace the selected charging locations for
some DEVs with lower priority with other
charging locations that satisfy step 3, so that
an ideal number of DEVs is assigned to each
available charging location.

end for
5.2. for each, j ∈ J do

if DEV j is assigned to charge at assigned MP
l with a SEV then

5.2.1. for each, k ∈ K do
Use dj,l and dk,l results from step 2.
Initialize pk, vk, c

e
k

Calculate ctj,l from (3.4), ctij from

(3.5), cj,l from (3.2), cbk from (3.10),
ctk,l from (3.8), and twj from (3.6).

end for
5.2.2. Create a matrix with elements filled
with the calculated cj,l.
5.2.3. Use the Hungarian algorithm to
find the best-matched DEVs and SEVs so
that the cost is minimized.

else
5.2.4. Calculate ctij for DEV, cj,i and cj,h

from (3.11), cj,m from (3.13), cbk, and twj .
5.2.5. Consider FCSs, HCSs, and MCSs
for charging the DEVs assigned to them.

end if
5.2.6. DEVs go towards allocated charging lo-
cations to get charged given their priorities.

end for

else
5.3. Itr ← ⌈ z

n
⌉

if Itr <= 3 then
5.4. for each, a ∈ I,H,M do

Replace the selected charging locations
for some DEVs with lower priority with
other charging locations that satisfy step
3, ensuring the Itr − 1 number of DEVs
is assigned to each FCS, HCS, and MCS
location.

end for
5.5. From the DEVs not assigned to the FCSs,
HCSs, and MCSs locations in the previous
step, group an equal number with the num-
ber of SEVs that require a greater value of qj
to be matched with SEVs.
5.6. for selected l ∈ L do

Replace the selected MPs for selected
DEVs from the previous step with lower
priority, ensuring one DEV is assigned to
each MP.

end for
5.7. For grouped DEVs assigned to MPs dur-
ing steps 5.5 and 5.6, and one DEV with higher
priority assigned to each FCS, HCS, and MCS
location in step 5.4, do step 5.2.
5.8. Find unmatched DEVs
5.9. for each, k ∈ K do

Calculate the new current SOC of SEVs.
end for
5.10. if Itr == 2 then

5.10.1. Do steps 5.2.1 and 5.2.4 to calcu-
late charging costs.
5.10.2. Create a matrix with calculated
charging costs.
5.10.3. Use the Hungarian algorithm to
assign unmatched DEVs with available
SEVs and other available charging ser-
vices.
5.10.4. DEVs go toward allocated charg-
ing services to get charged.

else
5.10.5. if Itr == 3 then

For unmatched DEVs, repeat step
5.2.
Repeat steps 5.8., 5.9., and 5.10.1. to
5.10.4.

end if

end if

else
5.11. Itr ← 3
5.12. Do steps 5.4. to 5.10.

end if

end if
Output:
1. Calculate the total cost of charging DEVs as a sum-
mation of cj,l, cj,i, cj,h, cj,m for all DEVs.
2. Calculate the total utility of sellers in all charging
services as the summation of uch

j calculated using (3.15)
for each charging service.
3. Calculate the total consuming time for all DEVs as
the summation of consuming time defined as ctij /α for
DEV j.
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Figure 5.1: Comparison between grouping DEVs with greater qj value and DEVs
with smaller qj value to achieve the maximum rate of charged DEVs in the state (c).
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Figure 5.2: Flowchart of max capacity-based cooperative algorithm

were sourced from [85], as depicted in Figure 5.3. In this section, the simulations are

conducted specifically for the first zone (the bottom one) defined within the boundaries

of (0,0) and (20,10). This analysis considers a scenario where there are two FCSs in

the zone and there might be insufficient charging services available. To address this

issue, the fog node of the first zone utilizes SEVs and MCSs from the second zone to

supplement the available charging services. Following this, the evaluation of states (a),

(b), and (c) mentioned earlier takes place.

In the first state (a), where the DEVs number is less than the charging services number,
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Figure 5.3: Deployment of FCSs in the Thunder Bay area, with traffic conditions
represented by colors ranging from green indicating minimal traffic to maroon indicating

the highest congestion.
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Figure 5.4: Average cost of charging DEVs with charging services for different three
states.
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Figure 5.5: Percentage of charged DEVs in 3 cycles with 10 SEVs and DEVs varying
from 20 to 100.
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Figure 5.6: Comparison of average utility of sellers in charging services for three
different states.

we assume that there are 10 DEVs and the number of SEVs can vary between 10 to

100, resulting in a range of charging services between 17 to 107. For this state, all
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Figure 5.7: Comparison of average cost of the entire system for different states.

charging services are exclusively provided within the first zone, and their locations are

limited to that zone. In the second state (b), the DEVs number is equal to the charging

services number, the number of DEVs is a number between 17-107, and the number

of SEVs between 10 to 100 results in the number of charging services between 17 to

107. When the number of DEVs exceeds the number of charging services (third state

(c)), we assume the number of SEVs is equal to 10 resulting in 17 charging services,

and the number of DEVs can be an amount between 20 to 100. In the case of (b) and

(c) states, the first zone has some available SEVs but lacks any available MCSs. The

fog node corresponding to this zone communicates with nearby fog nodes and uses two

unused MCSs and some unused SEVs from the second zone, which is within a distance

threshold of δ = 8 km from the current zone. Consequently, the random SEV locations

are distributed within the domain encompassing both the first zone and a portion of the

second zone, covering the coordinate range from (0,0) to 20,18).

DEVs and SEVs following rectangular paths have their positions defined using a random

function. Moreover, in our simulations, we employ the city block distance metric to
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calculate distances between points. In our assumptions, two specific locations have been

identified within the first zone at coordinates (6,9) and (16,9) which serve as ”MCS

locations” where two MCSs, from the first zone for the state (a) and from the second

zone for states (b) and (c), come and remain stationary, awaiting the arrival of DEVs

for the purpose of charging. Moreover, within the first zone, we take into account our

dedicated charging services as two FCSs which are located in (10, 3) and (11, 8), and we

assume that each FCS has two available spots for charging DEVs, and one HCS located

in (15,6). Therefore, we have seven dedicated charging services and the number of SEVs

as random charging services can be different in each state. The twenty-five MPs are

distributed uniformly in the zone, with determined places at the beginning.

The following are the simulation parameters: p0=14.8 Â¢/kWh [86], pk=a uniform dis-

tribution of 20 to 30 Â¢/kWh, and α=7.25 $/h [87]. re=40 kw, λ=95 %, cr=150 $/kwh,

θ=0.27 %, soccj=a uniform distribution of 10 to 20 %, socrj=a uniform distribution of 50

to 80 % , socak=a uniform distribution of 80 to 90 % ,Γ=5 %, and vj/vk=A Gaussian

distribution with a mean value of 60 km/h and a variance of 10 km/h (as typical city

speed limits hover around 60 km/h), tidlej /tidlek =a uniform distribution of 0 to 5 min,

δ = 8 km The 250 common EV categories dataset from [88] is used for uniform selec-

tion of each EV type. The Battery Capacity bcj (kwh) and energy consumption rate cej

(kwh/km) of EVs are included in the dataset used for EV range prediction.

In order to assess the performance, we compare the Gale Shapley-based algorithm [3]

with our proposed technique, the Maximum capacity-based cooperative algorithm. To

ensure statistical significance, the results are averaged across 300 independent simulation

runs.

5.2.2 Results and discussion

In this section, we examine the outcomes of Figures 5.4, 5.6, 5.7, 5.8, and 5.10 for all

three aforementioned states. Additionally, we consider Figure 5.5 specifically for the

state (c), and Figure 5.9 for the case where the number of DEVs is set to 10 and the

number of SEVs is set to 10, resulting in a total of 17 charging services. In the case of

Figures 5.4, 5.6, 5.7, and 5.8, states (a) and (b) consist of two curves, represented by

red and blue lines, which compare the results obtained from our algorithm with those

obtained from the Gale Shapley-based algorithm. In state (c), there are three curves

depicted in different colors. The red line represents the total assessed value obtained

from our algorithm, while the blue line represents the total assessed value when using

the Gale Shapley-based algorithm. Additionally, we introduce a green curve in this

figure to demonstrate the summation of the equal number of assessed values from both
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our algorithm and the Gale Shapley-based algorithm, facilitating a comparison of the

results. The following section describes the performance measurements used for assessing

our algorithm. We adopt some of the performance measurements described in [3] and

[15] are followed here.

5.2.3 Performance measurements

The performance measurements of our algorithm are as follows:

• c as average cost of charging DEVs: This average cost is defined by dividing

the total charging costs of DEVs by the total amount of energy supplied for the

minimum number of DEVs in each state [3]:

c =

∑
(cj,l + cj,i + cj,h + cj,m)∑

(qj)
(5.1)

• u as the average utility of sellers in charging services: The average utility is defined

as the sum of the acquired utility for all charging services, divided by the total

amount of energy provided for the minimum number of DEVs in each state as:

u =

∑
(uchj )∑
(qj)

(5.2)

• t as average consuming time: This time is defined as the total time taken for all

DEVs from the moment a DEV goes toward the designated charging service until

the charging process is completed over the maximum time among the minimum

number of DEVs in each state as:

t =

∑
(ctij /α)

max(ctij /α)
(5.3)

The subsequent sections present an evaluation of performance measurements for our

algorithm. In the evaluation phase comparing our algorithm with the Gale-Shapley al-

gorithm, we analyze the improvement percentage achieved by our algorithm over the

Gale-Shapley algorithm across various performance metrics. This improvement is cal-

culated using the following equation:

improvement percentage =
performance 2− performance 1

performance 1
× 100 (5.4)
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where ’Performance 1’ denotes the performance measurement of the Gale-Shapley algo-

rithm, while ’Performance 2’ represents the performance measurement of our proposed

algorithm.

For Figures 5.4, 5.6, 5.7, and 5.8 across all three states, we calculate the mean value of

these improvement percentage as follows:

¯mean improvement percentage =
(
∑

improvement percentage)

num
(5.5)

For state (a), where the number of charging services varies between 17 to 107, num = 19.

Therefore, to compute the mean value of the improvement percentage in this state, we

calculate the improvement percentage using (5.4) for each value of charging service

number and then find the summation of these values over 19, representing the different

values for the number of charging services in state (a). In state (b), where the number of

DEVs and charging services ranges from 17 to 107, we set num = 19. We follow a similar

approach by computing the improvement percentage using (5.4) for each value of DEVs

or charging service number. Then, we sum up these values over 19, which represents the

varying values for DEVs/charging services number in state (b). For state (c), where the

number of DEVs ranges from 20 to 100, num = 17. Hence, to determine the mean value

of the improvement percentage in this state, we calculate the improvement percentage

using (5.4) for each value of DEVs number, and then find the summation of these values

over 17, representing the different values for DEVs number in state (c).

In Figure 5.9, we assess the impact of changing the provider energy price, value of time,

and upper limit for idling time spent in traffic on the average cost of charging DEVs.

Specifically, in Figure 5.9-a, we observe the gradual increase of energy price from 20 to

30. In Figure 5.9-b, we analyze the progressive rise in the value of time from 7 to 20.

Lastly, in Figure 5.9-c, we examine the incremental increase in the upper limit for idling

time spent in traffic. When calculating the mean value of the improvement percentage

in 5.5, for Figure 5.9-a, we set num = 11 to account for the different values for the

energy price parameter. For Figure 5.9-b, num = 14 is chosen to represent the various

values for the value of time parameter. Finally, for Figure 5.9-c, where the upper limit

rises incrementally from 1 to 20, num = 20 is utilized to encompass the different values

for the upper limit for idling time spent in traffic parameter.
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5.2.4 Average cost of charging DEVs

In figure 5.4, the average cost of charging DEVs, c, is shown. The comparison is made

between the proposed Maximum capacity-based cooperative algorithm and the Gale-

Shapley algorithm for states (a),(b), and (c). As can be seen in Figure 5.4-a, the average

cost of charging DEVs for our algorithm is less than the Gale Shapley-based one. The

improvement percentage for the average cost of charging DEVs in this state, for each

value of charging services number, is derived from 5.4. We then compute the mean value

of this improvement percentage across all values for the number of charging services using

5.5. The resulting value is −3.3088, signifying an average decrease of 3.3088% in the

average cost of DEVs across all numbers of charging services. Furthermore, it is notable

that the more the number of charging services the less the total cost. This is due to the

fact that a higher number of charging services gives a better opportunity to DEVs to

find the service with less charging cost.

The total cost again is minimized for state (b) as seen in Figure 5.4-b. The mean value

of improvement percentage regarding the average charging cost for DEVs in state (b)

stands at −14.3370, signifying a reduction in the average cost by 14.3370% across all

values for DEVs/charging services number. In addition, it indicates the summation of

the charging cost for DEVs increases as the number of DEVs/charging services increases.

In figure 5.4-c, the red line shows the total cost of charging DEVs resulting from using the

proposed algorithm. Since our algorithm benefits from one-to-multiple charging of more

than 10 vehicles, it is reasonable that the curve tends to be ascending when increasing

the number of DEVs. The blue graph shows the cost of charging when using the Gale

Shapley-based algorithm as a one-to-one method which gives rise to charging of only 10

DEVs. The green curve depicts the total cost of charging 10 DEVs compared to the Gale

Shapley-based method using the same criteria showing that this profile sits beneath the

blue one. For state (c), the mean value of improvement percentage is −24.8117 showing

a decrease of 24.8117% in the average cost.

5.2.5 Percentage of charged DEVs

Figure 5.5 shows the percentage of DEVs that can be charged in 3 cycles of sending

DEVs to charging services. For this simulation, the number of SEVs=10 results in

the number of charging services=17, and the number of DEVs varies from 20 to 100.

As can be seen, the Gale Shapley-based algorithm can only charge 10 DEVs which

was expected as a one-to-one matching method. Our algorithm, however, allows for

%100 charge of DEVs as long the number of DEVs does not exceed 40. After this
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point when more DEVs are joined, the charging algorithm, would not be able to meet

the demand, leading to decreasing in the percentage of charged DEVs as the number

of DEVs increases. However, this ratio shows to be dropping more gently than that

of the Gale Shapley-based algorithm. Figures 5.4-c and 5.5 clearly demonstrate that

implementing the Maximum Capacity-based cooperative algorithm leads to a reduction

in cost and an increase in the number of charged DEVs.

5.2.6 Average utility of sellers in charging services

Figure 5.6 shows the average utility of sellers in charging services, u. This performance

measurement is evaluated for both the Gale Shapley-based algorithm and the Maximum

Capacity-based cooperative algorithm across the three states mentioned earlier. The

simulation results show that charging services can trade energy with a positive utility

value, which provides an incentive for SEVs as dynamic random charging services with

excess energy to contribute to the V2V charging process. In each state, our proposed

algorithm offers a larger utility for the charging services compared to the Gale Shapley-

based method.

Observing Figure 5.6-a, it is noticeable that the utility tends to decrease with a larger

number of charging services because, in this case, there are more alternatives for suppli-

ers, and the DEVs are more likely to choose those with lower offering costs. Figure 5.6-b

also shows the as-expected results of increasing the total utility value as the number of

DEVs/charging services rises. In Figure 5.6-c, the green curve associated with charging

services used for charging 10 DEVs shows to outperform the Gale Shapley-based curve

in terms of the amount of utility.

In terms of average utility, the mean improvement percentages, as obtained from 5.5, are

160.3684, 109.2073, and 182.0265 for states (a), (b), and (c) respectively. It indicates an

increase in the average utility of sellers across all three states. The apparent disparity in

the percentage improvement for utility compared to that of cost stems from the fact that

the initial utility value is considerably smaller than the initial cost value. Consequently,

the same absolute change has a proportionally larger impact on the smaller initial value,

resulting in a seemingly higher percentage improvement for utility.

5.2.7 Average cost of the entire system

The average cost of the entire system is presented in Figure 5.7. This value is obtained

by subtracting the average utility of sellers in charging services (Figure 5.6) from the

average cost of charging DEVs (Figure 5.4) as c−u. The cost of the entire system will be



Chapter 5. Cooperative Fog-based En-route EV Charging Services 56

17 27 37 47 57 67 77 87 97 107

Number of Charging Services

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

O
v
e

ra
ll 

C
o

n
s
u

m
in

g
 T

im
e

 (
h

)

Maximum Capacity-based Cooperative Algorithm

Gale Shapley-based Algorithm

(a) DEVs number < charging services number

17 27 37 47 57 67 77 87 97 107

Number of DEVs/Charging Services

0

5

10

15

20

25

30

35

O
v
e

ra
ll 

C
o

n
s
u

m
in

g
 T

im
e

 (
h

)

Maximum Capacity-based Cooperative Algorithm

Gale Shapley-based Algorithm

(b) DEVs number = charging services number

20 30 40 50 60 70 80 90 100

Number of DEVs

0

5

10

15

20

25

30

35

40

45

O
v
e

ra
ll 

C
o

n
s
u

m
in

g
 T

im
e

 (
h

)

Maximum Capacity-based Cooperative Algorithm

Gale Shapley-based Algorithm

Maximum Capacity-based Cooperative Algorithm for N
s
 Number of DEVs

(c) DEVs number > charging services number

Figure 5.8: Comparison of average consuming time of DEVs for three different states.

lower for the Maximum capacity-based cooperative algorithm than for the Gale-Shapley

algorithm for all three states. The mean improvement percentages for our algorithm over

the Gale-Shapley algorithm, obtained from 5.5, are −12.4685, −22.1068, and −41.5239
for states (a), (b), and (c) respectively. This signifies a decrease of 12.4685%, 22.1068%,

and 41.5239% in the average cost of the entire system across all three states.

5.2.8 Average consuming time of DEVs

Figure 5.8 shows the average consuming time, t, of DEVs for both algorithms. The av-

erage consuming time for the Maximum capacity-based cooperative algorithm is lower

than the Gale-Shapley approach. The mean value of percentage of improvement, ob-

tained from 5.5, for state (a) is −16.8259, for state (b) is −20.1818, and for state (c) is

−22.6292. It shows a decrease of 16.8259%, 20.1818%, and 22.6292% in the average con-

suming time for three states. It is because, for the Maximum capacity-based cooperative

algorithm, the EV user’s time is taken into account during the optimization procedure

with the purpose of limiting and optimizing it. Indeed, our algorithm takes cost, time,
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Figure 5.9: Impact of changing above parameters on average cost of charging DEVs
when DEVs and SEVs number = 10.

and minimizing the DEVs with range anxiety into account during charging locations

selection and final matching. On the other hand, compared to the Gale Shapley-based

method, as mentioned before, our algorithm reduces this time regarding the availability

of charging services stemming from using the maximum capacity of each of them in the

time of being assigned to DEVs.

5.2.9 Impact of time valuation, energy trading price, and the upper

limit for idling time spent in traffic

In this subsection, we evaluate the impact of changing three parameters in the average

cost of DEVs. In this experiment, the number of DEVs and SEVs is held constant at

10 each, resulting in a total of 17 charging services for each operation. The impact

of changing the energy price is examined in Figure 5.9-a, where the average cost of

charging DEVs is analyzed as the energy price gradually increases from 20 to 30. The
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Figure 5.10: Average execution time of Maximum capacity-based cooperative algo-
rithm for three different states.

mean improvement percentage for the average cost of charging DEVs resulting from this

energy price change is −4.1348, indicating a 4.1348% decrease in the average cost.

Similarly, the effect of changing the value of time is depicted in Figure 5.9-b. Here,

the average cost of charging DEVs is evaluated as the value of time progressively rises

from 7 to 20. The mean improvement percentage for the average cost of charging DEVs

resulting from this change in the value of time is −6.3986, demonstrating a 6.3986%

decrease in the average cost.

Furthermore, Figure 5.9-c illustrates the impact of increasing the upper limit for idling

time spent in traffic on the average cost of charging DEVs. As the upper limit incre-

mentally rises from 1 to 20, the cost of charging for our algorithm consistently remains

lower than that of the Gale Shapley-based approach. The mean improvement percentage

for the average cost of charging DEVs resulting from this change in the upper limit for

idling time spent in traffic is −7.8581, indicating a 7.8581% decrease in average cost.
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5.2.10 Execution time

Figure 5.10 depicts the average execution time of the algorithm. For each run, and for

each state, we run the algorithm 3000 times. As can be seen from figure 5.10, the time

execution follows a linear behavior.

5.3 Summary

This chapter introduces a maximum capacity-based cooperative algorithm designed to

facilitate energy trading between DEVs and available charging services in a collaborative

manner. The primary objective is to minimize the charging cost of DEVs, decrease

waiting times, and boost the rate of charged DEVs. Practical scenarios for varying

numbers of DEVs and charging services are implemented. Evaluation of numerical

results demonstrates that our algorithm outperforms the Gale-Shapley based algorithm

in performance measurements, including the average cost of charging DEVs, the average

utility of sellers in charging services, the average consumption time, and the percentage

of charged DEVs.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

we proposed a cooperative charging strategy in this work, using the Hungarian matching

method, allowing EV drivers who are anxious about range anxiety to acquire energy from

other EVs with a excess charge, FCSs, HCSs, and MCSs. To improve energy exchanges,

the system is divided into zones, and the trading strategy within every zone is optimized.

Our solution was numerically evaluated by comparing it to the Gale Shapley-based

charging mechanism. According to the numerical results, our algorithm can keep costs

and consuming time down while simultaneously enhancing the rate of charged EVs by

taking into account one-to-multiple matched EVs and optimal collaboration between

SEVs and other charging services for charging DEVs. we proposed cooperative fashion

energy exchanges to prevent overloads of distribution transformers caused by massive

EV charging demands occurring at the same time. This approach consequently allows

the exchange of energy between EVs and charging services while also controlling EVs

more actively, in a more cost-effective manner.

Furtheremore, as a part of our proposed matching algorithm, in the initial steps, we pri-

oritized DEVs based on the maximum distance they can go with their current SoC.This

prioritization benefits EV users with lower remaining ranges, alleviating their range anx-

iety and addressing their charging concerns. Precise estimation of EV driving range is

crucial for mitigating driver anxiety during trips and improving overall trip planning

convenience. Consequently, in this work, we developed a robust predictive model for

estimating EV driving range, integral to promoting DEVs in our matching algorithm.

Leveraging large samples of real driving data collected from authentic sources, the pro-

posed models are evaluated. The extensive ablation study reveals that the proposed
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ensemble model exploiting the strength of MLR and XGBoost techniques stands out as

the most effective approach.

6.2 Future Work

In this section, we propose several ideas for extending and improving upon the current

work. These ideas aim to extend various aspects of the system model and algorithms,

potentially enhancing their practicality and effectiveness in real-world scenarios.

• Enhanced Communication Protocol Analysis: In the system model de-

scribed in Chapter 3, we employed DSRC communication protocols for facilitating

communication between RSUs acting as fog nodes and EVs and charging services

as IoT devices. As a future endeavor, we could delve deeper into analyzing the

performance of these communication protocols. This analysis could involve calcu-

lating key performance metrics such as Signal-to-Noise Ratio (SNR), throughput,

latency, and reliability. Comparing these metrics with those obtained from alter-

native protocols could provide valuable insights into the effectiveness and efficiency

of the chosen communication approach.

• Augmented Energy Trading: Our system model introduced a matching algo-

rithm for energy trading, focusing on critical factors such as the cost of DEVs,

the utility of sellers in charging services, consuming time, and the rate of charged

DEVs. As a potential enhancement, we could extend the algorithm to incorporate

additional considerations, such as user privacy and data security during the pay-

ment process. Integrating these aspects could further enhance the robustness and

applicability of the energy trading system.

• Dynamic Energy Price Modeling: While our proposed algorithm in Chapter 5

assumes a predefined energy price, in practice, this price may vary based on various

factors. To address this, we could explore the integration of dynamic pricing

models within the matching algorithm. This could involve incorporating factors

such as scheduling and timing into the pricing formula outlined in Chapter 3.

Additionally, developing ML models to predict energy prices based on influencing

factors could enable a more adaptive and practical matching process.

• Algorithmic Diversification: Our proposed matching algorithm in Chapter 5

utilizes the Hungarian matching algorithm as a key component. As a future inves-

tigation, we could explore alternative matching algorithms and assess their perfor-

mance within the context of our system model. Comparing the outcomes obtained
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with different algorithms could offer insights into their comparative strengths and

weaknesses, potentially guiding algorithmic selection for specific deployment sce-

narios.

• Predictive System Modeling: In our system model, we rely on predefined val-

ues for parameters such as energy consumption, EV speeds, and traffic congestion

levels. To enhance the realism of the model, we could develop predictive models

using ML techniques. These models could analyze influencing factors to predict

the aforementioned parameters accurately. By integrating predictive modeling, we

could achieve a more dynamic and adaptable system model, better aligned with

real-world conditions.
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Appendix A

Results of Ten-Fold CV and Final

Predictive Model Implementation

using PCA Technique

The tables presented below display the outcomes obtained from utilizing the PCA tech-

nique with ten principal components for feature engineering during the development of

our ML models in Chapter 4. A comparison with the results obtained from the CA

technique, as depicted in Tables 4.2 and 4.4, representing the CA technique for ten-fold

CV and Final Predictive Model Implementation using the CA Technique respectively.

It indicates that the results of CA analysis outperform those of PCA analysis in both

ten-fold CV and the final implementation of ML models.

Table A.1: Ten-Fold CV results of various ML models considered in this study Using
PCA technique

Model Average MAE Best MAE Average R2 Best R2

ELM 25.84 25.271 0.7 0.719

XGBoost 22.184 21.424 0.776 0.804

MLR 32.756 32.183 0.573 0.592

MLP 24.21 23.771 0.743 0.766

Deep MLP 17.829 16.552 0.816 0.845

RF 17.306 16.677 0.83 0.858

AdaBoost 26.592 25.946 0.714 0.739

SVR 27.938 27.338 0.512 0.532
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Table A.2: Quantitative analysis of the final models built using single training and
hold-out sets and their performances using PCA technique.

Model Training MAE Test MAE Training R2 Test R2 Inference Time (s)

ELM 25.032 26.078 0.695 0.706 40.2894

XGBoost 20.638 21.252 0.813 0.79 4.32321

MLR 32.753 42.636 0.577 0.436 4.41784

MLP 23.426 52.648 0.762 0.236 66.8106

Deep MLP 17.517 50.748 0.83 0.497 29.2298

RF 13.951 17.201 0.896 0.815 13.0786

AdaBoost 25.11 25.979 0.756 0.692 10.5717

RF and XGBoost 13.71 16.847 0.901 0.826 45.5463

MLR and XGBoost 20.107 21.802 0.817 0.772 6.08268

RF and MLP 13.778 17.144 0.897 0.836 364.264
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