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Abstract

This dissertation addresses several problems related to distributed cooperative state
estimation and control design for multi-agent rigid-body autonomous systems, namely
bearing-based distributed pose estimation, distributed attitude estimation on SO(3), and
global attitude synchronization on SO(3).

We consider the distributed pose estimation problem for multi-agent rigid-body sys-
tems, under a directed graph topology, assuming that two agents have access to their
respective poses. First, we consider the case where all agents have static positions and
time-varying orientations, and propose two distributed pose estimation schemes evolving
on SO(3) × R3 and SO(3) × R3 × R3, with almost global asymptotic stability guaran-
tees. Thereafter, we consider the case where the agents positions and orientations are
time-varying, and propose a distributed pose observer evolving on SO(3)×R3, with local
exponential stability guarantees. The three proposed estimation schemes rely on individ-
ual angular velocity (and linear velocity in the case of agents with time-varying positions)
measurements and local information exchange between neighboring agents (relative time-
varying bearing measurements and estimated poses).

Next, we consider the problem of distributed attitude estimation of multi-agent sys-
tems, evolving on SO(3), relying on individual angular velocity and relative attitude
measurements, under an undirected, connected and acyclic communication graph topol-
ogy. We propose two distributed attitude observers on SO(3); a continuous version and a
hybrid version, endowed respectively with almost global asymptotic stability and global
asymptotic stability guarantees. In addition, the proposed hybrid attitude estimation
scheme is used to solve the pose estimation problem of multi-agent rigid-body systems,
with global asymptotic stability guarantees, relying on individual linear and angular
velocity measurements as well as local relative bearing and relative orientation measure-
ments.

Finally, we propose a distributed hybrid attitude synchronization scheme (with and
without individual velocity measurements) for a group of rigid body systems evolving on
SO(3) under an undirected, connected and acyclic communication graph topology, with
global asymptotic stability guarantees.
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Chapter 1

Introduction

1.1 General Introduction

The past two decades have witnessed significant development and growth in Autonomous
Vehicle (AV) technology, encompassing ground, maritime, and aerial vehicles. This rapid
evolution has manifested itself in a wide range of civilian and military applications involv-
ing AVs, such as Intelligence, Security, and Reconnaissance (ISR) missions, inspection
and monitoring operations, and transportation. The proliferation of AV technology has
not only transformed conventional approaches to these applications, but has also paved
the way for innovative solutions in areas considered dangerous or complex for human
involvement. In addition, recent advances in micro-electro-mechanical systems (MEMS)
have enabled the emergence of small AVs with high performance and capabilities. Mak-
ing a group of AVs work together in a cooperative manner allows to achieve complex
goals that are difficult of even impossible to achieve with a single AV. Among these
applications, one can mention space-based interferometers, sensor networks, surveillance
systems, etc (Ren and Cao, 2011).

The design of a robust multi-agent1 autonomous system depends primarily on the de-
velopment of reliable and efficient algorithms for cooperative state estimation and control.
Unlike single-agent scenarios, the efficiency and robustness of these algorithms depend
not only on the individual capabilities of each agent but also on their interaction capa-
bilities. Therefore, two approaches are commonly considered for designing cooperative
state estimation and control algorithms for multi-agent systems: distributed and non-
distributed approaches. The non-distributed approach assumes either the availability of
a central agent with global knowledge of all other agents (known as a centralized scheme),
or that all agents have direct interactions with each other (known as a fully connected
scheme). Unfortunately, the non-distributed scheme is not practical in terms of cost and
robustness due to the single point of failure issue in the case of a centralized scheme, and
the susceptibility to communication bottlenecks or delays that limit its scalability in the
case of a fully connected scheme. In contrast, distributed approaches eliminate the need
for a central agent or a direct interaction between all agents, with each agent interacting

1In this thesis, an agent denotes a dynamical rigid body system, e.g., satellite, aircraft, ground vehicle,
underwater vehicle.

1
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solely with its neighbors. This yields significant advantages, including reduced operat-
ing costs, enhanced robustness, adaptability and scalability. Nevertheless, this approach
increases the difficulty of designing cooperative control and estimation algorithms, espe-
cially for multi-agent systems with complex dynamics (e.g., multi-agent systems evolving
in non-Euclidean spaces). Although both approaches possess their own strengths and
weaknesses, the distributed approach is preferred for practical applications because of
the advantages mentioned above.

This thesis focuses on the design of distributed cooperative state estimation and con-
trol for multi-agent autonomous systems. In the following sections, we provide a general
overview of the main approaches and results that have been proposed in this context.

1.2 Bearing-Based Distributed Cooperative Pose Es-

timation for Multi-agent Autonomous Systems

The distributed pose estimation problem for multi-agent networks consists of estimating
the agents’ poses (positions and orientations) in a distributed manner using some avail-
able absolute and relative measurements. Due to the importance of this problem in many
applications related to multi-agent autonomous networks, significant research has been
devoted to designing robust and reliable distributed pose localization schemes. According
to the network’s sensing capabilities, these schemes can be categorized as position-based
(Ren and Atkins, 2007), distance-based (Oh and Ahn, 2011), and bearing-based schemes
(Zhao and Zelazo, 2016). The latter category has recently gained in popularity due to
the revolutionary development in bearing sensors and the fact that bearing information
can be obtained from low-cost and simple sensor systems compared to distance-based
or position-based solutions. For example, vision sensors (Tron et al., 2016) or wireless
sensor arrays (Mao et al., 2007) can be used to obtain the bearing measurements.

Over the last decade, a number of interesting results dealing with distributed pose
estimation of multi-agent systems, relying on the bearing rigidity theory, have been pro-
posed in the literature. Roughly speaking, the basic idea behind the concept of bearing
rigidity is that a set of relative static bearing vectors is sufficient to specify the geomet-
ric pattern of a multi-agent rigid-body system up to a translation and a scaling factor
(Zhao and Zelazo, 2019). In early works, the authors in (Bishop et al., 2011; Eren,
2012) studied the theory of bearing rigidity in two-dimensional spaces. Later on, the
authors in (Zhao and Zelazo, 2016; Zhao and Zelazo, 2015) developed the theory of bear-
ing rigidity for spaces with arbitrary dimensions. As a result, bearing-based cooperative
observers have made their appearances in the literature. For instance, the authors in
(Zhao and Zelazo, 2016) formulated the problem of bearing-based network localization
as a linear least-squares optimization problem. In solving this optimization problem,
the authors provided the localization conditions and protocols for a static network in an
n-dimensional space using only relative bearing measurements and the location of some
anchors (agents with known positions). However, the aforementioned references assume
that the bearings are expressed in a global reference frame (i.e., knowledge of agents’
orientations with respect to a global reference frame), which, unfortunately, is not the
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case in most of the practical applications since the bearing measurements are usually
obtained locally from a sensor (e.g., a camera) mounted on the agent. This motivated
many authors to design a distributed attitude observer that can be fed into a position
estimation scheme together with local bearing measurements to obtain an overall cas-
caded bearing-based distributed pose estimation scheme (Li et al., 2020; Lee et al., 2019).
The idea consists in using the estimated attitudes to transform the local relative bearing
measurements into the global reference frame and then use the transformed bearings in
the position estimation law. In (Lee and Ahn, 2016a; Lee and Ahn, 2016b; Van Tran
et al., 2018; Lee et al., 2019; Van Tran et al., 2019; Van Tran and Ahn, 2020), the authors
proposed several orientation estimation algorithms based on the consensus approach and
the Gram-Schmidt orthonormalization procedure. However, most of these distributed
attitude estimation schemes require relative attitude measurements, which are difficult
to obtain since no low-cost setup can provide such measurements directly. To the best
of the author’s knowledge, there are very few results in the literature that address the
distributed pose estimation problem for multi-agent networks relying on local relative
bearing measurements without using the relative attitude information. Therefore, it is
of great interest to design distributed pose observers for multi-agent systems using only
bearing measurements. Reference (Tran et al., 2020) proposed distributed pose estima-
tion schemes based on local relative bearing measurements and some absolute measure-
ments (angular and linear velocities). Unfortunately, this work provides only convergence
results, with some flaws in the proofs that have been pointed out in (Boughellaba and
Tayebi, 2023b)2. This motivated the work is this dissertation on the design of distributed
pose estimation schemes that rely only on local relative bearing measurements and some
absolute measurements (angular and linear velocities) with AGAS.

On the other hand, dealing with time-varying bearings instead of static ones is more
realistic and appropriate for applications involving networks of mobile agents. There-
fore, some recent results have extended the concept of bearing rigidity by considering
time-varying bearings. For instance, the authors in (Tang et al., 2020a; Tang et al.,
2022) used the concept of persistence of excitation on bearing measurements to relax the
conditions of bearing rigidity (Zhao and Zelazo, 2016) and bearing persistence3 (Zhao
and Zelazo, 2015). Based on the assumption that the bearings are persistently exciting,
exponentially convergent bearing-based distributed position estimation algorithms have
been proposed for multi-agent networks considering both undirected and directed graph
topologies (Tang et al., 2020a; Tang et al., 2020b; Tang et al., 2021). Recently, the
authors of the latter references further extended their research by considering undirected
switching graph typologies and proposed bearing-based distributed position estimation
algorithms that guarantee exponential convergence under the assumption that the for-
mation is Bearing-Persistently-Exciting (BPE) (Tang and Loŕıa, 2023a; Tang, 2023).
However, these works also assume that the bearings are measured in the global reference
frame. Therefore, the design of a bearing-based distributed pose estimation scheme with
exponential stability guarantees, where the bearing measurements are time-varying and

2Authors’ reply can be found in (Tran et al., 2023).
3A formation is bearing persistent when the null spaces of the bearing Laplacian matrix and the

bearing rigidity matrix are the same (Zhao and Zelazo, 2015).
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locally obtained, has been addressed in this dissertation.

1.3 Distributed Attitude Estimation for Multi-Agent

Systems

A fundamental problem of great importance in the field of distributed cooperative state
estimation for multi-agent autonomous systems, namely the distributed cooperative atti-
tude estimation, consists of estimating the agents’ attitudes using some absolute individ-
ual measurements and some inter-agent (relative) measurements according to a predefined
interaction graph topology between the agents involved in the group. The importance
of this problem stems from the fact that the available absolute individual measurements
are not enough to allow each agent to estimate its orientation independently from other
agents.

It is well known that the only representation that describes the attitude of a rigid body
uniquely and globally is the rotation matrix belonging to the special orthogonal group
SO(3) which is a smooth manifold with group properties (i.e., matrix Lie group). Since
SO(3) is boundaryless odd-dimensional compact manifold, it is non-diffeomorphic to any
Euclidean space, and as such, it is not possible to achieve global asymptotic stability with
time-invariant continuous vector fields on SO(3) (Koditschek, 1989; Bhat and Bernstein,
2000), i.e., in addition to the desired equilibrium there are other undesired equilibria.
Since the use of classical cooperative schemes (on Euclidean spaces) for systems evolving
on smooth manifolds is not trivial, appropriate cooperative control and estimation tech-
niques needed to be developed. As such, some consensus-based attitude synchronization
schemes on SO(3) have been proposed in the literature (see, for instance, (Tron et al.,
2012; Tron et al., 2013; Markdahl, 2021; Sarlette et al., 2009; Sarlette et al., 2007; Sarlette
and Sepulchre, 2009a)). Motivated by the attitude synchronization schemes mentioned
in the above references, some distributed cooperative attitude estimation schemes, de-
signed directly on SO(3), have been proposed in the literature. For instance, the authors
in (Tron and Vidal, 2014) proposed a distributed attitude localization scheme for camera
sensor networks endowed with an almost global convergence result. To achieve this, they
introduced a reshaping function to the cost function, given in (Tron et al., 2011), such
that the only stable equilibrium of the proposed scheme is the global minimizer of the
reshaped cost function.

In a series of papers (Lee and Ahn, 2016a; Lee and Ahn, 2016b; Van Tran et al., 2018;
Lee et al., 2019), the authors proposed some attitude estimation schemes relying on clas-
sical (Euclidean) consensus algorithms along with the Gram-Schmidt orthonormalization
procedure. These attitude estimation algorithms have been extended to deal with time-
varying orientations in n-dimensional Euclidean spaces (Van Tran et al., 2019; Van Tran
and Ahn, 2020). Note that the attitude estimation schemes based on the Gram-Schmidt
orthonormalization procedure may lead to problems when the estimated matrix (that
does not belong to SO(3)) is singular. A more recent work (Li et al., 2020) suggests a
similar algorithm as the one in (Lee and Ahn, 2016a; Van Tran et al., 2018), but without
the Gram-Schmidt orthonormalization. As a result, the algorithm provides estimates of
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the agents’ orientations only when the time tends to infinity and not for all times, which
makes the algorithm inappropriate for control applications requiring instantaneous ori-
entations for feedback. The design of distributed attitude estimation schemes directly on
a rotation manifold with global asymptotic stability guarantees is an open problem that
has been solved in this thesis using hybrid techniques.

1.4 Attitude Synchronization

The attitude synchronization for multi-agent rigid body systems consists in aligning the
agents orientations with a common desired orientation, using local information exchange.
This problem has garnered considerable attention from the research community over the
past few decades due to its significant implications in various areas. Many of the exist-
ing multi-agent rigid body formation control schemes assume that the agents’ absolute
orientations are known to allow the use of local relative measurements (e.g., positions,
distances, or bearings) in the formation control laws. However, if the agents’ absolute
attitudes are unknown, they can still achieve the desired formation up to a constant ro-
tation by first synchronizing their attitudes to a common orientation and then using this
common orientation together with local relative measurements in the formation control
law. Note that the two tasks (i.e., the attitude synchronization and formation control)
can be performed simultaneously (Oh and Ahn, 2014; Moshtagh et al., 2009).

A number of works have investigated the problem of attitude synchronization using
different attitude parameterizations such as the Euler Angles (EA), Modified Rodriguez
Parameters (MRP), and unit quaternions. The authors in (Dimarogonas et al., 2009;
Bayezit and Fidan, 2013; Ren, 2010; Jin et al., 2020; Meng et al., 2010; Chen et al., 2019)
used EA and MRP representations to study the attitude synchronization problems. Un-
fortunately, these attitude representations evolve on the Euclidean space R3 and achieve
only local results due to the singularity problem (Ren, 2010). Since the unit-quaternion
represents the attitude of a rigid body globally (Shuster, 1993), several works have ad-
dressed the attitude synchronization problem using this representation (Ren, 2007; Bai
et al., 2008; Liu and Huang, 2018; Pereira et al., 2020; Zhang et al., 2022). In the same
context, the authors in (Abdessameud and Tayebi, 2009; Abdessameud et al., 2012) pro-
posed quaternion-based attitude synchronization schemes that use the virtual dynamics
approach, initially proposed in (Tayebi, 2008), to eliminate the need for the angular ve-
locity measurements. Although the unit-quaternion representation does not suffer from
the singularity problem, unit-quaternion space is a double cover of the special orthogonal
group SO(3). The use of unit-quaternion, without extra care, can result in the undesir-
able unwinding phenomenon. Motivated by this, the authors in (Mayhew et al., 2012;
Gui and de Ruiter, 2018; Huang and Meng, 2021) proposed hybrid quaternion-based
attitude synchronization schemes endowed with global asymptotic stability guarantees,
while effectively avoiding the unwinding phenomenon through the use of an appropriately
designed logic variable to determine the sign of the torque input.

Unlike other attitude parameterizations , the rotation matrix representation, which
belongs to the special orthogonal group SO(3), is the only representation that uniquely
and globally represents the attitude of a rigid body. However, the topological obstruc-
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tion to global asymptotic stability induced by the fact that SO(3) not homeomorphic
to any Euclidean space (Koditschek, 1989; Bhat and Bernstein, 2000), poses a challenge
in extending the classical Euclidean consensus schemes to consensus schemes on smooth
manifolds such as SO(3). Despite this challenge, several attitude synchronization schemes
on SO(3) have been proposed in the literature (e.g., (Maadani et al., 2020; Van Tran
et al., 2022; Tron et al., 2012; Tron et al., 2013; Markdahl, 2021; Sarlette et al., 2009;
Sarlette et al., 2007; Sarlette and Sepulchre, 2009a; Wei et al., 2018)). Unfortunately,
none of these papers was able to provide global asymptotic stability results. Therefore,
the design of attitude synchronization schemes (with and without angular velocity mea-
surements) on SO(3) with global asymptotic stability guarantees is an open problem
addressed in this dissertation.

1.5 Thesis Contributions

In this dissertation, we address the problem of distributed cooperative state estimation
and control design for multi-agent autonomous systems. The contributions can be sum-
marized as follows:

• Chapter 3 deals with the design of bearing-based distributed pose observers, for
multi-agent rigid body systems, under a directed graph topology. These observers
rely on individual angular velocity (and linear velocity in the case of agents with
time-varying positions) measurements and local information exchange between neigh-
boring agents (relative time-varying bearing measurements and estimated poses).
The following two main contributions summarize the results of this chapter:

1. Assuming the agents have static positions and time-varying orientations, we
first design an almost globally asymptotically stable stand-alone bearing-based
distributed attitude observer evolving on SO(3). We then extend this design
by using filtered bearing measurements in the observer dynamics evolving on
SO(3) × R3, resulting in an AGAS distributed attitude estimation scheme.
This state observer is more practical than the one proposed in the first design,
since it helps filtering out bearing measurements noise. Finally, relying on
the attitude estimates, provided by the distributed rotational state observer,
together with local relative (time-varying) bearing measurements, we design
an AGAS distributed pose observer. Note that the authors in (Tran et al.,
2020) dealt with the same problem and provided convergence results with
some flaws in their proof as pointed out in (Boughellaba and Tayebi, 2023b).
To the best of the author’s knowledge, no such strong stability result has been
reported in the available literature for the problem under consideration.

2. Considering the case where the agents are assumed to have both time-varying
positions and orientations, we propose an exponentially stable bearing-based
distributed nonlinear pose estimation scheme on SO(3) × R3. The overall
bearing-based distributed pose estimation scheme is a cascade of a standalone
bearing-based distributed attitude observer, endowed with local exponential
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stability, and a bearing-based distributed position observer relying on the atti-
tude estimates provided by the rotational observer. Local exponential stability
of the overall distributed pose estimation scheme is established. This local sta-
bility result is mainly due to the fact that the agents’ positions are allowed
to be time-varying. Moreover, unlike the design proposed in (Tang and Loŕıa,
2023b; Tang et al., 2020a; Tang et al., 2021), our distributed pose localization
scheme relies on local time-varying bearing measurements.

The results presented in this chapter are reported in (Boughellaba and Tayebi,
2022; Boughellaba and Tayebi, 2023b; Boughellaba and Tayebi, 2023a).

• In Chapter 4, two distributed attitude estimation schemes on SO(3) are proposed
for a group of rigid body systems under an undirected, connected and acyclic graph
topology. Each agent measures its own angular velocity in the respective body-
frame, measures the relative orientation with respect to its neighbors, and receives
information from its neighbors. The attitude observers designed in this Chapter do
not rely on relative bearing measurements as in Chapter 3 but on relative orienta-
tion measurements. Note that both estimation schemes provide attitude estimates
up to a constant orientation which can be determined in the presence of a leader
in the group (knowing its absolute orientation). Furthermore, a distributed pose
estimation law is proposed, providing global estimates of the individual poses up
to a constant translation and orientation. It relies on the estimated attitudes, pro-
vided by the distributed attitude observer, the local relative (time-varying) bearing
information, and the individual linear velocities.

1. Inspired by the consensus optimization framework on manifolds introduced
in (Sarlette and Sepulchre, 2009b), we propose a continuous distributed atti-
tude estimation scheme on SO(3). Moreover, we provide a rigorous stability
analysis that shows that the proposed continuous attitude observer is AGAS.
Compared to the existing results, such as (Lee and Ahn, 2016a; Lee et al.,
2019; Van Tran et al., 2019; Van Tran and Ahn, 2020), the proposed contin-
uous distributed attitude observer, in addition of being designed directly on
SO(3) and endowed with asymptotic stability (not only convergence) results,
is much simpler and does not require any auxiliary matrices and orthonor-
malization procedures (e.g., Gram-Schmidt orthonormalization), which may
complicate the implementation of the observer and add extra computational
overhead.

2. To overcome the topological obstruction that precludes global asymptotic sta-
bility on SO(3) with smooth vector fields, a new hybrid distributed attitude
observer, with global asymptotic stability guarantees, is developed.

3. A globally asymptotically stable bearing-based hybrid distributed pose esti-
mation scheme for n-agent rigid-body systems is developed. To the best of
the author’s knowledge, there is no existing work in the literature providing
such strong stability results for the problem dealt with in this dissertation.
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The results presented in Chapter 4 have been published in (Boughellaba and Tayebi,
2023c; Boughellaba and Tayebi, 2023d).

• In Chapter 5, a new distributed hybrid feedback control scheme, for the global atti-
tude synchronization of a group of rigid body systems, is developed. The proposed
distributed control scheme, relying on individual angular velocity measurements
and relative attitude information, ensures global convergence of the individual ori-
entations to a common orientation under undirected, connected, and acyclic graph
topologies. In contrast to (Mayhew et al., 2012; Gui and de Ruiter, 2018; Huang
and Meng, 2021), the proposed distributed attitude synchronization scheme is de-
signed directly on SO(3). Furthermore, a velocity-free distributed hybrid attitude
synchronization scheme, with global asymptotic stability guarantees, relying on rel-
ative attitude measurements, is proposed. Inspired by (Tayebi, 2008) and (Wang
and Tayebi, 2022), the proposed velocity-free control law uses, in addition to the
generic multi-agent switching mechanism introduced in Chapter 4, an auxiliary dy-
namical system for each agent to generate the necessary damping that compensates
for the lack of angular velocity information. To the best of the author’s knowledge,
this is the first result in the literature dealing with velocity-free global attitude syn-
chronization on SO(3). The results of this chapter are presented in (Boughellaba
and Tayebi, 2024).

List of Publications

The materials presented in this dissertation are based on the following publications:

Journal Articles:

• M. Boughellaba and A. Tayebi, “Distributed attitude estimation for multi-agent
systems on SO(3)”, IEEE Transactions on Automatic Control, Conditionaly ac-
cepted, 2023.

• M. Boughellaba and A. Tayebi, “Bearing-based distributed pose estimation for
multi-agent networks”, IEEE Control Systems Letters, vol. 7, pp. 2617–2622,
2023.

• M. Boughellaba and A. Tayebi, “Comments on “pose localization of leader–follower
networks with direction measurements” [automatica 120 (2020) 109125]”, Automat-
ica, vol. 151, p. 110 949, 2023, issn: 0005-1098.

Peer-Reviewed Conference Proceedings:

• M. Boughellaba and A. Tayebi, “Global attitude alignment for multi-agent sys-
tems on SO(3) without angular velocity measurements”, In proc. of the American
Control Conference (ACC), Toronto, Canada, Accepted, 2024.

• M. Boughellaba and A. Tayebi, “Bearing-based distributed pose estimation for
multi-agent networks”, In Proc. of the 62nd IEEE Conference on Decision and
Control (CDC), Singapore, pp. 1394-1399, 2023.
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• M. Boughellaba and A. Tayebi, “Distributed hybrid attitude estimation for multi-
agent systems on SO(3)”, In proc. of the American Control Conference (ACC),
San Diego, CA, USA, pp. 1048–1053, 2023.

• M. Boughellaba and A. Tayebi, “Leader-follower bearing-based distributed pose
estimation for multi-vehicle networks”, In Proc. of the 61st IEEE Conference on
Decision and Control (CDC), Cancun, Mexico, pp. 6562–6567, 2022.

1.6 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents the notations, background and preliminaries used throughout
the thesis. Section 2.1 contains the general notations used in this thesis. Section 2.2
and Section 2.3 present some tools related to differential manifolds and graph theory.
Fundamental consensus algorithms are presented in Section 2.4. Section 2.5 describes
the attitude representation and some useful related identities and lemmas. Section 2.6
presents the hybrid systems framework used in this dissertation. Finally, Section 2.7
presents the notion of almost global input-to-state stability and some useful related re-
sults.

Chapter 3 is devoted to the problem of bearing-based distributed cooperative pose
estimation for multi-agent autonomous. Section 3.2 deals with the design of bearing-
based distributed pose estimation schemes, assuming that agents have fixed positions and
time-varying orientations. The case where the agents have time-varying positions and
orientations is dealt with in Section 3.3. Concluding remarks are presented in Section 3.4.

Chapter 4 is dedicated to the design of distributed attitude estimation observers for
multi-agent rigid-body systems, relying on relative orientation measurements, with appli-
cation to distributed pose estimation. In Section 4.2, the distributed attitude estimation
problem for multi-agent systems, with relative attitude measurements, is formulated.
Section 4.3 provides the design of continuous and hybrid distributed attitude estimation
schemes. Section 4.4 deals with the design of a hybrid distributed pose estimation scheme.
Simulation results and concluding remarks are presented in Section 4.5 and Section 4.6,
respectively.

Chapter 5 considers the problem of global attitude synchronization on SO(3) for
multi-agent rigid body systems. Section 5.2 formulates the problem of attitude synchro-
nization on SO(3). Section 5.3 presents the (generic) distributed hybrid feedback control
scheme for the global attitude synchronization relying on angular velocity and relative
attitude measurements. This generic feedback control scheme is extended in Section 5.4
to the case where only relative attitude measurements are available. Section 5.5 provides
an explicit design for both feedback control schemes presented in Sections 5.3 and 5.4.
Finally, Sections 5.6 and 5.7 present some simulation results and concluding remarks,
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respectively.

Chapter 6 summarizes the findings of this thesis and presents some possible future
directions.

Appendix A, B, C contain the detailed proofs of lemmas and theorems stated
throughout this thesis.



Chapter 2

Background and Preliminaries

2.1 General Notations

The sets of real numbers and the n-dimensional Euclidean space are denoted by R and
Rn, respectively. Consider a matrix A with dimensions n×m (i.e., A ∈ Rn×m), where n
represents the number of rows and m represents the number of columns. Each entry in
the matrix is denoted by aij, representing the value in the i-th row and the j-th column.
For any square matrix A ∈ Rn×n, the trace of the matrix is denoted as tr(A) and is
calculated by summing the values of its diagonal elements, i.e., tr(A) =

∑n
i=1 aii. The

determinant of the matrix A is denoted by det(A). The set of unit vectors in Rn is defined
as Sn−1 := {x ∈ Rn | xTx = 1}. Let AT be the transpose of the matrix A. Given two
matrices A,B ∈ Rn×m, their Euclidean inner product is defined as ⟨⟨A,B⟩⟩ = tr(ATB).
The Euclidean norm of a vector x ∈ Rn is defined as ||x|| =

√
xTx, and the Frobenius

norm of a matrix A ∈ Rn×n is given by ||A||F =
√

⟨⟨A,A⟩⟩. The dot product of two
vectors x and y in R3 is given by x · y = ||x||||y|| cos⟨x, y⟩, where ⟨x, y⟩ denotes the angle
between the vectors x and y. Let A be a square matrix of size n×n over the real numbers.

We use λAi to represent the i-th eigenvalue of matrix A. In addition, λA and λ
A
denote

the smallest and largest eigenvalues of A, respectively. Furthermore, E(A) denotes the
collection of all eigenvectors associated with matrix A. The matrix In ∈ Rn×n denotes
the identity matrix, and 1n = [1 . . . 1]T ∈ Rn. Given a subset SN ⊂ N, where N is the
set of natural numbers, the cardinality of SN is denoted by |SN|. Let S be a subset, S
denotes the closure1 of S. Given two matrices A := [aij] ∈ Rn×m and B ∈ Rp×q, the
Kronecker product of A and B is defined as the matrix

A⊗B :=


a11B a12B . . . a1mB
a21B a22B . . . a2mB
...

...
. . .

...
an1B an2B . . . anmB

 ∈ Rnp×mq. (2.1)

1The closure of a set contains all the points of the set itself and any limit points of the set. A limit
point of a set is a point such that every neighborhood of that point contains at least one point from the
set different from the point itself.

11
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2.2 Differential Manifold

A differential manifold is a more general mathematical object that includes spaces that
are locally similar to Euclidean space, but can have more complicated global structures
and curvatures. Unlike Euclidean spaces, differential manifolds can have variable curva-
ture and need not be flat on a large scale. A classic example of a differential manifold
is the unit sphere, defined as Sn−1 :=

{
(x1, x2, . . . , xn) ∈ Rn : x21 + x22 + . . . + x2n = 1

}
,

which is a differential manifold embedded in Rn. It is important to note that the stan-
dard definition of a derivative for functions in Euclidean spaces, relying on vector space
structures, does not directly apply to smooth maps between manifolds. This limitation
arises because manifolds are more general geometric objects that may lack a simple vector
space structure, particularly when embedded in higher-dimensional spaces. Therefore, a
new notion of the derivative of a map on a smooth manifold needs to be defined (Darryl
D Holm., 2009).

Let Q be a smooth manifold, and consider an open interval I ⊂ R containing zero
in its interior. Let ζ : I → Q be a smooth curve with ζ(0) = x. The tangent vector at
x ∈ Q is defined as the derivative of the curve ζ evaluated at zero:

ζ̇(0) :=
d

dt

∣∣∣∣
t=0

ζ(t).

Definition 2.1 (Darryl D Holm., 2009) The set of all tangent vectors at a given point
x, corresponding to all possible paths in Q through x, is called the tangent space to Q at
point x, denoted by TxQ.

Definition 2.2 (Darryl D Holm., 2009) The disjoint union of all tangent spaces repre-
sents the tangent bundle of Q, given as

T Q =
⋃
x∈Q

TxQ.

Definition 2.3 Consider two smooth manifolds Q and O. The map f : Q → O is said
to be a differentiable map if it is differentiable at all points in its domain.

Remark 2.1 The inverse image of a subset SO ⊂ O under the map f is the subset of
Q given by f−1(SO) = {x ∈ Q : f(x) ∈ SO}.

Remark 2.2 The map f is a diffeomorphism map if it is differentiable and its inverse
is also differentiable.

Definition 2.4 (Darryl D Holm., 2009) Let f : Q → O be a differentiable map between
two smooth manifolds Q and O. The tangent map of f at point x ∈ Q denoted by
dfx : TxQ → Tf(x)O is defined as

dfx(η) :=
d

dt

∣∣∣∣
t=0

f (ζ(t)) ,

where ζ(t) is a smooth curve in Q with ζ(0) = x and η = ζ̇(0) ∈ TxQ.
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Consider a smooth manifold Q with TxQ being its tangent space at point x ∈ Q. Let
f : Q → R≥0 be a continuously differentiable real-valued function. The function f is a
potential function on Q with respect to set B ∈ Q if{

f(x) = 0, ∀x ∈ B
f(x) > 0, ∀x /∈ B

The gradient of f at x ∈ Q, denoted by ∇xf(x), is defined as the unique element of TxQ
such that (Absil et al., 2007):

dfx(η) = ⟨∇xf(x), η⟩x, ∀η ∈ TxQ,

where ⟨ , ⟩x : TxQ × TxQ → R is Riemannian metric on manifold Q at point x. The
point x ∈ Q is said to be a critical point of f if ∇xf(x) = 0.

2.3 Graph Theory

Graph theory plays a crucial role in designing and analyzing cooperative control and
state estimation schemes since it provides a mathematical framework and a set of tools
for modeling and studying the relationships and interactions between different entities or
agents in a system. Therefore, in this section, we will present some important definitions
and properties related to the graph theory used throughout this thesis. The reader is
referred to (Ren and Beard, 2007; Mesbahi and Egerstedt, 2010) for more details.

Consider a network of n agents. The interaction topology between the agents can
be described either by the undirected graph Gu = (V , Eu) or by the directed graph Gd =
(V , Ed) where V = {1, . . . , n} represents the vertex (or agent) set and Eu ⊆ V × V (resp.
Ed ⊆ V ×V) represents the edge set of Gu (resp. Gd). In undirected graphs, if (i, j) ∈ Eu,
then (j, i) ∈ Eu. In other words, if j is a neighbor of i, then i is also a neighbor of j.
However, in directed graphs, (i, j) ∈ Ed does not necessarily imply (j, i) ∈ Ed. The set
of neighbors of agent i is defined as Ni = {j ∈ V : (i, j) ∈ E}, where E is either equal
to Eu or Ed depending on whether the graph is directed or undirected, respectively. The
undirected path is a sequence of edges in an undirected graph Gu. An undirected graph
Gu is connected if there is an undirected path between every pair of distinct vertices. An
undirected graph has a cycle if there exists an undirected path that starts and ends at
the same agent. An acyclic undirected graph is an undirected graph without a cycle. An
undirected tree is an undirected graph in which any two agents are connected by exactly
one path (i.e., an undirected tree is an undirected, connected, and acyclic graph). An
oriented graph is obtained from an undirected graph by assigning an arbitrary direction
to each edge.

The adjacency matrix is a square matrix used to represent the relationships of the
graph’s vertices in a 2D array. The adjacency matrix D := [dij] ∈ Rn×n of an undirected
graph Gu is defined such that dii = 0 and{

dij = dji = 1, if (i, j) ∈ Eu
dij = dji = 0, otherwise

(2.2)
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Note that the presence or absence of an edge between two vertices is represented by
the values 1 and 0, respectively, in the adjacency matrix. For example, the unweighted
adjacency matrix of the undirected graph in Figure 2.1 is given by

D =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 (2.3)

2

1 3

5 4

Figure 2.1: Example of an undirected graph with five vertices.

Property 2.1 For an undirected graph, the adjacency matrix is always symmetric since
if there is an edge from vertex i to vertex j, there is also an edge from vertex j to vertex
i.

Consider an oriented graph where each edge is indexed by a number. Let m = |E| and
M = {1, . . . ,m} be the total number of edges and the set of edge indices, respectively.
The incidence matrix of an oriented graph is denoted by H ∈ Rn×m, where the rows are
indexed by the vertex numbers and the columns are indexed by the edge numbers. The
entry indexed by (i, k) equals 1 if vertex i is the head of edge k, -1 if it is the tail, and 0
otherwise. Define M+

i ⊂ M as the subset of edge indices in which agent i is the head of
the edges and M−

i ⊂ M as the subset of edge indices in which agent i is the tail of the
edges. Using these definitions, the incidence matrix can be expressed as follows:

H := [hik]n×m with hik =


+1 k ∈ M+

i

−1 k ∈ M−
i

0 otherwise

, (2.4)

For instant, assigning an arbitrary orientation to the undirected graph given in Figure
2.1, one gets the oriented graph in Figure 2.2.
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2

1 3

5 4

1 2

4

35

Figure 2.2: Example of an oriented graph with five vertices.

The incidence matrix related to the oriented graph presented in Figure 2.2 is found to be

H =


−1 0 0 0 1
1 −1 0 0 0
0 1 1 0 0
0 0 −1 1 0
0 0 0 −1 −1

 (2.5)

Property 2.2 Given a connected graph, one verifies that HT1n = 0 and rank(H)=n−1.
Moreover, the columns of H are linearly independent if the graph is an undirected tree.

Moreover, having an oriented graph, the Laplacian matrix L := [lij] ∈ Rn×n is defined
such that lij = −dij = 0, for every (i, j) /∈ Eu, and{

lii =
∑n

j=1,j ̸=i dij,

lij = −dij,
(2.6)

for every (i, j) ∈ Eu, where dij is (i, j)-th entry of the adjacency matrix given in (2.2).
According to the incidence matrix (2.4), the Laplacian matrix can also be defined as
follows

L := HTH. (2.7)

The Laplacian matrix of the oriented graph shown in Figure 2.2 is given by

L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 (2.8)

It follows from (2.6) and (2.7) that the Laplacian matrix enjoys the following properties:

Property 2.3 The Laplacian matrix is symmetric and positive semidefinite.
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Property 2.4 The Laplacian matrix has zero row summation, which means that the zero
is an eigenvalue of the Laplacian matrix with the associated eigenvector 1n.

Lemma 2.1 (Ren and Beard, 2007) The Laplacian matrix is diagonally dominant and
has nonnegative diagonal entries. Consequently, all non-zero eigenvalues of the Laplacian
matrix are positive (i.e., the Laplacian matrix is positive semidefinite). Furthermore, if
the undirected graph is connected, zero is a simple eigenvalue of the Laplacian matrix.

2.4 Fundamental Consensus Algorithms

Consensus algorithms are protocols used in distributed systems to achieve agreement
among multiple agents. These algorithms ensure that all agents in a multi-agent system
agree on a single value or a specific state of the system. This section presents some basic
consensus algorithm, which can be extended to more complicated ones according to the
problems at hand.

Consider a network of n agents that can interact with each other according to an
undirected graph topology Gu = (N , Eu). Let the following single-integrator system
describe the dynamics of agent i:

ẋi = ui, (2.9)

where i ∈ V , xi ∈ Rd, d ≥ 1, is the state of agent i, and ui ∈ Rd is the control input of
agent i. The most common continuous-time consensus protocol for the above multi-agent
system is (Mesbahi and Egerstedt, 2010)

ui = −
n∑

j=1

dij(xi − xj), (2.10)

where dij is the (i, j)-th entry of the adjacency matrix D associated with the graph
Gu. Note that dij = 0 indicates that agent i cannot interact with agent j. By defining

x :=
[
xT1 , x

T
2 , . . . , x

T
n

]T ∈ Rdn and from the definition of Laplacian matrix (2.7), one can
derive the following compact matrix form of system (2.9)-(2.10):

ẋ = −(L⊗ Id)x. (2.11)

It follows from Lemma 2.1, when considering a connected undirected graph topology,
that the consensus algorithm (2.9)-(2.10) achieves the average consensus, i.e., xi →
1
n

∑n
j=1 xj(0), for each i ∈ V (Ren and Beard, 2007). The following lemma establishes

a connection between the convergence of the consensus algorithm (2.9)-(2.10) and the
eigenvalues of the Laplacian matrix.

Lemma 2.2 (Mesbahi and Egerstedt, 2010) The convergence properties of the consen-
sus algorithm (2.9)-(2.10) depend on the value of the lowest non-zero eigenvalue of the
Laplacian matrix.
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2.5 Rigid Body Attitude Representation

There are several commonly used attitude representations, such as EA, MRP, axis-angle
parameterization, unit quaternion, and rotation matrix. Each of these representations
has its advantages and disadvantages. However, the rotation matrix representation is
the only one that is global and unique. Therefore, in this thesis, we will use the rotation
matrix representation in the design of our attitude estimation and control schemes.

Figure 2.3: Coordinate systems: I is the inertial frame and B is the body-fixed frame
attached to the center of mass of the VTOL aircraft.

In Figure 2.3, frame I denotes the inertial frame and frame B denotes the body-
fixed frame attached to the vehicle’s center of mass. The attitude of the vehicle is the
orientation of its body-fixed frame with respect to the inertial frame. This orientation
can be described by a rotation matrix, namely R ∈ R3×3, which relates the axes of the
two frames as follows:

xBi = RTxIi , (2.12)

where i ∈ {1, 2, 3}. According to the above equation and the fact that the axes of the
two frames are unit vectors, one can derive the following form of the rotation matrix:

R :=

xB1 · xI1 xB2 · xI1 xB3 · xI1
xB1 · xI2 xB2 · xI2 xB3 · xI2
xB1 · xI3 xB2 · xI3 xB3 · xI3

 =

cos⟨xB1 , xI1 ⟩ cos⟨xB2 , xI1 ⟩ cos⟨xB3 , xI1 ⟩
cos⟨xB1 , xI2 ⟩ cos⟨xB2 , xI2 ⟩ cos⟨xB3 , xI2 ⟩
cos⟨xB1 , xI3 ⟩ cos⟨xB2 , xI3 ⟩ cos⟨xB3 , xI3 ⟩

 (2.13)

The rotation matrix R is an element of the Special Orthogonal group of order three defined
by

SO(3) :=
{
R ∈ R3×3 : det(R) = 1, RRT = RTR = I3

}
. (2.14)

Note that SO(3) is a matrix Lie group where the group operation is defined by ordinary
matrix multiplication. The associated Lie algebra, denoted by so(3), is composed of all
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skew-symmetric 3-by-3 matrices defined as

so(3) := {Ω ∈ R3×3 : ΩT = −Ω}. (2.15)

The skew-symmetric map [.]× : R3 → so(3) is defined such that [x]×y = x × y for
any x, y ∈ R3, where × denotes the vector cross product in R3. This map establishes an
isomorphism between the Lie algebra so(3) and R3. For example, given ω = [ω1 ω2 ω3]

T ∈
R3, one can map the vector ω to the Lie algebra so(3) using the skew-symmetric map as
follows:

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.16)

Now, Let us introduce some useful identities related to the skew-symmetric map.
Given x, y ∈ R3, A ∈ R3×3 and R ∈ SO(3), one has

[x]×x = 0, (2.17)(
[x]×

)3
= −||x||2[x]×, (2.18)

[x]×y = −[y]×x, (2.19)

[x+ y]× = [x]× + [y]×, (2.20)

[y]×[y]× = yxT − (xTy)I3, (2.21)[
[x]×y

]×
= [x]×[y]× − [y]×[x]×, (2.22)

⟨⟨[x]×, [y]×⟩⟩ = 2xTy, (2.23)

A[x]× + [x]×A =
[
(tr(A)I3 − AT )x

]×
, (2.24)

(Rx)× (Ry) = R(x× y), (2.25)

[Rx]× = Rx×RT . (2.26)

The inverse map of [.]× is the vex map defined as vex : so(3) → R3 such that vex([ω]×) =
ω, and [vex(Ω)]× = Ω for all ω ∈ R3 and Ω ∈ so(3). In addition, let Pa : R3×3 → so(3)
be the projection map on the Lie algebra so(3) such that Pa(A) := (A−AT )/2. Given a
3-by-3 matrix C := [cij]i,j=1,2,3, one can define the following map, which is a composition
of the projection map and the skew-symmetric map:

ψ(C) := vex ◦ Pa(C) = vex(Pa(C)) =
1

2

c32 − c23
c13 − c31
c21 − c12

 . (2.27)

Accordingly, for any x, y ∈ R3, A ∈ R3×3 and R ∈ SO(3), one has the following identities:

⟨⟨A, x×⟩⟩ = ⟨⟨Pa(A), x
×⟩⟩, (2.28)

⟨⟨A, x×⟩⟩ = 2xTψ(A), (2.29)

ψ(AR) = RTψ(RA), (2.30)

[x× y]× = Pa(yx
T ), (2.31)

x× y = 2ψ(yxT ), (2.32)
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tr(Ax×) = tr(Pa(A)x
×). (2.33)

Now, we will introduce an important concept related to the metrics on SO(3). A
metric on SO(3) is a function dSO(3) : SO(3)×SO(3) → R≥0 that measures the disparity
between two given rotations. This function should satisfy the following properties:

• dSO(3)(R1, R2) ≥ 0.

• dSO(3)(R1, R2) = dSO(3)(R2, R1).

• dSO(3)(R1, R2) = 0 if and only if R1 = R2.

• dSO(3)(R1, R3) ≤ dSO(3)(R1, R2) + dSO(3)(R2, R3).

A commonly used metric on SO(3) is the Frobenius distance, also known as the Euclidean
(Chordal) distance on SO(3). Given two rotations R1 and R2 in SO(3), the Frobenius
distance between them can be found as follows:

dSO(3)(R1, R2) = ||R1 −R2||F . (2.34)

From the fact that tr(R) ≥ −1, for any R ∈ SO(3), one can derive the upper bound of
the Frobenius distance for any R1, R2 ∈ SO(3) as

dSO(3)(R1, R2) = dSO(3)(I3, R1R
T
2 ) =

√
2tr(I3 −R1RT

2 ) ≤
√
8. (2.35)

The above inequality shows that the SO(3) group has a compact manifold structure. In
this thesis, we will mostly use the normalized version of the Frobenius distance (known
as the normalized attitude norm), which is given by

|R|I =
dSO(3)(I3 −R)√

8
=

||I3 −R||F√
8

=

√
tr(I3 −R)√

4
. (2.36)

Note that the normalized attitude norm measures the disparity of a given rotation with
respect to I3. Also, note that this norm ranges between zero and one, i.e.., 0 ≤ |R|I ≤ 1.

Another interesting metric on SO(3) is the Riemannian metric. Recall that a Rie-
mannian metric on a smooth manifold assigns a positive definite inner product to each
tangent space at every point on the manifold. Therefore, before proceeding with this
metric on SO(3), it is necessary to first introduce the tangent space of SO(3). The
tangent space of SO(3) at any given rotation R is defined as follows:

TRSO(3) := {R Ω | Ω ∈ so(3)}. (2.37)

Note that the vector space so(3) can be seen as the tangent space of SO(3) at the identity
matrix, i.e., so(3) = TISO(3). Consequently, the Riemannian metric can be defined as
the map ⟨ , ⟩R : TRSO(3)× TRSO(3) → R≥0 such that

⟨RΩ1, RΩ2⟩R = ⟨⟨Ω1,Ω2⟩⟩, (2.38)
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where R ∈ SO(3) and Ω1,Ω2 ∈ so(3). Furthermore, given a differentiable smooth func-
tion f : SO(3) → R, the gradient of f at R ∈ SO(3), denoted by ∇Rf ∈ TRSO(3), is
defined as the unique element of TRSO(3) such that

df ·RΩ = ⟨∇Rf,RΩ⟩R = ⟨⟨RT∇Rf,Ω⟩⟩, (2.39)

for all R ∈ SO(3) and Ω ∈ so(3). A point R ∈ SO(3) is called a critical point of f if the
gradient of f at point R ∈ SO(3) is zero, i.e., ∇Rf(R) = 0.

For any A,B ∈ R3×3, x, y ∈ R3 and a ∈ R, one has the following identities:

tr(AT ) = tr(A), (2.40)

tr(A+B) = tr(A) + tr(B), (2.41)

tr(aA) = atr(A), (2.42)

tr(AB) = tr(BA), (2.43)

tr(AB) = 0 if A = AT and B = −BT , (2.44)

tr(xyT ) = xTy. (2.45)

Lemma 2.3 (Berkane, 2017) Consider a symmetric positive semi-definite matrix A ∈
R3×3 such that Ā := 1

2
(tr(A)I3 − A) is positive definite. Then, for any x, y ∈ R3, the

following properties are satisfied for all R ∈ SO(3):

4λĀ|R|2I ≤ tr ((I3 −R)A) ≤ 4λ
Ā|R|2I , (2.46)

||ψ(AR)||2 = α(A,R)tr ((I3 −R)A) , (2.47)

||ψ(R)||2 = 4(1− |R|2I)|R|2I ≤ 1, (2.48)

ψ(R)Tψ(AR) = ψ(R)T Āψ(R), (2.49)

||E(AR)||F ≤ ||Ā||F , (2.50)

where A := tr(Ā2)I3 − 2Ā2, E(AR) := 1
2

(
tr(AR)I3 −RTA

)
and α(A,R) := 1 − |R|2I

cos⟨u, M̄u⟩ with u ∈ S2 denoting the axis of the rotation R and ⟨u, M̄u⟩ denoting the
angle between two vectors. Furthermore, consider the trajectories generated by Ṙ = R[ω]×

with R(0) ∈ SO(3) and ω ∈ R3. One can get the following derivatives:

∇tr(A(I3 −R)) = RPa(AR), (2.51)

d

dt
tr((I3 −R)A) = 2ωTψ(AR), (2.52)

d

dt
ψ(AR) = E(AR)ω, (2.53)

Lemma 2.4 (Mayhew and Teel, 2011b) Let A = AT be a positive semi-definite matrix
with three distinct eigenvalues. Then, the solution of ||ψ(AR)|| = 0 with R ∈ SO(3)
belongs to the following set

W = {I3} ∪ {R = Rα(π, vi)|vi ∈ E(A)}. (2.54)

where E(A) ⊂ S2 is the set of unit eigenvectors of matrix A.
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2.6 Hybrid Dynamical Systems

In this section we will present some concepts and stability tools related hybrid dynamical
systems. For further details, the reader is referred to (Goebel et al., 2009; Goebel et al.,
2012).

2.6.1 Hybrid Dynamical Systems Models

Consider a manifold Y embedded in Rn. A general model for hybrid systems, denoted
by H, is represented by the following compact form, for every y ∈ Y :

H :

{
ẏ ∈ F (y) y ∈ F
y+ ∈ G(y) y ∈ J

(2.55)

where F : Y ⇒ T Y , G : Y ⇒ Y , F and J denote the flow map (governing the
continuous evolution of the state by a differential inclusion), the jump map (governing
the discrete evolution of the state by a difference inclusion), the flow set (indicating
where the continuous state evolution is allowed), and the jump set (indicating where the
discrete state evolution is allowed), respectively.

Remark 2.3 The symbol ⇒ represents a set-valued mapping, and x+ denotes the value
of x after an immediate jump, specifically defined as x+ := x(t, j + 1), where x(t, j) is
the value of x before the jump occurs.

Remark 2.4 The hybrid system model (2.55) is generic since it can represent the dy-
namics of a purely continuous system by letting the flow set equal to Y and the jump set
to be empty, or vice versa to represent a purely discrete system.

2.6.2 Hybrid Systems Solutions

In this subsection, we introduce some concepts related to hybrid systems solutions. Ac-
cording to the nature of the hybrid system dynamics, which allows continuous flow and
discrete jumps, it is evident that the solutions of the hybrid system are parameterized
by t ∈ R≥0 to indicate the amount of time spent in the flow set and j ∈ N to track
the number of jumps that occur. The structure that represents this parameterization is
known as a hybrid time domain.

Definition 2.5 (Goebel et al., 2012) A subset E ⊂ R≥0 × N is a compact hybrid time
domain if

E =
J−1⋃
j=0

([tj, tj+1], j)

for some finite sequence of time 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ . It is a hybrid time domain
if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid domain.

Remark 2.5 For any (t, j) and (t′, j′) belonging to a hybrid time domain, one has
(t, j) ≤ (t′, j′) if and only if t ≤ t′ and j ≤ j′.
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Definition 2.6 (Goebel et al., 2012) A hybrid arc is a function y : dom y → Y, where
dom y is a hybrid time domain, for each fixed j, t → y(t, j) is a locally absolutely
continuous function on the interval

Ij = {t : (t, j) ∈ E}

The hybrid arc y is a solution to the hybrid system H, given in (2.55), if y(0, 0) ∈ F ∪J
and the following conditions are satisfied (Goebel et al., 2012):

• Flow condition: for each j ∈ N such that Ij has nonempty interior with

ẏ(t, j) ∈ F (y(t, j)), for almost all t ∈ Ij, (2.56)

y(t, j) ∈ F , for all t ∈ [min Ij, sup Ij). (2.57)

• Jump condition: for each (t, j) ∈ dom y such that (t, j + 1) ∈ dom y with

y(t, j + 1) ∈ G(y(t, j)), (2.58)

y(t, j) ∈ J . (2.59)

The following definitions characterize the nature of a hybrid system solution:

Definition 2.7 (Goebel et al., 2012) A solution y to H is said to be maximal if there
is no other solution y∗ to H such that dom y is a proper subset of dom y∗ and y(t, j) =
y∗(t, j) for all (t, j) ∈ dom y.

Definition 2.8 (Goebel et al., 2012) A solution y to H is said to be complete if its
domain, namely dom y, is unbounded.

Definition 2.9 (Goebel et al., 2012) A solution y to H is said to be precompact if it is
complete and bounded.

Remark 2.6 It follows from the above definitions that every complete solution of H is
maximal, but the opposite is not true.

To ensure the existence of the solution, the robustness of stability in the presence of
small perturbations, and other important properties, the hybrid system H given in (2.55)
should satisfy the following three hybrid basic conditions (Goebel et al., 2012):

• The flow map F and the jump set J are closed sets in Y .

• The flow map F : Y ⇒ T Y is outer semicontinuous 2 and locally bounded3 relative
to F , and the set F (y) is nonempty and convex4 for every y ∈ F .

2This means that for every y0 ∈ Y, one has lim supy→y0
F (y) ⊆ F (y0).

3This means that for each y0 ∈ F , there exists a neighborhood Ny0
of y0 such that all sets in the

range of F (i.e., F (y) for y ∈ Ny0
) are bounded sets.

4A set B is said to be convex if, for every pair of points x and y in the set, the line segment connecting
x and y is completely inside the set. In other words, if one takes any two points inside the set, all the
points along the line segment connecting them are also inside the set.
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• The jump map G : Y ⇒ Y is outer semicontinuous and locally bounded relative to
J , and G nonempty for every x ∈ J .

Proposition 2.1 (Goebel et al., 2012) Consider a hybrid system H satisfying the hybrid
basic conditions. Take an arbitrary ζ ∈ F ∪ J . If ζ ∈ J or
(VC) there exists a neighborhood U of ζ such that for every y ∈ U ∩ F ,

F (y) ∩ TF(y) = ∅,

where TF(y) denotes the tangent cone to F at the point y, then there exists a nontrivial
solution ϕ to H with ϕ(0, 0) = ζ. If (VC) holds for every ζ ∈ F \ J , then there exists
a nontrivial solution to H from every initial point in F ∪ J , and every ϕ ∈ SH, where
SH denotes the set of all maximal solutions of H, satisfies exactly one of the following
conditions:

i) ϕ is complete.

ii) dom ϕ is bounded and the interval IJ , where J = supj domϕ, has nonempty interior
and t → ϕ(t, J) is a maximal solution to ż ∈ F (z), in fact limt→T |ϕ(t, J)| = ∞,
where T = supt domϕ.

iii) ϕ(T, J) /∈ F ∪ J , where (T, J) = sup domϕ.

Remark 2.7 If G(J ) ⊂ F ∪ J , then case (iii) does not occur. Furthermore, case (ii)
can also be excluded if every solution is bounded (Goebel et al., 2012).

2.6.3 Stability Analysis for Hybrid Systems

In this subsection, we will present some definitions and stability theorems for hybrid
dynamical systems that will be used in this dissertation.

Definition 2.10 Let y ∈ Y and A ⊂ Y be a closed set. The distance from y to A,
denoted |y|A, is defined as

|y|A := infx∈A dY(y, x),

where dY : Y × Y → R≥0 is the distance between two given elements in Y.

Definition 2.11 (Goebel et al., 2012) Consider a hybrid system H on Y. A compact set
A ⊂ Y is said to be

• uniformly globally stable for H if there exists a class K∞ function α such that any
solution ϕ to H satisfies |ϕ(t, j)|A ≤ α(|ϕ(0, 0)|A) for all (t, j) ∈ dom ϕ.

• uniformly globally pre-attractive for H if for each ϵ > 0 and r > 0 there exists
T > 0 such that, for any solution ϕ to H with |ϕ(0, 0)|A ≤ r, (t, j) ∈ dom ϕ and
t+ j ≥ T imply |ϕ(t, j)|A ≤ ϵ.
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• uniformly globally pre-asymptotically stable for H if it is both uniformly globally
stable and uniformly globally pre-attractive.

Remark 2.8 The term “pre-” is added in stating the above results only to indicate that
maximal solutions to H are not required to be complete solutions. Furthermore, if every
maximal solution of H is complete, then the compact set A is said to be globally attractive
for H if limt+j→∞ |ϕ(t, j)| = 0 and asymptotically stable if it is stable and attractive
(Sanfelice et al., 2007).

Using Definition 2.11 directly to deduce the stability properties of the hybrid system
(2.55) with respect to the compact set A is a quite daunting task, since it requires
finding the explicit solutions of the system. Therefore, in the following, we will present
some Lyapunov -based techniques that can be used to establish the stability properties
of system (2.55) without explicitly determining its solutions.

Definition 2.12 (Goebel et al., 2009) Consider the hybrid system H, given in (2.55),
and a compact set A ⊂ Y. The function L : dom L → R is a Lyapunov function
candidate for (H,A) if:

• L is continuous and nonnegative on (F ∪ J ) \ A ⊂ dom L.

• L is continuous differentiable on an open set O satisfying F \ A ⊂ O ⊂ dom L.

• lim{y→A, y∈dom L∩(F∪J )} L(y) = 0.

The following theorem provides a simple way to show the stability of a set A using
the Lyapunov function:

Theorem 2.1 (Goebel et al., 2009) Consider a hybrid system H satisfying the hybrid
basic conditions and a compact set A ⊂ Y satisfying G(J ∩ A) ⊂ A. If there exists a
Lyapunov function candidate L for (H,A) that is positive on (F ∪ J ) \ A and satisfies

⟨∇L(y), f⟩ ≤ 0 for all y ∈ F \ A, f ∈ F (y),

L(g)− L(y) ≤ 0 for all y ∈ J \ A, g ∈ G(y),

then the set A is stable.

Now, we present a version of the invariance principle for hybrid dynamical systems,
which will be used to establish asymptotic stability of the set A. Consider the following
two functions:

µJ (y) =

{
maxy+∈G(y){V (y+)− V (y)} if y ∈ J
−∞ otherwise,

(2.60)

µF(y) =

{
maxv∈F (y)⟨∇V (y), v⟩ if y ∈ F
−∞ otherwise,

(2.61)

where the continuous function V : Y → R is a continuously differentiable function on
a neighborhood of F . Under certain conditions on the functions µF(y) and µJ (y), the
following theorem introduces the invariance principle for the hybrid system H.
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Theorem 2.2 (Goebel et al., 2012) Consider a continuous function V : Y → R, con-
tinuously differentiable on a neighborhood of F . Suppose that for a given set U ⊂ Y,{

µF(z) ≤ 0,

µJ (z) ≤ 0,
(2.62)

for all z ∈ U . Let a precompact y∗ ∈ SH be such that rge y∗ ⊂ U , with rge y := y(dom y)
being the range of y. Then, for some r ∈ V (U), y∗ approaches the nonempty set which
is the largest weakly invariant subset of

V −1(r) ∩ U ∩
[
µ−1
F (0) ∪

(
µ−1
J (0) ∩G(µ−1

J (0))
)]
. (2.63)

Remark 2.9 Note that the Lyapunov function candidate L can be used instead of V
since it satisfies the requirements in Theorem 2.2.

The following theorem provides a useful result for asymptotic stability of a compact
set.

Theorem 2.3 (Goebel et al., 2012) Let A ⊂ Y be compact. If

(a) G(J ) ⊂ F ∪ J and there exists a continuous V : Y → R which is positive definite
on F ∪ J with respect to A and continuously differentiable on a neighborhood of
F , and a neighborhood U ⊂ Y of A such that the bounds in (2.62) hold,

then A is stable. If, additionally,

(b) there exists r∗ > 0 such that, for every r ∈ (0, r∗), the largest weakly invariant
subset in (2.63) is empty,

then A is locally pre-asymptotically stable.

2.7 Almost Global Input-to-State Stability

The notion of Input-to-State Stability (ISS) is a key tool for establishing the stability
properties of nonlinear systems with exogenous signals, including inputs or disturbances.
As a result, the literature is replete with theories dealing with the notion of ISS. However,
most of these theories are proposed for nonlinear systems evolving on Euclidean spaces.
In this section, we present some results related to the notion of almost global ISS (Angeli,
2004; Angeli and Praly, 2011) which deals with nonlinear systems evolving on manifolds
(non-Euclidean spaces).

Consider the following autonomous nonlinear system:

ẋ = f(x, u), (2.64)

where the state x belongs to the manifold Q. Let X(t, x0;u) denote the solution of
(2.64) with initial condition x0. The following autonomous ordinary differential equation
represents the unperturbed dynamics of (2.64):

ẋ = f(x, 0) := f0(x). (2.65)

Before presenting the results related to the ISS, let us first consider the following
assumptions adopted from (Angeli and Praly, 2011):
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Assumption 2.1 Let Q be an n−dimensional C2 connected, orientable, Riemannian
manifold without boundary, f : Q × U → TxQ be a C1−Lipschitz function and U be a
closed subset of Rm.

Assumption 2.2 There exists a nonnegative and proper5 C1 function V : Q → R such
that

Lf0V |x < 0, ∀x ∈ Q : f0(x) ̸= 0, (2.66)

where the notation LfV |x denotes the Lie derivative of V along f at x.

Assumption 2.3 Any equilibrium xe which is not asymptotically stable, is isolated and
such that at least one eigenvalue of Df0(xe) : TxeQ → TxeQ has strictly positive real part,
where Df0(x) denotes the differential of f0 at x.

In the following definition, we will introduce the formal definition of the almost global
ISS concept according to (Angeli, 2004).

Definition 2.13 (Angeli, 2004) System (2.64) is almost globally ISS with respect to the
set A, if A is locally asymptotically stable for system (2.65) and there exists a class K
function6 γ such that for each locally essentially bounded and measurable input u : R≥0 →
U , there exists a zero Lebesgue measure subset N ⊂ Q such that

lim
t→∞

sup |X(t, x(t0);u)|A ≤ γ(||u||∞), ∀x(t0) ∈ Q \ N . (2.67)

Recall that the notation |.|A is defined in Definition 2.10. Unfortunately, it is sometimes
challenging to use the result of Definition 2.13 to conclude almost global ISS because an
explicit solution is required. Therefore, next, we will present a useful result that relies
on some sufficient conditions, that do not depend on explicit solutions, to conclude the
almost global ISS. But first, let us introduce the following lemma:

Lemma 2.5 (Angeli and Praly, 2011) Consider the system (2.64) and let W : Q → R≥0

be a class C1 and proper function satisfying

LfW |x,u ≤ −α(W (x)) + c+ δ(|u|), (2.68)

for all x ∈ Q and all u ∈ U , where α and δ are class K functions. Then, system (2.64)
fulfills the ultimate boundedness property.

Theorem 2.4 (Angeli and Praly, 2011) Consider system (2.64) and let Assumptions
2.1-2.3 hold. Assume that the set of asymptotically stable equilibria of (2.65), denoted by
Es, is finite. If the ultimate boundedness (as per Lemma 2.5) holds, then, system (2.64)
is almost globally ISS with respect to the set Es.

5We recall that a function V is proper provided V −1(K) is compact for all compacts K included in
the domain of V .

6A continuous function γ : [0, a) → [0,∞) is said to be a class K function if it is strictly increasing
and γ(0) = 0. It is said to be a class K∞ function if a = ∞ and γ(r) → ∞ as r → ∞.
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Almost global ISS can be used to study the stability properties of a cascaded nonlinear
system, as shown in the following theorem.

Theorem 2.5 (Angeli, 2004) Consider the following cascaded system:

ẋ = f(x, y) (2.69)

ẏ = g(y), (2.70)

where (x, y) ∈ Q × N , f : Q × N → T Q and g : N → T N are locally Lipschitz with
f(x, y) ∈ TxQ and g(y) ∈ TyN for all (x, y) ∈ Q×N . Suppose that

• the x−subsystem (2.69) is almost globally ISS with respect to Ax ⊂ Q and input y.

• the equilibrium set Ay ⊂ N is Almost Globally Asymptotically Stable7 (AGAS) for
the y−subsystem (2.70).

Then, the cascaded system (2.69)-(2.70) is AGAS at A := Ax ×Ay.

Remark 2.10 Considering the cascaded system (2.69)-(2.70), one can conclude the AGAS
of A if the x−subsystem (2.69) is almost globally ISS with respect to Ax ⊂ Q and input
y, and the y−subsystem (2.70) is globally asymptotically stable at Ay ⊂ N (Wang and
Tayebi, 2021).

7An equilibrium set is said to be almost globally asymptotically stable if it is stable, and attractive
from all initial conditions except a set of zero Lebesgue measure.



Chapter 3

Bearing-Based Distributed Pose
Estimation for Multi-Agent
Rigid-Body Systems

3.1 Introduction

In this chapter, we address the problem of distributed pose estimation for multi-agent
rigid-body systems, using local time-varying relative bearing measurements between
neighboring agents. The use of bearing measurements in the design of distributed pose
estimation schemes is interesting since these measurements can be easily obtained from
low-cost sensors such as cameras. Several bearing-based distributed pose estimation
schemes have been proposed in the literature (Zhao and Zelazo, 2016; Li et al., 2020; Lee
et al., 2019; Lee and Ahn, 2016b; Lee et al., 2019; Tran et al., 2020). However, most of
these works assume the availability of the relative attitude, which can be restrictive since
there is no readily available low-cost setup to directly provide this information. This mo-
tivated us to design distributed pose observers for multi-agent rigid-body systems that
rely solely on individual angular velocity measurements and local information exchange
between neighboring agents (relative time-varying bearing measurements and estimated
poses), available according to a directed graph topology, assuming that two agents have
access to their respective poses.

The first part of this chapter explores multi-agent rigid-body systems with fixed posi-
tions and time-varying orientations. Motivated by the recent work in (Tran et al., 2020),
a new AGAS bearing-based distributed pose estimation scheme has been proposed. To
the best of our knowledge, no such strong stability result has been reported in the avail-
able literature for the problem considered in this part.

In the second part, a bearing-based distributed pose estimation scheme multi-agent
rigid-body systems with time-varying positions and orientations. The proposed esti-
mation scheme is a cascade of two subsystems. The first subsystem is a stand-alone
bearing-based distributed attitude observer endowed with local exponential stability. The
second subsystem consists of a bearing-based distributed position observer relying on the
attitude estimates provided by the rotational observer. This leads to an overall pose

28
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estimation scheme with local exponential stability guarantees. It is worth pointing out
that our proposed distributed pose estimation scheme, contrary to most existing schemes
in the literature, relies on local bearing measurements that are also time-varying in the
inertial frame.

The bearing-based distributed attitude observers proposed in both parts are inter-
esting contributions in their own right, as they are stand-alone (i.e., do not depend
on the position estimation) and could be used in other applications involving rotating
multi-agent rigid-body systems. Numerical simulation results are provided to illustrate
the performance of the proposed bearing-based distributed pose estimation schemes in-
troduced in both parts. The results presented in this chapter are based on our work
in (Boughellaba and Tayebi, 2022; Boughellaba and Tayebi, 2023b; Boughellaba and
Tayebi, 2023a).

3.2 Bearing-Based Distributed Pose Observer De-

sign: Fixed Positions and Time-Varying Orien-

tations

In this section, we consider the problem of distributed pose estimation for multi-agent
rigid-body systems where the agents have static positions and time-varying orientations.
First, we design two AGAS stand-alone bearing-based distributed attitude observers that
evolve on SO(3) and SO(3) × R3, respectively. Then, relying on the attitude estimates
provided by one of these rotational observers together with local relative (time-varying)
bearing measurements, we design an input-to-state stable distributed position observer.
This leads to an overall AGAS distributed localization scheme.

3.2.1 Problem Formulation

Consider a network of n rigid-body agents, where the motion of each agent i ∈ V is
governed by the following rotational kinematic equation:

Ṙi = Ri[ωi]
×, (3.1)

where Ri ∈ SO(3) represents the orientation of the body-attached frame of agent i with
respect to the inertial frame, and ωi ∈ R3 is the angular velocity of agent i measured in
the body-attached frame of the same agent. Let pi ∈ R3 denote the position of agent i
with respect to the inertial frame. We assume that the positions of the agents are fixed
and do not change with time, i.e., ṗi = 0, for all i ∈ V . The measurement of the local
relative bearing between agent i and agent j is given by

biij := RT
i bij, (3.2)

where bij :=
pj−pi

||pj−pi|| and b
i
ij are the relative bearing measurements between agent i and

agent j expressed in the inertial frame and the body-attached frame of agent i, respec-
tively. Note that the relative bearing measurements expressed in the inertial frame (i.e.,
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bij for every (i, j) ∈ E) do not change with time since the agents’ positions are assumed
to be constant. Next, let us introduce the following assumptions that will be needed in
our design:

Assumption 3.1 The angular velocity of each agent is available for measurement and
bounded.

Assumption 3.2 By assigning a number to each agent, we assume that agents 1 and 2
are the leaders and the other agents are the followers. We also assume that

a) The leaders know their pose, and have no neighbors, i.e., Nk = {∅} k = 1, 2.

b) Each agent i ∈ Vf , where Vf := V \ {1, 2} denotes the set of followers, measures biij
and receives (R̂j, p̂j, b

j
ji) from its neighbors j ∈ Ni.

c) No two agents are collocated, and the set of neighbors of each agent i ∈ Vf satisfies
Ni ⊆ {1, 2, 3, ..., i − 1} with |Ni| ≥ 2, and each agent measures at least two non-
collinear bearing vectors.

Assumption 3.2 defines the cascaded structure of the inter-agent interaction graph
topology G, which is instrumental in establishing our stability results via mathematical
induction. This cascaded structure stems from the fact that each agent i only needs the
information (relative bearing measurements and estimated poses) about the preceding
agents that belong to its neighbor set Ni ⊆ {1, 2, . . . , i − 1}, for instance, see Figure
3.1 and Figure 3.2. The black circles denote the leaders and the white ones denote the
followers.
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Figure 3.1: All possible interaction graphs for a four-agent system.



31

2

1 3

5 4

2

1 3

5 4

2

1 3

5 4

2

1 3

5 4

Figure 3.2: Four possible interaction graphs for a five-agent system.

Suppose Assumptions 3.1-3.2 are satisfied. Our objective is to design an AGAS
bearing-based distributed pose (position and orientation) estimation scheme using the
available measurements.

Remark 3.1 The multi-agent system defined in (3.1), under Assumption 3.2, could be
practically related to a motion capture system consisting of a network of cameras with
fixed positions and time-varying orientations.

3.2.2 Bearing-Based Distributed Attitude Estimation on SO(3)

We propose the following distributed attitude observer on SO(3):

˙̂
Ri = R̂i

[
ωi − kRR̂

T
i

∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij)

]×
, (3.3)

for i ∈ Vf , where kR, kij > 0, R̂i ∈ SO(3) is the estimate of Ri, and R̂l = Rl, l ∈ {1, 2}.
Under Assumption 3.2, one has ||pi−pj|| ≠ 0 and consequently the bearing measurement
biij(t), i ∈ V , j ∈ Ni, is well defined ∀t ≥ 0.

The intuition behind the design of the observer correcting term,
∑

j∈Ni
kij(R̂jb

j
ij × R̂ib

i
ij),

is to align the local relative bearings measured by each agent with the same relative
bearings measured by the agent’s neighbors using the attitude estimates. Once this
alignment is achieved, the correcting term vanishes and the attitude estimates converge
(almost globally) to the actual ones.

Now, by defining the attitude estimation error R̃i := RiR̂
T
i , the last term of (3.3) can

be rewritten as follows:∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij) =

∑
j∈Ni

kij(bij × R̃T
i bij) +

∑
j∈Ni

kij

(
(R̃T

j − I3)bij × R̃T
i bij

)
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=− 2ψ(MiR̃i) +
∑
j∈Ni

kij

(
(R̃T

j − I3)bij × R̃T
i bij

)
, (3.4)

where Mi :=
∑

j∈Ni
kijbijb

T
ij. The last equation was obtained using identity (2.32). Note

that since the positions of the agents are fixed, one can verify that the relative bearings ex-
pressed in the inertial frame are static, and consequently the matrixMi is time-invariant.
It is always possible to choose kij > 0 such that the matrix Mi is positive semi-definite
with three distinct eigenvalues. From (3.1) and (3.3), it follows that the time derivative
of the attitude estimation error, for every i ∈ Vf , is given by

˙̃Ri =−Ri

[
ωi − kRR̂

T
i

∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij)

]×
R̂T

i +Ri[ωi]
×R̂T

i

= kRR̃i

[∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij)

]×
. (3.5)

Using identities (2.20) and (2.26), and in view of (3.4), one can simplify the last equation
as follows:

˙̃Ri = −2kRR̃i

[
ψ(MiR̃i)

]×
+ kRR̃i

[∑
j∈Ni

kijgij(R̃j)

]×
, (3.6)

where gij(R̃j) := (R̃T
j −I3)bij×R̃T

i bij. Note that the term gij(R̃j) is bounded and vanishes

when R̃j = I3. Furthermore, system (3.6) can be viewed as a cascaded system, where
the attitude estimation errors of the neighbors are considered as inputs to the following
unforced system:

˙̃Ri = −2kRR̃i

[
ψ(MiR̃i)

]×
. (3.7)

Since the matrix Mi is time-invariant, we are able to derive the set of isolated equilibria
of system (3.7) and study their stability properties. The following lemma provides the
stability properties of the unforced system (3.7).

Lemma 3.1 Let kij > 0 such that Mi is positive semi-definite with three distinct eigen-
values. Then, the following statements hold for all i ∈ Vf :

i) All solutions of (3.7) converge to the following set of isolated equilibria: Υ := {I3}∪
{R̃i = Rα(π, vi)|vi ∈ E(Mi)}, where E(Mi) ⊂ S2 is the set of unit eigenvectors of
matrix Mi.

ii) The desired equilibrium R̃i = I3 is locally exponentially stable.

iii) The linearized system of (3.7), at each undesired equilibrium Υ/{I3}, has at least
one positive eigenvalue.

iv) The undesired equilibria Υ/{I3} are unstable and the desired equilibrium R̃i = I3 is
AGAS.

Proof See Appendix A.1
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Remark 3.2 Lemma 3.1 provides local exponential stability and AGAS of the desired
equilibrium R̃i = I3 of the unforced system (3.7). The AGAS result is the strongest result
one can achieve with smooth time-invariant vector fields on SO(3) (Koditschek, 1989).

In the next lemma, we will study the ISS property of the forced attitude error dy-
namics (3.6), with respect to its inputs (i.e., R̃j with j ∈ Ni), using the notion of almost
global ISS introduced in Section 2.7.

Lemma 3.2 Let Mi be positive semi-definite with three distinct eigenvalues. Then, sys-
tem (3.6) is almost globally ISS, for every i ∈ Vf , with respect to I3 and inputs R̃j where
j ∈ Ni.

Proof See Appendix A.2

Remark 3.3 As shown in the proof of Lemma 3.2, the knowledge of the isolated equilibria
of system (3.7) and their stability properties were instrumental in deriving the result of
Lemma 3.2.

When dealing with nonlinear systems on Rn, it is common to consider the origin
(i.e., zero) as an equilibrium point, and the ISS is implicitly stated with respect to this
equilibrium point. On the special orthogonal group SO(3) the desired equilibrium is
the identity R̃i = I3. The statement “almost global ISS with respect to I3” indicates
that the equilibrium I3 is AGAS for the unperturbed system, i.e., unforced system (3.7).
Therefore, as commonly used in the literature dealing with ISS on manifolds, we explicitly
mention the equilibrium I3 in the statement of Lemma 3.2 to emphasise that the system’s
equilibrium is not the origin since we are working on SO(3). Now, relying on the results
presented in Lemmas 3.1 and 3.2, one can state the following theorem about the stability
properties of the n-agent cascaded system given in (3.6).

Theorem 3.1 Under Assumption 3.2, the equilibrium point (R̃3 = I3, R̃4 = I3, . . . , R̃n =
I3) of the n-agent cascaded system (3.6) is AGAS.

Proof See Appendix A.3

Remark 3.4 Showing that the desired equilibrium R̃i = I of the unforced system (3.7)
is AGAS, while treating the neighbors’ states as inputs to the agent’s unforced dynamics,
i.e., system (3.7), and analyzing the ISS of these dynamics with respect to these inputs,
we were able to derive the result in Theorem 3.1. This theorem provides the strongest
possible stability result one can achieve with smooth vector fields on SO(3) (Koditschek,
1989).

3.2.3 Bearing-Based Distributed Attitude Estimation with Fil-
tered Measurements

For i ∈ Vf , we propose the following distributed attitude estimation law on SO(3)× R3

˙̂
Ri = R̂i

[
ωi − R̂T

i Ωi

]×
(3.8)
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Ω̇i = −kΩΩi +
∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij), (3.9)

with kΩ, ki,j > 0, Ωi ∈ R3 and R̂i ∈ SO(3) is the estimate of Ri, and R̂l = Rl, l ∈ {1, 2}.
The main difference between this distributed attitude observer and the previous one,
given in (3.3), lies in the introduction of the auxiliary time-varying vector Ωi. This vector
is used to relocate the correcting term

∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij) one integrator away from

the attitude dynamics. This distributed attitude estimation scheme is more practical
than the one in the previous section, since it relies on filtered bearing measurements.
Now, let the attitude estimation error be R̃i := RiR̂

T
i . In view of (3.8)-(3.9) and (3.4),

one can derive the following error dynamics, for i ∈ Vf :

˙̃Ri = R̃i [Ωi]
× (3.10)

Ω̇i = −kΩΩi − 2ψ(MiR̃i) +
∑
j∈Ni

kijgij(R̃j). (3.11)

Recall that the matrixMi =
∑

j∈Ni
kijbijb

T
ij is time-invariant because the relative bearings

expressed in the inertial frame are static, and it is always possible to choose kij > 0 such
that the matrix Mi is positive semi-definite with three distinct eigenvalues. The above
system can also be viewed as a cascaded system, where the attitude estimation errors of
the neighbors are considered as inputs to the following unforced system:

˙̃Ri = R̃i [Ωi]
× (3.12)

Ω̇i = −kΩΩi − 2ψ(MiR̃i). (3.13)

Similar to Lemma 3.1, in the next lemma, we will study the stability properties of
the unforced system (3.12)-(3.13).

Lemma 3.3 Consider system (3.12)-(3.13). Let kij > 0 such that Mi is positive semi-
definite with three distinct eigenvalues. Then, ∀i ∈ Vf , the following statements hold:

i) All solutions of (3.12)-(3.13) converge to the following set of isolated equilibria:
Υ1 := {(I3, 0)} ∪

{
(R̃i,Ωi) ∈ SO(3)× R3 : R̃i = Rα(π, vi), vi ∈ E(Mi),Ωi = 0

}
.

ii) The desired equilibrium (I3, 0) is locally exponentially stable.

iii) The linearized system of (3.12)-(3.13), at each undesired equilibrium Υ1/{(I3, 0)},
has at least one positive eigenvalue.

iv) The undesired equilibria Υ1/{(I3, 0)} are unstable and the desired equilibrium (R̃i =
I3,Ωi = 0) is AGAS.

Proof See Appendix A.4

Remark 3.5 From Lemmas 3.1 and 3.3, one can observe that both bearing-based dis-
tributed attitude observers (3.3) and (3.8)-(3.9) are AGAS. This is the strongest achiev-
able stability result with smooth time-invariant vector fields on SO(3) as discussed in
(Koditschek, 1989).
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In the following lemma, we will use the notion of almost global ISS to study the ISS
property of the forced attitude error dynamics (3.10)-(3.11), with respect to its inputs
R̃j, j ∈ Ni.

Lemma 3.4 Let Mi be positive semi-definite with three distinct eigenvalues. System
(3.10)-(3.11) is almost globally ISS, for every i ∈ Vf , with respect to the equilibrium
(I3, 0) and inputs R̃j, j ∈ Ni.

Proof See Appendix A.5

In what follows, we will establish the stability properties of the n-agent cascaded
system given in (3.10)-(3.11).

Theorem 3.2 Under Assumption 3.2, the equilibrium point (R̃3 = I3,Ω3 = 0, R̃4 =
I3,Ω4 = 0, . . . , R̃n = I3,Ωn = 0) of the n-agent cascaded system (3.10)-(3.11) is AGAS.

Proof See Appendix A.6

Next, we will rely on the attitude estimates provided by either observer (3.3) or
observer (3.8)-(3.9) to propose a bearing-based distributed position estimation scheme.
These attitude estimates, along with local relative bearing measurements, will be fed to
the proposed position estimation scheme.

3.2.4 Bearing-Based Distributed Pose Estimation

Consider the distributed attitude observer (3.3) (or (3.8)-(3.9)) together with the follow-
ing distributed position estimation law:

˙̂pi =− [σi]
×p̂i − kp

∑
j∈Ni

R̂iPbiij
R̂T

i (p̂i − p̂j), (3.14)

for every i ∈ Vf , where kp, kR, kij > 0, p̂i ∈ R3 is the estimate of pi, R̂i ∈ SO(3) is the
estimate of Ri obtained from the distributed attitude observer (3.3) (or (3.8)-(3.9)), and
(R̂l, p̂l) = (Rl, pl), l ∈ {1, 2}. Note that, considering the distributed attitude observer

(3.3), one has σi = kR

(∑
j∈Ni

kij

(
R̂jb

j
ij × R̂ib

i
ij

))
, and considering the distributed

attitude observer (3.8)-(3.9), one has σi = Ωi. Define the position estimation error as
p̃i := pi − R̃ip̂i. The time derivative of p̃i is given by

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbij(pj − R̃ip̂j), (3.15)

with i ∈ Vf . We have used the fact that Pbij(pi − pj) = 0 and Pbiij
= RT

i PbijRi to obtain

the last equality. It follows from (3.15) that

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbijfj(p̃j, R̃j, R̃i), (3.16)
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where fj(p̃j, R̃j, R̃i) :=
(
(R̃j − I3)− (R̃i − I3)

)
R̃T

j (pj − p̃j) + p̃j. It is clear that, for

p̃j = 0 and R̃j = R̃i = I3, one has fi(p̃j, R̃j, R̃i) = 0. System (3.16) can be seen as a
cascaded system, where the attitude and position estimation errors of the neighbors as
well as the attitude estimation error of agent i are considered as inputs to the following
unforced system:

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i. (3.17)

Since the relative bearing measurements expressed in the inertial frame are constant, it
is clear that that system (3.17) is a simple linear time-invariant system. Now, we study
the stability of the equilibrium point p̃i = 0 of system (3.17) and the ISS property of
system (3.16).

Proposition 3.1 Consider system (3.17) under Assumption 3.2. The equilibrium point
p̃i = 0, i ∈ Vf , is globally exponentially stable (GES).

Proof Under the assumption that at least two bearing vectors are non-collinear (As-
sumption 3.2), for every i ∈ Vf , the matrix

∑
j∈Ni

Pbij is positive definite, and hence, the
equilibrium p̃i = 0 of the unforced position error dynamics (3.17) is GES.

Lemma 3.5 Suppose Assumption 3.2 is satisfied. Then, for every i ∈ Vf , system (3.16)
is ISS with respect to its inputs p̃j, R̃j and R̃i.

Proof See Appendix A.7

Theorem 3.3 Under Assumption 3.2, the following statements hold:

1) The equilibrium point (R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) of
the cascaded attitude and position estimation schemes given by (3.3) and (3.14) is
AGAS.

2) The equilibrium point (R̃3 = I3,Ω3 = 0, R̃4 = I3,Ω4 = 0, . . . , R̃n = I3,Ωn = 0, p̃3 =
0, p̃4 = 0, . . . , p̃n = 0) of the cascaded attitude and position estimation schemes
given by (3.8)− (3.9) and (3.14) is AGAS.

Proof See Appendix A.8

Remark 3.6 The result of Theorem 3.3 (AGAS) is also valid in the particular situation
where the agents’ positions are time-varying and the relative bearings are kept constant
(e.g., a motion that keeps the bearings constant through a collective translation and scaling
of the entire network).

The proposed bearing-based distributed pose estimation scheme (3.3) and (3.14) (or
(3.8)-(3.9) and (3.14)) can be used to address some of the well-known practical problems
of self-localization for sensor networks. For instance, consider a motion capture system
consisting of a network of n static cameras with time-varying orientation looking at a
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given scene, and the objective is to estimate the motion of a given object with respect to
a reference frame. In this case, one needs to know the pose (position and orientation) of
each camera with respect to the reference frame, which can be done through a calibration
procedure every time we change the network configuration. Our proposed localization
algorithm (3.3) and (3.14) (or (3.8)-(3.9) and (3.14)) could automatically handle this
calibration procedure, making the deployment of large sensor networks much easier.

3.2.5 Simulation Results

In this section, we present some numerical simulation results to illustrate the performance
of both proposed bearing-based localization schemes (3.3), (3.14) and (3.8)-(3.9), (3.14).

In these simulations, we consider an eight-agent rigid-body system in a 3-dimensional
space with the following fixed positions: p1 = [0 0 0]T , p2 = [2 0 1]T , p3 = [2 2 2]T ,
p4 = [0 2 3]T , p5 = [0 0 4]T , p6 = [2 0 5]T , p7 = [2 2 6]T and p8 = [0 2 7]T . The
rotational subsystem is driven by the following angular velocities: ω1 = [1 − 2 1]T ,
ω2(t) = [− cos 3t 1 sin 2t]T , ω3(t) = [− cos t 1 sin 2t]T , ω4(t) = [− cos 2t 1 sin 5t]T ,
ω5(t) = [− cos 5t 1 sin 9t]T , ω6(t) = [− cos 2t sin 9t 1]T , ω7(t) = [− cos 4t 1 2]T and
ω8(t) = [−2 1 sin 9t]T . The initial rotations of all agents are chosen to be the identity.
Based on Assumption 3.2, we use a directed graph topology to model the interaction
between the agent in the network as it is shown in Figure 3.3. Accordingly, the neighbors
sets are given as N1 = N2 = {∅}, N3 = {1, 2}, N4 = {2, 3}, N5 = {1, 4}, N6 = {2, 4, 5},
N7 = {3, 4, 6} and N8 = {1, 7}.

2

1

8

3

4

5

7

6

Figure 3.3: The interaction graph (the black circles represent the leaders).

For both observers, we consider the following initial conditions: p̂3(0) = [−2 0 − 1]T ,
p̂4(0) = [−1 2 2]T , p̂5(0) = [−2 2 4]T , p̂6(0) = [0 0 0]T , p̂7(0) = [−4 0 1]T , p̂8(0) =
[−3 1

2
2]T , R̂3(0) = Rα(0.1π, v), R̂4(0) = Rα(0.2π, v), R̂5(0) = Rα(0.3π, v), R̂6(0) =

Rα(0.9π, v), R̂7(0) = Rα(0.4π, v) and R̂8(0) = Rα(0.5π, v) with v = [1 0 0]T . The gain
parameters are taken as follows: kp = 1, kR = 1 and kij = 1 for each (i, j) ∈ E . Figures
3.4 and 3.5 show the time evolution of the individual attitude and position estimation
error norms for each agent and the average attitude and position estimation error norms
of all agents in the network, respectively. These results are obtained by considering the
proposed distributed pose observer given by equations (3.3) and (3.14).
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Figure 3.4: Time evolution of the individual estimation error norms for the observer
(3.3), (3.14).

Figure 3.5: Time evolution of the average estimation error norms for the observer (3.3),
(3.14).

Additionally, to simulate the bearing-based distributed pose estimation scheme (3.8)-
(3.9), (3.14), we assume that Ωi(0) = 0, for every i ∈ Vf , and we pick kΩ = 1. The time
evolution of the individual attitude and position estimation error norms for each agent
as well as the average attitude and position estimation error norms of all agents in the
network considering the observer (3.8)-(3.9), (3.14) are provided in Figures 3.6 and 3.7,
respectively.

To further validate the performance of the two proposed localization schemes, we
performed additional simulations with biased and noisy measurements. To do this,
we add the following constant biases to the angular velocity measurements: bω1 =
[0.1 0.07 0.01]T , bω2 = [0.001 0 0.01]T , bω3 = [0.02 0.07 0.01]T , bω4 = [0.1 0.02 0.01]T , bω5 =
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Figure 3.6: Time evolution of the individual estimation error norms considering the
observer (3.8)-(3.9), (3.14).

[0.09 0.07 0.01]T , bω6 = [0.1 0.04 0.03]T , bω7 = [0.1 0.07 0]T and bω8 = [0 0.07 0.01]T .
We also assume that each angular velocity measurement is corrupted by additive white
Gaussian noise with zero mean and 0.01 variance. Similar to (Hamel and Samson, 2018),
the noises are added to the bearing measurements according to the following equation:

biij =
sign(biij,3)

dbiij

(
biij,1/b

i
ij,3 + ni

ij,1, b
i
ij,2/b

i
ij,3 + ni

ij,2, 1
)

(3.18)

dbiij = ||
(
biij,1/b

i
ij,3 + ni

ij,1, b
i
ij,2/b

i
ij,3 + ni

ij,2, 1
)
||, (3.19)

where ni
ij,1 and ni

ij,2 are additive white Gaussian noise with zero mean and a variance
of 0.001. Figures 3.8 and 3.9 depict the time evolution of the individual attitude and
position estimation error norms for each agent and the average attitude and position
estimation error norms of all agents in the network, respectively, under noisy and biased
measurements, considering the observers (3.3), (3.14).
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Figure 3.7: Time evolution of the average estimation error norms considering the observer
(3.8)-(3.9), (3.14).

Figure 3.8: Time evolution of the individual estimation error norms, with noisy and
biased measurements, for observer (3.3), (3.14).

For the pose observer (3.8)-(3.9), (3.14), Figures 3.10 and 3.11 illustrate the time
evolution of the individual attitude and position estimation error norms and the average
attitude and position estimation error norms of all agents in the network, under noisy
and biased measurements.



41

Figure 3.9: Time evolution of the average estimation error norms, with noisy and biased
measurements, for observer (3.3), (3.14).

Figure 3.10: Time evolution of the individual estimation error norms for the ob-
server(3.8)-(3.9), (3.14).
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Figure 3.11: Time evolution of the average estimation error norms for the observer (3.8)-
(3.9), (3.14).

3.3 Bearing-Based Distributed Pose Observer De-

sign: Time-Varying Positions and Orientations

In this section, we address the problem of distributed pose estimation for multi-agent
rigid-body systems where the agents are allowed to have simultaneous translational and
rotational motion. We propose an exponentially stable bearing-based distributed nonlin-
ear pose estimation scheme on SO(3)×R3. Similar to the previous pose observer design,
the overall bearing-based distributed pose estimation scheme is a cascade of two subsys-
tems. The first subsystem is a standalone bearing-based distributed attitude observer
endowed with local exponential stability. The second subsystem consists of a bearing-
based distributed position observer that relies on the attitude estimates provided by the
rotational observer.

3.3.1 Problem Formulation

Consider an n-agent system, where each agent is modeled as a rigid body governed by
the following rotational and translational kinematic equations:

Ṙi = Ri[ωi]
× (3.20)

ṗi = vi, (3.21)

where pi ∈ R3, vi ∈ R3 are the position and velocity of agent i expressed in the inertial
frame, the matrix Ri ∈ SO(3) represents the orientation of the body-attached frame of
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agent i with respect to the inertial frame, and ωi ∈ R3 is the angular velocity of agent i
measured in the body-attached frame of the same agent. The measurement of the local
relative bearing between agent i and agent j is given by

biij := RT
i bij, (3.22)

where bij :=
pj−pi

||pj−pi|| and b
i
ij are the relative bearing measurements between the agents i

and j expressed in the inertial frame and the body-attached frame of agent i, respectively.
Note that both vectors biij and bij are time-varying, since the agents are allowed to have
translational motion as per the dynamics (3.21). However, in the expression of both
vectors biij and bij, the time argument t is omitted for simplicity. To proceed with the
observer design, we introduce the following assumptions which are similar to Assumptions
3.1 and 3.2 with slight differences:

Assumption 3.3 The linear and angular velocities of each agent are available for mea-
surement and bounded.

Assumption 3.4 By assigning a number to each agent, we assume that agents 1 and 2
are the leaders and the other agents are the followers. We also assume that

a. The leaders know their pose, and have no neighbors, i.e., Nk = {∅} ∀k = 1, 2. We
also assume that the leaders’ positions are bounded.

b. Each agent i ∈ Vf measures biij and receives (R̂j, p̂j, b
j
ji) from its neighbors j ∈ Ni.

c. The set of neighbors of each agent i ∈ Vf satisfies Ni ⊆ {1, 2, 3, ..., i−1} with |Ni| ≥ 2,
and each agent measures at least two uniformly non-collinear bearing vectors.

Assumption 3.5 As time evolves, no inter-agent collision occurs.

From Assumption 3.5 one verifies that ||pi − pj|| ̸= 0. Consequently, the bearing mea-
surement biij(t), for each i ∈ V and j ∈ Ni, is well defined ∀t ≥ 0.

Consider system (3.20)-(3.21) with measurements (3.22). Under Assumptions 3.3-3.5.
Our objective is to design a distributed pose (position and orientation) estimation scheme
on SO(3)× R3 endowed with exponential stability guarantees.

3.3.2 Bearing-Based Distributed Attitude Estimation on SO(3)

For every i ∈ Vf , we propose the following attitude observer on SO(3):

˙̂
Ri = R̂i

[
ωi − kRi

∑
j∈Ni

(R̂T
i R̂jb

j
ij)× biij

]×
, (3.23)

where kRi > 0, R̂i ∈ SO(3) is the estimate of Ri, and R̂l = Rl, l ∈ {1, 2} according to
Assumption 3.4. Define the attitude estimation error as R̃i := RiR̂

T
i , for every i ∈ V . In
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view of (3.20) and (3.23), the time derivative of the attitude estimation error for each
follower i ∈ Vf is given by

˙̃Ri = Ri[ωi]
×R̂T

i −Ri

[
ωi − kRi

∑
j∈Ni

(R̂T
i R̂jb

j
ij)× biij

]×
R̂T

i .

Considering properties (2.20) and (2.26), the last equation can be simplified as follows:

˙̃Ri = −kRi R̃i

[
2ψ(MiR̃i)−

∑
j∈Ni

(R̃T
j − I)bij × R̂ib

i
ij

]×
, (3.24)

where Mi =
∑

j∈Ni
bijb

T
ij. Identity (2.32) was used to obtain the last equality. Since the

positions of the agents are not fixed, the relative bearings measured in the inertial frame
are not static. Consequently, the matrixMi is time-varying for every i ∈ V . The stability
properties of the attitude observer (3.23) are established in the next theorem.

Theorem 3.4 Consider the attitude kinematics (3.20) with measurements (3.22) and
observer (3.23), where Assumptions 3.3-3.5 are satisfied. Define the state vector x(t) :=
[|R̃3(t)|I , |R̃4(t)|I , . . . , |R̃n(t)|I ]T . Then, for any 0 < ε < 1, there exists a sufficiently large
kRi > 0, i ∈ Vf , such that the equilibrium x = 0 is exponentially stable (ES) for all initial
conditions satisfying ||x(0)|| ≤ ε.

Proof See Appendix A.9

Theorem 3.4 shows that the proposed distributed attitude observer is endowed only with
local exponential stability guarantees and the basin of attraction shrinks as the num-
ber of agents in the network increases. This result is not as strong as the AGAS result
in Theorem 3.1. This is the price one has to pay for allowing the agents’ positions to
be time-varying, which adds extra difficulties to the analysis of the distributed attitude
estimation scheme. The difficulties arise mainly from the fact that the matrix Mi is
time-varying which does not allow the characterization of the set of isolated equilibria of

the unforced system ˙̃Ri = −kRi R̃i[2ψ(MiR̃i)]
×.

In the following section, we will design a bearing-based distributed pose estimation
scheme on SO(3) × R3 that relies on the attitude estimates provided by the observer
dynamics (3.23) and the local relative bearing measurements.

3.3.3 Bearing-Based Distributed Pose Estimation on SO(3)×R3

Consider the distributed attitude observer (3.23) with the following distributed position
estimation law:

˙̂pi =vi −

[
kRi R̂i

∑
j∈Ni

(R̂T
i R̂jb

j
ij)× biij

]×
p̂i − kp

∑
j∈Ni

R̂iPbiij
R̂T

i (p̂i − p̂j), (3.25)
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for every i ∈ Vf , where kp, k
R
i > 0, p̂i ∈ R3 is the estimate of pi, R̂i ∈ SO(3) is the

estimate of Ri obtained from (3.23), and (R̂l, p̂l) = (Rl, pl), l ∈ {1, 2}. In view of (3.21),
(3.24), and (3.25), the time derivative of the position estimation error p̃i := pi− R̃ip̂i, for
every i ∈ Vf , is given by

˙̃pi =− kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbij(pj − R̃ip̂j) + (I − R̃i)vi. (3.26)

We have used the fact that Pbij(pi − pj) = 0 and Pbiij
= RT

i PbijRi to obtain the last

equality. Furthermore, one has

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbij

(
p̃j − (R̃i − R̃j)p̂j

)
+ (I − R̃i)vi

= −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

hij(t, p̃j, R̃j, R̃i), (3.27)

where hij(t, p̃j, R̃j, R̃i) = Pbij

(
p̃j − (R̃i − R̃j)p̂j

)
+ (I − R̃i)vi. One can verify that

hij(t, p̃j, R̃j, R̃i) = 0 for p̃j = 0 and R̃j = R̃i = I3. Therefore, one can consider the
estimation errors, namely p̃j, R̃j and R̃i, as inputs to p̃i−system (3.27). Additionally,
under Assumption 3.4, one can verify that the matrix

∑
j∈Ni

Pbij is uniformly positive

definite, and hence, the equilibrium p̃i = 0 of (3.27), with p̃j = 0 and R̃j = R̃i = I3, is
UGES. Now, let us study the ISS properties of system (3.27).

Lemma 3.6 Suppose Assumption 3.4 is satisfied. Then, for every i ∈ Vf , system (3.27)
is ISS with respect to its inputs p̃j, R̃j and R̃i.

Proof See Appendix A.10

Theorem 3.5 Consider the kinematics (3.20)-(3.21) with measurements (3.22) and the
cascaded observer (3.23), (3.25), where Assumptions 3.3-3.5 are satisfied. Assume that
the result in Theorem 3.4 holds. Then, The equilibrium (R̃3 = I3, R̃4 = I3, . . . , R̃n =
I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) is exponentially stable for the overall cascaded system
(3.24), (3.27).

Proof See Appendix A.11

Theorem 3.5 provides local exponential stability of the overall cascaded distributed
bearing-based pose estimation scheme (3.23), (3.25). The local result is mainly due
to the local exponential stability of the attitude observer of the rotational subsystem.

3.3.4 Simulation Results

In this section, we perform some numerical simulations to illustrate the performance of
the proposed bearing-based localization scheme (3.23), (3.25).
In these simulations, we consider a network of five agents forming a pentagon shape in
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R3, rotating around the x-axis (see Figure 3.12), with the following time-varying po-
sitions: pi(t) = RT (t)pi(0) where R(t) = [1 0 0; 0 cos π

6
t − sin π

6
t; 0 sin π

6
t cos π

6
t],

p1(0) = [2 − 1 1]T , p2(0) = [2 1 2]T , p3(0) = [2 1 0]T , p4(0) = [2 1 − 2]T and
p5(0) = [2 − 1 − 1]T . The rotation subsystem is driven by the following angular
velocities: ω1 = [1 − 2 1]T , ω2(t) = [− cos 3t 1 sin 2t]T , ω3(t) = [− cos t 1 sin 2t]T ,
ω4(t) = [− cos 2t 1 sin 5t]T and ω5(t) = [− cos t 1 sin 9t]T . The agents initial rotations
are chosen to be the identity.

Figure 3.12: The five-agent network in R3.

The interactions between the agents in the network are described by the directed graph
shown in Figure 3.13. It follows that the neighbors sets of the agents are N1 = N2 = {∅},
N3 = {1, 2}, N4 = {2, 3} and N5 = {3, 4}.

2

1 3

5 4

Figure 3.13: The interaction graph (the black circles represent the leaders).

The initial conditions of the observer (3.23), (3.25) are chosen to be: p̂3(0) = [−2 0 −
1]T , p̂4(0) = [−1 2 2]T , p̂5(0) = [−2 2 4]T , R̂3(0) = Ra(0.1π, v0), R̂4(0) = Ra(0.2π, v0)
and R̂5(0) = Ra(0.3π, v0) with v0 = [1 0 0]T . The gain parameters are taken as follows:
kp = 1, kR3 = 10, kR4 = 5 and kR5 = 3. Figures 3.14 and 3.15 depict the time evolution of
the individual attitude and position estimation error norms for each agent and the average
attitude and position estimation error norms of all agents in the network, respectively.
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Figure 3.14: Time evolution of the individual estimation error norms.

Figure 3.15: Time evolution of the average estimation error norms.

To further illustrate the performance of the localization scheme (3.23), (3.25), as in the
previous section, we introduce noise and biases into the measurements. We assume that
the linear and angular velocity measurements are affected by additive white Gaussian
noise with a mean of zero and a variance of 0.1. We also assume that the bearing mea-
surements are subject to additive white Gaussian noise with zero mean and 0.01 variance,
according to the expressions (3.18)-(3.19). The following constant biases are added to the
angular velocity measurements: bω3 = [0.02 0.07 0.01]T , bω4 = [0.1 0.02 0.01]T and bω5 =
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[0.09 0.07 0.01]T . Figures 3.16 and 3.17 show the time evolution of the individual attitude
and position estimation error norms and the average attitude and position estimation er-
ror norms of all agents in the network, with noisy and biased measurements.

Figure 3.16: Time evolution of the individual estimation error norms with noisy and
biased measurements.

Figure 3.17: Time evolution of the average estimation error norms with noisy and biased
measurements.
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3.4 Conclusion

In this chapter, we proposed bearing-based localization schemes to address the problem
of distributed pose estimation for multi-agent rigid-body systems, where two agents have
access to their respective poses. The proposed schemes rely solely on individual angular
velocity measurements and local information exchange between neighboring agents (rel-
ative time-varying bearing measurements and estimated poses), available according to a
directed graph topology defined in Assumptions 3.2 and 3.4.

As a first contribution, we proposed two AGAS bearing-based distributed pose estima-
tion schemes for multi-agent rigid-body networks in which the agents have fixed positions
and time-varying orientations. As a second contribution, we explored the case where the
agents are allowed to have simultaneous translational and rotational motion. Accordingly,
we proposed an exponential bearing-based distributed pose estimation scheme. However,
the proposed observer has a domain of attraction that shrinks as the number of agents
increases. Therefore, designing a bearing-based distributed pose estimation scheme with
strong stability guarantees independent of the number of agents would be an interesting
extension to this contribution.



Chapter 4

Relative Attitude Measurements
Based Distributed Attitude
Estimation for Multi-Agent
Rigid-Body Systems on SO(3) with
Application to Distributed Pose
Estimation

4.1 Introduction

In this chapter, we first consider the problem of distributed attitude estimation of multi-
agent rigid-body systems, evolving on SO(3), with global asymptotic stability guarantees,
relying on individual angular velocity and relative attitude information. Thereafter,
we deal with the design of a distributed pose estimation scheme, for multi-agent rigid-
body systems, via a cascade of a distributed attitude observer and a distributed position
observer.

Motivated by the classical (Euclidean) consensus algorithms (Ren and Beard, 2007;
Mesbahi and Egerstedt, 2010), some distributed attitude estimation schemes have been
proposed in the literature (Lee and Ahn, 2016a; Lee and Ahn, 2016b; Van Tran et al.,
2018; Lee et al., 2019; Van Tran et al., 2019; Van Tran and Ahn, 2020). These approaches
rely on the orthogonalization of some auxiliary matrices using the Gram-Schmidt proce-
dure which is not always viable as the auxiliary matrices may be singular at some time
instances. The distributed attitude estimation schemes proposed in the above references
are shown to be AGAS.

We first propose a continuous nonlinear distributed attitude estimation scheme on
SO(3), with AGAS guarantees, without using the Gram-Schmidt orthogonalization pro-
cedure. Thereafter, we proceed with the hybridization of the proposed continuous esti-
mation scheme to derive a new hybrid nonlinear distributed attitude estimation scheme,
with global asymptotic stability guarantees, allowing the attitude estimation errors to

50
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converge to an unknown common constant orientation which can be determined in the
presence of a leader in the group (knowing its absolute orientation). To the best of our
knowledge, there are no results in the literature achieving such strong stability properties
for the estimation problem at hand. The proposed hybrid estimation scheme relies on
time-varying scalar auxiliary variables, inspired from (Wang and Tayebi, 2022), which
are governed by some appropriately designed hybrid dynamics. These auxiliary variables
enable the estimation scheme to keep the relative attitude errors away from the unde-
sired equilibria through continuous flow and discrete jumps. In both designs, we assume
that the interaction graph topology is an undirected tree, and each agent measures its
own angular velocity in the respective body-frame, measures the relative orientation with
respect to its neighbours, and receives information from its neighbors.

Finally, we design a distributed position estimation law that uses the estimated at-
titudes, provided by the hybrid distributed attitude observer, the local relative (time-
varying) bearing information, and the individual linear velocities. This design guarantees
global pose estimation of the n-agent rigid-body system up to a constant translation and
orientation. Finally, some numerical simulation results are presented to illustrate the
performance of the proposed observers. The results presented in this chapter are based
on our work in (Boughellaba and Tayebi, 2023c; Boughellaba and Tayebi, 2023d).

4.2 Problem Formulation

Consider an n-agent rigid-body system governed by the following rotational kinematic
equation:

Ṙi = Ri[ωi]
×, (4.1)

where Ri ∈ SO(3) represents the orientation of the body-attached frame of agent i with
respect to the inertial frame, and ωi ∈ R3 is the angular velocity of agent i measured in
the body-attached frame. The measurement of the relative orientation between agent i
and agent j is given by

Rij := RT
i Rj, (4.2)

where (i, j) ∈ E . Note that, according to the kinematic equation (4.1), the orientations
of the agents are time-varying. However, for the sake of simplicity, the time argument t
has been omitted from the above expression. Let the graph G describe the interaction
between agents (the relative measurements and communication). To derive our results,
the following assumptions are needed:

Assumption 4.1 Each agent i ∈ V measures the relative orientations Rij with respect
to its neighboring agents j ∈ Ni. In addition, each agent can also share information,
through communication, with its neighbors.

Assumption 4.2 The interaction graph G is assumed to be an undirected tree.

Assumption 4.3 The body-frame angular velocity of each agent is bounded and avail-
able.
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Consider a network of n agents governed by the kinematic equation (4.1). Suppose
Assumptions 4.1-4.3 are satisfied. Our objective consists in designing a distributed atti-
tude estimation scheme endowed with global asymptotic stability guarantees. Since only
relative attitude measurements are available, it should be understood that the goal is
to globally estimate the orientation of each agent up to a common constant orientation.
This common constant orientation can be determined if at least one agent has access
to its own orientation, in which case, all the estimated orientations will converge to the
actual orientations.

4.3 Distributed Attitude Estimation Using Relative

Attitude Measurements

For i ∈ V , we propose the following attitude observer on SO(3):

˙̂
Ri = R̂i

[
ωi − kRR̂

T
i σi

]×
, (4.3)

where kR > 0, R̂i ∈ SO(3) is the estimate of Ri, and σi ∈ R3 is the correcting term that
will be designated later. Let R̃i := RiR̂

T
i denote the absolute attitude error of agent i.

In view of (4.1) and (4.3), one has

˙̃Ri = kRR̃i[σi]
×. (4.4)

Consider an arbitrary orientation of the interaction graph G. For every (i, j) ∈ E ,
suppose that agent i and agent j are the head and tail, respectively, of the oriented edge
connecting them, indexed by k. One can define the relative attitude error between them
as R̄k := R̃T

j R̃i, where {k} = M+
i ∩M−

j ∈ M. From (4.4), one can derive the following
dynamics for the relative attitude errors:

˙̄Rk = kRR̄k[σ̄k]
×, (4.5)

where σ̄k := σi − R̄T
k σj. Note that, for every i ∈ V and j ∈ Ni, the intersection between

the sets M+
i and M−

j is either a set with a single element (if agent i and agent j are
the head and tail, respectively, of the oriented edge connecting them) or an empty set
otherwise. Let σ̄ = [σ̄T

1 , σ̄
T
2 , . . . , σ̄

T
m]

T ∈ R3m and σ = [σT
1 , σ

T
2 , . . . , σ

T
n ]

T ∈ R3n. One can
verify that (Bai et al., 2008)

σ̄ = H(t)Tσ, (4.6)

where

H(t) := [Hik]3n×3m with Hik =


I3 k ∈ M+

i

−R̄k k ∈ M−
i

0 otherwise

. (4.7)

Note that the matrix H inherits some properties from the incidence matrix H such as the
adjacency relationships in the graph and also the orientation that the graph enjoys. Note
also that the arbitrary orientation assigned to the graph G is only a dummy orientation
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introduced to simplify the process of the design and analysis of our proposed schemes and
does not change the nature of the interaction graph G from being an undirected graph.
It is clear that the matrix H depends on the interaction graph G and its orientation.
Therefore, in the following lemma, we present an important property that H enjoys
when the interaction graph G satisfies Assumption 4.2.

Lemma 4.1 Consider the matrix H(t) obtained from the graph G with an arbitrary ori-
entation of the edges, satisfying Assumption 4.2. Then, ∀t ≥ 0, H(t)x = 0 implies
x = 0.

Proof See Appendix B.1

Since the graph G is assumed to be an undirected tree, one can verify that the matrix
H(t) is not a square matrix (m = n−1). Moreover, from Lemma 4.1, one can deduce that
the matrix H(t) has a full column rank for all t ≥ 0. This is instrumental in establishing
the stability properties of our proposed distributed attitude observers.

In the sequel, we propose two attitude estimation schemes through an appropriate
design of the correcting term σi. We will start with the continuous version of the observer
in the next section.

4.3.1 Continuous Distributed Attitude Estimation Design

Consider the observer given in (4.3), with the following correcting term:

σi = −
∑
j∈Ni

ψ(AR̂jR
T
ijR̂

T
i ), (4.8)

where i ∈ V and A ∈ R3×3. Let x := (R̄1, R̄2, . . . , R̄m) ∈ S, with S := (SO(3))m. From
(4.5)-(4.8), one can derive the following multi-agent closed-loop dynamics:

ẋ = f(x) x ∈ S, (4.9)

where

f(x) =

 f1(x)
...

fm(x)

 with fk(x) = kRR̄k[σ̄k]
×.

The following assumption is needed for our developments:

Assumption 4.4 A is a symmetric and positive definite matrix with three distinct eigen-
values.

The following theorem provides the stability properties of the equilibrium points of (4.9):

Theorem 4.1 Consider the attitude kinematics (4.1) with measurements (4.2) and ob-
server (4.3) together with the correcting term (4.8), where Assumptions 4.1-4.4 are sat-
isfied. Then, the following statements hold:
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i) All solutions of (4.9) converge to the following set of equilibria: Υ := {x ∈ S : ∀k ∈
M, ψ(AR̄k) = 0} = A∪{x ∈ S : R̄m̄ = I3, R̄n̄ = UDβ U

T , m̄ ∈ MI , n̄ ∈ Mπ, β ∈
{1, 2, 3}}, where A := {x ∈ S : ∀k ∈ M, R̄k = I3}, MI ∪ Mπ = M, |Mπ| > 0,
|MI | ≥ 0, D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1), D3 = diag(−1,−1, 1), and
U ∈ O(3) such that A = UΛUT with Λ = diag(λ1, λ2, λ3) and λ1, λ2, λ3 are the
distinct eigenvalues of A.

ii) The desired equilibrium set A, for the closed-loop system (4.9), is locally asymptoti-
cally stable.

iii) The set of all undesired equilibrium points Υ \ A is unstable and the desired equilib-
rium set A is AGAS for the closed-loop system (4.9).

Proof See Appendix B.2

In contrast to (Lee and Ahn, 2016a; Lee and Ahn, 2016b; Van Tran et al., 2018; Lee
et al., 2019; Li et al., 2020), our proposed continuous attitude observer, given in (4.3)
and (4.8), can estimate time-varying orientations. Moreover, the estimated orientations
provided by our proposed scheme are well-defined for any instant of time, which is not
the case in (Van Tran et al., 2019; Lee et al., 2019; Li et al., 2020), since reliable attitude
estimates are obtained only at the steady state. This makes our proposed distributed
attitude estimation scheme a strong candidate for use in applications that require in-
stantaneous orientations for feedback. However, as shown in the proof of Theorem 4.1,
the trajectories of the closed-loop system (4.9) may converge to a level set containing
the undesired equilibrium set Υ \ A. Unfortunately, due to the topological obstruction
on SO(3), there is no continuous time-invariant distributed attitude estimation scheme
that guarantees global asymptotic stability of the desired equilibrium set A (Koditschek,
1989). Therefore, in the sequel, we will propose a hybrid distributed attitude estimation
scheme endowed with global asymptotic stability.

4.3.2 Hybrid Distributed Attitude Estimation Design

The design of the correcting term (4.8) was based on the gradient of the smooth potential
function VT (x) (see the proof of Theorem 4.1). However, this design does not guarantee
global asymptotic stability of the desired equilibrium set A, since the potential function
VT (x) has more than one critical set (A and Υ \ A). It is well known that the design
of gradient-based laws using smooth potential functions on SO(3) leads to the afore-
mentioned problem (Morse, 1934). This has motivated many authors to propose hybrid
gradient-based solutions that ensure the existence of a unique global attractor (May-
hew and Teel, 2011b; Mayhew and Teel, 2011a; Mayhew and Teel, 2013; Berkane and
Tayebi, 2017). The key idea in these solutions is to switch between a family of smooth
potential functions via an appropriate switching mechanism, which leads to generating
a non-smooth gradient with only one global attractor. Note that the construction of
this family of smooth potential functions relies on the compactness assumption of the
manifold. Therefore, the hybrid gradient-based solutions proposed in (Mayhew and Teel,
2011b; Mayhew and Teel, 2011a; Mayhew and Teel, 2013; Berkane and Tayebi, 2017)
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are not applicable to non-compact manifolds such as SE(3). Recently, the authors of
(Wang and Tayebi, 2022) proposed a new hybrid scheme that relies only on one potential
function parameterized by a scalar variable governed by an appropriately designed hybrid
dynamics guaranteeing that the closed-loop dynamics a unique desired global attractor.
In contrast to (Mayhew and Teel, 2011b; Mayhew and Teel, 2011a; Mayhew and Teel,
2013; Berkane and Tayebi, 2017), the hybrid scheme, given in (Wang and Tayebi, 2022),
is easy to design and does not require any assumption about the compactness of the
manifold.

4.3.2.1 Switching Mechanism Design for Multi-Agent Systems

Let Ah := {xh ∈ Sh : ∀k ∈ M, R̄k = I3, ξk = 0}, where xh :=
(
R̄1, . . . , R̄m, ξ1, . . . , ξm

)
∈

Sh with Sh := SO(3)m × Rm. Consider the following potential function, inspired from
(Wang and Tayebi, 2022), on Sh, with respect to Ah:

UR(xh) =
m∑
k=1

U(R̄k, ξk), (4.10)

where U : SO(3)×R → R≥0 is a potential function with respect to (I3, 0). The following
set represents the set of all critical points of UR:

Υh := {xh ∈ Sh : ∀k ∈ M,∇R̄k
UR = 0 and ∇ξkUR = 0}, (4.11)

where ∇R̄k
UR and ∇ξkUR are the gradients of UR with respect to R̄k and ξk, respectively.

The potential function UR is chosen such that Ah ⊂ Υh. In what follows, inspired by
(Wang and Tayebi, 2022), we will introduce an essential condition for our hybrid scheme
design related to the potential function UR.

Condition 4.1 Consider the potential function (4.10). There exist a scalar δ > 0 and
a nonempty finite set Ξ ⊂ R such that for every xh ∈ Υh \ Ah

U(R̄k, ξk)−min
ξ̄k∈Ξ

U(R̄k, ξ̄k) > δ, (4.12)

for every k ∈ M such that R̄k ̸= I3.

Note that the set Υh \ Ah denotes the set of all undesired critical points of UR.
Condition 4.1 plays a key role in the design of the hybrid scheme to be introduced
shortly, since it implies that, at the undesired critical set Υh \Ah, there will always exist
ξ̄k ∈ Ξ, for every k ∈ M, where R̄k ̸= I3, such that U(R̄k, ξ̄k) is lower than U(R̄k, ξk)
by a constant gap δ. Thus, resetting the value of ξk to ξ̄k will effectively steer the state
away from the undesired critical set Υh \ Ah. This, together with an appropriate design
of the vector field that ensures that UR is non-increasing during the flows, will ensure
global asymptotic stability of the desired equilibrium set Ah.

Now, for every i ∈ V and k ∈ M+
i , we propose the following hybrid dynamics for ξk:
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ξ̇k =− kξ∇ξkUR︸ ︷︷ ︸
xh∈Fi

(4.13)

ξ+k ∈

{
ξk if U(R̄k, ξk)− U(R̄k, ξ

∗
k) ≤ δ

ξ∗k if U(R̄k, ξk)− U(R̄k, ξ
∗
k) ≥ δ,︸ ︷︷ ︸

xh∈Ji

(4.14)

where kξ > 0 and ξ∗k := arg min
ξ̄k∈Ξ

U(R̄k, ξ̄k). The flow set Fi and the jump set Ji, for

agent i, are defined as follows:

Fi := {xh ∈ Sh : ∀k ∈ M+
i , U(R̄k, ξk)− min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≤ δ} (4.15)

Ji := {xh ∈ Sh : ∃k ∈ M+
i , U(R̄k, ξk)− min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≥ δ}. (4.16)

It is important to note that for each i ∈ V , both the flow set Fi and the jump set Ji are
distributed. In other words, for each i ∈ V , the definition of both sets, namely Fi and Ji,
considers only the edges connecting agent i, where i is the head of these oriented edges,
with its neighbors j ∈ Ni. Now, let ξ := [ξ1, ξ2, . . . , ξm]

T ∈ Rm, from (4.13)-(4.14), one
obtains the following hybrid dynamics:

Hξ :

{
ξ̇ = Fξ(xh) xh ∈ F
ξ+ ∈ Gξ(xh) xh ∈ J

(4.17)

where

F :=
n⋂

i=1

Fi, J :=
n⋃

i=1

Ji, (4.18)

and

Fξ(xh) =

 −kξ∇ξ1UR
...

−kξ∇ξmUR

 , Gξ(xh) =

 {ξ1, ξ∗1}
...

{ξm, ξ∗m}

 .
Based on the definition of the jump set J , one can verify that the set of all undesired
critical points belongs to the jump set J , i.e., Υh \ Ah ⊂ J . Also, in view of the jump
map Gξ(xh), one can check that, if xh ∈ J , there exits k ∈ M such that U(R̄k, ξk) −
U(R̄k, ξ

∗
k) ≥ δ, which ensures that UR decreases at least by δ after each jump.

4.3.2.2 Generic Hybrid Distributed Attitude Observer Design

For every i ∈ V , we propose the following distributed non-smooth gradient-based cor-
recting scheme:

σi =
∑
l∈M−

i

R̄lψ
(
R̄T

l ∇R̄l
UR

)
−
∑

p∈M+
i

ψ
(
R̄T

p∇R̄p
UR

)
ξ̇k =− kξ∇ξkUR︸ ︷︷ ︸

xh∈Fi

(4.19)
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ξ+k ∈

{
ξk if U(R̄k, ξk)− U(R̄k, ξ

∗
k) ≤ δ

ξ∗k if U(R̄k, ξk)− U(R̄k, ξ
∗
k) ≥ δ,︸ ︷︷ ︸

xh∈Ji

(4.20)

where k ∈ M+
i . Moreover, given the above expression of σi, for every i ∈ V , together

with equation (4.6), one can verify that

σ̄ = −HTH ΨR̄
∇, (4.21)

where

ΨR̄
∇ :=

[
ψ
(
R̄T

1∇R̄1
UR

)T
, ψ
(
R̄T

2∇R̄2
UR

)T
, . . . , ψ

(
R̄T

m∇R̄m
UR

)T ]T ∈ R3m,

and the block matrix H is given in (4.7). The matrix HTH is positive definite according
to Lemma 4.1. Next, we will establish the stability property of the desired equilibrium
set Ah under the distributed non-smooth gradient-based correcting term (4.19)-(4.20).
In view of (4.4)-(4.6) and (4.19)-(4.21), one can derive the following multi-agent hybrid
closed-loop dynamics:

H :

{
ẋh = F (xh) xh ∈ F
x+h ∈ G(xh) xh ∈ J

(4.22)

where

F (xh) =



kRR̄1[σ̄1]
×

...
kRR̄m[σ̄m]

×

−kξ∇ξ1UR
...

−kξ∇ξmUR


, G(xh) =



R̄1
...
R̄m

{ξ1, ξ∗1}
...

{ξm, ξ∗m}


.

The flow map F and the jump map J are defined in (4.18). It is worth noting that the
hybrid closed-loop system (4.22) is autonomous.

Remark 4.1 According to the flow map F (xh), the dynamics of the state xh flow along
a negative direction of the gradient of UR, driving the state xh towards the critical points
of UR during the flow. However, the jump map G(xh) pushes the state xh away from the
undesired critical set Υh \Ah, which leaves the desired critical set Ah as a global attractor
to our proposed distributed hybrid correcting scheme.

Before proceeding with the stability analysis, it is important to verify that system
(4.22) is well-posed1. This involves showing that the hybrid closed-loop system (4.22)
satisfies the hybrid basic conditions (Goebel et al., 2012, Assumption 6.5).

Lemma 4.2 The hybrid closed-loop system (4.22) satisfies the hybrid basic conditions
introduced in Section 2.6.2.

1See (Goebel et al., 2012, Definition 6.2) for the definition of well-posedness.
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Proof See Appendix B.3

In the following theorem, we will establish the stability properties of the multi-agent
hybrid closed-loop system (4.22).

Theorem 4.2 Let kR, kξ > 0 and suppose that Assumptions 4.1, 4.2 and Condition
4.1 hold. Then, the set Ah is globally asymptotically stable for the multi-agent hybrid
closed-loop system (4.22) and the number of jumps is finite.

Proof See Appendix B.4

Remark 4.2 Note that the design of our proposed hybrid distributed attitude observer
(4.3), (4.19)-(4.20) is based on a generic potential function UR, defined on Sh, with respect
to Ah. It is also important to note that the flow set F and the jump set J , given in (4.18),
depend on the parameters δ and Ξ. These parameters, along with the potential function
UR, must be carefully designed to satisfy Condition 4.1.

In the next section, we will provide the explicit structure of our proposed hybrid
estimation scheme by first introducing the potential function and specifying the set of
parameters P such as Condition 4.1 is satisfied. We then provide the explicit form of our
proposed hybrid distributed attitude observer in terms of relative attitude measurements
and attitude estimates.

4.3.2.3 Explicit Hybrid Distributed Attitude Observer Design Using Rela-
tive Attitude Measurements

Let us begin this section by introducing the potential function UR and some useful related
properties. Consider the potential function UR(xh), given in (4.10), where U(R̄k, ξk) is
defined as follows:

U(R̄k, ξk) := tr
(
A
(
I3 − R̄kRα(ξk, u)

) )
+
γ

2
ξ2k, (4.23)

with A ∈ R3×3 is a positive definite matrix with three distinct eigenvalues, u ∈ S2

is a constant unit vector and γ is a positive scalar. Note that UT is an extension of
the potential function U(Re, θ) proposed in (Wang and Tayebi, 2022) for a single agent
attitude control design. In the following proposition, we will derive the gradient of UR

with respect to R̄k and ξk and give the set of all its critical points.

Proposition 4.1 Consider the potential function UR(xh) =
∑m

k=1 U(R̄k, ξk), where U
given in (4.23) and Assumption 4.4 is satisfied. Then, the following statements hold:

• ψ
(
R̄T

k∇R̄k
UR

)
= Rα(ξk, u)ψ(AR̄kRα(ξk, u)) for all k ∈ M.

• ∇ξkUR = γξk + 2uTψ(AR̄kRα(ξk, u)) for all k ∈ M.

• Υh = {xh ∈ Sh : ∀k ∈ M, Pa(AR̄k) = 0, ξk = 0}.
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• Ah ⊂ Υh.

Proof See Appendix B.5

Remark 4.3 Note that the expressions for the gradients of UR with respect to R̄k and
ξk, given in Proposition 4.1, are derived in terms of the relative attitude errors R̄k which
can be constructed from the relative orientation measurements (4.2) and the estimated
orientations as follows: R̄k = R̂jR

T
ijR̂

T
i , with (i, j) ∈ E and M+

i ∩M−
j = {k}.

Consider the set of parameters P := {Ξ, A, u, γ, δ}. The next proposition gives the
possible choices for the parameters in the set P such that Condition 4.1 is satisfied.

Proposition 4.2 Consider the potential function UR. Then, Condition 4.1 holds under
the following set of parameters P:

P :



Ξ = {|ξi| ∈ (0, π], i = 1, · · · , l}
A : 0 < λ1 ≤ λ2 < λ3

u = α1q1 + α2q2 + α3q2

γ < 4∆∗

π2

0 < δ <
(
4∆∗

π2 − γ
) ξ2L

2
, ξL := max

ξ∈Ξ
|ξ|

(4.24)

where α2
1 + α2

2 + α2
3 = 1 and ∆∗ > 0 are given as follows:

• If λ1 = λ2, α
2
3 = 1− λ2

λ3
and ∆∗ = λ1(1− λ2

λ3
).

• If λ2 ≥ λ1λ3

λ3−λ1
, α2

i =
λA
i

λ2+λ3
,i ∈ {2, 3} and ∆∗ = λ1.

• If λ1 < λ2 <
λ1λ3

λ3−λ1
, α2

i = 1− 4
∏

l̸=i λl∑3
l=1

∑3
k ̸=l λlλk

,∀i ∈ {1, 2, 3}, and ∆∗ =
4
∏

l λl∑3
l=1

∑3
k ̸=l λlλk

.

where (λi, qi) denotes the i-th pair of eigenvalue-eigenvector of matrix A.

Proof The proof is omitted as it can be easily established following the same arguments
of the proof of (Wang and Tayebi, 2022, Proposition 2).

Let us conclude this section by giving the explicit form of our proposed hybrid dis-
tributed attitude estimation scheme. From Proposition 4.1, Proposition 4.2, and the fact
in Remark 4.3, one can explicitly express the hybrid distributed attitude observer, given
in (4.3) and (4.19)-(4.20), in terms of the relative attitude measurements and the attitude
estimates as follows:

˙̂
Ri = R̂i[ωi − kRR̂

T
i σi]

×

ξ̇k = −kξ
(
γξk + 2uTψ

(
AR̄kRa(ξk, u)

))
σi = −

(∑
j∈Ii

Ra(ξp, u)ψ(AR̂jR
T
ijR̂

T
i Ra(ξp, u)) +

∑
j∈Oi

ψ(ARa(ξl, u)
T R̂jR

T
ijR̂

T
i )

)
︸ ︷︷ ︸

xh∈Fi

(4.25)
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R̂+
i = R̂i

ξ+k ∈

{
ξk if U(R̄k, ξk)− U(R̄k, ξ

∗
k) ≤ δ

ξ∗k if U(R̄k, ξk)− U(R̄k, ξ
∗
k) ≥ δ︸ ︷︷ ︸

xh∈Ji

(4.26)

where i ∈ V , k ∈ M+
i , {p} = M+

i ∩ M−
j ∈ M, {l} = M−

i ∩ M+
j ∈ M. Note that

Ni = Ii∪Oi, with Ii := {j ∈ Ni : j is the tail of the edge (i, j) ∈ E} and Oi := {j ∈ Ni :
j is the head of the edge (i, j) ∈ E}. Recall that the flow set Fi and the jump set Ji, for
every i ∈ V , are given in (4.15) and (4.16), respectively.

Remark 4.4 For the implementation of our proposed hybrid distributed attitude observer
(4.25)-(4.26), we assume that the dynamics of ξk are implemented at agent i, and agent
j receives the information about ξk from agent i, according to Assumption 4.1, for every
(i, j) ∈ E such that {k} = M+

i ∩M−
j .

In the following section, we will leverage the proposed hybrid distributed attitude
estimation scheme (4.25)-(4.26) for the design a distributed pose estimation using rela-
tive attitude and bearing Measurements. The key idea consists in expressing the local
relative (time-varying) bearing measurements in the inertial frame, using the estimated
attitudes obtained from (4.25)-(4.26), so they can be used, together with linear velocity
measurements, in the position estimation scheme.

4.4 Distributed Pose Estimation Using Relative At-

titude and Bearing Measurements

In this section, we consider the problem of distributed pose estimation for multi-agent
rigid-body systems where the agents are allowed to have simultaneous translational and
rotational motion. Using the hybrid distributed attitude observer (4.25)-(4.26), we pro-
pose a hybrid distributed position estimation scheme that relies on the relative attitude
and bearing measurements as well as the individual angular and linear velocity measure-
ments. In contrast to Section 3.3, the resulting overall hybrid distributed pose estimation
scheme globally estimates the poses of the agents up to a constant translation and orien-
tation which can be determined if there is at least one agent that measures its absolute
orientation and position. Before presenting our proposed observer, let us first formally
state the problem at hand.

Consider a group of rigid body systems governed by the rotational kinematic equation
(4.1) and the following translational kinematic equation:

ṗi = vi, (4.27)

where pi ∈ R3 and vi ∈ R3 are the position and velocity of agent i, respectively, expressed

in the inertial frame and i ∈ V . Let p :=
[
pT1 , p

T
2 , . . . , p

T
n

]T ∈ R3n. The graph G together
with the stack position vector p define the formation G(p(t)).
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The measurement of the local relative bearing between agent i and agent j is given
by

biij(t) := RT
i bij(t), (4.28)

where bij(t) :=
pj(t)−pi(t)

||pj(t)−pi(t)|| and b
i
ij(t) are the relative bearing measurements between agent

i and agent j expressed in the inertial frame and the body-attached frame of agent i,
respectively. Recall that the agents orientations are time-varying, but for the sake of
simplicity, the time argument t is omitted in the expression of Ri in (4.28). Next, we will
introduce some important definitions and assumptions.

Definition 4.1 (Tang et al., 2020b) Consider the formation G(p(t)) with an arbitrary
orientation of the graph G. Define the matrix L and bearing Laplacian matrix LB as
L := L ⊗ I3 and LB(t) := Hdiag(Pbk(t))H

T , respectively, where bk is the bearing vector
corresponding to the edge k, and H = H ⊗ I3

(
H and L are the incidence and the

Laplacian matrices, respectively, corresponding to the graph G
)
. The bearing Laplacian

matrix is called persistently exciting (PE) if there exists T > 0 and µ > 0 such that:∫ t+T

t

LB(τ)dτ ≥ µL, (4.29)

for all t ≥ 0.

Definition 4.2 (Tang et al., 2020b) The formation G(p(t)) is BPE if the graph G is
connected and its bearing Laplacian matrix is PE.

Assumption 4.5 Each agent i in the formation measures the local relative bearings biij
with respect to its neighboring agents j ∈ Ni.

Assumption 4.6 The formation G(p(t)) is bearing persistently exciting.

Assumption 4.7 As the formation evolves over time, there is no collision between
agents.

Assumption 4.8 The body-frame linear velocity of each agent is bounded and available
for measurement by the agent.

Consider a network of n rigid-body agents governed by the pose kinematic equations
(4.1) and (4.27), where Assumptions 4.1-4.8 are satisfied. Our objective is to design
a distributed position observer cascaded with the hybrid distributed attitude observer
(4.25)-(4.26) such that the resulting distributed pose estimation scheme is endowed with
global asymptotic stability guarantees.

Remark 4.5 Note that, unlike Section 3.3, the proposed observer will estimate the agents’
poses up to a constant translation and orientation which can be determined if at least one
agent has access to its absolute pose.
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Now, let us proceed with the observer design. Considering the hybrid distributed
attitude observer (4.25)-(4.26), we propose the following hybrid distributed position es-
timation law:

˙̂pi =R̂iv
i
i − kp

∑
j∈Ni

R̂i

(
Pbiij(t)

R̂T
i p̂i −RijPbjji(t)

R̂T
j p̂j

)
− kR[σi]

×p̂i︸ ︷︷ ︸
xh∈Fi

(4.30)

p̂+i = p̂i︸ ︷︷ ︸
xh∈Ji

(4.31)

where i ∈ V , kp > 0, p̂i ∈ R3 is the estimate of pi and v
i
i is the body-frame linear velocity

of agent i. Under Assumption 4.7, one has ||pi − pj|| ̸= 0 and consequently the bearing
measurement biij(t), for every (i, j) ∈ E , is well defined for all t ≥ 0. Using the facts that
vii = RT

i vi and Pbiij(t)
= RT

i Pbij(t)Ri, it follows from (4.30) that the position estimate p̂i of

each agent i ∈ V , during the flows, can be rewritten as follows:

˙̂pi = R̃T
i vi − kpR̃

T
i

∑
j∈Ni

Pbij(t)

(
R̃ip̂i − R̃j p̂j

)
− kR[σi]

×p̂i. (4.32)

Define the position estimation error as p̃i := R̃ip̂i − pi, for every i ∈ V . In view
of (4.27), (4.4) and (4.32), the time derivative of p̃i is given by the following hybrid
dynamics:

˙̃pi = kp
∑
j∈Ni

Pbij(t)(p̃j − p̃i)︸ ︷︷ ︸
xh∈Fi

(4.33)

p̃+i = p̃i︸ ︷︷ ︸
xh∈Ji

(4.34)

for every i ∈ V . Equations (4.33) and (4.34) were obtained using the fact that Pbij(pj −
pi) = 0 and p̃+ = R̃+

i p̂
+
i − pi = R̃ip̂i − pi = p̃i, respectively. In view of the definition

of the position estimation error p̃i, we were able to derive the above hybrid distributed
estimation error dynamics independent of the attitude estimates provided by the hybrid
attitude observer (4.25)-(4.26). Now, let ei := p̃i − 1

n

∑n
q=1 p̃q(0), it follows from (4.33)-

(4.34) that

ėi = kp
∑
j∈Ni

Pbij(t)(ej − ei)︸ ︷︷ ︸
xh∈Fi

(4.35)

e+i = ei︸ ︷︷ ︸
xh∈Ji

(4.36)

Define the new state space S̄h := SO(3)m × Rm × R3n × R and the new state x̄h :=(
R̄1, . . . , R̄m, ξ1, . . . , ξm, e1, . . . , en, t

)
∈ S̄h. From (4.22), (4.25)-(4.26) and (4.35)-(4.36),



63

one obtains the following extended hybrid multi-agent closed-loop system:

H̄ :

{
˙̄xh = F̄ (x̄h) x̄h ∈ F̄
x̄+h ∈ Ḡ(x̄h) x̄h ∈ J̄

(4.37)

where F̄ := {x̄h ∈ S̄h : xh ∈ F} and where J̄ := {x̄h ∈ S̄h : xh ∈ J }, and the flow and
jump maps are given by

F̄ (x̄h) :=



kRR̄1[σ̄1]
×

...
kRR̄m[σ̄m]

×

−kξ
(
γξ1 + 2uTψ

(
AR̄1Ra(ξ1, u)

))
...

−kξ
(
γξm + 2uTψ

(
AR̄mRa(ξm, u)

))
kp
∑

j∈N1
Pb1j(t)(ej − e1)
...

kp
∑

j∈Nn
Pbnj(t)(ej − en)

1


and Ḡ(x̄h) :=



R̄1
...
R̄m

{ξ1, ξ∗1}
...

{ξm, ξ∗m}
e1
...
en
t


.

Recall that σ̄ = HTσ where σi, for every i ∈ V , is given in (4.25), ξ∗k := argmin
ξ̄k∈Ξ

U(R̄k, ξ̄k),

and the maps F and J are defined in (4.18). Note that, since the relative bearings are
time-varying, we consider the time t as an additional state variable to make the overall
system (4.37) autonomous. Note also that F̄ ∪ J̄ = S̄h.

Lemma 4.3 The hybrid closed-loop system (4.37) satisfies the hybrid basic conditions
introduced in Section 2.6.2.

Proof The proof is established using the same arguments as in the proof of Lemma 4.2
and hence omitted here.

Now, let us state the main result of this section.

Theorem 4.3 Consider the hybrid closed-loop system (4.37) with kR, kξ, kp > 0. Let
Assumptions 4.1-4.8 and Condition 4.1 hold. Then, the set Āh := {x̄h ∈ S̄h : R̄1 =
I3, . . . , R̄m = I3, ξ1 = 0, . . . , ξm = 0, e1 = 0, . . . , en = 0} is globally asymptotically stable
and the number of jumps is finite.

Proof See Appendix B.6

Remark 4.6 Note that the result in Theorem 4.3 implies that the poses of the n agents
can be estimated up to a constant translation and orientation. This constant translation
and orientation can be determined if at least one agent in the formation has access to its
absolute attitude and position (i.e., having a leader in the group), in which case the poses
of the agents can be estimated without ambiguity.
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Unlike most existing works (e.g., (Li et al., 2020; Lee et al., 2019; Zhao and Zelazo,
2016)), our proposed bearing-based hybrid distributed position estimation scheme can
globally estimate the individual poses of the multi-agent rigid-body system subjected
to time-varying translational and rotational motion. Furthermore, in contrast to (Tang
et al., 2020b; Tang et al., 2020a), our scheme relies on local time-varying bearing measure-
ments. This is made possible by the hybrid distributed attitude observer (4.25)-(4.26),
which was instrumental in designing this scheme with a global stability result.

4.5 Simulation Results

In this section, we will present some numerical simulations to investigate the performance
of the continuous attitude observer (4.3), (4.8), the hybrid attitude observer (4.25)-(4.26),
as well as the hybrid distributed position estimation law (4.30)-(4.31).

In these simulations, we consider a five-agent rigid-body system in a three-dimensional
space that forms a square pyramid rotating around the z-axis (see Figure 4.1) with the fol-
lowing positions: pi(t) = RT (t)pi(0) whereR(t) = [cos π

6
t−sin π

6
t 0; sin π

6
t cos π

6
t 0; 0 0 1],

p1(0) = [−2 − 2 − 2]T , p2(0) = [2 − 2 − 2]T , p3(0) = [−2 2 − 2]T , p4(0) = [2 2 − 2]T

and p5(0) = [0 0 0]T . The agents rotational motions are driven by the following angular
velocities: ω1 = [1 − 2 1]T , ω2(t) = [− cos 3t 1 sin 2t]T , ω3(t) = [− cos t 1 sin 2t]T ,
ω4(t) = [− cos 2t 1 sin 5t]T and ω5 = [1.5 4 5]T , where the initial agents rotations are
chosen to be the identity, i.e., Ri(0) = I3, for every i ∈ V .

Figure 4.1: Five-agent network in R3.

We use an undirected graph topology to describe the interactions between the agents
(see Figure 4.2). Accordingly, the neighbors sets are given as N1 = {2}, N2 = {1, 3},
N3 = {2, 4}, N4 = {3, 5} and N5 = {4}.
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Figure 4.2: The interaction graph G.

We assign an arbitrary orientation to the graph G and we index each oriented edge
with a number as it is shown in Figure 4.3. The attitude initial conditions, for both ob-
servers (4.3), (4.8) and (4.25)-(4.26), are chosen as R̂1(0) = Rα(−π

2
, v), R̂2(0) = Rα(

π
2
, v),

R̂3(0) = Rα(−π
2
, v), R̂4(0) = Rα(

π
2
, v) and R̂5(0) = Rα(−π

2
, v), with v = [0 0 1]T . In

addition, for the Hybrid observer, we choose the following initial conditions for the auxil-
iary variables: ξk(0) = 0, k ∈ {1, 2, 3, 4}. Note that, according to these initial conditions,
one has R̄k(0) = Rα(π, v) and ξk(0) = 0, k = {1, 2, 3, 4}, which implies that x(0) ∈ Υ\A
and xh(0) ∈ Υh \ Ah. The parameters of the set P are selected as follows: Ξ = {0.08π},
A = diag([5, 8.57, 12]), γ = 1.9251, δ = 0.0030, u = [0 0.6455 0.7638]T and ∆∗ = 5. For
the gain parameters, we pick: kR = 1.1 and kξ = 3.5. To simulate the Hybrid observer,
we have used the HyEQ Toolbox (Sanfelice et al., 2013). Figure 4.4 and Figure 4.5 depict

2

1 3

5 4

1 2

3

4

Figure 4.3: The interaction graph G with an orientation.

the time evolution of the relative attitude error norms |R̄k(t)|I , for both observers (4.3),
(4.8) and (4.25)-(4.26), and the auxiliary variables ξk(t), k = {1, 2, 3, 4}, respectively,
associated with each edge. Notice that, at t = 0, the variables ξk(t), k = {1, 2, 3, 4},
jump from 0 to 0.08π and then converge to zero as t → ∞. Also, the relative attitude
error norms |R̄k(t)|I , for both observers, converge to zero as t→ ∞.
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Figure 4.4: Time evolution of the relative attitude error norm, associated with each edge,
for the Continuous observer and the Hybrid observer.

Figure 4.5: Time evolution of the hybrid variable ξk associated with each edge.

Remark 4.7 To study the relationship between the choice of the matrix A and the con-
vergence rate of our proposed schemes, we conducted a series of simulations with different
choices of A in Matlab. It is observed that the convergence rates increase when the eigen-
values of A are increased.

In the second simulation, we assume that the measurements are subjected to noise.
The noisy measurements of the attitude and the angular velocity are given as Rn

ij =
Rijexp([nR]

×) and ωn
i = ωi + nω, respectively, for every i ∈ V and j ∈ Ni, where nR

and nω are additive white Gaussian noise with zero mean and a variance of 0.01. We
consider the same initial conditions and observer parameters as in the previous simulation.
Figure 4.6 and Figure 4.7 illustrate the time evolution of the relative attitude error norms
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|R̄k(t)|I , for both schemes, and the auxiliary variables ξk(t), k = {1, 2, 3, 4}, respectively,
associated with each edge.

Figure 4.6: Time evolution of the relative attitude error norm, associated with each edge,
for the Continuous observer and the Hybrid observer using noisy measurements.

Figure 4.7: Time evolution of the hybrid variable ξk associated with each edge, using
noisy measurements.

Next, we simulate the proposed hybrid distributed position estimation scheme (4.30)-
(4.31) together with the hybrid distributed attitude observer (4.25)-(4.26). We consider
the following initial conditions for the estimated positions: p̂1(0) = [1 1 0]T , p̂2(0) =
[−1 2 1]T , p̂3(0) = [−2 0 − 1]T , p̂4(0) = [−1 2 2]T and p̂5(0) = [−1 1 1]T . We pick
kp = 1. For the attitude observer (4.25)-(4.26), we consider the same initial conditions
and observer parameters as in the first simulation. The time evolution of the position
and the relative position estimation error norms are shown in Figure 4.8 and Figure 4.9,
respectively.
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Figure 4.8: Time evolution of the position estimation error norm.

Figure 4.9: Time evolution of the relative position estimation error norm.

4.6 Conclusion

In this chapter, we addressed the problem of distributed attitude estimation of multi-
agent rigid-body systems, evolving on SO(3), relying on individual angular velocity and
relative attitude information. Two nonlinear distributed attitude estimation schemes
evolving on SO(3) have been proposed. The first AGAS continuous observer is used as a
baseline for the derivation of a hybrid version enjoying global asymptotic stability of the
desired equilibrium set Ah, which implies that the attitude of each agent can be estimated
(globally) up to a common constant orientation which can be uniquely determined if at
least one agent has access to its absolute attitude. This hybrid distributed attitude
estimation scheme relies on auxiliary time-varying scalar variables associated to each
edge k, namely ξk, which are governed by the hybrid dynamics (4.13)-(4.14). These
auxiliary variables are appropriately designed to keep the relative attitude errors away
from the undesired equilibrium set Υh\Ah. Furthermore, the hybrid distributed attitude
estimation scheme has been used with a hybrid distributed position estimation scheme
to globally asymptotically estimate the pose of n rigid body systems, up to a constant
translation and orientation, relying on local relative time-varying bearing measurements
and individual linear velocity measurements.



Chapter 5

Global Attitude Synchronization on
SO(3)

5.1 Introduction

In this chapter, we consider the attitude alignment problem for a group of rigid body
systems evolving on SO(3) under an undirected, acyclic and connected graph topology.
Addressing such a problem using local information exchange is an interesting problem,
from a theoretical and practical point of views, that has attracted the attention of the
research community in the last few decades. Despite the literature abundance with
regards to the control of multi-agent systems in the Euclidean space, the literature is
relatively limited when it comes to multi-agent rigid-body systems evolving on smooth
manifolds. Nevertheless, inspired by the classical consensus techniques, some attitude
alignment schemes on SO(3) have been proposed in the literature (Maadani et al., 2020;
Van Tran et al., 2022; Tron et al., 2012; Tron et al., 2013; Markdahl, 2021; Sarlette
et al., 2009; Sarlette et al., 2007; Sarlette and Sepulchre, 2009a; Wei et al., 2018). The
above mentioned references achieve, at best, almost global asymptotic stability due to
the well-known topological obstruction to global asymptotic stability via smooth vector
fields on SO(3) (Koditschek, 1989). On the other hand, some quaternion-based hybrid
attitude alignment schemes, with global stability results, have been proposed in the
literature (Mayhew et al., 2012; Gui and de Ruiter, 2018). Unfortunately, the quaternion
representation double-covers SO(3), which means that quaternions do not provide unique
attitude representations. This lack of uniqueness can further affect quaternion-based
feedback laws and may lead to undesirable phenomena, such as unwinding. Therefore,
using the multi-agent switching mechanism introduced in chapter 4, we propose a new
distributed hybrid feedback control scheme on SO(3) for global attitude synchronization
of a group of rigid body systems to a common orientation. The proposed hybrid feedback
scheme relies on the individual angular velocity measurements as well as the relative
attitude information.

Eliminating the need for velocity measurements in a network with a large number of
agents can significantly reduce the costs associated with sensors and the communication
flow between agents. Additionally, it ensures a certain level of immunity against angular
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velocity sensor failures. Therefore, as a second contribution of this chapter, we propose
a velocity-free distributed hybrid feedback control law for attitude synchronization that
relies solely on relative orientation information, with global asymptotic stability guar-
antees. This velocity-free law uses the outputs of some auxiliary dynamical systems to
generate the necessary damping to compensate for the lack of angular velocity informa-
tion. To the best of the author’s knowledge, these are the first results in the literature
dealing with global attitude synchronization on SO(3) with and without angular velocity
measurements.

At the end of this chapter, we will present some numerical simulations to illustrate the
performance of the two proposed distributed hybrid feedback control laws. The results
presented in this chapter have been published in (Boughellaba and Tayebi, 2024).

5.2 Problem Formulation

Consider the n-agent rigid-body system governed by the following rotational dynamics:{
Ṙi = Ri[ωi]

×

Jiω̇i = −[ωi]
×Jiωi + τi,

(5.1)

where Ri ∈ SO(3) represents the orientation of the body-attached frame of agent i with
respect to the inertial frame, ωi ∈ R3 is the body-frame angular velocity of agent i, and
τi ∈ R3 is the control torque that will be designed later. The inertia matrix Ji ∈ R3×3 is
constant and known.

Let the graph G be undirected tree describing the interaction between agents, which
implies that if two agents are neighbors, their relative orientation is available to each of
them, either by measurement if the agents are equipped with a relative attitude sensor,
or by construction if they share their absolute orientations through communication. The
relative orientation between agent i and agent j is defined as follows:

Rij := RT
i Rj, (5.2)

where (i, j) ∈ E . Considering an arbitrary orientation to the graph G, if two agents i and
j are connected by an oriented edge k, one can define the relative attitude as R̄k := RT

j Ri,
where {k} = M+

i ∩M−
j ∈ M. It follows from (5.1) that

˙̄Rk = R̄k[ω̄k]
× (5.3)

Jiω̇i = −[ωi]
×Jiωi + τi, (5.4)

where ω̄k := ωi− R̄T
k ωj. Recall that, for every i ∈ V and j ∈ Ni, the intersection between

the sets M+
i and M−

j is either a single-element set (if agent i and agent j are the head
and tail, respectively, of the directed edge connecting them) or an empty set otherwise.
Let ω̄ = [ω̄T

1 , ω̄
T
2 , . . . , ω̄

T
m]

T ∈ R3m and ω = [ωT
1 , ω

T
2 , . . . , ω

T
n ]

T ∈ R3n. One can verify that
(Bai et al., 2008)

ω̄ = H(t)Tω, (5.5)
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where the time-varying matrix H(t) is given in (4.7).

Our objective is to design a distributed hybrid feedback law τi such that the equi-
librium (R̄1 = I3, . . . , R̄m = I3, ω1 = 0, . . . , ωn = 0) is globally asymptotically stable.
To achieve this objective, we propose two distributed hybrid feedback laws (one with
angular velocity measurements and one without). Both feedback laws rely on a generic
potential function on SO(3)m × Rm. The design of the two distributed hybrid feedback
laws relies on the multi-agent switching mechanism introduced in Section 4.3.2.1.

5.3 Distributed Hybrid Feedback Design

For every i ∈ V , we propose the following distributed hybrid feedback control scheme

τi =− kωωi + kR

( ∑
l∈M−

i

R̄lψ
(
R̄T

l ∇R̄l
UR

)
−
∑

p∈M+
i

ψ
(
R̄T

p∇R̄p
UR

))
ξ̇k =− kξ∇ξkUR︸ ︷︷ ︸

x∈Fi

(5.6)

ξ+k ∈

{
ξk if U(R̄k, ξk)− U(R̄k, ξ

∗
k) ≤ δR̄

ξ∗k if U(R̄k, ξk)− U(R̄k, ξ
∗
k) ≥ δR̄︸ ︷︷ ︸

x∈Ji

(5.7)

where kξ, kR, kω > 0, ξ∗k := argmin
ξ̄k∈Ξ

U(R̄k, ξ̄k) and k ∈ M+
i . The flow set Fi and the jump

set Ji, for agent i, are defined as follows:

Fi := {x ∈ S : ∀k ∈ M+
i , U(R̄k, ξk)−min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≤ δR̄},

Ji := {x ∈ S : ∃k ∈ M+
i , U(R̄k, ξk)−min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≥ δR̄}.

Define the new state x̄ := (x, ω1, . . . , ωn) ∈ S̄, where S̄ := SO(3)m × Rm × R3n.
In view of (5.3)-(5.4) and (5.6)-(5.7), one can derive the following multi-agent hybrid
closed-loop dynamics:

H̄ :

{
˙̄x = F̄ (x̄), x̄ ∈ F̄ := {x̄ ∈ S̄ : x ∈ F}
x̄+ ∈ Ḡ(x̄), x̄ ∈ J̄ := {x̄ ∈ S̄ : x ∈ J }

(5.8)

where

F :=
n⋂

i=1

Fi, J :=
n⋃

i=1

Ji, (5.9)
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and

F̄ (x̄) :=



R̄1[ω̄1]
×

...
R̄M [ω̄m]

×

−kξ∇ξ1UR
...

−kξ∇ξmUR

J−1
1 f1(x)− kωJ

−1
1 ω1

...
J−1
n fn(x)− kωJ

−1
n ωn


, Ḡ(x̄) :=



R̄1
...
R̄m

{ξ1, ξ∗1}
...

{ξm, ξ∗m}
ω1
...
ωn


,

where fi(x) is given by

fi(x) :=kR

∑
l∈M−

i

R̄lψ
(
R̄T

l ∇R̄l
UR

)
−
∑

p∈M+
i

ψ
(
R̄T

p∇R̄p
UR

) (5.10)

From equations (5.8)-(5.9), one can deduce that F̄ ∪ J̄ = S̄. Furthermore, one can note
that F̄ and J̄ are closed sets, and the hybrid closed-loop system (5.8) is autonomous.

Lemma 5.1 The hybrid closed-loop system (5.8) satisfies the hybrid basic conditions
introduced in Section 2.6.2.

Proof The proof is established using the same arguments as in the proof of Lemma 4.2.

Remark 5.1 Condition 4.1, introduced in the previous chapter, implies that the set of
all undesired critical points belongs to the jump set J , i.e., Ῡ \ A ⊂ J . The jump map
Ḡ will reset the states to values that result in a decrease of UR(x).

Now, we will present our first result in this chapter, which is related to the stability
properties of the multi-agent hybrid closed-loop system (5.8).

Theorem 5.1 Let kR, kξ, kω > 0 and suppose that Condition 4.1 is satisfied. Then, the
set Ā := {x̄ ∈ S̄ : x ∈ A, ω = 0} is globally asymptotically stable for the multi-agent
hybrid closed-loop system (5.8) and the number of jumps is finite.

Proof See Appendix C.1

Note that the implementation of the proposed distributed hybrid feedback law (5.6)-
(5.7) requires that each agent should have access to its angular velocity. This can be
costly, especially in the case of a network with a large number of agents. Therefore, in
the next section, inspired by (Tayebi, 2008) and (Wang and Tayebi, 2022), we introduce
an auxiliary dynamical system for each agent to generate the necessary damping that
compensates for the lack of angular velocity information.
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5.4 Distributed Hybrid Feedback Design without Ve-

locity Measurements

For every i ∈ V , we introduce the auxiliary state (Qi, ζi) ∈ SO(3)×R with the following
hybrid dynamics:

Q̇i =kQQi

[
Q̃iψ

(
Q̃T

i ∇Q̃i
U(Q̃i, ζi)

)]×
ζ̇i =− kζ∇ζiU(Q̃i, ζi)︸ ︷︷ ︸

(Qi,ζi)∈FQ̃
i

(5.11)

Q+
i = Qi

ζ+i ∈

{
ζi if U(Q̃i, ζi)− U(Q̃i, ζ

∗
i ) ≤ δQ̃

ζ∗i if U(Q̃i, ζi)− U(Q̃i, ζ
∗
i ) ≥ δQ̃︸ ︷︷ ︸

(Qi,ζi)∈J Q̃
i

(5.12)

where kQ, kζ > 0, Qi(0) ∈ SO(3), ζi(0) ∈ R, Q̃i := QT
i Ri and ζ

∗
i := argmin

ζ̄i∈Π
U(Q̃i, ζ̄i) .

Before defining the flow set F Q̃
i and the jump set J Q̃

i , it is important to first introduce
the following condition, which is adopted from (Wang and Tayebi, 2022).

Condition 5.1 Let U be a potential function on SO(3)× R, with respect to (I3, 0). Let
(I3, 0) ∈ Υ, where Υ := {(Q̃i, ζi) ∈ SO(3) × R : ∇Q̃i

U(Q̃i, ζi) = 0,∇ζiU(Q̃i, ζi) = 0} is

the set of all critical points of U(Q̃i, ζi). There exist a scalar δQ̃ > 0 and a nonempty

finite set Π such that, for every (Q̃i, ζi) ∈ Υ \ {(I3, 0)}, one has

U(Q̃i, ζi)−min
ζ̄i∈Π

U(Q̃i, ζ̄i) > δQ̃. (5.13)

The motivation behind Condition 5.1 is similar to that of Condition 4.1. Condition 5.1
implies that all undesired critical points in Υ \ {(I3, 0)} are inside the jump set J Q̃

i ,
and as such, the jump map in (5.12) will take care of steering the state away from the
undesired critical points Υ \ {(I3, 0)}.

Remark 5.2 Consider the potential function U defined in (4.23). Proposition 2 in
(Wang and Tayebi, 2022) gives the possible choices of parameters {Π, A, u, γ, δQ̃} for
which Condition 5.1 is satisfied.

According to Condition 5.1, one defines the flow set F Q̃
i and the jump set J Q̃

i as
follows:

F Q̃
i :={(Q̃i, ζi) ∈ SO(3)× R: U(Q̃i, ζi)−min

ζ̄i∈Ξ
U(Q̃i, ζ̄i) ≤ δQ̃},

J Q̃
i :={(Q̃i, ζi) ∈ SO(3)× R: U(Q̃i, ζi)−min

ζ̄i∈Ξ
U(Q̃i, ζ̄i) ≥ δQ̃}.
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It follows from (5.11)-(5.12) that

˙̃Qi =Q̃i

[
ωi − kQψ

(
Q̃T

i ∇Q̃i
U(Q̃i, ζi)

)]×
ζ̇i =− kζ∇ζiU(Q̃i, ζi)︸ ︷︷ ︸

(Qi,ζi)∈FQ̃
i

(5.14)

Q̃+
i = Q̃i

ζ+i ∈

{
ζi if U(Q̃i, ζi)− U(Q̃i, ζ

∗
i ) ≤ δQ̃

ζ∗i if U(Q̃i, ζi)− U(Q̃i, ζ
∗
i ) ≥ δQ̃︸ ︷︷ ︸

(Qi,ζi)∈J Q̃
i

(5.15)

For every i ∈ V , we propose the following distributed hybrid velocity-free feedback control
law

τi =kR

( ∑
l∈M−

i

R̄lψ
(
R̄T

l ∇R̄l
UR

)
−
∑

p∈M+
i

ψ
(
R̄T

p∇R̄p
UR

))
− kQ̃ψ

(
Q̃T

i ∇Q̃i
U(Q̃i, ζi)

)
ξ̇k =− kξ∇ξkUR︸ ︷︷ ︸

x∈Fi

(5.16)

ξ+k ∈

{
ξk if U(R̄k, ξk)− U(R̄k, ξ

∗
k) ≤ δR̄

ξ∗k if U(R̄k, ξk)− U(R̄k, ξ
∗
k) ≥ δR̄︸ ︷︷ ︸

x∈Ji

(5.17)

Note that the feedback control law presented above, is obtained by replacing, in (5.6)-

(5.7), the angular velocity ωi with the term ψ
(
Q̃T

i ∇Q̃i
U(Q̃i, ζi)

)
which can be con-

structed from the outputs of the auxiliary system (5.11)-(5.12).

Now, let x̂ := (x̄, Q̃i, . . . , Q̃n, ζ1, . . . , ζn) ∈ Ŝ := S̄ ×SO(3)n ×Rn. One can derive the
following hybrid dynamics:

Ĥ :

{
˙̂x = F̂ (x̂), x̂ ∈ F̂
x̂+ ∈ Ĝ(x̂), x̂ ∈ Ĵ

(5.18)

where

F̂ := {x̂ ∈ Ŝ : x̄ ∈ F̄ and ∀i ∈ V , (Q̃i, ζi) ∈ F Q̃
i }

Ĵ := {x̂ ∈ Ŝ : x̄ ∈ J̄ or ∃i ∈ V , (Q̃i, ζi) ∈ J Q̃
i }
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and

F̂ (x̂) :=



R̄1[ω̄1]
×

...
R̄m[ω̄m]

×

−kξ∇ξ1UR
...

−kξ∇ξmUR

J−
1 (−[ω1]

×J1ω1 + τ1)
...

J−
n (−[ωn]

×Jnωn + τn)

Q̃1

[
ω1 − kQψ

(
Q̃T

1∇Q̃1
U(Q̃1, ζ1)

)]×
...

Q̃n

[
ωn − kQψ

(
Q̃T

n∇Q̃n
U(Q̃n, ζn)

)]×
kζ∇ζ1U(Q̃1, ζ1)

...

kζ∇ζnU(Q̃n, ζn)



, Ĝ(x̂) :=



R̄1
...
R̄m

{ξ1, ξ∗1}
...

{ξm, ξ∗m}
ω1
...
ωn

Q̃1
...

Q̃n

{ζ1, ζ∗1}
...

{ζn, ζ∗n}



.

It follows from (5.18) that F̂ ∪ Ĵ = Ŝ. In addition, F̂ and Ĵ are closed sets, and the
hybrid closed-loop system (5.18) is autonomous and satisfies the hybrid basic conditions
introduced in Section 2.6.2. Our second result in this chapter can be stated as follows:

Theorem 5.2 Let kQ̃, kQ, kζ , kR, kξ > 0 and suppose Conditions 4.1 and 5.1 are satisfied.

Then, the set Â := {x̂ ∈ Ŝ : x̄ ∈ Ā,∀i ∈ V , (Q̃i, ζi) = (I3, 0)} is globally asymptotically
stable for the multi-agent hybrid closed-loop system (5.18) and the number of jumps is
finite.

Proof See Appendix C.2

5.5 Explicit Distributed Hybrid Feedback Control

Design

The two proposed distributed hybrid feedback control laws (5.6)-(5.7) and (5.16)-(5.17)
are designed based on a generic potential function UR, defined on Sh, with respect to
Ah. In this section we will derive an explicit form of the two proposed distributed hybrid
feedback control laws. Consider the potential function given in (4.23). The distributed
hybrid feedback law (5.6) can be explicitly rewritten as follows:

τi =− kωωi − kR

(∑
j∈Oi

ψ
(
ARa(ξl, u)

TRT
j Ri

)
+
∑
j∈Ii

Ra(ξp, u)ψ
(
ART

j RiRa(ξp, u)
))

,

(5.19)
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where i ∈ V , {p} = M+
i ∩ M−

j ∈ M, {l} = M−
i ∩ M+

j ∈ M, Ii := {j ∈ Ni :
j is the tail of the edge (i, j) ∈ E} and Oi := {j ∈ Ni : j is the head of the edge (i, j) ∈
E}. Furthermore, the following explicit form can also be obtained for the velocity-free
distributed hybrid feedback control law (5.16):

τi =− kR

( ∑
j∈Oi

ψ
(
ARa(ξl, u)

TRT
j Ri

)
+
∑
j∈Ii

Ra(ξp, u)ψ
(
ART

j RiRa(ξp, u)
))

− kQ̃Ra(ζi, u)ψ
(
AQT

i RiRa(ζi, u)
)
. (5.20)

The dynamics of ξk, during the flows, for both control laws (5.19) and (5.20) are given
by

ξ̇k = −kξ
(
γξk + 2uTψ

(
AR̄kRa(ξk, u)

))
, (5.21)

for every k ∈ M+
i where i ∈ V . Again, for the practical implementation of our proposed

distributed hybrid feedback laws, we assume that the dynamics of ξk are implemented at
agent i, and agent j receives the information about ξk from agent i through communica-
tion, for every (i, j) ∈ E such that {k} = M+

i ∩M−
j . In addition, the dynamics of the

auxiliary state (Qi, ζi), during the flows, are also given explicitly as follows:

Q̇i = kQQi

[
QT

i RiRa(ζi, u)ψ
(
AQT

i RiRa(ζi, u)
)]×

(5.22)

ζ̇i = −kζ
(
γζi + 2uTψ

(
AQT

i RiRa(ζi, u)
))
. (5.23)

Remark 5.3 Note that Ni = Ii∪Oi. Therefore, both hybrid feedback control laws (5.19)
and (5.20) are distributed since they rely only on the neighboring agents. The control law
(5.19) requires the individual angular velocities ωi, while the control law (5.20) does not.

5.6 Simulation Results

In this section, we provide some numerical simulation results to illustrate the performance
of the two proposed distributed hybrid feedback control laws (5.19) and (5.20), referred to
as Hybrid Controller and Velocity-free Hybrid Controller, respectively. For comparison
purposes, we also consider the following continuous feedback control law:

τi = −kωωi − kR
∑
j∈Ni

ψ(ART
j Ri), (5.24)

which is derived from the proposed distributed hybrid feedback control law (5.19) by
letting ξi = 0. This control law is referred to as Continuous Controller. We consider a
seven-agent rigid-body system under the undirected graph topology depicted in Figure
5.1. The neighbor sets are given as N1 = {2}, N2 = {1, 3}, N3 = {2, 4, 6}, N4 = {3, 5},
N5 = {4}, N6 = {3, 7} and N7 = {6}.
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Figure 5.1: The interaction graph G.

We assign an arbitrary orientation to the graph G and we index each oriented edge
with a number as shown in Figure 5.2. We consider the following initial conditions:
ω(0) = 0, ξ(0) = 0, ζ(0) = 0, R1(0) = Rα(−π

2
, v), R2(0) = Rα(

π
2
, v), R3(0) = Rα(−π

2
, v),

R4(0) = Rα(
π
2
, v), R5(0) = Rα(−π

2
, v), R6(0) = Rα(

π
2
, v), R7(0) = Rα(−π

2
, v), Q1(0) =

Rα(
π
2
, v), Q2(0) = Rα(−π

2
, v), Q3(0) = Rα(

π
2
, v), Q4(0) = Rα(−π

2
, v), Q5(0) = Rα(

π
2
, v),

Q6(0) = Rα(−π
2
, v) and Q7(0) = Rα(

π
2
, v), with v = [0 0 1]T . Note that these initial

conditions are chosen such that the state belongs to the set of undesired equilibria.
In addition, the gains and hybrid scheme parameters are set to kR = 0.4, kω = 0.1,
kQ = 30, kQ̃ = 3, kξ = kζ = 20, δR̄ = δQ̃ = 0.3848, γ = 1.9251, Ξ = Π = {0.9π},
u = [0 0.6455 0.7638]T and A = diag([5, 8.57, 12]). To simulate the Hybrid Controller
and the Velocity-free Hybrid Controller, we used the HyEQ Toolbox (Sanfelice et al.,
2013).
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Figure 5.2: The interaction graph G with orientation.

Figures 5.3-5.7 present the simulation results of our proposed distributed hybrid feed-
back control laws (5.19) and (5.20), as well as the continuous feedback law given in (5.24).
Since the initial conditions belong to the jump set Ĵ , the variables ξk and ζi, for every
k ∈ M and i ∈ V , at t = 0, jump from 0 to 0.9π and then converge to zero as t → ∞.
Furthermore, the states R̄k and ωi, for every k ∈ M and i ∈ V , also converge to zero as
t→ ∞ for both controllers. It is worth noting that the two proposed controllers improve
convergence rate of the relative attitudes compared to the Continuous Controller.
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Figure 5.3: Time evolution of the relative attitude associated with each edge.

Figure 5.4: Time evolution of the angular velocity of each agent.



79

Figure 5.5: Time evolution of the hybrid variable ξk associated with each edge.

Figure 5.6: Time evolution of the auxiliary state Q̃i associated with each agent.

Figure 5.7: Time evolution of the hybrid variable ζi associated with each agent.

In the following simulation, we assume that the measurements are subjected to
noise. The noisy measurements of the attitude and angular velocity are given as Rn

i =
Riexp([nR]

×) and ωn
i = ωi + nω, respectively, for every i ∈ V , where nR and nω are

additive white Gaussian noise with zero mean and a variance of 0.01. We consider the
same initial conditions and observer parameters as in the previous simulation. Figures
5.8-5.12 illustrate the performance of the distributed hybrid feedback control laws (5.19)
and (5.20) with noisy measurements.
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Figure 5.8: Time evolution of the relative attitude associated with each edge.

Figure 5.9: Time evolution of the angular velocity of each agent.
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Figure 5.10: Time evolution of the hybrid variable ξk associated with each edge.

Figure 5.11: Time evolution of the auxiliary state Q̃i associated with each agent.

Figure 5.12: Time evolution of the hybrid variable ζi associated with each agent.

5.7 Conclusion

In this chapter, we addressed the problem of attitude synchronization for a group of rigid
body systems evolving on SO(3). We assumed that these systems can interact with each
other through an undirected, connected, and acyclic graph topology. Accordingly, we
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proposed two distributed hybrid attitude synchronization schemes on SO(3). The first
hybrid control law, relying on individual angular velocities and relative orientations, guar-
antees global attitude alignment to a common orientation. In the second hybrid control,
we obviate the need for the angular velocities through the introduction of some dynamic
auxiliary variables, while guaranteeing global asymptotic attitude synchronization. The
proposed velocity-free control scheme relies only on the relative attitude information.

Designing a distributed attitude tracking and synchronization feedback control scheme
that allows the agents to globally align their attitudes and track a time-varying reference
trajectory, considering both the availability and non-availability of individual angular
velocity information, is an interesting extension of this work.



Chapter 6

Conclusions

6.1 Summary

In this dissertation, three topics relevant to distributed cooperative state estimation and
control for multi-agent rigid-body systems have been addressed. The first topic explored
the problem of distributed pose estimation using local relative bearings as well as angular
and linear velocity measurements. As a second topic, the problem of distributed attitude
observer design on SO(3) relying on relative orientation and angular velocity measure-
ments has been investigated. Finally, the third topic is related to the problem of global
attitude synchronization on SO(3) with and without angular velocity measurements.

We addressed the first topic, related to the distributed pose estimation problem, by
considering two practical scenarios for multi-agent systems: agents with fixed positions
and time-varying orientations, and agents with time-varying positions and orientations.
For both scenarios, we assumed that the agents interact with each other according to
a directed graph topology, where two agents have access to their respective poses. In
addition, the individual angular velocities and local inter-agent bearing measurements
are assumed to be available. Under the scenario of agents having fixed positions and
time-varying orientations, we first proposed two stand-alone AGAS nonlinear distributed
attitude observers evolving on SO(3) and SO(3) × R3, respectively. Although both es-
timation schemes enjoy the same stability properties, the attitude observer evolving on
SO(3) × R3 incorporates a low pass filter on the bearing measurements, which makes
it more suitable for practical applications. Thereafter, we proposed an almost glob-
ally asymptotically stable bearing-based distributed pose estimation scheme which con-
sists of a cascade of an almost globally asymptotically stable distributed attitude ob-
server and an ISS distributed position observer. On the other hand, considering agents
with time-varying positions and orientations, we proposed a locally exponentially stable
bearing-based distributed nonlinear pose estimation scheme composed of a cascade of a
stand-alone locally exponentially stable bearing-based distributed attitude observer, and
a bearing-based distributed position observer.

Regarding the second topic, we proposed two nonlinear distributed attitude estima-
tion schemes SO(3). These estimation schemes assume that each agent measures its
own angular velocity in the respective body frame, measures the relative orientation

83



84

with respect to its neighbors, and that the agents interact with each other according
to an undirected tree graph topology. The first estimation scheme is an AGAS contin-
uous distributed attitude observer evolving on SO(3). The second estimation scheme
is a hybrid distributed attitude observer evolving on SO(3) × R, endowed with global
asymptotic stability guarantees. Note that both estimation scheme provide estimates
of the agents orientations up to a common constant orientation which can be uniquely
determined if at least one agent has access to its absolute attitude. The second proposed
scheme relies on some auxiliary time-varying scalar variables, namely ξk, which are gov-
erned by hybrid dynamics (4.13)-(4.14), where each variable is associated with one edge.
These auxiliary variables are appropriately designed to prevent the relative attitude er-
rors from reaching the undesired equilibrium set Υh \ Ah generated by smooth vector
fields. Moreover, the hybrid distributed attitude estimation scheme has been used to
design a globally asymptotically stable bearing-based hybrid distributed pose estimation
scheme for n-agent rigid-body systems.

Finally, the last topic dealt with in this dissertation is the global attitude synchroniza-
tion on SO(3). We proposed two distributed hybrid attitude synchronization schemes
evolving on SO(3), guarantee global synchronization of the individual orientations to a
common orientation, under undirected, connected, and acyclic graph topologies. The
first synchronization scheme relies on individual angular velocities and relative orienta-
tions to achieve global attitude synchronization, while the second scheme achieves the
same result without individual angular velocity measurements, which is interesting in
applications involving expensive and prone-to-failure gyroscopes.

6.2 Perspectives

Building upon the findings of this dissertation, there are several future directions related
to the problems of distributed cooperative state estimation and control design for multi-
agent autonomous systems that warrant further exploration.

With regards to the distributed pose estimation problem for multi-agent systems
where agents have static positions and time-varying orientations, an interesting direction
for future work would be to strengthen the stability properties of the proposed solutions
using the hybrid systems framework to achieve global asymptotic stability. In the case of
multi-agent systems with time-varying positions and orientations, the proposed attitude
observer, although designed directly on SO(3), is endowed with only local exponential
stability guarantees, and the basin of attraction shrinks as the number of agents in the
network increases. Therefore, the design of a bearing-based distributed attitude estima-
tion scheme with strong stability guarantees, regardless of the number of agents, would
be an interesting extension to our proposed scheme.

The problems of distributed attitude estimation and synchronization on SO(3) have
been studied in this dissertation under the assumption that the interaction graph topol-
ogy is an undirected tree, which is practical in terms of communication and sensing costs.
However, the main drawback of this graph topology is its vulnerability to failure, since
the failure of one agent will engender the disconnection of successive agents. Relaxing this
assumption, by considering connected undirected graphs or weakly (strongly) connected
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directed graphs, is an interesting future direction that deserves further investigations.
In this dissertation, all proposed distributed cooperative state estimation and con-

trol schemes are designed under the assumption that the inter-agent interaction topol-
ogy is fixed with no communication time-delays. Unfortunately, this is not the case in
many real-world multi-agent application scenarios. Hence, redesigning our algorithms
for multi-agent rigid body systems under dynamically changing and delayed inter-agent
communication topology is an interesting future work.
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Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 3.1

Consider the following Lyapunov function candidate:

Li =
1

4
tr
(
Mi

(
I3 − R̃i

))
, (A.1)

whose time-derivative, along the trajectories of (3.7), is given by

L̇i =
kR
2
tr

(
MiR̃i

[
ψ(MiR̃i)

]×)
. (A.2)

Using identities (2.23) and (2.33), one has

L̇i = −kR||ψ(MiR̃i)||2 ≤ 0. (A.3)

Since system (3.7) is autonomous, by virtue of LaSalle’s invariance theorem, the attitude
error R̃i should converge to the largest invariant set contained in the set characterized
by L̇i = 0, i.e., ψ(MiR̃i) = 0. As per Lemma 2.4, ψ(MiR̃i) = 0 implies that R̃i ∈ Υ.
Since the matrixMi is positive semi-definite with three distinct eigenvalues, it follows that
the equilibrium points, in the set Υ, are isolated. Moreover, following the same arguments
as in (Wang et al., 2021, Theorem 1), one can show that the desired equilibrium R̃i = I3
is locally exponentially stable and the dynamics of the first order approximation of R̃i

around each undesired equilibrium has at least one positive eigenvalue. Accordingly, the
desired equilibrium R̃i = I3 of (3.7) is AGAS. This completes the proof.

A.2 Proof of Lemma 3.2

Since system (3.6), subject to the bounded input
∑

j∈Ni
kijgij(R̃j), evolves on the com-

pact manifold SO(3), Assumption 2.1 is fulfilled. Moreover, according to Lemma 3.1,
Assumptions 2.2 and 2.3 are also fulfilled. Now, consider the following real-valued func-
tion:

|R̃i|2I =
1

4
tr(I3 − R̃i), (A.4)
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whose time-derivative, along the trajectories of (3.6), is given by

d

dt
|R̃i|2I = −kRψ(R̃i)

T

(
ψ(MiR̃i)−

1

2

∑
j∈Ni

kijgij(R̃j)

)
. (A.5)

The last equation was obtained using identities (2.23) and (2.33). Moreover, since ψ(R̃i)
T

ψ(MiR̃i) = ψ(R̃i)
TQiψ(R̃i), with Qi :=

∑
j∈Ni

kij ([bij]
×)

T
[bij]

×, one has

d

dt
|R̃i|2I = −kRψ(R̃i)

T

(
Qiψ(R̃i)−

1

2

∑
j∈Ni

kijgij(R̃j)

)
. (A.6)

Using the fact that ||ψ(R̃i)||2 = 4(1 − |R̃i|2I)|R̃i|2I ≤ 1 and at least two bearing vectors
are noncollinear, one obtains

d

dt
|R̃i|2I ≤ −4kRλ

Qi(1− |R̃i|2I)|R̃i|2I +
kR
2
||
∑
j∈Ni

kijgij(R̃j)||

≤ −4kRλ
Qi|R̃i|2I + 4kRλ

Qi +
kR
2

∑
j∈Ni

kij||gij(R̃j)||. (A.7)

Recall that λQi is the smallest eigenvalue of Qi, which is positive definite under the
assumption that at least two bearing vectors are noncollinear. Furthermore, using the
fact given in (2.36), one verifies that ||gij(R̃j)|| ≤ 2

√
2|R̃j|I . Hence, it follows from (A.7)

that
d

dt
|R̃i|2I ≤ −4kRλ

Qi|R̃i|2I + 4kRλ
Qi +

√
2kR

∑
j∈Ni

kij|R̃j|I . (A.8)

It is clear that, in view of (A.8), system (3.6) satisfies the ultimate boundedness prop-
erty according to Lemma 2.5. Consequently, as per Theorem 2.4, one can conclude that
system (3.6) is almost globally ISS with respect to I3 and inputs R̃j.

A.3 Proof of Theorem 3.1

Consider the following cascaded attitude dynamics of n-agent rigid-body system:

˙̃R3 = −2kRR̃3

[
ψ(M3R̃3)

]×
(A.9)

˙̃R4 = −2kRR̃4

[
ψ(M4R̃4)

]×
+ kRR̃4

∑
j∈N4

k4jg4j(R̃j)

×

(A.10)

...

˙̃Rn−1 = −2kRR̃n−1

[
ψ(Mn−1R̃n−1)

]×
+ kRR̃n−1

 ∑
j∈Nn−1

k(n−1)jg(n−1)j(R̃j)

×

(A.11)
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˙̃Rn = −2kRR̃n

[
ψ(MnR̃n)

]×
+ kRR̃n

∑
j∈Nn

knjgnj(R̃j)

×

, (A.12)

where Mi is positive semi-definite with three distinct eigenvalues and R̂l = Rl (i.e.,
R̃l = I3), l ∈ {1, 2}, as per Assumption 3.2. Next, consider the following result, which
will be used in the stability analysis of the cascaded system (A.9)-(A.12):

Proposition A.1 Under Assumption 3.2, the equilibrium point (R̃3 = I3, R̃4 = I3) of
system (A.9)-(A.10) is AGAS.

Proof According to Assumption 3.2, one has either 3 ∈ N4 or 3 /∈ N4. In the case
where 3 /∈ N4, the R̃3-subsystem and the R̃4-subsystem are independent, and the AGAS
of the equilibrium point (R̃3 = I3, R̃4 = I3) can be directly deduced from Lemma 3.1.
On the other hand, if 3 ∈ N4, the two subsystems (R̃3-subsystem and R̃4-subsystem)
are cascaded, and as such, in view of Lemma 3.1 and Lemma 3.2, it follows that the R̃4-
subsystem is almost globally ISS with respect to I3 and input R̃3, and the equilibrium
R̃3 = I3 of the R̃3-subsystem is AGAS. Finally, in view of Theorem 2.5, it follows that
the cascaded system (A.9)-(A.10) is AGAS at (R̃3 = I3, R̃4 = I3).

Now, we will establish the stability properties of the n-agent cascaded system (A.9)-
(A.12). Due to the cascaded structure of the inter-agent interaction, a mathematical in-
duction procedure is used to prove that the equilibrium point (R̃3 = I3, R̃4 = I3, . . . , R̃n =
I3) of the n-agent cascaded system (A.9)-(A.12) is AGAS. First, it follows from Lemma
3.1 that the equilibrium point R̃3 = I3 of the subsystem (A.9) is AGAS. Moreover, accord-
ing to Proposition A.1, the equilibrium point (R̃3 = I3, R̃4 = I3) of system (A.9)-(A.10)
is AGAS. Second, we assume that the equilibium (R̃3 = I3, R̃4 = I3, . . . , R̃n−1 = I3)
of the cascaded (n − 1)-agent subsystem (A.9)-(A.11) is AGAS. Finally, using the facts
that the R̃n-subsystem is almost globally ISS with respect to I3 and inputs from the
cascaded (n − 1)-agent subsystem (A.9)-(A.11) as per Lemma 3.2 and the equilibrium
(R̃3 = I3, R̃4 = I3, . . . , R̃n−1 = I3) of the cascaded (n− 1)-agent subsystem (A.9)-(A.11)
is AGAS by the induction assumption, one can show that the equilibrium (R̃3 = I3, R̃4 =
I3, . . . , R̃n = I3) of the n-agent cascaded system is AGAS according to Theorem 2.5 .
This completes the proof.

A.4 Proof of Lemma 3.3

Consider the following Lyapunov function candidate:

Li = tr
(
Mi

(
I3 − R̃i

))
+

1

2
ΩT

i Ωi, (A.13)

whose time-derivative, along the trajectories of (3.12)-(3.13) is given by

L̇i = −tr
(
MiR̃i[Ωi]

×
)
+ ΩT

i

(
−kΩΩi − 2ψ

(
MiR̃i

))
= −kΩ||Ωi||2 ≤ 0. (A.14)
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Since system (3.12)-(3.13) is autonomous, according to LaSalle’s invariance theorem, R̃i

and Ωi will converge to the largest invariant set contained in the set characterized by
L̇i = 0. Through a simple signal chasing, one can show that L̇i = 0 ⇒ Ωi = 0 ⇒ Ωi =
0 ⇒ ψ(MiR̃i) = 0. Consequently, the solution of (3.12)-(3.13) converges to the set Υ1.
This completes the proof of item (i).
Now, we will establish the stability properties of each equilibrium point. We start with
the desired one, and we define the following first order approximation of R̃i and Ωi around
(I3, 0) as R̃i = I3 + [xsi ]

× and Ωi = ysi , respectively, where x
s
i , y

s
i ∈ R3 are sufficiently

small. By neglecting the cross terms and using property (2.24), one obtains the dynamics
of xsi and y

s
i as follows: (

ẋsi
ẏsi

)
= As

i

(
xsi
ysi

)
, (A.15)

where As
i :=

(
03×3 I3
−M̄i −kΩI3

)
with M̄i := tr(Mi)I3 − Mi. The eigenvalues of As

i are

given by λli± =
−kΩ±

√
k2Ω+4µl

i

2
, where µl

i is the l
th eigenvalue of −M̄i. Since M̄i is positive

definite, the matrix As
i is Hurwitz. This completes the proof of item (ii).

Next, we define R̃i = R∗
i (I3+[xui ]

×) and Ωi = yui , for each vi ∈ E(Ki), to be the first order
approximation of R̃i and Ωi around the three undesired equilibria Υ1/(I3, 0), such that
R∗

i := R(π, vi) = −I3+2viv
T
i and xui , y

u
i ∈ R3 are sufficiently small. Again, by neglecting

the cross terms and using property (2.24), the dynamics of xui and yui are given by(
ẋui
ẏui

)
= Au

i

(
xui
yui

)
(A.16)

where Au
i :=

(
03×3 I3
− ¯̄Mi −kΩI3

)
with ¯̄Mi := tr(MiR

∗
i )I3 − (MiR

∗
i )

T . The eigenvalues of

Au
i are given by λ̄li± =

−kΩ±
√

k2Ω+4µ̄l
i

2
, where µ̄l

i is the lth eigenvalue of − ¯̄Ki. Using the
fact that Mi is positive semi-definite with three distinct eigenvalues, one verifies that
−vTi ¯̄Mivi = tr(Mi)− vTi Mivi > 0, which implies that, for each vi ∈ E(Mi), the matrix Au

i

has at least one positive eigenvalue, and hence, the equilibria Υ1/{(I3, 0)} are unstable.
Finally, due to the fact that Au

i has at least one positive eigenvalue, invoking the stable
manifold theorem (Perko, 2000), one can conclude that the stable manifold associated to
the undesired equilibria has zero Lebesgue measure, and as such, the equilibrium (I3, 0)
is AGAS. This completes the proof of items (iii) and (iv).

A.5 Proof of Lemma 3.4

First, we show that system (3.10)-(3.11) satisfies Assumption 2.1-2.3. It follows from
(3.11) that

Ωi(t) = e−kΩtΩi(0) +

∫ t

0

e−kΩ(t−τ)ui(τ)dτ, (A.17)
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where ui(t) := −2ψ(MiR̃i)+
∑

j∈Ni
kijgij(R̃j). Using the fact that ||gij(R̃j)|| ≤ 2

√
2|R̃j|I

and identity (2.48), one has

||Ωi(t)|| ≤ e−kΩt||Ωi(0)||+
ūi
kΩ

(
1− e−kΩt

)
, (A.18)

where ūi := 4
√
λ̄M̄i

+2
√
2k̄ij|Ni| with k̄ij := maxj∈Ni

{kij} and M̄i :=
1
2
(tr(Mi)I3 −Mi).

From the last inequality, one can deduce that ||Ωi(t)|| is upper bounded since ||Ωi(t)||
is either increasing from ||Ωi(0)|| to ūi/kΩ (if ||Ωi(0)|| ≤ ūi/kΩ), or decreasing from
||Ωi(0)|| to ūi/kΩ (if ||Ωi(0)|| ≥ ūi/kΩ). Therefore, in both cases and for every ϵΩ > 0,
picking kΩ > ūi/(||Ωi(0)|| + ϵΩ), one can verify that ||Ωi(t)|| ≤ ||Ωi(0)|| + ϵΩ := Ω̄i.
Since ||Ωi(t)|| is bounded, one concludes that Ωi belongs to a compact set A ⊂ R3.
Consequently, Assumption 2.1 holds since system (3.10)-(3.11), subject to the bounded
inputs di(t), evolves on the compact manifold SO(3)×A. Moreover, according to Lemma
3.3, Assumptions 2.2 and 2.3 are also fulfilled.
Now, consider the following real-valued function:

Wi = kitr
(
Mi(I3 − R̃i)

)
+

1

2
kiΩ

T
i Ωi + ΩT

i ψ(R̃i),

with ki > 0. Using the fact that ||ψ(R̃i)|| ≤ 2|R̃i|I and identity (2.46), and letting
ζi := [|R̃i|I ||Ω̃i||]T , one has ζTi P1ζi ≤ Wi ≤ ζTi P2ζi, where

P1 :=

(
4kiλ

M̄i −1
−1 ki

2

)
, P2 :=

(
4kiλ̄

M̄i 1
1 ki

2

)
,

with M̄i := tr(Mi)I3−Mi. The time derivative ofWi along the trajectories of (3.10)-(3.11)
satisfies

Ẇi = −kitr
(
MiR̃i[Ωi]

×
)
+
(
kiΩ

T
i + ψ(R̃i)

T
)(

−kΩΩi − 2ψ(MiR̃i) +
∑
j∈Ni

kijgij(R̃j)

)
+ ΩT

i E(R̃i)Ωi

= −kikΩΩT
i Ωi − kΩψ(R̃i)

TΩi − 2ψ(R̃i)
Tψ(MiR̃i) + kiΩ

T
i

∑
j∈Ni

kijgij(R̃j)

+ ψ(R̃i)
T
∑
j∈Ni

kijgij(R̃j) + ΩT
i E(R̃i)Ωi, (A.19)

where E(R̃i) :=
1
2
(tr(R̃i)I3−R̃i). Using the fact that ||E(R̃i)||F ≤

√
3, ψ(R̃i)

Tψ(MiR̃i) =

ψ(R̃i)
TQiψ(R̃i), with Qi :=

∑
j∈Ni

kij ([bij]
×)

T
[bij]

×, one has

Ẇi ≤ −kikΩ||Ωi||2 + kΩ||ψ(R̃i)||||Ωi|| − 2λQi||ψ(R̃i)||2 + ki||Ωi||
∑
j∈Ni

kij||gij(R̃j)||

+ ||ψ(R̃i)||
∑
j∈Ni

kij||gij(R̃j)||+
√
3||Ωi||2 (A.20)
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Furthermore, according to identity (2.48) and the fact that |R̃i|2I ≤ 1, it follows that

Ẇi ≤ −kikΩ||Ωi||2 + 2kΩ|R̃i|I ||Ωi|| − 8λQi(1− |R̃i|2I)|R̃i|2I + kiΩ̄i

∑
j∈Ni

kij||gij(R̃j)||

+ 2
∑
j∈Ni

kij||gij(R̃j)||+
√
3||Ωi||2

≤ −kikΩ||Ωi||2 + 2kΩ|R̃i|I ||Ωi|| − 8λQi(1− |R̃i|2I)|R̃i|2I + 2
√
2kiΩ̄i

∑
j∈Ni

kij|R̃j|I

+ 4
√
2
∑
j∈Ni

kij|R̃j|I +
√
3||Ωi||2 (A.21)

≤ −ζTi P3ζi + 8λQi + 2
√
2(2 + kiΩ̄i)

∑
j∈Ni

kij|R̃j|I , (A.22)

where P3 :=

(
8λQi −kΩ
−kΩ kikΩ −

√
3

)
. Inequality (A.21) was obtained using the fact that

||gij(R̃j)|| ≤ 2
√
2|R̃j|I . Choosing ki > 0 such that ki > max{

√
3

kΩ
,
k2Ω+8

√
3λQi

8λQikΩ
, 1√

2λM̄i
}, one

verifies that P1, P2 and P3 are positive definite matrices. It follows from (A.22) that
the system (3.10)-(3.11) satisfies the ultimate boundedness property as per Lemma 2.5.
Hence, system (3.10)-(3.11) is almost globally ISS with respect to (I3, 0) and inputs R̃j

according to Theorem 2.4.

A.6 Proof of Theorem 3.2

According to (3.10)-(3.11), one has the following cascaded dynamics:

˙̃R3 = R̃3 [Ω3]
× (A.23)

Ω̇3 = −kΩΩ3 − 2ψ(M3R̃3) (A.24)

˙̃R4 = R̃4 [Ω4]
× (A.25)

Ω̇4 = −kΩΩ4 − 2ψ(M4R̃4) +
∑
j∈N4

k4jg4j(R̃j) (A.26)

...

˙̃Rn−1 = R̃n−1 [Ωn−1]
× (A.27)

Ω̇n−1 = −kΩΩn−1 − 2ψ(Mn−1R̃n−1) +
∑

j∈Nn−1

k(n−1)jg(n−1)j(R̃j) (A.28)

˙̃Rn = R̃n [Ωn]
× (A.29)

Ω̇n = −kΩΩn − 2ψ(MnR̃n) +
∑
j∈Nn

knjgnj(R̃j) (A.30)

where Mi, i ∈ Vf , is positive semi-definite with three distinct eigenvalues and R̂l = Rl

(i.e., R̃l = I3), l ∈ {1, 2}, as per Assumption 3.2. Again, relying on the cascaded
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structure of the inter-agent interaction, a proof by induction, similar to the proof of
Theorem 3.1, will be used, along with Lemma 3.3 and Lemma 3.4, to show that the
equilibrium point (R̃3 = I3,Ω3 = 0, R̃4 = I3,Ω4 = 0, . . . , R̃n = I3,Ωn = 0) of the n-agent
rigid-body system, governed by the cascaded dynamics (A.23)-(A.30), is AGAS. First,
according to Lemma 3.3, it is clear that the equilibrium point (R̃3 = I3,Ω3 = 0) of
the subsystem (A.23)-(A.24) is AGAS. Furthermore, following similar arguments as in
the proof of Proposition A.1, one can show that the equilibrium point (R̃3 = I3,Ω3 =
0, R̃4 = I3,Ω4 = 0) of the subsystem (A.23)-(A.26) is AGAS. Second, we assume that
the equilibrium (R̃3 = I3,Ω3 = 0, R̃4 = I3,Ω4 = 0, . . . , R̃n−1 = I3,Ωn−1 = 0) of the
cascaded (n − 1)-agent subsystem (A.23)-(A.28) is AGAS. Finally, based on the facts
that the subsystem (A.29)-(A.30) is almost globally ISS with respect to I3 and inputs
from the cascaded (n − 1)-agent subsystem (A.23)-(A.28), and the equilibrium (R̃3 =
I3,Ω3 = 0, R̃4 = I3,Ω4 = 0, . . . , R̃n−1 = I3,Ωn−1 = 0) of the cascaded (n − 1)-agent
subsystem (A.23)-(A.28) is AGAS as per the induction assumption, one can show that
the equilibrium (R̃3 = I3,Ω3 = 0, R̃4 = I3,Ω4 = 0 . . . , R̃n = I3,Ωn = 0) of the cascaded
n-agent system (A.23)-(A.30) is AGAS according to Theorem 2.5. This completes the
proof.

A.7 Proof of Lemma 3.5

Consider the following Lyapunov function candidate:

Vi =
1

2
p̃Ti p̃i, (A.31)

whose time-derivative, along the trajectories of (3.16), is given by

V̇i = p̃Ti

(
−kp

∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbijfj(p̃j, R̃j, R̃i)

)
.

Since ||Ax|| ≤ ||A||F ||x||, for every A ∈ R3×3 and x ∈ R3, and in view of the positive
definitness of the matrix

∑
j∈Ni

Pbij (implied from Assumption 3.2), one has

V̇i ≤ −kpλPi ||p̃i||2 + kpP̄
∑
j∈Ni

||p̃i|| ||fj(p̃j, R̃j, R̃i)||, (A.32)

where λPi denotes the smallest eigenvalue of the matrix
∑

j∈Ni
Pbij and P̄ denotes the up-

per bound of the projection matrix norm, i.e., ||Pbij ||F ≤ P̄ . Applying Young’s inequality
on the last two terms of (A.32), leads to

V̇i ≤− kpλ
P
i ||p̃i||2 + kpP̄

∑
j∈Ni

(
ξi||p̃i||2 +

1

4ξi
||fj(p̃j, R̃j, R̃i)||2

)
(A.33)

≤− kp
(
λPi − P̄ ξi|Ni|

)
||p̃i||2 +

kpP̄

4ξi

∑
j∈Ni

||fj(p̃j, R̃j, R̃i)||2. (A.34)
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Choosing 0 < ξi <
λP
i

P̄ |Ni|
, for every i ∈ Vf , and using the fact that 8|R|2I = ||I −R||2F and

|R|I ≤ 1, for every R ∈ SO(3), one can show that

V̇i ≤− α1(||p̃i||) +
∑
j∈Ni

(
α2(||p̃j||) + α3(|R̃j|I) + α4(|R̃i|I)

)
, (A.35)

where αk(.) ∈ K∞, for every k ∈ {1, 2, 3, 4}. It follows from (A.35) that system (3.16) is
ISS with respect to inputs p̃j, R̃j and R̃i.

A.8 Proof of Theorem 3.3

Consider the error dynamics (A.9)-(A.12) (or (A.23)-(A.30)) cascaded with the following
position error dynamics:

˙̃p3 = −kp
∑
j∈N3

Pb3j p̃3 + kp
∑
j∈N3

Pb3jfj(p̃j, R̃j, R̃3) (A.36)

˙̃p4 = −kp
∑
j∈N4

Pb4j p̃4 + kp
∑
j∈N4

Pb4jfj(p̃j, R̃j, R̃4) (A.37)

...

˙̃pn−1 = −kp
∑

j∈Nn−1

Pb(n−1)j
p̃n−1 + kp

∑
j∈Nn−1

Pb(n−1)j
fj(p̃j, R̃j, R̃n−1) (A.38)

˙̃pn = −kp
∑
j∈Nn

Pbnj
p̃n + kp

∑
j∈Nn

Pbnj
fj(p̃j, R̃j, R̃n). (A.39)

Once again, due to the cascaded nature of the inter-agent interaction, a proof by induction
will be used, together with Proposition 3.1 and Lemma 3.5 as well as a result from
Theorem 3.1 (resp. Theorem 3.3), to establish the stability property of the equilibrium
point (R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) (resp. (R̃3 = I3,Ω3 =
0, R̃4 = I3,Ω4 = 0 . . . , R̃n = I3,Ωn = 0, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0)) of the n-agent
network governed by the cascaded dynamics (A.9)-(A.12) (resp. (A.23)-(A.30))) and
(A.36)-(A.39). Before that, let us introduce the following two propositions:

Proposition A.2 Suppose Assumption 3.2 is satisfied. Then, the following statements
hold:

i) The equilibrium (R̃3 = I3, p̃3 = 0) is AGAS for the cascaded system (A.9) and
(A.36).

ii) The equilibrium (R̃3 = I3,Ω3 = 0, p̃3 = 0) of the cascaded system (A.23)-(A.24) and
(A.36) is AGAS.

Proof From Lemma 3.1 and Proposition 3.1, one can conclude that the equilibrium
R̃3 = I3 of subsystem (A.9) is AGAS and the equilibrium p̃3 = 0 of the p̃3-subsystem,
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with R̃3 = I3, is GES. Thus, as per Lemma 3.5, the equilibrium (R̃3 = I3, p̃3 = 0) of the
cascaded system (A.9) and (A.36) is AGAS. This completes the proof of item (i). The
proof of item (ii) can be established using the same steps as those for item (i), including
Lemma 3.3, Proposition 3.1, and Lemma 3.5.

Proposition A.3 Suppose Assumption 3.2 is satisfied. Then, the following statements
hold:

i) The equilibrium (R̃3 = I3, R̃4 = I3, p̃3 = 0, p̃4 = 0) for the cascaded system (A.9)-
(A.10) and (A.36)-(A.37) is AGAS.

ii) The equilibrium (R̃3 = I3,Ω3 = 0, R̃4 = I3,Ω4 = 0, p̃3 = 0, p̃4 = 0) of the cascaded
system (A.23)-(A.26) and (A.36)-(A.37) is AGAS.

Proof Using the facts that the equilibrium point (R̃3 = I3, R̃4 = I3) of subsystem (A.9)-
(A.10) is AGAS, and the equilibrium point (R̃3 = I3, p̃3 = 0) of subsystem (A.9) and
(A.36) is AGAS, together with the fact that the p̃4-subsystem is ISS with respect to p̃3,
R̃3, and R̃4, one can establish the claim in item (i). Similarly, one can also establish the
proof of item (ii).

Now, let us proceed with a proof by induction to complete the proof of Theorem
3.3. First, from Proposition A.2, the equilibrium point (R̃3 = I3, p̃3 = 0) of subsystem
(A.9) and (A.36) is AGAS. Second, we assume that the equilibrium (R̃3 = I3, R̃4 =
I3, . . . , R̃n−1 = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n−1 = 0) of the cascaded (n− 1)-agent subsystem
(A.9)-(A.11) and (A.36)-(A.38) is AGAS. Finally, considering the result from Theorem
3.1, and using the following facts:

• the p̃n-subsystem is ISS with respect to R̃n and the inputs from the cascaded
(n− 1)-agent subsystem (A.9)-(A.11) and (A.36)-(A.38),

• the equilibrium (R̃3 = I3, R̃4 = I3, . . . , R̃n−1 = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n−1 = 0) of
the cascaded subsystem (A.9)-(A.11) and (A.36)-(A.38) is AGAS by the induction
assumption,

one can show that the equilibrium point (R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 =
0, . . . , p̃n = 0) of the cascaded system (A.9)-(A.12) and (A.36)-(A.39) is AGAS. This
completes the proof of the first item in Theorem 3.3. For the second item of Theorem
3.3, considering Theorem 3.2 and following similar induction arguments used in the proof
of the first item, it can also be shown that the equilibrium point (R̃3 = I3,Ω3 = 0, R̃4 =
I3,Ω4 = 0, . . . , R̃n = I3,Ωn = 0, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) of the cascaded system
(A.23)-(A.30) and (A.36)-(A.39) is AGAS.
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A.9 Proof of Theorem 3.4

Consider the following real-valued function

Li =
1

4
tr(I − R̃i) = |R̃i|2I , (A.40)

whose time-derivative, along the trajectories generated by dynamics (3.24), is given by

L̇i =
1

4
kRi tr

(
R̃i

[
2ψ(MiR̃i)−

∑
j∈Ni

(R̃T
j − I)bij × R̂ib

i
ij

]×)
. (A.41)

In view of (2.33), it follows from equation (A.41) that

L̇i =
1

4
kRi tr

(
Pa(R̃i)

[
2ψ(MiR̃i)

]×)
− 1

4
kRi tr

(
Pa(R̃i)

[∑
j∈Ni

(R̃T
j − I)bij × R̂ib

i
ij

]×)
.

(A.42)

Using property (2.23) and the fact that Pa(B) = 1
2
(B−BT ), ∀B ∈ R3×3, equation (A.42)

can be written as follows:

L̇i =− kRi
2

∑
j∈Ni

(Pa(R̃i)bij)
TPa(R̃i)bij +

kRi
2
ψ(R̃i)

T

(∑
j∈Ni

(R̃T
j − I)bij × R̂ib

i
ij

)
(A.43)

=− kRi
2
ψ(R̃i)

TQiψ(R̃i) +
kRi
2
ψ(R̃i)

T

(∑
j∈Ni

(R̃T
j − I)bij × R̂ib

i
ij

)
, (A.44)

where Qi =
∑

j∈Ni
[bij]

×T [bij]
× =

∑
j∈Ni

(I − bijb
T
ij). To obtain (A.44) from (A.43), we

used the fact that Pa(B)x = ψ(B)×x = −x×ψ(B), ∀x ∈ R3 and B ∈ R3×3. Since Qi(t)
is a uniformly positive definite matrix under Assumption 3.4, there exists a constant
νQi > 0 such that Qi(t)− νQiI is positive definite. Therefore, it follows from (A.44) that

L̇i ≤ −k
R
i

2
νQi||ψ(R̃i)||2 +

kRi
2
||ψ(R̃i)||

∑
j∈Ni

||R̃T
j − I||F

≤ −k
R
i

2
νQi||ψ(R̃i)||2 +

kRi
2
||ψ(R̃i)||

i−1∑
j=1

||R̃T
j − I||F . (A.45)

Now, consider the following Lyapunov function candidate:

L(x) = ||x||2 =
n∑

i=3

|R̃i|2I =
n∑

i=3

Li. (A.46)

It follows from inequality (A.45) that the time-derivative of L satisfies
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L̇ ≤ −
n∑

i=3

kRi
2
νQi ||ψ(R̃i)||2 +

n∑
i=3

i−1∑
j=3

kRi
2
||ψ(R̃i)||||R̃T

j − I||F

+

n∑
i=3

2∑
j=1

kRi
2
||ψ(R̃i)||||R̃T

j − I||F . (A.47)

Since, according to Assumption 3.2.a, R1 and R2 are known and R̂l = Rl, l ∈ {1, 2},
the last term of (A.47) is equal to zero. Consequently, one has

L̇ ≤ −
n∑

i=3

kRi
2
νQi||ψ(R̃i)||2 +

n∑
i=3

i−1∑
j=3

kRi
2
||ψ(R̃i)||||R̃T

j − I||F . (A.48)

Applying Young’s inequality on the second term of (A.48), one has

L̇ ≤ −
n∑

i=3

kRi
2
νQi||ψ(R̃i)||2 +

n∑
i=3

i−1∑
j=3

kRi ϵij
2

||ψ(R̃i)||2

+
n∑

i=3

i−1∑
j=3

kRi
8ϵij

||R̃T
j − I||2F , (A.49)

where ϵij are positive scalars obtained from Young’s inequality as follows:

||ψ(R̃i)||||R̃T
j − I||F ≤ ϵij||ψ(R̃i)||2 +

1

4ϵij
||R̃T

j − I||2F .

Considering the last term of (A.49) and letting k = i− 1, one has

n∑
i=3

i−1∑
j=3

kRi
8ϵij

||R̃T
j − I||2F =

n∑
k=2

k∑
j=3

kRk+1

8ϵk+1 j

||R̃T
j − I||2F

=
n∑

j=3

n∑
k=j

kRk+1

8ϵk+1 j

||R̃T
j − I||2F

=
n∑

j=3

N∑
i=j+1

kRi
8ϵij

||R̃T
j − I||2F

=
n∑

i=3

n∑
j=i+1

kRj
8ϵji

||R̃T
i − I||2F . (A.50)

We have performed an exchange between the indices to obtain the last equality. We
have also changed the order of the double summation to get the second equality and
substituted k + 1 by i to get the third equality.
From (A.49) and (A.50), one has

L̇ ≤ −
n∑

i=3

kRi
2
νQi||ψ(R̃i)||2 +

n∑
i=3

i−1∑
j=3

kRi ϵij
2

||ψ(R̃i)||2
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+
n∑

i=3

n∑
j=i+1

kRj
8ϵji

||R̃T
i − I||2F . (A.51)

According to (2.36) and (2.48), inequality (A.51) can rewritten as follows:

L̇ ≤
n∑

i=3

(
−2kRi

(
1− |R̃i|2I

)(
νQi −

i−1∑
j=3

ϵij

))
|R̃i|2I

+
n∑

i=3

n∑
j=i+1

kRj
ϵji

|R̃i|2I . (A.52)

Now, let us show that the set Υ = {x ∈ [0, 1]n−2 |L(x) ≤ ϵ} is forward invariant.
Assume that x(t) ∈ Υ for some t ≥ 0, which implies that |R̃i(t)|2I ≤ ε2 for all i ∈
{3, 4, . . . , n}, and consequently

L̇ ≤
n∑

i=3

(
−2kRi

(
1− ε2

)(
νQi −

i−1∑
j=3

ϵij

)
+

n∑
j=i+1

kRj
ϵji

)
|R̃i|2I . (A.53)

Choosing the positive scalars kRi , for all i ∈ {3, 4, . . . , n}, such that

kRi >

∑n
j=i+1

kRj
ϵji

2(1− ε2)(νQi −
∑i−1

j=3 ϵij)
with

i−1∑
j=3

ϵij < νQi , (A.54)

it follows that L(t) is non-increasing and the set Υ is forward invariant, and consequently
|R̃i(t)|2I ≤ ε2 for all t ≥ 0 and i ∈ {3, 4, . . . , n}. Hence, from (A.53), one has

L̇ ≤ −
n∑

i=3

βi|R̃i|2I , (A.55)

where βi := 2kRi (1 − ε2)(νQi −
∑i−1

j=3 ϵij) −
∑n

j=i+1

kRj
ϵji
. Based on the gain conditions

(A.54), one has βi > 0 for all i ∈ {3, 4, . . . , n}. Moreover, letting β := min
3≤i≤n

βi, it follows

from (A.55) that

L̇ ≤ −β
n∑

i=3

|R̃i|2I = −βL. (A.56)

The exponential stability of x = 0 follows immediately from (A.56). This completes the
proof of Theorem 3.4.

A.10 Proof of Lemma 3.6

Consider the following Lyapunov function candidate:

Vi =
1

2
p̃Ti p̃i, (A.57)
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whose time-derivative, along the trajectories of the closed-loop system (3.27), is given by

V̇i = p̃Ti

(
−kp

∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

hij(t, p̃j, R̃j, R̃i)

)
. (A.58)

Since
∑

j∈Ni
Pbij is a uniformly positive definite matrix (as per Assumption 3.4), there

exists a constant νPi > 0 such that
∑

j∈Ni
Pbij − νPiI is positive definite. Consequently,

one has

V̇i ≤ −kpνPi||p̃i||2 + kp
∑
j∈Ni

||p̃Ti || ||hij(t, p̃j, R̃j, R̃i)||, (A.59)

which, after applying Young’s inequality to the term within the summation, leads to

V̇i ≤ −kpνPi||p̃i||2 + kp
∑
j∈Ni

(
ξi||p̃i||2 +

1

4ξi
||hij(t, p̃j, R̃j, R̃i)||2

)
≤ −kp

(
νPi − |Ni|ξi

)
||p̃i||2 +

kp
4ξi

∑
j∈Ni

||hij(t, p̃j, R̃j, R̃i)||2. (A.60)

Moreover, since the bearings bij(t), for every (i, j) ∈ E , are bounded, ∀t ≥ 0, it follows
that Pbij(t) is bounded as well. Using this fact together with property (2.36) and the fact

that |R|I ≤ 1, for every R ∈ SO(3), and choosing 0 < ξ < νPi

|Ni| , one can verify that

V̇i ≤− α1(||p̃i||) +
∑
j∈Ni

(
α2(||p̃j||) + α3(|R̃j|I) + α4(|R̃i|I)

)
, (A.61)

where αk(.) ∈ K∞, for every k ∈ {1, 2, 3, 4}. It follows from (A.61) that system (3.27) is
ISS with respect to inputs p̃j, R̃j and R̃i for every i ∈ Vf and j ∈ Ni.

A.11 Proof of Theorem 3.5

Consider the attitude estimation error dynamics (3.24) cascaded with the following po-
sition error dynamics:

˙̃p3 = −kp
∑
j∈N3

Pb3j p̃3 + kp
∑
j∈N3

h3j(t, p̃j, R̃j, R̃3) (A.62)

˙̃p4 = −kp
∑
j∈N4

Pb4j p̃4 + kp
∑
j∈N4

h4j(t, p̃j, R̃j, R̃4) (A.63)

...

˙̃pn−1 = −kp
∑

j∈Nn−1

Pb(n−1)j
p̃n−1 + kp

∑
j∈Nn−1

h(n−1)j(t, p̃j, R̃j, R̃n−1) (A.64)

˙̃pn = −kp
∑
j∈Nn

Pbnj
p̃n + kp

∑
j∈Nn

hnj(t, p̃j, R̃j, R̃n). (A.65)
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Here, we will also use a proof by induction due to the cascaded structure of the system.
To do so, we will first establish the stability properties of the closed-loop system of the
first follower. Using the results of Lemma 3.6 and Theorem 3.4 as well as the fact that
the equilibrium p̃3 = 0 of p̃3−subsystem (A.62), with h3j(t, p̃j, R̃j, R̃3) = 0 for every
j ∈ Ni, is UGES, one can show, as per (Khalil, 1996, Lemma 5.6), that the equilibrium
(R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0) of the system (3.24) cascaded with (A.62) is
exponentially stable. Next, we assume that the equilibrium (R̃3 = I3, R̃4 = I3, . . . , R̃n =
I3, p̃3 = 0, p̃4 = 0, . . . , p̃n−1 = 0) is exponentially stable for the system (3.24) cascaded
with (A.62)-(A.64). Finally, based on the latter assumption and the result of Theorem
3.4, along with the fact that the p̃n-subsystem is ISS with respect to the inputs from the
system (3.24) and (A.62)-(A.64), one can conclude, according to (Khalil, 1996, Lemma
5.6), that the equilibrium (R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) is
exponentially stable for the system (3.24) cascaded with (A.62)-(A.65). This completes
the proof.



Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 4.1

We will prove the claimed result by contradiction. Assume that there exists t ≥ 0 such
that H̄(t)x = 0 does not imply x = 0, which means that H̄(t) is not full column rank.
Since the graph is a tree, according to Assumption 4.2, one has rank

(
H̄(t)

)
≤ 3n − 3.

Furthermore, suppose that y = [yT1 , . . . , y
T
n ]

T ∈ R3n is a vector that belongs to the null
space of H̄(t)T , i.e., H̄(t)Ty = 0. Then, one can verify that yj = R̄kyi, for all i ∈ V , j ∈ Ni

and k = M+
i ∩M−

j . Since the graph is connected, it follows that y = Q(R̄1, . . . , R̄m)y1
where the map Q : (SO(3))m → R3n×3. It is clear that the dimension of the null space
of H̄(t)T is three since all components of y depend only on y1. Therefore, the matrix
H̄(t) is full column rank, i.e., rank

(
H̄(t)

)
=3n − 3. This contradicts the assumption in

the beginning of the proof. This completes the proof.

B.2 Proof of Theorem 4.1

According to the definition of the absolute position error, the observer correcting term
given in (4.8) can be rewritten as follows:

σi = −
∑
j∈Ni

ψ(AR̃T
j R̃i). (B.1)

Since the graph G is an undirected graph with an orientation, one can verify that Ni =
Ii ∪ Oi, with Ii := {j ∈ Ni : j is the tail of the oriented edge (i, j) ∈ E} and Oi := {j ∈
Ni : j is the head of the oriented edge (i, j) ∈ E}. Therefore, it follows from (B.1) that

σi = −

(∑
j∈Ii

ψ(AR̃T
j R̃i) +

∑
j∈Oi

ψ(AR̃T
j R̃i)

)

= −

(∑
j∈Ii

ψ(AR̃T
j R̃i)−

∑
j∈Oi

ψ(R̃T
i R̃jM)

)
(B.2)
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= −

(∑
j∈Ii

ψ(AR̃T
j R̃i)−

∑
j∈Oi

R̃T
i R̃jψ(AR̃

T
i R̃j)

)
(B.3)

= −

 ∑
p∈M+

i

ψ(AR̄p)−
∑
l∈M−

i

R̄lψ(AR̄l)


= −

m∑
k=1

Hikψ(AR̄k), (B.4)

where Hik is given in (4.7). Equations (B.2) and (B.3) are obtained using the facts that
ψ(BR) = −ψ(RTB) and ψ(GR) = RTψ(RG), ∀G,B = BT ∈ R3×3 and R ∈ SO(3).
Moreover, one can verify that

σ = −HΨ, (B.5)

where Ψ :=
[
ψ(AR̄1)

T , ψ(AR̄2)
T , . . . , ψ(AR̄m)

T
]T ∈ R3m. For the sake of simplicity, we

write the block matrix H̄ without the time argument. Consider the following Lyapunov
function candidate:

V (x) =
m∑
k=1

tr
(
A(I3 − R̄k)

)
, (B.6)

which is positive definite on S with respect to A. Note that

Ψ =

[
ψ
(
R̄T

1∇R̄1
V
)T
, ψ
(
R̄T

2∇R̄2
V
)T
, . . . , ψ

(
R̄T

m∇R̄m
V
)T ]T ∈ R3m,

where ∇R̄k
V is the gradients of V with respect to R̄k for all k ∈ M. The time-derivative

of V (x), along the trajectories of the closed-loop system (4.9), is given by

V̇ (x) = −kR
m∑
k=1

tr
(
AR̄k[σ̄k]

×)
= 2kR

m∑
k=1

σ̄T
k ψ(AR̄k).

Identities (2.23) and (2.33) were used to obtain the last equality. In view of (4.6), one
obtains

V̇ (x) = 2kRσ̄
TΨ = 2kRσ

THΨ. (B.7)

Furthermore, since σ = −HΨ, one has

V̇ (x) = −2kR||HΨ||2 ≤ 0. (B.8)

Thus, the desired equilibrium set A for system (4.9) is stable. Moreover, since the closed-
loop system (4.9) is autonomous, as per LaSalle’s invariance theorem, any solution x to
the closed-loop system (4.9) must converge to the largest invariant set contained in the
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set characterized by V̇ (x) = 0, i.e., HΨ = 0. According to Lemma 4.1, HΨ = 0 implies
Ψ = 0. This also implies that

AR̄k = R̄T
kA, (B.9)

for every k ∈ M. Since A is a real symmetric matrix, one can decompose A as
A = UΛUT where Λ = diag(λ1, λ2, λ3) with λ1, λ2 and λ3 are the distinct eigenval-
ues of A and U ∈ O(3). Using steps similar to (Mahony et al., 2008) along with the
fact that A = UΛUT , one can show that equation (B.9) further implies that R̄k ∈
{I3, UD1U

T , UD2U
T , UD3U

T} for every k ∈ M. It follows that every solution x of sys-
tem (4.9) must converge to the set Υ. This completes the proof of item (i).
Now, we will establish the stability properties of each equilibrium set. We start with the
desired equilibrium set A, and we set R̃i = Rc exp ([r̃

s
i ]

×), where r̃si ∈ R3 is sufficiently
small and Rc ∈ SO(3) is an arbitrary constant rotation matrix. Considering the later
expression of R̃i together with the fact that exp ([y]×) ≈ I3+[y]×, for sufficiently small y,
one can get the following first-order approximation of R̃i around the desired equilibrium
set A:

R̃i ≈ Rc

(
I3 + [r̃si ]

×) , (B.10)

for every i ∈ V . Moreover, it follows from (B.10), with the fact of A being symmetric,
that

Pa(AR̃
T
j R̃i) ≈

1

2

(
A
(
I3 − [r̃j]

×)RT
c Rc

(
I3 + [r̃i]

×)
−
(
I3 − [r̃i]

×)RT
c Rc

(
I3 + [r̃j]

×)A). (B.11)

Since we are only interested in the first-order approximation of the estimated attitude
errors, the last equation can be simplified by neglecting the cross terms as follows:

Pa(AR̃
T
j R̃i) ≈

1

2

((
A[r̃i]

× + [r̃i]
×A
)
−
(
A[r̃j]

× + [r̃j]
×A
))

. (B.12)

Furthermore, using the fact given in (2.24), one has

Pa(AR̃
T
j R̃i) ≈

1

2

[
Ā(r̃i − r̃j)

]×
, (B.13)

where Ā := tr(A)I3−A. From (B.10) and (B.13), one can derive the follwing linearization
of (4.4):

Rc[ ˙̃ri]
× = −kR

2
Rc

∑
j∈Ni

[
Ā(r̃i − r̃j)

]×
. (B.14)

where i ∈ V . After some mathematical manipulations, the following dynamics of r̃si is
obtained:

˙̃rsi = −kR
2
Ā
∑
j∈Ni

(r̃si − r̃sj). (B.15)
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Equation (B.15) represents the classical consensus protocol for multi-agent systems (Ren
and Beard, 2007; Mesbahi and Egerstedt, 2010). Note that, at the equilibrium point
of system (B.15) (i.e., r̃si = r̃sj , ∀i, j ∈ V), one has R̄k = I3, for all k ∈ M, which in
turns implies that (R̄1, R̄2, . . . , R̄m) ∈ A. Therefore, to show local asymptotic stability
of the desired equilibrium set A , one has to show that the equilibrium point r̃si = r̃sj ,
for all i ∈ V and j ∈ Ni, of the system (B.15), is asymptotically stable. Defining

r̃s :=
[
(r̃s1)

T , (r̃s2)
T , . . . , (r̃sn)

T
]T
, it follows from (B.15) that

˙̃rs = −kR
2

(
In ⊗ Ā

)
(L ⊗ I3) r̃

s

= −kR
2

(
L ⊗ Ā

)
r̃s, (B.16)

where L = HHT ∈ Rn×n is the Laplacian matrix corresponding to the graph G. Since
G is undirected and connected (as per Assumption 4.2) and the matrix A is positive
definite with three distinct eigenvalues, it follows that the equilibrium point r̃s = 1n⊗rc,
for the multi-agent system (B.16), is asymptotically stable, where rc = 1

n

∑n
j=1 r̃

s
j(0).

Consequently, the set A is locally asymptotically stable. This completes the proof of
item (ii).
To prove item (iii), we first evaluate the Hessian of V (x), denoted by HessV (x), to
determine the nature of the points belonging to the undesired equilibrium set Υ \ A
(i.e., whether they are global minima, global maxima, or saddle points). Given an
open interval O ⊂ R containing zero in its interior, ∀k ∈ M, one defines a smooth
curve φk : O → SO(3) such that φk(t) = R̄∗

k exp (t[ζk]
×) where ζk ∈ R3 and x∗ =

(R̄∗
1, R̄

∗
2, . . . , R̄

∗
m) ∈ Υ \ A. Let xφ(t) := (φ1(t), φ2(t), . . . , φm(t)) ∈ S, one has

d

dt
V (xφ) =−

m∑
k=1

tr
(
AR̄∗

k exp
(
t[ζk]

×)[ζk]×)
d2

dt2
V (xφ) =−

m∑
k=1

tr
(
AR̄∗

k exp
(
t[ζk]

×) ([ζk]×)2)− m∑
k=1

tr
(
AR̄∗

k exp
(
t[ζk]

×)[ζ̇k]×) .
(B.17)

Since xφ(0) = x∗, one verifies Pa(AR̄
∗
k) = 0 for every k ∈ M. Consequently, it follows

from (B.17) that

d2

dt2
V (xφ)

∣∣∣∣
t=0

= −
m∑
k=1

tr
(
AR̄∗

k

(
[ζk]

×)2) . (B.18)

Using the fact ([z]×)
2
= −zT zI3 + zzT and tr(z1z

T
2 ) = zT1 z2, ∀z, z1, z2 ∈ R3, one obtains

d2

dt2
V (xφ)

∣∣∣∣
t=0

=
m∑
k=1

ζTk
(
tr(AR̄∗

k)I3 − AR̄∗
k

)
ζk

=
m∑
k=1

ζTk A
∗
kζk = ζTA∗ζ, (B.19)
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whereA∗
k = tr(AR̄∗

k)I3−AR̄∗
k, ζ = [ζT1 , ζ

T
2 , . . . , ζ

T
m]

T ∈ R3m andA∗ = diag(A∗
1, A

∗
2, . . . , A

∗
m)

∈ R3m×3m. In view of (B.19), according to (Absil et al., 2007), one has HessV (x) = A∗

for every x ∈ Υ \ A. In other words, the matrix A∗ represents the Hessian of V (x)
evaluated at the undesired equilibrium points. It is worth noting that the eigenval-
ues of the matrix A∗ are actually the eigenvalues of the matrices A∗

k, for every k ∈
M. Therefore, as a next step, we will explicitly find the eigenvalues of the matri-
ces A∗

k, for every k ∈ M. Using the fact that A = UΛUT , recall that UTU = I3
and Λ = diag(λ1, λ2, λ3) with λ1 ̸= λ2 ̸= λ3 (according to Assumption 4.4), one has
A∗

k = U
(
tr(ΛUT R̄∗

kU)I3 − ΛUT R̄∗
kU
)
UT . Now, for every m̄ ∈ MI , one can verify that

tr(ΛUT R̄∗
m̄U)I3 − ΛUT R̄∗

m̄U = diag(λ2 + λ3, λ1 + λ3, λ1 + λ2). On the other hand, for
every n̄ ∈ Mπ, one can verify that tr(ΛUT R̄∗

n̄U)I3 − ΛUT R̄∗
n̄U ∈ {diag(−λ2 − λ3, λ1 −

λ3, λ1 − λ2), diag(λ2 − λ3,−λ1 − λ3, λ2 − λ1), diag(λ3 − λ2, λ3 − λ1,−λ1 − λ2)}. Since
λ1 ̸= λ2 ̸= λ3, it follows that the eigenvalues of the matrix A∗ are either all negative or
some of them are positive and some are negative. Consequently, the critical points of
V (x) in Υ \ A are either global maxima or saddle points of V (x).
Now, we will show that the critical points of V (x) in the set Υ\A are unstable. Consider
the following real-valued function V̄ : SO(3)m → R inspired from (Tran et al., 2019):

V̄ (x) =2
∑

n̄∈Mπ

(λpn̄ + λdn̄)− V (x). (B.20)

where λpn̄ and λdn̄ are two distinct eigenvalues of A, i.e., pn̄, dn̄ ∈ {1, 2, 3} such that
pn̄ ̸= dn̄. Let us consider an equilibrium point x∗ ∈ Υ \ A such that R̄n̄ = UDln̄U

T ,
n̄ ∈ Mπ, where ln̄ ∈ {1, 2, 3} such that ln̄ ̸= pn̄ and ln̄ ̸= dn̄. It is clear that V̄ (x∗) = 0.
Moreover, since the set Υ \ A contains only global maxima or saddle points of V (x),
one can find some x̄∗ ∈ S arbitrarily close to x∗ such that V̄ (x̄∗) > 0. Furthermore, it

follows from (B.8) and (B.20) that ˙̄V (x) = −V̇ (x) > 0. Consequently, one concludes
that all points belonging to the undesired equilibrium set Υ \ A are unstable. By virtue
of the stable manifold theorem (Perko, 2000), one can conclude that the stable manifold
associated to the undesired equilibrium set Υ \ A has zero Lebesgue measure, and as
such, the equilibrium set A is AGAS. This completes the proof of item (iii).

B.3 Proof of Lemma 4.2

Since the function U is continuous, one can verify that the flow set F and the jump set
J , given in (4.18), are closed sets. Moreover, one has F ∪ J = Sh.
The outer semicontinuity, local boundedness, and convexity properties of the flow map
F follow from the fact that F is a single-valued continuous function.
Using the fact that U is continuous on SO(3)×R, one can show, following similar argu-
ments as in (Casau et al., 2020, Proof of Lemma 1), that ρk(R̄k) := argminξ̄k∈Ξ U(R̄k, ξ̄k)
for every k ∈ M is outer semicontinuous. Furthermore, it can be verified that for every
i ∈ V and k ∈ M+

i , the set-valued mapping given in (4.20) has a closed graph relative
to Ji. According to (Goebel et al., 2012, Lemma 5.10), this implies that the set-valued
mapping (4.20) is outer semi-continuous relative to Ji. Consequently, in conjunction
with the fact that ρk(R̄k) is outer semi-continuous, it follows that the jump map G is
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outer semi-continuous relative to J . The local boundedness of G relative to J follows
from the fact that ξ∗k, for every k ∈ M, takes values over a finite discrete set Ξ and the
remaining components of G are single-valued continuous functions on J .

B.4 Proof of Theorem 4.2

Consider the following Lyapunov function candidate:

UR(xh) =
m∑
k=1

U(R̄k, ξk), (B.21)

whose time-derivative, along the trajectories generated by the flows of the hybrid closed-
loop dynamics (4.22), is given by

U̇R(xh) =
m∑
k=1

⟨∇R̄k
UR, kRR̄k[σ̄k]

×⟩R̄k
+

m∑
k=1

⟨⟨∇ξkUR, ξ̇k⟩⟩

=
m∑
k=1

⟨⟨R̄T
k∇R̄k

UR, kR[σ̄k]
×⟩⟩+

m∑
k=1

⟨⟨∇ξkUR, ξ̇k⟩⟩

=2kR

m∑
k=1

σ̄T
k ψ
(
R̄T

k∇R̄k
UR

)
+

m∑
k=1

ξ̇k∇ξkUR (B.22)

=2kRσ̄
TΨR̄

∇ + ξ̇TΨξ
∇,

where Ψξ
∇ := [∇ξ1UR,∇ξ2UR, . . . ,∇ξmUR]

T ∈ Rm. To derive the above equations, identi-
ties (2.23), (2.33) and (2.38) have been used. It follows from (4.13) and (4.21) that

U̇R(xh) = −2kR||HΨR̄
∇||2 − kξ||Ψξ

∇||
2 ≤ 0. (B.23)

Consequently, UR(xh) is non-increasing along the flows of (4.22). Moreover, in view of
(4.22) and (4.10), one has

UR(xh)− UR(x
+
h ) =

m∑
k=1

(
U(R̄k, ξk)− U(R̄+

k , ξ
+
k )
)
≥ δ. (B.24)

Thus, UR(xh) is strictly decreasing over the jumps of (4.22). It follows from (B.23)-(B.24)
and the result presented in Theorem 2.1 that the set Ah is stable. Consequently, every
maximal solution of the hybrid closed-loop system (4.22) is bounded. In addition, from
(B.23) and (B.24), one can verify that UR(xh(t, j)) ≤ UR(xh(tj, j)) and UR(xh(tj, j)) ≤
UR(xh(tj, j − 1))− δ, ∀(t, j), (tj, j), (tj, j − 1) ∈ dom xh, with (t, j) ≥ (tj, j) ≥ (tj, j − 1).
Thus, one has 0 ≤ UR(xh(t, j)) ≤ UR(xh(0, 0)) − jδ, ∀(t, j) ∈ dom xh, which leads to

j ≤ ⌈UR(xh(0,0))
δ

⌉, where ⌈.⌉ denotes the ceiling function. This shows that the number of
jumps is finite and depends on the initial conditions.
Now, we will show the global attractivity of Ah using the invariance principle for hybrid
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systems (Goebel et al., 2012, Section 8.2), presented in Section 2.6. Consider the following
functions:

uF(xh) :=

{
−2kR||HΨR̄

∇||2 − kξ||Ψξ
∇||2 if xh ∈ F ,

−∞ otherwise,
(B.25)

uJ (xh) :=

{
−δ if xh ∈ J ,
−∞ otherwise,

(B.26)

In view of (B.23)-(B.26), one can notice that the growth of UR is upper bounded during
the flows by uF(xh) ≤ 0 and during the jumps by uJ (xh) ≤ 0 for every xh ∈ Sh. It follows
from Theorem 2.2 that every maximal solution of the hybrid system (4.22) converges to
the following largest weakly1 invariant subset:

U−1
R (r) ∩ Sh ∩

[
u−1
F (0) ∪

(
u−1
J (0) ∩G

(
u−1
J (0)

))]
,

for some r ∈ R. Moreover, one can verify that

u−1
F (0) = {xh ∈ F : HΨR̄

∇ = 0, Ψξ
∇ = 0}

u−1
J (0) = ∅.

Furthermore, according to Lemma 4.1, one has

u−1
F (0) = {xh ∈ F : ΨR̄

∇ = 0, Ψξ
∇ = 0}

= F ∩Υh,

where the set Υh is defined in (4.11). Given xh ∈ Ah, one obtains, for all k ∈ M,
U(R̄k, ξk) −min

ξ̄k∈Ξ
U(R̄k, ξ̄k) = −min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≤ 0. Therefore, from (4.18), and according

to Condition 4.1, one can verify that Ah ⊂ F∩Υh and F∩(Υh\Ah) = ∅. In addition, ap-
plying some set-theoretic arguments, one has F∩Υh ⊂ (F∩(Υh\Ah))∪(F∩Ah) = ∅∪Ah.
It follows from Ah ⊂ F ∩Υh and F ∩Υh ⊂ Ah that F ∩Υh = Ah. Hence, u

−1
F (0) = Ah.

Consequently, every maximal solution of the hybrid system (4.22) converges to the largest
weakly invariant subset U−1

R (0) ∩ Ah = Ah. Since every maximal solution of the hy-
brid closed-loop system (4.22) is bounded, G(xh) ∈ F ∪ J for every xh ∈ J , and
F (xh) ⊂ TF(xh), for every xh ∈ F \ J , where TF(xh) denotes the tangent cone to F at
the point xh, according to Proposition 2.1, one can conclude that every maximal solution
of the hybrid closed-loop system (4.22) is complete. This, together with Lemma 4.2,
allows us to conclude, as per Theorem 2.3, that the set Ah is globally asymptotically
stable for the hybrid closed-loop system (4.22). This completes the proof.

1The reader is referred to (Goebel et al., 2012) for the definition of weakly invariant sets in the hybrid
systems context.
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B.5 Proof of Proposition 4.1

The time derivative of UR, along the trajectories of the hybrid closed-loop system (4.22),
is given by

U̇R(xh) =−
m∑
k=1

tr
(
AR̄kRα(ξk, u)[kRRα(ξk, u)

T σ̄k + ξ̇ku]
×)+ γ

m∑
k=1

ξ̇kξk. (B.27)

Using identities (2.23) and (2.33), one obtains

U̇R(xh) =2kR

m∑
k=1

σ̄T
k Rα(ξk, u)ψ

(
AR̄kRα(ξk, u)

)
+

m∑
k=1

ξ̇k

(
γξk + 2uTψ

(
AR̄kRα(ξk, u)

))
. (B.28)

It follows from (B.22) and (B.28) that ψ
(
R̄T

k∇R̄k
UR

)
= Rα(ξk, u)ψ(AR̄kRα(ξk, u)) and

∇ξkUR = γξk+2uTψ(AR̄kRα(ξk, u)) for all k ∈ M. Considering the last two expressions
(ψ
(
R̄T

k∇R̄k
UR

)
and ∇ξkUR) and the definition of the set of all critical points of UR, given

in (4.11), one can conclude that Υh is the set of all critical points of UR. Moreover, one
can conclude that Ah ⊂ Υh. This completes the proof.

B.6 Proof of Theorem 4.3

Define e :=
[
eT1 , e

T
2 , . . . , e

T
n

]T ∈ R3n. According to the flows of (4.37), one has

ė = −kpLB(t)e. (B.29)

Notice that (1n ⊗ I3)
T e(0) = 0 and (1n ⊗ I3)

T ė = 0. Moreover, since the bearings bij(t),
for every (i, j) ∈ E , are bounded, ∀t ≥ 0, one also has that LB(t) is bounded. With all
of these and Assumption 4.6, it follows from (Loria and Panteley, 2002, Lemma 5) that

||e(t)||2 ≤ ||e(0)||2e−βt, (B.30)

where β is a positive scalar. Again, using the fact that LB(t) is bounded, ∀t ≥ 0, together
with inequality (B.30), it follows from the converse theorem (Khalil, 1996) that there is
exist a real-valued function Ue : [0,∞) × R3n → R such that the following inequalities
hold:

c1||e||2 ≤ Ue(t, e) ≤ c2||e||2 (B.31)

U̇e(t, e) ≤ −c3||e||2, (B.32)

where c1, c2 and c3 are positive constant. Now, consider the following Lyapunov function
candidate:

U(x̄h) = UR(xh) + Ue(t, e) =
m∑
k=1

U(R̄k, ξk) + Ue(t, e)
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=
m∑
k=1

(
tr
(
A
(
I3 − R̄kRα(ξk, u)

) )
+
γ

2
ξ2k

)
+ Ue(t, e).

Recall that UR(xh) is a potential function on Sh with respect to Ah. Combining this
fact with the inequality (B.31), one can verify that U(x̄h) is positive definite on S̄h with
respect to Āh. The time-derivative of U(x̄h), along the trajectories generated by the flows
of the hybrid closed-loop system (4.37), is given by

U̇(x̄h) =− 2kR||HΨR̄
∇||2 − kξ||Ψξ

∇||
2 + U̇e(t, e)

≤− 2kR||HΨR̄
∇||2 − kξ||Ψξ

∇||
2 − c3||e||2 (B.33)

≤0, (B.34)

where the elements of the vectors ΨR̄
∇ and Ψξ

∇ are explicitly given in Proposition 4.1.
Inequality (B.33) was obtained using the fact given in (B.32). This implies the non-
increasing of U(x̄h) along the flows of (4.37). Furthermore, one has

U(x̄h)− U(x̄+h ) = UR(xh)− UR(x
+
h ) (B.35)

=
m∑
k=1

(
U(R̄k, ξk)− U(R̄+

k , ξ
+
k )
)

≥δ, (B.36)

where we have used the fact that Ue(t, e)− Ue(t
+, e+) = 0 to obtain the equality (B.35).

Inequality (B.36) shows the strict decrease of U(x̄h) over the jumps of (4.37). Moreover,
using arguments similar to the first part of the proof of theorem 4.2, one can show that
the set Āh is stable, every maximal solution of the hybrid closed-loop dynamics (4.37) is
complete, and the number of jumps is finite.
Now, let us prove the global asymptotic stability of the set Āh. Following the same steps
as in the proof of Theorem 4.2, with

uF̄(x̄h) :=

{
−2kR||HΨR̄

∇||2 − kξ||Ψξ
∇||2 − c3||e||2 if x̄h ∈ F̄ ,

−∞ otherwise,
(B.37)

uJ̄ (x̄h) :=

{
−δ if x̄h ∈ J̄ ,
−∞ otherwise,

(B.38)

one can show that every maximal solution of the hybrid system (4.37) converges to the
largest weakly invariant subset Āh. Furthermore, using the fact that every maximal
solution of (4.37) is bounded, Ḡ(x̄h) ∈ F̄ ∪ J̄ for every x̄h ∈ J̄ , and F̄ (x̄h) ⊂ TF̄(x̄h),
for every x̄h ∈ F̄ \ J̄ , according to Proposition 2.1, one can verify that every maximal
solution of (4.37) is complete. This, together with the fact that (4.37) satisfies the basic
hybrid conditions as per Lemma 4.3, implies that the set Āh is globally asymptotically
stable for the hybrid system (4.37). This completes the proof.



Appendix C

Proofs of Chapter 5

C.1 Proof of Theorem 5.1

Consider the following Lyapunov function candidate:

V(x̄) =kRUR(x) + ωTJdω. (C.1)

where Jd := diag(J1, J2, . . . , Jn) ∈ R3n×3n, Ji = J⊤
i > 0, i = 1, . . . , n. Note that V is

positive definite on S̄ with respect to Ā. The time-derivative of V , along the trajectories
generated by the flows of the hybrid closed-loop dynamics (5.8), is given by

V̇(x̄) = kRU̇R(x) + 2ωTJdω̇. (C.2)

The time-derivative of the first term of (C.2) can be calculated as follows

U̇R(x) =
m∑
k=1

⟨∇R̄k
UR, R̄k[ω̄k]

×⟩R̄k
+

m∑
k=1

⟨⟨∇ξkUR, ξ̇k⟩⟩

=
m∑
k=1

⟨⟨R̄T
k∇R̄k

UR, [ω̄k]
×⟩⟩+

m∑
k=1

⟨⟨∇ξkUR, ξ̇k⟩⟩ (C.3)

=2
m∑
k=1

ω̄T
k ψ
(
R̄T

k∇R̄k
UR

)
+

m∑
k=1

ξ̇k∇ξkUR (C.4)

=2 ω̄TΨR̄
∇ + ξ̇TΨξ

∇ = 2 ωT H̄ΨR̄
∇ − kξ||Ψξ

∇||
2, (C.5)

where
Ψξ

∇ := [∇ξ1UR,∇ξ2UR, . . . ,∇ξmUR]
T ∈ Rm,

and

ΨR̄
∇ :=

[
ψ
(
R̄T

1∇R̄1
UR

)T
, ψ
(
R̄T

2∇R̄2
UR

)T
, . . . , ψ

(
R̄T

m∇R̄m
UR

)T ]T ∈ R3m.

To derive equations (C.3)-(C.5), identities (2.23), (2.33) and (2.38) have been used. Fur-
thermore, from (5.4), (5.6) and (C.5), one obtains

V̇(x̄) =− kRkξ||Ψξ
∇||

2 − 2kω||ω||2, (C.6)
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which implies that V is non-increasing along the flows of (5.8). Moreover, in view of (5.8)
and (C.1), one has

V(x̄)− V(x̄+) =kR
(
UR(x)− UR(x

+)
)

=kR

m∑
k=1

(
U(R̄k, ξk)− U(R̄+

k , ξ
+
k )
)

≥kRδR̄, (C.7)

which indicates that V(x̄) is strictly decreasing over the jumps of (5.8). In view of (C.6)
and (C.7), it follows from Theorem 2.1 that the set Ā is stable. Thus, all maximal solu-
tions of (5.8) are bounded. This, together with the facts that F̄ (x̄) ⊂ TF̄(x̄), for every
x̄ ∈ F̄ \ J̄ , and Ḡ(x̄) ∈ F̄ ∪ J̄ , for every x̄ ∈ J̄ , implies, as per Proposition 2.1, that
every maximal solution of the hybrid closed-loop dynamics (5.8) is complete. In addition,
in view of (C.6) and (C.7), one can verify that V(x̄(t, j)) ≤ V(x̄(tj, j)) and V(x̄(tj, j)) ≤
V(x̄(tj, j− 1))− kRδR̄, ∀(t, j), (tj, j), (tj, j− 1) ∈ dom x̄, with (t, j) ≥ (tj, j) ≥ (tj, j− 1).
Thus, one has 0 ≤ V(x̄(t, j)) ≤ V(x̄(0, 0)) − jkRδR̄, ∀(t, j) ∈ dom x̄, which leads to

j ≤ ⌈V(x̄(0,0))
kRδR̄

⌉, where ⌈.⌉ denotes the ceiling function. The last inequality implies that

the number of jumps is finite and depends on the initial conditions.
Now, we will proceed with the proof of the global attractivity of Ā using the invari-
ance principle for hybrid systems presented in Section 2.6. Consider the following two
functions:

uF̄(x̄) :=

{
−kRkξ||Ψξ

∇||2 − 2kω||ω||2 if x̄ ∈ F̄ ,
−∞ otherwise,

(C.8)

uJ̄ (x̄) :=

{
−kRδR̄ if x̄ ∈ J̄ ,
−∞ otherwise.

(C.9)

It follows from (C.6)-(C.9) that the Lyapunov function candidate V is upper bounded
by uF̄(x̄) ≤ 0 and uJ̄ (x̄) ≤ 0 during the flows and jumps, respectively, for every x̄ ∈ S̄.
Consequently, as per Theorem 2.2, every maximal solution of the hybrid system (5.8)
converges to the following largest weakly invariant subset:

V−1(r) ∩ S̄ ∩
[
u−1
F̄ (0) ∪

(
u−1
J̄ (0) ∩G

(
u−1
J̄ (0)

))]
,

for some r ∈ R. Moreover, one can find that u−1
J̄ (0) = ∅ and u−1

F̄ (0) = {x̄ ∈ F̄ : Ψξ
∇ =

0, ω = 0}. Note that, for every x̄ ∈ u−1
F̄ (0), one has ω = 0 which implies that ω̇ = 0.

Moreover, it follows from (5.4) and (5.6) that H̄ΨR̄
∇ = 0 which also implies, as per Lemma

4.1, that ΨR̄
∇ = 0. Since Ψξ

∇ = 0 and ΨR̄
∇ = 0, one has x ∈ Ῡ. Consequently, one has

u−1
F̄ (0) = {x̄ ∈ F̄ : x ∈ F ∩ Ῡ, ω = 0}. On the other hand, given x ∈ A, one has, for all
k ∈ M, U(R̄k, ξk)−min

ξ̄k∈Ξ
U(R̄k, ξ̄k) = −min

ξ̄k∈Ξ
U(R̄k, ξ̄k) ≤ 0. Therefore, from (5.9), and ac-

cording to Condition 4.1, one can verify that A ⊂ F∩Ῡ and F∩(Ῡ\A) = ∅. In addition,
applying some set-theoretic arguments, one has F∩Ῡ ⊂ (F∩(Ῡ\A))∪(F∩A) = ∅∪A.
It follows from A ⊂ F∩Ῡ and F∩Ῡ ⊂ A that F∩Ῡ = A. This implies that u−1

F̄ (0) = Ā.
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Hence, every maximal solution of the hybrid system (5.8) converges to the largest weakly
invariant subset V−1(0)∩Ā = Ā. Since every maximal solution of the hybrid closed-loop
system (5.8) is complete and (5.8) satisfies the basic hybrid conditions as per Lemma
5.1, it follows from Theorem 2.3 that the set Ā is globally asymptotically stable for the
hybrid closed-loop system (5.8). This completes the proof.

C.2 Proof of Theorem 5.2

Consider the following Lyapunov function candidate:

V̂(x̂) =kR
m∑
i=1

U(R̄k, ξk) + kQ̃

n∑
i=1

U(Q̃i, ζi) +
n∑

i=1

ωT
i Jiωi. (C.10)

One can verify that the above Lyapunov function candidate is positive definite on Ŝ with
respect to Â, and its time-derivative, along the trajectories generated by the flows of the
hybrid closed-loop dynamics (5.18), is given by

˙̂V(x̂) = −kRkξ||Ψξ
∇||

2 − 2kQ̃kQ||Ψ
Q̃
∇||

2 − kQ̃kζ ||Ψ
ζ
∇||

2, (C.11)

where ζ := [ζ1, ζ2, . . . , ζn]
T ∈ Rn, and ΨQ̃

∇ ∈ R3n and Ψζ
∇ ∈ Rn are given by

ΨQ̃
∇ :=

[
ψ
(
Q̃T

1∇Q̃1
U(Q̃1, ζ1)

)T
, ψ
(
Q̃T

2∇Q̃2
U(Q̃2, ζ2)

)T
, . . . , ψ

(
Q̃T

n∇Q̃n
U(Q̃n, ζn)

)T ]T
,

Ψζ
∇ :=

[
∇ζ1U(Q̃1, ζ1),∇ζ2U(Q̃2, ζ2), . . . ,∇ζnU(Q̃n, ζn)

]T
.

This implies that V̂ is non-increasing along the flow of (5.18). Furthermore, one has

V̂(x̂)− V̂(x̂+) =kR
m∑
k=1

(
U(R̄k, ξk)− U(R̄+

k , ξ
+
k )
)
+ kQ̃

n∑
i=1

(
U(Q̃i, ζi)− U(Q̃+

i , ζ
+
i )
)

≥k δ (C.12)

where k := min{kR, kQ} and δ := min{δR̄, δQ̃}. Following the same steps as in the proof

of Theorem 5.1, it can be shown that the set Â is stable, every maximal solution of
the hybrid closed-loop dynamics (5.18) is complete, and the number of jumps is finite.
Furthermore, consider the following two functions:

uF̂(x̂) :=

{
−kRkξ||Ψξ

∇||2 − 2kQ̃kQ||Ψ
Q̃
∇||2 − kQ̃kζ ||Ψ

ζ
∇||2 if x̂ ∈ F̂ ,

−∞ otherwise,
(C.13)

uĴ (x̂) :=

{
−k δ if x̂ ∈ Ĵ ,
−∞ otherwise.

(C.14)
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It follows from the invariance principle for hybrid systems given in Section 2.6 that every
maximal solution of the hybrid system (5.18) converges to the following largest weakly
invariant subset:

V̂−1(r) ∩ Ŝ ∩
[
u−1

F̂ (0) ∪
(
u−1

Ĵ (0) ∩G
(
u−1

Ĵ (0)
))]

,

for some r ∈ R, where u−1

Ĵ (0) = ∅ and u−1

F̂ (0) = {x̂ ∈ F̂ : Ψξ
∇ = 0, ΨQ̃

∇ = 0, Ψζ
∇ = 0}.

Note that, for every x̂ ∈ u−1

F̂ (0), one has Ψξ
∇ = 0 and, for i ∈ V , (Q̃i, ζi) ∈ F Q̃

i ∩ Υ.
According to (Wang and Tayebi, 2022), along with Condition 5.1, it can be shown that

F Q̃
i ∩ Υ = {(I3, 0)}. Moreover, from the fact that ˙̃Qi = 0 (since Q̃i = I3), one has

ωi = kQψ
(
Q̃T

i ∇Q̃i
U(Q̃i, ζi)

)
= 0. This implies that kRH̄ΨR̄

∇ = 0. This fact together

with Ψξ
∇ = 0 and considering the last part of the proof of Theorem 5.1, one has x̄ ∈ Ā.

Finally, one concludes that u−1

F̂ (0) = Â and every maximal solution of the hybrid system

(5.18) converges to the largest weakly invariant subset V̂−1(0) ∩ Â = Â. This, together
with the fact that every maximal solution of the hybrid closed-loop system (5.18) is com-
plete and (5.18) satisfies the basic hybrid conditions given in Section 2.6.2, implies that
the set Â is globally asymptotically stable for the hybrid closed-loop system (5.18). This
completes the proof.
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