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ABSTRACT 

Conventional design methodology for tall buildings is a time-consuming and repetitive trial-and-

error procedure with a limited probability of yielding an optimal solution that satisfies 

architectural, structural and serviceability requirements. Tall buildings are typically slender 

structures and mainly depend on a Main Wind Force Resisting System (MWFRS) (e.g., shear 

walls, cores, and bracing systems) to withstand the lateral load of wind events, where a minor 

change in their layout, size, or shape will affect the cost tremendously. Consequently, a structural 

layout optimization procedure will result in a more economical and sustainable design. Most 

previous studies focused on developing optimization frameworks and algorithms that rely on using 

static wind loads. Even with the adoption of dynamic wind load, the focus was on the vertical 

layout of the lateral load-resisting systems in a simplified form and as a single objective 

optimization due to the demanding computational costs. Therefore, the first and main objective of 

this research is to develop a novel structure-wind optimization framework (SWOF) to find the 

optimal horizontal (e.g., shear wall) layout of tall buildings subjected to wind loads. SWOF is 

considered a genetic algorithm-based framework that uses a data-driven surrogate model to 

evaluate its constraints and objective functions. These surrogate models rely on a training dataset 

prepared using the Finite Element Method (FEM), which has been created using an open 

application program interface (OAPI) MATLAB code. The second objective is to adopt a multi-

objective optimization algorithm to increase the exploration capabilities of the search domain and 

to find a Pareto Front of multiple optimal layouts. The multi-objective optimization handles 

contradicting objective functions from which the decision-maker can choose the perfect 

compromise. The third objective is to extend the use of the developed SWOF framework to include 

performance-based wind design (PBWD) concepts by relying on dynamic wind load time history 
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analysis to enable the inclusion of dynamically very sensitive tall buildings. This is primarily 

achieved by developing an experimentally validated computational fluid dynamics (CFD) model 

to generate wind load time history and combining the developed framework with the PBWD 

requirements. The fourth and last objective of this thesis is to examine different data-driven 

surrogate models to ensure their efficiency in capturing the relationship between the crude 

topology of tall buildings and the structural response required for optimization. In addition, 

reducing the computational time required for objective functions and constraints evaluations and 

makes the framework computationally affordable. An optimization problem is presented to show 

SWOF's efficiency. SWOF showed significant capabilities in recognizing load direction, critical 

load cases and inertia concepts without explicitly defining them through the developed code.  
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CHAPTER 1  

1. INTRODUCTION  

1.1. Background  
With the rapid increase in population accompanied by vast technological development, the world 

is shifting towards more dense urban cities (Roser et al., 2019). In 2020, 56.2% of the world's 

population lived in urban cities. A key element in shaping those cities is tall buildings with their 

relatively small footprint that crop up more spaces. Tall buildings are growing taller, and the need 

for more tall buildings is increasing. In 2018, as shown in Fig. 1-1, a new record was accomplished 

as more than 160 tall buildings of 200 meters or more were constructed, including 20 supertall 

buildings exceeding 300 meters (CTBUH, 2021) 

 

Fig. 1-1 Number of completed tall buildings each year starting from 1980 (CTBUH, 2021) 

It is not only about the aesthetics of tall buildings but also about the adequate solutions provided 

for the housing problem. Yet more innovative solutions should be provided to overcome the 

associated challenges with tall buildings. One of these challenges is their slenderness and 

sensitivity to wind loads. It was noted that the number of natural climate disasters, especially 
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extreme wind events, increased in the last three decades (Reidmiller et al., 2018). Consequently, 

the wind resiliency of tall structures should increase. Yet, the construction cost will increase, using 

conventional design and construction methodology, which will increase the cost of housing. 

Another challenge that faces tall buildings is the amount of carbon emissions resulting from the 

process of building such structures, starting from materials acquisition to putting the building to 

function. With these current design practices, the construction industry becomes responsible for 

almost 40% of global energy-related carbon emissions (WGBC, 2019).  

The conventional design procedure of tall buildings goes through an interconnected, 

interdisciplinary, continuous process, as illustrated in Fig. 1-2. The collaboration between 

structural engineers and architects reaches its peak through the initial design steps to identify the 

buildings' overall form. Structural design procedure can be divided into stages as follows: 

conception, modelling, analysis, design, detailing, drafting, and costing, as shown in Fig. 1-3. Each 

design stage varies in the amount of influence on the total cost and the amount of carbon emission, 

where it can be noticed that the conceptual design has the highest effect, as presented in Fig. 1-4. 

Besides the effect of the design stages, each structural element has its contribution to the budget 

and the environment. (Cho et al., 2004) found that the unit direct construction cost of MWFRS 

(i.e., shear walls) can reach 52% in some tall building projects. This percentage is inevitable, and 

the tuning of the structural layout at the conceptual design stages plays a significant role in 

reducing the project's total cost with less environmental impact. Consequently, it becomes a crucial 

objective for structural designers to provide more optimized and cost-effective structures while 

maintaining the balance between aesthetics, serviceability, and safety of structures (Beghini et al., 

2014). One of the most efficient solutions to address structural optimization's problem is structural 

topology optimization. This methodology proved its efficiency in other fields like material, 
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industrial, biomedical, automotive and aeronautical fields (Sigmund, 2000). It can be defined as 

finding the best distribution of material within a design domain (Bendsøe & Sigmund, 2004).  

 
Fig. 1-2 Interrelations of tall building design considerations (Park et al., 2005) 

 
Fig. 1-3 Information flow model for the structural design process (Anwar et al., 2005)  

Wilson Wang
Sticky Note
Font size too small

Wilson Wang
Sticky Note
Font size should be compatible with that in the main text.



4 
 

 
Fig. 1-4 Design stages level of influence (Kanyilmaz et al., 2023) 

As for tall buildings, structural wind optimization can be categorized into two main categories, 

which are outer shape aerodynamic optimization and structural system optimization, as shown in 

Fig. 1-5. Outer shape aerodynamic optimization relies on altering the shape of the bluff body to 

reduce the amount of wind forces that will be generated, as shown in Fig. 1-5 (a). This alteration 

process can be done either locally by adding modifications to corners (e.g., corner chamfering, 

recession and roundness) (Bernardini, Spence, Wei, et al., 2015; Elshaer, Bitsuamlak, & El-

Damatty, 2017; Kareem et al., 1999, 2013b; Tamura & Miyagi, 1999) or globally by inducing 

significant changes to the building's form (e.g., twisting, tapering and openings) (Elshaer & 

Bitsuamlak, 2018; Kelly et al., 2012; Tanaka et al., 2012). On the other hand, structural system 

optimization, which is the focus of this thesis, depends on finding an optimal structural system 

capable of resisting lateral loads (e.g., wind and seismic). Structural topology optimization aims 

towards finding the optimal thickness for structural elements of a prescribed structure layout 

(Bendsøe & Sigmund, 2004; Sigmund, 2000) within a predefined set of structural and architectural 

constraints. For example, (C.-M. Chan et al., 1995) developed a lateral load-resisting system steel 

design framework based on an optimality criterion optimization algorithm that automates the 

selection of structural steel members on a predefined layout subjected to drift, strength and size 

constraints. In comparison, shape optimization is based on changing the shape of the structural 

resisting system without changing the used structural member or material. This is presented 
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through the study by (Akbari Hamed et al., 2022), in which the opening shape within the steel 

plate shear wall was optimized using the optimality criterion algorithm. In contrast, topology 

optimization targets the structural system's layout by finding the materials' connection and 

distribution through the predefined domain. This can be tackled either on the elevation layout like 

finding the optimal bracing system shape, as shown in Fig. 1-5(b), or on the plan layout as finding 

the optimal shear walls layout, as shown in Fig. 1-5 (c).  

Previous studies have focused on optimizing the elevation layout of lateral load resisting systems 

against wind loads, particularly in steel structures, due to the versatility offered by those structures 

(Baldock et al., 2005; C. M. Chan & Wong, 2008a; Es-haghi & Sarcheshmehpour, 2022). For plan 

layout optimization, few studies are found in the literature. Multiple limitations were challenging 

for those frameworks. For example, (Y. Zhang & Mueller, 2017) developed an optimization 

framework based on a modified evolutionary algorithm. However, the precalculations of shear 

walls’ capacity with a limited dataset of selections limit the capabilities of exploring more layouts 

that might be more optimal. Thus, developing an optimization framework for the main wind force-

resisting system (MWFRS) with affordable computational capabilities is needed. Detailed 

literature about horizontal layout optimization, especially for shear wall systems, will be found in 

Chapter 2.  

The consideration of static wind load is typically adopted in optimization frameworks with single 

objective optimization. Yet the inclusion of static wind is a simplified approach that reduces the 

analysis accuracy and optimization output as well. As a result, dynamic wind loads should be 

adopted in MWFRS optimization frameworks (Bobby et al., 2014; Gomez et al., 2021; Suksuwan 

& Spence, 2019). The consideration of multi-objective optimization with dynamic wind load is 

still not comprehensively studied, so finding a compromise between contradicting objective 
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functions and design variables is required (Alanani et al., 2024a), and it will be discussed in detail 

in Chapter 3.  

Seeking optimal design would be less efficient if uncertainties dominate the design process 

(Bezabeh et al., 2020; S. M. J. Spence & Arunachalam, 2022). Thus, applying the performance-

based design (PBD) approach overperformed the deterministic approach while allowing for 

controlled inelastic deformations through nonlinear time history analysis (NLTHA) (ASCE, 2019). 

As a result, it is recommended to couple the PBD procedure with an optimization algorithm that 

can handle the cumbersome design procedure (S. M. J. Spence & Kareem, 2014). Chapter 4 shows 

the literature about performance-based design and how it can be deployed within an optimization 

procedure.  

Finally, adopting PBD in an optimization framework might require a high computational cost that 

can be affordable using surrogate models (Esteghamati et al., 2021). Machine learning models 

have shown efficiency in capturing structural response at the element-based level (Haggag et al., 

2024; G. Ma et al., 2023; Solorzano & Plevris, 2023a) and system-based level (Hareendran & 

Alipour, 2022; Micheli, Alipour, et al., 2020a; Tseranidis et al., 2016). Yet, an efficient surrogate 

model that can capture the relationship between the crude topology of the shear wall system and 

the tall building’s structural response is still missing. More detailed literature on machine learning 

applications in tall building design and how it can be used for developing an ML-based surrogate 

model is shown in Chapter 5. 
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Fig. 1-5 Structural wind optimization categories: (a) Outer shape aerodynamic optimization, structural 

system optimization: (b) Elevation layout, and (c) Plan layout. (Alanani & Elshaer, 2023) 

 

1.2. Research Gap 
 
Despite the advancement in the field of structural optimization, most of the earlier studies tackled 

the optimization problem of the elevation (i.e., vertical) layout of the Main Wind Force Resisting 

System (MWFRS). The focus was on deploying topology optimization in a theoretical approach 

that provides a holistic indication of the structural system layout. Steel has been intensely 

investigated, especially the bracing system layout, thanks to the versatile nature of steel formwork. 

On the other hand, limited studies tackled the plan (i.e., horizontal) layout problem of the MWFRS, 

particularly shear walls, which are considered one of the most used resisting systems for lateral 

loads. Moreover, most of the aforementioned research simplified the lateral load behaviour into 

equivalent deterministic static loads. However, lateral loads have stochastic dynamic behaviours 

that affect the structural vibrational modes; therefore, these simplifications might fall short of 

yielding an optimal or near-optimal solution. Tall buildings' structural layout optimization is 

characterized by a complex search space of multiple objectives and constraints (e.g., serviceability 

limits). Thus, the practicality of any proposed framework relies on balancing the contradicting 
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objective functions to better explore the design domain. Consequently, providing a multi-objective 

optimization framework will enable a reasonable compromise for various objective functions 

required in a practical application. In addition to the rising demand for Performance-based Wind 

design (PBWD), different approaches should be taken into account to avoid conservative design 

at the conceptual stage and allow performance-based design that pushes the design to its limit 

through detailed analysis and better quantification of uncertainties. Finally, the main challenge in 

providing an efficient optimization framework is the nature of the structural layout problem as a 

non-convex optimization problem. The heuristic optimization algorithm provides a decent 

resolution of this problem, yet the computational time for such algorithms is a concern. While 

surrogate models can provide an affordable solution for those cumbersome computations, they are 

still immature for the structural layouts of tall buildings. 

1.3. Scope of Thesis 
Based on the aforementioned research gaps, the main objective of the thesis is to develop a 

computationally efficient structural wind optimization framework (SWOF) to systematically find 

the MWFRS layout at the conceptual design stage. In fulfillment of the mentioned goal, the 

following specific objectives were considered: 

1. Develop a genetic algorithm-based optimization framework to find the optimal shear wall 

layout subjected to wind loads based on the National Building Code of Canada (NBCC, 

2020). Through this stage, structural response and parameters required for optimization are 

investigated to see the effect of each parameter on the final layout using an Artificial Neural 

Network-based surrogate model.  

2. Adopt a multi-objective optimization algorithm to find a Pareto Front of possible optimal 

layout using dynamic wind load.  
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3. Extend the developed framework to be compatible with the performance-based wind 

design (PBWD) approach by exploring the framework outputs using multi-objective 

optimization.  

4. Explore the potential of using machine learning models as a surrogate model for predicting 

the structural parameters required by PBWD to reduce the computational cost for the 

framework.  

1.4. Organization of thesis  
This thesis has been prepared in an “Integrated-Article” format, and it consists of 6 chapters:  

1.4.1. Chapter 1 Introduction 
This chapter (the current chapter) introduces the motivation, Research gap and objectives of the 

thesis, along with providing brief background relevant to the research project. 

1.4.2. Chapter 2 ANN-based optimization framework for the design of wind load 
resisting system of tall buildings 

This chapter discusses the development of a novel structure-wind optimization framework 

(SWOF) to find the optimal shear wall layout of tall buildings subjected to wind loads. SWOF is 

considered a genetic algorithm-based framework that uses an Artificial Neural Network (ANN) 

surrogate model to evaluate its constraints and objective function. These surrogate models rely on 

a training dataset prepared using a validated Finite Element Method (FEM), which has been 

created using an open application program interface (OAPI) via MATLAB code. A case study 

building is presented to show SWOF's efficiency and the effect of each structural parameter on the 

optimization outputs.  
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1.4.3. Chapter 3 Multi-objective structural layout optimization of tall buildings subjected 
to dynamic wind loads 

In this chapter, the developed SWOF will be extended to deploy a multi-objective optimization 

algorithm to handle the practical contradicting objective functions (i.e., structural parameters). A 

CFD model is adopted to generate the wind load time history required to be applied to the study 

building. Adopting a time history analysis is considered challenging through the optimization 

process due to the cumbersome analysis that involves simplification of the structural system as 

presented in the literature. The developed framework in this chapter relies on an ANN surrogate 

model for constraints and objective function evaluation. This integration of dynamic response 

analysis and surrogate modelling was previously lacking in the literature. A multi-objective 

optimization is conducted to identify the optimal shear wall layout against dynamic wind load and 

gravity loads provided.  

1.4.4. Chapter 4 Performance-based layout optimization framework of tall buildings  
In this chapter, SWOF is developed to adhere to the performance constraints based on the ASCE 

PBWD prestandards by using a non-dominated sorting genetic algorithm-II to overcome the 

challenges of the domain complexity. The developed framework focuses on Continuous 

Occupancy (CO) performance with Linear Time History Analysis (LTHA) using wind load time 

histories of multiple wind angles of attack. Furthermore, a comparison is made between the 

framework’s optimal layout behaviour, the ASCE 7-22 directional procedure generated wind 

loads, and nonlinear time history analysis (i.e., FNA method) to quantify the effectiveness of the 

developed framework.  

1.4.5. Chapter 5 Data-driven surrogate models for estimating tall building wind response 
This chapter comprehensively assesses different data-driven models to develop a surrogate model 

of tall buildings subjected to dynamic wind loads based on their structural system layout. A training 
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and testing dataset has been prepared using Finite Element Method (FEM) for a case study building 

subjected to wind load time history generated by an experimentally validated Computational Fluid 

Dynamics (CFD) model. For a fair comparison, each developed surrogate model is trained using 

a grid search algorithm through a k-fold cross-validation process to achieve optimal parameters 

and hyperparameters of each model. The investigation involves a detailed analysis of statistical 

performance metrics applied to training and testing datasets. 

1.4.6. Chapter 6 Conclusions and recommendations 
This chapter summarizes the key findings, insights, and contributions made through the research. 

It has significant results and implications within the context of the structural design of tall 

buildings. Moreover, it addresses the limitations encountered during the research process and 

suggests avenues for future research to build upon the current findings.   
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CHAPTER 2  

2. ANN-BASED OPTIMIZATION FRAMEWORK FOR THE DESIGN OF WIND LOAD 
RESISTING SYSTEM OF TALL BUILDINGS 

2.1. Introduction 
Most of the earlier studies tackled the optimization problem of the elevation layout of the lateral 

load resisting systems against wind loads, focusing on steel structures. (Baldock et al., 2005) 

developed a procedure for finding the optimal bracing system layout using a pattern search 

algorithm. (C. M. Chan & Wong, 2008b) used a hybrid optimization algorithm of optimality 

criterion and GA to find the optimal bracing system layout of the steel structure in addition to 

finding the optimal steel structure members that can satisfy both strength and serviceability 

conditions against wind loads. Moreover, different load cases of wind loads are considered by (H. 

Lu et al., 2019) to find the optimal bracing system layout for a pre-existing frame structure. 

Alongside the usage of static loads based on design code regulations, dynamic loads extracted 

from boundary layer wind tunnels can also be incorporated into the optimization process to find 

the optimal lateral load resisting layout. The latter approach has been discussed by (Bobby et al., 

2014), who developed an approach to find the optimal bracing system layout based on a 

performance-based design framework on two-dimensional sections of a tall building. The 

aforementioned studies adopted the "truss problem" concept based on a ground structure, a fully 

connected truss where all neurons are joined together with bracing elements. A continuous 

approach using the Solid Isotropic Material with Penalization (SIMP) method can be adopted to 

find the density of the material within the design domain, similar to the work done by (Luo et al., 

2017). They extended the two-dimensional section optimization problem to a three-dimensional 

problem to find the optimal lateral load resisting system against wind loads extracted from a wind 

tunnel.  
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Altering the elevation layout of the lateral load resisting system is not the only way to optimize 

tall structures against various lateral loads, but also changing the location of these systems within 

the structure domain can affect the overall structural performance. Few studies focused on plan 

layout optimization of the structural system, especially reinforced concrete (RC) shear walls, 

against wind loads. (Y. Zhang & Mueller, 2017) developed an optimization framework based on 

a modified evolutionary algorithm to find the optimal RC shear wall layout taking into 

consideration prespecified architectural constraints. The developed framework considered only 

two load combinations: one for serviceability and another one for ultimate limit state design for 

dead, live and wind loads. In addition to the architectural constraints like openings, this framework 

considered serviceability (i.e., drift) and strength constraints (i.e., torsion, shear strength and 

flexural strength). Although this framework achieved exceptional results and formulations, the 

non-flexibility of calculating the flexural capacity of formulated shear wall groups and the 

complexity of replicating the framework on different buildings as it relies only on a Python-based 

computational system could be enhanced. Accordingly, (Talatahari & Rabiei, 2020) developed a 

shear wall layout optimization framework with more flexibility in calculating the flexural capacity 

of the formulated shear wall groups. In 2018, (Behmanesh, 2018) focused on size optimization by 

using the Monte Carlo approach to find the optimal shear wall thickness, outrigger beams 

thicknesses and column sizes. (H. P. Lou et al., 2021) developed an optimization framework, based 

on the Evolutionary Structure Optimization (ESO) algorithm, to find the optimal shear wall layout 

against multiple load cases of wind and seismic. The objective function was chosen to be the 

structure's weight, where the algorithm aimed to minimize the weight of the building without 

violating serviceability constraints according to the Chinese building design code of JGJ 3-2010 

(Ministry of Housing and Urban-Rural Development of the People’s Republic of China., 2010). 



18 
 

Nevertheless, this framework provides a more user-friendly algorithm to structural designers 

compared to previous studies. It is worth noting that this study is considered to be more 

computationally expensive as every single group of the proposed variable parameter is evaluated 

using Finite Element Analysis (FEM) directly through ETABS. Moreover, the limit state of each 

structural component was not considered in that framework. Another framework was provided by 

(H. Lou et al., 2021a) that solved the time-consuming issue in the aforementioned framework by 

using a surrogate model based on a Support Vector Machine (SVM). This study adopted a non-

changing columns layout, which limited the domain of the shear walls' possible locations. An 

alternative approach was adopted by (Pizarro & Massone, 2021a), which relied on a deep neural 

network trained on a database of previously accepted designs to propose a shear wall layout (i.e., 

thickness and length) for new structure designs. This approach can produce accepted constructible 

designs, yet these designs are not guaranteed an optimal shear wall layout.  

Based on the discussed literature, the current chapter aims to address some of the presented 

limitations by developing an automated optimization framework for lateral load resisting system 

(i.e., shear walls) layout of tall buildings against gravity and wind loads based on the (National 

Building Code of Canada, 2015) and the Canadian Standards Association 2019 (CSA, 2019). The 

developed framework will first build a surrogate model using Artificial Neural Networks (ANN), 

which can estimate the structural response of proposed models after being trained by the FEM-

generated results using ETABS (CSI, 2018). The usage of the surrogate model will reduce the 

computational time needed for the optimization process. Then, this model is coupled with a genetic 

algorithm to identify the optimal layout of shear walls by reducing the number of shear wall 

segments that will be used within predefined architectural and serviceability constraints (e.g., 

interstory drift). In this study, a new constraint (i.e., the standard deviation of base bending 

Wilson Wang
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moment) is introduced to be used through the automated optimization framework, which will 

indirectly include the limit state of shear walls. This constraint will efficiently distribute induced 

base moments over the proposed shear wall segments. Finally, the selection of suitable locations 

of columns will be adequately chosen based on the generated locations of shear walls, which will 

result in a more realistic distribution of both columns and shear walls, in addition to maintaining 

a consistent design of slabs, which is commensurate with the consistency of the spans of the slab. 

The chapter is organized into five sections. Section 2.1 presents an introduction and literature 

review on building aerodynamic mitigations. In Section 2.2, a description of the developed SWOF 

is provided. Section 2.3 presents the optimization application on a case study building, focusing 

on minimizing the number of shear wall segments used while considering architectural and 

structural constraints. Section 2.4 presents results, discussions of the optimization problems, and 

verification for the near-optimal solutions using FEM. Finally, Section 2.5 presents the conclusions 

and findings of the developed SWOF.  

2.2. Structural Wind optimization Framework (SWOF)  
The proposed automated Structural Wind Optimization Framework (SWOF) is developed to 

overcome the numerous trial and error procedures accompanied by the design process of lateral 

load resisting system (i.e., shear walls) to find the optimal structural system layout. This study will 

focus on the shear wall layout; however, SWOF is developed generically to incorporate different 

materials and structural systems. The main purpose of the SWOF proposed in this study is to 

minimize the total weight of the structural system by reducing the number of used shear wall 

segments within the predefined layout to enhance the structure's wind performance without 

violating architectural and serviceability constraints. As shown in Fig. 2-1, a flowchart represents 

the procedure of structural wind optimization. The procedure starts with defining the optimization 
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problem, which includes the definition of the objective function (or fitness function) that is 

responsible for evaluating possible solutions generated by the optimization algorithm, which is 

minimizing the total weight of the shear walls, and this can be tackled in different forms that will 

be explained later. The second part that will be defined for the optimization problem is the design 

variables. For this problem, design variables are the possible location and orientation of the shear 

walls. Due to architectural requirements. The design variables cannot be located anywhere within 

the plan boundaries; they are considered constrained (or bounded) binary variables based on a 

predefined domain. They have been chosen to be binary (0 or 1) to indicate the availability of the 

shear wall segment, either available (1) or not available (0). This domain went through a 

preprocessing phase where it got discretized into finite elements (shear wall segments) based on 

the accuracy required. The architectural preferences are not the only constraints; the design code 

limits are also included as constraints, in addition to any supplementary parameters required by 

the designer. In this study, the optimization problem is tackled through a stochastic approach, 

which is a Genetic Algorithm (GA) due to its complexity. GA relies on numerous evaluations of 

the objective function by altering design variables systematically using mutation and crossover 

operators until an optimum value is reached.  

The execution of the evaluation function through FEM is computationally costly. Consequently, a 

surrogate model will be used to estimate the structural response of tall buildings after being trained 

with a database of Layout alternatives with their corresponding performances. For example, the 

optimization process of all load cases and all parameters in section 2.4.4 takes 58 minutes and 15 

seconds to evaluate 104 candidates in each generation for 1745 generations on an Intel ® Core ™ 

i7-4790 CPU @3.60 GHz, 3601 MHz, 4 cores(s), 8 Logical Processors and 32 GB RAM DDR3 

RAM. While building and evaluating one FEM model takes 2 to 4 minutes. The surrogate model 
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used in the SWOF is an Artificial Neural Network (ANN). In order to build this surrogate model, 

a group of random training models was prepared using FEM in order to train the ANN for 

predefined parameters required either for the objective function or the constraint(s) (e.g., Drift in 

X and Y directions). A detailed explanation of the surrogate model’s building process is included 

in section 2.3.2. After building the surrogate model, it will be used to represent these constraints 

and objective functions. The optimal solution that resulted from the previously described process 

will be evaluated and validated through the FEM using ETABS (CSI 2018).  

 
Fig. 2-1 Structure wind optimization framework (SWOF) flowchart 

Wilson Wang
Sticky Note
?



22 
 

2.3. Optimization problem definition  

2.3.1. Structural details of the Case study 
In the demonstration problems, a multistory residential building of 20 floors, with a story height 

of 3.5 𝑚, is adopted, which follows the structures described in previous studies (Alanani & 

Elshaer, 2021; Y. Zhang & Mueller, 2017). A single symmetric layout of rectangular-shaped flat 

slabs with dimensions of 24.75 𝑚 ×  18.75 𝑚 is used. It is expected that wind load could be the 

governing load for medium to high tall buildings if they fall in regions that are of elevated wind 

loads with a lower seismic hazard (e.g., Atlantic Canada). Moreover, a study by Aly and Abburu 

2015 (Aly & Abburu, 2015) found that high-rise buildings could be more critical for similar 

buildings if they have lower mass and are located in low-risk seismic regions. Therefore, the 

building has been selected to be of 70 𝑚 in height so it can be classified as a dynamically sensitive 

structure and follow the dynamic analysis procedure based on the NBCC 2015 (National Building 

Code of Canada, 2015). A superimposed dead load of 5 𝑘𝑁/𝑚2 and a live load of 1.9 𝑘𝑁/𝑚2are 

applied to all slabs. RC columns dimensions and shear wall thicknesses are set to be fixed. Since 

design of structural elements is dependent on the structural system’s layout, which will be 

identified after the optimization problem, initial values can be used for the main structural elements 

of altering layout (i.e., column cross-section and shear wall segments). Later on, these values can 

be changed based on the developed layout. The layout shown in Fig. 2-2 is designed according to 

the Canadian Standards Association CSA 23.3-14 (CSA, 2019) using concrete of compressive 

strength 𝑓𝑐′=35 𝑀𝑃𝑎 and steel reinforcement ASTM992 of grade 50. The ultimate limit state and 

serviceability limit load combinations are used for designing structural elements. In contrast to 

previous studies, this optimization framework took into consideration all possible wind load cases 

based on clause 4.1.7.9. (National Building Code of Canada, 2015). Different angles of attacks 

and load eccentricities are also considered. The selected building is designed to resist a mean-
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hourly wind velocity pressure, 𝑞, of 0.74 𝑘𝑃𝑎, importance factor, 𝐼𝑤, of 1.0, and topographic 

factor, 𝐶𝑡 of 1.0. The terrain is considered open terrain with no topology effect. An architectural 

layout is proposed for two flats per story, as shown in Fig. 2-3 (a). Based on the proposed 

architectural layout, possible locations for shear walls are identified to fulfill architectural 

objectives, as illustrated in Fig. 2-3 (b). A preprocessing stage is implemented to prepare the 

optimization problem described in detail in the following sections. The dark grey lines in Fig. 2-3 

(b) are considered the shear walls domain. To identify the length and shape of shear walls, a 

discretization of this domain is performed based on a rectangular mesh of a predefined base size 

of 1.0 meters. As a result, the domain will be divided into 170 segments of shear walls, each of 1.0 

meters. For each model, different locations of columns will be identified to avoid overlapping 

between shear wall segments and columns. Column distribution is based on a rectangular mesh of 

a 6 𝑚 span. This mesh minimizes the changes in the slab’s straining actions as vertical supports 

are located at specific locations, either columns or shear walls in those spaces. Each shear wall 

segment is 1000 𝑚𝑚 in length and 300 𝑚𝑚 in thickness, as illustrated in Fig. 2-2 (b). Each floor 

is supported by a number of columns of 750 × 750 𝑚𝑚 cross-section dimensions and 2.5% steel 

reinforcement, as shown in Fig. 2-2 (c). 
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Fig. 2-2 (a) Slab plan layout, (b) shear wall segment and (c) column cross-section 

 
(a) 
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(b) 

Fig. 2-3 (a) Architectural plan view and (b) possible shear wall locations 

2.3.2. Training procedure of ANN (Surrogate Model) 
Most engineering design problems require constructing computationally affordable functions that 

can be used in optimization (Forrester et al., 2008). It can be defined as an estimation model for 

computationally complicated and costly simulations. The optimization problem adopted in this 

study is heuristic-based that requires repetitive evaluation for the objective function, which is 

computationally expensive. Therefore, surrogate models are built and used to emulate complex 

functions’ responses predefined by the designer. In order to evaluate the objective function through 

real-time simulation will be very time-consuming and will not be computationally affordable if a 

more significant number of population or generations for the genetic algorithm is used. Surrogate 

models have been proven to be a reliable solution to design optimization problems against wind 

loads (Bernardini, Spence, Wei, et al., 2015; Cid Montoya et al., 2018; Elshaer, Bitsuamlak, & El-

Damatty, 2017; Elshaer & Bitsuamlak, 2018; Noormohamadian & Salajegheh, 2021; Qiu et al., 

2021). ANN is used in this study as a surrogate model due to its proven efficiency in capturing 

complex functions (Ahmad et al., 2020; Elshaer & Bitsuamlak, 2018; Jia & Wu, 2021; Kotsovou 
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et al., 2020; Lagaros & Plevris, 2022; Nguyen et al., 2021; Papadrakakis & Lagaros, 2002; Pizarro 

& Massone, 2021a). ANN is a regression model that consists of inputs, hidden layers and outputs. 

The quality of the neural network outputs (i.e., objective function and constraints) relies on the 

training process effectiveness through various training sample models that can cover most of the 

search space required in the optimization problem. As shown in Fig. 2-4, building the adopted 

surrogate model starts by generating a random sample of training models. A total of 2000 samples 

of random configurations of shear wall segments are prepared using MATLAB code that 

automates the process of building models and extracting results on ETABS through the Open 

Application Programming Interface (OAPI). This code also generates columns’ locations based on 

the predefined locations and avoids any overriding or intersections with the generated shear walls. 

This prepared Finite Element Models (FEM) database will be used to train ANN models to act as 

objective and constraint functions, as shown in the upcoming paragraphs.  
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Fig. 2-4 Surrogate model building flowchart 

 

A forward-propagation neural network is used to determine the output of a group of functions as 

follows: the critical inter-story drift in both X and Y directions, the distance between the center of 

mass (𝐶𝑀), the center of rigidity (𝐶𝑅), the standard deviation of shear walls’ base moments (𝜎𝑀), 

the total number of piers (𝑁𝑃), and groups of shear walls acting as one unit (i.e., piers). Bayesian 

regularization backpropagation algorithm was adopted to update the weight and bias values 

according to Levenberg-Marquardt optimization. It minimizes a combination of squared errors and 

weights, and then determines the correct combination to produce a generalized network. A more 

detailed explanation of each function and how their ANN models are built is presented in sections 

2.3.2.1, 2.3.2.2, 2.3.2.3 and 2.3.2.4. These outputs are based on an input of shear wall locations. 

As shown in Fig. 2-5, the input layer is one layer of size equal to 170 neurons that accept binary 

values (i.e., 0 “absent” or 1 ”exist”), while the output layer size is one neuron representing the 

constraint value required. In the input layer, these neurons represent possible locations of shear 
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wall segments. Each shear wall segment, 𝑆𝑖, is assigned an order value i from 1 to 170. The ANN 

input nodes order is based on the sequencing that took place by preparing the FEM training 

database used to build the ANN. The number of hidden layers and their sizes are identified 

separately based on the complexity of each function. Firstly, the training sample size is defined; it 

is a crucial parameter affecting the regression coefficient, the generalization of the ANN and ANN 

training duration. Thus, for quality check, a sensitivity analysis is carried out on a sample size of 

range [100:2000] of 100 samples increment as shown in Fig. 2-6. The regression coefficient, 𝑅, 

indicates the proportionate amount of variation in the response variable, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 , by the actual 

values, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , as shown in equation (2-1), where 𝑆𝑆𝑅 is the sum of squared residuals and 𝑆𝑆𝑇 is 

the total of sum of squared . For instance, this figure shows the sensitivity analysis of the 𝜎𝑀 ANN 

as it is found to be the most complex. It can be noticed that with the increase in sample size, the 

regression coefficient of the ANN increases almost by 25% from 100 samples to 1000 samples. 

Then, a plateau can be noticed with a slight fluctuation that could be explained as a result of the 

generalization of the ANN. The more samples introduced to the ANN training, the harder it can 

be generalized. However, the final regression coefficient that could be reached for this ANN is 

0.97, which is a sufficient representation of a complex function like the (𝜎𝑀). For each ANN, 

different training-to-test ratios have been used based on the complexity of the parameters. For 

instance, the interstorey drift ANN is trained using 1400 samples, representing 70% of the 2000 

samples, and 600 samples are used for testing. While for eccentricity, 𝑒𝐶𝑀𝐶𝑅
, and standard 

deviation of base moments, 𝜎𝑀, the training-to-testing ratio increased to be 80% : 20%. 

𝑅 =  √1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 , 

𝑆𝑆𝑅 = 𝛴 ( 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙)
2
, 

𝑆𝑆𝑇 = 𝛴 ( 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑚𝑒𝑎𝑛(𝑦𝑎𝑐𝑡𝑢𝑎𝑙))2 

(2-1) 
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Fig. 2-5 Schematic diagram for general ANN architecture 

 
Fig. 2-6 Change of regression coefficient with the training sample (training of the 𝜎𝑀)  

2.3.2.1.Interstory drift 

Based on article 4.1.3.5. in the (National Building Code of Canada, 2015), the total drift per storey 

under service wind and gravity loads shall not exceed 1/500 of the storey height. So, interstory 

drift constraints in both X (𝛿𝑥) and Y (𝛿𝑦) directions should be less than or equal to 0.2%. ANN 
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architecture building process is a trial-and-error procedure that does not follow a specific technique 

that will work for all problems. So, in this study, we relied on an exhaustive search algorithm to 

build the architecture of each constraint function. Through this algorithm, we start systematically 

investigating the number of hidden layers, the number of neurons for each hidden layer, the transfer 

function responsible for adjusting the weights and the training algorithm. The Drift function turns 

out to be a simple one. Only two hidden layers are sufficient for a correlation regression coefficient 

(R) of 0.99. 

Regarding the size of the hidden layers, the second hidden layer is recommended to be of weight 

equal to the output layer, which is one neuron. For the first hidden layer, sensitivity analysis is 

done for testing a various numbers of neurons from 10 to 50 neurons, as shown in Fig. 2-7. It is 

found that 18 neurons with a hyperbolic tangent sigmoid transfer function that transfers inputs into 

values belonging to [-1, 1], for both hidden layers achieved 0.993 correlation regression 

coefficient. After using 70% of the samples in training and 30% in testing and validation, the 

correlation coefficient between the FEM database and the ANN model is 0.99 for 𝛿𝑦 while 0.98 

for 𝛿𝑥, as shown in Fig. 2-8. In addition, An error histogram is presented in Fig. 2-9 to show how 

the error % is distributed in the whole testing samples, as shown in equation (2-2). It was noted 

that 95% of the samples produced an error of less than 4%, which reflects the accuracy of the 

ANN surrogate model in mapping complex relations between inputs and outputs.  

𝑒𝑟𝑟𝑜𝑟 % =
𝐴𝑁𝑁 𝑜𝑢𝑝𝑡𝑢𝑡 − 𝐹𝐸𝑀 𝑣𝑎𝑙𝑢𝑒𝑠

𝐹𝐸𝑀 𝑣𝑎𝑙𝑢𝑒𝑠
 × 100 (2-2) 
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Fig. 2-7 Sensitivity analysis for the interstorey drift ANN hidden layer size 

 

  
Fig. 2-8 Regression coefficient for intersorey drift ANN in (a) Y-direction and (b) X-direction  

  
Fig. 2-9 Error Histogram for interstorey drift ANN in (a) Y-direction and (b) X-direction 

 b)
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2.3.2.2.Torsional effect (eccentricity)  

Tall buildings are sensitive to torsional moments, and failure due to torsion can be considered one 

of the severest failures that should be avoided through the design process. Many reasons might 

cause torsional moment (e.g., layout irregularity, unequal mass distribution, openings in the floor 

slabs). In this case study, the distance between the center of mass (𝐶𝑀) and center of rigidity (𝐶𝑅) 

is adopted as an indication of structure torsion, and it is noted as eccentricity (𝑒𝐶𝑀𝐶𝑅
), and it is 

calculated using equation (2-3). The NBCC indicated the accidental eccentricity ratio included in 

the wind load cases of 0.15, a ratio of the distance between 𝐶𝑀 and 𝐶𝑅 and the wind exposure 

depth. Consequently, (𝑒𝐶𝑀𝐶𝑅
) limit is typically assigned by the designer. In the current study, 

1000 𝑚𝑚 is set as the maximum allowed value used to assure minimum eccentricity between the 

applied lateral load and center of mass. The trained sample values range between 0.1 and 7 m, 

covering a large portion of the problem’s search space. The adopted exhaustive search algorithm 

led to three hidden layers of sizes 23, 44 and 1, respectively. After using 80% of the samples in 

training and 20% in testing and validation, the correlation coefficient between the FEM database 

and the ANN model is 0.95 for 𝑒𝐶𝑀𝐶𝑅
. Also, 98.85% of the samples produced an error of less than 

6%. 

𝑒𝐶𝑀𝐶𝑅
=  √(𝑋𝐶𝑅

 − 𝑋𝐶𝑀
)

2
+ ( 𝑌𝐶𝑅

 − 𝑌𝐶𝑀
 )

2
 (2-3) 

2.3.2.3.The standard deviation of shear walls base moments (𝜎𝑀)  
Through previous studies, the flexural capacity of shear walls was either predefined or missing 

due to the computational complexity of calculating the shear wall capacity for each candidate. In 

the current study, an indirect methodology is adopted to control the distribution of bending 
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moments on the resulting shear wall segments. The standard deviation of the base moment per 

shear wall segment is used as a constraint in this study. It was found in previous studies (Alanani 

& Elshaer, 2021) that the lower the standard deviation, the more consistent the distribution of 

moments on the segments and the less variation in the required reinforcement ratios. Lowering the 

standard deviation, 𝜎𝑀, will either lump shear wall segments or disperse segments. It will also 

reduce the possible exceedance of the demand-to-capacity ratio for the used segments with their 

predefined reinforcement ratio. It is calculated by Equation (2-4), where 𝑥𝑖 is the value of the 

critical base moment of segment 𝑖. 𝜇𝑀 is the mean critical moment of all segments. 𝛴 𝑆𝑖 is the total 

number of shear wall segments used in this layout. Same exhaustive search algorithm is used to 

find the ANN architecture. Due to the complexity of calculating the standard deviation of 

moments, four hidden layers are required to build its ANN with sizes of 20, 15, 7 and 1, 

respectively. The ANN-based constraint function evaluation error does not exceed 3.26% in 

95.7% of the samples used. The regression coefficient between the ANN predicted objective 

function and the FEM database is found to be 0.9702.  

𝜎𝑀 = √
𝛴 (𝑥𝑖 − 𝜇𝑀)2

𝛴 𝑆𝑖
 

(2-4) 

2.3.2.4.Number of grouped segments (piers) (𝑁𝑃) 
The constructability of generated shear wall segments is an essential factor to be taken into 

consideration. Several factors can impact their constructability, including materials and equipment 

availability, wall layout and design, foundation design, coordination with other trades, construction 

sequencing, and quality control and safety measures. The lateral surface area of shear walls, which 

is part of the layout and design, can also impact constructability, as in some cases where the lateral 

load-resisting system is distributed throughout the building and not concentrated in a specific area, 
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increasing the number of lumped shear walls can reduce the overall lateral surface area and 

increase stiffness at the same time. It depends on the possible layouts generated from SWOF that 

can satisfy the objective function and serviceability limitations but may or may not be an 

economical solution for construction. The addition of constructability as a constraint or an 

objective function can be done in different forms. In some cases where the lateral load-resisting 

system is distributed throughout the building and not concentrated in a specific area, increasing 

the number of lumped shear walls can reduce the overall lateral surface area and increase stiffness 

at the same time. In this chapter, the focus will be on the number of piers formulated 𝑁𝑃, where 

piers are a group of shear wall segments lumped together. In order to force the standard deviation 

constraint to lump shear wall segments instead of dispersing them, 𝑁𝑃 can be defined as a 

constraint or as a minimization objective function. Defining 𝑁𝑃 as an objective function is expected 

to be more computationally economic than being a constraint, as it was found that the number of 

shear wall segments is directly proportional to the number of piers. Minimizing the number of 

piers may also reduce the number of shear wall segments, which will be presented in section 2.4.4. 

For this parameter, a function was developed to calculate the total number of formulated piers to 

avoid building a FEM database and increase the number of training samples that can cover a 

broader range of the search space. The training sample of formulated piers ranges from 10 to 55 

piers of 3000 samples. Three hidden layers of ANN of sizes 19, 25, and 1 yielded a 0.997 

regression coefficient, and 94% of total samples produced an error of less than 1. 

2.4. Optimization problems description and results 
This section explains four different optimization problems, discussing the effect of assigning 

different constraint(s) and objective function(s). The results of each optimization problem will be 

presented and discussed within each sub-section. A summary of the proposed optimization 
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problems is presented in Table 2-1. Additional constraints will be added to different optimization 

problems to show the effect of introducing various constraints. Finally, all constraints will be 

assigned in one optimization problem (Problem-4). It is worth noting that for Problem-2 and 

Problem-3, it is not possible to define 𝑒𝐶𝑀𝐶𝑅
 and 𝜎𝑀 separately within the optimization problem 

as they will yield a zero number of shear wall segments. As a result, these constraints are coupled 

with the drift constraints to avoid these undesirable solutions. 

Table 2-1 Optimization problems matrix for objective function and constraints 

Optimization 
Problem ID 

Objective Function 
Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 

𝛿𝑦
   𝛿𝑥

    𝑒𝐶𝑀𝐶𝑅
 𝜎𝑀 

Problem-1-1 

∑ 𝑆𝑖
 

𝑁

𝑖=1

 

✓    
Problem-1-2  ✓   
Problem-1-3 ✓ ✓   
Problem-2 ✓ ✓ ✓  
Problem-3 ✓ ✓  ✓ 
Problem-4 𝑁𝑃 ✓ ✓ ✓ ✓ 

 

Where 𝑆𝑖 is a set of design variables of the optimization problems that represent each shear wall 

segment. 𝐶𝑇𝑜𝑡𝑎𝑙 Indicate all constraints for each optimization problem. While 𝛿𝑦 and 𝛿𝑥 denote 

the maximum interstorey drift in the Y-direction and X-direction, respectively. 𝑒𝐶𝑀𝐶𝑅
 is the 

eccentricity of the center of rigidity 𝐶𝑅 from the center of mass 𝐶𝑀. 𝜎𝑀 represents the standard 

deviation of shear walls base moments while 𝑁𝑃 represents a number of formulated piers. 

2.4.1. Optimization Problem-1 (Drift constraints) 
This sub-section will include three optimization sub-problems based on the adopted constraint(s). 

The first constraint that is induced in the optimization problem is drift. First, drift in the Y-direction 

only (Problem-1-1) is used to check the framework's efficiency in understanding the building's 

behaviour and the wind load's direction. Then, drift in the X-direction is applied (Problem-1-2). 

Finally, both drift constraints are used (Problem-1-3), as presented in Table 2-2. 
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Table 2-2 GA parameters of the optimization Problem-1 

Optimization 
Problem ID 

Populati
on size 

Number of 
generations Mutation function Crossover 

ratio 
Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 

𝛿𝑦
     𝛿𝑥

    𝑒𝐶𝑀𝐶𝑅
 𝜎𝑀 

Problem-1-1 4000 1800 “Mutationpower” 0.8 0.2%    
Problem-1-2 4000 2000 “Mutationpower” 0.8  0.2%   
Problem-1-3 500 1400 “Mutationpower” 0.8 0.2% 0.2%   

 
 

2.4.1.1.Optimization Problem-1-1 (Drift in Y-direction) 

Equation (2-5) defines optimization Problem-1-1, where 𝑆 is a set of all design variables that 

represent the shear wall segments layout. While all variables are subjected to total constraints 

indicated as 𝐶𝑇𝑜𝑡𝑎𝑙 stating that 𝛿𝑦 should not exceed 0.2% based on the NBCC 2015 (National 

Building Code of Canada, 2015). SWOF produced an optimal shear wall layout against drift in the 

Y-direction constraint, as shown in Fig. 2-10. It can be noticed that almost 80% of the generated 

shear wall segments are oriented towards the Y-direction. This shows how the SWOF is capable 

of recognizing the inertia concept without explicitly defining it through the developed code. 𝑁 is 

the total number of shear wall segments resulting from the discretization process. As shown in Fig. 

2-11 (a), the population size of 4000 converges to the most optimal number of shear wall segments, 

which is 50, based on GA parameters defined in Table 2-2. As discussed before, at the verification 

stage, the results of the optimal layout are compared to verify the structural behaviour 

improvement achieved throughout the SWOF, as presented in Table 2-3. 17.5% is the maximum 

error achieved for the interstorey drift. The main reason for this error is the absence of the 

constraint for the drift in the X-direction, which can not be found in a real design scenario. It is 

also the reason for the drift limitation violation in the X-direction, as presented in Fig. 2-11 (b).  
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𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = 𝛿𝑦 ≤ 0.2% 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-5) 

 
Fig. 2-10 Optimal shear wall layout of optimization Problem-1-1 

  

Fig. 2-11 (a) Interstorey drift of optimization Problem-1-1 (b) Interstorey drift of optimization Problem-1-
1 

Table 2-3 Validation results of optimization Problem-1 

Constraint ANN FEM Error% 
Drift Y 0.00198 0.0024 17.5% 
Drift X 0.0039 0.0049 20% 
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2.4.1.2.Optimization Problem-1-2 (Drift in X-direction) 
When assigning the drift constraint to only the X-direction, as shown in equation (2-6), the SWOF 

is now able to understand that the priority is to resist loads from the X-direction, as shown in Fig. 

2-12. The fitness curve in Fig. 2-13 (a) shows that SWOF converged to 48 shear wall segments, 

with 78% of the segments being oriented towards the X-direction. Due to the absence of a 

constraint on the Y-direction, the violation of the drift limit occurred in the 𝛿𝑦 as shown in Fig. 

2-13 (b), which is in contract to the results of Problem-1-1. 

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = 𝛿𝑥 ≤ 0.2% 
𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-6) 

 
Fig. 2-12 Optimal shear wall layout of optimization Problem-1-2 
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Fig. 2-13 (a) Fitness curve for the total number of shear wall segments of optimization Problem-1-2, (b) 
Interstorey drift of optimization Problem-1-2 

 

2.4.1.3.Optimization Problem-1-3 (Drift in Y and X-directions) 
Based on the previous two optimization sub-problems, SWOF showed efficiency in capturing the 

target behaviour and achieving the required output. For forming a more reasonable optimization 

problem, the drift limitation constraint is defined for both 𝛿𝑦 and 𝛿𝑥 as shown in equation (2-7). 

Four different sizes of the initial population are chosen to check the adequate population sample, 

as shown in Fig. 2-14 (a). It can be noticed that the increase in the population size requires more 

time to converge to an optimal solution. The reason behind that is multiple possible optimal 

solutions that can satisfy the drift constraints (i.e., multiple global minima). Consequently, more 

constraints are defined in the following sections: 2.4.2 to 2.4.4. Also, it can be concluded that a 

population size of 500 is computationally affordable and sufficient to converge to the most optimal 

configuration of shear wall segments to get the least number of shear wall segments, which were 

found to be segments without violating the defined constraints as shown Fig. 2-14 (b), with drift 

values of 0.19% and 0.17% in X and Y, respectively. SWOF is able to find a combination of shear 

wall segments that  is slightly higher in number but with higher stiffness that can resist load from 

both directions. Yet, SWOF is sensitive enough to form shear 57 wall piers with inertia relative to 

the magnitude of the load subjected to it, as shown in Fig. 2-15. As a result, 53% of shear wall 

segments are oriented towards the Y-direction of the bigger width that can capture more wind 

loads.  

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛿𝑦 ≤ 0.2%, 𝛿𝑥 ≤ 0.2%) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-7) 
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Fig. 2-14 (a) Various population size fitness curves of optimization Problem-1-3, (b) Interstorey drift of 

optimization Problem-1-3 

 

Fig. 2-15 Optimal shear wall layout optimization Problem-1-3 

2.4.2. Optimization problem 2 (Eccentricity constraint) 
As presented in section 2.4.1, the SWOF outputs with drift constraints are randomly scattered shear 

wall segments that might induce torsional loads on shear walls due to the eccentricity of the applied 

lateral load. Accordingly, the SWOF will aim to limit the torsional effect using eccentricity 

constraint in this section. Equation (2-8) shows how the eccentricity constraint is added to the drift 

constraints with a distance limitation of 0.5 m between 𝐶𝑀 and 𝐶𝑅. Since there is no limitation 

value mentioned in NBCC for eccentricity, a ratio of the distance between 𝐶𝑀 and 𝐶𝑅 and the wind 

exposure depth, this value can be determined by the designer based on the project requirement. 

Using GA parameters mentioned in Table 2-4, SWOF converged to 68 shear wall segments based 

on the fitness curve in Fig. 2-16 (a). The number of shear wall segments resulting is higher 

 

 

 

   = 4.1  4

   = 1.3  4
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compared to the optimization Problem-1 as SWOF added more segments in order to satisfy the 

constraint limits provided as presented in Fig. 2-17. It yielded a balanced distribution of shear wall 

segments, as shown in Fig. 2-16 (b). In Table 2-5, the FEM validation for the resulting layout 

shows how efficient the SWOF and the surrogate models to capture the behaviour of the building 

with an acceptable error. 

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛿𝑦 ≤ 0.2%, 𝛿𝑥 ≤ 0.2%, 𝑒𝐶𝑀𝐶𝑅
≤ 0.5 𝑚 ) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-8) 

 

Table 2-4 GA parameters of optimization Problem-2 

Population 
size 

Number of 
generations 

Mutation 
function 

Crossover 
ratio 

Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 
𝛿𝑦

     𝛿𝑥
    𝑒𝐶𝑀𝐶𝑅

 
1000 2000 “Mutationpower” 0.8 0.2% 0.2% 0.5 m 

 

  

Fig. 2-16 (a) Fitness curve for the total number of shear wall segments of optimization Problem-2, (b) 
Optimal shear wall layout of optimization Problem-2 
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Fig. 2-17 (a) Interstorey drift, and (b) distance between the center of mass and center of rigidity of the 
best fitness candidate in each generation of optimization Problem-2 

 
Table 2-5 Validation results of optimization Problem-2 

Constraint ANN FEM Error% 
Drift Y (𝜹𝒚) 0.002 0.002 0% 
Drift X (𝜹𝒙) 0.00192 0.00196 2% 

Eccentricity (𝒆𝑪𝑴𝑪𝑹
) 0.46 m 0.39 m -15.27% 

 

2.4.3. Optimization problem 3 (Base moment standard deviation constraint) 

With the increase in the number of shear wall segments resulting from SWOF in optimization 

Problem-2, a noticeable range of different pier stiffnesses is formed. As a result, the induced base 

moments on each pier will vary significantly. This might require various groups of reinforcement 

rebars that will result in a non-economic design. So, the standard deviation constraint for base 

moments is introduced in equations (2-9). This constraint, as explained in section 2.3.2, represents 

the amount of variation in the base moments. Similar to the 𝑒𝐶𝑀𝐶𝑅
 constraint, the value can vary 

from project to another based on the designer’s targets. In this problem, SWOF con e rged to 68 

shear wall segments, as presented in Fig. 2-18 (a), using GA parameters mentioned in Table 2-6. 

By lowering the limit, as shown in equation (2-9), to 100 𝑡. 𝑚, SWOF will try to either lumb shear 
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wall segments or to create more dispersed segments. It also pushed the drift in Y and X-directions 

to their limits to satisfy the standard deviation constraint 𝜎𝑀 as shown in Fig. 2-19. As shown in 

the resulting output in Fig. 2-18 (b), around 65% of shear wall segments are lumped into 16 piers. 

The built surrogate model mainly derives SWOF towards a specific trend based on the constraint 

value; however, the accuracy of SWOF in this section is not the goal. Through the validation, as 

shown in Table 2-7, SWOF shows acceptable performance with high accuracy in drift values 

compared to the standard deviation values due to the complexity of the standard deviation 

constraints and the multiple load cases that this surrogate model represents. In addition, this 

constraint plays a vital role in reducing the induced base moments, as shown in Fig. 2-20. The 

optimal solution layout, which consists of 68 shear wall segments, has yielded a maximum moment 

per segment of 235 t.m, as shown in Fig. 2-21. Meanwhile, the other layout alternatives (i.e., Non-

optimal 1 and Non-optimal 2) produced a maximum moment per segment of 800 and 1200, 

respectively. However, the non-optimal solutions have a lower number of segments, but the value 

of generated moments will increase the cost of the structure as more reinforcement is required.  

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛿𝑦 ≤ 0.2%, 𝛿𝑥 ≤ 0.2%, 𝜎𝑀 ≤ 100 ) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-9) 

 
Table 2-6 GA parameters of optimization Problem-3 

Population 
size 

Number of 
generations Mutation function 

Crossover 
ratio 

Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 
𝛿𝑦

     𝛿𝑥
    𝑒𝐶𝑀𝐶𝑅

 𝜎𝑀 
1000 1800 “Mutationpower” 0.8 0.2% 0.2%  100 t.m 
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Fig. 2-18 (a) Fitness curve for the total number of shear wall segments of optimization Problem-3, and (b) 
optimal shear wall layout of optimization Problem-3 

  

Fig. 2-19 (a) Interstorey drift, and (b) standard deviation of base moments of optimization Problem-3 

 
Table 2-7 Validation results of optimization Problem-3 

Constraint ANN FEM Error% 
Drift Y (𝜹𝒚) 0.002 0.0021 5% 
Drift X (𝜹𝒙) 0.002 0.0022 10% 

Standard deviation (𝝈𝑴) 92.18 t.m 69.79 t.m -24% 
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Fig. 2-20 (a) Histogram for base maximum bending moment of optimization Problem-3, and (b) 

probability distribution function for three different generated layouts  

 

 
Fig. 2-21 Maximum bending moment around the local perpendicular axis of piers  

 

2.4.4. Optimization problem 4 (All constraints) 

Based on the earlier results, it was noticed that SWOF outputs produce scattered single shear wall 

segments that might reduce the constructability efficiency and might affect the total construction 

cost. So, all constraints are grouped together in one optimization problem for more rational results, 

as defined in equation (2-10). Noting that introducing a number of piers 𝑁𝑃 as a constraint will 

increase the computational cost of the optimization process tremendously, and it might not 
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converge to the required number of grouped shear walls. However, changing the objective function 

to minimize the number of piers will reduce the number of shear wall segments as well. As shown 

in Fig. 2-22, SWOF converged to 19 piers, coupled with a reduction in the number of shear wall 

segments as predicted while satisfying all other constraints’ limitations. In this problem, SWOF 

starts to lump shear wall segments to reduce the formulated piers. As shown in Fig. 2-23, ~98% of 

shear wall segments are grouped in piers, and only two shear wall segments are not lumped into 

any group. In order to assure SWOF efficiency, a three-dimensional FEM analysis is conducted 

using the resulting optimal layout presented in Fig. 2-24 (a). By investigating the demand-to-

capacity ratio (D/C ratio) for all piers based on the initial reinforcement presented in Fig. 2-24 (b), 

only one pier is considered unsafe, with only 2%. A slight increase in reinforcement ratio for that 

pier will end up satisfying the limit state design requirements. It is also noticed that most piers 

experienced a D/C ratio of less than 70%. Consequently, decreasing the reinforcement ratio in 

those piers will increase the material efficiency and generate more economical solutions. As shown 

in Fig. 2-25, all constraints are satisfied. However, some constraints, like the drift, have a 

noticeable error compared to the FEM results; they are still not violating their limitations, as shown 

in Table 2-9. This confirms that the optimization process is robust, and the error does not have a 

significant impact on it. Yet, the propagation of the error and the trend of the results of the 

evaluated samples through generations is of concern to yield an optimal solution, as shown in Fig. 

2-26. The main concern in the optimization procedure is to have an efficient objective function 

capable of deriving the optimization algorithm to an optimal solution within the constraints’ limits 

and the design variables' boundaries. Using an ANN surrogate model made it possible to 

investigate thousands of possible solutions (i.e., candidates) through multiple generations within a 

few minutes. As a result, all generated errors are within the optimization algorithm's acceptable 
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tolerance limits since a preliminary exploration for large portions of the search space can first be 

explored and then validated with FEM. 

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑁𝑃) 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 
𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛿𝑦 ≤ 0.2%, 𝛿𝑥 ≤ 0.2%,  𝑒𝐶𝑀𝐶𝑅

≤ 1 𝑚, 𝜎𝑀  

≤ 150 𝑡. 𝑚) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(2-10) 

Table 2-8 GA parameters of optimization Problem-4 

Population 
size 

Number of 
generations 

Mutation 
function 

Crossover 
ratio 

Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 
𝛿𝑦

   𝛿𝑥
  𝑒𝐶𝑀𝐶𝑅

 𝜎𝑀 
10000 1745 “Mutationpower” 0.8 0.2% 0.2% 1 m 150 t.m 

 

  

Fig. 2-22 Fitness curve for (a) the total number of piers and (b) the number of shear wall segments of 
optimization Problem-4  
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Fig. 2-23 Optimal shear wall layout of optimization Problem-4 

 

  
Fig. 2-24 (a) Three-dimensional FEM model for the optimal layout of optimization Problem-4, and (b) 
Demand/capacity ratio histogram and probability distribution function for all piers of the optimization 

Problem-4 
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Fig. 2-25 (a) Interstorey drift, (b) distance between the center of mass and center of rigidity, and (c) 

standard deviation of the base moment. 

 
Table 2-9 Validation results of optimization Problem-4 

Constraint ANN FEM Error% 
Drift Y (𝜹𝒚) 0.0019 0.0016 -21% 
Drift X (𝜹𝒙) 0.00186 0.00155 -17% 

Eccentricity (𝒆𝑪𝑴𝑪𝑹
) 0.51m 0.567 m 11% 

Standard deviation (𝝈𝑴) 90 t.m 113.78 t.m 20% 
 
 

 
Fig. 2-26 (a) FEM and ANN outputs for interstorey drift, (b) Regression coefficient for Intersotrey drift of 

optimization Problem-4  

2.5. Conclusion  

In this study, a robust automated Structural Wind Optimization Framework (SWOF) is developed 

to find the optimal layout for tall buildings' Lateral load resisting system, taking into consideration 

multiple load cases and architectural constraints. SWOF is a genetic algorithm-based optimization 

 a)  b)
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framework that uses Artificial Neural Network (ANN) as a surrogate model to evaluate its 

constraints and objective function. These surrogate models rely on a training dataset prepared 

using the Finite Element Method (FEM) and automated by an OAPI MATLAB code. This study 

focuses on the shear wall layout; however, SWOF is capable of incorporating different materials, 

constraints, or lateral load resisting systems. The main purpose of the SWOF in this study is to 

minimize the total weight of the structural system by reducing the number of used shear wall 

segments within the predefined layout to enhance the structure's wind performance without 

violating architectural and serviceability constraints. A typical 70 m tall building is adopted as a 

case study to apply the SWOF and check its validity against interstorey drift, torsional effect, and 

base moment distribution. SWOF introduced a column distribution process to minimize slab 

design changes, avoid structural weight changes, and avoid overlapping between vertical structural 

elements. The complexity of calculating the flexural capacity through the optimization procedure 

is mitigated by limiting the variation of induced base moments on shear wall segments through the 

standard deviation constraint. Also, the constructability of shear walls is taken into consideration 

by reducing the number of formulated shear wall groups, known as piers. In this study, the possible 

location of shear walls is discretized into 170 finite shear wall segments. Four main optimization 

problems were discussed to show the effect of assigning different constraint(s) and objective 

function(s). By defining the maximum interstorey drift as a constraint in Problem-1, it was noticed 

that SWOF was capable of identifying wind direction as presented in Problem-1-1 and Problem-

1-2. Also, SWOF recognized the concept of inertia without explicitly defining it through the 

developed code, as shown in the formulated shear walls. In Problem-2, adding the eccentricity 

constraint to the drift constraint reduced the distance between the center of mass and the center of 

rigidity. While in Problem-3, the addition of the standard deviation of base bending moments to 
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the drift constraint pushed SWOF to distribute shear wall segments in a manner that can limit the 

variation of induced base moments on each shear wall segment. In Problem-4, where all constraints 

were defined, it was found that assigning the objective function to be the number of piers has led 

to a consequent reduction in the total number of segments, which will result in a more economical 

design. It also managed to enhance the constructability of the generated layout. Through the four 

optimization problems, it was found that the more constraints are assigned to the problem, the 

more shear wall segments are generated. This can be related to the increase in problem complexity 

to satisfy all provided limitations. Thanks to the built surrogate models with a correlation 

coefficient of 0.95, SWOF was able to identify critical load cases to generate layouts that only 

require slight modifications in reinforcement ratio to satisfy the Demand-to-Capacity ratio of shear 

walls based on the chosen design code.  
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CHAPTER 3   

3. MULTI-OBJECTI E  STRUCTURAL LAYOUT OPTIMIZATION OF TALL 
BUILDINGS SUBJECTED TO DYNAMIC WIND LOADS 

3.1. Introduction 
Tall buildings are growing taller, and the need to provide more tall buildings is increasing. In 2019, 

a new record was accomplished by having a total of 126 tall buildings of +200 meters were 

constructed, including 26 supertall buildings exceeding 300 meters (CTBUH, 2019). Tall buildings 

are one of the solutions that meet the goals of providing sufficient housing while minimizing the 

environmental impact. Utilizing taller buildings to solve the housing shortage has the advantages 

of using relatively smaller footprints with fewer infrastructure requirements, as well as maximizing 

its affordability (Roser et al., 2019). They are sensitive to dynamic lateral loads, especially wind, 

that might cause excessive vibration or even damage to either structural or non-structural elements 

(Cui & Caracoglia, 2020). Structural designers' main concern is to satisfy the safety and 

serviceability requirements. This design process typically goes through a time-consuming iterative 

procedure to ensure the cost efficiency of the proposed structural system. Therefore, structural 

optimization frameworks have been developed to minimize the cost of proposed structural 

systems, especially the lateral load resisting systems (LLRS) that provide tall buildings with 

adequate stiffness to withstand critical load cases generated by wind and seismic loads. Structural 

designers follow two main optimization philosophies when designing tall buildings to withstand 

such loads. The first is by reducing captured wind loads by altering the shape of the building (i.e., 

outer shape optimization) (Bernardini, Spence, Wei, et al., 2015; Elshaer, Bitsuamlak, & El-

Damatty, 2017; Elshaer & Bitsuamlak, 2018; Kareem et al., 1999, 2013a; Tanaka et al., 2012, 

2019). The second philosophy is to optimize the lateral load resistance system performance 

(LLRS) (i.e., structure optimization). The latter, which is the focus of this study, aims to find the 

optimal system and layout configuration (e.g., shear walls, cores, bracing systems) to achieve the 

objective performance of the building with the least cost and/or improve the structural 
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performance. Structure optimization of tall buildings can be categorized in several ways, such as 

problem definition (e.g., size, shape or topology optimization), lateral load (e.g., wind or seismic), 

load time-dependency (e.g., static or dynamic), and structural analysis technique (e.g., eigenvalue 

analysis or time-history analysis).  

Considering lateral loads in structural optimization problems started with applying equivalent 

deterministic static loads as a simplification. As presented in the sizing optimization problem by 

(C.-M. Chan et al., 1995), wind load was defined as horizontal point loads in both X and Y 

directions based on American standards. They used the optimality criteria algorithm to find the 

optimal size of structural elements based on a predefined layout. In a previous study by (Zakian & 

Kaveh, 2020), they employed the optimality criteria algorithm to formulate a continuous topology 

optimization framework for shear walls. The objective was to minimize structural compliance 

under equivalent static seismic load combinations, following the guidelines provided by the 

(ASCE, 2017) code. A number of researchers tackled the LLRS optimization problem through 

Structural Topology Optimization (STO) techniques, where the optimal distribution of materials 

required to be found in a specific design domain (Bendsøe & Sigmund, 2004). STO can be applied 

to a two-dimensional structural system to find the optimal layout, taking into consideration wind 

loads. These two-dimensional problems most probably focus on the vertical elevation layout of 

the LLRS as presented by (Baldock et al., 2005; Baldock & Shea, 2006), in which a pattern search 

algorithm has been used to find the optimal steel bracing layout of a tall building subjected to 

equivalent static wind loads. Moreover, (Lu et al. 2019) considered different load cases of wind 

loads to find the optimal bracing system layout for pre-existing frame structures through plastic 

analysis. Not only the vertical layout but also the horizontal plan layout was investigated. (H. P. 

Lou et al., 2021; Y. Zhang & Mueller, 2017) developed shear wall layout optimization frameworks 

of tall buildings subjected to wind loads.  
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The aforementioned research simplified the lateral load behaviour into equivalent deterministic 

static loads. However, lateral loads have stochastic dynamic behaviours that affect the structural 

vibrational modes. Therefore, these simplifications might not yield the most economical solution 

as they rely on the determination of an equivalent static load, which probably results in a less 

economical structural solution. Based on the (National Building Code of Canada, 2015), the 

specified wind loads for a building and its components can be determined using three procedures: 

static, dynamic or wind tunnel procedure. The choice of the appropriate procedures depends on 

the structure's dynamic characteristics, whether it’s classified as dynamically insensitive, sensitive, 

or very sensitive. Tall buildings with a height of more than 60 𝑚, are considered dynamic, 

sensitive structures. In some cases, tall buildings, whose lowest natural frequency is less than 

0.25 𝐻𝑧, or whose height-to-width ratio is more than 6 𝑚, are classified as very sensitive dynamic 

structures due to its slenderness. Those dynamically sensitive structures are considered a multi-

degrees of freedom dynamic problem that can be presented in the form of the general equation of 

motion as shown in equation (3-1). Where 𝑀 is the mass matrix, 𝐾 is the stiffness matrix for linear 

systems or 𝑓𝑠(𝑢) for an inelastic system as force-deformation relations, 𝐶 is the damping matrix, 

and the dynamic excitation, which may be external forces (e.g., wind loads) 𝑃(𝑡) or ground 

acceleration (e.g., earthquake) 𝑢̈𝑔(𝑡).  

𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝑃(𝑡) (3-1) 

These coupled differential equations can be solved using time-domain or frequency-domain 

analysis, depending on the way the system is defined as either linear or nonlinear. For nonlinear 

systems like tall buildings, numerical analysis is the most convenient approach to finding structural 

responses (Chopra, 2012). This motivated researchers to consider the dynamic representation of 

dynamically sensitive structures in optimization problems, especially topology optimization 



58 
 

problems. It was found that maximization of the fundamental eigenvalue will result in an optimized 

structure that can work well for static loads. Some researchers have considered stochastic topology 

optimization for structures subjected to seismic excitation using time history analysis, such as 

(Sotiropoulos & Lagaros, 2022). In comparison, eigenvalue analysis is most common for STO 

problems of structures subjected to seismic loads due to its computational affordability compared 

to time-history analysis (Fragiadakis & Lagaros, 2011; Gholizadeh & Ebadijalal, 2018; Joyner et 

al., 2022; Martin & Deierlein, 2020; X. Zhou et al., 2022). For instance, (Chun et al., 2016) used 

random vibration theories in topology optimization to satisfy probabilistic constraints defined in 

terms of stochastic responses. Also, (Gomez et al., 2020) developed a gradient-based optimization 

framework in which stochastic ground excitation is modelled as a zero-mean filtered white noise; 

an augmented state space representation is formed by combining the equation of motion for the 

structure with the excitation filter.  

Wind loads are also considered dynamic due to the turbulent flow and variance in time and space. 

Some researchers considered wind loads for topology optimization. For example, (Bobby et al., 

2014) used Monte Carlo simulations to develop a performance-based topology optimization 

framework for tall buildings. This framework relies on an approximate static subproblem for the 

2D vertical layout of the bracing system. Afterwards, (Luo et al., 2017) expanded this framework 

to consider 3D performance-based topology optimization problems using dynamic wind loads 

extracted from boundary layer wind tunnel tests. (Gomez et al., 2021) used the equation of motion 

within the topology optimization algorithm against dynamic wind loads correlated to known 

stationary wind power spectral densities, where dynamic loads were employed in sizing 

optimization problems. (Deng et al., 2019) developed a framework of performance-based wind-

resistant optimization design based on the concept of structural reliability. Meanwhile, most of this 

research focused on the vertical layout of the LLRS. However, a limited contribution was found 
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to consider the dynamic wind load for the horizontal layout of the LLRS, noting that the dynamic 

loads for some layouts show lower responses compared to the correlated NBCC static loads 

(Alanani & Elshaer, 2022).  

In this chapter, a multi-objective LLRS (i.e., shear walls) layout optimization framework is 

provided for dynamically sensitive tall buildings subjected to stochastic wind load. In previous 

studies, It has been shown that different parameters, rather than the weight, can affect the layout 

of the LLRS tremendously. For instance, (Alanani & Elshaer, 2023) have investigated the effect 

of different constraints and objective functions on finding an optimal layout. It was found that 

better results were generated by only changing the objective function. While the single objective 

function was efficient in deriving the optimization algorithm, this limits decision-making 

flexibility in investigating other options that could be adequate for particular projects. The 

importance of applying multiple objective functions for providing a Pareto optimal set, from which 

the decision maker can choose the perfect compromise, is shown by (Zou et al., 2007), where the 

life-cycle cost and the future damage loss were adopted as objective functions for finding the 

optimal structural member sizes using a weighted genetic algorithm. In this study, a Non-

Dominated Sorting Genetic Algorithm (NSGA-II) is adopted to avoid predefined weighted 

objective functions and utilizes the Pareto dominance to compare and rank solutions, resulting in 

a diverse set of Pareto optimal solutions instead of one single solution. To the best of the authors’ 

knowledge, this study is the first to address more than two objective functions in a preliminary 

design stage optimization.  

In this study, a CFD model is adopted to generate the wind load time history required to be applied 

to the study building. Adopting a time history analysis is considered challenging through the 

optimization process due to the cumbersome analysis that involves simplification of the structural 

system as presented in the literature. The developed framework in this chapter relies on an ANN-

surrogate model for constraints and objective function evaluation. That makes it possible to 
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overcome the simplification of the structural system and make it applicable in real-case scenarios. 

The adopted surrogate model is built based on an automated FEM-generated database using 

ETABS (CSI, 2018) and (MATLAB, 2023) code. The usage of the surrogate model will reduce 

the computational time needed for the optimization process. This integration of dynamic response 

analysis and surrogate modelling is a significant contribution that enables more accurate and 

efficient design optimization, which was previously lacking in the literature. A non-gradient 

optimization algorithm is adopted due to the complexity of modelling the governing equations for 

such structures. A genetic algorithm is used to identify the optimal shear wall layout against 

dynamic wind load and gravity loads provided by the (National Building Code of Canada, 2015). 

Finally, suitable column locations will be chosen based on the generated locations of shear walls. 

The chapter is organized into five sections.  

Section 3.1 (this section) presents an introduction and literature review on the optimization of tall 

buildings. Section 3.2 provides a description of the developed Structural Wind Optimization 

Framework (SWOF). Section 3.3 presents the optimization application on a case study building, 

focusing on minimizing the number of shear wall segments used while considering architectural 

and structural constraints and the CFD model validation. Section 3.4 presents the results and 

discusses the optimization problem. Finally, Section 3.5 presents the conclusions and findings of 

the developed SWOF.  

3.2. Structural-Wind optimization Framework (SWOF)  
The developed Structural Wind Optimization Framework (SWOF) has been previously used for 

optimizing tall buildings subjected to static wind load (Alanani & Elshaer, 2023). In this study, 

SWOF is expanded to include multiple objective functions to enhance the quality of the produced 

optimal layout and provide varieties for structural designers to choose from. In addition, the 

dynamic behaviour of wind loads is also included within SWOF to capture more accurate structural 

behaviour that could not be achieved using static wind loads. As shown in section 3.3.1, Applying 
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dynamic wind load generated via CFD on a specific layout results in a lower structural response 

than the load applied based on the (National Building Code of Canada, 2015) using the same mean 

wind velocity. It was also noticed that considering dynamic wind load will yield a lower number 

of shear wall segments, which can result in avoiding the overdesign of LLRS.  

Although this study will focus on the shear wall layout, SWOF is developed generically to 

incorporate different materials and structural systems. As shown in Fig. 3-1, a flowchart represents 

the procedure of structural wind optimization. The procedure starts with defining the optimization 

problem, which includes identifying the objective functions (i.e., fitness functions). The 

optimization algorithm adopts four main objective functions in SWOF for evaluating generated 

random samples. Also, SWOF targets minimizing selected structural responses controlled by the 

objective functions defined in Table 3-1.  

For this problem, design variables are the possible location and orientation of the shear walls. Due 

to architectural requirements, the design variables cannot be located anywhere within the plan 

boundaries; they are considered constrained (or bounded) binary variables based on a predefined 

domain. They have been chosen to be binary (i.e., 0 or 1) to indicate the availability or absence of 

the shear wall segment. This domain went through a preprocessing phase where it got discretized 

into smaller elements (shear wall segments) based on the accuracy required. The last part of 

problem definitions is the constraints, where design code limitations are also included as 

constraints in addition to architectural constraints and any supplementary parameters required by 

the designer. In this chapter, interstorey drift is considered a constraint in both X-direction ( 𝛿𝑥) 

and Y-direction ( 𝛿𝑦).  

Table 3-1. Objective functions definition 

Objective Function Notation 

Total number of shear wall segments ∑ 𝑆𝑖
 

𝑁

𝑖=1

 

Total number of piers 𝑁𝑃 
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Torsional effect (Eccentricity) 𝑒𝐶𝑀𝐶𝑅
=  √(𝑋𝐶𝑅

 − 𝑋𝐶𝑀
)

2
+ ( 𝑌𝐶𝑅

 − 𝑌𝐶𝑀
 )

2
 

The standard deviation of shear wall base 
moments 𝜎𝑀 = √

𝛴 (𝑥𝑖 − 𝜇𝑀)2

𝛴 𝑆𝑖
 

 

Once the optimization problem is defined, an optimization algorithm can be used to start looking 

for the group of optimal layout solutions. An evolutionary algorithm called nondominated sorting 

genetic algorithm II (NSGA-II) is chosen to tackle it. NSGA-II relies on numerous objective 

function evaluations by altering design variables systematically using mutation and crossover 

operators until a group of optimal solutions are found called the “Pareto Front”. This Pareto Front 

is found through sorting procedures based on non-dominated ranking and crowd distance sorting 

(Deb et al., 2002a).  

SWOF relies on surrogate models to represent its objective functions. The evaluation process of 

generated models through FEM directly is computationally costly as numerous outputs are 

calculated precisely in addition to the number of iterations required to evaluate various objective 

functions. Therefore, surrogate models are considered an adequate and computationally efficient 

solution to be used within the evaluation process. These surrogate models require a group of 

random training samples to be built. ANN-based surrogate model is used in this study due to its 

proven efficiency in capturing complex functions (Elshaer & Bitsuamlak, 2018; Lagaros & Plevris, 

2022; Papadrakakis & Lagaros, 2002; Pizarro & Massone, 2021a). The required training samples 

were prepared using linear FEM time history analysis subjected to dynamic wind load generated 

using LES CFD. A detailed explanation of the LES CFD is included in section 3.3.1. After building 

the surrogate model, it will be used to represent these constraints and objective functions. 
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Fig. 3-1. Structure wind optimization framework (SWOF) flowchart 

3.2.1. Non-dominant Sorting Genetic Algorithm (NSGA-II)  
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a popular and widely used multi-

objective optimization algorithm that ensures all objective functions are minimized without any 

dominance of one objective over the other. It is designed to find a set of solutions that represents 

the trade-off between multiple conflicting objectives. The NSGA-II algorithm operates based on 

the concept of Pareto dominance. It maintains a population of candidate solutions, where each 

solution represents a possible design or solution to the optimization problem. The algorithm 

iteratively evolves the population through selection, crossover, and mutation operations, 

mimicking the principles of natural evolution, as shown in Fig. 3-2. The resulting generation will 

then be combined with the parents to provoke elitism. The elitist selection mechanism is a key 

feature of NSGA-II, which ensures that the best solutions survive from generation to generation. 

The algorithm maintains multiple fronts, where each front consists of non-dominated solutions 

that are not dominated by any other solution in the population. This helps to preserve diversity and 
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explore different trade-off solutions. The NSGA-II algorithm also incorporates a crowding 

distance mechanism to maintain diversity within each front. The crowding distance measures the 

density of solutions in the objective space, favouring solutions that are located in less crowded 

regions. This encourages the algorithm to explore different areas of the Pareto front and avoid 

premature convergence to a single solution. Overall, the NSGA-II algorithm is known for its ability 

to effectively handle multiple conflicting objectives and provide a diverse set of solutions on the 

Pareto front. Its implementation involves a combination of selection, crossover, mutation, and 

diversity maintenance techniques. By iteratively improving the population, NSGA-II guides the 

search toward optimal trade-off solutions, enabling decision-makers to make informed choices 

based on their preferences and requirements. 
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Fig. 3-2 Non-dominant Sorting Genetic Algorithm (NSGA-II) flowchart 

3.2.2. Artificial Neural Network (ANN) model 
In this section, we provide a detailed overview of the ANN architecture, hyperparameters, input 

and output configuration, training process, training termination condition, and data preparation 

steps employed in our research. ANN is a regression model that consists of inputs, hidden layers 

and outputs. The quality of the neural network outputs (i.e., objective function and constraints) 

relies on the training process effectiveness through various training sample models that can cover 

most of the search space required in the optimization problem. As shown in Fig. 3-2, building the 

adopted surrogate model starts first by generating a random sample of training models. A total of 

5000 samples of random configurations of shear wall segments are prepared using MATLAB code 

that automates the process of building models and extracting results on ETABS through the Open 
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Application Programming Interface (OAPI). This code also generates columns’ locations based on 

the predefined locations and avoids any overriding or intersections with the generated shear walls. 

This prepared Finite Element Models (FEM) database will be used to train ANN models to act as 

objective and constraint functions. A sensitivity analysis of the number of samples has been 

conducted to ensure the convergence of the built ANN. As shown in Fig. 3-3, Increasing the 

number of training samples will improve the regression coefficient of the trained model. Yet 

increasing the number of samples will be computationally costly and will stretch the training 

process significantly. A forward-propagation deep neural network is used to determine the output 

of a group of functions, including the critical inter-story drift in both X-direction ( 𝛿𝑥) and Y-

direction ( 𝛿𝑦), the distance between the center of mass (𝐶𝑀), the center of rigidity (𝐶𝑅), and the 

standard deviation of shear walls' critical base moments (𝜎𝑀).  

 

Fig. 3-3 Sensitivity analysis for the training sample size of (𝑒𝐶𝑀𝐶𝑅
) 

Regarding the ANN architecture, we have incorporated a fully connected feedforward neural 

network with three hidden layers of 23, 44 and 10 nodes, respectively, that have been determined 

based on an exhaustive search. The input layer size is set to accommodate the 170 binary variables, 
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and the output layer size corresponds to the output parameters of interest. For the hyperparameters, 

we have utilized a Bayesian regularization backpropagation algorithm for training. The training 

process involves using Levenberg-Marquardt optimization to update the network weights. To 

ensure convergence and prevent overfitting, we have implemented early stopping with a validation 

set, terminating the training process when the validation error fails to improve after 30 consecutive 

epochs. Regarding data preparation, we have preprocessed the dataset by performing 

normalization to outputs and standardizing them to have zero mean and unit variance. 

Additionally, we have split the dataset into training, validation, and testing sets with a ratio of 

70:15:15, respectively, to facilitate model evaluation and generalization.  

As shown in Fig. 3-4, all trained ANNs showed a satisfactory regression coefficient that is 

adequate to drive the optimization problem toward the required optimal layouts. The structural 

response parameters vary in complexity, and the ANN was able to capture the interstorey drift 

with a regression coefficient of 98%. In comparison, the eccentricity was more complex to be 

captured, with a regression coefficient of ~90%. Meanwhile, the error histogram presented in Fig. 

3-5 displays the count of errors within predefined intervals. By examining the shape and spread of 

the error distribution, it can be deduced that 70 to 80 % of samples result in errors of less than 20 

%. With deeper investigation, it was found that the majority of those samples lie in the lower value 

region of our structural response parameters, which is the target of the minimization problem. That 

can indicate the efficiency of the model and its accuracy in predicting the targeted outputs of 

interest. Additionally, those outliers will not impact the model's performance as they are away 

from the region of interest. 
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Fig. 3-4. Regression coefficient of (a) interstorey drift in the Y-direction ( 𝛿𝑦), (b) eccentricity (𝑒𝐶𝑀𝐶𝑅
), 

and (c) standard deviation of the base moment (𝜎𝑀). 
 

 

Fig. 3-5 Error Histogram of (a) interstorey drift in the Y-direction ( 𝛿𝑦), (b) eccentricity (𝑒𝐶𝑀𝐶𝑅
), and (c) 

standard deviation of the base moment (𝜎𝑀). 

 
The performance of the ANN model was evaluated using several commonly used metrics, 

including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of 

determination (𝑅2). The RMSE is an estimate of the standard deviation of the errors, defined in 

(2-1), that shows the deviation from the actual values and is a scale-dependent metric. This 

explains the variation in RMSE values among the different parameters considered due to the 

different magnitude of orders. Also, MAE was calculated using equation (3-3), which is a scale-
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dependent value that represents the average absolute difference between predicted and actual 

values. In contrast, 𝑅2, in equation (3-4), describes the predictability of variance in the surrogate 

model. Overall, the ANN model exhibits a satisfactory performance that can be used to derive the 

optimization algorithm. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ ( 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖

− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
)

2𝑛
𝑖=1   (3-2) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖

− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
|𝑛

𝑖=1   (3-3) 

𝑅 =  √1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 , 

𝑆𝑆𝑅 = ∑ ( 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖
− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

)
2𝑛

𝑖=1 , 

𝑆𝑆𝑇 = ∑ ( 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
− 𝑦̅𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

)
2𝑛

𝑖=1  

(3-4) 

 

Table 3-2 ANN regression performance metrics 

ANN model RMSE MAE 𝑅2 
𝛿𝑦 3.5 × 10−4 2.4 × 10−4 0.96 
𝛿𝑥 1.9 × 10−4 1.3 × 10−4 0.92 

𝑒𝐶𝑀𝐶𝑅
 0.46 0.32 0.80 

𝜎𝑀 7.11 5.13 0.81 
 

3.3. Optimization problem definition  

3.3.1. Computational Fluid Dynamic model  

3.3.1.1.Validation 
For wind load time-history generation, a validation model for an experimental wind tunnel test is 

conducted on a selected tall building. This step provides a validated computational domain that 

can be used later in the adopted case study. A well-established standard tall building, known as the 

Commonwealth Advisory Aeronautical Research Council (CAARC) building (Melbourne, 1980), 

with dimensions shown in Fig. 3-6, is adopted in the validation process.  
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Fig. 3-6. CAARC standard full-scale dimensions 

This building has been extensively studied either through boundary layer wind tunnel (BLWT) 

tests (Dragoiescu et al., 2006; Melbourne, 1980) and numerical CFD simulations (Braun & 

Awruch, 2009; Dagnew & Bitsuamlak, 2010; S. Huang et al., 2007; Thordal et al., 2020). For the 

sake of validation, the mean pressure coefficient (𝑚𝑒𝑎𝑛 𝐶𝑝 ) and root mean square of the pressure 

coefficient (𝑅𝑀𝑆 𝐶𝑝) will be compared to two main BLWT tests on the CAARC building 

presented in (Melbourne, 1980), where the pressure coefficient is calculated using equation (3-5). 

These BLWT tests are held at Monash University and the National Physics Laboratory (NPL). 

Large Eddy Simulation (LES) is conducted for a scaled model of the CAARC building similar to 

the BLWT. Based on (Elshaer et al., 2016) study, the time scale and length scale are 1:100 and 

1:400, respectively. The building and Computational domain full-scale dimensions are provided 

in Table 3-3. Three zones are used for grid discretization with different base mesh sizes: zone 1, 

zone 2, and zone 3 grid sizes are H/5, H/10 and H/25, respectively, producing a total number of 

~1,730,000 cells, as shown in Fig. 3-7. In addition, 10 prism layers are used around wall regions 
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with a stretching factor of 1.30. In order to generate a turbulent inflow, the consistent discrete 

random flow generation (CDRFG) (Aboshosha et al., 2015) technique is utilized with a mean wind 

speed of 10 m/s at the building’s height. Turbulent intensity, turbulence length scale and velocity 

profile regression coefficients are used as per (Elshaer et al., 2016) as shown in Fig. 3-8. To 

represent the wind power spectral density (PSD), a range of frequencies from 1.0 to 3500 Hz is 

utilized. The spatial discretization of the domain can be seen in Fig. 3-9, where the fine hexahedral 

mesh appropriately captures the buildings’ dimensions. The Velocity streamlines in Fig. 3-10 show 

a very reasonable behaviour with a velocity magnitude similar to what is conducted by (Elshaer et 

al., 2016). As shown in Fig. 3-11, 𝑚𝑒𝑎𝑛 𝐶𝑃 and 𝑅𝑀𝑆 𝐶𝑃 are compared against Monash University 

and NPL results, and they showed a good agreement with a maximum variation of less than 6% in 

both parameters and mean average error of less than 0.045. 

𝐶𝑃 =
𝑃 − 𝑃𝑜

1
2 𝜌𝑣𝐻

2
 

(3-5) 

where 𝑣𝐻 is the reference velocity at the building height, (𝑃 − 𝑃𝑜) is the dynamic pressure head, 

𝜌 is the air density, and 𝐻 is the height of the study building.  
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Fig. 3-7. Computational domain details and boundary conditions  

 
Fig. 3-8. (a) mean wind velocity and (b) turbulence intensity profiles used for the inflow boundary 

condition (Elshaer et al., 2016) 
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Fig. 3-9 Computational grid (a) near target buildings, (b) inlet, (c) ground and (c) 3d view for the 

computational domain. 

Table 3-3. Building and computational domain dimensions 

 Length (X-direction) Width (Y-direction) Height (Z-direction) 

Building 30.5 m 45.7 m 182.5 m 

Zone 1 20 H wind tunnel width (2.1 m) wind tunnel height (2.6 m) 

Zone 2 15 H 2.4 H 2.25 H 

Zone 3 12 H 0.8 H 1.75 H 
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Fig. 3-10 Mean velocity magnitude with flow streamlines 

 

 
(a) 
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(b) 

Fig. 3-11. (a) 𝑚𝑒𝑎𝑛 𝐶𝑃 (b) 𝑅𝑀𝑆 𝐶𝑃 distribution over the horizontal section of the building at 2/3 H 
against BLWT test results 

3.3.1.2.Wind load’s time history generation 
The previously validated computational domain and boundary conditions are used to investigate 

the aerodynamic performance of the selected building. The chosen case study building replaces 

the CAARC building bluff body with dimensions described in section 3.3.2. The building is 

discretized into 20 derived surfaces representing the tributary area of each storey in the building. 

These surfaces are responsible for integrating forces over time in the x and y directions. As shown 

in Fig. 3-12, a sample of wind load time history at the 10th floor is generated for longitudinal 

direction (Y-axis) and across direction (x-axis). Then, the generated time histories for wind loads 

are defined in the FEM model as time history functions and applied at each storey's center of 

gravity in both directions. 
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(a) (b) 

Fig. 3-12. (a) Longitudinal and across wind forces time history at 10th floor, (b) Highlighted derived 
surface for the 10th floor 

3.3.2. Structural details of the Case study 
The adopted building is a multistorey residential building of 20 floors, with a storey height of 

3.5 𝑚, which follows (Alanani & Elshaer, 2023; Y. Zhang & Mueller, 2017). It is considered a 

single symmetric layout of rectangular-shaped beamless slabs with dimensions of 24.75 𝑚 ×

 18.75 𝑚. Since the selected building height is 70 m, it is classified as a dynamically sensitive 

structure based on the (National Building Code of Canada, 2015). A superimposed dead load of 

5 𝑘𝑁/𝑚2 and a live load of 1.9 𝑘𝑁/𝑚2are applied to all slabs. The objective of structural design 

is to identify the layout, dimensions (length and thickness) and reinforcement ratio for all structural 

elements. The column dimensions and shear wall thicknesses are set to be fixed. On the other hand, 

the layout and the length of reinforced concrete shear wall elements are determined using the 

SWOF. Finally, the reinforcement ratio can be adjusted by structural designers for the produced 

optimal layouts based on the project requirements. Initial values of structural elements are 

implemented (i.e., column cross-section and shear wall segments), as shown in Fig. 3-13. The 

layout shown in Fig. 3-13 is designed according to the CSA 23.3-14 (CSA (Canadian Standards 

Association), 2019) using concrete of 𝑓𝑐
′ = 35 𝑀𝑃𝑎 and steel reinforcement ASTM992 of grade 

50. The ultimate limit state and serviceability limit load combinations are used for designing 

structural elements. An architectural layout is proposed for two apartments per storey, as shown 
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in Fig. 3-14 (a). Based on the proposed architectural layout, possible locations for shear walls are 

identified to fulfill architectural objectives as illustrated in Fig. 3-14 (b). A preprocessing stage is 

implemented to prepare the optimization problem that will be described in detail in the following 

sections. The dark grey lines in the Fig. 3-14 (b) is considered the domain for shear walls. To 

identify the length and the shape of shear walls, a discretization of this domain is performed based 

on a rectangular mesh of a predefined base size of one meter. As a result of this process, the domain 

will be divided into 170 one-meter segments of shear walls. For each model, different locations of 

columns will be identified to avoid overlapping between shear wall segments and columns. 

Column distribution is based on a rectangular mesh of a 6 𝑚 span.  

 

Fig. 3-13 (a) Slab plan layout, (b) shear wall segment and (c) column cross-section 

 a)

 b)

 c)
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Fig. 3-14. (a) Architectural plan view and (b) possible shear wall locations 

(b) 

(a) 
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3.3.3. Finite Element Method model  

3.3.3.1.FEM validation 
A validation of the full-scale CAARC structure is adopted in this chapter based on (Brown et al., 

2024). CAARC’s dimensions are 180 m tall with a rectangular base of 30 m by 45 m long, 

respectively. It consists of 45 similar storeys, each of 4 m in height, with a 10-bay by 15-bay, as 

seen in Fig. 3-15 (a). Each bay is considered to be 3 m wide. The steel size members of the chosen 

CAARC structure are based on analysis by (C. M. Chan et al., 2009; M. Huang, 2017), and they 

were created based on an initial strength check following the AISC steel code (2001) to precisely 

duplicate the verified model. As indicated in Table 3-4, the steel columns and beams are chosen 

according to the W14 and W30 sizes, respectively. A fixed base support is considered to give the 

overall building a rigid floor connection. To get the dynamic drift responses, the structure serves 

as a moment-resisting frame with a modal damping ratio of 2%. The steel density is 7850 kg/m3, 

with a Young’s Modulus and Poison’s ratio of 200,000 MPa and 0.25, respectively. The first, 

second and third modes are found to be at 0.198, 0.281, and 0.361 Hz, respectively. Table 3-5 

presents the design along-wind and across-wind base shear forces, the torsional base torque from 

the wind-induced structural loads at a velocity of 40 m/s. The overall applied wind loading was 

acquired using the numerical LES analysis and then applied to the FEM model to compare the 

structural response of the structure under a 0̊ wind angle of attack, as shown in Fig. 3-15 (a), (b) 

and (c) show a comparison of the lateral deflection and inter-storey drift along the x-direction at 

the most critical instant, respectively.  

Table 3-4: Steel sections for the examined structures at a mean wind velocity of 40 m/s (Brown 
et al., 2024) 
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Storey levels Beam size Column size at 
 

1 - 9 W30 x 357 W14 x 550 
10 - 18 W30 x 326 W14 x 500 
19 - 27 W30 x 292 W14 x 370 
28 - 36 W30 x 261 W14 x 257 
37 - 45 W30 x 211 W14 x 159 

Table 3-5: Design wind loads for Building 1 subjected to a design mean wind velocity of 40 m/s 
(Brown et al., 2024) 

Structure height (m) Along-wind base 
shear (kN) 

Across-wind base 
shear (kN) 

Torsional base torque 
(kN.m) 

180 (CAARC) 18826 28238 688307 

 

 
Fig. 3-15 (a) FEM CAARC model dimensions, (b) maximum deflection of storeys, and (c) maximum 

inter-storey drift in the along-wind direction (Brown et al., 2024) 

3.3.3.2.Case study FEM model 
A 3D linear Finite Element Model of the previously described structure is modelled in ETABS, a 

Finite Element Method (FEM) commercial software extensively used for designing tall buildings. 

Different FEM elements are adopted to capture a satisfactory performance of the structural 

elements. The most vital elements in this study are the shear wall segments modelled as shell-thin 

elements, which allow the capture of bending stresses and in-plane stresses. Slabs are modelled as 

shell-thin as well. Each slab, with all the attached elements, is assigned to a diaphragm to ensure 

(a) (b) (c) 
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the transfer of lateral loads and unify the lateral displacement at any point all over the slab. On the 

other hand, the frame element is used for columns since the beam-column formulation is included 

to attain the effects of biaxial bending, torsion, axial deformation and biaxial shear deformation. 

Regarding load application, all generated wind load time histories are added to the centre of gravity 

of each story.  

Since the dynamic response is the main focus of this study, a linear time history analysis is adopted, 

while the modal analysis is used to solve the general dynamic equilibrium equation shown in 

equation (3-1). A number of 30 mode shapes are predefined to be used for capturing more than 

90% of the total dynamic mass participation ratio. In order to build up the training database, the 

maximum value of each parameter for all time steps is selected so the surrogate model can be built 

on those data, as explained in section 3.2. For instance, Fig. 3-16 shows a sample of the structural 

response resulting from the linear time history analysis from which the maximum value of 

displacement of each storey is exported and then used for the training process of the ANN surrogate 

model. 

 

Fig. 3-16 (a) 3D Finite Element model and (b) 10th story displacement 
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3.4. Optimization problem description and results 
In this section, a multi-objective optimization problem is presented. In order to exploit the potential 

of the developed optimization algorithm, all parameters (i.e., the total number of shear wall 

segments, the total number of piers, the eccentricity, and the standard deviation of base moments) 

are defined as objective functions except the drift, as it is defined as a constraint equivalent to the 

code limitation in clause 4.1.8.13 (National Building Code of Canada, 2015) for drift in both 

directions, as shown in equation (3-6). Then, a postprocessing Pareto pruning methodology using 

the “Direct selection method” is applied to the generated solutions to select a single layout based 

on an ordered prioritization of each objective function solution.  
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The mathematical formulation of the optimization problem is shown in (3-6), where 𝑆𝑖 is a set of 

design variables of the optimization problems that represent each shear wall segment. 𝐶𝑇𝑜𝑡𝑎𝑙 

indicates all constraints for each optimization problem. While 𝛿𝑦 and 𝛿𝑥 denote the maximum 

interstorey drift in the Y-direction and X-direction, respectively. 𝑒𝐶𝑀𝐶𝑅
 is the eccentricity of the 

center of rigidity, 𝐶𝑅, from the center of mass, 𝐶𝑀. 𝜎𝑀 represents the standard deviation of shear 

walls’ base moments while 𝑁𝑃 represents a number of formulated piers.  

𝑓𝑖𝑛𝑑 𝑆 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑆𝑖
 

𝑁

𝑖=1

, 𝑁P, 𝑒𝐶𝑀𝐶𝑅
, 𝜎𝑀) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛿𝑦 ≤ 0.2%, 𝛿𝑥 ≤ 0.2%) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(3-6) 

 

 

In this optimization problem, A total of 700 solutions were generated by SWOF as optimal 

solutions on the Pareto Front based on the defined NSGA-II parameters shown in Table 3-6 

Table 3-6. NSGA-II parameters of the optimization problem 

Population 
size 

Number of generations 
Mutation 
function 

Crossover 
ratio 

Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 
𝛿𝑦

   𝛿𝑥
  

2000 1000 “Mutation 
power” 0.8 0.2% 0.2% 

 

Multiple runs have been conducted by altering the NSGA-II parameters to guarantee that SWOF 

will converge to the same optimal group of solutions. A total of 700 optimal solutions are located 

on the Pareto Front. It was noticed that multiple optimal solutions could get the same objective 

function values. For example, two layouts might have the same number of shear wall segments 

and the same number of piers formulated. Still, the configuration and the arrangement of those 
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segments can vary, resulting in different eccentricity values. A proper pruning algorithm can be 

applied in order to reduce the search scope among limited choices. Since (Alanani & Elshaer, 

2023) have shown the priority of some parameters over others, the adopted pruning algorithm will 

seek extreme values for each parameter (i.e., objective function), as shown in Fig. 3-17. This 

selection process consists of two main steps: prioritizing and sorting. Prioritizing is a ranking 

process where objective functions are given ranks based on their priority to the designer. As 

presented in Fig. 3-17, The four objective functions are ranked based on their priorities, where the 

number of shear wall segments (S) is ranked first, and the standard deviation of the base moments 

is ranked last. The algorithm will sort the optimal solutions based on the minimum number of shear 

segments. As explained before, multiple solutions on the Pareto Front might yield the same number 

of shear wall segments. Therefore, the algorithm will sort those equivalents based on the minimum 

number of piers formulated (P). Then, if they happen to be equal, layouts can be arranged based 

on the eccentricity of the center of mass and the center of rigidity (E), then the standard deviation 

of base moments (M). The resulting layout of this process can be labelled as (S-P-E-M). With four 

objective functions, the number of all possible optimal layouts will be minimized to 24 out of 700 

solutions, where each objective function can be set to be the 1st priority, and then permutations can 

be applied. As shown in Fig. 3-18, four layouts are selected using the previously described 

algorithm to show the structural response based on the prioritization of each objective function.  
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Fig. 3-17. Selection of optimal solutions on the Pareto Front 

 

Fig. 3-18 Pareto Front optimal layouts and corresponding objective function values. 

 
In Fig. 3-19, a comparison is made between the four selected optimal layouts to show how 

prioritizing objective functions can affect the layout of shear walls. As shown in S-P-E-M, the 
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least number of shear wall segments can be achieved by prioritizing (S). For P-S-E-M, it can be 

noticed that the number of piers is reduced from 11 to 10. The change in the number of piers is not 

tremendous, as the number of piers and segments are expected to be correlated. However, there is 

a noticeable change in the eccentricity and standard deviation of moment values. Through 

prioritizing the eccentricity (E) in E-S-P-M, it was found that it has the same number of shear wall 

segments and piers similar to S-P-E-M. Yet, the difference in priorities pushed SWOF to obtain 

various configurations of shear wall segments that affected the eccentricity and the distribution of 

base moments over piers. Putting the standard deviation of base moments (M) as 1st rank in M-P-

S-E made SWOF increase the number of shear wall segments and piers to maintain the least 

variance in the moments’ distribution over shear wall segments. Moreover, it was noticed that most 

of the generated solutions pushed the constraint values to the limit due to the inversely proportional 

relationship between the number of shear wall segments and the drift. The increase in shear wall 

segments will increase the structural stiffness and reduce the drift, accordingly, as shown in Fig. 

3-20.  
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Fig. 3-19 Values of objective functions for a sample of optimal solutions on the Pareto Front 
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Fig. 3-20. Drift constraint values for a sample of optimal solutions on the Pareto Front 
Regarding the limit state design, it was tackled indirectly in this study through the 𝜎𝑀 objective 

function. For Instance, in Fig. 3-21, Comparing the frequency of occurrence of the demand-to-

capacity ratio of each formulated pier within the four selected solutions shows that Prioritizing the 

𝜎𝑀 as in M-P-S-E, resulted in 89% of piers satisfying the demand-to-capacity ratio based on the 

(National Building Code of Canada, 2015), while only two piers will require slight modification 

in the reinforcement ratio, which will yield a safe design, as presented in Fig. 3-21. Comparing the 

M-P-S-E solution with other optimal layouts with lower rank for 𝜎𝑀 shows an exceedance in the 

demand-to-capacity ratio that requires more adjustment in the final design to satisfy the allowable 

demand-to-capacity ratio. This selection process requires a compromising decision based on the 

designers’ objectives to either use more shear wall segments with an appropriate moment 

distribution or to alter the reinforcement ratio to withstand the generated moment, as shown in Fig. 

3-22.  
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Fig. 3-21. Demand/capacity ratio histogram and probability distribution function for all piers for a sample 
of optimal solutions on the Pareto Front. 

 
Fig. 3-22. Probability distribution function for 5 optimal solutions on the Pareto Front 
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3.5. Conclusion  
In the current study, a novel multi-objective LLRS (i.e., shear walls) layout optimization 

framework is presented for dynamically sensitive tall buildings subjected to stochastic wind load. 

SWOF is developed to find the optimal layout for the Lateral Load Resisting System (LLRS) of 

tall buildings subjected to wind loads. It couples the genetic algorithm (GA), artificial neural 

network (ANN) models, and large eddy simulation (LES). The ANN model estimates the objective 

function values (e.g., eccentricity) and constraint values (e.g., drift) after being trained using a 

FEM-based database of different combinations of design variables (i.e., shear wall layouts) and 

the corresponding objective function and constraint values. NSGA-II is adopted as a multi-

objective optimization algorithm to form a Pareto Front of optimal solutions based on the defined 

objective functions and constraints. Four objective functions are used to control the structural 

response of tall buildings based on the shear walls’ layout, including the total number of shear wall 

segments (∑ 𝑆𝑖), the total number of formulated piers (𝑁𝑃), the eccentricity (𝑒𝐶𝑀𝐶𝑅
) of the center 

of rigidity (𝐶𝑅) from the center of mass (𝐶𝑀), and the standard deviation of shear walls’ base 

moments (𝜎𝑀). In addition to the architectural constraints, two constraints are adopted, which are 

the maximum interstorey drift in Y-direction (𝛿𝑦) and X-direction (𝛿𝑥). In order to reduce the 

number of optimal layout solutions on the Pareto Front, a pruning algorithm is used to limit the 

optimal solutions to 24 layouts. This will enable designers to use the direct selection method to 

choose an appropriate layout that fits the project’s objectives. It was noted that prioritizing the 

standard deviation of base moments yielded six layouts that required slight modifications in the 

reinforcement ratio for less than 10% of shear wall segments to satisfy the required demand-to-

capacity ratio. Moreover, using ANN as a surrogate model proved its efficiency in capturing 

complex variations in objective functions and constraints with a correlation coefficient that ranges 
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between 90% to 98%. In addition, it enables SWOF to become capable of exploring numerous 

possible layouts in an affordable computational time.  
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CHAPTER 4  

4. PERFORMANCE-BASED LAYOUT OPTIMIZATION FRAMEWORK OF TALL 
BUILDINGS SUBJECTED TO DYNAMIC WIND LOAD 

4.1. Introduction 

The whole world is approaching a critical threshold of global warming, reaching a 1.5𝑜𝐶 increase 

in the global average temperature will change the inhabitant life dramatically (IPCC, 2023). As 

global warming and environmental concerns continue to escalate, the construction industry faces 

growing concerns about its significant contribution to greenhouse gas emissions, with a total of 

39% energy related 𝐶𝑂2 emissions. Among the various sectors, building construction is a major 

contributor to embodied carbon emissions, which represent the greenhouse gases emitted during 

the entire life cycle of a building, from material extraction to construction and demolition. The 

embodied carbon emissions only contribute to 11% of the global carbon emissions (Adams et al., 

2019). Consequently, reducing the carbon footprint of buildings has become a crucial requirement 

in the pursuit of sustainable and environmentally responsible practices. In the context of addressing 

climate change and environmental impacts, the structural design of buildings plays a pivotal role. 

During the design stage, careful consideration of structural choices can significantly influence the 

embodied carbon emissions of the building (Cerè et al., 2022; Lagaros et al., 2009). By optimizing 

the design and material selection, engineers can reduce overall structural materials consumption 

through innovative design methodologies that reduce embodied carbon emissions. Performance-

Based Design (PBD) offers a promising approach to address these challenges. By focusing on the 

performance of buildings under various environmental loads, such as wind and seismic forces, 

PBD seeks to design structures that are not only safe and reliable but also more sustainable 

(Mokarram & Banan, 2018). In the last few decades, Performance-based design (PBD) has grasped 

the attention of stakeholders and municipalities toward having a quantitative approach that can 
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predict buildings' performance through catastrophic events (e.g., extreme wind speeds, tornados, 

floods). These privileges provided by PBD make it more favourable compared to the deterministic-

design approach, which lacks the ability to consider the stochastic nature of loads and relies on 

conservative factors of safety to include the uncertainties of loads, materials and construction. 

These perspective guidelines will most probably result in noneconomic and inefficient designs, 

especially when lateral loads are considered for tall buildings. The temporal and spatial dynamic 

nature of lateral loads (e.g., wind and earthquakes) require an advanced simulation to capture tall 

buildings' dynamic behaviour accurately. In general, PBD methods provide specific performance 

objectives that should be met. Moreover, reliability analysis included within PBD, either explicitly 

or implicitly, offers a thorough consideration of all uncertainties within the design (Valdebenito & 

Schuëller, 2010; Wen, 2001). The need to assess the standing buildings to identify their capacity 

for rehabilitation, especially after severe earthquakes, led to the development of the Performance-

Based Seismic Design (PBSD) approach. PBSD emerged as a response to the limitations of 

traditional deterministic provisions for seismic design. The 1990s marked the initial development 

of PBSD when significant economic losses and functional disruptions occurred during the Loma 

Prieta and Northridge earthquakes (Petrini & Ciampoli, 2012). The need for resilient communities 

encourages organizations like the Applied Technology Council (ATC), funded by FEMA, to 

develop procedures for implementing PBSD. The publication of the NEHRP Guidelines and 

Commentary for Seismic Rehabilitation of Buildings in 1997 marked the foundation of the first 

generation of PBSD methods (Federal Emergency Management Agency (FEMA), 1997). These 

guidelines introduced key concepts that underpin the philosophy of PBSD and serve as the basis 

for applying the principles of Performance-Based Design (PBD) to other natural and man-made 

hazards. Other influential reports, such as ATC-32, ATC-40, and FEMA 356 ((FEMA) & (ASCE), 
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2000; Applied Technology Council, 1996a, 1996b), also contributed to the development of PBSD 

during this period. The developed PBSD allowed for exploring various lateral load resisting 

systems not included in the code provisions and making exceptions to code exact wordings. The 

main concept introduced through these reports is the performance objectives, which consist of 

specific design events and performance levels. Standard performance levels were established with 

performance-oriented descriptions, such as fully operational, functional (Immediate Occupation), 

life safety, and near collapse (Collapse Prevention). These performance levels quantified both 

structural and non-structural damages using response parameters and limitations like inter-story 

drifts, inelastic member deformations, and member forces. In the first generation of PBSD 

procedures, a building meets the requirements if the member forces and deformations on each 

element satisfy the predefined limits (e.g., drift limitations). This approach aimed to move beyond 

simply achieving life safety and avoidance of collapse, acknowledging that these implicit 

performance targets could not reliably be met using traditional prescriptive approaches.  

However, several limitations were identified, including the focus on component-level damage 

assessment. To address these shortcomings, FEMA's recently published P-58 volumes outlined a 

seismic performance assessment methodology that explicitly considers uncertainties in response 

prediction and communicates performance through system-level measures (FEMA P58-6, 2018). 

It is important to note that the Pacific Earthquake Engineering Research (PEER) center’s 

framework, while developed for PBSD, is adaptable and can be applied to other natural hazards 

(S. M. J. J. Spence & Arunachalam, 2022). This flexibility enables the framework to be used in 

various decision models, extending the application of PBD principles to achieve resilient designs 

for mitigating the effects of different natural hazards. Since the core of PBD is allowing a wide 

spectrum of alternative solutions relying on four main stages of analysis: from hazard analysis to 
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structural analysis and damage analysis and ending up with a loss analysis for decision making. 

Building upon these principles and methodologies of PBSD, similar concepts and approaches can 

be extended to Performance-Based Wind Design (PBWD) to enhance the understanding and 

resilience of structures subjected to wind loads through quantifying the intensity of wind events 

and reducing loss analysis.  

Various studies proposed formulations, approaches and frameworks of PBWD to provide a 

guideline that engineers can follow and fulfill the stakeholders' objectives (Abdelwahab et al., 

2023; Bernardini, Spence, Kwon, et al., 2015; Bezabeh et al., 2020; Jeong et al., 2021; Preetha 

Hareendran et al., 2022). (ASCE, 2019) is considered the first PBWD official guidelines that 

provide an alternative for the (ASCE, 2017; IBC, 2021) with three different design processes are 

prescribed to allow for linear elastic analysis and Nonlinear Time History Analysis (NLTHA) that 

would enable limited inelastic deformations in MWFRS. As a result, complex computational 

models are used to adopt reliability/probability analysis, and typical trial and error will be 

inefficient in maintaining the required goals of PBD (Methods et al., 2008). Consequently, it is 

recommended to couple the PBD procedure with an optimization algorithm that can handle the 

cumbersome design procedure (S. M. J. Spence & Kareem, 2014). PBD can be considered a form 

of reliability-based design through which uncertainties are quantitatively represented using 

probabilities of failure and expected values.  

Throughout the literature, multiple philosophies are introduced to tackle this problem. One of the 

extensively used approaches is decoupling. In traditional reliability-based design optimization 

(RBDO), the optimization and reliability analysis are nested, leading to computationally intensive 

iterations, especially for complex systems with uncertainties. The decoupling approach separates 

the reliability analysis from the optimization loop by defining approximate subproblems. These 
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subproblems retain essential characteristics of the original nested problem but are formulated for 

more efficient solutions in a deterministic, approachable way. These functions represent reliability 

terms, capturing essential engineering demand parameters while avoiding computationally 

intensive probabilistic evaluations. By iteratively solving these subproblems, engineers efficiently 

explore the design space and find reliable solutions with reduced computational effort, striking a 

balance between efficiency and accuracy in the presence of uncertainties. For instance, (M. F. 

Huang et al., 2012) developed an RBDO method for wind-induced tall buildings subjected to wind 

loads extracted from a wind tunnel. For a fixed geometric shape of the building, the wind-induced 

acceleration was the main building's response that is assessed through the developed method using 

a decoupling approach by introducing an intermediate design parameter like the mean value of 

modal frequency that helps decouple the problem into two subproblems. The first subproblem is a 

probabilistic optimization using an inverse reliability algorithm to find the optimal mean value of 

modal frequency. The second subproblem is a deterministic optimization to find the minimum size 

of design members for the optimal mean value of modal frequency using the optimality criteria 

algorithm. PBDO approaches often face challenges in comprehensively addressing system-level 

constraints that stakeholders can easily understand. To address this, (Suksuwan & Spence, 2019) 

propose a robust framework that handles constraints in the form of loss metrics. Their approach 

incorporates a stochastic wind load generation technique using wind tunnel data and fragility and 

consequences databases to establish the loss model. Stochastic simulation is utilized within the 

subproblems after decoupling. While several studies have explored the application of the 

decoupling approach in the context of fixed geometry buildings, few studies can be found tackling 

the initial/preliminary design stages where the building's layout should be identified. For example, 

(Bobby et al., 2014) proposed a framework that includes model idealization with time-variant wind 
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loads on slender structures. The framework is also based on a decoupling strategy through which 

a reliability analysis for the current design point is applied to form an approximate optimization 

problem that can be fully solved to produce a new design point. A fragility-based quasi-static load 

is formulated to equalize the peak response of a dynamically excited system using the concepts of 

the Monte Carlo algorithm to yield a static topology optimization problem that can be solved using 

a gradient-based algorithm. The approximate representation of the limit state functions associated 

with failure events has proven efficient since it allows for more affordable computations. Yet, 

applying such approaches in the early design stage is still questionable.  

The adoption of surrogate models can be an appropriate alternative approach to reduce 

computational costs that will arise with the high dimensionality accompanied by the early-stage 

design problems. By embracing PBD principles in early-stage designs, the construction industry 

can actively contribute to mitigating global warming effects and moving towards a more 

sustainable and resilient built environment. For example, (Zaker Esteghamati & Flint, 2021) 

proposed a framework for building a generalizable surrogate model for mid-rise reinforced 

concrete buildings to assess the seismic vulnerability and life cycle assessment. The surrogate 

model proved its efficiency not only for PBSD but also for PBWD. For instance, (Micheli, Alipour, 

et al., 2020b) developed multiple Kriging surrogate models for probabilistic cost assessment of tall 

buildings subjected to wind loads generated by a spectral approach. Each story had a surrogate 

model that accepted mass, stiffness, wind speed, and wind turbulence as inputs, while the 

maximum story drift and peak acceleration were the outputs that would be used in the cost 

assessment fragility curves. In addition, Surrogate models are used in aerodynamic mitigation and 

optimization of tall buildings, which is considered part of the PBWD philosophies (Bernardini, 

Spence, Wei, et al., 2015; Ding et al., 2019; Elshaer, Bitsuamlak, El-Damatty, et al., 2017; Elshaer 
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& Bitsuamlak, 2018; Qiu et al., 2021). When it comes to layout optimization, the core of the early-

stage design, limited studies could be found considering the shear wall layout optimization 

(Alanani & Elshaer, 2023; H. Lou et al., 2021b; H. P. Lou et al., 2021; Y. Zhang & Mueller, 2017; 

X. Zhou et al., 2022). The previous studies focused on adopting static wind loads, while few studies 

considered the dynamic nature of wind (Alanani et al., 2024; Bobby et al., 2016; Gomez et al., 

2021; Noormohamadian & Salajegheh, 2021). It can be noticed that optimization techniques aim 

to minimize the environmental impact of construction while ensuring the building's structural 

integrity and safety. Employing advanced optimization methods allows engineers to explore 

various design alternatives, evaluate the environmental implications, and arrive at an optimal 

solution that strikes a balance between structural efficiency and minimized embodied carbon 

emissions. While the Performance-based design approach provides resilient designs that are 

considered more optimal than deterministic designs, achieving such results requires linear or 

nonlinear analysis that adopts time history analysis to capture structural capacity degradation using 

dynamic loads. Yet the integration of optimization into the preliminary design stage is essential 

for maintaining the optimal designs in advanced design stages, achieving sustainable construction 

practices and mitigating the building sector's contribution to climate change.  

In this study, a Performance-based wind design framework is introduced to early-stage design 

where the MWFRS layout should be identified. A Deep Neural Network (DNN)-based surrogate 

model is adopted to provide a computationally efficient evaluation for objective functions and 

constraints. The adopted surrogate model is built based on an automated FEM-generated database 

using ETABS (CSI, 2018) and (MATLAB, 2023) code. This surrogate model proved its ability to 

capture the critical engineering demand parameters required for PBWD. The inclusion of time 

history analysis during the optimization process has been challenging, as it often requires 
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simplifying the structural system. However, using the surrogate model significantly reduces the 

computational time for the optimization process. A non-gradient optimization algorithm, 

specifically a genetic algorithm, is employed to identify the optimal shear wall layout and columns’ 

locations against dynamic wind and gravity loads, as specified by (ASCE, 2022).  

4.2. Adopting Performance-Based Wind Design for tall building optimization 
In the last few decades, multiple studies have been conducted to provide a framework for applying 

PBD concepts to wind loads. The PBWD pre-standards published by the ASCE are a result of the 

multiple studies conducted to standardize the process of applying PBWD for tall buildings (ASCE, 

2019). It offers clear performance objectives, ensuring that buildings meet specified standards 

under varying hazard levels. Moreover, it incorporates acceptance criteria for overall system 

performance, encompassing both structural and building envelope aspects. This comprehensive 

guideline covers critical aspects of PBWD, such as risk categorization, dynamic analysis (both 

linear and nonlinear), procedures for different wind loads, and requirements for MWFRS. Fig. 4-1 

shows the procedure prescribed by the ASCE and presented by (Abdelwahab et al., 2023). It goes 

through several steps, from identifying the risk and the performance objectives with the 

accompanying acceptance criteria to gaining agreement from the peer review team and 

implementing the construction observations and supplementals. 
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Fig. 4-1 ASCE PBWD pre-standards procedure (Abdelwahab et al., 2023) 

 
There are three main objectives that were identified by the pre-standards (ASCE, 2019): (i) 

Occupant Comfort (OC), (ii) Operational and (iii) Continuous Occupancy (CO). These objectives 

define the desired performance for MWFRS, the building’s envelope and the non-structural 

components and systems (e.g., cladding).  

The Occupant Comfort objective is to maintain an elastic behaviour for the structural system with 

an independence of risk categories. Using frequency-dependent peak acceleration limits minimizes 

the building motion and vibration at a design wind of mean recurrence interval (MRI) of 1-month, 

1-year, and 10-year mean. For Operational objectives, elastic behaviour is also maintained, and 

the building should remain operational during windstorms of the selected risk category of II, III, 

IV at 10, 25 and 50-years MRI, respectively. The peak drift ratio is recommended to be H/400 to 

H/500, where H is the total height of the building, while no residual drift is allowed. For the non-

structural elements, the deformation damage index (DDI) method can be used based on the 

displacement of four nodes at the damage zone. Regarding the Continuous Occupancy objectives, 
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minor yielding is allowed at the deformation-controlled elements of the MWFRS while 

maintaining a low probability of minor or total collapse for all risk categories at an MRI of 700, 

1700 and 3000 years. In addition, the building envelope should be designed to resist a wind-driven 

rain of a 25-year MRI for risk category II and a 50-year MRI for risk categories III and IV while 

having all non-structural components attached. Regarding the design of the MWFRS, a peak drift 

ratio of H/200 to H/300 is permitted. In contrast, the residual drift ratio, which occurs after 

experiencing minor inelastic behaviour, shall not exceed H/1000 or h/1000, where h is the story 

height. Regarding the strength limits, three main methods can be adopted, as shown in Fig. 4-2. It 

can be noticed that the design methodology should go through either linear or nonlinear time 

history analysis and multiple iterations are required to get a satisfactory design that can meet the 

acceptance criteria.  

 

Fig. 4-2 Outline of PBWD MWFRS analysis and acceptance methods for each performance objective 
(ASCE, 2019) 
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The ASCE prestandards have provided various recommendations to reduce the dynamic wind-

induced responses, either by altering the buildings’ outer shape to reduce the captured wind load, 

altering the structural properties of the buildings, or adding supplementary damping. 

Consequently, developing an optimization framework within the design process becomes 

necessary for the sake of the applicability and affordability of the PBWD procedures.  

 

Fig. 4-3 Method 1 procedure for Continuous Occupancy performance objective of MWFRS 

 
Previous research has focused on Occupant Comfort (OC) performance (Bernardini, Spence, 

Kwon, et al., 2015; Fu et al., 2018) with limited studies on Continuous Occupation (CO) 

performance (S. M. J. Spence & Kareem, 2014). Accordingly, this study will focus on the 

applicability of an optimization algorithm within the CO design procedure for the MWFRS, 

precisely the plan layout of MWFRS. Including the nonlinear behaviour within a high-dimensional 

problem is believed to be computationally challenging. In the developed framework, linear time 

history analysis (LTHA) is preferred to reduce the computational cost accompanied by the 

nonlinear time history analysis (NLTHA); thus, method-1 is selected where using an optimization 

algorithm can be adopted to systematically select a structural layout that will satisfy the acceptance 
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criteria and avoid NLTHA within the conceptual design process of the MWFRS, as shown in Fig. 

4-3. 

4.3. Structural-Wind Optimization Framework (SWOF) 
SWOF was initially developed to provide a deterministic-based design utilizing the National 

Building Code of Canada (NBCC) (Alanani et al., 2024; Alanani & Elshaer, 2023). The current 

study makes multiple improvements to the framework to embrace Performance-Based Wind 

Design (PBWD) principles, incorporating time history analysis based on the latest published 

prestandards (ASCE, 2019). This developed framework leverages the advancements in wind 

engineering to offer a comprehensive approach to structural optimization. As shown in Fig. 4-4, 

The framework is based on a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with a 

validated Deep Neural Network (DNN) used for objective functions and constraints evaluations 

through the optimization process to ensure that the acceptance criteria for the continuous 

occupancy (CO) performance objectives are maintained. 
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Fig. 4-4 Structure wind optimization framework (SWOF) flowchart (Alanani et al., 2024)  

4.3.1. Case study  
A three-dimensional rectangular 20-story reinforced concrete residential building is adopted for 

this case study, according to (Alanani & Elshaer, 2023). The MWFRS is chosen as a shear wall 

system, while columns are utilized as a Gravitational Force Resisting System (GFRS). The 

building stands at a 70 m height, with each story having a height of 3.5m. A dead load of 5 𝑘𝑁/𝑚2, 

and a live load of 1.9 𝑘𝑁/𝑚2 are added to all the floors' slabs. For material properties of all 

reinforced concrete elements, a concrete compressive strength of 𝑓𝑐
′ = 35 𝑀𝑃𝑎 and reinforced 

steel of yielding strength 𝑓𝑦 = 413 𝑀𝑃𝑎 are used. The dimensions and shear wall thickness of 

reinforced concrete columns are fixed throughout the whole process. A domain of all possible 

positions of shear walls and columns is identified based on a proposed architectural layout and 

thorough consideration of non-structural elements. To determine the length and shape of shear 

walls, a discretization of this domain is executed, employing a predefined segment size of 1.0 m. 



110 
 

This process results in the division of the domain into 170 segments of shear walls, each measuring 

1.0 m, as shown in Fig. 4-5. In every model, distinct column locations are determined to prevent 

overlap between shear wall segments and columns. The distribution of columns is governed by a 

predefined span of 6 𝑚, to minimize alterations in the slab's straining actions as vertical supports 

are strategically placed, whether columns or shear walls in those areas. 

 

Fig. 4-5 The case study building plan layout with structural details and domain. 

4.3.2. Wind load generation  
The determination of wind speeds should be carried out using probabilistic wind climate analysis 

responses at varying return periods based on specified risk categories. For the sake of 

demonstration, risk Category II is chosen with an MRI of 700. In order to generate a turbulent 

inflow, the consistent discrete random flow generation (CDRFG) (Aboshosha et al., 2015) 

technique is utilized with a mean hourly wind speed at 33 𝑓𝑡 height, 𝑣̅3600 = 39.68 𝑚/𝑠. Later 

on, the framework output results are compared to ASCE 7-22 (ASCE, 2022), an equivalent 3-

second gust wind speed, to quantify the effect of time history analysis over the directional 
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procedure method within the optimization framework. Turbulent intensity, turbulence length scale 

and velocity profile regression coefficients are used as per (Elshaer et al., 2016). 

A validation model for an experimental wind tunnel test is conducted on a selected tall building, 

which is explained in detail in section 3.3.1.1. This step provides a validated computational domain 

that can be used later in the adopted case study. 

The previously validated computational domain and boundary conditions are used to investigate 

the aerodynamic performance of the selected building. The chosen case study building replaces 

the Commonwealth Advisory Aeronautical Research Council (CAARC) building bluff body with 

the dimensions described in section 4.3.1. In order to extract wind load time histories, the building 

is discretized into 20 derived surfaces representing the tributary area of each storey in the building. 

These surfaces are responsible for integrating forces over time in the x and y directions. As shown 

in Fig. 4-6, a sample of wind load time history at the 10th floor is generated for longitudinal 

direction (Y-axis), across direction (X-axis) and torsional direction (Z-axis). For simplification, 

eight angles of attack are tested (i.e., 0o, 45𝑜 , 90𝑜 , 135𝑜 , 180𝑜 , 225𝑜 , 270𝑜 , 360𝑜). Then, the 

generated time histories for wind loads are defined in the FEM model as time history functions 

and applied at each storey's center of gravity. 
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(a) (b) 
Fig. 4-6. (a) Longitudinal and across wind forces and torsional wind moment time history at the 10th 

floor, AOA=0𝑜 (b) Highlighted derived surface for the 10th floor 

 

4.4. Surrogate model development 

Throughout the literature review, it has been demonstrated that the usage of surrogate models 

improves the affordability of objective function evaluation, especially those computationally 

expensive (Abu-Zidan & Nguyen, 2023; Lalonde et al., 2021; W. T. Lu et al., 2023). This section 

outlines the process of building an efficient surrogate model capable of approximating the 

structural response based on various combinations of shear wall segments. The initial step involves 

employing a systematic sampling technique to ensure a representative set of data points for training 

the DNN. Latin Hypercube Sampling (LHS) is selected for its ability to efficiently cover the 

multidimensional design space (McKay et al., 1979), providing a diverse set of 1000 samples, 

ensuring that each design variable contributes to all generated samples with the same probability 

of occurrence. Each sample represents a unique configuration of 170 binary variables 

corresponding to the layout's presence or absence of shear walls. Three main structural parameters 

are chosen as constraints for the optimization problem: (i) the peak drift, (ii) the demand-to-
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capacity ratio for columns and (iii) the demand-to-capacity ratio for walls. All training samples are 

numerically modelled through ETABS OAPI (CSI, 2018) via (MATLAB, 2023). The process of 

identifying parameters and hyperparameters is established using performance metrics: The mean 

squared error (MSE) and the coefficient of determination (R-squared), as presented in equations 

(4-1) and (4-2). 

𝑀𝑆𝐸 =  
1

𝑛
∑ ( 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖

− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
)

2𝑛
𝑖=1   (4-1) 

𝑅 =  √1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 , 

𝑆𝑆𝑅 = ∑ ( 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖
− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

)
2𝑛

𝑖=1 , 

𝑆𝑆𝑇 = ∑ ( 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
− 𝑦̅𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

)
2𝑛

𝑖=1  

(4-2) 

 

 

The architecture for the proposed DNN is shown in Fig. 4-7, where eight hidden layers of 400 

nodes are used with eight attached bias nodes for each layer. Two transfer functions are used; all 

hidden layers included Saturating linear transfer functions except those in blue that used the 

Hyperbolic tangent sigmoid transfer function.  

Wilson Wang
Sticky Note
May not be correct
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Fig. 4-7 Proposed Deep Neural Network (DNN) architecture. 

The DNN is trained using a subset of the data (70%) while reserving the remaining portion for 

validation. The training process minimizes a defined loss function through backpropagation and 

optimization techniques. Mean Squared Error (MSE) is chosen as the loss function to measure the 

disparity between the predicted and actual structural responses. As shown in Fig. 4-8, the training 

process is stopped once no progress is noticed in the validation results to avoid overfitting the 

trained model. It can be noticed that 85% of samples do not exceed 10% error, which indicates the 

efficiency of the developed model, as shown in Fig. 4-9 
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Fig. 4-8 Mean Square Error for 𝐷/𝐶𝑤𝑎𝑙𝑙 DNN 

 
Fig. 4-9 (a) Error Histogram, and (b) Regression plot for 𝐷/𝐶𝑤𝑎𝑙𝑙 results 

4.5. Optimization Problem definition  

By formulating the problem as a multi-objective optimization task, we aim to concurrently lower 

the structural material by minimizing (a) the total number of shear wall segments, (b) the number 

of piers (connected shear wall segments), and (c) the torsional effect via lowering eccentricity 

distance between the center of mass and center of rigidity (𝑒𝐶𝑀𝐶𝑅
). These three objectives are 

aimed to be lowered while ensuring the satisfaction of the performance criteria constraints of (i) 
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peak drift 𝛥𝑝𝑒𝑎𝑘, (ii) demand-to-capacity ratio (𝐷/𝐶) of the building’s beams, and (iii) D/C of the 

columns in accordance with the PBWD standards (ASCE, 2019). The optimization variables 

encompass the MWFRS layout, directly impacting the building's overall structural integrity and 

response to dynamic wind loads. The layout shown in Fig. 4-5 will go through a preprocessing 

stage in which it will be discretized into 1 m segments, and each segment will be represented as a 

binary design variable. In this representation, a value of 1.0 indicates that the segment is active 

and utilized in the design, while a value of 0 signifies that the segment is inactive. Equation (4-3) 

shows the mathematical formulation of the optimization problem. 𝑆𝑖 is a set of design variables 

representing each shear wall segment and 𝐶𝑇 is the set of constraints. Based on the (ASCE, 2019), 

the peak drift, 𝛥𝑝𝑒𝑎𝑘, should not exceed 𝐻

200:300
 , noting that 𝐻 is the total height of the building 

and this limit should be applied on at least two orthogonal direction of building’s plan. In addition, 

deformation-controlled elements of MWFRS, shear walls in our case (𝐷/𝐶)𝑤𝑎𝑙𝑙𝑠, demand-to-

capacity ratio should not exceed the 1.25 while force-based elements should not exceed 1. It’ s 

worth noting that to leverage the capabilities of the algorithm in identify the length and shape of 

shear walls without getting standalone single segments that can behave as a column due to the 

small aspect ratio that equals to 3.33, the 𝑁𝑠 constraint is introduced to identify the number of 

standalone segments that is not attached to any other group of shear walls using the graphs model 

algorithm. Moreover, a sub-process is introduced to the algorithm to only allow symmetric layouts 

around the longer side center line of the building. The population generation of shear wall segments 

is limited to 80 segments from the upper half of the layout then symmetrical elements are selected 

from the other half to ensure yielding a symmetric layout for shear walls.  
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𝑓𝑖𝑛𝑑 𝑆𝑖 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑆𝑖
 

𝑁

𝑖=1

, 𝑁𝑝, 𝑒𝐶𝑀𝐶𝑅
) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∶ 
𝐶𝑇𝑜𝑡𝑎𝑙 = ( 𝛥𝑝𝑒𝑎𝑘𝑥

≤ 300 𝑚𝑚, 𝛥𝑝𝑒𝑎𝑘𝑦
≤ 300 𝑚𝑚,

(𝐷/𝐶)𝑤𝑎𝑙𝑙𝑠 ≤ 1.25, (𝐷/𝐶 )𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ≤ 1, 𝑁𝑠 = 0) 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑖 ∈ {0,1} (𝑖 = 1,2, … , 𝑁 ), 𝑁 = 170  

(4-3) 

 

 

Regarding the NSGA-II parameters, they are identified based on a trial-and-error procedure 

yielding to the presented values in Table 4-1. 

Table 4-1 NSGA-II parameters 

Population 
size 

Number of 
generations 

Mutation 
function 

Mutation 
scale 

Mutation 
shrink 

Crossover 
ratio 

Constraints (𝐶𝑇𝑜𝑡𝑎𝑙) 

𝛥𝑝𝑒𝑎𝑘 (𝐷/𝐶)𝐶𝑜𝑙𝑢𝑚𝑛𝑠  (𝐷/𝐶)𝑤𝑎𝑙𝑙𝑠  𝑁𝑠 

5000 2000 “Mutation 
gaussian” 1 0.5 0.8 0.25 1 1.25 0 

 

4.6. Results and discussion 

4.6.1. Non-dominated sorting genetic algorithm-II  
This section presents the output of the optimization process, and it shows how the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) is utilized to achieve a Pareto front representing optimal 

designs. The algorithm was executed for six independent runs, each with a different population 

size, ensuring the robustness and convergence of the optimization procedure. For the sake of 

demonstration, the eccentricity objective function convergence is presented in Fig. 4-10, while a 

similar observation has been noticed at the other two objective functions where thousands of 

possible layouts are tested. 
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Fig. 4-10 Fitness function of the eccentricity objective function through different population sizes  

 

The NSGA-II algorithm operates through multiple generations of evolving populations (Deb et al., 

2002b). Parents are selected based on their dominance and crowding distance at each generation, 

subsequently undergoing crossover and mutation to generate offspring. The offspring, combined 

with the parent population, undergoes non-dominated sorting to identify Pareto fronts. The 

selection process then chooses individuals for the next generation, considering dominance and 

crowding distance, as shown in Fig. 4-11. The concept of dominance plays a crucial role in NSGA-

II, where a solution dominates another solution if it is equal or better in all objectives and strictly 

better in at least one. During the non-dominated sorting, individuals are categorized into fronts 

based on their dominance relationships. Crowding distance is then calculated within each front to 

guide the selection. It measures the density of solutions around an individual. Solutions at the 

extremities of a front have higher crowding distances, indicating greater diversity. This diversity 

promotes a well-distributed Pareto front, avoiding solutions clustering in specific regions.  
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Fig. 4-11 NSGA-II procedure (based on (Deb et al., 2002b)) 

The obtained 3D Pareto front provides a comprehensive view of trade-offs between structural 

weight, number of piers, and eccentricity, as shown in Fig. 4-12. The convex shape of the front 

implies that as optimization tends towards reducing the number of piers and segments, the 

associated increase in eccentricity is moderated. These results empower structural engineers and 

designers with a set of options, allowing them to tailor solutions based on project-specific 

constraints and preferences. In this case study, one solution will be selected based on the least 

number of shear wall segments and the least number of piers possible with a convenient 

eccentricity that does not trigger a severe torsional behaviour, as shown in Fig. 4-13. The selected 

layout can be considered one of the optimal solutions on the bounds of the Pareto front to 

investigate the efficiency of the proposed framework. Later in this paper, the structural nonlinear 

behaviour will be studied to quantify how much nonlinearity can be induced with the proposed 

PBWD 𝐷/𝐶 for deformation-controlled elements (i.e., shear walls).  
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Fig. 4-12 3D Pareto Front with five samples of possible MWFRS layouts  

 

 
Fig. 4-13 Selected optimal layout-A 

 

4.6.2. Linear Time History Analysis (LTHA)  
In this study, Linear Time History Analysis (LTHA) was utilized as the numerical assessment for 

the generated training samples to assess the dynamic response of the structure under wind loading 

conditions. The LTHA was implemented using modal superposition to solve the dynamic 

equations. Three main wind load components are applied: along-wind, across-wind, and torsional 

wind loads are applied by use of validated Computational Fluid Dynamics (CFD) simulations, 
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capturing the intricate flow patterns and variations in wind speed. The P-Delta effect, accounting 

for geometric nonlinearity, was considered in the analysis using dead loads and 50% of live loads 

in an iterative procedure till convergence is achieved, as recommended by the prestandards (ASCE, 

2019). By incorporating the modal superposition time domain analysis, mode shapes are 

determined accurately, with an output time step of 0.1s, including the P-delta effect yielding the 

natural frequency of the first three modes of the optimal solution to be 𝑓1 = 0.143 𝐻𝑧, 𝑓2 =

0.33 𝐻𝑧, and 𝑓3 = 0.42 𝐻𝑧. A modal damping ratio of 5% is defined based on the (ASCE, 2022). 

As shown in Fig. 4-14, it can be noticed that the ASCE code regulations can provide acceptable 

accuracy that is slightly higher than the time-history analysis for along wind direction of a 0𝑜 

AOA. Regarding the across-wind behaviour, as presented in Fig. 4-15, the LTHA shows a lower 

response in the peak drift than the code values that reach 15 %. This can be related to the 

conservative considerations of the ASCE code specifications that were found to have more 

variance in across wind pressure coefficients compared to wind tunnel results where the 

dominancy of wake-induced effects is present (Badri et al., 2015; Kijewski, T; Kareem, 1998; 

Kwon & Kareem, 2013).  



122 
 

 

Fig. 4-14 Structural response via along wind load: (a) peak drift, (b) storey drift, (c) base shear, and (d) 
overturning moment of layout-A 

 

Fig. 4-15 Structural response via across wind load: (a) peak drift, (b) storey drift, (c) base shear, and (d) 
overturning moment of layout-A 

 

4.6.3. Nonlinear Time History Analysis (NLTHA)  
Since the proposed framework yielded a (𝐷/𝐶)𝑤𝑎𝑙𝑙 > 1, it is required to apply NLTHA to quantify 

the true response of the shear wall and to check that the peak residual story drifts are within the 

required limit of 𝐻/1000 and ℎ/1000 per story. A computationally efficient nonlinear modal time 

history analysis, namely the Fast Nonlinear Analysis (FNA) method (Wilson, 2002) is adopted as 
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it is applicable for small to moderate inelastic deformations (Jeong et al., 2021). Adopting accurate 

modelling of deterioration incorporating geometric and material properties is essential to capture 

the strength and stiffness degradation. Material properties should be presented using well-

established constitutive models to represent the fibre behaviour for concrete (Mander et al., 1988) 

and for steel (Menegotto & Pinto, 1973). The deterioration in deformation-controlled elements 

(i.e., Shear wall elements) is modelled using fiber hinges of coupled axial loads, 𝑃1 , and bending 

moment around the strongest axes, 𝑀3. The hysteresis behaviour of each fiber follows a force-

deformation curve based on the ((FEMA) & (ASCE), 2000). Consequently, neither effective 

stiffness nor the code strength reduction factors are included through the NLTHA. Three main load 

combinations are proposed by the PBWD prestandards (ASCE, 2019), as presented in equations 

(4-4), (4-5), and (4-6), where 𝐷𝐿 is dead load, 𝐿 is expected live load, 𝐿𝑟 live load at roof, and 

𝑊𝑀𝑅𝐼 is wind load at specific MRI. As shown in Fig. 4-16, almost zero inelastic deformation has 

been noticed in the main orthogonal directions, and it can be explicitly noted in Fig. 4-17, where 

all shear walls did not exceed 51% of the deformation required to reach the yielding capacity. 

When we delve deeper into the edge fiber behaviour of the dominant pier shown in Fig. 4-18, it 

can be noticed that yielding stress was not reached. Yet, showing the interaction behaviour of axial 

loads 𝑃1, and moments around both axes 𝑀2 and 𝑀3. The loads are incubated by the yielding 

surface as shown Fig. 4-19 where the two extreme AOA loads are plotted. 

𝐿𝐶1 =  1.0𝐷𝐿 + 1.0𝐿 + 1.0𝑊𝑀𝑅𝐼  (4-4) 

𝐿𝐶2 =  1.2𝐷𝐿 + 1.0𝐿 + 0.5𝐿𝑟 + 1.0𝑊𝑀𝑅𝐼 (4-5) 

𝐿𝐶3 =  0.9𝐷𝐿 + 1.0𝑊𝑀𝑅𝐼 (4-6) 
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Fig. 4-16 Peak drift in the (a) x-direction, (b) y-direction and (c) the rotation time history at the top story 
by LC2 
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Fig. 4-17 (a) Performance D/C results for shear walls, and (b) strength capacity results for columns  

 

 
Fig. 4-18 Edge fiber stress-strain results for (a) concrete and (b) steel reinforcement at Pier-2 
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Fig. 4-19 𝑃1 − 𝑀2 − 𝑀3 Interaction diagram for Pier-2 with internal loads due to 0𝑜 𝑎𝑛𝑑 225𝑜 Angles of 

Attack (AOA) 

4.7. Conclusion 
In this paper, a layout optimization framework is presented for tall buildings subjected to stochastic 

wind loads. The developed framework is compatible with the recommendation of the PBWD 

prestandards (ASCE, 2019) by considering three objective functions: the total number of shear 

wall segments (∑ 𝑆𝑖) as a representation of total material volume, the total number of formulated 

piers (𝑁𝑃), and the eccentricity (𝑒𝐶𝑀𝐶𝑅
) of the center of rigidity (𝐶𝑅) from the center of mass (𝐶𝑀)  

as a representation of torsional behaviour, while constraints are defined based on the prestandards 

allowable demand-to-capacity ratio for force-controlled and deformation-controlled elements in 

addition to the peak drift ratios. This framework focuses on the Continuous Occupancy (CO) 

performance with Linear Time History Analysis (LTHA) using wind loads time-histories of 8 wind 

angles of attack. To overcome the challenges of the domain complexity, a Non-Dominant Sorting 

Genetic Algorithm (NSGA-II) is used that managed to adopt 170 design variables to yield a 3D 

Pareto front of possible solutions that are not dominated by any other solution based on the 
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provided criteria. The developed DNN-based surrogate model that tested a very large number of 

possible layouts in a few minutes makes it computationally efficient. It also shows a high capability 

in capturing the structural response of a FEM output subjected to CFD-generated wind loads with 

an error of less than 10% for 85% of generated samples. A case study of a 70 m tall building is 

presented to show the applicability of the developed framework. Furthermore, a comparison is 

made between the framework’s optimal layout behaviour, the ASCE 7-22 directional procedure 

generated wind loads, and nonlinear time history analysis (i.e., FNA method) to quantify the 

effectiveness of the developed framework. It was found that the ratio identified by the PBWD 

prestandards (ASCE, 2019) for allowable demand-to-capacity ratio for deformation-controlled 

MWFRS required more research to ensure that limited nonlinearity can occur under dynamic wind 

loading using LTHA.  
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CHAPTER 5  

5. DATA-DRI EN SURROGATE MODELS FOR ESTIMATING TALL BUILDING 
WIND RESPONSE 

5.1. Introduction 
The last few decades have witnessed an increasing demand to adopt performance-based design 

(PBD) frameworks that aim to ensure tall buildings' safety, functionality, and resilience under 

various loading conditions, with the wind being a predominant factor (Abdelwahab et al., 2023). 

In contrast to the traditional structural design practices that rely on the equivalent static wind load 

method, the performance-based wind design (PBWD) considers the unique characteristics and 

dynamic nature of wind forces acting on tall structures, especially those of high natural period that 

require a wind tunnel test (Iancovici et al., 2022). It allows for a more holistic evaluation, 

considering factors like wind-induced vibrations, occupant comfort, and structural reliability (S. 

M. J. J. Spence & Arunachalam, 2022). However, deploying the PBWD is challenging in the 

conceptual design phase due to the multiple uncertainties and the high computational cost required 

to consider such dynamic behaviour, especially when multiple design iterations are needed. The 

exhaustive search design approach will be cumbersome to yield an economical design efficiently. 

Thus, it is recommended to adopt an appropriate optimization algorithm that can handle the high 

dimensionality of the tall buildings' structures. The recently published PBWD prestandards 

advocated the utilization of optimization frameworks in the PBD process to enhance the 

applicability of PBWD frameworks (ASCE, 2019). This direction has highlighted the need to 

develop surrogate models that promptly provide accurate and rapid estimation for structural and 

performance assessments using statistical models (Westermann & Evins, 2019). These models act 

much faster than analytical or physics-based models to provide parameters of interest. Since the 

1980s, Machine Learning (ML) algorithms have shown promising performance in capturing the 
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nonlinearity of structural response through different ways of application, either through developing 

data-driven materials models, structural health monitoring or predicting the structural response 

(Darko et al., 2020; Sayed et al., 2023; Sun et al., 2021; C. Wang et al., 2022). 

Regarding Main Wind Force Resisting Systems (MWFRS), shear walls are considered one of the 

most typical structural elements used to resist wind loads. The recently developed ML models have 

shown competitive performance compared to those of mechanically driven models for structural 

element behaviour (e.g., shear walls) (Siam et al., 2019; Solorzano & Plevris, 2023b, 2023a; C. 

Wang et al., 2022). For instance, Mangalathu et al. explore the use of machine learning and 

artificial intelligence in failure mode identification of concrete shear walls (Mangalathu et al., 

2020). The authors created a database of 393 reinforced concrete shear walls with rectangular or 

non-rectangular sections. They generated input parameters to capture geometry, material 

properties, and reinforcement details of shear walls. Eight machine learning models were 

evaluated, including Decision Trees, Random Forest and Ensemble learning, with Random Forest 

having the highest accuracy for the training set. The model had an 84% precision in identifying 

the flexure-shear failure mode for the test set. Moreover, the prediction of the backbone curves, 

which is essential in the nonlinear analysis of PBD, is also possible by ML models. Another study 

aims to develop predictive models for backbone curves using a comprehensive shear wall 

experimental database of 500 samples and the Gaussian Process Regression (GPR) machine 

learning method (Deger & Taskin, 2022). Based on twelve wall design properties, the models 

predict seven backbone curve variables and four limit states, such as cracking, yielding, peak shear 

strength, and ultimate deformation capacity. The models are recommended for walls controlled by 

shear or shear-flexure interaction with an accuracy of 80%. Regardless of the black box concept 

that most ML models are known for, the interpretability of some models, like Genetic 
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Programming, makes use of the ML capability to enhance the analytical governing equations used 

in describing the element's mechanical behaviour. The study by (G. Ma et al., 2023) proposes a 

backbone curve model for RC walls using Genetic programming-based symbolic regression (GP-

SR). GP-SR is a white-box model with the advantage of obtaining functional correlations between 

inputs and outputs without assuming a functional form, in contrast to traditional machine learning 

techniques. The study addressed four failure modes: shear sliding, shear, flexure-shear, and 

flexure, where a SHAP-based feature selection method (Lundberg et al., 2017) was adopted to 

avoid poor generalization performance. Five machine learning models were applied to 388 existing 

RC walls with various failure modes, with XGB showing the best prediction performance. The 

GP-SR model predicted the characteristic points for the backbone curve better than ASCE 41-17 

(ASCE, 2017). The model also outperformed existing empirical models in predicting shear 

strength. The failure mode of RC walls needs to be determined before estimating the backbone 

curve. The development of data-driven models contributed not only to the component level but 

also showed excellence on the system level. For example, the study by (Vaseghiamiri et al., 2020) 

introduces an innovative approach for constructing a probabilistic surrogate Single Degree of 

Freedom (SDOF) model characterized by a multilinear backbone curve, serving as a representative 

model for Multi-Degree of Freedom (MDOF) systems. The methodology focused on seismic risk 

and resilience analyses and parametric studies, maintaining a reasonable level of accuracy. The 

process involves designing 60 distinct Special Moment-Resisting Frame (SMF) buildings and 

conducting probabilistic pushover analyses to generate 25,200 pushover curves for training. 

Bayesian linear regression equations are then derived from the resulting 25,200 backbone 

realizations, predicting key parameters based on the fundamental period of the MDOF structure. 

Not only seismic excitation is considered but also wind loading which might be more challenging 
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due to the multiple time history load functions that should be applied on the structural model 

(Hareendran & Alipour, 2022; Micheli, Hong, et al., 2020). For example, (Micheli, Alipour, et al., 

2020b) developed a multiple-surrogate models framework for probabilistic assessment of wind-

excited tall buildings under uncertainties. The framework divides the structural system into 

subsystems, each represented by a surrogate model with small inputs and outputs vectors. The 

Kriging metamodel was used as the surrogate model trained by samples ranging from 600 to 1000. 

The results showed that the multiple-surrogate models accurately predicted the building's floor 

response with an average error of 12.5% and a cost loss probability curve with low computational 

demand. 

On the other hand, the inclusion of such computationally efficient models either in optimization 

or in sensitivity analysis at the early stage of design added value for enhancing the design process 

where discrete, complex and non-convex optimization problems are now possible thanks to the 

computational speed provided by the data-driven surrogate models to deploy the fitness function 

through non-gradient based optimization algorithms (Mistakidis & Stavroulakis, 1998). This can 

be seen in the study by (Tseranidis et al., 2016), who examined multiple ML-based surrogate 

models to optimize the structure of trussed elements. (Elshaer, Bitsuamlak, & El-Damatty, 2017) 

used an ANN-based surrogate model to modify the corner radius of tall buildings in order to reduce 

the captured wind load through the optimized applied aerodynamic modifications. In addition, the 

surrogate model makes it possible to select an optimal shape for openings in tall buildings to 

enhance their aerodynamic behaviour (Elshaer & Bitsuamlak, 2018). Beyond surrogate models, 

deep learning can regenerate designs for layout through generative adversarial networks (GANs), 

as shown in (Liao et al., 2021; Oh et al., 2019), without an explicit definition of optimization 

algorithms. To enable broader application of optimization frameworks, especially those coupled 
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with PBWD, a surrogate model capable of capturing tall building wind response is required. The 

existing literature falls short in providing a thorough examination of developing a surrogate model 

that is capable of capturing the total performance of a tall building with a shear wall system as an 

MWFRS. The data-driven surrogate models have proven their efficiency, yet choosing the 

appropriate model requires a comparative study of different models to choose the best-performing 

model with the least amount of data and the highest correlation.  

This study explores the accuracy of developing a data-driven surrogate model that can capture the 

structural response of tall buildings subjected to dynamic wind load, either global performance 

(e.g., peak drift) or structural elements’ demand-to-capacity ratio (e.g., MWFRS and Columns). A 

comparative study is held between various data-driven models that have been previously used in 

literature for capturing element behaviour and assessing them in a system-level behaviour, 

including: (1) Ridge Regression (RDG) (Sun et al., 2021), (2) Decision Trees (DT) (Barros et al., 

2023; Junda & Málaga-Chuquitaype, 2024), (3) Random Forests (RF) (Voulpiotis et al., 2022; C. 

Zhou et al., 2023), (4) Extreme Gradient Boosting (XGB) (L. Ma et al., 2022; T. Zhang et al., 

2024), (5) Support Vector Machines (SVM) (Funk et al., 2023; Liu & Guo, 2021; Yetilmezsoy et 

al., 2021), and (6) Deep Neural Networks (DNN) (Akinosho et al., 2020; Kallioras & Lagaros, 

2021; Lieu et al., 2022; Pizarro & Massone, 2021b). The main contribution of the developed 

surrogate model is to serve as a fitness function evaluator that is capable of deriving an 

optimization algorithm to identify the optimal layout of the structural system of tall buildings in 

the conceptual phase design.  

5.2. Usage of the surrogate model in PBWD optimization framework  
The utilization of surrogate models varies across a spectrum of applications. These models can be 

adapted in digital twin development (L. Wang et al., 2023), where they serve as efficient 
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alternatives for high-fidelity simulations, enabling real-time performance monitoring and decision-

making. Additionally, surrogate models are vital in sensitivity analysis, showing the impact of 

input variations on system responses. Their role extends to reliability analysis, aiding in assessing 

structural robustness and performance under uncertainties and risk quantification. Moreover, these 

models play a pivotal role in optimization processes, guiding the exploration of design spaces for 

optimal solutions. In the case of tall building design, the optimization problem becomes discrete 

non-convex with multiple local minima, which makes using a non-gradient algorithm preferable 

to identify the optimal layout (Mistakidis & Stavroulakis, 1998). The proposed surrogate model 

can be coupled with an adequate optimization algorithm to reduce the time required for exploring 

thousands of samples required by the non-gradient algorithm (e.g., Genetic Algorithm) to find the 

optimal layout for the MWFRS (e.g., shear walls) in the initial design stage, which is a budget-

sensitive item, as shown in Fig. 5-1. In this study, the focus is on developing a surrogate model 

capable of capturing the relationship between the crude topology of a structural system and the 

structural response required for evaluation. A case study building is adopted based on a previously 

developed optimization framework (Alanani & Elshaer, 2023, 2024). Starting with an architectural 

layout and thorough consideration of non-structural elements, a domain of all possible positions 

of shear walls and columns is identified. To determine the length and shape of shear walls, a 

discretization of this domain is executed, resulting in the division of the domain into 170 segments 

of shear walls, each measuring 1.0 m. In every model, distinct column locations are determined to 

prevent overlap between shear wall segments and columns. The distribution of columns is 

governed by a predefined span of 6.0 m, to minimize alterations in the slab's straining actions as 

vertical supports are strategically placed, whether columns or shear walls in those areas. 

Afterwards, a training database is prepared to build the required ML-based surrogate model. As 
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presented in Fig. 5-2, wind load time history is generated via an experimentally validated CFD 

model (Alanani et al., 2024a; Alanani & Elshaer, 2022) that later is applied to the building using 

a Finite Element Model (FEM). Based on the PBWD prestandards, all wind angles of attack (AOA) 

should be considered. For simplification, eight main AOA are considered in CFD analysis, with 

an increment of 45𝑜, to produce wind response for each load combination. The envelope of all 

AOA demand forces will be used for demand-to-capacity calculations for both shear walls and 

columns. For the sake of comparison, the training process for the generated database is done in 

two stages: the first is considering the envelope behaviour of the 8 AOA responses to generate one 

surrogate model for all AOA, and the second is by considering a single AOA for each model. Latin 

Hypercube Sampling (LHS), by (McKay et al., 1979), is selected to generate the training data for 

its ability to efficiently cover the multidimensional design space, providing a diverse set of 1000 

layout samples. Each sample represents a unique configuration of 170 binary variables 

corresponding to the layout's presence or absence of shear walls. Four primary structural responses 

are chosen to train the ML models, which has been previously adopted as the constraints for the 

optimization problem: (1) peak interstory drift, (2) peak deflection, (3) demand-to-capacity ratio 

for columns and (4) demand-to-capacity ratio for walls. These structural parameters are recorded 

in a database that will be used by the current proposed ML pipeline within a comparative study to 

choose an efficient surrogate model capable of driving the optimization fitness function.  
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Fig. 5-1 Surrogate model attached to an optimization algorithm. 

 

 

Fig. 5-2 The process of preparing a training database for the proposed ML-based surrogate model. 
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5.3. Regression Models 

5.3.1. Ridge Regression (RR) 
Ridge Regression is a shrinkage technique, also known as Tikhonov regularization (Hoerl & 

Kennard, 1970) or L2 regularization, used for dealing with multicollinearity and preventing 

overfitting in predictive modelling that incorporates a regularization term by penalizing large 

coefficients. It is an extension of the least square method, which minimizes the sum of squared 

differences between observed and predicted values, known as the residual sum of squares (RSS) 

and can be calculated using equation (5-1). Where 𝑛 is the number of observations, 𝑦𝑖 is the 

observed value of the 𝑖𝑡ℎ observation and 𝑦𝑖′ is the predicted value of the same 𝑖𝑡ℎobservation. 

Since it is a form of linear regression, so 𝛽𝑜 is the intercept and the 𝛽𝑗 is the slope coefficient for 

the predictor 𝑥𝑖𝑗 and 𝑝 is the number of predictors.  

𝑅𝑆𝑆 =  ∑(𝑦𝑖 −  𝑦𝑖′)2

𝑛

𝑖=1

= ∑ (𝑦𝑖 −  𝛽𝑜 −  ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 )

2
𝑛

𝑖=1

  (5-1) 

It is advantageous when dealing with multicollinearity, where predictor variables are highly 

correlated. The regularization term, also known as the L2 penalty, is added to the ordinary least 

squares objective function. In this model, the ridge regression coefficient, 𝛽̂𝑅𝑖𝑑𝑔𝑒, is meant to be 

minimized. While 𝑡 is the constraint that ensures the weight vector does not grow too large, which 

helps control model complexity. 
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𝛽̂𝑅𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝑗
{𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗

2

𝑝

𝑗=1

}  

Subject to ∑ 𝛽𝑗
2𝑝

𝑗=1 ≤ 𝑡 

(5-2) 

5.3.2. Decision Trees (DT)  
The Decision Trees regression model can be considered one of the interpretable machine learning 

algorithms employed for classification and regression tasks. In this chapter, the DT model was 

proposed to be studied for its workability with binary and discrete data (Hastie et al., 2009). In this 

model, the dataset is recursively partitioned into subsets based on the most significant features, 

creating a tree-like structure where each internal node represents a decision, and each leaf node 

provides the final prediction. The splitting process is guided by criteria such as minimizing mean 

squared error, enabling the algorithm to capture complex nonlinear relationships between input 

features and the target variable. Decision tree regression is particularly advantageous for its ability 

to handle numerical and categorical data, and its intuitive representation facilitates a clear 

understanding of the decision-making process. The algorithm starts with growing a huge tree 𝑇𝑜 

then prune it back to create a subtree. The decision to prune the subtree depends on the lowest rate 

of test errors. The validation set technique or cross-validation can be used to estimate the test error 

of a subtree. However, since there is a multitude of potential subtrees, computing the cross-

validation error for each one would be cumbersome. Instead, choosing a limited number of trees 

is possible using cost-complexity pruning, as shown in equation (5-3).  The 𝛼 is a tuning parameter 

that corresponds to the subtree |𝑇| where it represents the number of terminal nodes of the tree, 

and the predictor space is divided by 𝑅𝑚 rectangular regions of 𝑚 terminal nodes. Similar to the 

ridge regression, the 𝑦𝑖′𝑅𝑚
 is the predicted value, and it was noticed that by increasing the 𝛼 

parameter, more subtrees get pruned. Thus, instead of taking into account each potential subtree, 
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caution must be exercised to prevent overfitting, especially with deep trees and various 

regularization techniques. DT models have been used for structural applications, for example, 

damage prediction of reinforced concrete buildings subjected to earthquakes, as presented by 

(Karbassi et al., 2014). Its effectiveness as a surrogate model is studied in this study. 

𝐶𝛼(𝑇) = ∑ ∑ (𝑦𝑖 −  𝑦𝑖′𝑅𝑚
)

2
− 𝛼|𝑇|

𝑖:𝑥𝑖∈𝑅𝑚

|𝑇|

𝑚=1

  (5-3) 

5.3.3. Random Forests (RF) 

The previously explained DT models can achieve satisfactory results, yet high variance with low 

bias can occur. Thus, the bootstrap aggregation (i.e., bagging) reduces the high variance by 

building multiple 𝐵 trees using 𝐵 bootstraps to reduce the variability of each predictor. The 

Random Forest algorithm leverages the concept of bagging. However, it uses a modified approach 

to decorrelate predictors through splitting the predictors and avoiding the selection of all predictors 

at each bootstrap. RF is considered an ensemble learning method that leverages the strength of 

multiple decision trees to enhance predictive accuracy and robustness. In the context of Random 

Forest, decision trees act as the building blocks, collectively forming a forest that harnesses the 

strengths of multiple models. The ensemble approach excels in handling noisy data and capturing 

complex relationships. For instance, a sample size of 𝑁 can be divided into multiple bootstraps 𝐵, 

and then a random forest tree 𝑇𝑏 can be built till the minimum node size 𝑛𝑚𝑖𝑛. Then, the selection 

of random predictors 𝑚 is done where 𝑚 ≤ 𝑝, noting than 𝑝 is the total number of predictors. The 

optimal number of split points among variables 𝑚 is identified, and then the total ensemble is 

{𝑇𝑏}1
𝐵. For any prediction afterwards, the equation (5-4) can be used. 
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𝑓𝑅𝐹
𝐵 (𝑇) =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
  (5-4) 

5.3.4. Extreme Gradient Boosting (XGB) 

The extreme gradient boosting developed for decision tree algorithms stands out as a solid and 

effective ensemble learning algorithm (Chen & Guestrin, 2016). XGB shares a lineage with 

decision trees, at which it integrates shallow decision trees sequentially, each correcting the errors 

of its predecessor. Yet, it diverges from Random Forest's ensemble construction. XGB focuses on 

a sequential construction of decision trees, where each successive tree corrects the flaws of the 

previous ones, as opposed to building parallel decision trees individually. Furthermore, XGB 

improves its capacity to manage complex relationships and outliers by including a regularization 

component in the objective function. Unlike bagging, XGB relies on a weighted procedure of 

building trees of predictors based on previously built trees. In bagging, multiple trees are built 

based on the bootstrap and then combined with averaging. In XGB, trees are fitted based on the 

error of previously developed models using a shrinkage factor 𝜆 to slow the learning process and 

form simpler trees that provide more bias and less variance. Based on gradient boosting concepts, 

XGB builds a sequence of decision trees and iteratively improves forecasts by regularized learning 

and sparsity-aware split findings by minimizing the loss function in equation (5-5), measuring the 

difference between actual and predicted values, ∑ 𝑙(𝑦𝑖′𝑖, 𝑦𝑖)𝑖 , in addition to regularization term, 

∑ 𝛺(𝑓𝑘)𝑘 , of the 𝑘𝑡ℎ tree. The first part of the regularization term controls the strength of the 

penalty. A higher 𝛾𝑇 value leads to more aggressive pruning, where 𝑇 is the total number of trees 

as a penalization for tree complexity. The second part of the regularization is a leaf score 

magnitude that penalizes the magnitude of the scores, ‖𝑤‖2, assigned to the leaf nodes. The 

regularization parameters  γ and λ) are hyperparameters that need to be tuned during the model 
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training process. A higher value for these parameters increases the regularization strength, leading 

to more aggressive pruning and smaller leaf scores. XGB has proven its capability to predict the 

capacity of structural elements trained on a FEM-generated database (Haggag et al., 2024).  

ℒ = ∑ 𝑙(𝑦𝑖′𝑖 , 𝑦𝑖) 

𝑖

+ ∑ 𝛺(𝑓𝑘)

𝑘

 

Where 𝛺(𝑓) =  𝛾𝑇 +
1

2
 𝜆‖𝑤‖2 

(5-5) 

5.3.5. Support Vector Machines (SVM) 

Support Vector Machines (SVM) represent powerful machine learning algorithms renowned for 

their effectiveness in classification and then developed for regression tasks. SVM operates by 

finding an optimal hyperplane that best separates data points belonging to different classes, 

maximizing the margin between the classes. Unlike decision trees, SVM does not rely on an 

ensemble approach but focuses on finding the most efficient decision boundary (Cortes et al., 

1995). SVM excels in scenarios with high-dimensional data and is particularly effective when clear 

linear separability exists. While decision trees and random forests construct a hierarchy of decision 

rules, XGB sequentially builds an ensemble of weak learners. SVM's strength lies in its ability to 

handle complex decision boundaries in both linear and nonlinear cases through the use of kernels, 

providing flexibility compared to XGB. However, SVM may be less interpretable than decision 

trees and lack the ensemble approach of random forests and XGB. The choice between SVM, 

decision trees, random forests, and XGB depends on the nature of the data, interpretability 

requirements, and the trade-off between computational complexity and predictive performance. 

SVR consists of a regularization parameter, C, that controls the trade-off between fitting the 

training data and having a smooth decision boundary. Additionally, it relies on kernels like the 

linear, polynomial, Gaussian (RBF), and sigmoid kernels to handle nonlinear relationships by 
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transforming the data into higher-dimensional spaces as shown in equation (5-6), where 𝑘 is the 

kernel function, and 𝑀 is the total number of samples of 𝑁 number of predictors 𝑥. It is a 

reformulation of the basic regression function, where ℎ(𝑥) is the basis function while to find 𝛽, 𝛽𝑜 

a minimization for equation (5-7) should be conducted. 𝑤 indictes the normal vector of the 

hyperplane, while b is the intercept. 𝜁𝑖  are the distances of points on the wrong side of their margin, 

and 𝜀 indicates the soft margin. Hyperparameter tuning can be achieved by finding optimal C and 

Kernel parameters. 

𝑓(𝑥) = ∑ 𝛽𝑚ℎ𝑚(𝑥) + 𝛽𝑜

𝑀

𝑚=1

= ∑ 𝑎𝑖𝑘(𝑥, 𝑥𝑖)
𝑑

𝑁

𝑖=1

 (5-6) 

min
𝑤,𝑏,𝜁𝑖,

1

2
‖𝑤‖2 + 𝐶 ∑(𝜁𝑖 + 𝜁𝑖

∗)

𝑁

𝑖=1

 

Subjected to 𝑦𝑖(𝑤, 𝑥𝑖 − 𝑏) ≤  𝜀 + 𝜁𝑖 

(5-7) 

5.3.6. Deep Neural Networks (DNN) 
Deep neural networks are forms of artificial neural networks with more than one hidden layer of 

neurons that show remarkable capabilities in handling complex data through nonlinear learning 

algorithms. In contrast to traditional ML models like Decision Trees (DT), Random Forests (RF), 

Support Vector Machines (SVM), and Gradient Boosted Trees (XGB), DNNs operate on a 

different paradigm that is considered the foundation of deep learning models (Li et al., 2021). Their 

interconnected layers of nodes, which can be mathematically presented as 𝐴𝑘 equation (5-8), where 

𝑘 is the number of nodes, enables them to extract hierarchical features from raw data automatically. 

While tree-based models excel in interpretability, DNNs trade interpretability for unparalleled 

predictive power in large-scale, high-dimensional datasets. The equations governing DNNs 

involve forward and backward passes through the network, with parameters updated using 
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gradient-based optimization algorithms like Stochastic Gradient Descent (SGD). The activation 

functions, such as ReLU, introduce nonlinearities, as shown in equation (5-9), where ℎ𝑘(𝑥) is a 

nonlinear activation function, enhancing the model's capacity to capture intricate patterns. The 

flexibility and scalability of DNNs come at the cost of increased complexity and the need for 

substantial amounts of labelled data for training. 

𝐴𝑘 = ℎ𝑘(𝑥) = 𝑔(𝑤𝑘𝑜
+ ∑ 𝑤𝑘𝑗

𝑥𝑗

𝑝

𝑗=1

) (5-8) 

𝑓(𝑥) = 𝛽𝑜 + ∑ 𝛽𝑘ℎ𝑘(𝑥)

𝐾

𝑘=1

= 𝛽𝑜 + ∑ 𝛽𝑘𝑔 (𝑤𝑘𝑜
+ ∑ 𝑤𝑘𝑗

𝑥𝑗

𝑝

𝑗=1

)

𝐾

𝑘=1

 (5-9) 

The fitting of neural networks consists of two main functions: feed-forward and backpropagation, 

which are done by minimizing the loss function in equation (5-10), where 𝜃 is assumed to be the 

vector of all parameters. The gradient descent, shown in equation (5-11), derives the loss function 

toward an optimal value and then updates the parameters 𝜃 as shown in equation (5-12). The 

backpropagation process is evident through the chain rule that distributes a fraction of residuals to 

each parameter. Through literature, DNN has excelled as a regression surrogate model. For 

instance, The DNN-surrogate model developed by (Solorzano & Plevris, 2023a) is capable of 

predicting the nonlinear curve of a lateral pushover analysis applied over RC shear walls using the 

wall’s geometry, properties, and loading conditions to get the corresponding nonlinear pushover 

curve discretized into six segments. 
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𝑅(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑤𝑘}1
𝑘,𝛽

1

2
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

 (5-10) 

∇𝑅(𝜃𝑚) =
𝜕𝑅(𝜃)

𝜕𝜃
|𝜃=𝜃𝑚 (5-11) 

𝜃𝑚+1 ← 𝜃𝑚 − 𝜌 ∇𝑅(𝜃𝑚) (5-12) 

5.4. Development of surrogate models 
In this study, a pipeline has been built using Python’s built-in libraries (e.g., NumPy and 

Tensorflow) for developing an ML-based surrogate model using an offline synthetically developed 

database using (MATLAB, 2023) and ETABS OAPI (CSI, 2018), as shown in Fig. 5-4. As 

mentioned in section 5.2, the surrogate model's main objective is to act as an alternative model 

that can predict the structural response (e.g., drift, displacement and 𝐷/𝐶) based on the shear walls’ 

and columns’ layout variations. The model inputs are defined as 𝑁 binary design variables that 

represent the location of each shear wall segment, where 0 and 1 mean inactive and active shear 

wall segments, respectively. The required structural outputs are as follows: (1) peak displacement 

(𝛥𝑝𝑒𝑎𝑘), (2) peak drift (𝛿𝑝𝑒𝑎𝑘), (3) peak demand-to-capacity ratio of columns (𝐷/𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠) and 

(4) peak demand-to-capacity ratio of walls (𝐷/𝐶𝑤𝑎𝑙𝑙𝑠). The required database is generated using 

the Latin Hypercube Sampling (LHS) technique, where the generated sample data distribution is 

shown in Fig. 5-3.  LHS is a strategic sampling technique employed in the field of experimental 

design and uncertainty quantification (McKay et al., 1979). Unlike random sampling methods, 

LHS ensures a more even and representative exploration of the input space [𝑠1, 𝑠2, … , 𝑠𝑁]. The 

fundamental principle involves dividing each input variable into intervals of equal probability and 

selecting one sample from each interval, ensuring that all intervals are sampled once. This 

approach ensures uniform input space coverage and minimizes the risk of oversampling or 

undersampling. While the primary objective is to efficiently sample across the entire input domain, 



149 
 

LHS also enhances the exploration of potential correlations between variables. The process starts 

with dividing the design domain into 𝑛 intervals as mentioned in equation (5-13) at which for each 

design variable a random binary value is selected. For each selection a check is done to ensure that 

the probability of each variable is not exceeded.  

𝑠𝑖,𝑗 = [(𝑖 − 1) ×
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑖  −  𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑖

𝑛
 

+  𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑖 + 𝑟𝑎𝑛𝑑(0,1))] 
(5-13) 

 
Fig. 5-3 Structural response data distribution for 1000 generated samples using LHS 

The preprocessing of data through normalization is done to reduce the skewness found in the data 

distribution and to enhance the model’s consistency by reducing the sensitivity to the scale of the 

data. Then, the generated dataset, of size 𝑛 = 1000, gets split into 80% for training and 20% for 

testing. While the testing set is held for performance evaluation, the training set will go through a 

cross-validation process in which parameters and hyperparameters will be tuned via a grid search 
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algorithm. The grid search algorithm systematically evaluates a predefined hyperparameter grid, 

exhaustively testing different combinations to identify the set that maximizes model effectiveness. 

This method provides an exhaustive search over specified hyperparameter values, offering a 

comprehensive understanding of the parameter space.  

 

 
Fig. 5-4 ML-based surrogate model's developing pipeline 

5.4.1. Model cross-validation, testing, and hyperparameter tuning 
Cross-validation is a crucial machine-learning technique used to assess a model's performance and 

generalization ability. Its primary purpose is to provide a more reliable estimate of a model's 

performance on unseen data compared to a single train-test split. The key idea is to simulate how 

the model would perform on different subsets of the data. In this study, a K-fold cross-validation 

technique is adopted (Stone, 1974). This approach divides the dataset into 𝐾 equally sized folds, 

where 𝐾 is chosen as five folds in this study. The model is trained and validated 𝐾 times, each 

using a different fold as the validation set and the remaining 𝐾 − 1 folds as the training set. This 

process ensures that every data point is used for validation exactly once to avoid overfitting or 

underfitting. Then, the performance of each fold is recorded, and the average of all folds is 

considered to indicate how the model is generalized and how reliable it is in prediction. Within the 

K-fold loop, the hyperparameter optimization process is applied to do an exhaustive search for the 
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optimal combination of hyperparameters. Hyperparameters are considered the external 

configuration required for the training process, and they differ based on each ML model. For 

example, the neural networks’ hyperparameters are the number of neurons and layers, while the 

decision trees rely on the tree's depth as a hyperparameter. All hyperparameters used in this study 

for all ML models are mentioned in Table 5-1. 

Table 5-1 Hyperparameters configuration for each ML model 

ML model Hyperparameters 

Ridge regression (RDG) 𝜆 ∈ [10−6, 106]  

Decision Trees (DT) 
Maximum depth: [1,21] 
Minimum sample split: 𝑚 ∈ {1,2,3,5,10,20} 
Minimum sample leaf: 𝑇 ∈ {1,5,10,20,50,100} 

Random Forest (RF) 
Number of predictors: 𝑝 ∈ [10,200] 
Maximum number of samples: 𝐵 ∈ [ 5, 10] 
Minimum node size: 𝑛𝑚𝑖𝑛 ∈ {2, 5, 10} 

Extreme Gradient Boosting (XGB) 
Column sample by tree: {1,1.2,1.4,1.6,1.8,2} 
Max depth: [50,1050] 
Number of estimators: [50,200] 

Support Vector Regression (SVR) 

Kernel Type: {Linear, Polynomial, Radial basis function 
(RBF), Sigmoid} 

C (Regularization Parameter): 𝐶 ∈ [10−6, 106] 
SVR Margin: 𝜀 ∈ [0.1,10] 

Deep Neural Networks (DNN) 

Number of hidden layers: [1,12] 
Number of neurons: [10,800] 
Learning rate: 𝛼 ∈ [10−4, 0.1] 
Activation Function: {𝑆𝑖𝑔𝑚𝑜𝑖𝑑, 𝑇𝑎𝑛ℎ, 𝑅𝑒𝑙𝑈} 

 

Within each iteration of the K-fold cross-validation loop, model parameters, representing the 

internal aspects of the algorithm, are adjusted to enhance learning capabilities. Parameters are the 

internal variables that the model learns from the training data. These are the coefficients in a linear 

regression, weights in a neural network, or split points in a decision tree. The identification 

parameters are based on performance metrics, which is this study's mean square error (MSE). This 

dual optimization strategy, encompassing both hyperparameter and parameter tuning, ensures a 
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comprehensive exploration of the model's potential. After updating the models with the optimal 

parameters and hyperparameters, all models will be tested against the previously held test data, 

and a comparison will be made based on the performance metrics mentioned in Table 5-2, where 

𝑦𝑖 is the actual value and 𝑦𝑖′ is the corresponding prediction, while 𝑦̅ and 𝑦′̅ are the mean values 

of them respectively.  

Table 5-2 Statistical performance metrics 

Statistical performance metrics formula 

Coefficient of determination (𝑅2) 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖′)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (5-14) 

Pearson Correlation Coefficient 
(Pearson R) 

Pearson R

=
∑ (𝑦𝑖′ − 𝑦′̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑦𝑖′ − 𝑦′̅)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (5-15) 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
1

𝑛
∑|(𝑦𝑖 − 𝑦𝑖′)|

𝑛

𝑖=1

 (5-16) 

Root Mean Squared Error (RMSE) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖′)2𝑛

𝑖=1

𝑛
 (5-17) 

Symmetric Mean Absolute Percentage 
Error (SMAPE) 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|(𝑦𝑖 − 𝑦𝑖′)|

1
2 (|𝑦𝑖| − |𝑦𝑖′|)

𝑛

𝑖=1

× 100 (5-18) 

Error percentage 𝐸𝑟𝑟𝑜𝑟% =
𝑦𝑖 − 𝑦𝑖′

𝑦𝑖
× 100 (5-19) 

5.5. Results and Discussion 

5.5.1. Assessment of the training samples performance for different surrogate models 
In this section, a comparison is made between the previously proposed machine learning models 

in order to identify which model is more reliable to build on and which can be coupled with an 

appropriate optimization algorithm for early-stage design to identify the structural system layout. 

The pipeline previously described split the dataset into 80% for training and 20% for testing. 

Throughout the training process, which uses the cross-validation concept, 𝑅2 was recorded to show 

how different folds perform and to evaluate the model's goodness of fit. It measures how well the 
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model's predicted values match the dataset's observed values. 𝑅2 is a single value between 0 and 

1, where 1 indicates a perfect fit, and 0 indicates that the model does not explain any variability in 

the response variable, essentially equivalent to a constant model that predicts the mean of the 

response for all observations. In Fig. 5-5, The distribution of the 𝑅2 is presented for all structural 

parameters required for optimization: (1) peak deflection, (2) peak interstory drift, (3) maximum 

D/C in shear walls and (4) maximum D/C in columns. It can be noticed that DNN models show a 

high capability of training compared to other ML models that can reach 𝑅2 of 0.99 in capturing 

the maximum demand-to-capacity ratio of shear walls with a very low standard deviation that 

indicates, the model is generalized on data. However, this metric is not enough and might be 

deceiving since, in testing shown in Fig. 5-6, the DNN model showed an overfitting behaviour 

since it dropped in performance similar to other models. It is worth mentioning that the 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 

is quite challenging nonlinear problem that required fine considerations through the whole 

pipeline, starting from sampling through feature selection and ending with ML-model selection. 

In cases of predicting the peak displacement and interstory drift, the relationship to the crude 

topology of the MWFRS is more robust since it is directly proportional to the inertia, compared to 

the demand-to-capacity ratio, which might require more data, different features or more variational 

samples, and this will be discussed in section 5.5.3. When it comes to the generalization of models 

through training, the decision-tree model falls short with a high standard deviation of 𝑅2 in almost 

all models and that can happen based on the random initial start of each fold where the pruning of 

the tree differs significantly based on the chosen depth. DT is one of the most sensitive models to 

hyperparameter tuning, affecting its performance tremendously. Surprisingly, the SVR model did 

not perform as expected, especially in the case of peak interstory drift; it can be related to the 
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presence of outliers that might affect the accuracy of the hyperplane created for the prediction. In 

contrast, XGB models showed a decent performance in training quality that comes after DNN.  

 
Fig. 5-5 Coefficient of determination box plot for 5-fold through the cross-validation training of different 

ML models: (a) peak deflection, (b) peak interstory drift, (c) maximum D/C in shear walls and (d) 
maximum D/C in columns. 

5.5.2. Assessment of testing samples performance for different surrogate models 
For a better interpretation of the developed model, the comparison will be held on the test dataset 

through 𝑅2 and error distribution all over the samples presented in Fig. 5-7. Among all proposed 

surrogate models, DNN and XGB outperform other models. For peak deflection, DNN and XGB 

reached an 𝑅2 = 0.77, with a neglibile exceedance of XGB over DNN, while for the error 

distribution, XGB mean error is ~17% with 50% of error below 20%. While SVR model 𝑅2 is 

0.68 for peak drift, the mean error is ~18%, which shows a slightly better error distribution than 

DNN, which got a mean error of 20%. When it comes to the behaviour of the peak interstory drift, 
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which is dependent on the building’s deflection. The DNN showed a significant overperformance 

compared to the rest of the models, with 𝑅2 of 0.63 and half of the test set error is below the 30%, 

relying on its capabilities to capture nonlinearity. The deviation between different structural 

parameters, shown using the 𝑅2, indicates that the complexity of all parameters is not the same, 

and the grid search yields different optimal hyperparameters for each structural parameter even 

when using the same ML model. In contrast to the 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠, the maximum 𝐷/𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠 was a bit 

easier to capture the behaviour due to the fact that columns are mainly responsible for transferring 

most of the vertical loads in the form of axial straining actions and no bending moment is allowed. 

The deviation of 𝑅2 between the proposed ML models is minimal compared to other structural 

parameters. Even decision trees that poorly behaved in previous structural parameters showed a 

significant improvement in predicting the 𝐷/𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠. While XGB is showing a better 𝑅2 of 0.71, 

which is better than the DNN and RF of 0.68. The analysis of error reveals a contrasting 

perspective compared to the 𝑅2values, indicating nuances in the performance assessment of the 

models. The error, representing the differences between predicted and actual values, shows that 

the DNN has a lower standard deviation, and 75% of samples are getting an error of less than 

~20% compared to the XGB of ~25% and RF of ~27%.  

Furthermore, selecting an appropriate ML-based surrogate model for each structural parameter 

depends on the performance metric used for comparison. Thus, a unified reference performance 

index is developed that combines multiple performance metrics in a weighted manner to provide 

a single index to facilitate the process of selection. The reference index, based on literature, is a 

weighted sum of 10% Pearson-r, 30% 𝑅2, 30% SMAPE, and 30% RMSE. All error values are 

normalized for a better presentation of indices, noting that the inverse value is considered for error 

metrics since a higher error indicates a lower performance. In Fig. 5-8, a spider web plot is 
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employed to compare all the normalized performance metrics of all ML models. DNN and XGB 

can be selected for the peak deflection, while for peak interstory drift and 𝐷/𝐶𝐶𝑜𝑙𝑢𝑚𝑛𝑠, DNN 

outperformed all proposed ML models. For the 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠, the SVR scored the highest 𝑅2 among 

other model yet the reference index showed a similar value for both XGB and SVR.  

 
Fig. 5-6 Actual and predicted values representation for: (a) peak deflection, (b) peak interstory drift, (c) 

maximum D/C in walls and (d) maximum D/C in columns 
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Fig. 5-7 Error distribution percentage of different ML models for: (a) peak deflection, (b) peak interstory 

drift, (c) maximum D/C in shear walls and (d) maximum D/C in columns 
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Fig. 5-8 Performance metrics of different ML-based surrogate models (a) peak deflection, (b) peak 

interstory drift, (c) maximum D/C in shear walls and (d) maximum D/C in columns 

5.5.3. The effect of considering a single wind angle of attack on surrogate models 

The demand-to-capacity ratio of MWFRS, 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠, is a crucial parameter that, if considered in 

the optimization problem, will be an added value that can reduce the required effort in the final 

design stages, and an adequately performing surrogate model will enhance the results of selecting 

an optimal structural layout for tall buildings. As a result, to enhance the capability of ML models 

in capturing this structural behaviour, a strategic approach involves reducing the complexity of 

structural parameters by considering the resulted maximum 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 of one angle of attack (AOA) 

wind loading per surrogate model instead of considering the maximum 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 out of 8 AOA 

wind loads per model. By applying this enhancement to the same training and testing data set. It 

shows a significant improvement in the performance metrics, as shown in Fig. 5-9. The DNN 
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model returned to be the best-performing model with an increase in the test sample. 𝑅2 that reached 

0.55. DNN did not only overperform in the coefficient of determination but also the reference 

index confirmed that even the error distribution was better. Comparing the proposed enhancement 

to the previously developed model, the mean error dropped from ~50% to ~21%, as shown in Fig. 

5-10. Thus, as a form of model enhancement, increasing the training data sample showed a 

noticeable increase in the coefficient of determination of testing data, reaching 0.84 with an almost 

50% increase in the 𝑅2value. Doubling the database size through increasing the total training and 

testing samples from 1000 to 2000 increased the ability of the DNN model to capture the maximum 

𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 in the dynamic model. While a marginal increase occurred in the mean error for the DNN 

model of double sample size, labelled as 1 𝐴𝑂𝐴 𝐷𝑁𝑁 × 2, from ~21% to ~25%, the total error of 

50% of the data dropped from ~36% to ~28%. Since the database size is doubled, 50% of the new 

data equals 1000 samples. This increase can be noticed in the spike of the reference index shown 

in Fig. 5-10 (c), which indicates that not only the goodness of fit but also the distribution of error 

through RMSE and SMAPE has been improved. 



160 
 

 
Fig. 5-9 A comparison of different ML models for a 1 AOA scenario using: (a) error %, (b) actual and 

predicted values representation, (c) 5-fold coefficient of determination distribution, and (d) performance 
metrics.  

 

 
Fig. 5-10 A comparison between best performing ML models for 1 and 8 AOA scenarios: (a) error %, (b) 

coefficient of determination, (c) 5-fold coefficient of determination distribution, and (d) performance 
metrics. 
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5.6. Conclusion 
This research endeavours to address the challenges faced in predicting the dynamic behaviour of 

wind-excited tall buildings by providing a framework for developing and applying data-driven 

surrogate models. The findings of this study highlight the significant potential of surrogate models 

in tall building design processes, especially when deployed within an optimization framework 

where discrete, complex and non-convex optimization problems are now possible thanks to the 

computational speed provided by the data-driven surrogate models to derive the fitness function. 

A case study tall building is adopted where a structural system layout should be identified in the 

initial stage. Thus, an efficient surrogate model is identified through a comparative study of 

multiple recommended machine-learning algorithms, including: (1) Ridge Regression (RDG), (2) 

Decision Trees (DT), (3) Random Forests (RF), (4) Extreme Gradient Boosting (XGB), (5) 

Support Vector Machines (SVM), and (6) Deep Neural Networks (DNN). The developed surrogate 

model objective is to capture the relationship between the topology of tall buildings (i.e., shear 

wall segments) and structural performance typically required for PBWD: (a) peak interstory drift, 

(b) peak deflection, (c) demand-to-capacity ratio for columns and (d) demand-to-capacity ratio for 

walls. For models’ comparison, four performance metrics have been combined in a weighted sum 

formula to form a single reference index that eases the decision-making process. When considering 

eight wind AOA, XGB and DNN models have shown an adequate capability in capturing the 

performance of peak deflection, peak interstory drift and demand-to-capacity ratio of columns with 

an 𝑅2 of 0.77, 0.68 and 0.71, respectively. While XGB and DNN overperformed other proposed 

ML models, all models showed a low performance for the maximum demand-to-capacity ratio for 

shear walls due to the complexity of such parameters that rely on the load, the topology, and the 

design code regulations. Considering the maximum 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 of one angle of attack (AOA) wind 

loading per surrogate model instead of considering the maximum 𝐷/𝐶𝑤𝑎𝑙𝑙𝑠 out of 8 AOA wind 
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loads per model reduced the complexity of the relationship required to be captured. Consequently, 

DNN outperformed all other proposed models with a testing 𝑅2 of 0.55 and Pearson r of 0.81, with 

50% of the error below 30%. While the range of training 𝑅2 showed a value between 0.69 and 

0.82, exceeding all other models. Among all proposed data-driven surrogate models, it can be 

deduced that DNN is the best surrogate model, capturing the required structural response thanks 

to its deep learning capabilities. In addition, multiple surrogate models showed more efficiency 

than single models that require more data and more complex models to be captured.  
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CHAPTER 6 

6. CONCLUSIONS AND RECOMMENDATIONS 

6.1.  Summary 
This thesis provides a novel structural layout optimization framework for Main Wind Force 

Resisting Systems (MWFRS) of tall buildings using machine learning-based surrogate models. 

Various structural parameters have been studied to show their influence on the optimization 

process, including the interstorey drift, the building peak drift, the torsional effect, the demand-to-

capacity ratio, shear walls base moment distribution, the number of formulated pier and the total 

number of shear wall segments. The use of SWOF has been extended to include dynamic wind 

loads generated via experimentally validated Computational Fluid Dynamics (CFD) Analysis to 

show the variability of generated optimal layout subjected to wind load time history through a 

linear time history analysis. SWOF enabled a reasonable compromise for various objective 

functions required in a practical application through multi-objective optimization where a Pareto 

Front is found as a group of possible optimal solutions. SWOF is also modified to fit the 

requirements of Performance-based Wind Design (PBWD) standards that use SWOF capabilities 

to capture linear time history analysis for wind-loaded structures. Finally, a comparative study is 

held on different machine learning models to assess the adequacy of computationally efficient 

surrogate models that are capable of deriving the optimization algorithm in exploring the layout 

search domain with sufficient accuracy.  
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6.2. Main Contributions 
 
The main conclusions pertaining to the newly developed structural layout optimization framework 

are as follows: 

• An optimization framework capable of handling plan layout problems is developed using 

genetic algorithms and ANN-based surrogate models to find optimal shear walls and 

columns layout of tall buildings subjected to wind loads. The ultimate limit state 

requirements were included implicitly in a computationally affordable manner.  

• The adoption of a surrogate model within an evolutionary optimization algorithm makes it 

possible to find acceptable solutions for the non-convex problem of structural layout in a 

computationally affordable way.  

• Newly defined objective functions (e.g., total number of piers) are included. Those 

functions enhanced the capability of SWOF to find a reasonable constructible layout that 

leverages the refinement and discretization options to reach a higher accuracy in finding 

the shear walls’ length and shape.  

• A practical database generation procedure is developed through coupling MATLAB and 

ETABS OAPI to create accessible FEM-generated databases for tall buildings' wind-

structural performance. The developed code can automatically change the shear walls 

layout, change columns layout, assign pier labels for lumped shear wall segments and 

export required results.  

• The developed framework, SWOF, showed the possibility of using linear time history 

analysis of wind-excited tall buildings by generating wind loads via experimentally 

validated CFD. The resulting layout showed that minimal considerations are required in 
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the final design stages since the framework pushes the design process to the limits of the 

considered design code, taking into account the serviceability limit states explicitly and the 

strength limit state implicitly. 

• The developed framework, SWOF, adopted the multi-objective optimization algorithm that 

provides multiple possible solutions (i.e., Pareto Front) that provide stakeholders with 

multiple options that can facilitate the process of decision-making in identifying a final 

layout.  

• The developed framework, SWOF, is modified to include the ultimate limit states explicitly 

through the demand-to-capacity ratio for MWFRS and structural elements, in addition to 

multiple angles of attachment for wind time history analysis, making it possible to fit the 

PBWD standards and requirements.  

• The developed framework, SWOF, is fine-tuned to enhance constructability by allowing 

symmetrical layouts and penalizing layouts with standalone segments through accepting 

layouts with lumped shear wall segments. This penalization technique ensures a shear wall 

behaviour for shear wall elements instead of column behaviour.   

• The machine learning-based surrogate model enables SWOF to discover thousands of 

possible layouts for the MWFRS, eliminating the need for direct integration of FEM within 

the optimization process.  

• Deep neural networks showed their capabilities in capturing the nonlinear relationship 

between crude topology (i.e., structural layout) and tall buildings’ performance. It was 

found that DNN overperformed previously used ML surrogate models. Moreover, it 
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significantly lowers the computational cost and eliminates the need for the direct 

integration of FEM and CFD within the optimization algorithm. 
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6.3.  Future work and recommendations 

• It will be valuable to investigate transforming the framework to use an adaptive surrogate 

by continuously updating the surrogate model parameters based on the evolving 

characteristics of the population samples initially generated through the optimization 

process to check the effectiveness of the computational time and surrogate model 

efficiency. 

• Achieving a computationally efficient optimization process can be reached through 

comparing the evolutionary-based optimization algorithm with a gradient-based algorithm 

for a simplified representation of the structure with a modified convex version that can be 

achieved without being trapped in a local minimum.  

• For more generalization of the developed framework, it will be beneficial to increase the 

design parameters (e.g., seismic loads) and change the structural systems (e.g., steel 

structures, bracing system and connections) that SWOF can tackle with an extension 

toward sizing optimization.  

• It will be useful to develop a BIM tool that can read models from IFC models to identify 

possible structural system domains and generate a surrogate model for tall buildings based 

on prespecified parameters using FEM. 

• More studies can be done on surrogate model behaviour to enhance its performance and 

reduce the margin of error. Since DNN showed an adequate performance, it can be 

compared to its counterparts of deep learning algorithms (e.g., Convolutional Neural 

Networks).
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