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Abstract

In the current era of mass digital information, the need for effective argument sum-

marization has become paramount. This thesis explores the domain of argument

summarization, focusing on the development of techniques and evaluation metrics to

improve the quality of summarization models. The study first investigates the task of

key point analysis, and the challenges associated with previous approaches to it, em-

phasizing the significance of coverage of the summary. To address these challenges,

we propose a novel clustering-based framework that leverages the inherent seman-

tics of arguments to identify and group similar arguments. The proposed approach

is evaluated on the benchmark dataset and compared with previous state-of-the-art

methods, demonstrating its effectiveness. In addition to the proposed framework,

this thesis also presents an analysis of the previous evaluation metric for argument

summarization. Commonly used metric, ROUGE is evaluated, revealing its limita-

tion in capturing the nuanced aspects of argument quality. To this end, we introduce

new evaluation metrics and methods that consider the coverage and redundancy of

the generated summaries, providing more accurate and informative assessments of

summarization models. We further show that our evaluation metric has a better cor-

relation with actual summary quality, whereas previous metrics fail to capture this

correlation. The implementation is available online1.

1https://github.com/b14ck-sun/arg-sum
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Preface

This thesis integrates sections from papers that have been previously published or

are about to be submitted. The paper represents original work conducted by me,

under the guidance of Professor Amine Trabelsi. I am the lead author responsible for

defining the problem, carrying out the implementations, conducting the experimental

evaluations, and writing the papers.

This thesis has used ChatGPT (GPT-3.5) for the purpose of rephrasing and clar-

ifying paragraphs. No information or results were generated by AI. The prompt used

for rephrasing was “Rephrase the following paragraph” in addition to the text. The

generated response was reviewed and edited, if necessary, by the author.

1. M Khosravani, C Huang, A Trabelsi, “Enhancing Key Point Generation via

Clustering: Prioritizing Exhaustiveness and Introducing an Automatic Cover-

age Evaluation Metric”, NAACL 2024, Main Conference [1] (To Appear)

2. M Khosravani, A Trabelsi, “Recent Trends in Unsupervised Summarization”,

arXiv 2023 [2]
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Chapter 1

Introduction

In the current digital landscape, vast amounts of information are generated and dis-

seminated daily, and the need for efficient information processing and comprehension

has become more critical than ever before. Online arguments and debates on social

media platforms are an example of such data, and summarizing them is a pivotal yet

relatively understudied area of research in the realm of natural language processing

(NLP) and text mining. The objective of argument summarization is to automat-

ically identify the main points and generate a summary from debates, discussions,

and arguments, presenting a condensed and coherent representation of the underly-

ing aspects. While previous approaches have made some progress in this domain, the

complexity and diversity of arguments presents ongoing challenges, which limits the

effectiveness of previous works. This thesis delves into the exploration of an inno-

vative approach for argument summarization in addition to a novel semi-supervised

approach for evaluating generated summaries.

1.1 Text Summarization

Summarization is the task of generating a concise and fluent summary of the input

text, where the main points are covered. Summarization methods can be classified

into different categories based on their characteristics such as the technique, number

of inputs, summary type, and the domain. The first category, technique, is usually

1



either abstractive or extractive, where the abstractive methods generate their sum-

mary based on their understanding of the text, often done using a hidden represen-

tation. On the other hand, extractive methods find and select the salient sentences

and phrases from the input and present them as the summary. The second cate-

gory classifies summarization models based on the number of inputs namely single

document summarization and multi-document summarization. Summary type is of-

ten either general or aspect-based. General summaries aim to summarize the main

points of a text, whereas aspect-based summaries focus on a specific angle and are

often used in review or opinion summarization. Lastly, domain describes the domain

of input text, most summarization methods focus on News as there is an abundance of

datasets and benchmarks available for it. However, recently there has been a number

of works and datasets in other domains such as review, scientific paper, social media

summarization.

1.2 Motivation

In this thesis we aim to perform summarization on the argumentative domain. Au-

tomatic summarization of online debates and arguments is an important, yet under-

studied part of automatic text summarization. Over the past decade the main focus

of research on text summarization was on News, mainly due to the availability of

various datasets and benchmarks. As the number of online arguments increases due

to the popularity of social media, summarizing online debates becomes more impor-

tant since the ability to accurately summarize an online debate on a particular topic

provides insights on different viewpoints about the topic. This could be could ben-

efit a wide range of audience, from governments gauging people’s opinions towards

a policy, companies receiving feedback on a service or product, and even ordinary

citizen by helping them understand different view points on a recent topic. How-

ever, summarizing online debates introduces some additional challenges compared to

traditional News summarization such as use of informal language, and working with

2



multiple documents. Over the recent years, there has been an increase in argument

summarization research with the introduction of the ArgKP [3] dataset, and the Key

Point Analysis (KPA) shared task [4].

1.3 Key Point Analysis

Key Point Analysis is concerned with generating a concise summary using arguments

on a specific topic. It was first introduced by BarHaim [3] alongside the ArgKP

dataset, and was later a shared task on the Argument Mining Workshop at EMNLP

2021 [4]. In key point analysis the input is a collection of arguments on different topics

with pro and against stances, where each argument could belong to a key point. Key

points are the main talking points on a specific topic, and can be used as a summary

of the topic. For example, for the topic of “Child vaccination should be mandatory”,

the key point “Child vaccination is proven to be effective” is a key point with a pro

stance on the topic. Table 1.1 shows an example of a topic in the dataset alongside

its reference key points and the number of arguments that discuss it.

The task of key point analysis consists of two tracks, key point matching and key

point generation. In key point matching, the goal is to match arguments to key points,

and both the arguments and key points are given as the input. In key point generation,

the arguments are provided and the key points are generated from them. Specifically,

the goal is to generate the summary in a short bullet-point style list format. The

generated key points should ideally cover the main talking points of all arguments.

Key points should be concise, informative, and not too general or specific. In the KPA

task, the term “generated key points” refers to the summary or output generated by

the model and the model itself is referred as a KPG model. The KPG model can be

an extractive, abstractive, or hybrid summarization model. Moreover the terms key

point generation and argument summarization are used interchangeably throughout

the text as the goal of the KPG model is to summarize a group of arguments.
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Homeschooling should be banned #Args

Pro

Mainstream schools are essential to develop social skills. 65

Parents are not qualified as teachers. 20

Homeschools cannot be regulated/standardized. 15

Mainstream schools are of higher educational quality. 9

Con

Parents should be permitted to choose the education of their children. 28

Homeschooling is often the best option for catering for the needs of exceptional/

religious/ill/disabled student. 25

Homeschools can be personalized to the child’s pace/needs. 21

Mainstream schools have a lot of violence/bullying. 21

The home is a good learning environment. 13

Parents will have more ability to pay-attention/educate their child. 7

Table 1.1: A sample key point-based summary, extracted from the ArgKP dataset.

1.3.1 Problem Specification

The goal of KPG task is to generated a bullet point-style list of sentence, called

generated key points, given a collection of input arguments on a topic. Formally, given

input collection of documents D on topic T, where DT={Argument 1, Argument 2,

Argument 3, ..., Argument n}, the generated key points (GKP), GT={GKP 1, GKP

2, ..., GKP k}. For the ArgKP dataset, the ideal value of k is often between 8 to 12,

depending on the topic.

1.4 Previous Approaches & Challenges

During the Argument Mining Workshop, a total of 17 submissions were made for key

point matching, and 6 submissions were for key point generation. Furthermore, there

have been some prior works dedicated to this task in the past two years. We conducted

a thorough analysis of previous approaches to this task, assessing the quality of their

4



outputs. Our experiments revealed several limitations in these prior approaches.

Firstly, the top-performing methods in the workshop relied on a quality evaluation

model, which assessed the quality of input arguments, and ignored low quality argu-

ments. However, this approach does not effectively assess the quality of argument,

thereby introducing error and is proved to be time-consuming, taking approximately

8 seconds for each arguments.

Secondly, our experiments showed that the generated summaries had low coverage,

failing to encompass many key points from their reference summaries. This was

primarily because these methods tended to select multiple similar arguments for a few

popular key points instead of choosing arguments that covered various key points.

Thirdly, the methods assumed the availability of stance information about an argu-

ment, which is not readily accessible when working with real-world data. Lastly, the

leading methods removed sentences beginning with pronouns to enhance the quality

of the generated summary. In Section 3 Methodology, we delve deeper into the issues

with previous approaches.

In addition to reviewing methods, we also examined the evaluation metrics used in

the summarization task. The main challenge in evaluation of summarizes is the lack

of reliable automatic metrics, that effectively correlate a good summary with a high

score. The key point analysis task employed human judges for evaluation, which is

not easily reproducible or scalable due to the substantial cost and human resources

required, particularly as the number of works in this area increases. Conversely,

other summarization methods employed ROUGE score [5] for evaluating summaries.

ROUGE score is a is a set of metrics that measure the overlap between the generated

summary and the reference summary. Our experiments demonstrated that ROUGE

is not an ideal metric, as it cannot effectively distinguish between summaries with

different coverage and quality. We show that the ROUGE score was incapable of

differentiating between summaries that cover all the key points in the reference sum-

mary and summaries that only cover half the key points. Further details on our

5



experiments can be found in Section 4 Evaluation Metrics.

1.5 Contribution

Our approach to argument summarization and key point generation is designed

to address the shortcomings of previous methods. We employ a method based on ex-

tractive clustering. Through semantic-based clustering, we group similar arguments,

and a matching model is then utilized to identify the argument that best exemplifies

each cluster. The chosen representatives of the clusters serve as the summary. This

approach enables the representation of less popular key points, specifically smaller

clusters. Additionally, the use of a matching model in argument selection eliminates

the need for a filtering step, which not only restricts the extracted arguments but

also introduces additional errors and significantly hampers the process. Furthermore,

we showcase the versatility of our model by comparing it to previous approaches

on datasets beyond the traditional ArgKP, which was the primary focus of earlier

methods.

In addition to the framework itself, we introduce new evaluation metrics for key

point generation, namely coverage and redundancy. We also experiment with various

techniques that aim to accurately predict these metrics in unsupervised settings. For

coverage evaluation, we use a KPM model that determines whether a given generated

key point matches with a reference or ground truth key point. The coverage score

quantifies the proportion of matched reference key points in the summary. The re-

dundancy model, computes a similarity score between different all possible generated

key point pairs to find similar outputs. Redundancy score represents the percent-

age of similar pairs to all possible pairs. Our experiments confirm the efficacy and

appropriateness of the proposed metric compared to traditionally employed ones.

In short our contributions are as follows:

1. Introducing a novel clustering-based approach for argument summarization and

6



key point generation with a focus on coverage

2. Proposing two new automatic evaluation metrics for evaluating coverage and

redundancy

3. A set of datasets for assessing the effectiveness of evaluation metrics, based on

ArgKP dataset

1.6 Structure

The structure of this thesis is as follows: Section 2 serves as a background to models

and techniques employed in the thesis alongside the previous work on argument min-

ing and summarization. Section 3 focuses on the proposed methodology and frame-

work. Section 4 introduces the new evaluation metric and its variations. Section 5

discusses the experiments and results.
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Chapter 2

Background & Related Works

2.1 Overview

Overview: In this chapter we cover the basic the concept and tasks in natural language

processing that is used in our method and evaluation metrics. Next, we examine the

research in argument mining and the previous approaches to key point analysis task.

2.2 Background

2.2.1 Artificial Intelligence

Artificial Intelligence or AI refers to the simulation of human intelligence in machines,

enabling them to perform tasks that typically require human intelligence. AI encom-

passes a wide range of technologies, approaches, and applications designed to enable

machines to think, reason, learn, perceive, and interact with their environment in

ways that mimic human intelligence.

2.2.2 Machine Learning

Machine learning is a subset of artificial intelligence (AI) that focuses on the develop-

ment of algorithms and statistical models that enable computer systems to improve

their performance on a specific task through learning and experience. In machine

learning, computers are trained to recognize patterns, make predictions, or solve

problems based on data rather than being explicitly programmed for each specific
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task.

2.2.3 Natural Language Processing

NLP, or Natural Language Processing, is a subfield of artificial intelligence that fo-

cuses on the interaction between computers and human language. Its primary goal

is to enable computers to understand, interpret, and generate human language in a

valuable way. NLP encompasses a wide range of tasks and applications related to

language understanding and generation.

2.2.4 NLP Tasks: Paraphrase Detection & Entailment

Paraphrase detection and entailment are two of the popular NLP tasks. Both tasks

are binary classification tasks where the goal is to predict a label (0 or 1), given a

pair of sentences as input. In paraphrase detection, the goal is to predict whether

the input sentences are paraphrased or not, i.e. conveying the same information

with different wording and structure. In entailment, the goal is to predict if the first

sentence entails the second second. We use entailment and paraphrase detection in

the proposed method and the evaluation metric.

2.2.5 Neural Networks

Neural networks are computational models inspired by the structure and functioning

of biological neural networks in the human brain. They are a fundamental component

of artificial intelligence and machine learning. Neural networks consist of intercon-

nected nodes, often referred to as neurons, organized in layers. These neurons process

and transform input data by performing weighted sums of their inputs, applying ac-

tivation functions to introduce non-linearity, and passing the results to subsequent

layers. Through a process called training, neural networks adjust the weights of

their connections to learn and recognize complex patterns and relationships within

data. This enables them to be used for a wide range of tasks, including image and
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speech recognition, natural language processing, and various other machine learning

applications.

Deep Learning

Deep learning is a sub-field of machine learning that focuses on artificial neural

networks with multiple layers, often referred to as deep neural networks. These deep

neural networks are designed to automatically learn and represent data in increasingly

abstract and hierarchical ways. They are called “deep” because they have more

layers (depth) than traditional neural networks, allowing them to model complex

patterns and relationships in data. Deep learning has gained significant attention and

popularity due to its remarkable success in various applications, including image and

speech recognition, natural language processing, and reinforcement learning. Deep

learning has the ability to discover intricate features and patterns in large datasets

through their training process.

The training in deep learning models is comprised of multiple blocks. First a

model architecture (e.g. transformer) is selected and weights of neurons are randomly

initialized. Second, a loss function is selected to calculate the error between the

model’s predictions and the actual target. Third, an optimizer is selected to update

the weights of neurons based on the loss function. The optimizer adjusts the model’s

parameters during training in a way that reduces the loss function’s error.

Combining these components, a single training loop (i.e. epoch) of a deep learning

model includes the following steps. First, the input data is fed into the neural network,

and feedforward propagation occurs in order to generate the predictions based on

model’s current parameters. Second, the loss function computes the error between the

predictions and the actual labels. Third, backpropagation happens where gradients of

the loss with respect to the model’s parameters (i.e. weights) are computed using the

chain rule of calculus. Fourth, in gradient descent the optimizer uses the gradients to

update the model’s parameters.

Loss Function
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A loss function, also known as a cost function or objective function, quantifies the

error or discrepancy between the model’s predictions and the actual target values in

the training dataset. The goal during training is to minimize this loss function. The

choice of the appropriate loss function depends on the nature of the problem and the

data available for training. Different loss functions used in this thesis are:

• Cross-entropy loss: Cross-entropy loss is frequently used for classification tasks,

especially in the context of binary or multiclass classification. It quantifies the

dissimilarity between the predicted class probabilities and the true class labels.

The formula for binary cross-entropy loss is:

loss = −[Y ∗ log(Ypred) + (1− Y ) ∗ log(1− Ypred)]

• Cosine similarity loss: Cosine similarity is a measure of similarity between two

non-zero vectors in an n-dimensional space. In cosine similarity loss, the simi-

larity of two input vectors is computed using cosine similarity and the result is

compared to the gold similarity score.

loss =
Y.Ypred

|Y |.|Ypred|

• Contrastive loss: Contrastive loss, is a loss function used in deep learning for

tasks involving similarity learning, such as recommendation systems. It is de-

signed to encourage a neural network to learn embeddings (vector representa-

tions) in such a way that similar items or examples are embedded closer together

in the feature space while dissimilar ones are farther apart.

lossi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1[i ̸= k]exp(sim(zi, zk)/τ)
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2.2.6 Embeddings

In natural language processing (NLP), an “embedding” refers to a numerical rep-

resentation of words, phrases, or documents in a continuous vector space. These

embeddings are designed to capture semantic relationships between words and enable

machine learning models to work with text data in a more meaningful way. Some

common approaches to creating word embeddings are: Word2Vec [6], GloVe [7], and

BERT [8].

2.2.7 Softmax

Softmax is a mathematical function that converts a vector of real numbers into a

probability distribution. It can be applied on the output layer of a neural network

for multi-class classification tasks. The softmax function takes as input a vector of

arbitrary real numbers (logits) and transforms them into a probability distribution

over multiple classes.

Softmax(xi) =
exp(xi)∑
j exp(xj)

2.2.8 Transformers

Transformers [9] are a class of deep learning model architectures that have revolution-

ized natural language processing (NLP) and other sequence-based machine learning

tasks. Introduced in 2017, they rely on the self-attention mechanism, allowing them

to efficiently capture context and relationships between elements in sequences, mak-

ing them particularly effective for NLP applications. Transformers consist of multiple

layers of multi-head self-attention, feedforward neural networks, and position encod-

ings. They have led to remarkable advancements in NLP and have been adapted for

various domains, setting new standards in tasks ranging from text classification and

machine translation to sentiment analysis and question answering. Popular models

like BERT, BART, GPT-3, and RoBERTa are based on transformer architectures.
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Transformers are often used in a paired encoder-decoder architecture for sequence-

to-sequence tasks, such as machine translation. The encoder processes the input

sequence, while the decoder generates the output sequence.

2.2.9 BERT

BERT [8], or “Bidirectional Encoder Representations from Transformers,” is a natural

language processing model developed by Google AI based on transformers. BERT

excels in representing the meaning of words and phrases in context, thanks to its

bidirectional architecture and transformer-based design BERT only uses the encoder

part of transformers by stacking multiple encoders. This architecture enables BERT

to generate embedding of words, and can also be used for classification tasks. BERT

is pre-trained on two tasks, next sentence prediction and masked language modeling

(predicting masked words in a sentence).

2.2.10 RoBERTa

RoBERTa [10], or “A Robustly Optimized BERT Pretraining Approach,” is a state-

of-the-art natural language processing model introduced by Facebook AI in 2019. It

is built upon the BERT (Bidirectional Encoder Representations from Transformers)

architecture but incorporates several key improvements and optimizations, making it

one of the most powerful language understanding models. RoBERTa employs larger

datasets for pretraining, more training steps, dynamic masking of text, and other

enhancements, allowing it to outperform its predecessors on a wide range of NLP

tasks.

2.2.11 SBERT

Sentence-BERT [11] or SBERT is a framework developed for creating sentence embed-

dings, which are vector representations of sentences. SBERT is designed to capture

the semantic meaning of sentences and their contextual relationships in a continuous
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vector space. It achieves this by training on a large amount of sentence pairs and ap-

plying siamese network and triplet loss. SBERT has proven highly effective in various

NLP tasks, such as information retrieval, semantic search, and document clustering,

where understanding sentence-level semantic similarity and dissimilarity is crucial.

2.2.12 Clustering

Clustering is a machine learning technique used in unsupervised learning, where the

goal is to group similar data points or objects together based on their inherent sim-

ilarities or patterns. The objective of clustering is to identify natural structures or

clusters within a dataset, allowing data to be organized into subsets with similar

characteristics. Common clustering algorithms include K-means [12], hierarchical

clustering [13], and DBSCAN [14]. Clustering is used in various applications, such

as data analysis, image segmentation, customer segmentation, and recommendation

systems, to discover patterns, explore data, and make it more manageable for further

analysis or decision-making.

In the context of NLP, we use sentence embeddings as inputs for different clustering

algorithms. Ideally the embeddings of similar sentences are more similar to each other,

enabling clustering algorithms to group them with each other.

Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering method in machine learning

and data analysis that starts with each data point as its own cluster and progressively

merges the closest clusters, forming larger clusters until all data points belong to a

single cluster or a predefined stopping criterion is met. This bottom-up approach

creates a hierarchical structure, allowing for different levels of granularity in cluster

formation.

Rand Index Score

The Rand index score [15] is a measure used in data analysis and clustering to

assess the similarity between two different clusterings or to evaluate the quality of a
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clustering solution in comparison to a known reference (ground truth). It quantifies

the agreement between the two clusterings by calculating the number of data point

pairs that are correctly clustered together or correctly placed in different clusters,

relative to all possible pairs. The score ranges from 0 to 1, where a higher score

signifies a higher level of agreement, with 1 indicating perfect agreement between

the clusterings. It is a valuable tool for cluster evaluation and validation, providing

insight into the quality of clustering results. The Rand Index is computed using the

formula:

RI =
CorrectSimilarPairs+ CorrectDissimilarPairs

TotalPossiblePairs

2.3 Evalutation Metrics

2.3.1 ROUGE Score

ROUGE [5] (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics

and algorithms used for the automatic evaluation of the quality of machine-generated

text, such as summaries, machine translation outputs, and other natural language

processing tasks. ROUGE measures the similarity between a reference (human-

generated) text and the machine-generated text by comparing n-grams (contiguous

sequences of n words) and other linguistic units. The primary focus of ROUGE is

on recall, which means it assesses how much of the reference text is captured by

the generated text. Some common ROUGE metrics include ROUGE-N (measuring

overlap in n-grams) and ROUGE-L (computing the longest common subsequence).

ROUGE scores are often used in research and development to assess the quality and

performance of various natural language generation tasks.

2.3.2 BLEU Score

BLEU [16] (Bilingual Evaluation Understudy) is a metric used to evaluate the qual-

ity of machine-generated translations by comparing them to one or more reference
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translations. It was proposed as a reference-based evaluation metric to address the

limitations of simpler metrics like precision and recall. The BLEU score is calculated

based on the precision of n-grams (contiguous sequences of n words) in the candidate

translation compared to the reference translations. The precision is computed for dif-

ferent n-gram orders (unigrams, bigrams, trigrams, etc.), and the scores are combined

using a weighted average. The resulting BLEU score ranges from 0 to 1, with higher

scores indicating better agreement between the candidate and reference translations.

2.3.3 Transformer-based Evaluation Metrics

Transformer based evaluation metrics aim to overcome the shortcomings of traditional

metrics such as ROUGE and BLEU score. Traditional metrics evaluate text based on

n-grams, not taking into account the semantics of words with respect to the context.

Additionally, they have no way of evaluating whether the generated texts are fluent,

accurate, or meaningful. Transformer based metrics solve these issues by making use

of pre-trained language models such as BERT and BART [17].

BLEURT [18] is a metric for evaluation of natural language generation tasks based

on BERT. It takes a pair of candidate and reference as inputs, and returns a similarity

score indicating the extent of candidate’s fluency and similarity to the reference.

Similarly, BARTScore [19] is an evaluation based on BART, that evaluates the quality

and similarity of a generated text compared to the reference.

2.4 Argument Summarization

2.4.1 Argument Mining

Prior to the introduction of the key point analysis (KPA) task, the field of argument

summarization was rather underdeveloped, both in terms of available datasets and

techniques. However, several research focused on related experiments, such as clus-

tering or extraction of arguments. Misra et al. [20] aimed to extract different aspects

of arguments, called argument facets, similar to key points. The proposed framework
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first extracted the sentences that include arguments, and further ranked extracted

sentences by their similarity to each other, with similar arguments representing an

argument facet. Egan et al. [21] proposed a multi-step argument summarization,

where first “points”, a verb and its syntactic arguments, were extracted and the

final summary was generated by connecting points. Ajjour et al. [22] focused on

frame identification using clustering, where a frame refers to arguments that cover

the same aspect. The method first clusters the arguments into topics then removes

topic-specific features from the arguments, and lastly clusters the “topic-free” argu-

ments into frames. Reimers et al. [23] similarly focuses on argument clustering and

classification, however unlike the previous approach they use BERT [24] and ELMo

[25] instead of TF-IDF and LSA [26]. The authors experimented with different clas-

sification and clustering methods in both supervised and unsupervised settings.

2.4.2 Key Point Analysis

According to the organizers of the KPA task, a total of 17 and 5 models were sub-

mitted for the matching and generation track, respectively. The top two performing

models based on the evaluation of the organizers were BarHaim [27] and Alshomary

[28].

BarHaim, which was developed by the curator of the dataset used for the task, uses

an extractive approach. The method scores all arguments in the input with respect

to their quality, and selects all the arguments scored above a threshold as candidates.

Then the rest of the arguments in the input are matched to every candidate using

a key point matching model, where an argument-key point match is made with the

highest scoring candidate if its matching score is above a certain threshold. Lastly,

candidates are sorted by the number of arguments they cover and the top k candidates

are selected as summary, if their similarity score with previously selected candidates

is below a certain threshold.

Alshomary uses a variation of page rank [29] for extractive summarization. After
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filtering out the arguments starting with pronouns and low quality, an undirected

graph is constructed where the nodes are the remaining arguments. Next, the im-

portance score between every two nodes is calculated using a key point matching

method, and nodes with a high confidence score are connected. The nodes with the

highest importance score are selected as the summary, as long as they don’t have a

high similarity score with previously selected arguments.

Sultan et al. [30] experimented with the approaches proposed by BarHaim [27]

and Alshomary [28] in the legal domain, in addition to experimenting with their

approach. Authors first cluster the arguments and input each cluster into different

extractive and abstractive summarization methods such as LexRank [31], LSA [26],

Luhn [32], BART [17], PEGASUS [33], and Legal-PEGASUS. The authors evaluate

the effectiveness of each method by manually comparing the output of each method.

Li et al. [34] is the most similar to ours, as it uses a clustering based approach

and introduces new evaluation metrics. After clustering all the input arguments, the

authors input all arguments belonging to a cluster into a language model, prompting

it for summarization. The proposed method uses BERTopic [35] for clustering, specif-

ically it uses a pre-trained language model [36] for getting contextualized embeddings,

performs dimensionality reduction using UMAP [37], and applies HDBSCAN [38] to

cluster embeddings. In the second step, it uses a fine-tuned language model [39] for

generating the reference key points given the arguments in each cluster, to generate

the final summary. The collection of generated key points for all clusters is presented

as the final summary. For evaluation metric, the authors propose a precision and

recall based approach, called soft precision and soft recall. However as the true labels

for generated key points and reference key points are not known (i.e. which refer-

ence key point belongs to which generated key point), the authors propose using a

similarity score instead. For soft precision the reference key point with the highest

similarity score for each generated key point is found. For soft recall the generated

key point with the highest similarity score for each reference key point is found. These
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similarity scores are averaged and are presented as the soft precision and recall. In

order to calculate the similarity score between generated and reference key points,

BLEURT [18] and BARTScore [40] is used. Finally a soft F1 score is calculated from

the soft precision and recall.

2.5 Conclusion

This chapter covered the basic concepts and background needed for our work. We

first explored basics of natural language processing (NLP), deep learning, and recent

popular models used in NLP. Next we discussed the evaluation metrics and methods

used for evaluating generated text. Lastly, we focused on reviewing the related works

in our field, argument mining and summarization. We discussed the idea of earlier

approaches in argument mining and the recent key point analysis task, which our

approach is based upon. We also included a survey in unsupervised summarization

that surveys the recent trends in the field A.
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Chapter 3

Methodology

3.1 Overview

This chapter first explains the structure of the dataset used in key point analysis

(KPA), the limitations of previous approaches to KPA, and how the proposed ap-

proaches addresses them. Next, it focuses on the proposed approach that consists of

a clustering and a selection step.

This chapter outlines our proposed framework and approach to Key Point Gener-

ation (KPG). The input corpus comprises a collection of arguments centered around

specific topics, such as “Should routine child vaccinations be mandatory?”. The out-

put, also called generated key points or the summary are a collection bullet point

style sentences that summarize the input arguments. Our approach, alongside the

previous approaches we compare our work to, are extractive. Therefore the generated

key points are extracted arguments from the input.

To create summaries, our model starts by clustering the input arguments and

selecting the most suitable sentence within each cluster as a candidate. Figure 3.1

provides an overview of this approach.

3.2 Dataset

The dataset proposed for the task includes information in the form of “key point,

argument, label, stance, topic” data point, where the label determines if the argument
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Figure 3.1: Visual Depiction of the Proposed KPG Method. The color of arguments
represents their key point or aspect. First the clustering step groups similar argu-
ments. Next, the selection step chooses the argument with the highest score within
each cluster as the cluster representative. The final summary aggregates the repre-
sentatives from each cluster
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supports the key point. The dataset includes information about the topic and stance

of an argument as well. Topic can be any arbitrary subject, but the stance value

is either zero or one, representing “against” or “pro”. For example, on the topic

of “Homeschooling should be banned”, the key point “Parents are not qualified as

teachers.” is pro the topic, and the key point “Mainstream schools have a lot of

violence/bullying.” is an example of a key point against the topic. Arguments are

the inputs for our models, they are collected from users data online and are paired

with key points. The label determines if an argument-key point are matching or

not. A pair is matched if both argument and key point cover the same aspect. For

example, for the key point “Parents are not qualified as teachers.”, and the argument

“Children learn more how to socialize in schools.”, the label is set to 0 since the

argument and the key point cover different aspects (i.e. parent not qualified and

schools enable socializing).

The key points in the dataset are generated by an expert on the topic. The number

of key points is different for each topic, but is between 3 to 8 key points per stance

per topic. The arguments are collect from users on the internet. The authors use

human judges to label and stance values to key point-argument pairs.

The ArgKP dataset has 24 topics in the training set and 4 in the validation set,

containing 24,000 data points in total. Additionally, the test set includes 3 new topics

with 3,400 data points. The topics in the test set are as follows:

• Topic 1: Routine child vaccinations should be mandatory

• Topic 2: Social media platforms should be regulated by the government

• Topic 3: The USA is a good country to live in

We implemented two modifications to the task, first we assume the stance infor-

mation is not initially available and second we restructure the data.

• For the first modification, we combined data points from both stances to re-
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semble real-world data where stance information is not readily available. Con-

sequently, the dataset is now categorized solely by topics.

• For the second modification, we have restructured the dataset to better suit our

needs. We transitioned from the format of {key point, argument, label, stance,

topic} data point to a format where each topic is represented as a dictionary.

In this new structure, the dictionary’s keys correspond to key points, and their

respective arguments are the associated values. This adjustment was made to

streamline the process of assessing coverage and identifying arguments related

to the same key point. Below is an example of the new structure.

• Topic 1: Routine child vaccinations should be mandatory

– Key point 1: Routine child vaccinations, or their side effects, are dangerous

∗ Argument 1: Routine child vaccinations should not be mandatory

because children may not bear the side effects of it.

∗ Argument 2: Child vaccination should not be mandatory as there are

often side effects from them

∗ (. . . )

– Key point 2: Child vaccination saves lives

∗ Argument 3: Child vaccination saves lives and keeps children from suf-

fering from preventable illness. This can help a person into adulthood

by not having complications from diseases like chicken pox, mumps,

polio and more.

∗ Argument 4: The use of child vaccines saves lives

∗ (. . . )

– Key point3: (. . . )

• Topic 2: (. . . )
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It is also important to note that we propose a modification to the key point analysis

task. The original key point analysis track was designed with distinguished stances,

we propose a modification to the task where the stance information is not known.

Having such stance information would be advantageous as it could assist in initially

categorizing arguments based on their stance, making it easier to distinguish between

lexically similar key points with opposing viewpoints. We proposed this change to

make the methods more applicable to real data. In a real world scenario, arguments

about a certain topic could be found easily, e.g. by using popular hashtags in twit-

ter. However, the stance of each argument cannot be accurately determined using

automatic methods.

3.3 Limitations of Previous Methods

Previous approaches, specifically BarHaim and Alshomary (as explained in 2.4.2),

exhibit weaknesses that hinder the quality of their output. This is partly due to their

reliance on hyperparameter fine-tuning and usage of biased approaches. Additionally,

both of these methods assume that the stance of each input is known, which is often

not the case in real-world scenarios where additional metadata about inputs are gen-

erally unavailable. Specifically, both methods employ an initial filtering step in their

process. While this step is intended to remove low-quality arguments, it also dimin-

ishes the pool of available inputs, which is crucial for an extractive summarization

algorithm. In addition, to make the final output more akin to a summary format, both

methods remove sentences that start with pronouns, further reducing the available

inputs. Furthermore, both methods employ a fixed similarity threshold for detecting

duplicate arguments in the generated summary, which applies uniformly to all topics

when eliminating similar candidates. This approach is problematic because the ac-

tual similarity threshold for one topic is likely to differ from that of another topic,

given that key points in some topics are more semantically related than in others. In

addition to their shared limitations, both methods have their own unique constraints.
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BarHaim heavily relies on two thresholds for matching arguments to candidates and

for eliminating similar candidates. These thresholds are tailored to a specific dataset,

limiting the method’s generalizability to other datasets. Moreover, BarHaim only

selects short arguments for inclusion in a summary. This often yields only a few ar-

guments from an input of around two hundred and produces no summary for inputs

of a hundred or fewer. The other method, Alshomary, determines the best values for

hyperparameters (e.g. “d,” “qual,” “match”, standing for minimum distance, mini-

mum quality, and minimum matching score) for a specific dataset and also employs

a threshold similar to BarHaim for identifying similar candidates.

Beyond the technical constraints imposed by their methodologies, the quality of

outputs produced by BarHaim and Alshomary are negatively impacted by their strat-

egy for summary. The generated summary of these models lack comprehensive cov-

erage of the reference key points. Both methods tend to extract multiple arguments

for popular aspects or key points while overlooking key points with fewer associated

arguments. This phenomenon happens because there often is an imbalance between

the number of arguments discussing different aspects or key points of a topic. For

example, on the topic of “Routine child vaccinations should be mandatory”, there is

a total of nine reference or ground truth key points, in the ArgKP dataset, where the

most popular key point, has fifty arguments discussing it, whereas the least popular

key point has only four. As a result BarHaim is more likely to extract from popular

topics, as candidates from popular topics are more likely to get a higher match score.

Also in Alshomary’s work, nodes representing arguments from popular key points get

higher importance scores, as there are more edges connecting them. This falls short

of the desired summarization objective, which is to encompass all key points, not just

the most popular ones.
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3.4 Addressing the Limitations

Our approach effectively addresses the aforementioned limitations by leveraging clus-

tering and matching techniques.

First, our method operates without the need for fine-tuning hyperparameters spe-

cific to a dataset, making it readily applicable to diverse datasets without requiring

any modifications.

Second, our method doesn’t depend on prior knowledge of stance information,

allowing it to be used with real-world data where such information is often unavailable.

Third, we refrain from employing input quality filtering or the removal of argu-

ments commencing with pronouns. This means we retain all arguments that could

potentially be valuable, eliminating the necessity for an external model to assess

argument quality.

Fourth, the clustering step groups similar candidates into the same cluster, and

since only one argument from each cluster is chosen, there is no need for duplicate

removal, thereby obviating the similar candidate elimination step and its associated

threshold.

Lastly, by using clustering, our method excels in providing wider coverage of key

points, prioritizing but not favoring popular ones. This generates a summary with a

higher coverage of reference key points and a lower redundancy between generated ar-

guments, as demonstrated by our experiments, encompassing less popular key points

as well.

3.5 The Proposed Method

The proposed method can be divided into two main components: clustering and

argument selection. The clustering step, aims to cluster arguments that discuss the

same aspect. The argument selection, selects a candidate argument in each cluster

that best represents the entire cluster. The collection of candidates from all clusters
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is the summary (i.e, generated key points). In the subsequent sections, we explore

various options and configurations for our proposed method.

3.5.1 Clustering

Prior methods for Key Point Generation (KPG), such as the works by BarHaim and

Alshomary, often generate summaries by giving preference to popular aspects. This

results in summaries that tend to overemphasize certain key points while neglect-

ing others. Our approach aims to provide equal representation for all key points,

prioritizing them without showing favoritism to popular ones. This approach re-

sults in summaries that better cover the reference key points and exhibit reduced

redundancy among generated arguments. To achieve this objective, we group similar

arguments, or sentences, that pertain to the same key points by employing Sentence-

BERT (SBERT) [11]. Specifically, we first get the sentence embeddings for input

arguments using SBERT and further cluster them using Agglomerative Clustering

[13] as seen in Algorithm 1.

In order to evaluate the effectiveness of our approaches in embedding and cluster,

we use Rand index score [15]. Rand index score is a metric for clusters that evaluates

the similarity between the predicted clusters and the actual clusters. A score of 1

represents perfect accuracy.

Algorithm 1 Overview of the Clustering Approach
Input: Arguments ARG,
Embdding Model (SBERT): embed,
Clustering Technique: cluster,
Output: Clusters C

1: for arg in ARG do
2: embeddings[arg]← embed(arg)
3: end for
4: C ← cluster(embeddings)
5: C.sort()
6: return C
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Embedding

We observed that even the best-performing pre-trained SBERT model (all-mpnet-

base-v2) for generating embeddings led to low Rand index scores, indicating that

the clustered embeddings did not accurately represent the actual clusters, see Table

3.2. To address this, we improved the embedding generation model (SBERT) by

fine-tuning it on the ArgKP dataset using both contrastive loss (see Section 2.2.5),

following Alshomary, and Cosine Similarity loss. We used argument-key point pairs

from the ArgKP train set as input pairs and the matching labels as output for fine-

tuning the SBERT model.

Fine tuning Topic 1 Topic 2 Topic 3

Before FT 0.184 0.190 0.152

FT Cosine Similarity Loss 0.434 0.453 0.388

FT Contrastive Loss 0.378 0.446 0.317

Table 3.1: Rand scores using Agglomerative Clustering before and after fine-tuning
with two different methods. Using “all-mpnet-base-v2” SBERT base models and
distance threshold of 1.5.

Language Model Topic 1 Topic 2 Topic 3

“MiniLM w/ distance threshold” 0.103 0.144 0.156

“mpnet w/ distance threshold” 0.184 0.190 0.152

“MiniLM w/ cluster number” 0.105 0.144 0.168

“mpnet w/ cluster number” 0.186 0.185 0.188

Table 3.2: Rand scores using Agglomerative Clustering with two different settings,
with number of clusters equal to reference key points and 1.5 distance threshold. Rand
scores are averaged on the three test set topics. MiniLM represents “all-MiniLM-L6-
v2” and mpnet represents “all-mpnet-base-v2” SBERT base models. MiniLM model
is faster and smaller version of mpnet.

We observed that fine-tuning the language model improves the Rand index score

in the clustering step by more than a 100%, and that the model fine-tuned using

Cosine Similarity outperformed the one fine-tuned using Contrastive loss, Table 3.1.
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Figure 3.2: Embedding plots before fine-tuning the embedding model on topic 1

Figure 3.3: Embedding plots after fine-tuning the embedding model on topic 1

Figure 3.4: Embedding plots before fine-tuning the embedding model on topic 2

Figure 3.5: Embedding plots after fine-tuning the embedding model on topic 2
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Figure 3.6: Embedding plots before fine-tuning the embedding model on topic 3

Figure 3.7: Embedding plots after fine-tuning the embedding model on topic 3

To further demonstrate the effectiveness of fine-tuning, we depict TSNE plots of

arguments for the three topics in ArgKP test set before and after fine-tuning SBERT

in Figures 3.2 through 3.7. Figures 3.2 and 3.3 show the embedding plots of arguments

on the topic of “Routine child vaccinations should be mandatory” before and after

fine-tuning. As seen in the plots, the embeddings of arguments related to the same

aspect are grouped next to each other after fine-tuning, and are less spread over the

distribution. The same phenomenon happens in Figures 3.4 and 3.5, and Figures 3.6

and 3.7 that showcase arguments on the topic of “Social media platforms should be

regulated by the government” and “The USA is a good country to live in” respectively.

Cluster

In the second clustering step, we conducted experiments using various clustering algo-

rithms on both the training and test sets. The clustering algorithms employed in our

experimentation included Agglomerative Clustering, K-Means [12], Affinity Propaga-

30



tion [41], Mean Shift [42], Spectral Clustering [43], DBSCAN [14], BIRCH [44], and

Bisecting K-Means [12]. Based on the Rand Index scores obtained from each method

as shown by Table 3.3, Agglomerative Clustering, BIRCH, and Bisecting K-Means

exhibited the best overall performance, followed by K-Means, Affinity Propagation,

and Spectral Clustering. However, DBSCAN and Mean Shift yielded unsatisfactory

results. It’s worth noting that these clustering methods have distinct hyperparame-

ters. For instance, while some methods like Spectral Clustering and K Means require

specifying the number of clusters as input, others like DBSCAN depend on a distance

hyperparameter. Moreover, methods such as BIRCH and Agglomerative Clustering

can accept either of these parameters as input. We used the default hyperparameters

for each clustering method to ensure a fair comparison, and we refrained from using

external information, such as the number of clusters, or fine-tuning hyperparameters

to achieve the best scores.

Rand Index Score Training set Test set

Agglomerative Clustering 0.4736 0.4300

K Means 0.4510 0.3990

Affinity Propagation 0.4448 0.4072

Spectral Clustering 0.4183 0.4162

DBSCAN 0.2416 0.1042

BIRCH 0.5321 0.4284

Bisecting K Means 0.4731 0.4208

Table 3.3: Rand index score using different clustering methods. The scores averaged
across all topics for both the training (28 topics) and test (3 topics) sets.

We selected Agglomerative Clustering due to its superior Rand index scores, con-

sistent with the findings of Reimers et al. [23], who also identified it as the optimal

clustering algorithm for argument clustering and classification. An additional advan-

tage of Agglomerative Clustering is that it does not require specifying the number of

clusters as a hyperparameter, which is beneficial given that this information is often
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unknown during inference. However, our approach remains adaptable to algorithms

that might necessitate an estimated number of clusters.

Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering method. The process starts by

considering each data point as a single cluster. Then, it iteratively merges the closest

clusters until a stopping criterion is met, resulting in a hierarchy of clusters.

At each step, the algorithm identifies the two clusters that are closest together and

merges them into a single cluster. The distance between clusters is typically defined

using a distance metric such as Euclidean distance or Manhattan distance.

Agglomerative clustering proceeds until all data points are in a single cluster, until a

predetermined number of clusters is reached, or until the distance threshold is reached.

The distance threshold is a parameter used to determine when to stop merging clusters

during the clustering process (i.e. threshold at or above which clusters will not be

merged). In our implantation, we use a distance threshold of 1.5. The overview of

the clustering approach can be seen at 2.

Algorithm 2 Agglomerative Clustering

Input: Emdeddings emdb, distance metric dist(·, ·), Distance Threshold T
Output: Clusters C

1: C ← {{embd1}, {embd2}, ..., {embdn}}
2: while |C| > 1 do
3: Find the two closest clusters Ci and Cj:
4: Ci, Cj ← argminCa,Cb∈C d(Ca, Cb)
5: Merge Ci and Cj: C ← (C \ {Ci, Cj}) ∪ {Ci ∪ Cj}
6: if minCa,Cb∈C,Ca ̸=Cb

d(Ca, Cb) > T then
7: break
8: end if
9: end while
10: Return Clusters
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BERTopic

Furthermore, we conducted experiments involving neural topic modeling as used by

Li et al. [34]. This method employs BERTopic for clustering, where a pre-trained

language model (SBERT) is utilized to generate contextualized embeddings. Subse-

quently, dimensionality reduction using UMAP is applied to these embeddings. Fi-

nally, HDBSCAN is employed to cluster the resulting embeddings. Table 3.4 presents

the Rand index score achieved using this approach. Although the outcomes demon-

strate enhancement compared to the baseline language model, it is evident that the

suggested method falls considerably short of the performance achieved by our ap-

proach utilizing a fine-tuned language model.

Rand Index Score Topic 1 Topic 2 Topic 3

BERTopic Modelling 0.2400 0.2518 0.1296

Table 3.4: Rand index scores using BERTopic Modelling approach on three topics for
test set

3.5.2 Argument Selection

In the argument selection phase, the method’s goal is to choose a single argument

that best represents the entire cluster. Given that the clustering step groups related

arguments, having just one argument from each cluster is adequate to represent each

cluster. To determine the best argument for each cluster, we adopt a multi-faceted

approach. Initially, we sort the clusters by their size, giving precedence to larger

and more substantial clusters. Subsequently, we experiment with eleven different

scoring functions, influenced by BarHaim’s work. These methods aim to select the

most suitable cluster representative, taking into account argument coverage, argument

quality scores, or a combination of both. Algorithm 3 depicts an overview of the

process. Table 3.5 depicts an overview of models and techniques used in each function.
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Algorithm 3 Argument Selection

Input: cluster{c1}, cluster{c2}, . . . , cluster{cn}
Output: Summary{c1}, Summary{c2}, . . . , Summary{cn}

1: for cluster ci = c1, c2, . . . , cN do
2: for argument argi = arg1, arg2, . . . , argN in ci do
3: Score{ci}{argi} ← scoring function(argi, ci)
4: end for
5: Summary({ci})← Argmax(Score{ci})
6: end for
7: return output← {Summary{c1}, Summary{c2}, . . . , Summary{cn}}

Scoring Function KP Match. Arg. Qual. Len. (Static) Len. (Dynamic) Splitting

1

2

3

4

5

6

7

8

9

10

11

Table 3.5: Scoring functions categorized by the model and techniques they employ
for scoring arguments. The models and techniques are key point matching, argument
quality, length (static and dynamic), and splitting.

Key Point Matching Model

All scoring function use the key point matching model as part of their scoring process,

fine-tuned on the ArgKP dataset. The matching model takes a a pair of sentences

as inputs, and outputs a binary label. The label represents the model prediction on

whether the first sentence covers the same aspect as the second sentence (i.e. first

sentence entails the second sentence). This enables the argument selection step to

find the argument in each cluster that entails the most sentences in that cluster. The
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argument that entails the most number of arguments in a cluster is considered as the

representative of that cluster. We call this the argument coverage.

The key point matching model is fine-tuned on the ArgKP dataset, where an

argument-key point pair are given as inputs and the matching label is given as the

label. We use BERT as the key point matching model. During inference, sentence

pairs are considered matching if the predicted label is 1. A match between two

arguments signifies that one argument entails the other. We format each input to the

BERT model as “[CLS] argument [SEP] key point [SEP]”, and [logit 1, logit 2], where

[1, 0] represents class zero or non-matching and [0, 1] represents matching argument-

key point pairs, for the output. A pair is considered matching if the second logit is

greater than the first one.

Argument Quality Model

Some of the scoring functions use an argument quality model [45]. The argument

quality model, takes an argument as the input, and returns a number between 0 and

1 to determine the quality of an argument. High quality arguments get a score close

to 1.

Scoring Functions (SF)

1. In the first SF, we only utilize the key point matching model. Each argu-

ment in a cluster is compared with every other argument in that cluster, and

the key point matching model predicts whether a pair matches or not. After

this process is applied to all the arguments in a cluster, we rank the argu-

ments based on the number of matches they have, selecting the argument

with the highest number of matches. If multiple arguments have the same

highest number of matches, we opt for the shortest argument to ensure a concise

and comprehensive summary.

2. In the second SF, we follow a similar approach and rank arguments by the num-
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ber of matches, however we use the average match number as a threshold

to filter out arguments with matches below threshold. We then compute the

argument quality score for the top arguments in each cluster using the argument

quality model and select the highest-scoring argument. This in theory should

enable us to select high-quality arguments with coverage.

3. The third SF solely relies on the argument quality score in each cluster,

choosing the argument with the highest score. This was done as an experiment

to measure the effectiveness of our matching model in selecting high-coverage

summaries.

4. In the fourth SF, we opt for the argument with the highest coverage, akin

to the first SF, but we use a strict threshold for allowing matches. We only

consider a pair as a match if the second logit is greater than the first, and it is

above a threshold (0.9). This increases the sensitivity of matching model, only

matching arguments that are very similar to each other.

5. The fifth SF selects the shortest argument in terms of length, provided its

quality score is above a specific threshold (0.8). This SF aimed to extract short

high quality summaries, without focusing on coverage.

6. The following methods focus on splitting multi-sentence arguments into

separate, shorter sentences, as the previous approaches often produced

multi-sentence outputs. However, as the sentence splitting step could be ap-

plied both before and after clustering, we experimented with both. Method

six performs this split after the clustering step, while SF seven does it before

the clustering step. Method six outperforms SF seven, proving that using the

original longer sentences proves more advantageous in the clustering step.

7. Methods eight, nine, ten, and eleven are designed experiment with generating

shorter outputs, while also trying out affects of quality and coverage as criteria
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for selection. These methods are a continuation of SF six with sentence splitting

after clustering steps.

Method eight segments sentences (breaking multi-sentences to single sentences),

selecting sentences with amaximum of 70 words. This enforces a strict length

limit, selecting only short sentences as summary.

Method nine follows a similar word limit but splits sentences into phrases

using using Spacy library. Since phrases are often shorter than sentence, we

believed this might increase the number phrases that are within the length

limit.

Method ten segments sentences and adheres to the maximum word limit, but

selects the highest quality sentences that are not similar to previously

chosen sentences, using cosine similarity. This SF is inspired by BarHaim,

and aims to choose high-quality sentences while maintaining diversity, i.e., high

coverage.

Upon evaluating the output and coverage of SF ten, it becomes evident that

neither the quality nor the coverage of the model is enhanced. Method eleven

prioritizes shorter sentences without relying on a static length. The

function scores arguments in each cluster relative to the number of matches and

penalizes lengthy sentences. We use

Score =
matchesi

#ofwords

where i determines the importance of matches.

Evaluation of Scoring Functions

In order to choose the best SF, we have to evaluate the output generated by each one.

We use the coverage score as this evaluation metric. The coverage score represents

the percentage of reference key points that are covered by a summary. A score of one

means that all the reference key points on a topic are covered by the summary.
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Additionally, the output generated by the methods generate different number of

key points in the summary. As a result, the summaries that have more generated key

points, have a higher chance of getting a higher coverage score. To this end, we also

report the “limited” version of output summaries, where the number of generated key

points is limited to the number of reference key points for each topic. We use the

results of limited output for comparison and selection of the best methods.

Table 3.6 shows the coverage score of different methods for each topic in the test

set. Based on the coverage results, we selected SF 11 and SF 6 (referred to as V11

and V6) as the best performing methods. Although V6 offers better coverage, V11

offers shorter summaries. The reason for this is that the selection criteria for V6 only

considers coverage, whereas V11 considers both coverage and length. We did not

select V1 as its coverage score is lower than V6 and it does not consider length unlike

V11. We refer to V6 as Selection with Matching Model (SMM), and SF V11 as

Selection with Scoring Function (SSF).

Coverage Scores Topic 1 Topic 2 Topic 3 Averaged

V1 0.7778 0.5000 0.5714 0.6164

V2 0.5556 0.4000 0.6429 0.5328

V3 0.4444 0.4000 0.5714 0.4720

V4 0.6667 0.4000 0.5714 0.5460

V5 0.4444 0.4000 0.5714 0.4720

V6 0.8889 0.5000 0.6429 0.6772

V7 0.6667 0.6000 0.5000 0.5889

V8 0.4444 0.4000 0.6429 0.4958

V9 0.5556 0.3000 0.6429 0.4995

V10 0.5556 0.4000 0.5714 0.5090

V11 0.7778 0.4000 0.6429 0.6069

Table 3.6: The coverage score of different scoring functions on three test topics. The
averaged column reports the average score for all three topics.
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3.6 Conclusion

In this section we explained the structure of dataset used in the KPA task, short-

comings of previous approaches and our solution to them. We also introduced our

approach, which consists of two steps, clustering and argument selection. In our

approach, the clustering step groups similar arguments in a cluster. The argument

selection step extracts one sentence from each cluster as the representative of the

cluster. The summary (or generated key points) is the collection of all representative.

For our approach, we first fine-tuned SBERT which is used for generating em-

beddings. The embeddings are input to our clustering step. We experimented with

various clustering techniques and chose Agglomerative Clustering due to its superior

performance. We compared the effectiveness of our embedding and clustering steps to

BERTopic to show its effectiveness. In argument selection, we score each argument in

a cluster to select the best one. We experimented with 11 different scoring functions

and selected two, Selection with Matching Model (SMM) and Selection with Scoring

Function (SSF), based on our evaluation criteria.
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Chapter 4

Evaluation Metrics

4.1 Overview

This section centers around evaluation metrics for key point generation task (KPG)

(see 1.3). It starts by discussing the most popular evaluation metric in summarization

tasks, ROUGE, and its limitations. We introduce coverage datasets, a set of datasets

used for assessing evaluation metrics.

Next, we propose our two evaluation metrics for KPG, coverage and redundancy.

We experiment with different methods and models for measuring coverage, including

BLEU score, BERT and RoBERTa models, a key point matching model 3.5.2, and

BLEURT and BARTScore models. Moreover, we devise a dataset for redundancy

task to train and compare different methods. We experiment two approaches, a

cosine similarity based method and using BERT for classification. We present the

best performing methods for both coverage and redundancy at the end of chapter.

4.2 ROUGE

In the realm of summarization tasks, the prevalent evaluation metric is the “Recall-

Oriented Understudy for Gisting Evaluation,” abbreviated as ROUGE [5]. ROUGE

score measures the overlap of n-grams between a candidate text and a reference text

and is employed in various tasks, including translation. The two most frequently

used variants in summarization evaluation are ROUGE-N (ROUGE-1, ROUGE-2)
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and ROUGE-L. However, despite its widespread use, ROUGE has notable limitations,

such as its inability to consider semantic similarity and its inclination toward favoring

longer sentences [46]. Furthermore, it is worth noting that according to [47], many

reported ROUGE scores in research may be incorrect due to inaccuracies in the

software packages used for ROUGE calculation, and because some researchers fail

to account for critical evaluation decisions and parameters when reporting ROUGE

scores, thereby making their experiments not reproducible.

4.3 ROUGE in Key Point Generation

Moreover, we contend that the ROUGE score, on its own, proves inadequate as a

metric for our specific task of argument summarization, primarily because it lacks

the capability to distinguish between summaries that exhibit varying degrees of cov-

erage. To illustrate this limitation, we conducted a study in which we sampled diverse

datasets, each representing different levels of coverage, and computed their ROUGE

scores using the “rouge score” package in Python. Specifically, we generated nine

distinct datasets for each coverage level, 100%, 75%, 50% coverage datasets from the

ArgKP training set. Our experiments showed that ROUGE is incapable of differen-

tiating datasets with different levels of coverage (More in 5.3.2).

4.4 Coverage Datasets

To test the performance of different evaluation metrics, we created a set of pseudo

summaries from the ArgKP test set, with different levels of coverage, 100%, 75%,

and 50%. We named them Coverage Datasets – a dataset for each level of cover-

age. These pseudo summaries each contain the same number of arguments i.e. 25,

sampled from the unseen ArgKP test set. Each coverage dataset corresponds to its

respective proportion of reference key points from the topic. For instance, a 100%

coverage dataset for a topic with 20 key points encompasses all 20 key points, while
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a 75% coverage dataset covers 15 key points, and a 50% coverage dataset includes

10 key points. To ensure a fair comparison across all datasets, we maintained an

equal number of arguments within each dataset. For instance, the 100% coverage

dataset contained 25 arguments in total, with at least one argument assigned to each

key point, while the 50% coverage dataset containing 25 arguments in total, has at

least two arguments corresponding to each key point. Furthermore, for each coverage

dataset, we conducted random sampling of nine distinct versions and reported the

average score across all these samples. This step was implemented to reduce random-

ness and ensure that different key points and arguments were selected. Additionally,

any experiment using different coverage datasets reported the average scores across

all nine datasets.

4.5 Proposed Metrics

To address these concerns, we have introduced a pair of novel evaluation metrics,

namely, “coverage” and “redundancy”, tailored specifically for the task of argument

summarization. In both key point analysis and argument summarization, the primary

objective is to generate a concise summary that closely aligns with the key points

featured in the reference summary. Consequently, we designed our evaluation metrics

with these same objectives in mind. Furthermore, we aimed to devise evaluation

metrics that are not only intuitive but also straightforward to implement and apply.

Coverage, quantifies the extent to which a generated summary encompasses the

key points or reference summary (i.e. how many reference key points are covered by

the generated key point). A high coverage score signifies that the generated summary

effectively captures most of the key points outlined in the reference summary.

On the other hand, redundancy gauges the number of distinct arguments present

in the generated summary (i.e. duplicate generated key points that cover the same

reference key point). A low redundancy score indicates that the majority of the

arguments in the generated summary are distinct or dissimilar.
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Since evaluating these metrics often necessitates a dataset with labeled key points

and arguments, which is typically unavailable, we also introduce techniques for cal-

culating these metrics without relying on labeled data.

In terms of the practical implementation of coverage and redundancy prediction

methods, we have explored various techniques and approaches. Nevertheless, a key

emphasis of these evaluation metrics is ease of implementation and usage, with the

intention of enabling other researchers to readily adopt them without any additional

complexity. The subsequent two sections provide a comprehensive overview of the

diverse approaches we have adopted for evaluating coverage and redundancy.

4.6 Coverage

The coverage metric assesses the quality of a summary based on how effectively it rep-

resents the reference summary, a similar concept to ROUGE. In the context of a refer-

ence summary comprising reference key points denoted asRKP = {kp1, kp2, . . . , kpn},

with each key point containing one or more arguments, and a candidate summary rep-

resented as GKP = {arg1, arg2, . . . , argn}, coverage quantifies the extent to which

the generated key points (arguments) in the candidate summary cover the reference

key points.

As an example, the coverage score of a summary or “generated key points” GKP =

{arg1, arg2, arg3} with respect to the reference key points, RKP = {kp1, kp2, kp3, kp4},

given that arg1 and arg3 belong to kp1, and arg2 belongs to kp2 is equal to 50%.

The coverage score is calculated using the Algorithm 4.

Assessing coverage, given knowledge of the arguments for each key point, is a

straightforward task, i.e. when it is clear what reference key points the generated

key points belong to. However, it’s important to note that this information may not

always be readily available. Therefore there is a need for an automatic method of

assigning arguments to reference key points. We framed the coverage measure as

an entailment task. Consequently, we conducted experiments utilizing four distinct
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Algorithm 4 Coverage Metric

Input: GKP = {arg1, arg2, . . . , argn} & RKP = {kp1, kp2, . . . , kpn}
Output: CoverageScore

1: CoveredKeyPoints = Set(empty)
2: for argi = arg1, arg2, . . . , argn do
3: for kpi = kp1, kp2, . . . , kpn do
4: if argi is in kpi then
5: CoveredKeyPoints.add(kpi)
6: end if
7: end for
8: end for
9: return CoverageScore← # CoveredKeyPoints

# ReferencePoints

automatic evaluation methods for coverage and documented their individual perfor-

mance.

4.6.1 BLEU Score

Initially, we conducted an experiment to evaluate the applicability of the BLEU Score

in determining coverage. In this experiment, we organized the dataset by key points

and allocated arguments to their corresponding key points. Subsequently, we calcu-

lated the BLEU Score between each candidate argument in the summary and each key

point’s group of arguments. The BLEU Score between the candidate argument and

the group of arguments yields a score between zero to one. A score of one indicates

that the candidate argument was identical to an argument within the key point’s

group, while a score of zero means there is no 1, 2, 3, or 4-grams shared between the

two. We assigned the candidate argument to the key point with the highest BLEU

Score. To ensure fairness, we removed the candidate argument from the group of

arguments associated with the key point. Table 4.1 shows the predicted coverage of

different coverage datasets using BLEU score.

The results obtained from the test set indicates that the BLEU Score is not a

suitable metric for determining the key point to which a candidate argument belongs.

The primary reason for BLEU score’s limitation is that it operates at the lexical level,

44



neglecting the semantic aspects of text. While such an approach may suffice for tasks

like summarization or translation, it proves less effective in the context of argument

summarization. In argument summarization, arguments with distinct stances and

key points can contain shared words, and arguments that pertain to the same key

point may be expressed using different phrasings or word choices.

Predicted coverage Topic 1 Topic 2 Topic 3

100% Coverage 44% 40% 25%

75% Coverage 44% 30% 25%

50% Coverage 22% 20% 16%

Table 4.1: The predicted coverage of different coverage datasets using BLEU metric.

4.6.2 Encoder Model: BERT & RoBERTa

The second proposed approach for determining coverage involves utilizing an encoder-

only model to assign arguments to key points. We employed the BERT and RoBERTa

(see 2.2.9) base checkpoints from Huggingface as our base models and subsequently

fine-tuned them for the task of binary classification. It is important to note that we

use the same model and idea as the key point matching model mentioned in Section

3.5.2. Similarly, the input data format for the model is structured as follows: [CLS]

argument [SEP] key point [SEP], and the model’s output is configured as [logit 1,

logit 2]. Here, logit 1 represents the probability of the argument not being associated

with the key point, while logit 2 signifies the probability of the argument being related

to the key point. The argument-key point pair is labeled matching (1) if logit 2 ¿

logit 1, and non-matching (0) otherwise. Figures 4.1 and 4.2 provide details on the

training loss and accuracy, as well as the validation loss and accuracy, for both the

BERT and RoBERTa models. These models were fine-tuned for ten epochs using the

Adam optimizer with a learning rate of 1e-6 and a batch size of 32. The template
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used for fine-tuning the model was taken from 1.

Figure 4.1: Training and validation loss and accuracy of BERT model

Setting Threshold

In the inference phase, we apply a softmax layer on the encoder model’s output, which

enables us to apply a threshold. The threshold is applied on the second logit, making

positive predictions more restrictive. With a threshold, a pair is only labeled as

matching when logit2 > logit1 and logit2 > threshold. Our experiments indicated

that setting a threshold for assigning labels to the model’s outputs is an effective

approach. By default, the model designates non-matching labels to output logits

[logit1, logit2] if logit1 > logit2. After a thorough examination of the output logits

and further experiments, we discovered that setting a threshold of 0.9, following the

application of softmax for matching labels (i.e., logit1 < logit2 and logit2 > 0.9),

significantly enhances coverage accuracy.

1https://towardsdatascience.com/fine-tuning-pre-trained-transformer-models-for-sentence-
entailment-d87caf9ec9db
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Figure 4.2: Training and validation loss and accuracy of RoBERTa model

To demonstrate efficacy of thresholds, we conducted tests using the model on

various coverage datasets. Table 4.2 and Table 4.2 illustrates the accuracy of the

model under different conditions, including without a threshold and with the inclusion

of softmax in conjunction with a threshold.

BERT Model 100% Coverage 75% Coverage 50% Coverage

Accuracy w/o Threshold 95.97% (0) 83.21% (0.02) 70.37% (0.02)

Accuracy w 0.9 Threshold 92.68% (0.01) 77.96% (0.01) 63.51% (0.02)

Table 4.2: The predicted coverage of different coverage datasets using BERT with
and without threshold. The values in parentheses represent standard deviation.

RoBERTa Model 100% Coverage 75% Coverage 50% Coverage

Accuracy w/o Threshold 90.8% (0.01) 82.57% (0.01) 73.57% (0.02)

Accuracy w 0.9 Threshold 78.09% (0.01) 70.37% (0.01) 58.34% (0.02)

Table 4.3: The predicted coverage of different coverage datasets using RoBERTa with
and without threshold. The values in parentheses represent standard deviation.
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Setting Limit

Additionally, we conducted experiments exploring alternative configurations for the

coverage model. By default, whenever the model predicts that a key point is implied

by an argument—indicating that the second logit of the model’s output is greater

than the first (i.e., for output [logit1, logit2], logit1 < logit2)—it signifies that the

key point is covered. This often results in an argument matching with multiple key

points. However, in practice, an argument typically covers one or, at most, two key

points, especially given that the arguments in the dataset are in the form of short

tweets. To enforce this, we limit the number of key points each argument can cover

to a maximum of one or two, assigning the key point with the highest scores (logit 2)

to each argument.

Table 4.4 and Table 4.5 presents the model’s predicted coverage under various

scenarios, including with no limit on the number of key points assigned to a key

point, a maximum of one key point, and a maximum of two key points assigned.

BERT Model 100% Coverage 75% Coverage 50% Coverage

No Limit 95.97% (0) 83.21% (0.02) 70.37% (0.02)

Max One KP 82.12% (0.01) 65.29% (0.02) 50.52% (0.01)

Max Two KP 93.82% (0) 79.24% (0.01) 65.15% (0.02)

Table 4.4: The predicted coverage of different coverage datasets using BERT with
limit on the number of key points. The values in parentheses represent standard
deviation.

RoBERTa Model 100% Coverage 75% Coverage 50% Coverage

No Limit 90.8% (0.01) 82.57% (0.01) 73.57% (0.02)

Max One KP 72.24% (0.02) 61.54% (0.01) 51.53% (0.01)

Max Two KP 87.51% (0.01) 77.64% (0.01) 66.39% (0.02)

Table 4.5: The predicted coverage of different coverage datasets using RoBERTa
with limit on the number of key points. The values in parentheses represent standard
deviation.
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Applying Both Settings

Seeing the improvements in accuracy scores resulting from the inclusion of both

thresholds and limitations on the maximum number of key points per argument, we

conducted experiments incorporating both these measures. Table 4.6 and Table 4.7

showcases some of the most favorable outcomes we achieved through these combined

settings.

The experiments have demonstrated that the optimal configuration for our model

involves setting a threshold of 0.9 and allowing for a maximum of two key points per

argument.

BERT Model 100% Coverage 75% Coverage 50% Coverage

Max One KP, 0.9 Threshold 80.56% (0.01) 63.92% (0.01) 49.51% (0.01)

Max Two KP, 0.9 Threshold 90.71% (0) 75.26% (0.01) 60.53% (0.02)

Table 4.6: The predicted coverage of different coverage datasets using BERT with
threshold and limit on the number of key points. The values in parentheses represent
standard deviation.

RoBERTa Model 100% Coverage 75% Coverage 50% Coverage

Max One KP, 0.9 Threshold 64.74% (0.01) 56.1% (0.01) 46.41% (0.01)

Max Two KP, 0.9 Threshold 76.17% (0.01) 67.48% (0.01) 56.01% (0.01)

Table 4.7: The predicted coverage of different coverage datasets using RoBERTa with
threshold and limit on the number of key points. The values in parentheses represent
standard deviation.

Based on these results, we have decided to adopt the BERT model with a maximum

of one key point setting as our evaluation method. We opted for BERT over RoBERTa

due to its superior accuracy on the test set. Furthermore, we chose the maximum

one key point over two, despite its superior performance, as not to overfit our metric

on one dataset. It is also important to note that we only use the threshold when

experimenting on ArgKP dataset, and do not use it when experimenting on other
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dataset as the threshold is fine-tuned for this dataset. Table 4.8 provides the accuracy

scores of both BERT and RoBERTa models on the ArgKP test set.

Model Accuracy

BERT 90.01%

RoBERTa 82.25%

Table 4.8: The accuracy of BERT and RoBERTa with 0.9 threshold and limit of one
on the number of key points on the ArgKP test set.

4.6.3 Key Point Matching Model in the Literature

As per the key point analysis task overview, it was reported that Alshomary pre-

sented the top-performing model for the key point matching track. Consequently, we

made the decision to conduct experiments with this proposed model and utilize it for

predicting coverage. This model was fine-tuned using the key point analysis dataset,

employing contrastive loss for training. It calculates embeddings for input data and

matches arguments to key points based on the highest cosine similarity score, pro-

vided the score exceeds a specified threshold. We conducted experiments with this

model across various coverage datasets, allowing for the assignment of a maximum of

one or two key points per argument. The table 4.9 presents the predicted coverages

achieved through these experiments. The results indicate that while Alshomary’s

KPM model performs well, it is less accurate than the proposed encoder models.

Alshomary’s Model 100% Coverage 75% Coverage 50% Coverage

Max One KP, No Threshold 74.66% (0.02) 65.88% (0.01) 56.65% (0.02)

Max Two KP, No Threshold 92.5% (0.02) 85.5% (0.01) 78.64% (0.01)

Max Two KP, 0.5 Threshold 91.35% (0.01) 83.95% (0) 76.54% (0.01)

Table 4.9: The predicted coverage of different coverage datasets using Alshomary’s
KPM model. The maximum one key point with no threshold is the original setting
used by the authors, the rest are experimental settings. The values in parentheses
represent standard deviation.
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4.6.4 BLEURT & BARTScore

Li et al. [34] introduced a new evaluation metric for the task of key point generation.

The authors suggested computing soft precision and soft recall using the similarity

score computed by BLEURT and BARTScore, matching key points and arguments

with the highest cosine similarity. Soft-precision finds the reference key point with

the highest similarity score for each generated key point, and soft-recall finds the

generated key point with the highest similarity score for each reference key point. In

order to assess the efficacy of their approach, we conducted tests using the BLEURT

and BARTScore models to predict the coverage of different coverage datasets. To

do this, we computed scores for every possible argument and key point pairing while

allowing for the assignment of a maximum of one or two key points to each argument.

This evaluation aimed to determine the precision of BLEURT and BARTScore in

correctly assigning arguments to the appropriate key points. Table 4.10 and Table

4.11 displays the predicted coverage achieved using these methods. The results sug-

gest that BLEURT and BARTScore struggle to effectively link arguments with their

corresponding key points. The primary reason for this is that these models have not

been fine-tuned on text resembling arguments.

BLEURT 100% Coverage 75% Coverage 50% Coverage

Max One KP 66.25% (0) 61.11% (0.01) 56.37% (0.02)

Max Two KP 82.92% (0) 81.68% (0) 75.1% (0.02)

Table 4.10: The predicted coverage of different coverage datasets using BLEURT
model using maximum one and two key points. The values in parentheses represent
standard deviation.

4.7 Redundancy

Redundancy assesses the number of distinct generated key points present in the gen-

erated summary. When considering a summary GKP = {arg1, arg2, . . . , argn},
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BARTScore 100% Coverage 75% Coverage 50% Coverage

Max One KP 60.28% (0.04) 59.25% (0.02) 57.61% (0.02)

Max Two KP 79.62% (0.01) 79.62% (0.02) 78.8% (0.02)

Table 4.11: The predicted coverage of different coverage datasets using BARTScore
model using maximum one and two key points. The values in parentheses represent
standard deviation.

redundancy measures how many arguments within the candidate summary address

the same key point.

As an example, the redundancy score of a summary or GKP = {arg1, arg2, arg3}

with respect to the reference key points, RKP = {kp1, kp2, kp3, kp4}, given that

arg1 and arg3 belong to kp1 and arg2 belongs to kp2, is equal to 1/3 or 33%. The

redundancy score is calculated using Algorithm 5.

Algorithm 5 Coverage Metric

Input: GKP = {arg1, arg2, . . . , argn}
Output: RedundancyScore

1: DuplicatePairs = 0
2: AllPossiblePairs = n∗(n−1)

2

3: for argi = arg1, arg2, . . . , argn do
4: for argj = (arg1, arg2, . . . , argn)− argi do
5: if argi and argj cover same key point then
6: DuplicatePairs++
7: end if
8: end for
9: end for
10: return RedundancyScore← # DuplicatePairs

# AllPossiblePairs

RedundancyScore =
#Generated Key Points in the Same KP

#All Possible GKP Pairs

However, quantifying redundancy becomes challenging when we lack information

regarding which generated key points (arguments) belong to the same reference key

point. In this regard, we conducted experiments using various methods to auto-

matically gauge the redundancy of an output and presented their performance. We
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framed the redundancy measure as a paraphrase detection or classification task, aim-

ing to identify non-redundant, i.e. unique, arguments. Alongside these measures,

we explored the creation of datasets for the binary task of paraphrase detection for

arguments.

4.7.1 Comparing to Standard Paraphrase Detection

Detecting paraphrases for arguments poses a more intricate challenge than standard

paraphrase detection. This increased complexity arises because arguments often em-

ploy similar words to convey different stances with opposing meanings. For instance,

consider a topic like abortion, where sentences such as “Fetus is a human” and “Fe-

tus is not a human” exhibit substantial lexical similarity but belong to contrasting

stances. Additionally, sentences can discuss the same topic, stance, and aspect while

utilizing entirely different wording. To validate our assertion, we fine-tuned a BERT

model for paraphrase detection using the Quora Paraphrase dataset 2 and subse-

quently evaluated its performance on a dataset containing argument paraphrases

from ArgKP dataset. Table 4.12 displays the training and testing accuracies. The

results indicate that even after fine-tuning BERT on a paraphrase detection dataset

and achieving an acceptable training accuracy, the model is still incapable of distin-

guishing paraphrased sentences in the argument domain.

BERT Model Train Loss Train Accuracy Validation Loss Test Accuracy

Before Fine-Tuning - - 3.1997 45.44%

After Fine-Tuning 0.3283 85.02% 2.4972 53.87%

Table 4.12: The accuracy score of a BERT model for paraphrase detection. The
model is trained on Quora Paraphrase dataset and tested on a paraphrase dataset
generated from ArgKP.

2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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4.7.2 Dataset Creation

To facilitate the training and evaluation of paraphrase detection models specific to ar-

guments, we had to construct a dedicated dataset for this purpose. Existing datasets

for paraphrase detection did not focus on argumentative and therefore were inade-

quate for our requirements, necessitating the creation of a new dataset. To compile

this dataset, we explored three distinct approaches.

First Approach

Our initial approach involved leveraging pre-trained large language models, where

we prompted these models to generate paraphrases for given arguments. We used

the prompt “Rephrase the following sentence” and added the argument afterwards.

We employed Stanford’s Alpaca 3 model as part of this process. Nevertheless, the

paraphrases generated by this model exhibited a level of similarity to the original input

that was too pronounced. Table 4.13 provides examples of the generated paraphrases.

The provided examples clearly illustrate that paraphrases generated by pre-trained

language models tend to be quite simplistic, often limited to the replacement of only a

few words with synonyms. In reality, similar arguments may exhibit entirely different

phrasing and structural variations.

Original Text Paraphrased Text

Parents should be permitted to choose
the education of their children

Mothers and fathers should be allowed
to decide on the education of their
offspring

Libertarianism increases
happiness/fulfilment

Libertarianism promotes
happiness/fulfilment

Space exploration improves
science/technology

Space travel advances
science/technology

Table 4.13: Paraphrases generated by Alpaca model

3https://crfm.stanford.edu/2023/03/13/alpaca.html
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Second Approach

To address previous method’s limitation, we sought to create a new dataset for para-

phrase detection by sampling paraphrases from the ArgKP dataset instead of generat-

ing new paraphrases with an LLM. This process involved sorting the dataset by topics

and, for each key point, identifying every argument associated with that key point.

Arguments pairs from the same key point were then collected as positive samples

for our dataset. To provide negative samples, an equal number of arguments were

selected and paired with arguments from different topics. A selection of examples

from this dataset is presented in the Table 4.14.

Original Text Paraphrased Text Label

adopting an austerity
regime is the best way for
the country to reduce its
huge debt

it is a good way to
control overspending and
accumulating more debt

1

people who have mental
illness should have not
right to keep and bear
arms

an austerity regime
would help set our
economy back on the
right track

0

uniforms create a sense of
equality among students,
regardless of wealth or
background

an austerity regime
would save money for the
country.

0

school uniform is
unaffordable for many
single parents and should
be abandoned.

school uniform should be
abolished because it is
very expensive

1

Table 4.14: Paraphrased arguments using the second approach. Label 1 indicates
a positive example, where the paraphrase is belongs to the same key point as the
original text. Label 0 indicates negative examples, where original text and paraphrase
are from different topics.

After fine-tuning BERT on the proposed dataset, we observed that the task is too

trivial for the model and does not represent the real world data well enough. The

reason for it is that the negative samples are too easy for the model to distinguish
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between, as they are from different topics, and mostly use different language. Table

4.15 shows the performance of the model after fine-tuning for one epoch.

BERT Model Train Loss Train Accuracy Validation Loss Validation Accuracy

After Fine-Tuning 0.0562 98.27% 0.4047 87.97%

Table 4.15: The training and validation accuracy of BERT model after fine-tuning
the model for 1 epoch on the proposed dataset.

Third Approach

To enhance the quality of the dataset, we opted for an alternative method to generate

negative samples. While the positive samples remained the same as in the previous

approach, the negative samples now consisted of arguments from the same topic but

belonging to different key points. This adjustment ensures that positive samples are

real examples, while negative samples share similar keywords since they pertain to

the same topic. We used this refined dataset to train the encoder models discussed

in subsequent sections. Several examples of both positive and negative samples are

provided in Table 4.16.

4.7.3 Cosine Similarity & Embedding

Approach I: Using embeddings from BERT

In our initial approach, we utilized BERT sentence embeddings for paraphrase de-

tection. We applied two distinct methods: firstly, we extracted and normalized the

encoding for the CLS token (the first token of the BERT model), followed by cal-

culating the cosine similarity between all pairs of arguments. The second technique

involved computing the mean of sentence embeddings and subsequently determining

the cosine similarity between all pairs of arguments. For both methods, a manually

chosen threshold was employed to classify arguments as either paraphrased or non-

paraphrased. These techniques were evaluated on a dataset containing arguments

and paraphrases generated by ChatGPT. The results revealed that both methods
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Original Text Paraphrased Text Label

implementing an
austerity regime risks
cutting programs that
citizens depend on such
as welfare.

historically, austerity
regimes have resulted in
unemployment.

0

it is a good way to instill
discipline

School uniforms help
unite the kids from each
school, much like sports
uniforms help unite
sports teams.

0

school uniform is
necessary to avoid poor
students to feel any
different

school uniforms make is
so that everyone is equal

1

an austerity regime hurts
the poorest in our society

austerity regimes
disproportionally hit the
poorest in society
hardest.

1

Table 4.16: Paraphrased arguments using the third approach. The topic of discussion
is “School uniforms should be abolished”. Label 1 indicates a positive example, where
the paraphrase is belongs to the same key point as the original text. Label 0 indicates
negative examples, where original text and paraphrase are from different topics.

frequently identified different arguments as paraphrases, which was not the desired

outcome.

Approach II: Using embeddings from SBERT

The second approach involved utilizing a SBERT to generate sentence embeddings

for the arguments. Cosine similarity, combined with a threshold, was used to classify

paraphrases. We utilized the same fine-tuned SBERT model mentioned in Section

3.5.1 for clustering, as fine-tuning the language model demonstrated enhancements in

clustering. We extended this idea to duplicate detection, believing it could yield simi-

lar improvements. Like the previous approach, we extracted embeddings for sentence

pairs from the fine-tuned language model and computed their cosine similarity scores.
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However, in this case, we introduced a normalization step for the cosine similarity

scores. We applied this approach to the training data and tested various thresholds

in 0.1 increments to identify the optimal threshold. Table 4.17 displays the accuracy

scores for different thresholds on the training data.

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy 0.5 0.5 0.53 0.64 0.75 0.82 0.86 0.85 0.79 0.64 0.5

Table 4.17: The accuracy scores for duplicate detection on the ArgKP-based dataset
training set for different values of threshold.

As shown above the 0.5, 0.6, and 0.7 thresholds had the best accuracies, so we

applied these three thresholds to the validation dataset. Table 4.18 shows the accuracy

of the proposed method on the validation set.

Threshold 0.5 0.6 0.7

Accuracy 0.68 0.72 0.73

Table 4.18: The accuracy scores for duplicate detection on the ArgKP-based dataset
validation set for different values of threshold.

Table 4.19 shows the accuracy for applying the best threshold, 0.7, on the test set.

Cosine Similarity Test Accuracy

72.77%

Table 4.19: The accuracy scores for duplicate detection on the ArgKP-based dataset
test set for different values of threshold.

4.7.4 Encoder Model: BERT

In addition to the previous approach, we also conducted experiments involving the

fine-tuning of BERT for classification, as it proved effective in coverage metric. We

also explored the use of RoBERTa model, however, initial experiments with RoBERTa

yielded unsatisfactory results, leading us to focus our further experiments solely on
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BERT. We used the same fine-tuned BERT model mentioned in Section 3.5.2. We

used the Adam optimizer and experimented with two different learning rates, namely

2e-5 and 1e-6, for 8 epochs, employing a batch size of 16. Figures 4.3 and 4.4 illustrate

the training and validation loss and accuracy for both learning rates.

Figure 4.3: Training and validation loss and accuracy of BERT model with learning
rate of 2e-5

After evaluating the performance of different learning rates, we have opted to

utilize the second model with a learning rate of 1e-6 as the redundancy evaluator

model. This decision was driven by its superior validation accuracy. Table 4.20

presents the accuracy of the redundancy model on the ArgKP test set.

BERT Model Test Accuracy

67.63%

Table 4.20: The accuracy scores for duplicate detection on the ArgKP-based dataset
test set using BERT model.
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Figure 4.4: Training and validation loss and accuracy of BERT model with learning
rate of 1e-6

4.8 Results

4.8.1 Best Performing Evaluation Models

Based on the results evaluations done on the proposed paraphrase detection dataset,

we have selected the following methods for evaluating coverage and redundancy. For

the coverage metric, we have selected the BERT model with maximum one key

point and threshold. For redundancy evaluation, we choose Cosine Similarity

using SBERT model with a threshold of 0.7. We further examine the outputs

of different models using these two methods and other evaluation metrics to showcase

their efficacy.

4.8.2 Comparing Coverage and Redundancy

We have introduced two distinct evaluation metrics for this task, each offering its

own set of applications and advantages. While the coverage score provides insights

into the comprehensiveness of generated summaries, indicating that a high coverage
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score implies that the generated summary adequately encompasses the primary points

from the reference summary, it is also likely to yield a low redundancy score when the

number of key points in the generated summaries aligns with or is less than the number

of key points in the reference summary. Nevertheless, the coverage metric relies on

the availability of reference summaries, which is not a prerequisite for the redundancy

score. The redundancy measure, on the other hand, assesses the similarity between

all pairs of generated key points. However, the limitation of the redundancy metric

becomes evident when a model generates unique yet unrelated summaries that fail to

cover the reference key points. In such cases, the generated summary may receive a

low redundancy score, but it falls short in producing a high-quality summary.

4.9 Conclusion

In this section we propose two measures for evaluating generated key points in key

point analysis task, coverage and redundancy. We experiment with different tech-

niques and settings for evaluating these measures in order to find the optimal one.

For measuring coverage, we experiment with four different techniques. We exper-

iment BLEU score, using encoder-based models (BERT and RoBERTa) for classifi-

cation, a previous SOTA key point matching model, and BLEURT and BARTScore

based methods. We also introduced a set of datasets called coverage datasets that

are used to evaluate the effectiveness of different approaches. Our initial experiments

showcased the effectiveness of encoder-based approaches for coverage. As a result we

experimented with different settings for tuning them, such as setting a threshold and

a limit. Our final experiments suggest that BERT model with maximum one KP limit

and threshold has the best performance (i.e. correlating high coverage with a high

score). As for the other approaches, BLEU score did not perform well as a metric; and

both the previous key point matching model, and BLEURT and BARTScore based

methods, while having a good performance, did not perform as well as the BERT

model.
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For measuring redundancy, we first created a dataset for paraphrase detection in

argument-domain. We experimented with different approaches for creating a dataset

that best represents actual paraphrases. We further used the dataset to train and

test two different models for paraphrase detection, cosine similarity and BERT-based

classifier. For the cosine similarity approach, we calculated the cosine similarity be-

tween embeddings, and experimented with two different embedding generation mod-

els, BERT and SBERT. Our experiments showed that the cosine similarity method

with SBERT for embeddings outperforms the other approaches.
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Chapter 5

Experiments

5.1 Overview

This section aims to cover experiments that showcase the efficiency of the proposed

approaches for key point generation and evaluation compared to previous approaches.

First we evaluate our method by comparing it in terms of coverage, redundancy,

argument quality, and length to previous SOTA approaches. Next, we report the

accuracy of our evaluation metrics, and compare them to previous evaluation metrics

for coverage prediction. Lastly, we extend our experiments for both the method and

evaluation metric to another unseen dataset, to ensure the generalizability of both of

our approaches.

For the summary (key point generation) model, we selected the selection methods

SMM and SSF 3.5.2. As for the evaluation metrics, coverage and redundancy, we

selected the best performing BERT [8] model for coverage prediction and the cosine

similarity using SBERT [11] method for redundancy, as mentioned in Section 4.8.1.

5.2 Summarization Method Experiments

5.2.1 Coverage and Redundancy

To demonstrate the effectiveness of our approach, we conducted a comparative anal-

ysis of key point coverage and redundancy between our method and previously top-

performing approaches, as determined by the results of the key point analysis task [4].
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We calculated the expected (or actual) coverage of the outputs generated by various

methods.

To illustrate this, let’s consider a scenario where a method’s output summary

includes “argument 1,” and according to the dataset, “argument 1” is associated

with “key point 2”. In this case, it means the summary covers “key point 2”. In

order to compute redundancy, we compute the percentage of duplicate pairs in the

output. Two arguments are considered duplicates if they belong to the same key

point. However, approximately 27% of the arguments in the dataset, as per [34], are

not associated with any key point. In such cases, we grouped all these arguments

together, assuming they are either too general to be linked to a key point or represent

unique and isolated outliers.

Since each method generates a varying number of output key points, we selected

the top k outputs for each method to ensure a fair comparison. We set the value of

k equal to the number of reference key points.

In our experiments, we compared our approach to Alshomary’s method [28] and

BarHaim’s method [27]. We evaluated Alshomary’s work in two settings. In the first,

PageRank w SS, the output provided by the authors of the paper is used, i.e. the

original KPA task 3.2. The second setting, PageRank, represents the output of their

method applied to input data for both stances on a topic, i.e. the arguments for

stances “pro” and “against” were merged and used as input for the model, similar

to other approaches. For BarHaim’s method, we utilized the API provided by the

authors, where the input data was merged for both stances.

It’s worth noting that BarHaim’s method typically generates fewer key points than

the reference key points, usually between 4 to 8, whereas reference key points typically

number more than 10. Moreover BarHaim’s approach is incapable of generating

summaries when the number of inputs is 100 or less, as a result we cannot generate

the summary of separate stances similar to PageRank method. Table 5.1 illustrates

the actual coverage of each method by topic.
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ArgKP Coverage Redundancy R1 R2 RL

Method (SMM) 59.59% 2.46% 0.152 0.026 0.132

Method (SSF) 57.67% 2.27% 0.158 0.026 0.141

Alshomary w SS 49.09% 3.41% 0.195 0.032 0.175

Alshomary 45.45% 3.23% 0.202 0.028 0.186

BarHaim 37.67% 5.26% 0.153 0.028 0.136

Table 5.1: Actual coverage, redundancy, and ROUGE scores for each model’s output.
The coverage and redundancy are computed using the labeled data. SS refers to
separate stances. Numbers in bold represent the best results.

5.2.2 Length and Quality

To assess the quality of generated arguments, we asked human judges to evaluate

arguments produced by different methods with respect to their correct key points.

Inspired by the human evaluation conducted by Li et al. [34], we instructed the judges

to assign scores to argument-key point pairs (+1 for matches, -1 for non-matches, 0

for uncertainties) based on two criteria: 1. Whether the argument covers the same

aspect as the key point. 2. Whether the argument independently presents a clear

and understandable perspective on an aspect given the topic (detailed instructions

are available in Appendix B).

We selected a total of 20 generated key points from four topics, two from the Debate

dataset (Section 5.4) and two from ArgKP, for each model. Three graduate students

were tasked with scoring each pair, and we computed the average score across judges

for each pair. In addition, we compared the average number of words per generated

key point across all topics in the ArgKP test set to highlight the proposed method’s

capability to produce concise outputs.

To showcase the proposed method’s ability to generate quality short sentences, we

compare the average word length and the human-evaluated quality scores of generated

key points. Table 5.2 shows the scores averaged over all outputs. The results indicate

that our method outperforms Alshomary’s in terms of conciseness, however, BarHaim
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still generates shorter key points as it only extracts short arguments. Moreover, the

human judges found the proposed methods’ outputs more understandable, as the best

method SMM having the highest score and method SSF having a similar score to the

Alshomary’s method. The human scores also indicate that longer outputs are easier

to understand. The Krippendorff’s alpha for inter-annotator agreement is 0.47 across

all topics, with a score of 0.53 on the ArgKP dataset, and 0.40 on the Debate dataset.

Method Avg. Words Arg. Quality

Method (SMM) 18.6 0.63

Method (SSF) 12.4 0.4

Alshomary 15.3 0.46

BarHaim 6.8 0.23

Table 5.2: Average number of words and quality scores per generated key point,
averaged for each model.

5.3 Evaluation Metric Experiments

5.3.1 Accuracy of Coverage and Redundancy Models

Before comparing the performance of our evaluation to other metrics, we report their

accuracy on the ArgKP test set, which wsa not seen during training. This test set

comprises three topics and resembles the structure of the training and validation sets.

For the evaluation, we considered our most effective evaluation metrics, employing

BERT and RoBERTa for coverage, and BERT and Cosine Similarity for redundancy,

based on their validation accuracy. In the case of coverage, we employed the original

dataset for calculating accuracy scores, while for paraphrase detection, we used the

generated dataset described in Section 4.7.2. Table 5.3 illustrates the accuracy of

the top-performing models in this evaluation. The results indicate that the BERT

model with threshold and the cosine similarity method using SBERT have the best

performance for coverage and redundancy respectively.
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Coverage BERT (1 KP) BERT (Threshold) (1 KP) RoBERTa (1 KP) RoBERTa (Threshold) (1 KP)

Accuracy 77.72 90.01 80.26 82.25

Redundancy BERT Cosine Sim w SBERT - -

Accuracy 66.93 72.77 - -

Table 5.3: The accuracy of best performing coverage and redundancy models on the
ArgKP test set.

ArgKP Coverage Measure BLEURT BARTScore R1 R2 RL

100% 83.18% ±0.052 66.26% ±0.006 60.29% ±0.044 0.166 ±0.007 0.032±0.005 0.150 ±0.007

75% 77.27% ±0.056 61.11% ±0.015 59.26% ±0.023 0.169 ±0.010 0.033 ±0.006 0.153 ±0.010

50% 64.84% ±0.055 56.38% ±0.017 57.61% ±0.029 0.165 ±0.011 0.033 ±0.006 0.151 ±0.011

Table 5.4: Different methods for coverage prediction on datasets with various levels of
coverage (100%, 75%, 50%). The numbers in bold represent the best results (closest
prediction to the acutal coverage). The values in the subscripts represent the standard
deviation.

5.3.2 Evaluation Metrics Comparison: Coverage Prediction

We assess the performance of our coverage measure compared to other metrics for

KPG, namely ROUGE and Li et al. [34]. We assessed the metrics by tasking the

evaluation metrics and models to predict the coverage of different Coverage datasets

(Section 4.4). This allowed us to assess how good the evaluation metrics are at

correlating an effective high coverage and low redundancy summary to a high score.

First, we computed the ROUGE score on the datasets, with the key points as reference

summaries. Second, we used the BLEURT and BARTScore models as used by [34]

for computing soft-precision and soft-recall. We assigned every generated key point

to the reference key point with the highest matching score, similar to the author’s

approach for calculating soft-F1 scores, which evaluates the effectiveness of models

at correctly assigning key points to arguments. We compared the predicted coverage

of each metric to the actual coverage. Table 5.4 illustrates the forecasted coverage

of datasets using these evaluation metrics along with their corresponding ROUGE

scores.

Our experiments demonstrate that the ROUGE score lacks the ability to distin-
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guish between datasets with varying coverage levels. Although BARTScore exhibits

only a slight improvement, as the difference in predicted coverages remains negligible.

BLEURT, while performing reasonably well on the ArgKP dataset, struggles to gen-

eralize to the Debate dataset, as discussed in the subsequent section. We attribute

the inefficacy of BLEURT and BARTScore to their lack of training on argumentative

text, which is characterized by a distinct word distribution. Conversely, ROUGE’s

subpar performance can be attributed to its failure to consider the semantic nuances

of sentences, a limitation which is especially true in the argument domain. Arguments

on the same topic but belonging to different key points often employ similar words,

which is not effectively addressed by ROUGE. The inaccurate coverage predictions of

BLEURT and BARTScore indicate their inability to assign generated key points to

the correct reference key points, rendering them ineffective at predicting the soft-F1

score proposed by the authors. In contrast, our proposed approach’s predictions align

closer with the actual coverage of datasets.

5.3.3 Evaluation of Generated Outputs

We have also evaluated the outputs of different models using various evaluation met-

rics. We used the proposed evaluation metrics, the soft-F1 scores, and ROUGE score.

To calculate the rouge scores, we utilized the “rouge score-0.1.2” library in Python.

It’s worth noting that we’ve previously demonstrated the limitations of the Rouge

score when assessing key point summaries. Nevertheless, it remains crucial to report

these scores, as Rouge is a widely recognized metric for evaluating summarization

techniques. Table 5.5 shows the results.

These results suggest that our proposed coverage measure often estimates the rela-

tive ranking of outputs accurately. On the other hand, alternative evaluation metrics

don’t consistently link a high coverage/low redundancy output with a top score. No-

tably, both F1 measures identify Alshomary’s output as the best among the evaluated

outputs. However, according to Table 5.1 Alshomary’s output has a lower coverage of
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ArgKP Coverage Redundancy F1 BL F1 BS R1 R2 RL

Method (SMM) 35.75% (59.59%) (2.46%) 49.01% 57.94% 0.152 0.026 0.132

Method (SSF) 39.89% (57.67%) (2.27%) 52.84% 60.81% 0.158 0.026 0.141

Alshomary 30.70% (45.45%) (3.23%) 54.58% 63.04% 0.202 0.028 0.186

BarHaim 23.53% (37.67%) (5.26%) N/A N/A 0.153 0.028 0.136

Table 5.5: The predicted coverage of proposed model, alongside the Soft-F1 scores
using BLEURT (BL) and BARTScore (BS), and ROUGE score for summaries gener-
ated by different models. The numbers in parenthesis represent the actual coverage
and redundancy. Numbers in bold represent the best output as evaluated by each
metric.

reference key points and higher redundancy in generated key points. Also according

to Table 5.2 it has lower argument quality and comparable length to method with

SMM. In this case it is not clear how/why a certain summary is better than the oth-

ers. Consequently, we believe that using a single metric for comparing generated key

points is neither effective nor descriptive, since generated KPs have different aspects

(coverage, redundancy, length, quality, etc) that require individual evaluation.

5.4 Experiments on Debate Dataset

To further validate the effectiveness of our proposed methods and evaluation metrics,

we conducted tests on the Debate dataset [48], which encompasses four distinct top-

ics. Within each topic, there are approximately five aspects per stance. Each input

document in the dataset comprises multi-sentence arguments with labeled sentences

corresponding to specific aspects. The Debate dataset consists of 3000 argument/key-

point pairs. For this experiment, we excluded the “Other” aspect and focused on the

remaining aspects, along with their associated arguments.

5.4.1 Debate Dataset: Method Evaluation

We used arguments from the debate dataset as inputs to BarHaim, Alshomary, and

our method, and computed the coverage and redundancy of each model’s output.

Table 5.6 shows the actual coverage and redundancy of each method on the debate
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Debate Coverage Redundancy R1 R2 RL

Method (SMM) 72.38% 1.42% 0.06 0.005 0.052

Method (SSF) 57.98% 1.86% 0.079 0.007 0.069

Alshomary 64.88% 1.68% 0.068 0.003 0.062

BarHaim 56.41% 1.74% 0.084 0.015 0.08

Table 5.6: Actual coverage, redundancy, and ROUGE scores for each model’s output.
The coverage and redundancy are computed using the labeled data. SS refers to
separate stances. Numbers in bold represent the best results.

Debate Coverage Measure BLEURT BARTScore R1 R2 RL

100% 82.08% ±0.067 91.67% ±0.015 92.71% ±0.015 0.064 ±0.002 0.005 ±0.000 0.056 ±0.001

75% 76.67% ±0.040 90.63% ±0.015 91.67% ±0.015 0.066 ±0.003 0.006 ±0.001 0.057 ±0.002

50% 70.42% ±0.063 89.58% ±0.059 94.79% ±0.044 0.064 ±0.003 0.006 ±0.001 0.056 ±0.003

Table 5.7: Different methods for coverage prediction on datasets with various levels of
coverage (100%, 75%, 50%). The numbers in bold represent the best results (closest
prediction to the actual coverage). The values in the subscripts represent the standard
deviation.

dataset. The results indicate that the method with SMM outperforms all the other

approaches, while method with SSF outperforms BarHaim.

5.4.2 Debate Dataset: Coverage Prediction

In order to demonstrate the generalizability of our evaluation metrics, we conducted a

comparative analysis using the debate dataset dataset, contrasting our metrics with

those proposed by [34]. We curated a series of coverage datasets from the Debate

dataset, similar to Section 4.4, with varying coverage levels set at 100%, 75%, and

50%. Each of these datasets consists of 75 arguments, and we randomly sampled

each coverage level ten times. The results from Table 5.7 indicate that the proposed

metrics are much more generalizable to unseen datasets as shown by its predictions

compared to previous approaches.
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5.5 Conclusion

In this chapter we aimed to conduct various experiments on the proposed approach

and evaluation metric, to show their effectiveness compared to previous works. First,

we compared the our proposed approaches for summarization (key point generation)

to previous SOTA, in terms of coverage, redundancy, length, and human evaluated

quality. Second, we reported the accuracy of our best performing metrics, and com-

pared the performance of our coverage metric to other evaluation metrics at predicting

coverage. We also evaluated the summaries generated by different models by previ-

ous evaluation metrics and ours. Lastly, we replicate the same experiments for the

approach and the metric on a new dataset. This was done to showcase the general-

izability of our work on unseen data.

Our experiments on the summarization method show that our approaches outper-

forms previous SOTA in coverage and redundancy, while also offering high quality

and concise summaries. As for our evaluation metrics, we showcase that they offer

high accuracy in their respective tasks. Moreover, our coverage metric outperforms

other metrics that also aim to measure coverage by larger margin.
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Chapter 6

Conclusion and Future Work

In conclusion, this thesis has presented a novel approach to key point generation,

addressing the limitations of previous state-of-the-art models such as low coverage

and high redundancy. Through the integration of clustering techniques and a novel

argument selection approach, the proposed method significantly improves coverage,

redundancy, and overall summary quality. Additionally, the introduction of new

evaluation metrics, namely coverage and redundancy, provides a more comprehen-

sive assessment of summarization effectiveness compared to traditional metrics like

ROUGE.

The experiments conducted demonstrate the superiority of the proposed approach

over existing methods, showcasing its ability to generate more informative and concise

summaries while minimizing redundancy. Furthermore, the newly introduced cover-

age evaluation metric proves to be a more accurate predictor of summary coverage,

offering a valuable tool for future research in this domain.

6.1 Limitations

However, despite its contributions, this thesis is not without its limitations. Firstly,

the proposed approach may still encounter challenges in handling highly nuanced

or ambiguous arguments, which could affect the accuracy of key point generation.

Additionally, the method does not guarantee generating a balanced number of key
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points for both pro and against stances. This could potentially lead to summaries

that favor one stance more often than the other.

The evaluation metrics, while more accurate the the previous approaches, are still

not accurate enough to rank the models with 100% accuracy, when the actual cov-

erage and redundancy of two generated summaries is insignificant. Additionally, the

coverage evaluation metric does not factor in the hierarchical entailment relation be-

tween arguments and reference key points. As an example, the model might predict

that a general reference key point (e.g. vaccinations may have unwanted side effects)

is covered by a specific generated key point (e.g. vaccinations may have a specific

side effect).

Additionally the evaluation metric proposed by Li et al [34] shows promising re-

sults. However, as shown by our experiments, a single number cannot accurately

represent all the different aspects of a summary. Therefore using similar approaches

for evaluating different aspects of quality would be more beneficial.

6.2 Future Work

In light of these limitations, several promising avenues for future research emerge.

Firstly, exploring techniques for enhancing the model’s ability to discern and priori-

tize salient arguments could lead to further improvements in summarization quality.

Additionally, investigating alternative methods for evaluating summarization perfor-

mance, including more nuanced measures of coherence and informativeness, could

provide deeper insights into the strengths and weaknesses of different approaches.

Moreover, both the summarization and the evaluation methods could potentially

benefit from integrating large language models as they have shown promising results

in various natural language processing tasks. Finally, extending the scope of applica-

tion to other languages and domains could broaden the impact of this research and

uncover new challenges and opportunities in argument summarization.
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Appendix A: Unsupervised
Summarization

In this chapter we cover the recent trends in unsupervised summarization by review-

ing papers published in the field and propose a new way of categorizing methods

by the techniques they employ (see Table A.1 for the list of works). We first sep-

arate extractive and abstractive from each other, mainly because abstractive and

extractive methods are usually different in their techniques and models. We fur-

ther break down abstractive models into language model-based methods, methods

that use reconstruction networks, and other methods. The language models category

contains recent research that uses pretrained and large language models for sum-

mary generation. The reconstruction networks consist of methods that try to train a

model with reconstruction as one of their objective functions. This category mainly

contains abstractive methods prior to the introduction of large pretrained language

model. The last category of abstractive models includes other methods that could not

be classified into the other two categories. Extractive methods are categorized into

three sub-classes, classification, ranking, and search-based. The classification meth-

ods perform binary classification on each unit (word, phrase, sentence, or document)

to decide whether they are salient enough to be included in the summary. Ranking

methods use different techniques to score and rank units and choose the best ones as

the summary. Search-based methods improve the summary by editing and evaluating

the summary iteratively. Lastly, we introduce another category called hybrid meth-

ods, which use extractive and abstractive summarization techniques. Methods in this
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section either use both extractive and abstractive techniques for summarization; or

introduce a training strategy that can be applied to both extractive and abstractive

methods. Figure A.1 outlines the proposed structure.

Figure A.1: Hierarchical Structure of Our Taxonomy

A.1 Abstractive Methods

A.1.1 Language Models

Pretrained language models (PLMs) and large language models (LLMs) have recently

transformed the landscape of NLP and impacted almost every NLP task including text

summarization. Both models are transformer-based [9] models that are pre-trained

on large corpora for various NLP tasks. Similar to other natural language generation

and natural language understanding tasks, summarization can significantly benefit

from models pretrained on a large corpus of data. In fact, these models often gen-

erate satisfactory summaries even without any fine-tuning or task-specific training;

as a result, they are often used as baseliens in recent research [49, 50]. Their perfor-

mance can further be improved using few-shot training with as few as ten training

examples as shown by [51]. Abstractive summarization aims to generate a summary

based on its understanding of the input text. This enables both encoder-decoder

architecture and decoder-only architecture to be applicable for the task. While the

encoder-decoder architecture was more popular prior to 2023, the introduction and

the following popularity of ChatGPT shifted the focus in research towards decoder-
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only LLMs 1.1. Moreover, the research utilizing encoder-decoder PLMs often centered

around trained and fine-tuned the models with various strategies in order to improve

their summarization capabilities; whereas the recent LLM-based research often focus

on prompt-engineering instead of fine-tuning. This may be a result of computational

power required for fine-tuning LLMs and availability of models and their weights to

the public.

This section covers Baseline Language Models, Pre-training Methods for

language models, Training Strategies for language models, and Fine-tuning PLMs

for summary generation.

A.1.2 Baseline Language Models

Baseline language models section focuses on research done utilizing Pretrained Lan-

guage Models (PLMs) and Large Language Model (LLMs) without applying any

training or fine-tuning. These work discuss the performance of LMs in either zero-

shot or few-shot setting, without modifying the model’s weights.

3.1.1.1 Pretrained Language Models

BART [17], T5 [52], and PEGASUS [53] are three of most popular encoder-decoder

PLMs utilized in summarization task. They show strong performance in zero-shot,

few-shot, and fully fine-tuned settings [51], and are often used as baselines for per-

formance evaluation [50, 54]. According to [55], in some case summaries generated

by these models were favored over human-written ones. BART and T5 are general-

purpose pre-trained language models. The former is trained on document rotation,

sentence permutation, text-infilling, and token masking and deletion objectives, while

the latter is trained on token masking, translation, classification, reading comprehen-

sion, and summarization. Contrastively, PEGASUS was explicitly trained for summa-

rization using self-supervised masked language modeling and gap-sentence-generation

(GSG) objective [53]. In GSG, the model has to predict the masked sentence condi-

tioned on the other sentences in the input, where the masked sentence is the a salient
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sentence resembling the summary.

Regarding the performance of these PLMs, the authors of PEGASUS report that

PEGASUS outperforms both BART and T5 on certain datasets. [51] shows that the

performance of the three models is dependant on the dataset and reports both T5

and BART outperforming PEGASUS on some datasets in zero-shot setting. As for

few-shot setting, PEGASUS showed significant improvements compared to other two

models and was the more consistent model across various datasets on average [51].

3.1.1.2 Large Language Models

The recent emergence and success of GPT-based models by OpenAI has made

them a popular choice for many NLP tasks, including summarization. ChatGPT is

a large language model, with considerably more parameters, trained for next word

prediction and fine-tuned with reinforcement learning from human feedback. Due

to their recency, LLMs such as ChatGPT, GPT-4, and LLAMA-2 are rather un-

derstudied for downstream NLP tasks, e.g. summarization, however recent works

aim to examine the capabilities of LLMs. Works such as [56], [57], [58], [59], and

[60] focus on prompt engineering and utilizing LLMs in zero-shot and few-shot (also

called in-context learning) setting, and/or aim to compare the evaluate and compare

performance of various LLMs.

[56] examine reference summaries of two popular summarization datasets, CN-

N/DailyMail [61] and BBC XSum [62], and compare the performance of pre-trained

language models, BART, T5, and PEGASUS, to large language models, GPT-3.

Authors aim to address the current reference summaries issues (e.g. factual halluci-

nation and information redundancy), by writing new reference summaries based

on “Lasswell Communication Model” [63]. They further show that zero-shot large

language models generate on par, and even better outputs than pre-trained language

models, according to automatic evaluation metrics (ROUGE and BERTScore) with

the new reference summaries. Authors also utilize a two-step Chain-of-Thought
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prompting method in GPT-3 that first extracts the important information and gen-

erates the summary from extracted information.

[57] and [58] explore the ideal structure and properties of a reference summary.

[57] presents an unsupervised approach for summarizing long discussions on online

forums using various LLMs. The authors suggest generating an “indicative” summary

of long discussions, where only the gist of different aspects in topic are presented as

the summary (similar to a book’s table of content); as opposed to “informative” sum-

maries that aim to capture as much information as possible. The authors use a three

step approach for creating the summary. First, the sentences of all the arguments

are clustered. Second, an LLM is used to generate a single line summary of each

cluster, called a label. Finally, the labels are assigned to one or more frames, where

the frames are different aspects of a topic (e.g. a topic about a political idea can have

aspects such as economy or ideology). The experiments show that while open-source

LLMs (LLAMA and T0) have acceptable results, they are outperformed by OpenAI’s

GPT models (ChatGPT and GPT4). [58] analyze GPT-4 generated summaries and

the optimal amount of “density” for summaries. The authors argue that an ideal

summary should be entity-centric without being too difficult to understand, and the

level of entities included in a summary determines its density. The authors propose a

technique called “Chain of Density Prompting”, that enables iteratively prompting a

LLM to generate more dense summaries. Their experiments show that human written

summaries have a higher density compared to vanilla GPT-4 summaries, and that the

humans prefer summaries with densities closer to human written summaries.

[59] and [60] benchmark the performance of various LLMs in specific summarization

tasks. The work of [59] focuses on analyzing the performance of various LLMs in

dialogue summarization. Specifically, the authors conduct various experiments for

generating both controlled (e.g. length control) and uncontrolled summaries using in-

context or few-shot learning. Their experiments show that LLMs perform reasonably

well, and models such as LLAMA and Alpaca achieve high factual consistency scores.
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[60] focus on cross-lingual summarization, i.e. summarizing input text in another

language, by comparing the performance of different LLMs in zero-shot setting. Their

experiments showcase that ChatGPT and GPT-4 perform well and produce detailed

summaries. Furthermore, they report that GPT-4’s performance in zero-shot setting

is comparable to an mBART-50 [64] fine-tuned for the task.

A.1.3 Pretraining Methods

[49] and [65] focus on introducing more efficient training objectives for improving

the performance of pretrained language models, enabling them to outperform larger

pretrained language models that are trained on more data. In [49], the authors in-

troduce three unsupervised pretraining objectives for training sequence-to-sequence

based models. They argue that the proposed unsupervised objectives, sentence re-

ordering, next sentence generation, and masked document generation, are closely re-

lated to the summarization task, resulting in improved abstractive summaries. Using

RoBERTa [10] as the encoder, they show that their model achieves comparable results

with only 19 GB of data compared to PLMs trained on more than 160 GB of text.

[65] introduces a new encoder-decoder pre-trained language model for summarization.

The authors similarly propose three techniques for improving the pre-training stage.

First, the model is pre-trained on replaced token detection and corrupted span predic-

tion, and is then on trained document-summary pairs for summary generation. The

second technique replaces the self-attention layers in the encoder with the disentan-

gled attention layer. Disentangled attention represents each token with two vectors,

content and position, to improve the effectiveness of the model. Third, they use the

fusion-in-encoder for handling long sequences.

[50] and [66] introduce pretraining objectives for specific tasks and goals. [50] fo-

cus on an objective function for multi-document summarization, utilizing the gap

sentence generation objective. They improve upon the gap sentence generation ob-

jective by clustering related sentences together, and masking the most informative
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sentence in the cluster, using the rest of the sentences in that cluster to predict the

masked sentence. After applying their pretraining method on Longformer-Encoder-

Decoder [67], they report noticeable improvements in zero-shot setting and marginal

improvements after supervised training. [66] introduces an unsupervised pre-training

objective to improve controllability of summaries. In this method, the summariza-

tion model is asked to answer questions that are automatically generated based on

the input document, which allows the method to make use of unlabeled documents.

Specifically, the method first selects important sentences from the input document as

pseudo-summaries using ROUGE, and generates questions about them using MixQG

[68]. The model is trained to generate the questions and answer them given the

document. This ensures that the generated summary accurately addresses the user’s

query by focusing on pertinent content.

[54] and [69] experiment on utilizing pretaining objective for PLMs in areas with

not enough training data. [54] experiments on domain adaptation for low-resource

summarization tasks such as email summarization. They experiment on further pre-

training BART using three different training objectives, source domain pretraining,

domain-adaptive pretraining, and task-adaptive pretraining. In source domain pre-

training the model is pretrained on labeled data from the source domain (i.e. any

domain with substantial labeled data that is not our target). In domain-adaptive

pretraining, the model is pretrained on an unlabeled domain-related corpus (i.e. doc-

uments in the target domain). Lastly, in task-adaptive pretraining, the model is

pre-trained on a smaller unlabeled domain-related corpus that is more task-relevant.

Their experiments show that source domain pretraining and task-adaptive pretrain-

ing can generally improve performance, whereas the effectiveness of domain-adaptive

pretraining depends on the pretraining data and the target domain task data. [69]

proposes a new few-shot summarization model pre-trained for different summarization

tasks on different datasets. This enables leveraging the shared knowledge available in

different datasets. To accomplish this the authors use prefix-tuning [70], where the
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main idea is to extract knowledge prepending and tuning additional parameters, called

prefixes, before each layer of the PLM. In their approach, the authors first pre-train a

summarization model with task-specific prefix vectors using multi-task pre-training.

During inference on a new task, the prefix vector is fine-tuned in a few-shot setting

from a universal prefix that was trained in the pre-training stage. Their experiments

shows that their approach outperforms baselines and achieves comparable results to

GPT-3.5.

A.1.4 Training Strategies

The models in this section employ different unsupervised training signals to fine-tune

existing language models. The goal of these strategies is to improve the fluency,

coverage, or factual consistency of generated summaries.

[71] focus on review summarization, arguing that previous models suffer from two

problems, repetitive and factual inconsistent summaries. As a solution, they first

fine-tune T5 on a small labeled review summarization model. In order to produce

summaries, the model generates multiple candidate summaries for each subset of re-

views. A subset is created by dropping k reviews out of the input and concatenating

the rest, to increase diversity of generated candidates. Next, using human anno-

tated coherence scores, they train a “coherence summary ranker” model to score the

candidate summaries with respect to their coherence and factual consistency. The

candidate with the highest score is selected as the summary. The experiments show

that the proposed approach generates informative summaries while being diverse and

coherent.

[72] and [73] propose new training signals to fine-tune language models using rein-

forcement learning. [72] introduces a novel approach for fine-tuning a language model

(i.e. GPT-2) in order to optimize the fluency and coverage of keywords in the sum-

mary while enforcing a length limit as a result of model’s decoder-only architecture.

The authors combine two scores, fluency score and coverage score, in order to produce
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a training signal for the model using the self-critical sequence training (SCST) method

[74]. The fluency score is calculated using by GPT-2 using the log-probability of the

generated summary. The coverage score is calculated by first masking the keywords

in input document, and feeding it alongside the generated summary to a fine-tuned

BERT model to predict the masked words. The accuracy of the BERT model is used

as the coverage score. The proposed approach outperforms previous unsupervised

summarization baselines, and are comparable to supervised approaches at the time in

terms of ROUGE score. [73] focus on generating factual consistent summaries using

reinforcement learning. They propose using textual entailment of input document and

generated summary, as the reward for the reinforcement learning model. The idea

behind the approach is that models trained on natural language inference datasets

can accurately detect factual inconsistencies. However to ensure the model had sum-

mary generation capabilities, i.e. generating coherent and relevant text, it was first

pre-trained to produce summaries using maximum-likelihood objective, and only fur-

ther fine-tuned using reinforcement learning. Their results show improvements over

baselines for factual consistency, salience, and conciseness.

A.1.5 Data based Fine-tuning

The methods in this section generate or collect a dataset in an unsupervised or weakly

supervised manner, for a specific task or domain where there is not enough data

available.

[55] and [75] focus on generating a labeled dataset for summarization using websites

and resources available online. [55] introduced an unsupervised method for extracting

pseudo-summaries from Wikipedia for fine-tuning PLMs. These pseudo-summaries

have similar high-level characteristics to our ideal target summaries, where the high-

level characteristics refer to length or the level of abstractiveness. They use the first

k sentences in each article as the summary and the rest i sentences as the input.

They further augment the dataset by using round translation [76] and is the dataset
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to fine-tune BART. The experiments show that the fine-tuned BART outperforms

the vanilla BART in zero and few-shot setting across various datasets. [75] aims to

facilitate aspect summarization on any given aspect; however, since it is impossible

to create a dataset for every aspect, they employ a weakly supervised approach for

data collection. In order to collect the training data different aspects of input are

extracted from a labeled summarization dataset using an NER model, and all other

related aspects to it are also extracted using ConceptNet [77]. The summary of each

aspect, i.e. sentences in reference summary related to the aspect (or similar aspects

found in ConceptNet) are concatenated together. During summary generation, the

aspect, a list of related words (collected from the Wikipedia page of the aspect), are

given as context alongside the input document as a single input to the summarization

model.

[78] and [79] use language models to generate labeled datasets for specific sum-

marization tasks. [78] tackles query-focused summarization in the multi-document

(QF-MDS) setting, where the goal is to generate a summary from multiple docu-

ments given a query. Due to the absence of specific training data for the task, the

authors adopt a supervised training approach utilizing other QF-MDS datasets as

substitutes and generate weak reference summaries from reference summaries. In the

next step, the weak reference summaries are used to fine-tune BERTSUM model [80]

to generate the query focused abstractive summaries. Finally, the generated sum-

maries are ranked by their relevance to the query and most relevant ones are selected

as the summary.[79] proposes an approach for generating weakly-supervised train-

ing data using LLMs. The authors argue that fine-tuning LLMs for specific tasks

is infeasible due to the resources required, and collecting enough training data for

fine-tuning smaller language models such as BART in order to match their perfor-

mance to LLMs is expensive. Therefore, the authors propose a three step knowledge

distillation technique for creating training data using LLMs. The approach gener-

ates annotated data from a large corpus of unlabeled data, with the help of a small
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validation set. Specifically, the method first extracts text from the large unlabeled

corpus that is semantically similar to text in the validation set. Second, it creates

a prompt with the labeled data from validation set as few-shot examples, and uses

ChatGPT to predict the summary for the sampled text using the prompt as input. In

the final step it filters low-quality summaries generated by ChatGPT. Their results

show improvements over standard knowledge distillation approaches.

Overall, methods that use PLMs or LLMs achieve better performance on average

compared to other methods in this survey. However, they still do suffer from the

common problems in abstractive summarization, such as factual correctness [71].

Additionally, training or fine-tuning such models poses limitations on resource and

introduces new challenges. For example, [54] have shown that continues pretraining

causes catastrophic forgetting, where the pretrained language model loses some of its

language understanding ability gained in the initial pretraining step.

A.1.6 Reconstruction

The goal of reconstruction approach is to reconstruct the original input from the

modified input. As a result it is a popular training strategy for unsupervised summa-

rization since the original document can be used as the reference summary (output),

while the source (input document) can be created by adding noise to the original

document. Models trained with reconstruction loss often use an encoder-decoder ar-

chitecture at their core, where they first try to encode the input document into a

representation and then decode the representation to the summary. Ideally, the en-

coder should encode the salient information from the input, and the decoder should

decode the representation into a fluent text that captures the vital information and is

shorter than the input. In order to fulfill these requirements, summarization models

use different techniques.

[81], [82], and [83] use auto-encoder architecture as part of their approach for

unsupervised summarization. [81] uses an auto-encoder trained for reconstruction

97



for creating representations, [82] uses two auto-encoders one for compression and the

other for reconstruction, and [83] trains two auto-encoders for language modelling

and constraining length.

[82] proposes a novel architecture for summarization emphasizing on sentence com-

pression using two attention-based encoder-decoder. The first encoder-decoder is the

compressor, tasked with summarizing the input, and the second encoder-decoder re-

constructs the original input from the summary. In order to train the model, four

losses are computed. The first loss is the reconstruction loss between the original in-

put and the output of the second decoder; the second is the language model prior loss

to ensure the generated summary is fluent. The third loss, topic loss, encourages cov-

erage by calculating the cosine distance between the average of word embeddings in

input and summary. Lastly, the fourth loss enforces the length penalty. [81] proposes

a method for multi-document summarization using an LSTM-based encoder-decoder.

The model is composed of two parts; the first part is an encoder-decoder that tries

to learn the representation for each input using reconstruction loss. The second part

learns to generate a summary similar to each of the inputs. The second part is trained

using the average similarity between the representation of each input and the rep-

resentation of the summary generated from the mean of input representations. [83]

focus on “update summarization” of news by iteratively updating a summary as new

information is available in social media settings using autoencoders. The proposed

autoencoder model is trained for two tasks simultaneously, language modeling and

information constraint which is implemented by limiting the length of the text. The

proposed approach, unlike previous extractive approaches, does not rely on classifying

redundant text to find salient information. This is important as social media posts

are concise and not repetitive as opposed to traditional news stories, which renders

methods that rely on classification of redundant information useless. The proposed

approach shows improvements in ROUGE scores over previous baselines.

[84] focus on unsupervised opinion summarization, and creating a synthetic dataset

98



by introducing noise. They introduce two linguistically motivated noise generation

functions to add noise, and train the model to denoise the input. The noise generation

functions add noise on word/phrase level (e.g., changing words) and on document

level (replacing a review with a similar one). For the model, they use an LSTM-

based encoder-decoder with attention [85] and copy [86] mechanisms in the decoder

which sets it apart from the previous auto-encoder based models. They experiment

on movie and business datasets and show improvements over previous baselines.

Before the language models, reconstruction networks such as [82] used to be the

state-of-the-art for abstractive summarization. However, because they are trained to

reconstruct input instead of summary, they cannot learn the key characteristics of

summaries [87]. Additionally, due to the emphasis of methods on conciseness, they

tend to mix generic statements with informative content [71]. Lastly, reconstruction

networks that use autoencoders are limited to simple decoders, lacking attention and

copy mechanism that has proven to be useful in summary generation [84].

A.1.7 Other

The last classification of abstractive summary includes approaches that often utilize

novel techniques for summarization. The works in this section use non-autoregressive

architecture, custom networks, and reinforcement learning techniques as part of their

approach.

[46], propose a non-autoregressive method for sentence summarization. They use

the method introduced by [88] to generate summaries of news articles and use this

data to train an encoder-only transformer using Connectionist Temporal Classifica-

tion (CTC) [89] algorithm for summarization. The non-autoregressive architecture

enables length controlling, which can be desirable in summarization tasks. [46] claims

their non-autoregressive approach to summarization using encoder-only architecture

is several times faster, and better captures the input–output correspondence com-

pared to autoregressive models. However, the performance of the proposed approach
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in terms of ROUGE score is not on par with the state-of-the-art.

[87] introduce a few-shot method for review summarization. They argue that pre-

vious unsupervised methods trained on review datasets have not been exposed to

actual summaries, therefore the summaries generated by them lack essential prop-

erties (e.g. writing style, informativeness, fluency, etc). To solve this, they aim to

train a model to generate a summary based on reviews. Specifically, they first train

an encoder-decoder transformer [9] for the review generation task on a large review

dataset, using leave-one-out objective [90]. During training, the model is conditioned

on the properties of reviews, such as writing style, informativeness, fluency, and sen-

timent preservation, however for the inference phase, when the goal is to generate

summaries, not reviews, these properties are predicted by a small plug-in network

trained on a handful of reviews with summaries. As a result, we can have a small

model trained with a few data samples, guiding our encoder-decoder model that gen-

erates the summaries. Their experiments showed improvements over previous SOTA

at the time, in both human and automatic evaluation.

[91] proposed an edit-based approach using Q-learning. Edit-based approaches are

often extractive methods that start from a pseudo summary (e.g. a random selection

words, or the original text) and perform continues edits to improve the summary. The

edits differ depending on the work, but they often include adding words and removing

them. After each edit the quality of the summary is evaluated using a scoring function

to check if the edit has improved the summary or not. In [91], the method consists of

an agent that selects an action (keep, delete, or replace), and a language model applies

the edits to generate summary. The agent predicts an action, delete, keep, or replace,

for each word; the first action deletes the word, the second keeps it as is, and the third

action replaces the word with a [MASK] token. The new sentence is given to BERT

in order to predict masked tokens and generate the summary. In the training phase,

after the summary is generated, it is further reconstructed back to the original in

order to calculate the step reward score, similar to reconstruction methods. The step
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reward score combined with summary assessment, which evaluates informativeness,

shortness, and fluency, is the reward that is used for calculating the loss function.

Their experiments report on-par results compared to previous baselines.

A.2 Extractive Methods

Extractive methods create a summary by selecting salient units (words, phrases, or

sentences) from the input document. Extractive methods often view summarization

tasks either as a sequence selection task, where units are classified as to be included in

the summary or not, or use a ranking technique to rank all the units by their salience

and select the top k as the summary. A less researched approach is search-based

summarization, where the goal is to maximize an objective function that evaluates

the summary by editing it. These edits are usually composed of add, delete, and

replace, and the search space is the units in the input document.

A.2.1 Classification

[92] focus on proposing an unsupervised pretraining approach for training an ex-

tractive summarization model. They argue that since large amounts of labeled data

for extractive summarization is not available, using an unsupervised pretraining ap-

proach enables the model to learn from unlabeled data. Similar to how BERT learns

the representation of sentences by predicting words, the authors propose an approach

to learn the representation of documents by predicting sentences. Specifically, they

use a hierarchical encoder for the sentence selection. The hierarchical architecture

consists of two identical encoders, one for sentence-level encoding with words as inputs

and the other for document-level encoding with sentence encodings as inputs and one

decoder. For the training objective, masked language modeling is used where every

word in 80% of sentences is masked, and the model is tasked with predicting the

masked tokens. For summary generation, the output of the second encoder is used

to predict a true or false label for each sentence in the document. Their experiments
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show some improvements in ROUGE compared to baselines.

[93] proposes a semi-supervised approach using consistency training. Consistency

training aims to make the model resilient to slight changes by introducing noise

and tasking the model to generate consistent summaries. To implement this, authors

inject noise by replacing words with semantically similar words using BERT and train

the model to generate similar summaries from original and noisy inputs. However,

training using consitency training is not enough by itself, as there is not enough

labeled data for the task. To this end, the authors also propose an entropy-constrained

pseudo-labeling strategy that is used for getting high-confidence labels from unlabeled

data. The pseudo label is assigned by comparing the entropy of the predicted result

of unlabeled data and the predicted result of labeled data, where the pseudo label is

preserved if the entropy of unlabeled data is smaller than the entropy of labeled data.

Their experiments show slight improvements over baselines.

[94] proposes a two-step opinion summarization method based on representation

learning and a geodesic distance-based selection function. The proposed approach

first generates topical representations of input sentences using dictionary learning.

Next it uses its selection function to select sentences as the summary, based on the

geodesic distance between their representations. The goal of the approach is to extract

sentences from opinions that are shared between users as it shows their importance.

The authors claim that the learned topical representations using dictionary learning

better capture the semantics of a text, compared to pre-trained models. Moreover,

they use a geodesic distance-based function for computing the importance of a re-

view, as it considers the “underlying manifold” of representations. Their experiments

showcase that their method outperforms previous unsupervised opinion summariza-

tion methods.

In addition to the common problems of extractive summarization, selection meth-

ods tend to keep the relative order of sentences in the input, which is a limitation

[49]. Also, generating datasets for these models can be difficult since they require

102



sentence-level labels [92].

A.2.2 Ranking

[95] improve upon a popular graph-based baseline, TextRank [96]. TextRank first

creates a graph from input, where sentences are the nodes, and the edges are the

similarity scores between them. Next, the centrality of each node (i.e. sentence) is

calculated, the nodes are ranked by their centrality and the top ones are chosen as the

summary. The authors improve upon this by making two changes. First, they used

BERT for generating sentence representations, improving the accuracy of sentence

similarities, and second, they made the edges in the graph directed. This allows

taking the relative position of sentences with respect to each other into account,

which enables prioritizing earlier sentences in a document that are more general.

Their experiments show signifcant improvement over original TextRank but perform

slightly worse than previous SOTA.

[97] focus on summarizing long documents by introducing a two-step ranking

method using semantic blocks. Semantic blocks are consecutive sentences in a doc-

ument that describe the same facet. To achieve this, proposed method first finds

all the semantic blocks in the input and filters insignificant facets using a centrality

estimator. In the next stage, relevant sentences to facets in each block are selected

as candidates, and the final summary is selected from candidates using a sentence-

level centrality-based estimator. The authors use the previously mentioned approach

[95] as the centrality-based estimator. The proposed approach has a similar perfor-

mance in terms of ROUGE compared to previous SOTA, however the authors report

significant improvements in inference speed.

[98] uses dictionary learning [99] and builds upon the work of [100] which intro-

duced Quantized Transformer (QT) for review summarization. Dictionary learning

or sparse coding aims to find a sparse representation of the input data over latent

semantic units. The authors use dictionary learning to improve upon the previous
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work by representing sentences as a distribution over latent units (as opposed to a

single latent representation), and aspect-focused summaries. In their approach, the

sentences in reviews are the inputs, and the representations are learned by training

an encoder-decoder transformer on reconstruction. In summary generation, the mean

representation of all the review sentences is calculated, then the relevance score be-

tween each sentence and the mean representation is computed, and finally, the top

k sentences with the highest score are selected as the summary. Their experiments

show improvements over the previous extractive SOTA including QT.

While ranking methods enable extraction of the most salient parts of the input,

resulting in a high coverage score, the output summary they generate lacks coherence

and cohesion since all the selected sentences are concatenated together.

A.2.3 Search-based

[88] propose a hill-climbing search-based method for sentence summarization that

iteratively improves the summary. They initialize by selecting k random words from

the input with order intact, with k being the desired length. At each time step,

a new sentence summary is sampled by randomly removing a word summary and

selecting another from the original sentence while preserving the relative order of

words. The new sentence summary is selected if it achieves a higher score computed

by an objective function that evaluates fluency (using language model perplexity)

and similarity score between the summary and original sentence. As mentioned by

[46], the search-based methods are slow at inference as the methods need hundreds of

search steps for each input sentence. These methods are also often restricted to keep

the same word order as the input which affects their coherence.
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Table A.1: Categorizing works in unsupervised summa-
rization by their approach.

Works Method Pros and Cons

Abstractive

[17] PLM

Pros:

High performance,

Ability to understand

and generate new

words/sentences

Cons:

High training

and inference cost,

Hallucination,

Text degeneration

Topic drift,

Factual correctness

[52] PLM

[53] PLM

[56] LLM

[58] LLM

[59] LLM

[60] LLM

[57] LLM

[49] LM:PM

[50] LM:PM

[54] LM:PM

[69] LM:PM

[66] LM:PM

[65] LM:PM

[71] LM:TS

[72] LM:TS

[73] LM:TS

[55] LM:DFT

[75] LM:DFT

[78] LM:DFT

[79] LM:DFT

[84] Reconstruction

[82] Reconstruction

[81] Reconstruction

[83] Reconstruction

Continued on next page

105



Table A.1 – continued from previous page

Works Method Pros and Cons

[87] Other

[46] Other

[91] Other

Extractive

[92] Selection Pros:

Faster training

and inference,

Cons:

Worse performance

Fluency and coherence

[93] Selection

[94] Selection

[95] Ranking

[97] Ranking

[98] Ranking

[88] Search-based

Hybrid

[101] Ext-than-Abs Pros:

Scalable,

Modular

Cons:

Complex architecture

[102] Ext&Abs

[103] Ext&Abs

[104] Ext&Abs

[105] Ext&Abs

A.3 Hybrid Methods

As the name suggests, hybrid models use both extractive and abstractive models

in their summary generation process. Some of these methods use an extract-than-

abstract method, where an extractive technique is used to select only parts of the

input, then an abstractive model is used to generate the summary from the extracted

input. The other line of work either focuses on training strategies (rather than ex-

tractive or abstractive models), where the training strategy can be applied to both

extractive and abstractive models. Or use both extractive and abstractive techniques

for summarization.
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A.3.1 Extract-than-Abstract

[101] employ an extract-than-abstract approach for review summarization. Their ap-

proach to review summarization consists of three steps: extracting opinion phrases

from reviews, selecting desired opinions (based on popularity or specific aspect), and

a generator for constructing summaries from selected opinions. During training, they

extract opinions from a review using Snippext [106] and train a transformer on gener-

ating the original review given opinions. In inference, in order to generate a summary

from multiple reviews, first, the opinions are extracted and clustered, similar opin-

ions are merged and the most popular one in each cluster is selected as input to

the previously trained transformer to generate a summary. Their approach shows

improvements over baselines at the time.

A.3.2 Extractive and Abstractive

[102] propose an approach using two language models for generating a summary

that can be used in both abstractive and extractive setting. The model uses the

product-of-experts model [107]using two decoder-only language models to predict the

next word in the summary by computing the product of their probabilities. The

first language model is used for contextual matching (selecting relevant information),

while the other is fine-tuned to ensure fluency. This approach could used in both

extractive and abstractive setting, since the vocabulary of language models could

either be restricted to input document (extractive) or to the vocabulary of language

model itself (abstractive). Their approach had competitive results compared to its

baselines without any joint training of the models.

[104] uses the information bottleneck [108] principle as a signal for unsupervised

summarization to train an extractive and an abstractive model. The information

bottleneck aims to produces a summary (x) that is optimized for predicting another

relevant information (Y). The authors claim that this approach is more suitable for

summarization in contrast to reconstruction loss, since the goal of this method is to
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retrieve relevant information instead of training to recreate all the information. For

this task, X is the summary generated by the model, and Y is the next sentence, as

a result the model tries to find the summary that best predicts the next sentence.

The authors use this approach to train extractive model and further use the data

generated by the model to train an abstractive model in a self-supervised manner.

Their extractive model performs slightly better than unsupervised SOTA at the time

in terms of ROUGE, however their abstractive method does not show improvements

over previous methods.

[103] and [105] propose an unsupervised method for summarization that can pro-

duce both extractive or abstractive summaries. [103] proposes a self-supervised train-

ing strategy for dialogue summarization that can be applied to both abstractive and

extractive approaches. The approach uses a dialogue generator model to predict the

next utterance of dialogue under two scenarios. In one, they condition the dialogue

generator on previous dialogues, and in the other, they condition the dialogue gen-

erator on the summary of the previous dialogues. They use the difference between

summaries to calculate the loss function. They use the loss to train both abstrac-

tive and extractive models. The idea behind this approach is that a good summary

should offer a replacement for the original dialogue; as a result, the next utterance of

dialogue generate from both previous dialogues, and the summary should be similar.

Both approaches perform better than the baselines at the time. [105] proposes a

scalable and controllable approach for opinion summarization based on hierarchical

encoding that can be used in both abstractive and extractive settings. The approach

first encodes the inputs into a hierarchical space. Next, depending on the setting,

it generates summaries either by extracting opinions belonging to the most popular

encodings (extractive), or decodes the most popular encodings (abstractive). Their

approach provides scalability as it can aggregate encodings of multiple documents,

while also allowing for aspect-based summaries due to the hierarchical nature of their

encodings. Their results show general improvements across datasets compared to
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previous SOTA in terms of ROUGE for both extractive and abstractive settings.

The Extract-than-Abstract approach combines the strengths of both methods and

covers their weaknesses; the extractive module finds salient pieces of information, and

the abstractive module generates a summary from a much smaller input. As a result,

the extractive module does not have to deal with the fluency of generated text, and the

abstractive module is not conditioned on long texts, which is an issue for attention

and RNN-based models. Extract-than-Abstract models perform exceptionally well

when in long or multi-document settings. Extractive and abstractive strategies, on

the other hand, are more flexible as they can be applied to both techniques, enabling

fair comparison between the two methods. However, since these models use external

extractive and abstractive models, their performance relies heavily on them. For

example, RepSum [103] relies on a dialogue generation model for training, restricting

the summarization performance on the performance of the auxiliary task.
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Appendix B: Human Evaluation
Criteria

You are given a pair of argument and key point sentences, and your have to decide

whether the pair match or not

A matching pair should satisfy two conditions: 1. The argument should cover the

same aspect as the key point. 2. The argument should be a clear and understandable

argument regarding an aspect by itself given the topic.

You are supposed to give a score to each argument key point pair

Score 1 if the argument and key point are matching

Score -1 if the argument and key point are not matching

Score 0 if you are not sure

• You are given 80 sentences in total, 20 sentences for 4 topics. The topics are:

– The USA is a good country to live in

– Social media platforms should be regulated by the government

– Abortion

– Gay rights

• The arguments and key points can be “pro” the topic, or “against” it

Examples

• Below are some examples of matching and non-matching pairs
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• Matching

– Argument: Prevents a large number of diseases

– Key point: Vaccines prevent diseases

– Matching because “Prevents a large number of diseases” is understable

given the topic of “Vaccination should be mandatory”

• Non Matching

– Argument: Vaccination should not be mandatory

– Key Point: Vaccines have side-effects

– Non matching because the key point mentions the aspect of side effect and

the argument does not

• Non Matching

– Argument: That is not possible.

– Key point: Vaccinating everyone is not possible

– Non matching because the argument is not an understandable sentence by

itself, i.e. it is too vague.
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