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Abstract

Smart vehicles are designed leveraging advanced hardware, including sensors, and cutting-

edge technologies, such as artificial intelligence, Vehicle-to-Vehicle (V2V) communica-

tion, and Vehicle-to-Infrastructure (V2I) communication. These components are seam-

lessly integrated through software systems, empowering vehicle to make intelligent de-

cisions and navigate safely in diverse environments.

V2V communication plays a vital role in facilitating information exchange among vehi-

cles, encompassing crucial parameters, such as speed, acceleration, location, and vehicle

size. One of the key applications of V2V communication is vehicle platooning, where a

group of vehicles travels closely together, forming a cohesive convoy. Platooning has gar-

nered significant attention due to its potential to revolutionize road safety, fuel efficiency,

and traffic flow. By reducing the distance between vehicles, platooning minimizes aero-

dynamic drag, leading to improved fuel efficiency and reduced emissions. Moreover, the

tight coordination and communication between vehicles enable enhanced safety through

faster reaction times and response capabilities. Additionally, platooning optimizes road

capacity and traffic flow, potentially alleviating congestion and enhancing overall trans-

portation efficiency.

However, the effectiveness of platooning heavily relies on the robustness of interconnected

technologies and communication systems, emphasizing the critical importance of robust

cybersecurity measures. In response to this challenge, this dissertation proposes an

innovative attack detection and identification technique specifically designed to secure

vehicle platoons against cyber-attacks, with a particular focus on False Data Injection

Attacks (FDIAs). The dissertation commences by developing a comprehensive state-

space model tailored to capture the dynamics of a platoon of vehicles. This model is

adaptable and flexible, accommodating a varying number of vehicles and adaptable to

different information flow topologies. Leveraging the Unknown Input Observer (UIO)

methodology, the dissertation employs state estimation techniques to accurately estimate

the internal states of each vehicle within the platoon, including position, velocity, and

acceleration. This estimation process becomes the cornerstone for attack detection, as

any deviations between the received and estimated internal states during FDIAs trigger

an increase in the Residual Function (RF) of the UIO.

Expanding its contributions further, the dissertation introduces multiple attack identifi-

cation UIOs, allowing for the identification of compromised vehicles within the platoon

and estimation of the associated attack inputs. These novel techniques pave the way for

effective FDIA mitigation strategies, ensuring the restoration of the platoon’s integrity

and reliability. Furthermore, the dissertation recognizes that the intricate combination



of hardware and software components in the vehicles introduces potential risks of faults

and issues. In line with the UIOs to tackle attacks, the dissertation further extends its

focus to develop UIOs for fault detection and identification. These UIOs are designed

to monitor crucial parameters, such as position, velocity, and acceleration, within each

vehicle of the platoon. By promptly identifying abnormalities in these parameter values,

the fault detection and identification UIOs enable effective fault mitigation strategies,

thereby bolstering the overall robustness and reliability of the platoon.

To validate the effectiveness of the proposed methodology, the dissertation extensively

employs MATLAB simulations, examining diverse scenarios and evaluating the perfor-

mance of the attack detection and identification techniques, as well as the fault detection

and identification mechanisms. Through these simulations, the dissertation effectively

demonstrates the method’s efficacy in securing and maintaining the optimal operation

of vehicle platoons, even in the presence of cyber-attack threats and fault conditions.

In summary, this dissertation makes significant contributions to the advancement of

vehicular technologies by proposing an innovative attack detection and identification

technique, specifically tailored to secure vehicle platoons against cyber-attacks, notably

FDIAs. Moreover, it addresses the crucial aspect of fault detection, further enhancing

the reliability and resilience of platooning systems. Through comprehensive MATLAB

simulations, the dissertation effectively showcases the method’s effectiveness, provid-

ing a solid foundation for ensuring the safety, security, and efficiency of future vehicle

platooning systems in real-world scenarios. The findings of this research significantly

contribute to the field of cybersecurity and fault detection and identification, shaping

the future of automotive transportation.
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Chapter 1

Introduction

1.1 Smart Vehicles

Smart vehicles rely on advanced hardware and technology for safe and efficient oper-

ation. They have revolutionized the automotive industry by providing alternatives to

traditional transportation methods and enhancing overall road safety.

Equipped with a range of sensors, including GPS, encoders, Inertial Measurement Units

(IMUs), LiDAR, RADAR, and cameras, these vehicles gather crucial data to navigate

their surroundings. The GPS sensor provides precise location information, while rotary

encoders and IMUs collect data on heading, speed, and acceleration. LiDAR, RADAR,

and cameras accurately measure the distance between objects and the vehicle, effectively

capturing the surrounding environment [1]. By continuously analyzing the environment,

these vehicles can make informed decisions and take appropriate actions to ensure the

safety of passengers and other road users. This includes detecting and avoiding potential

obstacles, responding to changes in traffic conditions, and predicting and preventing

potential collisions.

Smart vehicles are also equipped with advanced driver assistance systems that provide

additional layers of safety and convenience. These systems, such as adaptive cruise

control, lane-keeping assistance, automatic emergency braking, and parking assistance,

assist drivers in various tasks, making driving more comfortable and reducing the risk

of accidents.

Furthermore, these vehicles optimize routes and employ intelligent algorithms to mini-

mize traffic congestion, leading to smoother traffic flow and reduced travel times. The

widespread adoption of such vehicles can contribute to a more efficient and sustainable

transportation system, benefiting both individuals and the environment.

1
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In addition to their individual capabilities, the effectiveness of smart vehicles is fur-

ther enhanced through seamless information exchange and collaboration among vehicles,

made possible by Vehicle-to-Everything (V2X) communication technology.

1.2 Vehicle-to-Everything communication

V2X communication technology is a crucial component in these vehicles, encompass-

ing Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication. V2V

communication enables seamless information exchange among vehicles through the uti-

lization of Dedicated Short Range Communication (DSRC) technology. Operating at a

frequency of 5.9 GHz, DSRC adheres to standards, such as IEEE 802.11 [2], 1609.x [3],

SAE J2735 [4], and SAE J2945 [5], ensuring real-time interactions with low latency and

high reliability. By facilitating the sharing of vital data like position, speed, and ac-

celeration, V2V communication promotes cooperative driving, collision avoidance, and

situational awareness.

DSRC’s dedicated frequency band ensures uninterrupted communication, establishing a

secure and private channel for vehicles and infrastructure. Utilizing a broadcast com-

munication approach, DSRC disseminates messages containing valuable data essential

for informed decision-making and optimized traffic management. With a range of up

to 300 meters, DSRC enables close-proximity communication among vehicles, making it

particularly suitable for applications, such as cooperative collision warning, intersection

safety, and platooning. To ensure standardized communication, the Society of Automo-

tive Engineers (SAE) has established the DSRC Message Set (DSRC MS), which defines

a set of standardized message formats. One essential message format is the Basic Safety

Message (BSM), which is always shared and includes, but is not limited to, the following

BSMcoreData:

1. Latitude

2. Longitude

3. Speed

4. Acceleration

5. Heading

6. Vehicle Size
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Complementing V2V communication, V2I communication establishes connections be-

tween vehicles and infrastructure elements like traffic lights and Road Side Units (RSUs).

This connectivity enhances situational awareness and decision-making capabilities by

providing vehicles with valuable information sourced from the infrastructure. V2I com-

munication plays a vital role in optimizing traffic flow and enabling more intelligent

transportation systems.

1.3 Vehicle Platooning

The synergy between V2V and V2I communication systems significantly enhances road

safety and efficiency. Through real-time information sharing and collaboration among

vehicles, proactive responses to hazards, improved maneuverability, and coordinated

movements become possible. This collaborative environment unlocks transformative

applications, such as vehicle platooning, where groups of vehicles travel closely together

(Fig. 1.1), resulting in reduced aerodynamic drag and enhanced fuel efficiency. Coordi-

nated movements within platoons enable synchronized and efficient maneuvers, leading

to improved safety and optimized road capacity.

In addition to fuel efficiency and safety, vehicle platooning advancements have wide-

ranging implications. They facilitate collaborative decision-making, adaptive navigation

systems, and intelligent intersection management, which contribute to reduced travel

time, minimized collisions, and enhanced overall traffic efficiency. Ongoing research and

development in vehicle platooning and V2X-enabled solutions are reshaping transporta-

tion by offering improved road safety, enhanced fuel efficiency, optimized traffic flow, and

the development of a sustainable mobility ecosystem. These technologies hold immense

promise for transformative applications and positive societal impact as they continue to

evolve, revolutionizing roads and cities.

For V2V communication, the specific sharing and acceptance of information within a

platoon depend on the adopted Information Flow Topology (IFT). Different IFTs are

depicted in Fig. 1.1, where the arrows represent the transmission of information from

sending to receiving vehicles [6].

One commonly studied IFT is the Leader-Predecessor Following (LPF) IFT, as shown in

Fig. 1.1a. In this configuration, each vehicle receives information from both the leader

and its predecessor, facilitating coordinated communication and data exchange.

Another IFT is the Predecessor Following (PF) IFT, depicted in Fig. 1.1b. Here, each

vehicle receives information solely from its predecessor, allowing for a sequential flow of

information within the platoon.
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Figure 1.1: Vehicle Platooning IFTs: (a) leader-predecessor following, (b) predecessor
following, (c) bidirectional following, and (d) leader bidirectional following.

The Bidirectional Following (BF) IFT, shown in Fig. 1.1c, involves each vehicle receiving

information from both its predecessor and its successor. This bidirectional communica-

tion enables enhanced situational awareness and coordination among vehicles.

Lastly, the Leader-Bidirectional Following (LBF) IFT, illustrated in Fig. 1.1d, extends

the communication network by including information from the leader, predecessor, and

successor vehicles. This IFT promotes comprehensive data sharing and collaboration

throughout the platoon.

The effectiveness and reliability of vehicle platooning heavily rely on the integrity and

security of the exchanged information. Unfortunately, malicious attacks in the form of

False Data Injection Attacks (FDIAs) pose a significant threat to the trustworthiness of

the V2V communication channel.

1.4 FDIAs

FDIAs represent a severe and concerning type of attack where malicious intruders gain

unauthorized access to a legitimate system, introducing false information into it. Unfor-

tunately, the wireless nature of V2V technology creates vulnerabilities that attackers can

exploit to compromise the system. By intercepting and cleverly manipulating messages

while eavesdropping on the communication, attackers can manipulate and relay altered

information to the intended vehicles. This manipulation poses a significant threat to the

integrity, security, and trustworthiness of the communication.

Moreover, the critical role of Road Side Units (RSUs) in vehicles, providing vital en-

vironmental information through V2I technology, also introduces vulnerabilities that
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attackers can exploit. Unauthorized access to RSUs allows attackers to eavesdrop on

legitimate information exchanges or even inject malicious data into the vehicle’s sys-

tems. By manipulating this information, attackers undermine the safety and reliability

of vehicles, potentially leading to dangerous consequences.

It is important to recognize that these attackers can be skilled adversaries who possess

the necessary expertise and tools to execute sophisticated attacks. They can exploit

weaknesses in the cryptographic protocols currently in use, bypassing the security mea-

sures designed to safeguard V2V and V2I communication channels. The injection of

incorrect or malicious data has the potential to mislead and misguide vehicles, leading

them off course and resulting in severe and potentially catastrophic outcomes.

Considerable research efforts have been devoted to protecting vehicle platoons from

FDIAs. This dissertation provides a concise literature review of this attack type, em-

phasizing on two main categories: data-driven [7, 8] and model-based [9–15] techniques.

Data-driven techniques, as the name suggests, rely on analyzing and processing large

amounts of data to detect and mitigate FDIAs. These techniques often utilize machine

learning and deep learning algorithms to identify patterns and anomalies in the data. By

training models on extensive datasets, data-driven approaches aim to detect deviations

from normal behavior and identify potential attacks. Articles [7] and [8] utilize deep

learning approaches for securing platoons. In [7], Convolutional Neural Networks are

employed to detect and localize attacks within platoons. However, this study heavily

relies on onboard LiDAR and RADAR sensors of the vehicle for accurate speed and

distance measurements. It also assumes that the lead vehicle cannot be attacked, which

may not always be the case. In [8], Long Short-Term Memory is used to detect FDIAs

based on a vehicle’s speed and acceleration. However, the presented approach is limited

to the LPF IFT, and it assumes that the vehicle’s position cannot be manipulated.

Additionally, the majority of approaches in this category, such as [7] and [8], require a

large dataset for training and testing.

On the other hand, model-based techniques involve developing mathematical models

and algorithms to characterize the behavior of the platoon and detect potential attacks.

These techniques often rely on the knowledge of the system dynamics and employ meth-

ods, such as state estimation, observer design, and statistical analysis to identify dis-

crepancies caused by FDIAs. Model-based approaches aim to capture the fundamental

properties of the platoon and exploit them to detect and mitigate attacks. Studies [9–

15] employ model-based approaches to address FDIAs in vehicle platoons. In [9], an

Unbiased Finite Impulse Response algorithm focuses on detecting and estimating de-

ception attacks on a vehicle’s GPS receiver. Moving on to platoons adhering only to
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the PF IFT, article [10] utilizes state-space modeling and observers for FDIA detec-

tion but emphasizes identifying attack targets rather than mitigating attacks. Similarly,

in [11], a distributed Kalman filter combined with a modified Generalized Likelihood

Ratio algorithm is employed for vehicle state estimation and attack detection. For pla-

toons following the PF topology, article [12] proposes a vehicle-specific attack detection

system based on state prediction and estimation. Reference [13] introduces an attack-

resilient Distributed State Estimation algorithm, utilizing onboard sensors like RADAR

and LiDAR for error estimation, but with limited capability in identifying long-duration

attacks. Additionally, in [14], FDIAs involving ghost or fake vehicles are detected using

a partial differential equation model and observer algorithms, tailored for the LPF IFT

and relying on RADAR sensors for detection. A different approach is presented in [15],

where transmissibility operators are employed to compare the platoon’s behavior under

healthy conditions with its actual behavior, enabling the detection, identification, and

mitigation of cyber-attacks. However, this method is dependent on onboard perception

sensors.

However, each study focuses on specific aspects of the problem, such as GPS specific

deception attacks, attack detection in specific IFTs, or attack detection using particular

sensors. As a result, there is a research gap in the literature, where a comprehensive and

unified approach to address FDIAs in various platoon configurations and across multiple

parameters is lacking. Therefore, the identified research gap serves as an objective to

accomplish the research goal. In Section 1.8, this research goal will be elaborated upon,

and the proposed methodology to address the research gap in securing platoons against

FDIAs will be presented.

Recognizing the significant impact of attacks, ensuring the overall resilience and depend-

ability of smart vehicles becomes paramount. To achieve this, it is crucial to address

the challenges that arise from their complex systems.

1.5 Faults

The vehicles in the platoon are characterized by their complexity, involving numerous

hardware and software components, which inevitably give rise to faults. Various fac-

tors can contribute to these faults. For instance, obstructions such as tall buildings can

temporarily disrupt GPS functionality, compromising accurate position determination

when passing through tunnels [16]. Improper accelerometer readings can occur due to

poor connectors, exposure to extreme temperatures, shocks, or electrostatic discharge

[17]. Malfunctions in encoders can stem from issues like incorrect wiring, electrical noise,

dirt/dust accumulation, moisture, or overheating [18]. Other factors, such as inclement
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weather, signal outages, sensor aging, or manufacturing defects can also result in in-

correct or missing sensor data. Furthermore, impairments in On-Board Units (OBUs),

including electronic noise, intermodulation interference, cable leakage, or unlicensed or

incorrect band operations, can impact V2V communication [19].

Utilizing sensor measurements that are inaccurate or unreliable can have significant

repercussions, potentially diverting the platoon from its intended path, vehicle safety,

and operational efficiency. Therefore, it is crucial to address these faults to ensure the

proper functioning and safety of the platoon.

Extensive research has been conducted on faults in vehicle platoons. In [20], a distributed

finite-time observer, an Adaptive Optimal Finite Time Parameter Estimation rule, and

a fault-tolerant controller are employed, but the work is restricted to platoons with

LPF IFT. Reference [21] proposes an active fault diagnosis method for detecting and

identifying sensor faults in vehicles operating in a platoon formation. The method

introduces a probing signal to actively excite the system, revealing a residual component

that can be analyzed for fault identification. However, it is limited to PF IFTs (Fig.

1.1.b) and assumes only one faulty sensor at a time. Reference [22] presents a fault-

tolerant control mechanism utilizing event-triggered controllers and Lyapunov theory to

ensure stability in platoons. However, it primarily focuses on mitigating faults in position

and velocity, without specifically addressing acceleration. Reference [23] has developed

an exponential spacing policy, a nonlinear observer, and a distributed adaptive fault-

tolerant control scheme for BF IFT (Fig. 1.1.c). Similarly, [24] has utilized a quadratic

spacing error policy, adaptive estimation laws, and an adaptive sliding mode control for

actuator faults. Finally, in [25], a velocity fault detection and correction algorithm is

introduced that uses a distributed function calculation strategy for position and velocity

gathering, enabling vehicles to assess their own velocity estimation through interaction

with others in the network.

These studies reveal several research gaps in the literature. Firstly, there is limited

exploration of various platoon configurations and the consideration of multiple faulty

parameters simultaneously. Notably, most studies assume single or two faulty parame-

ters, overlooking the possibility of three concurrent faulty parameters. This identified

research gap emerges from the possibility that the OBU, responsible for handling all

three parameters (position, velocity, and acceleration), could be faulty, leading to the

simultaneous occurrence of multiple or all faulty parameters. Secondly, the lack of focus

on acceleration as a critical parameter for fault detection represents a significant gap

in current research efforts. Including acceleration in fault detection approaches could

substantially enhance their effectiveness in ensuring platoon safety. Lastly, the need for
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more unified and comprehensive approaches is evident, addressing diverse platoon con-

figurations and multiple faulty parameters in an integrated manner. Failing to address

these research gaps can undermine the trustworthiness of vehicle platooning systems

and hinder their widespread adoption. The consequences of such shortcomings may in-

clude increased risk of accidents, compromised road safety, reduced fuel efficiency, and

diminished overall traffic efficiency.

The research gaps identified in the literature set the objectives for this study. A goal

of this dissertation is to develop a comprehensive framework that effectively addresses

fault detection, identification, and mitigation in vehicle platoons, taking into account

diverse platoon configurations and considering all three parameters (position, velocity,

and acceleration) to solve multiple faulty parameters simultaneously.

Therefore, in Section 1.8, the research objectives and proposed framework to address

these research gaps and contribute to the field of fault detection and mitigation in vehicle

platooning will be presented.

1.6 State-Space Modeling

State-space modeling presents a promising approach to address the research gaps iden-

tified in Sections 1.4 and 1.5 regarding vehicle platooning. State-space modeling is a

powerful technique used to represent dynamical systems using matrices and vectors.

It provides a comprehensive analysis of intricate nonlinear systems, offering a deeper

understanding of their behavior over time. Engineers can accurately predict how mod-

ifications to specific elements may influence overall performance through state-space

modeling, gaining insights into critical points where the output may undergo significant

changes.

One of the key advantages of state-space models is their ability to identify critical thresh-

olds or conditions that could substantially impact the system’s behavior or performance.

This insight empowers engineers to make informed decisions and devise strategies to op-

timize the system’s design and operation. Moreover, state-space modeling facilitates the

development of robust control algorithms. By comprehending the dynamics of a given

system through state-space representation, engineers can design control algorithms that

effectively manipulate the system’s variables to achieve desired behaviors. This ensures

precise control and facilitates the attainment of specific performance objectives.

There are two primary approaches to state-space modeling: continuous state-space mod-

eling and discrete state-space modeling.
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Continuous state-space modeling deals with systems whose state variables change contin-

uously over time, described by a set of continuous differential equations. This approach

is ideal for representing systems with continuous and smooth dynamics, such as physical

systems governed by differential equations. This method enables a precise understanding

of the system’s behavior as it evolves smoothly through time. The general continuous

state-space model can be represented as follows [26–28] and it is important to note that

the style presented below for continuous models will be consistently employed through-

out this dissertation:

Ẋ(t) = AX(t) + BU(t) (1.1)

Y(t) = CX(t) + DU(t) (1.2)

where at time t, A, X(t), B, U(t), C, and D, represent the state matrix, state vector,

input matrix, input vector, output matrix, and feedthrough matrix, respectively; Ẋ(t) is

the derivative of X; and Y(t) is the output vector. Additionally, equation (1.1) captures

the dynamics of the system and how it responds to control inputs whereas equation (1.2)

describes the relationship between the state variables and the measurable outputs of the

system.

On the other hand, discrete state-space modeling is employed for systems with state

variables that change in discrete steps or time intervals, represented by difference equa-

tions. This approach is well-suited for systems with quantized or discrete behaviors,

such as digital control systems or systems with sampling and feedback intervals. The

discrete approach offers valuable insights into how the system’s state changes at specific

time points. Similar to the general continuous state-space model representation, the

general discrete state-space model can be represented as follows [27, 28], with this style

being utilized for discrete models in this dissertation:

X[k + 1] = AX[k] +BU [k] (1.3)

Y [k] = CX[k] +DU [k] (1.4)

where at time step k, A,X[k], B, U [k], C, andD, represent the state matrix, state vector,

input matrix, input vector, output matrix, and feedthrough matrix, respectively; X[k]

is the state vector at time step k+1; and Y [k] is the output vector. Similar to equations

(1.1) and (1.2), equation (1.3) captures the dynamics of the system and how it responds

to control inputs whereas equation (1.4) describes the relationship between the state

variables and the measurable outputs of the system.
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In the context of vehicle platooning, state-space modeling plays a vital role in estimating

the true states of the vehicles by integrating sensor data and accounting for vehicle

dynamics. In Chapter 2, a deeper exploration of the principles and applications of both

continuous and discrete state-space modeling will be conducted, examining their efficacy

in addressing the identified research gaps and contributing to the development of robust

FDIA and fault detection and identification strategies. By intelligently selecting the

appropriate state-space modeling approach, effective modeling and understanding of the

complex dynamics of vehicle platooning systems can be achieved

1.7 State Estimation Techniques

Upon establishing the state-space models of the vehicle platoon, an essential tool is

incorporated known as, State estimation techniques. These are utilized in dynamic sys-

tems to estimate the system states that cannot be directly measured. These techniques

leverage the available measurement information to accurately estimate the states. En-

suring the accuracy, reliability, and convergence of state estimation techniques requires

satisfying one or more of the following conditions:

• Stability: The estimated states must converge and remain within a reasonable

range, even in the presence of uncertainties such as noise, to prevent divergence

and erratic estimation. A given state-space model X[k + 1] = A ·X[k] is stable if

starting from X[0];

lim
k→∞

X[k] = 0 (1.5)

and the magnitude is less than 1 for all the eigenvalues of A [28, 29]. This ensures

that the state estimation process remains stable.

• Observability: It is essential to establish that the states of the system can be

determined given the available measurements. Observability is a critical aspect

of state estimation techniques to ensure that the estimation process can uniquely

determine the states from the available sensor data. A continuous system with

input equation (1.1) and output equation (1.2) or a discrete system with input

equation (1.3) and output equation (1.4) is considered to be stable if and only if;

rank





C

CA

CA2

...

CAn−1




= n (1.6)
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where n is the number of state variables [29, 30].

This condition ensures that the states are uniquely observable, and the state esti-

mation process can reliably estimate the unmeasured states based on the available

observable states and input data.

• Invertibility: The estimated states should be able to approximate the actual

states of the system. Invertibility ensures that the state estimation process can

accurately approximate the true states of the system based on the available mea-

surements. A reliable and invertible state estimation technique provides valuable

insights into the system’s behavior and allows for precise control and analysis of

the dynamic system [28].

Prominent state estimation techniques include:

• Kalman Filter: A powerful recursive algorithm used for state estimation in linear

dynamic systems. By considering uncertainties, such as noise in measurement

values, it efficiently estimates the system’s state. One of its key strengths lies in

providing an optimal estimate in terms of mean squared error, especially when

both the dynamic system and measurement noise follow Gaussian distributions

[29, 31]. This makes the Kalman Filter an essential tool for linear systems where

its assumptions are met, allowing for accurate and reliable state estimation.

• Extended Kalman Filter (EKF): An extension of the Kalman Filter that is

specifically designed to handle non-linear dynamic systems. While the original

Kalman Filter is effective for linear systems, the EKF linearizes the non-linear

system using local linear approximations to perform state estimation [31, 32].

• Unscented Kalman Filter (UKF): Another extension of the Kalman Filter de-

signed explicitly for non-linear systems, eliminating the necessity for linearization.

Linearizing a non-linear system can often lead to inaccurate dynamics represen-

tation at a single sample point. To overcome this limitation, the UKF employs a

unique approach known as the unscented transformation. The unscented transfor-

mation is a pivotal step in the UKF that involves selecting a set of sigma points

to approximate the system’s state distribution. These sigma points are determin-

istically chosen to capture the underlying distribution’s characteristics accurately.

The UKF passes these sigma points through the non-linear process model. The

transformed sigma points then provide estimates for the predicted mean and co-

variance of the system’s state distribution. By utilizing the unscented transforma-

tion, the UKF enables a more accurate representation of the non-linear system’s

dynamics [29, 32].
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• Moving Horizon Estimation (MHE): An optimization-based technique used

for state estimation in dynamic systems. It leverages the available noisy mea-

surements of the system over a fixed time window to estimate the states. Unlike

traditional recursive approaches, MHE considers a limited time horizon, typically

denoted as N, and performs an optimization to find the most probable values of

the state trajectory within that window [32]. By focusing on a finite time window,

MHE takes into account the most recent and relevant measurements, making it

well-suited for systems with nonlinear models or constraints on the estimates. This

approach allows MHE to provide accurate state estimates even in the presence of

uncertainties and disturbances in the system. The use of optimization in MHE

ensures that the state estimates are obtained by solving an optimization problem,

which offers flexibility in handling complex system dynamics and measurement

noise.

• Particle Filtering: A non-linear state estimation technique that represents the

system’s probability density function using a set of particles, where each particle

carries a state hypothesis with associated weight. The Particle Filter propagates

these particles through the system’s non-linear dynamics, and the weights are

updated based on the likelihood of the measurements. By resampling particles

according to their weights, the Particle Filter adapts to changes in the system’s

behavior and provides accurate state estimates even in highly non-linear scenarios

[33, 34].

• Luenberger Observer: A state estimation technique specifically designed for lin-

ear systems. It operates in a sequential or recursive manner, continuously refining

its estimate of the internal state of a real system over time. This technique utilizes

input and output measurements obtained from the real system to iteratively up-

date its estimations [35, 36]. The sequential or recursive nature of the Luenberger

Observer involves an iterative process where each new estimation incorporates the

latest available measurements and previous estimates. This approach enables the

observer to adapt and respond to changes in the system’s behavior over time,

making it valuable for real-time monitoring and control of linear systems. By

combining input and output measurements with its iterative process, the Luen-

berger Observer provides insights into the otherwise unobservable aspects of linear

systems, contributing to improved system understanding and control.

• Unknown Input Observers (UIOs): An advanced state estimation technique

utilized in dynamic systems to accurately estimate the system states in the pres-

ence of unknown inputs [37]. These elusive inputs, which cannot be directly mea-

sured or observed, could be external disturbances, attacks, or faults, and they
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significantly impact the system’s behavior. The primary objective of UIOs is to

reconstruct these unknown inputs while concurrently estimating the system states

based on available measurements. By effectively handling these unknown inputs,

UIOs enhance the overall resilience and reliability of the dynamic system, making

them particularly valuable for attack or fault detection, identification, and control

applications.

In this dissertation, the UIO state estimation technique is employed. Within the context

of vehicle platooning, these unknown inputs refer to attacks and faults that can impact

the behavior of the vehicles but cannot be directly measured or known. These elusive

inputs play a significant role in compromising the platoon’s performance and safety,

making their estimation essential for effective attack and fault detection and identifica-

tion. In Chapter 3, a deeper exploration into the principles and applications of Unknown

Input Observers within the context of vehicle platooning will be conducted. This ex-

ploration sheds light on how UIOs enable addressing the challenges posed by unknown

inputs, ultimately enhancing the platoon’s overall resilience and reliability.

1.8 Research Goals

The goals of the dissertation are to tackle FDIAs and faults in vehicle platooning. To

address the consequences of FDIAs and faults and overcome the identified research

limitations (Sections 1.4 and 1.5), robust and comprehensive frameworks are developed

for tackling these issues in vehicle platooning by combining state-space modeling (Section

1.6) with UIOs (Section 1.7). Therefore, the following objectives need to be met to

achieve the goals:

• Present a state-space model for vehicle platoons that is adaptable to any number

of vehicles and independent of a specific IFT.

• Develop UIOs specifically tailored for attack detection, identification, and mitiga-

tion, enabling the detection of FDIAs, identification of the attacked parameters,

and the implementation of effective mitigation strategies.

• Design and implement UIOs dedicated to fault detection, identification, and mit-

igation, enabling the detection of faults within the platoon, identification of the

faulty parameters, and the execution of appropriate mitigation measures.

Figure 1.2 visually represents an overview of the objectives, providing a graphical de-

piction of the path undertaken throughout the dissertation.
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Figure 1.2: Research Objectives

1.9 Dissertation Outline

The subsequent chapters delve into specific facets of this research through an in-depth

exploration of various topics,

Chapter 2 focuses on vehicle platoon modeling, specifically addressing the dynamic be-

havior of vehicles within a platoon. Furthermore, the state-space modeling technique is

applied to capture the dynamics of a vehicle platoon under various conditions, including

anomaly-free scenarios, attacks, and faults. The models developed in this chapter pro-

vide a comprehensive understanding of the behavior and interactions of vehicles within

a platoon, allowing for analysis and investigation of different operational scenarios.

Chapter 3 specifically highlights Unknown Input Observers (UIOs) as a robust method

for state estimation within the vehicle platoon. UIOs enable accurate estimation of the

state variables for each vehicle, even in the presence of unknown inputs, such as attacks

and faults. By effectively accounting for these unknown inputs, the UIOs provide a

reliable framework for maintaining accurate and up-to-date state information throughout

the platoon. Furthermore, the chapter lays the foundation for safeguarding the vehicle

platoon against potential attacks and faults, ensuring the reliability and robustness of

the overall system. The capabilities of the UIOs are leveraged to develop comprehensive

frameworks for the detection, identification, and mitigation of attacks and faults within

the vehicle platoon. Building upon the state estimation provided by the UIOs, these

frameworks enable effective detection of attacks and faults, precise identification of the

parameters involved, and the implementation

Chapter 4 thoroughly assesses the effectiveness of the attack and fault detection, iden-

tification and mitigations techniques under diverse circumstances. By subjecting the

system to rigorous testing and analysis, it provides valuable insights into the system’s

capabilities, and overall performance. This evaluation serves as a crucial step towards

ensuring the reliability and efficiency of the proposed solution, validating its effectiveness

in real-world scenarios.
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Chapter 5 serves as the concluding chapter of the dissertation, summarizing the key

findings, contributions, and implications of the research conducted. This chapter pro-

vides a comprehensive overview of the entire dissertation, highlighting the main accom-

plishments and outcomes achieved throughout the study. It discusses the significance of

the research in addressing the identified problem statement and its potential impact on

the field.



Chapter 2

Vehicle Platoon Modelling

In this chapter, the exploration commences with examining the fundamental equations

governing the motion of individual vehicles within the platoon. This initial investigation

lays the foundation for a deeper understanding of the underlying principles of vehicle

dynamics. Subsequently, the insights are extended to encompass the behavior of the

entire platoon as a unified system. The first major milestone in the investigation involves

creating a state-space model representing an attack and fault-free platoon. This model

serves as the reference point for the state-space models incorporating attacks and faults.

Next, a step further is taken by designing a state-space model that incorporates FDIAs.

By doing so, valuable insights are gained into the impact of such attacks on the platoon’s

stability and safety. To ensure a comprehensive analysis, the presence of faults within

the platoon is also addressed. Developing a state-space model that accounts for faults

allows studying their influence on the overall system performance.

2.1 Dynamic Behaviour of Vehicles in a Platoon

In this section, the fundamental equations that govern the motion of individual vehicles

within the platoon are established. The leader of a platoon of vehicles is denoted as

vehicle 0, while the following vehicles are numbered from 1 to n (Fig. 2.1). Each vehicle

is characterized by its position, velocity, and acceleration, represented by xi, vi, and ai,

respectively. Furthermore, Li refers to the length of vehicle i and di+1
i represents the

distance between vehicle i and the successor vehicle i+ 1 (as illustrated in Fig. 2.1).

According to the literature, such as the works presented in [38, 39], the dynamics of any

vehicle in a longitudinal platoon can be described as follows:

ẋi(t) = vi(t) (2.1)

16
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Figure 2.1: Longitudinal platoon system.

v̇i(t) = ai(t) (2.2)

ȧi(t) = − 1

τi
ai(t) +

1

τi
βi(t) (2.3)

where the dot notation represents the derivative with respect to time, τi is the engine

time constant of vehicle i, and βi is the auxiliary input signal for vehicle i. By taking

the parameters of the leader as reference, and given that the acceleration of the leader

is zero and velocity is constant [7, 14, 38, 40, 41], equations (2.1)-(2.3) can be rewritten

in the following form:

∆ẋi(t) = ∆vi(t) (2.4)

∆v̇i(t) = ∆ai(t) (2.5)

∆ȧi(t) = − 1

τi
∆ai(t) +

1

τi
βi(t) (2.6)

where ∆xi represents the difference between the position of vehicle i and the position of

the leader (∆xi = xi − x0), ∆vi represents the difference in velocity of vehicle i and the

leader (∆vi = vi − v0), and ∆ai represents the difference in acceleration of vehicle i and

the leader (∆ai = ai − a0). According to the literature, the auxiliary input signal βi(t)

in (2.3) and (2.6) for any follower vehicle i can be obtained using the following equation

[38]:

βi(t) = −
∑
j∈Ii

Ki [∆xi(t)−∆xj(t)− dij(t)] +

Bi [∆vi(t)−∆vj(t)] +Hi [∆ai(t)−∆aj(t)] (2.7)

where Ki, Bi and Hi are the control gains of the position, velocity and acceleration of

vehicle i, respectively. Furthermore, dij denotes the desired distance between any two

vehicles i and j in the platoon, which can be derived using:

dij = −sgn(i− j)

max(i,j)−1∑
k=min(i,j)

(Lk + dk+1
k ) (2.8)

Here sgn(.) denotes the sign function [38]. Moreover, in the context of the adopted IFT,

set Ii in (2.7) denotes the vehicles in the platoon that send information to vehicle i. For

instance, if vehicle 1 receives information from the leader (i.e. vehicle 0), vehicle 2, and
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vehicle 3, then I1 = {0, 2, 3}.

By placing (2.7) for βi(t) in (2.6) and simplifying the resultant equation the following

expression is obtained:

∆ȧi(t) = −CiKi

τi
∆xi(t)−

CiBi

τi
∆vi(t)−

1 + CiHi

τi
∆ai(t)+

Ki

τi

∑
j∈Ii

∆xj(t) +
Bi

τi

∑
j∈Ii

∆vj(t) +
Hi

τi

∑
j∈Ii

∆aj(t) +
Ki

τi

∑
j∈Ii

dij(t) (2.9)

where Ci represents the cardinality of set Ii.

These equations lay the foundation for subsequent analysis, enabling the extension of

insights to encompass the behavior of the entire platoon as a unified system.

2.2 State-Space Modeling of an Attack and Fault Free Pla-

toon

In this section, the development of the state-space model for a platoon operating with-

out attacks or faults is undertaken. This model represents a significant milestone in the

investigation, providing the foundation for the subsequent state-space models incorpo-

rating attacks and faults.

The state-space model for an attack-free platoon is obtained by expressing (2.4), (2.5),

and (2.9) for all the vehicles in the platoon in a matrix form:

Ẋ(t) =


Zn×n In×n Zn×n

Zn×n Zn×n In×n

Ξ Ω Λ


︸ ︷︷ ︸

A

X(t) +


Zn×n

Zn×n

In×n


︸ ︷︷ ︸

B

U(t) (2.10)

In this model, the state vector X(t) represents the states of follower vehicles 1 to n within

the platoon and is defined as follows:

X(t) = [∆xn, ∆xn−1, · · · , ∆x1, ∆vn, ∆vn−1, · · · , ∆v1, ]

[ ∆an, ∆an−1, · · · , ∆a1] T (2.11)
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Additionally, U(t) is the input vector, which is defined as:

U(t) =

Kn

τn

∑
j∈In

dnj ,
Kn−1

τn−1

∑
j∈In−1

d(n−1)j · · · K1

τ1

∑
j∈I1

d1j

T

(2.12)

The sub-matrices Z and I in the state matrix A and input matrix B are the zero matrix

(consisting of all zeros) and the identity matrix of dimensions of n × n, respectively.

The remaining sub-matrices of A, namely Ξ, Ω, and Λ, are constructed using a binary

function Sn
j . This function takes the value of one if vehicle j is in the set In, and zero

otherwise:

Sn
j =

1, if j ∈ In

0, otherwise
(2.13)

With this definition, the sub-matrices Ξ, Ω, and Λ can be characterized as follows:

Ξ =


−CnKn

τn
Kn
τn
Sn
n−1 . . . Kn

τn
Sn
1

Kn−1

τn−1
Sn−1
n −Cn−1Kn−1

τn−1
. . . Kn−1

τn−1
Sn−1
1

...
...

. . .
...

K1
τ1
S1
n

K1
τ1
S1
n−1 . . . −C1K1

τ1

 (2.14)

Ω =


−CnBn

τn
Bn
τn
Sn
n−1 . . . Bn

τn
Sn
1

Bn−1

τn−1
Sn−1
n −Cn−1Bn−1

τn−1
. . . Bn−1

τn−1
Sn−1
1

...
...

. . .
...

B1
τ1
S1
n

B1
τ1
S1
n−1 . . . −C1B1

τ1

 (2.15)

Λ =


−1+CnHn

τn
Hn
τn
Sn
n−1 . . . Hn

τn
Sn
1

Hn−1

τn−1
Sn−1
n −1+Cn−1Hn−1

τn−1
. . . Hn−1

τn−1
Sn−1
1

...
...

. . .
...

H1
τ1
S1
n

H1
τ1
S1
n−1 . . . −1+C1H1

τ1

 (2.16)

To fully represent the state-space model of the platoon, it is important to define output

equations alongside the state equations. These output equations determine the parame-

ters that serve as the outputs of the state-space model. When selecting outputs, certain

criteria should be considered: 1) they must be physically measurable, 2) they should

be readily available, and 3) they can be mathematically described as linear functions of

the states and inputs. In this context, all system states are selected as outputs since

they are shared among the vehicles through the communication system. As a result, the

output equation of the state-space model can be expressed as:

Y(t) = CX(t) (2.17)
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Here,Y(t)representstheoutputvector,andCistheoutputmatrix,whichisanidentity

matrixofdimensions3n×3n.

Thecontinuous-timestate-space modelrepresentedby(2.10)and(2.17)requiresdis-

cretizationfornumericalanalysis. Toachievethis,thestate matrixAandinput matrix

Bmustbediscretizedusingthefollowingequations:

A=eA×td (2.18)

B=
td

x=0
e(A×x)Bdx (2.19)

wheretdrepresentsthediscretizationtime-step[42]andtheintegralinequation(2.19)

accumulatestheefectsofthe matrixAovertheentirediscretizationtimesteptd,al-

lowingforthediscretizationof matrixB. Consequently,thediscrete-timestate-space

modeloftheplatooncanbecharacterizedas:






X[k+1]=AX[k]+BU[k]

Y[k]=CX[k]
(2.20)

Here, X[k]∈R3n,U[k]∈Rn,andY[k]∈R3n representthestate,input,andoutput

vectorsattimestepk,respectively.

2.3 State-Space ModelingofaPlatoonunder Attacks

Thissectionpresentsthestate-spaceequationofaplatoonofvehiclesduringFDIAs.The

modelisdevelopedfromtheperspectiveofvehiclei,assumingthatitsowninformation

obtainedfromlocalsensorsissecureandunattacked. However,informationreceived

fromothervehicles,includingtheleader,isvulnerabletoattacks. TocaptureFDIAs,

attackinputsµx,k,µv,k,andµa,k areintroducedforeachvehiclekintheplatoon,

exceptforvehiclei. Theseattackinputsrepresentchangesintheposition,velocity,

andaccelerationoftheattackedvehiclekcausedbyFDIAs.Sincetheleaderhaszero

acceleration,itisnotsusceptibletoaccelerationattacks(i.e.,µa,0=0).Byincorporating

theseattackinputsintoequations(2.4),(2.5),and(2.9),theequationsforvehicleiare

modiiedasfollows:

∆̇xi(t)=vi(t)−(v0(t)+µv,0)=∆vi(t)−µv,0 (2.21)

∆̇vi(t)=ai(t)−(a0(t)+µa,0)=∆ai(t) (2.22)

∆̇ai(t)=−
CiKi

τi
∆xi(t)−

CiBi

τi
∆vi(t)−

1+CiHi

τi
∆ai(t)+
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Ki
τi
j∈Ii

∆xj(t)+
Bi
τi
j∈Ii

∆vj(t)+
Hi
τi
j∈Ii

∆aj(t)+
Ki
τi
j∈Ii

µx,j+

Bi
τi
j∈Ii

µv,j+
Hi
τi
j∈Ii

µa,j+
Ki
τi
j∈Ii

dij(t) (2.23)

Thestateequationsforvehiclek≠iduringFDIAsarealsoformulatedinasimilar

manner.Theseequationsaccountfortheimpactofattackinputsµx,k,µv,k,andµa,kon

theposition,velocity,andaccelerationofvehiclek:

∆̇xk(t)=(vk+µv,k)−(v0+µv,0)=∆vk(t)+µv,k−µv,0 (2.24)

∆̇vk(t)=(ak+µa,k)−a0=∆ak(t)+µa,k (2.25)

∆̇ak(t)=−
CkKk
τk
∆xk(t)−

CkBk
τk
∆vk(t)−

1+CkHk
τk

∆ak(t)+

Kk
τk

j∈Ik

∆xj(t)+
Bk
τk

j∈Ik

∆vj(t)+
Hk
τk

j∈Ik

∆aj(t)−
CkKk
τk
µx,k−

CkBk
τk
µv,k−

1+CkHk
τk

µa,k+
Kk
τk

j∈Ik

µx,j+
Bk
τk

j∈Ik

µv,j+

Hk
τk

j∈Ik

µa,j+
Kk
τk

j∈Ik

dkj(t) (2.26)

Writingthestateequations(2.21)-(2.26)inamatrixformyieldsthefollowingstate-space

modelforaplatoonofvehiclesunderFDIAs:

Ẋ(t)=AX(t)+BU(t)+







Zn×n ρ Zn×(n−1)

Zn×n Zn×n ψ

ϕ φ Φ







θ

µ(t) (2.27)

Theirsttwotermsontheright-handsideof(2.27)remainunchangedfromtheattack-

freestate-spacemodelgivenbyequation(2.10).Thethirdtermintroducestheimpact

ofFDIAsonthestates,anditisexpressedastheproductoftheattackvectorµ(t)and

theattackmatrixθ.Thesub-matricesofθaredeinedinequations(2.28)to(2.32).

ρ=





















1 0 ...0 0 0 ...0 −1

0 1 ...0 0 0 ...0 −1
...
...
...

...
...
...
...

...
...

0 0 ...1 0 0 ...0 −1

0 0 ...0 0 0 ...0 −1

0 0 ...0 0 1 ...0 −1
...
...
...

...
...
...
...

...
...

0 0 ...0 0 0 ...1 −1





















n×n

(2.28)



VehiclePlatoon Modeling 22

ψ=





















1 0 ... 0 0 ... 0

0 1 ... 0 0 ... 0
...

...
...

...
...

...
...

0 0 ... 1 0 ... 0

0 0 ... 0 0 ... 0

0 0 ... 0 1 ... 0
...

...
...

...
...

...
...

0 0 ... 0 0 ... 1





















n×n−1

(2.29)

ϕ=



















−CnKn

τn

Kn

τn
Sn

n−1 ... Kn

τn
Sn

i+1
Kn

τn
Sn

i−1 ... Kn

τn
Sn

1
Kn

τn
Sn

0
Kn−1

τn−1
Sn−1

n −Cn−1Kn−1

τn−1
... Kn−1

τn−1
Sn−1

i+1
Kn−1

τn−1
Sn−1

i−1 ... Kn−1

τn−1
Sn−1

1
Kn−1

τn−1
Sn−1

0

...
...

...
...

...
...

...
...

Ki+1

τi+1
Si+1

n
Ki+1

τi+1
Si+1

n−1 ... −Ci+1Ki+1

τi+1

Ki+1

τi+1
Si+1

i−1 ... Ki+1

τi+1
Si+1

1
Ki+1

τi+1
Si+1

0
Ki

τi
Si

n
Ki

τi
Si

n−1 ... Ki

τi
Si

i+1
Ki

τi
Si

i−1 ... Ki

τi
Si

1
Ki

τi
Si

0
Ki−1

τi−1
Si−1

n
Ki−1

τi−1
Si−1

n−1 ... Ki−1

τi−1
Si−1

i+1 −Ci−1Ki−1

τi−1
... Ki−1

τi−1
Si−1

1
Ki−1

τi−1
Si−1

0

...
...

...
...

...
...

...
...

K1

τ1
S1

n
K1

τ1
S1

n−1 ... K1

τ1
S1

i+1
K1

τ1
S1

i−1 ... −C1K1

τ1

K1

τ1
S1

0



















n×n

(2.30)

φ=



















−CnBn

τn

Bn

τn
Sn

n−1 ... Bn

τn
Sn

i+1
Bn

τn
Sn

i−1 ... Bn

τn
Sn

1
Bn

τn
Sn

0
Bn−1

τn−1
Sn−1

n −Cn−1Bn−1

τn−1
... Bn−1

τn−1
Sn−1

i+1
Bn−1

τn−1
Sn−1

i−1 ... Bn−1

τn−1
Sn−1

1
Bn−1

τn−1
Sn−1

0

...
...

...
...

...
...

...
...

Bi+1

τi+1
Si+1

n
Bi+1

τi+1
Si+1

n−1 ... −Ci+1Bi+1

τi+1

Bi+1

τi+1
Si+1

i−1 ... Bi+1

τi+1
Si+1

1
Bi+1

τi+1
Si+1

0
Bi

τi
Si

n
Bi

τi
Si

n−1 ... Bi

τi
Si

i+1
Bi

τi
Si

i−1 ... Bi

τi
Si

1
Bi

τi
Si

0
Bi−1

τi−1
Si−1

n
Bi−1

τi−1
Si−1

n−1 ... Bi−1

τi−1
Si−1

i+1 −Ci−1Bi−1

τi−1
... Bi−1

τi−1
Si−1

1
Bi−1

τi−1
Si−1

0

...
...

...
...

...
...

...
...

B1

τ1
S1

n
B1

τ1
S1

n−1 ... B1

τ1
S1

i+1
B1

τ1
S1

i−1 ... −C1B1

τ1

B1

τ1
S1

0



















n×n

(2.31)

Φ=



















−1+CnHn

τn

Hn

τn
Sn

n−1 ... Hn

τn
Sn

i+1
Hn

τn
Sn

i−1 ... Hn

τn
Sn

1
Hn−1

τn−1
Sn−1

n −1+Cn−1Hn−1

τn−1
... Hn−1

τn−1
Sn−1

i+1
Hn−1

τn−1
Sn−1

i−1 ... Hn−1

τn−1
Sn−1

1

...
...

...
...

...
...

...
Hi+1

τi+1
Si+1

n
Hi+1

τi+1
Si+1

n−1 ... −1+Ci+1Hi+1

τi+1

Hi+1

τi+1
Si+1

i−1 ... Hi+1

τi+1
Si+1

1
Hi

τi
Si

n
Hi

τi
Si

n−1 ... Hi

τi
Si

i+1
Hi

τi
Si

i−1 ... Hi

τi
Si

1
Hi−1

τi−1
Si−1

n
Hi−1

τi−1
Si−1

n−1 ... Hi−1

τi−1
Si−1

i+1 −1+Ci−1Hi−1

τi−1
... Hi−1

τi−1
Si−1

1

...
...

...
...

...
...

...
H1

τ1
S1

n
H1

τ1
S1

n−1 ... H1

τ1
S1

i+1
H1

τ1
S1

i−1 ... −1+C1H1

τ1



















n×n−1

(2.32)
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Additionally, the attack vector µ(t) in (2.27) is defined as follows

µ(t) =
[
µx µv µa

]T
(2.33)

where

µx =
[
µx,n . . . µx,i+1 µx,i−1 . . . µx,0

]T
(2.34)

µv =
[
µv,n . . . µv,i+1 µv,i−1 . . . µv,0

]T
(2.35)

µa =
[
µa,n . . . µa,i+1 µa,i−1 . . . µa,1

]T
(2.36)

Given that FDIAs do not alter the output equation of the platoon, (2.17) can be utilized

as the output equation for under-attack platoons as well.

In the final step, to perform numerical analysis, the obtained state-space representation

shown in (2.27) and (2.17) needs to be discretized. For the discretization of matrices

A and B, equations (2.18) and (2.19) can be employed, respectively. Additionally, the

matrix θ should be discretized with a time-step of td using the following equation:

Θ =

∫ td

x=0
e(A×x) θ dx (2.37)

By following these steps, the discrete-time state-space model of the platoon with FDIA

can be described as follows:X[k + 1] = AX[k] +BU [k] + ΘM [k]

Y [k] = CX[k]
(2.38)

where M [k] ∈ R3n−1 is the discretized attack vector.

2.4 State-Space Modeling of a Platoon under Faults

The numerous hardware and software components of smart vehicles may inevitably

lead to faults or errors in the measurement of the vehicle’s position, velocity, and/or

acceleration. As this information is exchanged within the platoon, any inaccuracies

in the actual vehicle’s position, velocity, and/or acceleration could potentially cause

catastrophic failures in the platooning system. In this section, a model is developed

to represent faults in the position, velocity, and acceleration of a perspective vehicle,

denoted as fx,i, fv,i, and fa,i, respectively. By incorporating these fault inputs into the

state equation (2.10), the resulting state-space model for the platoon under a fault can
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be represented as follows:

Ẋ(t) = AX(t) + BU(t) + F
[
fx,i fv,i fa,i

]T
︸ ︷︷ ︸

f(t)

(2.39)

Here f(t) ∈ R3 is the fault vector; and F is a 3n × 3 matrix that includes only the

columns of matrix A associated with the position, velocity, and acceleration of vehicle

i. The output equation of the state-space model remains unchanged from the fault-free

model, as expressed in (2.17).

Following a similar approach as in the fault-free model, the discrete-time state-space

model of the platoon under faults can be represented as:X[k + 1] = AX[k] +Bu[k] + Ff [k]

Y [k] = CX[k]
(2.40)

in which, f [k] ∈ R3 is the fault vector at time step k, and F is a discrete-time version

of the fault matrix F.



Chapter 3

State Estimation for Vehicle

Platoons using Unknown Input

Observers

State estimation using UIOs is a technique employed to estimate the internal states of

a dynamic system, such as the positions, velocities, or other relevant variables, when

some inputs or disturbances are not directly measurable or known. The UIO is designed

as an observer that takes the system’s measurable outputs and control inputs as inputs

and generates estimates of the unmeasured internal states as outputs.

Hence, this chapter presents the development of a UIO to estimate the states of the

platoon in the presence of FDIAs and faults, which are not known beforehand. To

ensure the UIO’s adaptability within both the attack and fault frameworks, the unknown

input matrix λ serves as a representation encompassing both the attack input matrix

Θ in equation (2.38) and the fault input matrix F in equation (2.40). Similarly, the

unknown input vector Λ represents both the attack input vector M in equation (2.38)

and the fault input vector f in equation (2.40). The symbols λ and Λ allow for a

unified representation of attack and fault inputs, facilitating a consistent approach in

upcoming equations in this chapter. This UIO will play a critical role in mitigating

the effects of FDIAs and faults on the platoon’s operation, safeguarding its security

and reliability. By providing reliable state estimates even in the presence of unknown

inputs, the UIO enhances the platoon’s ability to maintain safe inter-vehicle distances

and execute coordinated maneuvers effectively.

The UIO utilizes a fixed window of α+1 time steps to estimate the states of the platoon

at time step k, incorporating the system’s outputs from time steps k to k + α, denoted

25
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as Y [k], Y [k + 1], ..., Y [k + α] [43]. Consequently, the UIO estimates the system’s states

with a delay of α time steps. The specific value of α depends on the system’s parameters,

which will be further explained later. By incorporating this fixed delay, the UIO’s error

tends to approach zero even in the presence of unknown inputs, such as attacks and

faults.

In the first step, the outputs of the system from time steps k to k + α are recursively

formulated using the state-space equations (2.38) and (2.40):

Y [k] = CX[k]

Y [k + 1] = CX[k + 1] = C(AX[k] +Bu[k] + λΛ[k]) = CAX[k] + CBu[k] + CλΛ[k]

Y [k + 2] = CX[k + 2] = C(A(AX[k] +Bu[k] + λΛ[k]) +Bu[k + 1] + λΛ[k + 1])

= CA2X[k] + CABu[k] + CAλΛ[k] + CBu[k + 1] + CλΛ[k + 1]
...

Y [k + α] = CX[k + α] = CAαX[k] + CB
α−1∑
j=0

Aα−1−ju[k + j] + Cλ
α−1∑
j=0

Aα−1−jΛ[k + j]

(3.1)

This recursive formulation allows for the representation of the output vector as follows:

Y [k : k + α] = OαX[k] + J ′
αU [k : k + α] + JαΛ[k : k + α] (3.2)

where

Y [k : k + α] =
[
Y [k]T , Y [k + 1]T , · · · , Y [k + α]T

]T
(3.3)

J ′
α =



0 0 0 · · · 0

CB 0 0 · · · 0

CAB CB 0 · · · 0
...

...
. . .

. . .
...

CAα−1B CAα−2B · · · · · · 0


(3.4)

Jα =



0 0 0 · · · 0

Cλ 0 0 · · · 0

CAλ Cλ 0 · · · 0
...

...
. . .

. . .
...

CAα−1λ CAα−2λ · · · · · · 0


(3.5)

Oα =
[
CT (CA)T (CA2)T . . . (CAα)T

]T
(3.6)

U [k : k + α] =
[
U [k]T , U [k + 1]T , . . . , U [k + α]T

]T
(3.7)

Λ[k : k + α] =
[
Λ[k]T , Λ[k + 1]T . . . Λ[k + α]T

]T
(3.8)
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Therefore, by combining the contributions of internal states, control inputs, and un-

known inputs over a time window, the system’s output vector is computed.

As shown in [44], a UIO can estimate the system’s states at time step k + 1 using the

following equation:

X̂[k + 1] = AX̂[k] +Bu[k] + F
[
Y [k : k + α]−OαX̂[k]− J ′

αu[k : k + α]
]

(3.9)

where X̂[k] is the estimate of X[k] and F is the UIO’s gain. To ensure accurate esti-

mation, the UIO’s gain F should be designed in a way that the UIO’s error (e[k + 1] =

X̂[k+1]−X[k+1]) approaches zero as k approaches infinity. This mechanism illustrates

how the UIO projects the system’s states to the subsequent time step ([k + 1]) based

on the available information at the current time step ([k]), facilitating robust state esti-

mation. Additionally, F should ensure the stability of the UIO. To design F , the UIO’s

error e[k+1] should be formulated using equations (2.38), (3.2), and (3.9). This results

in the following expression for the error:

e[k + 1] = (A− FOα)︸ ︷︷ ︸
A′

e[k] + FJαΛ[k : k + α]− λΛ[k] (3.10)

In order for the error e[k + 1] to approach zero in the presence of attacks and faults as

k → ∞, the sum of the last two terms on the right-hand side of equation (3.10) must be

zero. To meet this condition, F can be designed such that FJα satisfies the following

relation:

FJα =
[
λ Z

]
(3.11)

where Z is a zero matrix with dimensions 3n× α(3n− 1). By placing the formula just

found for FJα into (3.10) and after some simplifications, (3.10) can be written as:

e[k + 1] = A′e[k] + λΛ[k] + ZΛ[k + 1 : k + α]− λΛ[k] = A′e[k] (3.12)

that satisfies the error objective.

As shown in [44], there exists an F that satisfies (3.11) if

rank(Jα)− rank(Jα−1) = 3n− 1 (3.13)

where 3n− 1 denotes the size of Λ vector, and Jα−1 can be found using Jα in (3.5):

Jα−1 =



0 0 0 · · · 0

Cλ 0 0 · · · 0

CAλ Cλ 0 · · · 0
...

...
. . .

. . .
...

CAα−2λ CAα−3λ · · · · · · 0


(3.14)

Equation (3.13) represents a necessary condition for constructing an accurate UIO for

the given system. If this condition is not fulfilled, it becomes impossible to estimate the
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system’s states without knowledge of its unknown inputs. For a platoon of vehicles, it

can be demonstrated that a minimum time delay of α = 2 satisfies this condition. The

proof involves demonstrating that condition (3.13) holds for the continuous-time model

of a general platoon, which encompasses various IFTs. This is achieved by substituting

matrices A, B, and C from equations (2.10) and (2.17) into (3.13) and subsequently

evaluating the ranks of Jα−1 and Jα. According to reference [45], it is indicated that the

discretized platoon model satisfies condition (3.13) if and only if the continuous platoon

model does so.

As presented in [44], an F matrix in the following form can satisfy (3.11):

F =
[
F1 F2

]
Q (3.15)

where sub-matrices F1 and F2 have dimensions 3n× (3n− 1)(α− 1) and 3n× (3n− 1),

respectively, and Q is a (3n− 1)α× 3n(α+ 1) matrix, which can be designed to satisfy

the following equation:

QJα =

[
Z11 Z12

I21 Z22

]
(3.16)

where Z11, Z12, and Z22 are zero matrices with dimensions (α − 1)(3n− 1)× (3n− 1),

(α− 1)(3n− 1)× α(3n− 1), and 3(n− 1)× α(3n− 1), respectively. Additionally, I21 is

an identity matrix with dimensions 3(n− 1)× 3(n− 1).

By placing the formula for F from (3.15) into (3.11) and substituting QJα with the

right-hand side of (3.16), the following expression is obtained:

F2 = λ (3.17)

By choosing a Q that satisfies (3.16) and setting F2 as λ, the accuracy condition in

equation (3.11) is fulfilled. It is noted that while Q and F2 contribute to meeting the

accuracy condition of the UIO, F1 does not play a role in this aspect. However, F1 is

significant in satisfying another crucial condition—the stability condition of the UIO—

which will be discussed next.

The stability of the UIO depends on the location of the eigenvalues of the matrix A′

in (3.10) in the complex plane. If all eigenvalues are within the unit circle, the UIO is

considered stable [42]. To assess the stability of the UIO, F from (3.15) is inserted into

A′, and the resulting matrix QOα is partitioned into two sub-matrices: S1 and S2. This

yields the transformation of A′ as shown below:

A′ = A− F1S1 − λS2 (3.18)

where [
ST
1 ST

2

]T
= QOα (3.19)
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Based on [46], the existence of an F1 that stabilizes the eigenvalues of A′ in (3.18) is

contingent upon the satisfaction of the following equation for every complex number z

with a magnitude greater than or equal to one:

rank

(
A− zI3n λ

C Z3n×n

)
= 4n (3.20)

Both conditions (3.13) and (3.20) are crucial for the development of a stable and accurate

UIO. It can be proven that condition (3.20) is satisfied when all the eigenvalues of A are

in unit circle and condition (3.13) is met. As a result, (3.20) is also met for a platoon of

vehicles if α = 2. Therefore, there exists an F1 that stabilizes the system poles using a

pole-placement method, such as the method presented in [47]. The method incorporates

3n desired stable eigenvalues and designs F1 to align the eigenvalues of matrix A′ with

the desired ones. During the design process, the method assigns 3n linearly independent

eigenvectors to the desired eigenvalues while aiming for an eigenvector matrix that is as

well-conditioned as possible. Matrix F1 can be determined using these eigenvalues and

eigenvectors. Once F1 is designed, the UIO can estimate the system’s states at time

step k + 1 using (3.9).

3.1 Attack Detection, Identification and Mitigation

In the context of vehicle platoons, ensuring the security and reliability of the commu-

nication system is paramount. However, the presence of attacks such as FDIAs, poses

significant threats to the integrity of the platoon system. To address these challenges,

a comprehensive approach for detecting, identifying, and mitigating attacks is essential

by building upon the state-space model developed in Section 2.3.

During an FDIA, certain elements of the attack input vector M become non-zero. De-

tecting attacked vehicles and identifying the potential attack inputs and their corre-

sponding distribution matrix Θ is critical for safeguarding the platoon’s operation. To

achieve this, the Detection UIOj is introduced. The Detection UIOj utilizes the state-

space equation of the attacked system presented in (2.38), with the removal of the attack

inputs specific to vehicle j, namely µx,j , µv,j , and µa,j , as well as the associated columns

from the Θ matrix. Therefore, the state-space model for designing UIOj is as follows:X[k + 1] = AX[k] +Bu[k] + Θ(−j)M (−j)[k]

Y [k] = CX[k]
(3.21)

Here, M (−j) represents the remaining vector M after removing the attack inputs µx,j ,

µv,j , and µa,j associated with vehicle j, and Θ(−j) is a matrix that includes all columns
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of Θ except for those associated with the removed attack inputs. The UIOj designed

based on (3.21) is insensitive to attacks on all vehicles in the set Ii, except for vehicle j,

as these attacks are treated as unknown inputs. In fact, for UIOj , the error equation in

(3.10) becomes

e[k + 1] = A′e[k] + FJ (−j)
α M (−j)[k : k + α]−Θ(−j)M (−j)[k] (3.22)

where J
(−j)
α is obtained from (3.5) by replacing Θ with Θ(−j).

By following the procedure outlined in Section 3, the gain matrix F is designed to

ensure that the last two terms on the right-hand side of (3.22) are equal, resulting in

their cancellation. This design choice allows the error of UIOj to approach zero when

facing attacks included in the M (−j) vector. However, it is important to note that this

UIO remains sensitive to attacks specifically targeting vehicle j as the state-space model

used for designing UIOj does not account for attacks against vehicle j. In cases where

an attack is directed at vehicle j, an additional term is introduced to the right-hand side

of (3.22) as follows:

e[k + 1] = A′e[k] + FJ (j)
α M (j)[k : k + α] (3.23)

where M (j) represents the attack vector that includes the attack inputs µx,j , µv,j , µa,j

associated with vehicle j. Similarly, Θ(j) is a matrix that includes all columns of Θ

associated with the attack inputs of M (j). Additionally, J
(j)
α is a matrix obtained from

(3.5) by replacing Θ with Θ(j). This extra term in the right-hand side of (3.23) results

in a deviation of the error of UIOj from zero. This error leads to a discrepancy between

the estimated values by UIOj and the information received through the communication

system. This discrepancy is referred to as the Residual Function (RF) of UIOj and is

defined as follows:

rj [k] = Y [k]− CX̂[k] (3.24)

As mentioned earlier, the RF of UIOj does not increase during attacks on vehicles other

than vehicle j, as these attacks are already considered in the state-space model of UIOj

as unknown inputs. Therefore, the information received from vehicle j is considered

untrustworthy if the following condition is met:

∥rj [k]∥ ≤ δj (3.25)

Here, ∥rj [k]∥ represents the second norm of the RF of UIOj , and δj denotes the detection

threshold for UIOj . The detection threshold δj is a dimensionless value that takes into

account non-attack disturbances, such as measurement noise and errors. To set the

threshold δj , a practical approach involves measuring ∥rj [k]∥ under various conditions

(e.g., different numbers of vehicles and/or IFTs) in the absence of attacks. Subsequently,

δj is determined as the highest measured ∥rj [k]∥ value plus a security margin.
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After detecting the attacked vehicle(s), it is crucial to identify which parameter(s) have

been manipulated to mitigate the effects of the attack and prevent the compromise of

the entire vehicle platoon system. To achieve this, an Identification UIO is introduced

in this section. The Identification UIO is designed based on the state-space model of

the attacked system presented in (2.38), which includes all potential attack inputs. The

Identification UIO is capable of estimating the states of the platoon at time steps k and

k + 1 and utilizes them, along with (2.38), to estimate the elements of M using the

equation:

M̂ [k] = Θ‡
(
X̂[k + 1]−AX̂[k]−BU [k]

)
(3.26)

Here, the symbol ‡ denotes the pseudo-inverse operator. The vector M̂ contains the

estimated attack inputs, with non-zero elements indicating the manipulated parameters.

In order to mitigate the attack, each estimated non-zero attack input must be subtracted

from its associated received information before being used by the platoon controller.

3.2 Fault Detection, Identification and Mitigation

Further securing the platoon, this section presents the fault detection, identification,

and mitigation framework designed to address equipment faults in vehicle platoons by

building upon the state-space model developed in Section 2.4. To mitigate the effects

of equipment faults in vehicle i, it is crucial to identify which parameter(s) (position,

velocity, or acceleration) have been measured erroneously. For this purpose, vehicle i

utilizes three fault detection and identification UIOs: UIOx,i, UIOv,i, and UIOa,i. These

UIOs are designed to detect and identify specific elements of the fault input vector F

(fx,i, fv,i, and fa,i) that may become nonzero due to equipment malfunction. The design

of these UIOs follows a similar pattern, and the generic name UIOp,i is used, where p

can be substituted with x, v, or a to correspond to position, velocity, or acceleration,

respectively.

The UIOp,i is designed by removing the fault input fp,i from vector f and its associated

columns from matrix F introduced in Section 2.4. The state-space model of UIOp,i is

given below: X[k + 1] = AX[k] +Bu[k] + F−(p,i)f−(p,i)[k]

Y [k] = CX[k]
(3.27)

Here, f−(p,i) represents the remaining vector f after removing fp,i, and F
−(p,i) is a matrix

that includes all columns of F except those associated with the removed faulty input.

Based on this design, UIOp,i is only sensitive to the specific fault (fp,i) that it targets
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but not to others. In fact, for UIOp,i, the error formulation (3.10) becomes:

e[k + 1] = A′e[k] +GJ−(p,i)
α f−(p,i)[k : k + α]− F−(p,i)f−(p,i)[k] (3.28)

Here, J
−(p,i)
α is obtained from (3.5) by replacing F with F−(p,i).

This error leads to a discrepancy between the estimated value by UIOp,i and the cor-

responding measured value obtained by the faulty vehicle sensor. This discrepancy is

referred to as the Residual Function (RF) of UIOp,i and is defined as follows:

rp,i[k] = Y [k]− CX̂[k] (3.29)

The RF of UIOp,i does not increase during faults on the other two parameters since they

are already accounted for as unknown inputs in the state-space model of this particular

UIO. Hence, the measured parameter of vehicle i is considered untrustworthy if the

following condition is met:

∥rp,i[k]∥ ≤ δp,i (3.30)

Here, ∥rp,i[k]∥ represents the second norm of the RF of UIOp,i, and δp,i denotes the

detection threshold for the UIO. The detection threshold δp,i is a dimensionless value

that accounts disturbances other than faults such as noise. To establish δp,i, a practical

approach involves measuring ∥rp,i[k]∥ in various scenarios where no faults are present.

The threshold δp,i is then set as the maximum measured ∥rp,i[k]∥ value, augmented by

a security margin.

In order to identify and mitigate the fault, the states of the platoon at time steps k and

k + 1 are estimated using the state-space model (2.38) with all potential fault inputs.

The estimated states are then utilized along with (2.38) to estimate the elements of f

using the equation:

f̂ [k] = F ‡
(
X̂[k + 1]−AX̂[k]−BU [k]

)
(3.31)

Here, the symbol ‡ denotes the pseudo-inverse operator. The vector f̂ contains the

estimated faulty inputs, with non-zero elements indicating the faulty parameters. In

order to mitigate the fault, each estimated non-zero faulty input must be subtracted

from its associated measured information before being used by the platoon controller.



Chapter 4

Performance Analysis

This chapter presents the simulation results analyzing the performance of the proposed

attack detection, identification, and mitigation frameworks, as well as the fault detec-

tion, identification and identification framework. To evaluate the system under various

conditions, six simulation scenarios are considered for attack detection, identification,

and mitigation, along with three scenarios for fault detection and identification. Each

scenario involves a different IFT, as depicted in Fig. 1.1.

To maintain consistency and avoid unnecessary complexities, the control gains and en-

gine time constant are assumed to be the same for all vehicles: K = 3, B = 5, H = 1,

and τ = 0.5 [38]. The parameters of the lead and following vehicles are listed in Table

4.1, with specific values selected from the table based on the corresponding scenario

being described. These settings allow for a comprehensive evaluation of the proposed

frameworks’ effectiveness in different platoon configurations and scenarios.

Table 4.1: Specifications of platoon vehicles.

Vehicle (i) Leader (0) 1 2 3 4 5 6

Li (m) 4 4.4 3.8 5.2 4.4 3.8 4.0

Initial xi (m) 0 -8 -20 -40 -80 -100 -120

Initial vi (m/s) 25 27.8 22.2 19.4 27.8 22.2 27.8

Initial ai (m/s2) 0 2.0 3.0 2.0 2.0 3.0 3.0

di+1
i (m) - 3.0 4.0 4.0 3.0 4.0 3.0

By conducting these simulations, the aim is to gain insights into the robustness and reli-

ability of the proposed frameworks in the face of attacks and faults. The results will not

only validate the effectiveness of the detection, identification, and mitigation techniques

but also highlight their potential for enhancing the overall security and performance

of vehicle platoons. Additionally, the simulations will provide a basis for comparative

analyses and discussions, ultimately contributing to a comprehensive understanding of

the proposed frameworks’ capabilities and limitations.

33
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4.1 Attack Cases

In this section, six diverse scenarios are presented to rigorously test and evaluate the

performance of the attack detection, identification, and mitigation frameworks. Each

scenario involves a different number of vehicles in the platoon and adopts specific IFTs,

creating challenging conditions for the simulations. These simulation scenarios are care-

fully crafted to examine the robustness and effectiveness of the proposed frameworks in

detecting, identifying, and mitigating attacks under varying platoon configurations. By

subjecting the system to different attack scenarios, thorough assessment of the method-

ologies can be conducted to ensure the integrity and safety of the platoon.

The scenarios serve as pivotal test cases, validating the performance of the detection,

identification, and mitigation techniques. The outcomes will provide empirical evidence

of the frameworks’ capabilities and insights into their potential to enhance the security

and performance of vehicle platoons in real-world scenarios. Each scenario is uniquely

tailored to assess specific aspects of the proposed frameworks, facilitating discussions

and analyses that highlight their strengths and limitations.

4.1.1 Attack Scenario 1: No attack

The analysis of the proposed frameworks begins with a basic scenario involving a platoon

of three vehicles (indexed 1, 2, and 3) following a lead vehicle (indexed 0) using the Bidi-

rectional Following (BF) IFT. In this scenario, the focus is on vehicle 2. The Detection

UIO0, UIO1, and UIO3 developed for this vehicle are responsible for detecting attacks

on vehicles 0, 1, and 3, respectively, while the Identification UIO of vehicle 2 is respon-

sible for identifying and mitigating attacks on the specific parameters of the attacked

vehicle(s). An increase in the RF of a Detection UIO indicates that the corresponding

vehicle is under attack (Table 4.2).

Table 4.2: Expected behaviour of identifying UIOs for the platoon of Scenario 1.

Attacked Increase in the RF of Detection UIOs
vehicle(s) UIO0 UIO1 UIO3

No attack - - -
Leader ✓ - -

Leader and 1 ✓ ✓ -
Leader and 3 ✓ - ✓

1 - ✓ -
1 and 3 - ✓ ✓

3 - - ✓
All ✓ ✓ ✓

other events ✓ ✓ ✓

Excluded attack inputs µx,0, µv,0 µx,1, µv,1, µa,1 µx,3, µv,3, µa,3
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The simulation is conducted from t = 0 to 30 seconds, utilizing the parameter values

listed in Table 4.1. The results depicted in Fig. 4.1 demonstrate that the RF of the

Detection UIOs does not increase in this scenario, indicating the absence of any FDIA.

Moreover, the Identification UIO estimates nearly zero for all attack inputs, signifying

that none of the parameters are targeted by an FDIA.
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Figure 4.1: RF of Detection UIOs in Scenario 1: a) UIO0, b) UIO1, and c) UIO3.

4.1.2 Attack Scenario 2: Attack on lead vehicle

In Scenario 2, an FDIA is initiated on the lead vehicle of a platoon consisting of five

follower vehicles (indexed 1 to 5), with specifications selected from Table 4.1. A Prede-

cessor Following (PF) IFT is employed, where the last vehicle in the platoon, vehicle 5,

is chosen as the subject vehicle to demonstrate that even a vehicle far from the leader

with no direct IFT can detect a compromised leader. The platoon operates normally

until the leader is attacked at time t = 10 for a duration of 20 seconds, with its velocity

randomly manipulated between 0-10 m/s. Fig. 4.2 illustrates the RF of the Detection

UIOs associated with the leader and follower vehicles 1, 2, and 4 (the output of UIO3 is

omitted due to space constraints). As observed in the figure, only the RF of UIO0 has

increased, indicating that only the lead vehicle is experiencing an FDIA. Furthermore,

Fig. 4.3(a) displays the estimated µv,0 by the Identification UIO, demonstrating that the

estimated and actual attack inputs align perfectly, indicating the high accuracy of the

Identification UIO in estimating the attack parameters. Lastly, Fig. 4.3(b) illustrates

the actual v0 before manipulation by the FDIA and the estimated v0 after mitigating

the attack. It can be observed that the actual and estimated v0 perfectly overlap, indi-

cating the effectiveness of the attack mitigation technique in mitigating the impact of

the attack.

4.1.3 Attack Scenario 3: Simultaneous vehicle merge and attack

In this scenario, five vehicles (indexed 1-4 and 6) follow a lead vehicle using LPF IFT.

The vehicle specifications are obtained from Table 4.1. Initially, vehicle 5 is absent from

the platoon, making vehicles 4 and 6 neighbors with a distance of d64 = 8 m. Vehicle 6 is
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Figure 4.2: RF of Detection UIOs in Scenario 2: a) UIO0, b) UIO1, c) UIO2, and d)
UIO4.
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Figure 4.3: a) Actual and estimated attack input, and b) actual and estimated velocity
for the lead vehicle in Scenario 2.

selected for analysis. The platoon is in a steady state when vehicle 5 (with parameters

from Table 4.1) merges into the platoon between vehicles 4 and 6 at t = 10 seconds. At

t = 12 seconds, vehicle 3 is attacked, with an offset of 0.5 m/s2 added to its acceleration.

The attacker manipulates the velocity and position of vehicle 3 as well to maintain

stealth.

Immediately after the merge of vehicle 5, vehicle 6 updates the state-space model of

the platoon and redevelops the Detection and Identification UIOs. In Fig. 4.4(a), the

Residual Function (RF) of Detection UIO3 initially starts at zero but exhibits a fast-

decaying overshoot at t = 10 seconds when vehicle 5 joins the platoon. This overshoot

occurs due to the initialization of the updated UIO for vehicle 3. As the attack on

vehicle 3 initiates at t = 12 seconds, the RF of UIO3 gradually increases, indicating that

vehicle 3 is under an FDIA, with the attacker progressively increasing the magnitudes

of µv,3 and µx,3. However, the RFs of other vehicles in the platoon remain at zero.

Furthermore, Figs. 4.5(a)-4.5(c) demonstrate the successful estimation of vehicle 3’s

attack inputs, including acceleration, velocity, and position, by the Identification UIO.
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Leveraging these estimated attack inputs, the mitigation framework accurately estimates

the true position, velocity, and acceleration of vehicle 3, as depicted in Fig. 4.5. These

estimated values are then utilized to effectively mitigate the impacts of the attack,

replacing the received ones.
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Figure 4.4: Results of Scenario 3: a) RF of UIO3, as well as the actual and estimated
attack inputs for the b) acceleration, b) velocity, and c) position of vehicle 3.
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Figure 4.5: Actual and estimated a) position, b) velocity, and c) acceleration for
vehicle 3 in Scenario 3.

4.1.4 Attack Scenario 4: Multi-vehicle attack

The multi-vehicle attack scenario involves a platoon of six vehicles following a lead vehicle

using Leader-Bidirectional Following (LBF) IFT, with vehicle specifications taken from

Table 4.1. The objective is to evaluate the effectiveness of the proposed frameworks in

detecting and mitigating coordinated attacks on multiple vehicles within the platoon.

In this scenario, vehicle 6 is selected as the subject vehicle, while vehicles 1 and 3 are

simultaneously targeted.



Performance Analysis 38

Vehicle 1’s velocity is manipulated in three phases: it is increased linearly with a slope

of 0.5 m/s2 from t = 10 to 15 seconds, then decreased linearly with a slope of −0.5 m/s2

from t = 16 to 25 seconds, and finally increased again with a slope of 0.5 m/s2 from

t = 26 to 30 seconds. Similarly, vehicle 3’s velocity is manipulated in three phases: it

is accelerated by 1 m/s2 from t = 15 to 20 seconds, decelerated by 1 m/s2 from t = 21

to 30 seconds, and accelerated again between t = 31 and 35 seconds by 1 m/s2. To

maintain stealth, other parameters of both vehicles are adjusted in accordance with the

changes in their acceleration throughout the scenario.

Fig. 4.6 displays the RFs of vehicles 1 and 3, showing an immediate increase once

their respective FDIAs are initiated, indicating successful detection of the attacks by

the proposed framework. Additionally, Fig. 4.7 presents the estimated attack inputs for

vehicles 1 and 3, with all six attack inputs accurately estimated by the Identification

UIO. Consequently, the attacks can be effectively mitigated by subtracting the estimated

inputs from the corresponding information received through the communication system.
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Figure 4.6: Attack Scenario 4: a) RF of vehicle 1, and b) RF of vehicle vehicle 3.
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Figure 4.7: Attack Scenario 4: Actual and estimated attack inputs a) µa,1, b) µv,1,
c) µx,1 d) µa,3, e) µv,3, and f) µx,3.
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4.1.5 Attack Scenario 5: Attack on following vehicles

In this scenario, a platoon of five vehicles follows a lead vehicle, incorporating BF IFT.

The vehicle specifications are taken from Table 4.1. Vehicle 2 is selected as the subject

vehicle, and vehicle 3 is deliberately attacked to demonstrate the system’s ability to

detect a compromised vehicle sharing IFT with another vehicle from behind. The accel-

eration of vehicle 3 is increased by 0.5 m/s2 from t = 10 to 20 seconds, and to maintain

stealth, the velocity and position of the vehicle are also manipulated accordingly.

As shown in Fig. 4.8(d), the RF of UIO3 gradually increases as the attacker progressively

amplifies the magnitudes of µv,3 and µx,3. This increase in the RF of UIO3 indicates

that vehicle 3 is under an FDIA. However, the RF values for the other vehicles remain

at zero. Additionally, Figs. 4.8(a)-4.8(c) demonstrate the successful estimation of the

attack inputs for vehicle 3’s acceleration, velocity, and position by the Identification

UIO. Similar to the previous scenarios, the attack can be mitigated by estimating the

actual values of the attacked parameters and utilizing them instead of the manipulated

values.
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Figure 4.8: Attack Scenario 5: Vehicle 3’s Actual vs Estimated: a) Acceleration, b)
Velocity, and c) Position & d) Vehicle 3 RF.
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4.1.6 Attack Scenario 6: Attack on a Vehicle Platoon of Trucks

In this scenario, a platoon of five trucks follows a lead truck, employing the same BF

IFT as in Scenario 5. Vehicle platooning comprising solely of trucks is known as truck

platooning [48]. The vehicle specifications, derived from Table 4.1, remain consistent

across both scenarios, with the exception of two factors: the length of each vehicle and

their initial positions. The lengths of the vehicles are inspired by [49], which provides

valuable insights into various truck types. The specific lengths and initial positions of

the vehicles in this truck platoon are:

Table 4.3: Lengths and Initial xi of the vehicles in the Truck platoon

Vehicle (i) Leader (0) 1 2 3 4

Li (m) 27 27.5 24 25 26.5

Initial xi (m) 0 -35 -69.5 -99.5 -126.5

Vehicle 2 is once again chosen as the subject vehicle, and vehicle 3 is subjected to the

same deliberate attack described in Scenario 5. The attack involves an acceleration

increase of 0.5 m/s2 over the time interval t = 10 to 20 seconds, with corresponding

adjustments made to the vehicle’s velocity and position to maintain the attack’s stealth-

iness.

The simulation result depicted in Fig. 4.9 mirrors that of Scenario 5 (Fig. 4.8(d)).

Specifically, the RF of UIO3 shows a gradual increase, conclusively affirming the occur-

rence of an FDIA on vehicle 3. Similarly, the Identification UIO precisely estimates the

attack inputs for vehicle 3’s acceleration, velocity, and position. The RF of the other ve-

hicles remains at 0 as they were not attacked. Following the detection and identification

of the attack, the framework effectively mitigates its impact by substituting the manip-

ulated values with the actual values, akin to the approaches demonstrated in preceding

scenarios.

Through this scenario, the frameworks’ capability to effectively address attacks within

a platoon of larger vehicles is showcased. The similarity in results between this scenario

and Scenario 5 underlines the versatility and reliability of the proposed frameworks

across varying vehicle sizes and dynamics, reinforcing their significance in enhancing

platoon security
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Figure 4.9: Attack Scenario 6: Vehicle 3 RF.
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4.2 Fault Cases

This section presents three simulations of a platoon comprising of four vehicles, with

vehicle 2 being the subject vehicle experiencing measurement errors (faults) in one or

more of its position, velocity, and acceleration parameters. The specific parameters for

the lead and following vehicles can be found in Table 4.1. Various IFTs are chosen for

different simulation scenarios, showcasing the effectiveness of the framework regardless

of the selected topology.

By employing the established framework, the aim is to evaluate the platoon’s response

to different fault parameters for vehicle 2. The expected outcome of simulations in the

presence of different fault scenarios is highlighted in Table 4.4. The table illustrates

that when a single fault occurs in only one of the vehicle’s position (x2), velocity (v2),

or acceleration (a2) inputs, the Residual Function (RF) of the corresponding Unknown

Input Observer (UIO) increases. In the case of a combination of two or three faulted

parameters, the corresponding combination of UIOs experience a non-zero RF.

Table 4.4: Expected outputs under different fault parameter(s) and other than fault

Anomaly Type Residual Function Increase

Fault(s) UIO x2 UIO v2 UIO a2
x2 ✓ - -
v2 - ✓ -
a2 - - ✓

x2 and v2 ✓ ✓ -
x2 and a2 ✓ - ✓
v2 and a2 - ✓ ✓

All ✓ ✓ ✓
Other than fault ✓ ✓ ✓

Excluded inputs per UIO fx,2 fv,2 fa,2
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4.2.1 Fault Scenario 1: Position Error

In this scenario, a Predecessor Following (PF) IFT is adopted. Initially, the platoon

operates smoothly until vehicle 2 encounters a fault in its position parameter at time

t = 10 for a duration of 10 seconds. During this period, the position of vehicle 2

randomly varies between 1m to 10m. One possible reason for this position fault could

be the erratic GPS signals experienced by vehicle 2 while passing through a tunnel,

leading to inaccurate measurements of its position.

Fig. 4.10(a) illustrates the RF of the position UIO (rx,2[k]) associated with vehicle 2,

indicating a fault in its position measurement. The plots for the RF of the velocity

and acceleration UIOs for this vehicle are all zero and omitted in this thesis due to

space limitations. Additionally, in Fig. 4.10(b), the estimated fault fx,2 obtained by

the position UIO is presented. The perfect alignment between the estimated and actual

fault inputs demonstrates the high accuracy of this UIO in estimating the fault in the

position of vehicle 2. Furthermore, Fig. 4.10(c) showcases a comparison between the

measured x2 in the absence of faults and the estimated x2 in the presence of the fault,

indicating the effectiveness of the fault mitigation technique in accurately estimating

and compensating for the fault.
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Figure 4.10: Fault Scenario 1: Vehicle 2’s Position a) Residual Function, b) Fault
Actual and Estimation, and c) Mitigated Measurement and Estimation
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4.2.2 Fault Scenario 2: Acceleration Error

A bi-directional following IFT is adopted for this scenario, where the platoon operates

smoothly until vehicle 2 encounters a fault in its acceleration parameter at time t = 10

for a period of 10 seconds. During this period, the acceleration of vehicle 2 jumps from

zero to 1 m/s2 and stays at that level until it returns to zero at the end of that period.

One plausible cause for this fault could be overheating of the rotary encoder and/or

IMU sensors of this vehicle.

The plots of the RF of the acceleration UIO (ra,2[k]), the estimated fault fa,2 obtained

by the acceleration UIO, and a comparison between the measured a2 and the estimated

a2 are shown in Figures 4.11(a), 4.11(b), and 4.11(c), respectively. Similar observa-

tions to the previous scenario can be made from the plots in this scenario. Again,

there is a perfect alignment between the estimated and actual acceleration fault inputs,

demonstrating the high accuracy of the acceleration UIO in estimating the fault in the

acceleration of vehicle 2. The effectiveness of the fault mitigation technique in accurately

estimating and compensating for the acceleration fault is evident in Figure 4.11(c).
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Figure 4.11: Fault Scenario 2: Vehicle 2’s Acceleration a) Residual Function, b) Fault
Actual and Estimation, and c) Mitigated Measurement and Estimation

4.2.3 Fault Scenario 3: Acceleration, Velocity, and Position Error

A leader bi-directional following IFT is adopted for this scenario, where vehicle 2 en-

counters simultaneous faults in its position, velocity, and acceleration. One plausible

cause for these simultaneous faults could be cable leakage, leading to disruptions in the

accuracy of acceleration, velocity, and position data transmitted to the On-Board Unit

(OBU) by the vehicle’s sensors. To simulate this scenario, the acceleration of vehicle 2

jumps from zero to 0.5 m/s2 during a time interval between 15 and 25 seconds. The

velocity and position of this vehicle have also been offset during this period as a result

of the change in its acceleration.
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Figures 4.12(a) to 4.12(c) illustrate the RF of the acceleration, velocity, and position

UIOs associated with vehicle 2, respectively. These figures demonstrate the success-

ful detection of faults in the acceleration, velocity, and position of this vehicle by the

respective fault UIOs.
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Figure 4.12: Fault Scenario 3: Vehicle 2’s Residual Functions: a) Acceleration, b)
Velocity, and b) Position.

4.3 Computation Complexity

The computational complexity for on-line implementation can be analyzed using the

Big O notation. To this aim, the number of Floating Point Operations (FLOPs) of

the proposed method should be calculated at each time-step. To perform the proposed

method in real-time, equations (3.9), (3.26), and (3.24) must be run at each time-step for

attack detection, identification and mitigation. These equations include basic algebraic

operations (i.e., only addition and multiplication) which can be easily implemented by

microprocessors. Assuming a total of n vehicles and a delay parameter α, the FLOPS

for equation (3.9) can be expressed as (66n2 + 12n+ 48n2α+ 6n2α2 + 6nα). Similarly,

for equation (3.26), it stands at (42n2), and for equation (3.24), it totals (18n2 + 9n).

By combining these individual FLOPS, the total FLOPS for the entire computation is

given by (126n2 +21n+48n2α+6n2α2 +6nα). Finally, as there are n number of UIOs

running in parallel for attack detection and identification, the computational complexity

is classified as O(n3).

Similarly, for fault detection, identification and mitigation, real-time computations are

performed using equations (3.9), (3.31), and (3.29). FLOPS for equation (3.9) remains as

(66n2+12n+48n2α+6n2α2+6nα), as well as for equation (3.24), it remains (18n2+9n).

As for equation (3.31), the FLOPS are (30n2+9n). Hence, the total FLOPS is expressed

as, (114n2 + 30n + 48n2α + 6n2α2 + 6nα).For fault detection and identification, three

UIOs are run in parallel.

To provide a tangible perspective, consider Scenario 4.1.1 as an illustration, where n = 3

and α = 2 (as specified in Section 3). In this case, the computations require 1,746

FLOPS for equation (3.9), 378 FLOPS for equation (3.26), and 189 FLOPS for equation

(3.24). This accumulates to a total of 2,313 FLOPS for the computational process of one
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UIO. With three UIOs working in parallel, it would be a total of 6,939 FLOPS. Using

a Intel Core i5-10400 Processor [50], renowned for its capacity to execute 768.0 billion

floating-point operations per second, this number of FLOPS would take approximately

9.05 nanoseconds. This estimate does not include the memory access time and it also

assumes that the processor is fully dedicated for this task.

Considering scenario 4.2.1, with n = 3 and α = 2, the FLOPS of equations (3.9), (3.31),

and (3.24) are 1,746, 297, and 189, respectively. Then the total FLOPS would be 2,232

for one UIO, resulting in 6,696 FLOPS for all three UIOs running in parallel. Utilizing

the same Intel Core i5-10400 Processor, it would take approximately 8.73 nanoseconds

to perform the proposed fault detection and identification method in real-time.



Chapter 5

Conclusion

This dissertation presented comprehensive frameworks that address detection, identi-

fication, and mitigation of FDIAs and faults in vehicle platoons. These frameworks

are designed to be independent of the adopted IFTs (Information Flow Topologies)

and the number of vehicles within the platoon, ensuring their applicability in diverse

scenarios. By employing state-space modeling and leveraging UIOs, the proposed frame-

works effectively detect and identify FDIAs and faults within platoons. Furthermore,

the frameworks successfully mitigate attacks and faults by replacing the manipulated or

impaired parameters with their actual values, restoring the integrity and functionality

of the platoon. This mitigation process further emphasizes the practicality and effec-

tiveness of the proposed frameworks in maintaining the desired operational state of the

platoon.

The frameworks’ effectiveness was validated through extensive simulations, which demon-

strated their ability to accurately identify and mitigate attacked and faulty parameters

while estimating the affected parameters. Specifically, the research gap identified per-

tained to the absence of a comprehensive and unified approach to addressing FDIAs

across diverse platoon configurations and multiple parameters. The set of attack sce-

narios collectively addresses the identified research gap while also showcasing a series

of significant accomplishments in the realm of platoon security. The attack framework

demonstrates its potential to revolutionize platoon security and performance by high-

lighting the following attributes:

• Robustness against FDIAs: This attribute is vital to prevent malicious actors

from tampering with critical information, such as position, speed, or acceleration,

which could otherwise compromise the entire platoon’s safety and operation.
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• Adaptation to dynamic changes in platoon composition: The ability to

adapt to dynamic changes, such as vehicles joining the platoon ensures that the

attack detection and mitigation mechanisms remain effective regardless of the pla-

toon’s size or configuration. This adaptability maintains the platoon’s security

and performance under evolving circumstances.

• Effective handling of coordinated attacks: This ensures that the platoon’s

defense mechanisms can detect and mitigate complex, synchronized attacks. This

capability thwarts attempts to exploit vulnerabilities by combining multiple attack

vectors.

• Versatility and resilience in tackling attacks on different vehicle types

and sizes: Platoon members can vary widely in terms of their type, size, and

capabilities in real-world scenarios. The framework’s versatility and resilience in

addressing attacks ensure that its security measures remain effective across diverse

vehicle compositions within the platoon, making it applicable in a wide range of

situations.

Through these scenarios, a unified approach emerges for effectively addressing FDIAs

in diverse platoon configurations and across multiple parameters. The progression from

simple scenarios to intricate attacks serves to emphasize the adaptability and effective-

ness of the attack framework in ensuring both platoon security and optimal performance.

As for the research gaps discovered in regards to faults, it’s evident that certain themes

are reiterated. Notably, most studies tend to overlook the potential occurrence of simul-

taneous faults across all three parameters, an aspect that gains significance given the

possibility of a faulty On-Board Unit (OBU). Additionally, there’s a noticeable lack of

emphasis on acceleration as a critical parameter when addressing faults. Much like the

gap highlighted in the context of FDIAs, there’s also a need for a comprehensive and

unified approach to address faults in platoons under varying configurations. Together,

the fault scenarios collectively contribute to addressing the gaps identified in the existing

literature. The seamless transition from individual to complex fault scenarios showcases

the flexibility of the fault framework. The scenarios are instrumental in:

• Addressing the oversight of potential simultaneous faults: This is bene-

ficial to vehicle platooning because real-world scenarios can often involve multi-

faceted faults.

• Recognizing the significance of acceleration as a vital parameter: Ac-

celeration is indeed a fundamental parameter that can affect the stability and
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performance of platoons, especially during maneuvers or sudden changes in traffic

conditions, thus improving the reliability and safety of platoon operations.

• Showcasing a unified approach for handling faults across diverse platoon

setups: This versatility directly benefits vehicle platooning by offering a single

framework that can be applied across different operational contexts, streamlining

maintenance and ensuring consistent performance.

In essence, this journey of research and innovation has contributed significantly to the

burgeoning field of autonomous and interconnected transportation systems. By address-

ing security, reliability, and performance within platoon operations, this work contributes

to a safer and more efficient future of transportation. The frameworks introduced here

promise to be pivotal in shaping the trajectory of vehicular platooning, safeguarding its

journey into the future.

As the field of platoon security and autonomy continues to evolve, there is a proactive

initiative to further strengthen these frameworks to address emerging challenges and

ensure their continued relevance. Future work to strengthen the frameworks includes:

• Enhancing the Framework to Tackle Denial of Service (DoS) Attacks:

To enhance the resilience of the frameworks against deliberate communication dis-

ruptions, it is prudent to incorporate specialized techniques targeting DoS attacks.

These attacks aim to overload communication channels or exhaust computing re-

sources, rendering them unavailable to legitimate users. In order to implement

this enhancement, the following actions can be undertaken:

– Explore the implementation of intrusion detection systems that can detect

unusual patterns in communication traffic, indicating the presence of DoS

attacks

– Develop adaptive algorithms that can dynamically reconfigure the platoon’s

communication topology in response to detected disruptions, minimizing the

impact of DoS attacks

– Implement mechanisms, such as backup communication channels or alternate

sensing methods, to ensure the platoon’s operations even when under attack

• Exploring Data-Driven Techniques for Improved Detection and Mitiga-

tion: The integration of data-driven techniques can greatly elevate the accuracy

and adaptability of the frameworks, fueled by refinement through real-world data.

These techniques employ machine learning algorithms and real-world data to en-

hance detection and response capabilities. To address this technique, the following

steps can be taken:
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– Collect and curate a comprehensive dataset that includes various operational

scenarios, attack patterns, and environmental conditions

– Implement machine learning algorithms, such as neural networks or ensemble

methods, to learn from the collected data and improve the accuracy of fault

and attack detection

– Investigate the fusion of multiple sensor modalities, such as LiDAR, RADAR,

and cameras, to build a holistic picture of the platoon’s surroundings and

enhance overall robustness

– Consider reinforcement learning techniques that enable the platoon to au-

tonomously adjust its response strategies based on evolving attack patterns

• Investigating the Impact of Noise: A comprehensive understanding of the

frameworks capabilities and limitations can be acquired by exploring the influence

of noise on their performance. Noise, arising from various sources, can distort

sensor data and challenge the accuracy of the detection and mitigation algorithms.

Addressing this concern involves the following measures:

– Develop simulation environments that replicate various noise conditions, in-

cluding sensor noise, communication noise, and environmental variability

– Quantify the impact of different noise levels on the accuracy of the frameworks

through rigorous simulations or controlled experiments

– Explore advanced noise filtering and signal processing techniques that can

mitigate the adverse effects of noise on fault and attack detection

– Strive for a balanced approach between noise reduction methods and real-

time response requirements, ensuring optimal accuracy without compromising

efficiency

Incorporating these improvements would elevate the quality and practicality of the re-

search. They would enable the frameworks to handle a wider range of challenges and

uncertainties, making them more robust, accurate, and reliable in real-world platooning

scenarios.
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