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ABSTRACT 

 High-risk human papillomaviruses (HPVs), such as HPV16, are implicated in 

causing virtually all cases of cervical cancer. Molecular therapies capable of targeting 

HPV16 E6 oncoprotein expression can selectively eliminate infected cells without the 

unwanted side effects in healthy cells seen with traditional treatments. An efficient 

approach is the use of synthetic small interfering RNA (siRNA) to target and degrade E6 

mRNA. Two common variants of the HPV16 E6 gene, European Prototype (EP E6) and 

Asian-American (AA E6), differ due to six single nucleotide polymorphisms (SNPs) and 

AA E6 has been shown to have a greater oncogenic potential than EP E6. In silico 

modeling was used to demonstrate that these AA E6 SNPs cause its mRNA to have a less 

compacted structure than that of EP E6. However, transfection of an E6 siRNA 

containing no base pair mismatches with either variant demonstrated that these structural 

changes did not result in AA E6 having a significantly different amount of E6 

knockdown than EP E6, as determined using RT-qPCR. Interestingly, equivalent 

knockdown of E6 mRNA in both variants yielded differing responses in the restoration of 

downstream cellular process abrogated by E6. hTERT mRNA levels were equally 

restored to those of PHFKs in AA E6. There was a greater elevation of IFN � mRNA 

expression in EP compared to AA E6. AA E6 IFN � mRNA and p53 protein levels were 

elevated more following treatment with a lower dose of E6 siRNA than those of EP E6. 

These data add to the growing body of evidence that the AA E6 protein may have unique 

properties or disrupt cellular processes through different mechanisms compared to EP E6. 

These findings also have translational implications (e.g. different doses of E6 siRNA may 

be required to achieve the same therapeutic effect, depending on the variant involved). 
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LAY SUMMARY 

 Faculty and students in the Department of Biology are bound together by a 

common interest in explaining the diversity of life, the fit between form and function, and 

the distribution and abundance of organisms. Human papillomavirus 16 (HPV16) is a 

sexually transmitted virus, which is linked to causing almost all cases of cervical cancer. 

Two naturally occurring, common variants of HPV16 E6, the main cancer causing 

protein produced by the virus, are European Prototype and Asian-American. This study 

focused on determining whether a therapeutic molecule that specifically targets the 

expression of the E6 protein would work equally as well against both variants. In 

addition, it was investigated whether cellular processes altered by the HPV16 E6 protein, 

such as the ability to launch an immune response against invading pathogens, were 

equally restored in both variants following treatment with this therapeutic molecule. This 

information helps us better understand how these two variants function differently and 

gives us useful knowledge about how to better treat HPV16 infections depending on 

which variant the patient is infected with. 
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1 INTRODUCTION 

1.1 Human Papillomavirus and its Association with Cancer 

 Human papillomaviruses (HPVs) are double-stranded DNA viruses which infect 

the keratinocytes of skin and mucosa (zur Hausen 2002). HPVs are divided into 5 genera: 

Alpha, Beta, Gamma, Mu and Nu (Bernard et al. 2010). The nomenclature widely 

employed by the scientific community (de Villiers et al. 2004) names a species within 

each genus using a Greek letter with a number (e.g. Alpha papillomavirus-9) and the 

species are further subdivided into types which are defined by their genome having an L1 

sequence which is at least 10% different from that of other types (e.g. HPV16). There is 

disagreement between this commonly accepted nomenclature and that officially 

employed by the International Committee on Taxonomy of Viruses (ICTV) which names 

a species based on one HPV type (e.g. HPV16) and all types within the species as strains 

instead (Bernard et al. 2010). Efforts are currently being made to reconcile the two 

systems (Bernard et al. 2010).  

 More than 150 HPV types have been described (Papillomavirus Episteme (PaVE); 

http://�pave.niaid.nih.gov/#home). Infections with high risk types of HPVs have the 

potential to cause cancerous lesions, whereas infections with low risk types are associated 

with causing benign lesions such as warts (Doorbar et al. 2012). The aetiological 

association between HPV and cancer was first elucidated by Dr. Harold zur Hausen and 

colleagues during the 1980s, when viral DNA was isolated from patient cervical tumour 

biopsies (Dürst et al. 1983) and from cervical carcinoma derived cell lines (e.g. HeLa) 

(Boshart et al. 1984). It is now known that virtually all cases of cervical cancer result 

from persistent infection by a high-risk HPV (Crow 2012). HPV16, belonging to the 
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species Alpha papillomavirus-9, is the most common high-risk type and is responsible for 

54.4% of HPV related cervical cancers (Crow 2012). Hence, it is the focus of the 

following study. Additionally, high-risk HPVs have been implicated in 90% of anogenital 

cancers (Daling et al. 2004, Crow 2012, Forman et al. 2012) and also have an aetiological 

association with head and neck cancers (Crow 2012, Forman et al. 2012)  as well as non-

melanoma skin cancers (zur Hausen 1996). 

 Although vaccination against HPV types 16 and 18 is currently available 

(Gardasil® and Cervarix®) as well as cervical cancer screening via the Papanicolaou 

(Pap) test, HPV-related cancer still remains prevalent in populations with reduced access 

to these resources due to financial, cultural and geographical limitations (WHO 2010, 

Forman et al. 2012). This is a particularly relevant issue for members of the local First 

Nations communities here in Northwestern Ontario (Zehbe et al. 2011), highlighting the 

importance of further research into more targeted, less invasive treatments.  

 1.2 The HPV16 Genome and Viral Life Cycle 

 The HPV16 genome (Figure 1) is 7905 base pairs (bp) long (NCBI Accession #: 

NC_001526.2; Kennedy et al. 1991) and is maintained episomally within infected host 

cells (Doorbar 2005). It consists of a long control region (LCR) and encodes six early and 

two late expressed proteins (E1, E2, E4, E5, E6, E7, L1, and L2). The late proteins, L1 

and L2, are expressed in the upper layers of the infected epithelium and compose the viral 

capsid (Doorbar 2005). The early proteins, E1, E2, E4, E5, E6, and E7, are mainly 

expressed in the lower and mid epithelial layers (Doorbar et al. 2012). The LCR region 

contains binding sites for cellular transcriptions factors as well as for the E1 and E2 

proteins which initiate viral replication, control viral gene expression and help maintain 
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the virus episomally (Doorbar et al. 2012). The E4 and E5 proteins indirectly aid viral 

genome amplification, although it has been suggested that E4 may additionally play a 

role in facilitating viral particle release by weakening the keratin integrity of cells in the 

upper epithelial layer (Doorbar 2005, Doorbar et al. 2012). The E7 protein is most well-

known for its ability to bind to and inactivate the retinoblastoma protein (pRb), leading to 

the release of the transcription factor E2F which causes entry into the S phase of the cell 

cycle and proliferation in the absence of normal growth factors (Klingelhutz and Roman 

2012) (Figure 2). However, the key oncoprotein produced by the virus is E6. 
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Figure 1. The HPV16 genome. A diagrammatic representation of the HPV16 genome 

demonstrating the location of the Long Control Region (LCR), the six early genes (E1, E2, E4, 

E5, E6 and E7), the two late genes (L1 and L2), the early (PE) and late (PL) promoters, and the 

early (PAE) and late (PAL) polyadenylation sites. Image taken from Doorbar et al. 2012 
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 E6 is responsible for immortalizing and maintaining the malignant phenotype of 

infected cells as well as for aiding viral persistence through abrogation of the host’s 

innate immune response (Figure 2) (as reviewed in Klingelhutz and Roman 2012). For 

example, the E6 protein, together with the ubiquitin ligase E6AP, binds to the tumour 

suppressor p53 protein leading to its ubiquitin-mediated degradation in the proteasome 

(Scheffner et al. 1993). In addition, E6 binds to the p300/CBP complex, preventing the 

acetylation of p53 and repressing its function in an E6AP independent manner (Patel et 

al. 1999, Zimmermann et al. 1999). This loss of p53 prevents the cell from entering 

apoptosis following DNA damage, allowing the accumulation of further potentially 

carcinogenic mutations. E6 also increases hTERT expression, the catalytic subunit of 

telomerase, which replenishes telomeres, protecting the chromosomes from damage 

during cell division and allowing the cells to become immortal (Veldman et al. 2003, 

Gewin et al. 2004, Katzenellenbogen et al. 2007, Sekaric et al. 2008). Cellular 

transformation to a malignant phenotype is facilitated by the ability of E6 to bind to and 

degrade PDZ domain containing proteins involved in cell-to-cell interactions, cell 

signaling and cell polarity, including  MAGI-1 (Kranjec and Banks 2011), MAGI-2, 

MAGI-3 (Thomas et al. 2002), hScribble (Nakagawa and Huibregtse 2000), and hDlg 

(Kiyono et al. 1997, Gardiol et al. 1999). E6 aids in viral persistence through down 

regulation of the Type I interferons (IFN) �, �, (Ronco et al. 1998, Nees et al. 2001) and � 

(Rincon-Orozco et al. 2009, DeCarlo et al. 2010, Reiser et al. 2011) as well as the Type II 

interferon, IFN � (de Gruijl et al. 1999). A recent study by Niccoli et al. (2012) 

demonstrated that E6 could immortalize and malignantly transform keratinocytes in the 

absence of E7, further highlighting its role in the development of precancerous lesions. 
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Figure 2. Cellular processes affected by HPV16 E6 and E7. A diagrammatic representation of 

the progression from HPV infection to cervical cancer, together with an overview of the 

accompanying cellular processes that are affected by the HPV16 E6 and E7 oncoproteins. Image 

taken from http://www.ncc.go.jp/en/nccri/divisions/10vir/10vir01.html. 
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 HPV particles gain access to basal keratinocytes through microabrasions in the 

epithelium (Figure 3). Resulting from the actions of the above described viral proteins 

(particularly E6 and E7) infected keratinocytes abnormally continue proliferating in the 

suprabasal epithelial layers as viral replication occurs. Viral particles are released with 

the shedding of differentiated keratinocytes. The majority of HPV infections are cleared 

by the host’s immune system (zur Hausen 2002). However, over the course of a persistent 

infection, the viral genome can become disrupted and integrated into the host genome. If 

disruption occurs in the E2 gene, E6 and E7 expression become subsequently upregulated 

and progression to high grade cervical intraepithelial neoplasia (CIN) or an invasive 

carcinoma can occur (Woodman 2007). 
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Figure 3. The HPV16 life cycle. An illustration demonstrating the progression from infection to 

cervical cancer. Most infections are eventually cleared by the host immune system. However, 

with persistent infection and integration of the virus into the host genome, the resulting 

upregulation of E6 and E7 expression can lead to cancer. Image taken from The 2008 Nobel Prize 

in Physiology or Medicine - Illustrated Presentation. 
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1.3 Current Treatments 

 Cervical intraepithelial neoplasias (CIN) are lesions of the cervix which develop 

following infection with the virus. These lesions are characterized by the presence of 

cells of a basal phenotype and abnormal proliferation persisting into the mid and upper 

layers of the epithelium, as well as disruption of the epithelium’s normal stratified 

cytoplasmic differentiation pattern (Buckley et al. 1982, Woodman 2007). CIN are 

divided into low- to high-grade categories ranging from CIN I-CIN III (also known as 

carcinoma in situ) based on the neoplastic characteristics of the cells observed and the 

proportion (less than 1/3, 1/3-2/3, or greater than 2/3) of the epithelial layer involved 

(Buckley et al. 1982).    

 CINs are precursor lesions which can eventually progress to invasive carcinoma. 

However, the majority of these lower grade lesions will eventually be cleared by the host 

immune system (zur Hausen, 2002), leading care providers to favour an initial “watch 

and wait” approach (Singhania et al. 2012 ) where the patient is closely monitored with 

more frequent testing for several years following initial detection. However, this can 

cause considerable anxiety for the patient. If the infection is not cleared and the CIN 

progresses to a higher grade lesion, the affected area can be physically removed through a 

variety of methods including cryotherapy, laser ablation, or the loop electrosurgical 

excision procedure (LEEP), all of which are invasive and uncomfortable (Stern et al. 

2012). The current standard of care for invasive cervical carcinoma is cisplatin 

chemotherapy combined with radiation therapy, which non-selectively destroys both 

healthy and cancerous cells (Stern et al. 2012), and may also require a hysterectomy 

including removal of the cervix. This results in unwanted side effects including nausea, 
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vomiting, as well as organ toxicity and has stark implications for women of a child 

bearing age. 

1.4 HPV16 Targeted Treatments 

1.4.1 Targeting HPV16 E6 

 Treatments capable of targeting the oncoproteins produced by HPV16 could 

potentially reverse the malignant phenotype of affected keratinocytes while sparing 

healthy cells. Since E6 is the main protein responsible for immortalization and 

maintenance of the malignant phenotype (Singhania et al. 2012), molecules capable of 

selectively blocking E6 expression are of particular interest to research. 

 E6 expression can be blocked at both the transcript and protein levels. Although 

E6 can be found within the cytoplasm of cells, the majority of this protein is located 

within the nucleus (Jackson et al. 2012) making it difficult to directly block using 

molecules, such as monoclonal antibodies, which are too large to passively diffuse into 

the nucleus (Pante et al. 2002, Togtema et al. 2012). Other molecules, capable of 

selectively targeting and degrading E6 mRNA and which only need to reach the 

perinuclear region of the cytoplasm, such as small interfering RNA (siRNA), are a more 

feasible, effective alternative. 

1.4.2 RNA Interference (RNAi) 

 RNA interference (RNAi), first described by Fire et al. in 1998, is a mechanism 

by which plants and invertebrates are able to defend against viral infections (Figure 4). 

During various intermediate stages of replication for both RNA and DNA viruses, 

double-stranded RNAs (dsRNAs) can be formed (as reviewed in Voinnet 2005). These 

dsRNAs are cleaved into smaller fragments approximately 21-23 nucleotides in length, 
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known as small interfering RNAs (siRNAs), by the Dicer protein and the siRNAs then 

become incorporated into a group of proteins within the cell known as the RNA induced 

silencing complex (RISC) (Pecot et al. 2011). The siRNA is unwound, the sense 

(passenger) strand is removed, and the antisense (guide strand) binds through complete 

base pair complementarity to the corresponding viral mRNA (Pecot et al. 2011). 

Argonaute 2, an endonuclease contained within the RISC, then cleaves this transcript 

(Meister et al. 2004), preventing the translation of the viral protein. There has been 

considerable debate regarding whether RNAi still occurs as a natural response to viral 

infections in mammals (Voinnet 2005), however, mammalian cells are still able to 

respond to synthetically generated and transfected siRNAs, resulting in selective 

transcript degradation by the RISC (Elbashir et al. 2001) and making it a powerful 

potential therapeutic tool.  
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Figure 4. The mechanism of RNAi. Long dsRNA enters the cell as a product of a viral infection 

(top right) or expressed as shRNA from a vector (top centre) and is cleaved by Dicer into smaller 

fragments ~21-23 nucleotides long (siRNA). Alternatively, synthetic siRNAs can be transfected 

into the cell (top left), bypassing the need for Dicer cleavage. The siRNA is loaded into the RISC. 

The sense strand is discarded and the antisense strand guides the RISC to the target transcript, 

binding to it. The target transcript is then cleaved by the Argonaute 2 protein within the RISC. 

Image taken from Singhania et al. 2012. 
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1.4.3 HPV16 E6 siRNA 

 Following the discovery of RNAi, several studies emerged in the early 2000’s 

investigating the use of synthetic siRNAs or vector expressed short-hairpin RNAs 

(shRNAs) to silence HPV16 E6 expression (as reviewed in Singhania et al. 2012). The 

curated database of experimentally validated siRNA/shRNA, VIRsiRNAdb (Thakur et al. 

2012 and references therein), indicates that, to date, approximately 33 sequences 

targeting HPV16 E6 or E6/E7 expression have been developed and these sequences have 

had varying levels of success, depending on their target site on the mRNA, doses 

employed, and transfection strategies. For example, HPV16 E6 mRNA is bicistronic, 

sharing one transcript together with E7 (Smotkin et al. 1989). In addition, there are three 

splice variants of the transcript, E6-E7 mRNA, E6*I-E7 mRNA, and E6*II-E7 mRNA, 

where E6* indicates a portion of the E6 open reading frame (ORF) has been spliced out 

(Figure 5) (Smotkin et al. 1989). E6 can only be translated from the full-length 

transcript, whereas E7 can be translated from all three (Schneider-Gädicke and Schwarz 

1986, Smotkin et al. 1989, Vaeteewoottacharn et al. 2005). To effectively suppress E6 

while maintaining a minimal effect on E7, some groups have implemented siRNAs 

targeting the segment of E6 not present in the truncated transcripts (Butz et al. 2003, 

Courtête et al. 2007). Targeting this splice site (nt377-395), Butz et al. 2003 saw a 

restoration of p53 protein levels and the induction of apoptosis, 48 hrs following 

chemical transfection with approximately 120 nM siRNA. However, 48 hrs following 

chemical transfection with 10 nM of a similar siRNA sequence (nt386-404), Courtête et 

al. 2007 were only able to show a decrease in cellular proliferation accompanying p53 

restoration. The study completed by Jiang and Milner in 2002 was one of the first to 
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show successful knockdown of HPV16 E6 mRNA, which lasted for 4 days following 

transfection, and restoration of cellular processes previously abrogated by the virus.  

Their siRNA sequence (nt224-242) targets the region just upstream and leading into the 

beginning of the splice site. A subsequent study then investigated the effects of targeting 

different locations along the E6 transcript using siRNAs designed with the same selection 

criteria and showed some siRNA sequences resulted in a higher E6 knockdown efficacy 

than others (Yamato et al. 2008). The authors suggested this may reflect easier 

accessibility of the RISC to certain target areas of the transcript than others. One of the 

most recent studies investigated HPV16 E6/E7 siRNA containing the motif “UXUCU” 

which was also capable of intentionally activating an immune response through the 

stimulation of TLR7 and subsequent Type I interferon production to aid in the therapeutic 

effect (Khairuddin et al. 2012). 
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Figure 5. HPV16 E6/E7 mRNA. The HPV16 E6/E7 bicistronic transcript as well as its three 

splice variants. E6*I and E6*II indicate truncated E6. E6 is translated only from the full length 

transcript whereas E7 is translated from all three. Image modified from Zhou et al. 2012. 
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1.5 Modeling of mRNA Secondary and Tertiary Structures 

 Studies targeting insulin-like growth factor receptor (IGF1R) (Bohula et al. 2003), 

intercellular adhesion molecule-1 (ICAM-1)/CD54 (Kretschmer-Kazemi et al. 2003), and 

the genes of hepatitis C (HCV), influenza A, as well as human immunodeficiency virus 

(HIV) (Tan et al. 2012) have also demonstrated the ability of certain mRNA secondary 

structures to impair shRNA/siRNA knockdown efficiency. To aid in the prediction of 

target transcript areas which would be most accessible to the RISC, in silico models of 

mRNA secondary and tertiary structures can be constructed. Secondary structures such as 

helices, loops, bulges, junctions, and pseudoknots (Cristofari and Darlix 2002) mainly 

resulting from the canonical Watson-Crick base pairings of A-U, C-G, and G-U 

(Mathews 2006, Rivas 2013) are formed as RNA folds back on itself. These structures 

can be predicted using a variety of software. Some programs, including RNAfold 

(belonging to the well-known Vienna RNA package) (Hofacker 2003) and mfold (Zuker 

2003), predict the structure with the lowest minimum free energy. Others rely on centroid 

estimators, such as the program CentroidFold (Sato et al. 2009). In the study by 

Kretschmer-Kazemi et al. 2003, mfold was used to predict the secondary structure of the 

ICAM-1 mRNA. siRNAs targeting regions of the transcript predicted to have strong base 

pairing had decreased knockdown efficacy compared to siRNAs targeting regions of the 

transcript predicted to be open loops, further demonstrating the accuracy and usefulness 

of these in silico approaches. 

 mRNA further folds into a tertiary structure  influenced by non-canonical pairings 

between the nucleotides (e.g. hydrogen bonds involving the sugar) (Rivas 2013). 

Programs for modeling mRNA tertiary structures are less well-established than those for 
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determining protein tertiary structures, due to the difficulty in collecting experimental 

data to base them on. RNA is hard to crystallize (Kauffmann et al. 2009) and is 

challenging to purify in large amounts (Keel et al. 2007), complicating the use of x-ray 

crystallography. In silico programs including FARNA (belonging to the well-known 

Rosetta software package) (Das and Baker 2007) and iFoldRNA (Sharma et al. 2008) can 

be used to make initial predictions about RNA 3D structure. Force-fields as well as 

molecular dynamics parameters, including temperature, pH, and ions present in solution, 

can then be applied to simulate the stable minimum free energy of the RNA tertiary 

structure in the cellular environment, further optimizing the initially predicted structures. 

The outcome will ultimately be affected based on the inputs for these parameters which 

are chosen by the user (Shapiro et al. 2007). 

1.6 Research Rationale 

 When considering treatment with an E6 siRNA, it is important to consider that the 

HPV16 E6 gene is polymorphic (Yamada et al. 1995, Zehbe et al. 1998). European 

Prototype (EP E6) and Asian-American (AA E6) are two common E6 variants. The AA 

E6 variant differs by six single nucleotide polymorphisms (SNPs) from EP E6 (Yamada 

et al. 1995) (Figure 6). Three of the SNPs (nt286 T>A, nt289 A>G, and nt532 A>G) are 

silent. The other three SNPs (nt145 G>T, nt335 C>T, and nt350 T>G) cause the amino 

acid substitutions glutamine-14-histidine, histidine-78-tyrosine and leucine-83-valine 

(Q14H, H78Y, and L83V) respectively. The variant SNPs can alter mRNA secondary 

structure (Shen et al. 1999), potentially affecting mRNA target accessibility and siRNA 

efficiency, and are mainly located in the E6 transcript splice site, a popular siRNA target.  
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 In addition, epidemiological data indicate that the AA E6 variant is found more 

frequently in cervical cancer than EP E6 (Berumen et al 2001). Previous studies by our 

group have demonstrated that AA E6 is superior in immortalization and transformation 

abilities (Richard et al. 2010, Niccoli et al. 2012) and, in the context of the full viral 

genome, is superior at initiating early carcinogenesis in 3D raft cultures (Robert Jackson, 

Thunder Bay Regional Research Institute; personal communication). These differential 

functional abilities led our group to speculate that downstream cellular process may not 

be affected in the same way by EP and AA E6. 

 Here exists a knowledge gap. No previous study has quantified in detail the 

impact the variant E6 mRNA structures may have on siRNA knockdown efficacy and 

compared the response of subsequent downstream cellular pathways in each variant. 

Especially in the context of therapeutics, it is important to understand the difference in 

cellular responses when the same E6 siRNA is applied to each of the variants and may 

potentially highlight the need for different doses or sequences depending on whether the 

patient is infected with EP or AA E6. 
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Figure 6. Single nucleotide polymorphisms of HPV16 AA E6. AA E6 differs from EP E6 by 

six SNPs. Three SNPs (nt286 T>A, nt289 A>G and nt532 A>G), are silent (green). Three SNPs, 

(nt145 G>T, nt335 C>T, and nt350 T>G), lead to the amino acid substitutions Q14H, H78Y and 

L83V respectively (red). 
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1.7 Hypotheses 

 Therefore, based on the fact that AA E6 differs from EP E6 by these six SNPs, it 

was hypothesized that the E6 variant mRNA structures would be notably different from 

each other and that an E6 siRNA, despite targeting regions of the transcript with no base 

pair mismatches between the variants, would have significantly different silencing 

efficacies for cells containing EP versus AA E6. Due to the functional differences 

observed between EP and AA, it was also hypothesized that, once equal E6 knockdown 

of both variants was achieved, restoration of downstream cellular responses affected by 

E6 would be significantly different for each variant. 

1.8 Research Aims 

1. Create in silico models for the mRNA secondary and tertiary structures of both 

EP and AA E6. 

2. Use primary human foreskin keratinocytes (PHFKs), which have been transduced 

with either the EP or AA variant of HPV16 E6 as an in vitro model. 

a. Chemically transfect the cells with an E6 siRNA which has no base pair 

mismatches between the variants. This siRNA will be chosen from 

existing, experimentally validated sequences to target an area predicted to 

be structurally different between EP and AA E6. 

b. Characterize E6 mRNA knockdown as well as the restoration of 

downstream cellular processes affected by E6 for each variant. Since 

hTERT expression is key for cellular immortalization and the abrogation 

of IFNs �, �, and � are important for viral evasion of the innate immune 

system, they are of particular interest to our group from a therapeutic 
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perspective. E6 protein levels, as well as those of the tumour suppressor 

protein p53, important for eliciting an apoptotic response, will also be 

quantified. 

2 MATERIALS AND METHODS 

2.1 Modeling of E6 mRNA Secondary and Tertiary Structures 

 The mRNA secondary structures for the EP and AA E6 variants was determined 

using the program CentroidFold (Sato et al. 2009). mRNA sequences were entered into 

the online webserver application (www.ncrna.org/centroidfold/). The default settings for 

model (CONTRAfold) and gamma (2^2) were employed. 

 The tertiary structure of the mRNAs was initially predicted using the program 

FARNA (Das and Baker 2007) (available at www.rosettacommons.org/software/). An 

energy term was added to favour the formation of the base-pairs predicted by 

CentroidFold for each E6 variant independently. Twenty predicted RNA structures were 

submitted to simulated annealing minimization until the energy converged under the 

Yamber3 force field as implemented in the program Yasara (www.yasara.org). The 

minimization protocol is described in detail elsewhere (Krieger et al. 2004). Charges 

were adjusted to reflect a pH of 7 and the final temperature for molecular dynamics was 

set to 37˚C (310K) to simulate physiological conditions. Each RNA molecule was placed 

in a cell under periodic boundary conditions. Lennard-Jones forces and the direct space 

portion of the electrostatic forces were calculated using a cut-off of 7.86 Å. Electrostatic 

interactions were calculated using the Particle Mesh Ewald method as implemented in 

Yasara (www.yasara.org). An implicit solvation model (PBS) was used to report total 

potential and solvation energies. The most energetically favored resulting structure (i.e. 
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the structure with the most negative free energy) was then selected for each E6 mRNA 

variant. The 3D images were rendered using the open source program Jmol (Herráez 

2006) (available at www.jmol.org/). 

2.2 Cell Culture 

2.2.1 Cell Lines and Routine Maintenance 

 Primary human foreskin keratinocytes (PHFKs; Cell Applications Inc, San Diego 

CA, USA, Cat. # 102-05n), retrovirally transduced with either the EP or AA variant of 

HPV16 E6 carrying a hemagglutinin (HA) tag on the C terminus, as previously described 

by Niccoli et al. 2012, were used for in vitro studies. All cells were greater than passage 

30, ensuring they were well past any initial immortalization crises. Untransduced PHFKs 

were used as a control. 

 The cells were cultured in Serum-Free Keratinocyte Growth Medium (Cell 

Applications Inc., Cat. # 131-500) and were maintained at 37°C in a humidified incubator 

with 5% carbon dioxide gas. Culture medium was changed every second to third day. 

Cells were passaged when they reached 70-80% confluency, at which point they were 

incubated with trypsin (Fisher Scientific, Mississauga, ON, Canada, Cat. # SH3023602) 

until they detached. The trypsin was neutralized with Neutralizing Solution (Cell 

Applications Inc., Cat. # 080-100). The Neutralizing Solution was removed by 

centrifugation at 25 x g (GS-6KR Centrifuge; Beckman, Mississauga, ON, Canada) for 5 

minutes, the supernatant was aspirated from the pellet, and the pellet was then 

resuspended in fresh medium.  

 Cells were routinely screened for Mycoplasma contamination at every second 

passage. The cells were grown on sterile glass coverslips (Fisher Scientific, Cat. # 12-
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541A) for 2-3 days and then fixed using 3 parts methanol (Fisher Scientific, Cat. # 

A4544) and 1 part glacial acetic acid (Sigma-Aldrich-Aldrich, Oakville, ON, Canada, 

Cat. # 695092-2.5L) for 15 minutes. The coverslips were mounted using Vectashield 

medium with DAPI (Vector Laboratories, Burlington, ON, Canada, Cat. # H-1200), to 

stain the DNA fluorescent blue. The slides were examined using an inverted Zeiss 

Axiovert 200 microscope (Carl Zeiss Canada Ltd., North York, ON, Canada) at 400x 

magnification for the presence of Mycoplasma DNA in the cytoplasm of the cells. No 

issues with Mycoplasma contamination were noted throughout the study. 

2.2.2 Cryogenic Cell Storage 

 To preserve stocks of cells, freezebacks were made. Neutralizing Solution was 

removed from trypsinized cells by centrifugation at 25 x g (GS-6KR Centrifuge; 

Beckman) for 5 minutes followed by aspiration of the supernatant. The cell pellet was 

then resuspended in a solution consisting of 90% culture medium and 10% dimethyl 

sulfoxide cryopreservative (DMSO; Sigma-Aldrich-Aldrich, Cat. # 34869). Aliquots of 1 

mL were placed in Nalgene 1.5 mL cryogenic vials (Fisher, Cat. # 03-337-7Y). The 

cryogenic vials were frozen in a Nalgene controlled rate freezing container (Fisher, Cat. # 

5100-0001) at -80 °C and were then transferred into liquid nitrogen for long term storage. 

2.2.3 Thawing Cells 

 To bring up cells from cryogenic storage, the cryogenic vial was removed from 

the liquid nitrogen and immediately thawed in a 37°C bath. The contents of the cryogenic 

vial were added directly to 14 mL of culture medium, to dilute the concentration of 

DMSO to non-toxic levels for the cells. The cells were added to the growth flask(s) and 
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placed into the incubator. The culture medium was changed the following morning after 

the cells had adhered, to remove any traces of DMSO. 

2.3 DNA Sequencing 

2.3.1 Cell Preparation 

 Cells were cultured in a T75 (75 cm2) flask (Fisher, Cat. # 1368065) and were 

trypsinized from the flask as described above. Following removal of the Neutralizing 

Solution, the cell pellet was resuspended in 2 mL DPBS (Fisher, Cat. # SH3002802) and 

cells were counted using a TC10™ Automated Cell Counter (BioRad, Mississauga, ON, 

Canada). The suspension was centrifuged for 5 min at 25 x g (GS-6KR Centrifuge; 

Beckman) and the DPBS was removed from the cell pellet. The dry cell pellet was stored 

at -80 °C until DNA extraction. 

2.3.2 DNA Extraction and PCR 

 DNA was extracted from the cells using the DNeasy® Blood and Tissue Kit 

(Qiagen, Toronto, ON, Canada, Cat. # 69504). The final DNA elution was done using 2 x 

100 µL of Buffer AE. DNA was quantified using the Synergy 4 spectrophotometer 

(BioTek, Winooski, VT, USA) and Take3 micro-volume plate, with the elution buffer as 

a blank sample. Absorbance measurements at wavelengths of 260 and 280 nm were 

taken, which provided the purity of the DNA sample (A260/280) and the concentration in 

ng/µL. 

 To amplify the HPV16 E6 DNA, PCR was performed. Twenty-five µL reactions 

were mixed, consisting of 100 ng template DNA, 1x PCR Buffer, 200 µM dNTPs, 2 U 

Taq Polymerase, 1 mM MgCl2, 0.5 µM E6 forward primer (5’-

CAATGTTTCAGGACCCACA-3’), 0.5 µM E6 reverse primer 
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(5’GTTTCTCTACGTGTTCTTGA-3’), and nuclease-free dH2O to bring the mixture up 

to the final volume. Control reactions, which contained nuclease-free dH2O instead of 

template DNA were also mixed. The reactions were run in a 2720 Thermal Cycler 

(Applied Biosystems, Burlington, ON, Canada) using the following parameters: 40 cycles 

of 1 min 94 °C denaturation, 1 min 56 °C annealing and 2 min of 72 °C extension. The 

final extension was for 7 min at 72 °C followed by an infinite hold at 4 °C. 

2.3.3 Agarose Gel Electrophoresis and Post-PCR Purification 

 To visualize the 448 bp E6 amplicon, agarose gel electrophoresis was utilized. A 

1.5% agarose gel (PCR agarose; BioRad, Cat. # 161-3104) was mixed with 1X 

Tris/Borate/EDTA (TBE) buffer (100 mL 10X TBE and 900 mL dH2O) and 0.5 µg/mL 

of ethidium bromide (Invitrogen, Burlington, ON, Canada, Cat # 15585-011). The 10X 

TBE buffer consisted of 108 g Tris Base (Sigma-Aldrich, Cat. # T1503-1KG), 55 g boric 

acid (Sigma-Aldrich, Cat. # B7901-500G), 40 mL 0.5 M ethylenediaminetetraacetic acid 

(EDTA)  (Fisher, Cat. # BP120-1) dissolved in 1 L dH2O and autoclaved for 20 minutes. 

The gel was cast in a mini-gel apparatus and allowed to polymerize for 45 min. Two µL 

of 6x loading dye (Fermentas, Mississauga, ON, Canada, Cat. #R0611) was mixed with 

10 µL of each sample before loading onto the gel. Ten µL of a 100 bp DNA ladder (New 

England BioLabs, Whitby, ON, Canada, Cat. # N0467), as well as positive and negative 

control samples were also loaded. The gel was run at 100 V for 1 hour and then imaged 

with 365 nm transillumination using a UV imager (Biospectrum 410 Imaging System; 

UVP, Upland, CA, USA). Images were captured using a 0.1s exposure. 

 The post-PCR products were then purified to remove primer dimers and any 

degraded DNA. Given the presence of a non-specific band at ~800 bp in the AA E6 
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sample which could not be diminished despite attempts to optimize the PCR parameters, 

the AA E6 band was excised from the gel using a scalpel and the DNA purified using the 

QIAquick Gel Extraction Kit (Qiagen, Cat. # 28704). For EP E6, the remaining PCR 

amplified DNA sample not run on the above gel was purified using the QIAquick PCR 

Purification Kit (Qiagen, Cat. # 28104). Both samples were eluted in 50 µL nuclease-free 

dH2O (pH 7.5). Due to some sample loss during the purification process, the DNA was 

re-quantified as described above. Samples of 20 ng each were run on a 1.5% agarose gel 

as described above to ensure removal of the non-specific amplicon and primer dimers had 

occurred. The purified DNA samples were stored at -20 °C until sequencing. 

2.3.4 E6 Variant Sequencing 

 The DNA samples were diluted to a concentration of 2 ng/µL and the above 

described E6 forward and reverse primers to a concentration of 10 µM. A 10 µL volume 

of each sample along with 10 µL of both the forward and reverse primers were then sent 

to the Paleo-DNA Laboratory at Lakehead University, Thunder Bay, ON, Canada for 

Sanger sequencing using dye terminator chemistry (3130xl Genetic Analyzer; Applied 

Biosystems). Both forward and reverse reads were obtained for each sample. The reads 

were combined together to create a consensus sequence using BioEdit software (Hall 

1999). The DNA sequence trace chromatograms were manually scanned for base miscalls 

and to clarify undetermined bases (indicated by an “N” in the sequence). The consensus 

sequences for each variant were then compared to the original sequences transduced into 

the cells (Niccoli et al. 2012) for confirmation. 
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2.4 siRNA 

 siRNA duplexes were custom synthesized by Sigma-Aldrich-Aldrich and were 

reconstituted in nuclease-free dH2O to a stock concentration of 2 µM. An E6 siRNA 

containing no base pair mismatches with either variant but targeting a region of the 

transcript predicted in silico to be structurally different between EP and AA E6 was 

chosen from existing, experimentally validated E6 siRNA sequences. This E6 siRNA, 

described by Courtête et al. 2007, would target the splice site of the E6 transcript, leaving 

E7 expression intact in cells containing the entire viral genome. A scrambled version of 

the E6 siRNA, having no target transcript within the cell, was used as a negative 

treatment control. See Table 1 for the sense and antisense sequences. 
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 Table 1. siRNA sequences used in this study. 

 

Sequence Sense Strand Anti-Sense Strand 

E6 siRNA 

(nt386-404) 
5’ CCGUUGUGUGAUUUGUUAA[dT][dT] 3’ 5' UUAACAAAUCACACAACGG[dT][dT] 3' 

Scrambled 

siRNA 
5’ UAUGUGCUAUGUAUUAUUG[dT][dT] 3’ 5’ CAAUAAUACAUAGCACAUA[dT][dT] 3’ 
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2.5 Relative mRNA Expression 

2.5.1 Chemical Transfection with siRNA 

 Twenty-four hours before transfection with siRNA, EP E6, AA E6, as well as 

untransduced PHFKs were seeded into 6-well plates (Fisher Scientific, Cat. # 087721B) 

at a concentration of 200 000 cells/well for the EP E6 and AA E6 cells and 150 000 

cells/well for the untransduced PHFKs. The following day when the cells had reached a 

starting confluency of ~50%, the culture medium was aspirated and replaced with 3 mL 

of fresh culture medium. Transfection complexes of 600 µL were mixed for each well. 

To give a final concentration of 10 nM siRNA in the well, each complex consisted of 18 

µL HiPerFect chemical transfection reagent (a mixture of cationic and neutral lipids) 

(Qiagen, Cat. # 301705), 18 µL 2 µM E6 or scrambled siRNA stock, and 564 µL culture 

medium. To give a final concentration of 25 nM siRNA in the well, each complex 

consisted of 18 µL HiPerFect chemical transfection reagent, 45 µL 2 µM E6 or 

scrambled siRNA stock, and  537 µL culture medium. The complexes were mixed by 

vortexing, incubated at room temperature for 10 minutes and then added drop-wise to the 

wells. The plates were gently swirled to ensure even distribution of the complexes and 

were returned to the incubator for forty-eight hours. Untransfected cells (i.e. treated with 

medium only) were used to determine baseline E6 mRNA levels. All transfections were 

repeated in biological triplicate (i.e. 3 wells). 

2.5.2 RNA Extraction 

 Forty-eight hours following transfection, the cells were harvested from the 6-well 

plates using trypsin as described above and any remaining cells were rinsed from the 

wells using 1 mL DPBS (Fisher, Cat. # SH3002802). Following removal of the 
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Neutralizing Solution, each cell pellet was resuspended in 2 mL DPBS (Fisher, Cat. # 

SH3002802) and the number of cells remaining in each well were counted using a 

TC10™ Automated Cell Counter (BioRad). Each sample was centrifuged for 5 min at 25 

x g (GS-6KR Centrifuge; Beckman) and the DPBS was removed from each cell pellet. 

The dry cell pellet was frozen at -80 °C until RNA extraction. 

 RNA extraction was performed using the Arctus PicoPure RNA Isolation Kit 

(Applied Biosystems, Cat. # KIT0204). The optional DNase treatment (RNase-free 

DNase Set; Qiagen, Cat. # 79254) step was included and all samples were eluted in 30 

µL of elution buffer. All samples were stored at -80 °C until conversion to cDNA. 

 The quantity of the RNA in ng/µL as well as its integrity, as assessed by the 

28S:18S ratio, was determined using the Experion Automated Electrophoresis System 

(BioRad) and the StdSens Analysis chip kit (BioRad, Cat. # 700-7111). All samples with 

an RNA quality indicator (RQI) value of less than 7 were flagged as being potentially 

degraded. 

2.5.3 Conversion of RNA to cDNA 

 Each RNA sample was reverse transcribed into complementary DNA (cDNA) 

using the High Capacity cDNA Archive Kit (Applied Biosystems, Cat. # 4322171) in a 

60 µL reaction. The volume of eluted RNA was brought up to 30 µL using nuclease-free 

dH2O and added to 30 µL of 2X master mix. The 2X master mix contained 2X RT 

Buffer, 2X random primers, 2X dNTPs, multiscribe enzyme, and nuclease-free dH2O to 

raise the final volume to the correct amount. The reactions were run in a 2720 Thermal 

Cycler (Applied Biosystems) using the following parameters: 10 min 25 °C, 120 min 37 
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°C, 5 min 85 °C and an infinite hold at 4 °C. All cDNA samples were stored at -20 °C 

until real-time reverse transcription polymerase chain reaction (RT-qPCR) analysis. 

2.5.4 Real-Time Reverse Transcription Polymerase Chain Reaction Analysis of 

Relative mRNA Expression 

 RT-qPCR analysis (7500 Real-Time PCR System; Applied Biosystems) was used 

to determine the change in the relative expression of HPV16 E6, hTERT, IFN �, IFN �, 

and IFN � mRNA in response to treatment of the cells with E6 or scrambled siRNA. 

Hypoxanthine phosphoribosyltransferase 1 (HPRT1) was used as the reference gene, as 

previous studies by our group have shown its expression to remain unchanged in 

response to HPV infection (DeCarlo et al. 2008). Reactions of 90 µL were mixed 

containing 45 µL of Taqman® Universal PCR Master Mix (Applied Biosystems, Cat. # 

4364338), 4.5 µL of 20X Taqman® Gene Expression Assay (Applied Biosystems, Table 

2), 150 ng cDNA, and nuclease-free dH2O to raise the final volume to the correct amount. 

Twenty-five µL of the reaction mixture was loaded into each of 3 wells on a MicroAmp® 

Optical 96-Well Reaction Plate (Applied Biosystems, Cat. # 4306737). Positive tumour 

controls and negative nuclease-free dH2O controls containing the HPRT1 Gene 

Expression Assay were run as technical controls on each plate as well. Cycle threshold 

(Ct) data was analyzed relative to HPRT1 and calibrated to cells treated with scrambled 

siRNA (2-��Ct; Livak and Schmittgen 2001). 
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           Table 2. RT-qPCR TaqMan® Gene Expression Assays used in this study. 

TaqMan® Gene Expression Assay Assay ID Number 

HPRT1 Hs99999909_m1 

HPV16 Full Length E6* AI0IW1V 

HPV16 Full Length AA E6* AIWR2XO 

IFN � 
Hs00277188_s1  

 

IFN � 
Hs00737883_m1  

 

IFN � 
Hs00174143_m1  

 

 *Custom designed assay. 
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2.6 Human Influenza Hemagglutinin (HA) Western Blot  

2.6.1 Chemical Transfection with siRNA 

 EP E6, AA E6, as well as untransduced PHFKs were grown in T25 (25 cm2) 

flasks (Fisher Scientific, Cat. # 101269) until they reached ~65% confluency. The culture 

medium was aspirated and replaced with 5 mL of fresh culture medium. Transfection 

complexes of 1 mL were mixed for each flask. To give a final concentration of 10 nM 

siRNA in the flask, each complex consisted of 30 µL HiPerFect chemical transfection 

reagent, 30 µL 2 µM E6 or scrambled siRNA stock, and 940 µL culture medium. To give 

a final concentration of 25 nM siRNA in the flask, each complex consisted of 30 µL 

HiPerFect chemical transfection reagent, 75 µL 2 µM E6 or scrambled siRNA stock, and  

895 µL culture medium. The complexes were mixed by vortexing, incubated at room 

temperature for 10 minutes and then added drop-wise to the flasks. The flasks were 

gently swirled to ensure even distribution of the complexes and were returned to the 

incubator for forty-eight hours.  

2.6.2 Protein Extraction 

 Forty-eight hours following transfection, the cells were harvested from the flasks 

using trypsin as described above. Following removal of the Neutralizing Solution, each 

cell pellet was resuspended in 4 mL DPBS (Fisher, Cat. # SH3002802). Each sample was 

centrifuged for 5 min at 25 x g (GS-6KR Centrifuge; Beckman) and the DPBS was 

removed from each cell pellet. Lysis buffer composed of 1 mL modified RIPA buffer 

(50mM Tris-HCl (pH 7.5), 5 mM EDTA, 150 mM sodium chloride (Fisher, Cat. # 

S2713), 1% Triton X-100 (Fisher, Cat. # BP151-100), 10 mM sodium fluoride (Fisher, 

Cat. # S299-100), and 20 mM �-mercaptoethanol (Sigma-Aldrich, Cat. # M6250-
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100ML)), 10 �L phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich, Cat. #  P7626), 

10 �L protease inhibitor cocktail (Sigma-Aldrich, Cat. # P8340), and 12 �L of activated 

sodium orthovanadate (Sigma-Aldrich, Cat. # S6508-50G) was mixed and chilled at 4 °C. 

Each fresh pellet was resuspended in 110 �L of the chilled lysis buffer and left on ice and 

in the 4 °C fridge for 20 minutes. The solutions were centrifuged for 1 minute at 14 000 

rpm in a microcentrifuge pre-chilled to 4 °C (Centrifuge 5415C; Eppendorf, Mississauga, 

ON, Canada) to remove cell debris and obtain the protein containing supernatant.  

 A Bradford assay was done to determine protein concentration. A 5 �L volume of 

each sample and 100 �L BioRad Protein Assay Dye Reagent Concentrate (BioRad, Cat. # 

500-0006) were mixed with 400 �L dH20. Various concentrations of bovine serum 

albumin (BSA) were used as the standards. The reactions were incubated on ice for 5 

minutes and then 300 �L of each mixture was transferred to a 96-well plate (Fisher, Cat. 

# 087722c) where the protein concentration was analyzed using a plate reader 

(PowerWave XS; BioTek). 

2.6.3 Gel Electrophoresis 

 SDS-PAGE gels were cast. A 15% separating gel was mixed first, containing 3.75 

mL 40% acrylamide (BioRad, Cat. # 161-0146), 2.5 mL 1.5 M Tris-HCl (pH 8.8), 100 

�L 10% sodium dodecyl sulphate (SDS) (Sigma-Aldrich, Cat. # L3771-100G), 3.6 mL 

dH2O, 10 �L tetramethylethylenediamine (TEMED) (Sigma-Aldrich, Cat. # T7024), and 

60 �L 10% ammonium persulfate (APS) (Sigma-Aldrich, Cat. # A9164). The separating 

gel was settled with isopropyl alcohol and allowed to polymerize for 15 minutes. The 

isopropyl alcohol was removed and then the 4% stacking gel, consisting of 0.5 mL 40% 

acrylamide, 1.26 mL 0.5 M Tris-HCl (pH 6.8), 3.18 mL dH2O, 10 �L TEMED, and 40 
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�L 10% APS was added on top. The comb was inserted and the stacking gel was allowed 

to polymerize for 30 minutes. 

 One hundred �g of protein was mixed with 6X SDS for each sample. All samples 

were brought up to the highest sample volume using 1X SDS. The SDS containing 

samples were heated at 95 °C for 5 minutes to denature the protein. The BioRad 

Prestained SDS-PAGE Low Range Standards (BioRad, Cat. # 161-0305) (heated for 2 

min) as well as the BioRad Precision Plus Protein WesternC Standards (BioRad, Cat. # 

161-0376) (not heated) were used for protein ladders. All samples and standards were 

centrifuged for 1 minute at 14 000 rpm (Centrifuge 5415C; Eppendorf) and loaded onto 

the gel. The gel was run in 1X running buffer (100 mL 10X running buffer and 900 mL 

dH20) at 100 V for 20 minutes until the samples reached the separating gel. The 10X 

running buffer consisted of 144 g glycine (Fisher, Cat. # BP381-5), 30.3 g Tris Base, and 

50 mL 10% SDS made up to 1L in dH20. The current was then turned up to 120 V and 

the gel was run from another 1 hour and 20 minutes, until the dye front ran just off the 

bottom of the gel. 

2.6.4 Transfer 

 Following the completion of the run, the proteins were transferred to PVDF 

membrane (Fisher, Cat. # PI88518) which had been activated by soaking in methanol 

(Fisher, Cat. # A4544) for 15 minutes. The transfer was done at 100 V for 1 hour in 

chilled 1X transfer buffer (100 mL 10X transfer buffer, 200 mL methanol and 700 mL 

dH20) with an ice pack and a stir bar in the container to keep the temperature cool. The 

10X transfer buffer consisted of 144 g glycine and 30.3 g Tris Base made up to 1 L in 

dH20. Following the transfer, the membrane was soaked in 1X TBS with 0.05% 
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TWEEN® 20 (Fisher, Cat. # 337-100) (TBST) for 10 minutes. The 10X TBS consisted 

of 30.3 g Tris Base and 87.6 g sodium chloride made up to 1 L in dH20 (pH 7.5). The 

membrane was then cut between the 25 and 37 kDa markers on the Precison Plus ladder 

and between the 29 and 36 kDa markers on the Low Range ladder allowing for actin (top 

half of membrane) and HA (bottom half of membrane) to be detected simultaneously. 

2.6.5 Actin and HA Detection 

 Both membrane halves were blocked with 5% milk powder in TBST for 1 hour at 

room temperature on a rocker. The top half of the membrane was then incubated with a 

goat polyclonal actin primary antibody (Santa Cruz, Dallas, TX, USA, Cat. # SC-1616) 

diluted 1:1000 in 5% milk powder. The bottom half of the membrane was incubated with 

a mouse monoclonal HA primary antibody (Abcam, Toronto, ON, Canada, Cat. # 

ab18181). The incubation was done by placing the membrane halves and antibody 

solutions in 50 mL tubes (Fisher, Cat. # 1443222) on a tube roller overnight at 4 °C. 

 The following morning, the membrane halves were rinsed once in TBST and then 

were washed 4 x 5 minutes in TBST on a rocker. The top half of the membrane was 

incubated with the StrepTactin-horseradish peroxidase (HRP) conjugate (BioRad, Cat. # 

161-0381) for the Precision Plus ladder and a donkey anti-goat+HRP secondary antibody 

(Jackson ImmunoResearch, West Grove, PA, USA, Cat. # 705-035-147) diluted 1:2000 

in 5% milk powder. The bottom half of the membrane was incubated with the 

StrepTactin-HRP conjugate for the Precision Plus ladder and a goat anti-mouse+HRP 

secondary antibody (Jackson ImmunoResearch, Cat. # 115-035-062) diluted 1:2000 in 

5% milk powder. The incubation was for 1 hour at room temperature on a rocker. The 
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membranes were then rinsed again in TBST and washed 4 x 5 minutes in TBST on a 

rocker. 

 Chemiluminescence was done using the Western Lightening®-ECL kit 

(PerkinElmer, Waltham, MA, USA, Cat. #NEL100001EA). One mL of each of the two 

solutions was mixed together and applied to each membrane half for 1 minute. The 

membrane halves were then directly imaged using the Biospectrum 410 Imaging System 

(UVP) with a 10 minute exposure for HA and a 2 minute exposure for actin.  

2.7 p53 Protein Detection Using Quantitative Immunofluorescence 

2.7.1 Chemical Transfection with siRNA 

 Twenty-four hours before transfection with siRNA, EP E6, AA E6, as well as 

untransduced PHFKs were seeded into 24-well plates (Fisher Scientific, Cat. # 087721) at 

a concentration of 50 000 cells/well. The following day when the cells had reached a 

starting confluency of ~50%, the culture medium was aspirated and replaced with 500 µL 

of fresh culture medium. Transfection complexes of 100 µL were mixed for each well. 

To give a final concentration of 10 nM siRNA in the well, each complex consisted of 3 

µL HiPerFect chemical transfection reagent, 3 µL 2 µM E6 or scrambled siRNA stock, 

and 194 µL culture medium. To give a final concentration of 25 nM siRNA in the well, 

each complex consisted of 3 µL HiPerFect chemical transfection reagent, 7.5 µL 2 µM 

E6 or scrambled siRNA stock, and  89.5 µL culture medium. The siRNA for this 

experiment possessed a carboxyfluorescein (6-FAM) label on the 5’ end of the sense 

strand, allowing for visual confirmation of transfection. Wells treated with the 

transfection reagent only or medium only were also included as controls. The complexes 

were mixed by vortexing, incubated at room temperature for 10 minutes and then added 
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drop-wise to the wells. The plates were gently swirled to ensure even distribution of the 

complexes and were returned to the incubator for forty-eight hours. All transfections 

were repeated in biological triplicate (i.e. 3 wells). 

2.7.2 Immunofluorescence Staining 

 Forty-eight hours following transfection, the culture medium was aspirated from 

the wells. The cells were rinsed once with DPBS and then fixed with 500 µL/well of 4% 

paraformaldehyde (PFA) (Fisher, Cat. # O4042500) in PBS for 10 minutes at room 

temperature. The cells were washed 3 x 5 minutes with PBS and the plates were stored at 

4 °C with the last wash remaining in the wells until staining. 

 The cells were permeabilized with 0.1% Triton X-100 in PBS for 5 minutes at 

room temperature and then rinsed once in PBS. Blocking was done with 1% BSA in PBS 

for 10 minutes at room temperature. A rabbit monoclonal p53 primary antibody (DAKO, 

Burlington, ON, Canada, Cat. # M3629) diluted 1:100 in 1% BSA-PBS was applied to 

the cells. Staining controls received only 1% BSA-PBS but no primary antibody. The 

primary antibody was incubated overnight at 4 °C. 

 The following day, the primary antibody was removed from the wells. The cells 

were rinsed once with chilled PBS and then washed 3 x 5 minutes with chilled PBS. The 

cells were equilibrated with 1% BSA-PBS for 10 minutes at room temperature. A donkey 

anti-rabbit secondary antibody conjugated with Alexa Fluor® 594 (Invitrogen, Cat. # A-

21207) diluted at 1:800 was then applied and incubated for 30 minutes at room 

temperature in the dark. Again, the cells were rinsed once in PBS and then washed 3 x 5 

minutes with PBS. Following a final rinse in dH2O, ~150 µL of dH2O and 1 drop of 

Vectashield with DAPI were added to each well and let sit for 5 minutes to stain the 
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DNA fluorescent blue. The solution was aspirated from the wells and 100 µL of dH2O 

was added to each well before imaging. 

2.7.3 Microscopy and Quantitation 

 Fluorescent microscopy at 400x magnification was performed using a Zeiss 

Axiovert 200 Microscope (Carl Zeiss Canada Ltd.) equipped with a LD A-Plan 40x/0.50 

Ph2 objective (Carl Zeiss Canada Ltd.) and a CCD camera with 12 bit capability (Q 

Imaging, Surrey, BC, Canada). All images were captured by an undergraduate student in 

the lab blinded to the experiment and any expected outcomes, to prevent bias. Using the 

correct microscope filters, 5 pairs of images (1 DAPI and 1 p53) were taken within each 

well in a pattern to cover as many areas as possible. DAPI has an excitation at ~360 nm 

and emission at ~460 nm (blue). Alexa Fluor® 594 has an excitation ~590 nm and 

emission at ~617 nm (red). For DAPI and p53 images, exposures of 100 ms and 800 ms 

were used respectively. The gain was set to 2.26% and the offset to 50.01% for all 

images. 

 The percent p53 positive cells in each well were quantified by determining the 

number of Alexa Fluor® 594 stained cells as well as the total number of cells, indicated 

by DAPI staining. To do this, the images were digitally processed using CellProfiler open 

source software (Carpenter et al. 2006), a program which can be used for both the 

objective quantification and subcellular localization of protein expression in the same 

experimentally treated cells (Carpenter et al. 2007, Hamilton 2009, Togtema et al. 2012, 

Jackson et al. 2013). First, the DAPI images were used to identify the nuclei (objects) in 

the field of view. An image mask was drawn around each nucleus and overlaid on the 

corresponding p53 image (Figure 7A). The intensity of p53 staining (red) for each 
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nucleus was then quantified within that mask. The average and standard deviation of any 

red background fluorescence was also calculated in the areas not covered by nuclei for 

each photo (Figure 7B). In each field of view, a cell was considered p53 positive if the 

mean red signal intensity of its nucleus was larger than the mean red background signal 

intensity plus three standard deviations. The pipeline of program steps was as follows: 

“Load Images”, “Resize”, “Colour To Gray” (for DAPI), “Colour To Gray” (for p53), 

“Identify Primary Objects”, “Convert Object To Image”, “Image Math”, “Apply 

Threshold”, “Identify Primary Objects” (identifies background), “Measure Object 

Intensity” (of nuclei), “Measure Object Intensity” (of background), “Overlay Outlines”, 

“Display Data on Image” (shows number of nuclei), “Display Data on Image” (shows 

intensity of nuclei), and “Export Data to Spreadsheet”. The exported intensity data was 

then manually analyzed in Excel based on the above threshold criteria to determine the 

number of p53 positive cells. 
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Figure 7. CellProfiler quantification of p53 positive cells. A) The number of nuclei is 

determined in the DAPI image and a mask is drawn around each nucleus. B) The image mask is 

overlaid on the corresponding p53 image and the mean red fluorescence intensity is quantified for 

each nucleus as well as for the background area not covered by nuclei. Nuclei with a mean red 

fluorescent intensity greater than the mean red background intensity plus three standard 

deviations were considered to be p53 positive. 
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2.8 Statistical Analyses 

 Statistical analyses and the creation of graphs were done using the open source 

programming language R, version 3.0.0 (R Development Core Team 2013). Data were 

determined to be parametric based on independence, normality and homogeneity of 

variance. Histograms, Q-Q plots and the Shapiro-Wilk’s test were used to check 

normality. Bartlett’s test was used to check homogeneity of variance. If normality was 

questionable, then the Levene’s test was used. If required, data were transformed to 

regain parametric assumptions. Based on these results, one or two-way ANOVAs were 

used to determine global differences between the means. If significant differences were 

found, Tukey’s HSD post hoc analyses were performed. The significance level (�) was 

set, a priori, at 0.05. Unless indicated otherwise, data represent mean +/- SEM. 

3.0 RESULTS 

3.1 EP and AA E6 Had Differing mRNA Structures 

3.1.1 mRNA Secondary Structures 

 The secondary structure for each of the variant mRNAs was modeled to determine 

if the AA E6 SNPs resulted in changes which could have implications for the ability of 

the siRNA/RISC to access it. Due to the fact that the minimum free energy of an RNA 

molecule may not directly correspond to its actual biological conformation (Shapiro et al. 

2007), the program CentroidFold which uses a centroid estimator was employed. Unlike 

programs such as RNAfold which choose the minimum free energy structure, 

CentroidFold creates an ensemble of secondary structures near the minimum free energy 

and then chooses the one which has the minimum number of predicted base pairs 

different from all others in the group to represent the sampled structures (Ding et al. 
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2005). The models generated by CentroidFold indicated that the secondary structures of 

the EP and AA E6 variants differed, due to the presence of the six SNPs in AA E6 

(Figure 8). The AA variant mRNA appeared to have a more open structure in the area of 

the SNPs than that of the EP variant. Notably, this region corresponds to the portion of 

E6 which is spliced out of the truncated bicistronic transcripts in cells containing the full 

length viral genome, making it a favourable siRNA target. 
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Figure 8. The mRNA secondary structures of the HPV16 EP and AA E6 variants (nt83-

559). Modeling was done with the program CentroidFold. The six SNPs of the AA E6 variant 

resulted in it having a notably different structure than that of EP E6. The locations of the 6 SNPs 

are indicated with red arrows and the region of the transcript targeted by the E6 siRNA used in 

this study (nucleotides 386-404) is indicated by the thick black line. The colour gradation from 

blue to red corresponds to the probability between 0 to 1of the predicted hydrogen bond between 

two bases. 
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3.1.2 mRNA Tertiary Structures 

 To examine the three-dimensional structures created by the further folding of the 

above predicted mRNA secondary structures, 20 tertiary conformations were modeled 

favouring the base-pairings predicted by CentroidFold for each variant. Twenty possible 

conformations were chosen to provide a thorough sampling. The program FARNA was 

employed because it belongs to the well-established Rosetta software package which has 

been well referenced by a variety of independent groups 

(www.rosettacommons.org/publications). During the refinement of the predicted 

structures with molecular dynamics, the self-parameterizing Yamber force field, derived 

from the also well-known Amber force field (Krieger et al. 2004), was used for its 

suitability with biological molecules. Table 3 shows each resulting possible 

conformation and the corresponding total free energy for each variant. The conformation 

with the most negative total free energy, -33 269 kcal/mol for EP E6 and -34 260 

kcal/mol for AA E6, was chosen as the most probable tertiary mRNA structure for each 

variant. Both variants had similar total free energies. However, the AA E6 SNPs did also 

cause its tertiary mRNA structure to be different from that of EP E6 (Figure 9). It 

appeared that the AA E6 mRNA 3D structure was slightly less tightly compacted than 

that of the EP E6 mRNA. 

 

 Taken together, the results in section 3.1 showed that the secondary structure of 

the AA E6 variant was a more open loop than that of EP E6 in the region of the transcript 

targeted by the siRNA used in this study. In addition, the tertiary structure of the AA E6 

mRNA appeared to not be as compact as that of EP E6. This lead to the inference that the 
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siRNA/RISC may be better able to access the AA E6 mRNA which would result in 

treatment with the same E6 siRNA having a higher knockdown efficacy in AA than EP 

E6. This was then tested in the subsequent in vitro experiments detailed below. 
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Table 3. Possible mRNA 3D conformations modeled for HPV16 E6 variants. 

Variant Conformation Total Energy (kcal/mol)  
EP E6 1 -30 710  
EP E6 2 -12 850  
EP E6 3 -7 426  
EP E6 4 -22 204  
EP E6 5 -30 225  
EP E6 6 -3 965  
EP E6 7 12 117  
EP E6 8 -17 309  
EP E6 9 -9 864  
EP E6 10 -4 638  
EP E6 11 -2 527  
EP E6 12 -9 317  
EP E6 13 10 959  
EP E6 14 -12 872  
EP E6 15 -21 650  
EP E6 16 -16 413  
EP E6 17 -27 710  
EP E6 18 -33 269*  
EP E6 19 -18 804  
EP E6 20 -23 537  
AA E6 1 -23 052  
AA E6 2 -20 995  
AA E6 3 -11 232  
AA E6 4 18 510  
AA E6 5 7 116  
AA E6 6 -9 788  
AA E6 7 -20 899  
AA E6 8 -22 522  
AA E6 9 -34 260*  
AA E6 10 -14 049  
AA E6 11 -22 972  
AA E6 12 -18 183  
AA E6 13 -12 052  
AA E6 14 8 447  
AA E6 15 -21 368  
AA E6 16 -28 042  
AA E6 17 5 667  
AA E6 18 -16 158  
AA E6 19 -17 758  
AA E6 20 -29 080  

                              *Most negative total energy and likely conformation. 
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Figure 9. The mRNA tertiary structures of the HPV16 EP and AA E6 variants (nt83-559). 

Images were rendered using the program Jmol. The six SNPs (highlighted in yellow) for the AA 

E6 variant resulted in it having a different, slightly less compacted 3D structure than that of EP 

E6.  
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3.2 PHFKs Transduced with EP or AA E6 Contained the Expected SNPs Following 

30 Passages 

 The first step in a methodologically sound investigation is to verify the properties 

of the in vitro models being employed. In this instance, the cell culture model consisted 

of PHFKs which had been retrovirally transduced with either the EP or AA variant of 

HPV16 E6 by a previous graduate student in the lab, Sarah Niccoli, MSc (Niccoli et al. 

2012). Over the two-year course of her study, these cells were followed for 30 passages 

through the processes of immortalization and malignant transformation induced by the 

presence of the viral E6 oncogene. These cells constitutively express E6 and were chosen 

over other HPV16 cell culture models, such as CaSki (Pattillo et al. 1977) and SiHa 

(Friedl et al. 1970), to avoid biases caused by HPV16 copy number differences (CaSki 

contains 200-600 and SiHa contains 1-2 genome copies of HPV16). Cells transfected 

with the full length variant genomes were not chosen either due to fluctuations in the 

ratio of episomal versus integrated HPV16 copies which can occur between passages 

(Robert Jackson, Thunder Bay Regional Research Institute; personal communication). 

Additionally, the use of these cells allowed us to study the differences in restoration of 

downstream cellular processes following suppression of EP and AA E6 without the 

influence of the other viral proteins. 

 Although highly unlikely, given the constant length of time that these cells were 

in culture for during the previous study it is always possible that some of the samples 

could have accidentally become mixed up with each other.  This possibility could be 

refuted based on the following findings: At passage 30, both variants showed E6 DNA 

amplicons of the correct size (448 bp) following PCR (Figure 10). Positive (+) control 
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samples (Near-diploid Immortalized Keratinocytes (NIKS) (Allen-Hoffmann et al. 2000) 

transfected with the full length AA HPV16 genome) also showed the correct E6 DNA 

amplicons and no specific bands of E6 amplicon size were seen in the negative (-) control 

sample (PHFKs transduced with the HPV16 E7 gene only) or the H2O sample. The 

sample of NIKS transfected with the AA HPV16 genome was kindly provided by current 

group member Robert Jackson, MSc and the PHFKs transduced with the E7 gene were 

the control cell line created by Niccoli et al. 2012. The consensus sequences obtained 

following Sanger sequencing of these amplicons confirmed that the SNPs (as described in 

Section 1.5) were located as expected, ensuring the findings in the subsequent sections 

were attributed to the correct variants. 
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Figure 10. HPV16 E6 DNA PCR products. PCR products were separated on a 1.5% agarose 

gel. Both EP and AA E6 variants showed E6 amplicons of the correct size (448 bp), as well as the 

positive (+) control sample (Near–diploid Immortalized Kertatinocytes (NIKS) transfected with 

the full length AA HPV16 genome). No specific bands of E6 amplicon size were seen in the 

negative (-) control sample (PHFKs transduced with the HPV16 E7 gene only) or the H2O 

sample. Due to the presence of a non-specific amplicon in the AA E6 sample, this band was 

excised from the gel and purified. The EP E6 PCR product was purified separately. This gel also 

contained the HPV16 L83V E6 variant which was not used in this study. 
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3.3 Relative mRNA Expression Changed Following Treatment with E6 siRNA 

3.3.1 Both Variants Showed a Similar Knockdown of E6 mRNA  

 To determine whether the differing structures of the EP and AA E6 transcripts 

observed during the in silico modeling would be reflected in altered E6 siRNA 

knockdown efficacy between the variants, the cells were transfected with 10 and 25 nM 

of siRNA, respectively. These are siRNA concentrations near the lower end of the range 

found in the literature (Thakur et al. 2012 and references therein). Off-target effects from 

siRNA treatment can occur in two ways: 1) through the binding of the siRNA to other 

transcripts in the cell that it has near complete complementarity with (Thaker et al. 2012) 

and 2) through the binding of siRNA nucleotides 2-8 to the 3’ untranslated regions of 

other transcripts (seed matching) (Birmingham et al. 2006). The use of as low a siRNA 

concentration as possible can help minimize these potential effects which may confound 

results. Untransduced PHFKs were used as a control because primary keratinocytes are 

the type of cells naturally infected with the HPV in vivo (zur Hausen et al. 2002). Forty-

eight hours following transfection with 10 nM E6 siRNA, there was an 85.6% and 88.1% 

reduction in E6 expression compared to cells treated with scrambled siRNA for EP (P < 

0.001) and AA E6 (P < 0.001) respectively (Figure 11A). Interestingly, this difference in 

E6 knockdown between the two variants was not significantly different (P = 0.929). 

Similar results were obtained when the concentration of siRNA was increased to 25 nM, 

with EP E6 having a 90.4% reduction and AA E6 having an 89.1% reduction in E6 

expression compared to cells treated with scrambled siRNA (P < 0.001 for both) (Figure 

11B). Again, this difference in E6 knockdown between the variants was not significantly 

different (P = 1.000). The raw expression of E6 relative to HPRT1 in the baseline 
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medium only cells (8.06 for EP E6 and 8.22 for AA E6) (data not shown) was not 

significantly different between the variants, indicating that they both expressed similar 

starting levels of E6 mRNA. As expected, E6 expression was undetectable in all PHFK 

control samples. These findings were contrary to what was expected based upon the in 

silico modeling results. However, since E6 had been repressed to equivalent levels in 

both variants, comparison of the downstream response of cellular processes abrogated by 

E6 following treatment with E6 siRNA could then be studied for EP and AA E6. 
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Figure 11. Relative E6 mRNA expression ratio following treatment with 10 or 25 nM 

siRNA. A) Treatment with 10 nM E6 siRNA significantly reduced E6 expression in both EP and 

AA E6 (P < 0.001 for both). The difference in E6 knockdown between the variants was not 

significant (P = 0.929). B) Treatment with 25 nM E6 siRNA significantly reduced E6 expression 

in both EP and AA E6 (P < 0.001 for both). The difference in E6 knockdown between the 

variants was not significant (P = 1.000). E6 was undetectable in PHFKs, as expected. Expression 

was determined relative to HPRT1 and calibrated to cells treated with scrambled siRNA. 

Statistical analysis was performed using a two-way ANOVA followed by Tukey’s HSD contrasts 

post hoc. Data represent mean ± SEM, n = 3 for all. *** denotes P < 0.001.  
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3.3.2 hTERT Expression was Diminished to Normal Levels in AA but not in EP E6 

 The catalytic subunit of the enzyme telomerase, hTERT, is upregulated by the E6 

proteins of high-risk Alpha papillomavirus types (Van Doorslaer and Burk 2012) and its 

expression plays a key role in immortalizing HPV16 infected cells (Klingelhutz et al. 

1996, Gewin and Galloway 2001, Niccoli et al. 2012). Hence, this was the first cellular 

process downstream of E6 investigated. Treatment with 10 nM siRNA significantly 

diminished hTERT expression 86.8% and 95.5% compared to cells treated with 

scrambled siRNA, for EP E6 and AA E6 respectively (P < 0.001 for both) (Figure 12A). 

Although the difference in hTERT reduction between both variants was not significantly 

different (P = 0.135), treatment with E6 siRNA resulted in the hTERT level of AA E6 no 

longer being significantly different from that of PHFKs (P = 0.688) whereas the hTERT 

level of EP E6 remained significantly higher than that of PHFKs (P = 0.012). At the 25 

nM siRNA concentration, treatment with E6 siRNA significantly diminished hTERT 

expression compared to cells treated with scrambled siRNA for both variants (83.7% and 

93.7% for EP and AA E6 respectively, P < 0.001 for both) (Figure 12B). Again the 

difference in knockdown between both variants was not significant (P = 0.179) but AA 

E6 cells treated with E6 siRNA had a level of hTERT comparable to that of PHFKs (P = 

0.541). The same was not true for EP E6 (P = 0.010). hTERT was mostly undetectable in 

all PHFK samples.   

 The raw expression of hTERT relative to HPRT1 (data not shown) was not 

significantly different between the variants in cells treated with 10 nM scrambled siRNA. 

However, in the cells treated with 25 nM scrambled siRNA, EP E6 had a higher level of 

hTERT than AA E6 (P = 0.019). This variable expression of hTERT has also been noted 
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by Niccoli et al. (2012). Still, it is interesting to note that when starting levels of hTERT 

are the same, treatment with the same dose of E6 siRNA still does not elicit an identical 

response in both variants. 
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Figure 12. Relative hTERT mRNA expression ratio following treatment with 10 or 25 nM 

siRNA. A) Treatment with 10 nM E6 siRNA significantly reduced hTERT expression in both EP 

and AA E6 (P < 0.001 for both). AA E6 no longer had a significantly different hTERT expression 

than PHFKs (P = 0.688) but EP E6 did (P = 0.012). B) Treatment with 25 nM E6 siRNA 

significantly reduced hTERT expression in both EP and AA E6 (P < 0.001 for both). AA E6 no 

longer had a significantly different hTERT expression than PHFKs (P = 0.541) but EP E6 did (P 

= 0.010). Expression was determined relative to HPRT1 and calibrated to cells treated with 

scrambled siRNA. Statistical analysis was performed using a two-way ANOVA followed by 

Tukey’s HSD contrasts post hoc. Data represent mean ± SEM, n = 3 for all. * denotes P = 0.05-

0.01, *** denotes P < 0.001. 
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3.3.3 Expression of the Type I Interferons � and � Differed Between the Variants

 Activation of the innate immune system is a host’s first line of defense against 

pathogens. It consists of various types of receptors, such as the Toll-like receptors, which 

become activated and lead to the induction of the Type I interferons, including IFN � and 

IFN �, and the Type II interferon, IFN � (Koromilas et al. 2001), eliciting an adaptive 

immune response. Previous studies have shown HPV16 E6 is capable of binding to and 

deactivating interferon-regulatory factor 3 (IRF3) (Ronco et al. 1998), a transcriptional 

activator of Type I interferon production, and constitutively diminishing the levels of 

IFNs � and � mRNA within cervical keratinocytes retrovirally transduced with E6 or 

E6/E7 (Nees et al. 2001). Hence, the expression of IFN � in response to treatment with 

E6 siRNA was investigated here. 

IFN � was Restored to Higher Levels in EP E6 Versus AA E6  

 Treatment with 10 nM siRNA resulted in a significant increase in IFN � 

expression regardless of cell type (P = 0.029) (Figure 13A). This increase in IFN �, 

which was also seen in PHFKs, was likely due to a non-specific response through 

activation of endosomal TLRs 7 and 8 or another cytosolic RNA sensor such as the RIG-I 

receptor by recognition of the siRNA (Kumar et al. 2011).  At the 25 nM concentration, 

the E6 specific response became more evident.  PHFK, EP E6 and AA E6 cells had 1.64, 

4.51, and 1.85 fold increases in IFN � expression respectively and these were larger than 

the increases noted at the 10 nM concentration (Figure 13B). EP E6 cells treated with E6 

siRNA had significantly more IFN � expression compared to cells treated with scrambled 

siRNA (P = 0.001). EP E6 cells treated with E6 siRNA also had significantly more IFN � 

expression compared to similarly treated AA E6 (P = 0.011) and PHFK cells (P = 0.006).  
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Figure 13. Relative IFN � mRNA expression ratio following treatment with 10 or 25 nM 

siRNA. A) Treatment with 10 nM E6 siRNA significantly increased IFN � expression, regardless 

of cell type (P = 0.029). B) Treatment with 25 nM E6 siRNA resulted in EP E6 having 

significantly increased IFN � expression compared to the corresponding PHFK and AA E6 cells 

(P = 0.006 and P = 0.011 respectively). Expression was determined relative to HPRT1 and 

calibrated to cells treated with scrambled siRNA. Statistical analysis was performed using a two-

way ANOVA followed by Tukey’s HSD contrasts post hoc. Data represent mean ± SEM, n = 3 

for all. * denotes P = 0.05-0.01, ** denotes P = 0.01-0.001. 
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AA E6 IFN � Expression was Elevated More by Treatment with a Lower siRNA 

Concentration than that of EP E6 

 IFN � is a more recently discovered Type I interferon, which is expressed mainly 

in epidermal keratinocytes (LaFleur et al. 2001). IFN � expression is repressed in HPV 

infected keratinocytes (Rincon-Orozoco et al. 2009, DeCarlo et al. 2010, Reiser et al. 

2011). It has been suggested that the HPV16 E6 protein is responsible for this through 

p53 degradation and IFN � DNA methylation (Rincon-Orozco et al. 2009, Reiser et al. 

2011). After treatment with 10 nM siRNA, EP E6 had a significant 12.72 fold increase (P 

< 0.001) and AA E6 a significant 17.20 fold increase (P < 0.001) in IFN � expression 

compared to cells treated with scrambled siRNA; whereas IFN � expression remained 

unchanged in PHFKs (P = 1.000) (Figure 14A). IFN � expression was restored 

significantly more in AA E6 than EP E6 (P < 0.001). After treatment with 25 nM siRNA, 

EP E6 had a significant 22.67 fold increase (P < 0.001) and AA E6 a significant 15.00 

fold increase (P = 0.022) in IFN � expression compared to cells treated with scrambled 

siRNA (Figure 14B). Again, IFN � expression remained unchanged in PHFKs (P = 

1.00). At this higher concentration, the increase in IFN � expression is no longer 

significantly different between the variants (P = 0.346). As IFN � expression remained 

unchanged in PHFKs, this seemed to be a more HPV16 E6 specific response than that of 

IFN � seen above. 

 IFN � Expression Remained Undetectable 

 Since the Type II interferon, IFN �, is downregulated in patient biopsies of 

malignant cervical lesions (de Gruijl et al. 1999), we wanted to investigate the potential 
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variant specific differences. However, its expression remained undetectable in all samples 

at both the 10 and 25 nM siRNA treatment concentrations. 

 

 It is also important to point out that, despite the large fold increases in IFN 

expression seen following treatment with E6 siRNA, their raw expression relative to 

HPRT1 (data not shown), particularly in the case of IFN �, is still below that of 

untransduced PHFKs. This is not clearly evident from the way the expression data is 

presented above. 
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Figure 14. Relative IFN � mRNA expression ratio following treatment with 10 or 25 nM 

siRNA. A) Treatment with 10 nM E6 siRNA significantly increased IFN � expression in EP and 

AA E6 (P < 0.001 for both). The increase in IFN � expression was significantly greater in AA E6 

than EP E6 (P < 0.001). B) Treatment with 25 nM E6 siRNA significantly increased IFN � 

expression in EP and AA E6 (P < 0.001 and P = 0.022 respectively). The difference in the 

increase of IFN � expression between the variants was no longer significant (P = 0.346). 

Expression was determined relative to HPRT1 and calibrated to cells treated with scrambled 

siRNA. Statistical analysis was performed using a two-way ANOVA followed by Tukey’s HSD 

contrasts post hoc. Data represent mean ± SEM, n = 3 for all. * denotes P = 0.05-0.01, *** 

denotes P < 0.001. 
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3.4 E6 Expression was Also Diminished at the Protein Level Following Treatment 

With E6 siRNA 

 There is not always a direct one-to-one relationship between the amount of a 

transcript and the corresponding amount of protein within a cell (Gry et al. 2009). 

Because the E6 siRNA resulted in an equal knockdown of E6 mRNA for both variants, 

E6 expression was then examined at the protein level to see if a similar pattern was 

continued and to provide further insight into the differences observed above in the 

restoration of cellular processes downstream of E6. Indirect detection of the E6 protein 

using antibodies is challenging, due to the fact that E6 is a small (18 kDa) protein with 

many binding partners (Jackson et al. 2013). Also, the E6 mouse monoclonal antibody, 

which produces the most reliable results (clone 4C6; Arbor Vita Corporation, Fremont, 

CA, USA), is not commercially available. Hence, a Western blot was done to detect the 

human influenza hemagglutinin (HA) tag located on the transduced E6 protein. This 

approach is also beneficial because it eliminates any potential detection biases which 

could be caused if the E6 antibody had different binding affinities for each of the E6 

variants. The Western blot indicated that treatment with 10 and 25 nM E6 siRNA, 

respectively both resulted in elimination of a detectable amount of protein for EP and AA 

E6 (Figure 15). Unfortunately, this meant that no comparison of E6 protein expression 

between these particular variant samples could be made. As expected, the E6-HA protein 

was not detectable in any of the PHFK samples. No non-specific bands were present on 

the membrane. 
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Figure 15. Western blot for the E6 protein HA tag following treatment with 10 or 25 nM 

siRNA. Treatment with both concentrations of E6 siRNA reduced the E6-HA protein below 

detectable limits for both EP and AA E6. No bands were detected for PHFKs, as expected. n = 1.  
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3.5 AA E6 p53 Protein Expression was Restored by Treatment with a Lower siRNA 

Concentration than that Required by EP E6 

 Since E6-HA expression could not be compared directly between EP and AA E6 

using a Western blot due to the observed detection limit issues, p53 protein levels were 

then investigated to help gain a better understanding of what was happening to E6 at the 

protein level. Quantitative immunofluorescence, a powerful technique previously 

employed by our group in a similar manner (Togtema et al. 2012), was used to determine 

the percentage of cells positive for p53 staining, an indicator of diminished E6 protein 

levels (Figure 16). Treatment with 10 nM E6 siRNA resulted in significantly more p53 

positive cells than treatment with the scrambled siRNA, the transfection reagent only, or 

medium only for EP E6 (P < 0.001 for all) (Figure 17A). The same comparisons were 

noted for AA E6 (P < 0.001 for all). EP E6 treated with E6 siRNA had a significantly 

lower percentage of p53 positive cells than both AA E6 and PHFKs treated with E6 

siRNA (P < 0.001 for both). AA E6 cells treated with E6 siRNA had a p53 level restored 

to that of the PHFKs (P = 0.999). Treatment with 25 nM E6 siRNA also resulted in 

significantly more p53 positive cells than treatment with scrambled siRNA, the 

transfection reagent only, or medium only for both EP and AA E6 (P < 0.001 for all) 

(Figure 17B). At this higher siRNA concentration, the p53 levels of both EP and AA E6 

were no longer significantly different from that of PHFKs (P = 0.504 and P = 1.000 

respectively). There was a slight non-specific stress response to the transfection reagent 

and siRNAs in the PHFKs, as evidenced by an increase in p53 expression compared to 

cells treated with medium only. These results suggested that AA E6 cells treated with E6 

siRNA may have had lower levels of E6 protein than the corresponding EP E6 cells. 
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Another possibility is that the E6 protein levels were not that different between the 

variants, but that EP E6 differs in the mechanism by which it leads the degradation of p53 

or its ability to do so, compared to AA E6. 
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Figure 16. Immunofluorescent detection of p53 positive cells following treatment with 10 or 

25 nM siRNA. p53 expression (red) is restored following treatment with E6 siRNA and is mostly 

undetectable following treatment with scrambled siRNA for both EP and AA E6. p53 expression 

is detectable in both PHFKs treated with E6 or scrambled siRNA. Nuclei were counterstained 

with DAPI (blue). 
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Figure 17. p53 protein expression following treatment with 10 or 25 nM siRNA. Data were 

transformed using a square root transformation. A) Treatment with 10 nM E6 siRNA significantly 

restored p53 expression in EP and AA E6 compared to controls (P < 0.001 for all). p53 

expression was still significantly lower in E6 siRNA treated EP E6 than PHFK and AA E6 (P < 

0.001 for both). B) Treatment with 25 nM E6 siRNA significantly restored p53 expression in EP 

and AA E6 compared to controls (P < 0.001 for all). p53 expression in PHFK, EP E6, and AA E6 

cells treated with E6 siRNA were no longer different from each other. Statistical analysis was 

performed using a two-way ANOVA followed by Tukey’s HSD contrasts post hoc. Data 

represent mean ± SEM, n = 3 for all. * denotes P = 0.05-0.01, ** denotes P = 0.01-0.001, and *** 

denotes P < 0.001. 
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4 DISCUSSION 

4.1 Comparison of the E6 mRNA Structural Model Predictions to Experimental E6 

siRNA Knockdown Efficacy for the Variants 

 The in silico models predicted for the variant mRNAs demonstrated that the six 

SNPs present in AA E6 altered both its secondary and tertiary structures compared to EP 

E6. AA E6 had a more open loop secondary structure in the area targeted by the E6 

siRNA and a less tightly compact 3D structure. These observations led us to infer that the 

AA E6 transcript would be more accessible for the siRNA/RISC and that the same E6 

siRNA would have a higher E6 knockdown efficacy for AA than EP E6. However, this 

was not confirmed by the results of our in vitro experiments. Both variants showed an 

equal knockdown in the expression of E6 mRNA compared to cells treated with 

scrambled siRNA and this was noted following treatment with both 10 and 25 nM E6 

siRNA respectively.  

 This discrepancy can be the result of several factors. First, it is possible that our in 

silico models may not accurately represent the true structure of the variant E6 mRNAs. 

Modeling of a single RNA molecule is a complex process and predictions are hampered 

by minimal knowledge of the thermodynamic properties of complex structural elements 

such as pseudoknots (Shapiro et al. 2007), which may be present. Comparative 

approaches, which take into account the determined structures for homologous sequences 

and search for a consensus between them may be provide a more accurate prediction 

(Rivas 2013). Although costly and labour intensive, further improvement of experimental 

techniques including x-ray crystallography and nuclear magnetic resonance (NMR) are 

also needed to accurately provide important atomic level structural details (Shapiro et al. 
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2007). Secondly, it is possible that our structural models are comparable to the naïve 

structures of the E6 variant mRNAs but that the differences observed are not of a large 

enough magnitude to significantly impair access of the RISC/siRNA. Only one E6 

siRNA was employed in this study and it would be worthwhile to investigate whether 

additional sequences targeting other locations of the transcript predicted to be structurally 

different between the variants in our model would yield results similar to those obtained 

here. 

4.2 Differential Restoration of Downstream Cellular Processes Abrogated by HPV16 

E6 

 Following the knockdown of E6 mRNA to statistically similar levels in both 

variants, it was then possible to study the differences in the restoration of downstream 

cellular processes abrogated by the E6 protein between EP and AA E6. Treatment with 

E6 siRNA resulted in the restoration of hTERT mRNA levels to those of PHFKs in AA 

E6. Within the innate immune system pathways, treatment with E6 siRNA resulted in a 

greater elevation of IFN � mRNA expression in EP compared to AA E6. AA E6 IFN � 

mRNA expression was elevated more following treatment with a lower dose of E6 

siRNA than that of EP E6 and this corresponded to the restoration of AA E6 p53 protein 

levels following treatment with a lower concentration of E6 siRNA than that required by 

EP. These data provide evidence supporting the existence of a positive feedback loop 

between IFN � transcript and p53 levels which is required for an effective innate immune 

response in keratinocytes, as reported by Rincon-Orozco et al. (2009). 

 The occurrence of these differences despite equivalent E6 transcript levels 

remaining in AA and EP E6 cells following treatment with E6 siRNA is an interesting 
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finding. One possible explanation is that the corresponding E6 protein levels may instead 

be different between the variants, which unfortunately could not be confirmed in this 

study. A recent high-throughput, genome wide study in yeast (S. cerevisiae) has found 

that transcripts with weakly folded 5’-untranslated region (UTR) secondary structures 

have longer half-lives, higher translation rates and higher resulting protein abundances 

than transcripts with strongly folded 5’-UTR secondary structures (Ringnér and Krogh 

2005). A similar such mechanism could potentially alter E6 mRNA translation between 

AA and EP E6. However, in the study completed by Niccoli et al. (2012), HA Western 

blots done on these same cells but untreated with siRNA showed no significant difference 

in E6-HA expression between EP and AA E6.  

 Another possibility, and which is suggested by the similar mRNA knockdown of 

both E6s, is that the corresponding E6 protein levels following treatment with E6 siRNA 

are not different between the variants but that AA E6 interacts with other molecules in 

the cell or disrupts cellular processes differently than EP E6. For example, together with 

c-myc the E6/E6AP complex of high-risk HPV types binds to E-box elements within the 

hTERT promoter, up regulating hTERT expression (Veldman et al. 2003, Van Doorslaer 

and Burk 2012). It is possible that EP E6 has a different binding affinity for the E-box 

promoter elements than AA E6. Other mechanisms have also been implicated in E6’s 

ability to upregulate hTERT transcription. It has been reported that the E6/E6AP complex 

can bind to and degrade the NFX1-91 transcriptional repressor of hTERT (Gewin et al. 

2004). As well, the E6/E6AP complex has also been reported to bind NFX1-123, a 

transcriptional activator of hTERT, helping recruit it to the promoter (Katzenellenbogen 

et al. 2007) and it has been suggested that E6 may still be able to achieve this even in the 
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absence of E6AP (Sekaric et al. 2008). Perhaps the variants employ different 

combinations of these mechanisms. 

4.3 Difference in E6 Knockdown Between Treatment with 10 or 25 nM E6 siRNA 

 Another interesting finding was that treatment of the cells with 10 nM E6 siRNA 

resulted in an average knockdown of ~87% of E6 transcript expression. However, 

increasing the siRNA dose 2.5x to 25 nM only resulted in a slight increase, at an average 

knockdown of ~89.8%. It was suspected that this may be related to the short half-life and 

stability of the siRNA once transfected into cells (Corey 2007, Dutta et al. 2011b). 

Hence, 2’-OMe nucleotides were added to the E6 siRNA sequence in four different 

patterns (Appendix 7). 2’-OMe nucleotides contain the substitution of an O-methyl 

(OMe) for the hydroxyl group (OH) on the 2’ carbon of the ribose ring of the nucleotide 

and have been shown to increase siRNA stability and efficacy (Shukla et al. 2010). 

However, none of the modification patterns resulted in significantly more E6 suppression 

than the unmodified siRNA.  

 Micro-RNAs (miRNAs), another class of endogenous, small non-coding RNAs 

commonly involved in gene expression regulation (Kaczkowski et al. 2012), also 

function through the shared usage of some of the same cellular machinery as siRNAs. 

Pre-miRNAs formed in the nucleus are carried out into the cytoplasm where they are also 

cleaved by Dicer into active miRNAs (Shukla et al. 2010). The miRNAs are then picked 

up by Argonaute 2 and other proteins, forming the miRISC which cleaves the target 

transcript if the miRNA has perfect complementarity to it or acts to stall translation if 

there is incomplete complementarity (Shukla et al. 2010).  Over 1 048 endogenous 

miRNAs have been identified in humans (Kaczkowski et al. 2012). The normal 
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processing of these miRNAs coupled together with the introduction of exogenous, 

synthetic siRNA may saturate the machinery of the RNAi pathway, rendering a larger 

dose of siRNA ineffective. 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

 To our knowledge, this was the first study to explore the potential changes that 

the six AA SNPs may have on the secondary and tertiary structures of the E6 mRNA as 

well as to compare in detail the differences in E6 silencing and the restoration of cellular 

processes abrogated by E6 for each variant in a post-integrative scenario. These findings 

fit well with those of another current project in the group which show that the EP and AA 

E6 variants differ in their abilities to initiate early carcinogenesis, in an early infection 

scenario with the full-length viral genome (Robert Jackson, Thunder Bay Regional 

Research Institute; personal communication). Future studies now need to elucidate the 

mechanisms underlying these observations and whether they are related to altered 

binding abilities of the E6 protein or differences in the way cellular processes are 

disrupted for each of the variants. Reconfirmation that the protein levels of EP and AA 

E6 do not differ, as reported by Niccoli et al. 2012, should be evaluated. Further 

optimization of the HA western blot and the use of high-throughput techniques, such as 

RNA sequencing (Wang et al. 2009), may aid in answering these questions. Difficulties 

in experimentally modeling the structure of the full E6 protein using NMR have only 

recently been overcome (Zanier et al. 2012). Future experimental determination of the 

structures of the EP and AA E6 proteins in a similar manner would provide useful 

additional information. It is also needed to determine whether similar differences will 

persist in the context of the full length HPV16 genome E6/E7 bicistronic transcript and 
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the presence of the other viral proteins. Although DAPI stained nuclei observed while 

collecting the p53 data did not show evidence of a notable increase in apoptotic cells, 

experiments are also currently in progress to evaluate cleaved Poly(ADP-ribose) 

polymerase-1 (PARP) staining, an early marker of apoptosis (Soldani and Scovassi 

2002), in each variant following treatment with 10 or 25 nM of this E6 siRNA. As well, 

experiments are also currently underway to confirm whether transfection of EP E6 with 

the 2’-OMe modified E6 siRNAs yields similar results to those obtained here with AA 

E6. Other modifications, such as carba-locked nucleic acids (Dutta et al. 2011a), may 

yield more successful increases in siRNA efficacy  

 These findings may eventually lead to a translational impact. Genotyping can be 

employed to determine which variant of HPV16 a patient is infected with. Knowing this, 

higher doses of E6 siRNA or an siRNA containing an immune stimulatory motif may 

need to be given to those infected with the EP E6 variant to obtain the same restoration of 

IFN � and p53 expression, key players in initiating an innate immune response and 

apoptosis, as possibly obtained with lower doses in patients infected with AA E6. One of 

the hurdles to translation will be safe and efficient delivery of the therapeutic siRNAs. In 

addition to chemical modification for the improvement of siRNA stability, packaging of 

the siRNA into liposomes or nanoparticles can also add protection and improve cellular 

uptake (Wang et al. 2011). Localised, topical application of the siRNA to cervical lesions 

may potentially require lower doses and cause less unwanted immunogenic effects than 

those associated with systemic delivery (Singhania et al. 2012), making lower grade CINs 

a more plausible target for early clinical trials than invasive carcinoma. 
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7 APPENDIX 

7.1 E6 Knockdown Following Chemical Modification of the E6 siRNA with 2’-OMe 

Nucleotides  

 To determine whether greater E6 knockdown could be achieved through 

increasing siRNA stability and efficacy, the E6 siRNA sequence was modified through 

the addition of 2’-OMe bases (Figure 18) to the antisense strand in four patterns (Table 

4). These patterns were chosen based on the findings of Dutta et al. (2011a and 2011b) 

which highlighted the importance of modifying these particular nucleotides. Chemical 

modifications at the 3’ end are particularly important for improving exonuclease 

resistance (Dutta et al. 2011a).  

 The chemically modified sequences were also ordered from Sigma-Aldrich. AA 

E6 cells were chemically transfected with 10 nM of each of the four chemically modified 

E6 siRNA sequences, the unmodified sequence, or the scrambled control sequence and 

RT-qPCR was performed as described in Section 2.5. 

 Treatment with any of the E6 siRNA sequences resulted in significant decrease in 

E6 mRNA expression compared to the corresponding cells treated with scrambled siRNA 

(P < 0.001 for all) (Figure 19). However, none of the chemically modified sequences had 

significantly different knockdown efficacies compared to each other or the unmodified 

sequence. 
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Figure 18. A 2’-OMe modified siRNA nucleotide. The hydroxyl group on the 2’ carbon of the 

ribose ring is substituted for an OMe. Image taken from Shukla et al. 2010. 
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Table 4. 2’-OMe modified E6 siRNA sequences used in this study. 

 

Sequence Sense Strand Anti-Sense Strand 

E6 siRNA 

(Modification 1) 
5’ CCGUUGUGUGAUUUGUUAAU[dT] 3’ 5' UUAACAAAUCACACAACGGU[dT] 3'* 

E6 siRNA 

(Modification 2) 
5’ CCGUUGUGUGAUUUGUUAAU[dT] 3’ 5' UUAACAAAUCACACAACGGU[dT] 3'* 

E6 siRNA  

(Modification 3) 
5’ CCGUUGUGUGAUUUGUUAAU[dT] 3’ 5' UUAACAAAUCACACAACGGU[dT] 3'* 

E6 siRNA  

(Modification 4) 
5’ CCGUUGUGUGAUUUGUUAAU[dT] 3’ 5' UUAACAAAUCACACAACGGU[dT] 3*' 

E6 siRNA  

(Unmodified) 
5’ CCGUUGUGUGAUUUGUUAA[dT][dT] 3’ 5' UUAACAAAUCACACAACGG[dT][dT] 3' 

Srambled 

siRNA 
5’ UAUGUGCUAUGUAUUAUUG[dT][dT] 3’ 5’ CAAUAAUACAUAGCACAUA[dT][dT] 3’ 

 

*The first [dT] had to be changed to a U in the chemically modified sequences, as it was not 

possible to add a 2’-OMe to the DNA base. 2’-OMe bases are indicated in bold, underlined text. 
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Figure 19. Relative E6 mRNA expression ratio in AA E6 cells following treatment with 10 

nM 2’-OMe modified E6 siRNA. Treatment with any of the E6 siRNA sequences resulted in a 

significant decrease in E6 expression compared to cells treated with scrambled siRNA (P < 0.001 

for all). None of the chemically modified siRNAs were more efficient than the others or 

compared to the unmodified siRNA. Expression was determined relative to HPRT1 and 

calibrated to cells treated with scrambled siRNA. Statistical analysis was performed using a one-

way ANOVA followed by Tukey’s HSD contrasts post hoc. Data represent mean ± SEM, n = 3 

for all. *** denotes P < 0.001. 

 

 

 


