

A New Control Technology for the Development of an Air-to-Air Refueling

System

By

Jonathan Kaban

A thesis submitted to Lakehead University in partial fulfilment of the requirements

for the Degree of Master of Science in Mechanical Engineering

Lakehead University

Department of Mechanical Engineering

2023

 i

Abstract
 Air to Air Refueling (AAR) was first performed over 100 years ago and until now it has

almost exclusively been used in military applications. This is due to the prohibitive cost of

maintaining a tanker fleet to enable refueling operations as well as the amount of training

required by both tanker and receiver pilots to mitigate the risk involved with operating aircraft in

close proximity. There are two methods of performing AAR operations: probe-drogue and flying

boom. This work investigates the feasibility of converting a civilian tanker into a probe-drogue

tanker for use in civilian applications. The aircraft chosen for this work is FuelBoss AT-802 as a

fuel hauler. The first objective of this thesis is to model the AT-802 and explore its potential role

as an AAR tanker.

 The second objective of this thesis is to address the issue of risk in AAR by modeling a

hose-drogue and proposing a new control technology to stabilize a drogue in flight. As no drogue

system is available for experimental testing, a flexible smart structure lab workstation will be

used to investigate control strategies for vibration suppression under variable system dynamics.

A Deep Deterministic Policy Gradient (DDPG) algorithm is proposed in conjuncture with

Domain Randomization for reinforcement training of the controller. The effectiveness of the

proposed control technique and learning algorithm is verified by experimental tests, with

comparison to other related control methods such as the built-in PD controller and an intelligent

NF controller. Dynamic conditions of the flexible structure are simulated by placing magnetic

mass blocks at different positions on the beam. Experimental results show that the proposed

DDPG controller outperforms other related control methods in terms of settling time, overshoot,

and mean error, without sacrificing robustness and stability. It can learn a decision-making

policy in environments with large action spaces such as in vibration suppression and has

potential to used for hose-drogue system control.

 ii

Acknowledgement
My deepest appreciation goes to my thesis supervisor, Dr. Wilson Wang, for his

mentorship and guidance throughout this journey. His expertise, dedication, and belief in my

abilities were the driving forces behind the success of this thesis. I would also like to extend my

sincere thanks to the members of the thesis review committee, Dr. Qiang Wei, Dr. Hao Bai, and

Dr. Ali Tarokh.

I would like to acknowledge the support provided by Alan Cheeseman, Dave Gaudino,

and Dan Murray from Wilderness North and FuelBoss. Their belief in the significance of this

project contributed greatly to this work.

I want to express my gratitude to Meagen Lepage for her patience, understanding, and

unwavering belief in me. Finally, and most importantly to my parents, Lynda and Michael

Kaban, your sacrifices and constant support have allowed me to reach the places I have today

and will tomorrow.

 iii

Table of Contents

Chapter 1 - Introduction and Literature Review ... 1

1.1 Problem Statement .. 1

1.2 Overview on Aerial Refueling .. 2

1.3 Challenges in Aerial Refueling ... 4

1.4 Literature Review for Air to Air Refueling ... 5

1.4.1 Modeling and Dynamic Analysis of Hose-Drogue Systems ... 5

1.4.2 Control and Stabilization of Hose-Drogue Models and Systems 6

1.5 Intelligent Control in Hose-Drogue Refueling Systems ... 8

1.5.1 Overview on Reinforcement Learning... 8

1.5.2 Literature Review for Reinforcement Learning ... 10

1.6 Objectives of this Work... 11

1.7 Thesis Structure ... 12

Chapter 2 – Modeling and Analysis.. 13

2.1 AT-802 3D Model ... 13

2.2 Center of Gravity (CoG) Considerations and Weight Envelope Modeling 20

2.3 Hose Drogue Dynamic Model... 24

Chapter 3 – Development of the Reinforcement Learning Controller ... 31

3.1 Review of the Deep Deterministic Policy Gradient Strategy .. 31

3.2 Actor and Critic Networks .. 33

3.2 Implementation of the DDPG Algorithm .. 34

3.2.1 Off-Policy Training .. 34

3.2.2 Experience Replay ... 34

3.2.3 Gradient Descent using the Adaptive Moment Estimation Optimization Algorithm .. 35

 iv

3.3 DDPG Training ... 37

3.3.1 Hyperparameters .. 37

3.3.2 DDPG Algorithm ... 38

3.4 Bridging the Sim-to-Real Gap... 39

3.4.1 Domain Randomization ... 40

Chapter 4 – Experimental Setup and System Modeling ... 41

4.1 Experimental Setup ... 41

4.2 Smart Structure State-Space Modeling ... 42

4.2.1 Equations of Motion .. 42

4.3 State Space Equations ... 49

4.3 Classical and Intelligent Controllers ... 51

4.3.1 PD Controller ... 51

4.3.2 NF Controller ... 51

4.4 DDPG Controller... 54

4.4.1 Actor and Critic NN Architecture .. 54

4.4.2 Smart Structure Simulation Environment .. 58

4.4.3 Agent Training ... 61

Chapter 5 - Performance Verification ... 64

5.1 Proposed Methodology ... 64

5.2 Simulation of Variable System Dynamics .. 65

5.3 Experimental Test Result Analysis ... 66

5.3.1 Test Results for the Flexible Beam without Extra Mass Blocks 67

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at a Top Position .. 68

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at the Middle

Position ... 70

 v

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at the Low Position

... 71

Chapter 6 - Conclusion and Future Work ... 74

6.1 Conclusion .. 74

6.2 Future Work .. 75

References ... 76

Appendix A: Experimental Data .. A1

 vi

List of Figures

Figure 1.1: AT-802 FuelBoss [3] .. 1

Figure 1.2: Refueling test: de Havilland DH-4B hanging hose to be grabbed by second DH-B4

using looped hose method [1] ... 2

Figure 1.3: KC-10 refueling a B-52 using the 'flying boom' method [8] .. 3

Figure 1.4: KC-130 refueling multiple F-18s using the probe and drogue method [5] 3

Figure 1.5: U.S. Coast Guard photo of C-130J with wake turbulence visible in clouds [12] 4

Figure 1.6: Illustration of the bow-wave effect in AAR [16]: (a) drogue is displaced by

approaching receiver due to the bow-wave effect. (b) receiver reverses approach and drogue

returns to natural position. .. 5

Figure 1.7: Prototype drogue from [29]: (a) side view, (b) front view ... 7

Figure 2.1:AT-802 photo – Front isometric view [56] ... 13

Figure 2.2: AT-802 model - Front isometric view .. 14

Figure 2.3: AT-802 photo - Rear underside view [57] ... 14

Figure 2.4: AT-802 model - Rear underside view .. 14

Figure 2.5:AT-802 FuelBoss belly tank.. 15

Figure 2.6: AT-802 model - Top view: (a) model, (b) drawing ... 16

Figure 2.7: AT-802 model - Front view: (a) model, (b) drawing ... 17

Figure 2.8: AT-802 model – Side view: (a) model, (b) drawing .. 18

Figure 2.9: AT-802 side profile of CFD analysis (velocity magnitude) 19

Figure 2.10: AT-802 rear profile of CFD analysis (velocity magnitude) 19

Figure 2.11: AT-802 weight envelope model - Acceptable loading condition: (a) simplified CoG

diagram. (b) graphical representation of modified CoG position ... 22

Figure 2.12: AT-802 weight envelope model - Unacceptable loading condition: (a) simplified

CoG diagram. (b) graphical representation of modified CoG position .. 23

Figure 2.13: Weight envelope – plot of both acceptable and unacceptable conditions 24

Figure 2.14: Side view of reference frame and lumped mass model [23] 25

Figure 2.15: Link and lumped mass notation for any link K [23]... 26

Figure 2.16: Results for 10 link test: a) 3d representation of simulation, b) lateral and vertical

trajectories of drogue, c) drogue position (viewed from the rear) .. 30

 vii

Figure 4.1: The smart structure workstation: (1) computer with to DAQ card. (2) rigid bar. (3)

flexible beam. (4) Quanser DAQ board. (5) strain gauge signal conditioning board. (6) DC motor

and gearbox. (7) rotary encoder. (8) mass block. (9) Quanser universal power module. 42

Figure 4.2: Free-body diagram of the smart structure .. 43

Figure 4.3: Network architecture of selected NF controller. .. 53

Figure 4.4: Actor network architecture ... 56

Figure 4.5: Critic network architecture ... 58

Figure 4.6: Simulated training environment render - (a) starting state, (b) control begins after

disturbance, (c) controller overshooting ... 61

Figure 5.1: Smart structure in the - (a) upright position, (b) initial position 64

Figure 5.2: Dynamic loading of the smart structure workstation – (a) diagram (b) photo - (1)

rigid bar, (2) flexible beam, (3) tape markers, (4) mass block positions 66

Figure 5.3: Deflections of the flexible beam without extra mass blocks, using the related

controllers: (a) PD controller, (b) NF controller, (c) DDPG controller. 68

Figure 5.4: Deflections of the flexible beam with mass blocks at the top position (100mm below

the rotational axis of the rigid bar), using the related controllers: (a) PD controller, (b) NF

controller, (c) DDPG controller. ... 69

Figure 5.5: Deflections of the flexible beam with mass blocks at the middle position (150 mm

below the rotational axis of the rigid bar) using the related controllers: (a) PD controller, (b) NF

controller, (c) DDPG controller. ... 71

Figure 5.6: Deflections of the flexible beam with mass blocks at the low position (200 mm below

the rotational axis of the rigid bar) using the related controllers: (a) PD controller, (b) NF

controller, (c) DDPG controller. ... 72

 viii

List of Tables

Table 2.1: Sample AT-802 Refueling System Loadings .. 20

Table 3.1: Hyperparameters for a DDPG algorithm ... 37

Table 4.1: Motor parameters [80] ... 488

Table 4.2: Smart Structure simulation parameters [80] .. 59

Table 4.3: DDPG Learning agent parameters ... 61

Table 5.1: Experimental results without extra mass blocks for the related controllers 68

Table 5.2: Experimental results with mass blocks at the 100 mm position for the related

controllers ... 69

Table 5.3: Experimental results with mass blocks at the 150 mm position for the related

controllers ... 71

Table 5.4: Experimental results with mass blocks at the 200 mm position for the related

controllers ... 72

 ix

List of Symbols

Symbol Definition

𝜋 Reinforcement Learning Decision Making Policy

𝑆𝜋 Policy State Space

𝑠 State space variables

𝐴𝜋 Policy Action Space

𝑎, 𝑢 Action taken

𝑉𝜋 Policy Value Function

𝛾 Discount Factor for future rewards

𝑟 Environment Reward

𝐹𝑊 Tanker Frame of Reference

𝑤1, 𝑤2, 𝑤3 Unit vectors of tanker frame

𝜔𝑊, 𝛼𝑊
Angular velocity and acceleration of hose-link angles relative to the tanker

frame, respectively

−𝑙𝐾 Length of hose link

𝑝𝐾′ Position of lumped mass K relative to the tanker frame

𝑝𝐾, 𝑝̇𝐾, 𝑝̈𝐾
Position, velocity, and acceleration of lumped mass K relative to the previous

link, respectively

𝜃𝐾1, 𝜃𝐾2 Angular position of lumped mass K about the pitch and yaw axis respectively

𝜃̇𝐾, 𝜃̈𝐾
First and second derivatives of hose link angle for link of lumped mass K,

respectively

𝑣𝐾 , 𝑎𝐾 Velocity and Acceleration of lumped mass K, respectively

𝑔 Gravitational Constant

𝑄𝐾 External Force Vector acting on hose-drogue

 x

𝑇𝐾 Link tension in the link for lumped mass K

𝑛𝐾𝑖 Unit Vector of position of lumped mass K

[Γ], {𝑞} Matrix form of link tension equation constants

{𝑇} Link Tension vector

𝜇𝐾 Reciprocal of the mass of node k

𝐷𝐾 Aero force on k

𝐷𝑑 Drogue Drag

𝑚𝐾 Mass of any link K

𝑚𝑑𝑟𝑜𝑔𝑢𝑒 Mass of the drogue

𝑅 Reward Function

𝑄∗ Optimum Action-Value Function

𝑢 Actor Network

𝑄 Critic Network

𝜓𝑢 , 𝜓𝑄 Parameters (Weights) of the actor and critic networks respectively

𝑢′ Target Actor Network

𝑄′ Target Critic Network

𝔼 Expected value of a finite number of random outcomes

𝐽 Starting distribution of reinforcement learning NN

∇𝜓𝑢 , ∇𝜓𝑄 Gradients of the weights for the actor and critic NNs respectively

∇𝑎 Gradient of actor outputs

𝐿 Loss function

𝜏 Target network learning rate

𝜘𝑡 Experience replay sample at time step, 𝑡

 xi

𝑚̂𝑡, 𝑣𝑡 First and second moment vectors of the loss gradient at time step t, 𝑡

𝑚̂𝑡
′ , 𝑣𝑡̂′ Corrected first and second moment vectors of the loss gradient at time step t, 𝑡

𝜚 ADAM Optimization algorithm learning rate

𝛽1, 𝛽2
ADAM Optimization Correction hyperparameters, chosen through trial and

error

𝜙𝑢, 𝜙𝑄 Actor and critic learning rates, respectively

𝔹 Experience replay buffer

𝑁𝑏 Number of samples of previous experiences used for each training step

𝒩 Action Noise Component

𝜇, 𝜎 Action noise hyperparameters, mean and standard deviation, respectively

𝑏 Replay buffer size

𝑁𝐸 Number of training episodes

𝜀𝑘
State observation noise scaling constant, 𝑘 = 1,2, … , 𝑛 where 𝑛 is the number of

inputs into the actor network

𝑙𝑏 Smart structure flexible beam length

𝑙𝑟 Smart structure rigid bar length

𝑚𝑚
Mass of motor and gear reducer mounted atop flexible beam and connected to

the rigid bar

𝑚𝑟 Mass of the rigid bar

𝑥𝑏 Deflection of the flexible beam

𝜃 Angular position of rigid bar

𝑠̇𝑡 Rate of change of state space variables

𝑥̇𝑏 Velocity of deflection of the flexible beam

𝜃̇ Angular velocity of the rigid bar

 xii

𝑇𝑋,𝑌
𝑇 Translation matrix between any two points (X and Y) on the smart structure

𝑇𝑋,𝑌
𝑅 Rotation matrix between any two points (X and Y) on the smart structure

𝑇0,3
Transformation matrix from the base of the smart structure to the free end of the

rigid bar

𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 Three dimensional cartesian coordinates of the free end of the rigid bar

𝑥̇𝑟 , 𝑦̇𝑟 , 𝑧̇𝑟 Rate of change of cartesian coordinates of the free end of the rigid bar

𝐿𝑎 Lagrangian from the Euler-Lagrange Method

𝐾 Total kinetic energy of system

𝑉 Total potential energy of system

𝐾𝑠 Spring constant of the flexible beam, determined experimentally

𝜔𝑛 Natural frequency of the flexible beam

𝐽𝑟 Mass moment of inertial of the rigid bar

𝑄1, 𝑄2 Generalized external forces for Lagrangian

𝜏𝑚 Torque produced by motor

𝜂𝑔 Gearbox efficiency

𝐾𝑔 Gearbox ratio

𝜂𝑚 Motor efficiency

𝐾𝑡 Motor torque constant

𝑉𝑚 Motor applied voltage

𝑅𝑚 Motor armature resistance

𝐾𝑚 Back-emf constant

𝑨,𝑩, 𝑪,𝑫 State space matrices

𝑘𝑥𝑏

𝑝 , 𝑘𝜃
𝑝 Proportional gains for 𝑥𝑏 and 𝜃, respectively

 xiii

𝑘𝑥𝑏
𝑑 , 𝑘𝜃

𝑑 Derivative gains for 𝑥̇𝑏 and 𝜃̇, respectively

𝒖 General control output

𝑔(𝑠) General membership function for NF controller

𝑁𝑠 Number of state space variables

𝑎𝑗 , 𝑐𝑗 Non-linear parameters of NF MFs

𝑝ℎ𝑛
 Linear parameters of NF MFs

𝑊ℎ Firing strength of fuzzy rule ℎ

𝑂𝑗
𝑖 𝑂𝑗

𝑖 is the firing strength of the node 𝑂, at position 𝑗, in layer 𝑖

𝑈(𝑥) Rectified Linear Units (ReLU) function

𝑁𝑖 Number of nodes in a given layer 𝑖

𝑟 Reward for a given step

𝐻(𝑂1
4) hyperbolic tangent function output for the output node 𝑂1

4 of the actor

𝜁 State-space model step size

𝐸 Current episode during training

 1

Chapter 1 - Introduction and Literature Review

1.1 Problem Statement
Canada as a country is in a unique position in terms of air power and air force. With a

large amount of territory that is uninhabited and most of the population living along the southern

section of the country, defence and air coverage of northern areas may be difficult when

deploying from major air bases. For these reasons Canada can benefit greatly from air to air

refueling (AAR) of its own air force and other civilian aircraft such as rescue helicopters.

However, currently the Royal Canadian Air Force relies on tankers from the U.S. Air Force for

refueling needs [1, 2]. Consequently, a tanker that suits the unique AAR needs of Canada would

and will be greatly important in the future. This work will focus on the AT-802-FuelBoss tanker

which, is an aircraft that is outfitted to deliver fuel to remote communities in Canada and in the

world.

Figure 1.1 shows a FuelBoss, which is a modified AT-802. It is manufactured by Air

Tractor in Onley, Texas and modified by FuelBoss to carry fuel, becoming the AT-802-FuelBoss

Boasting a deliverable load of 8000 lbs from a single engine aircraft, the FuelBoss can carry

4000 litres of fuel while remaining versatile and being able to respond swiftly [3]. This aircraft

was developed off of the AT-802-FireBoss, firefighting aircraft, that can carry a large capacity

for its size, while being able to take off in a short distance and respond much more quickly than a

larger tanker [4]. This made the AT-802 well suited to serve as an aerial refueling tanker.

Figure 1.1: AT-802 FuelBoss [3]

 2

 This work focuses on the development of AAR system to refuel helicopters using AT-

802-FuelBoss as a tanker.

1.2 Overview on Aerial Refueling
Aerial refueling has been performed for almost 100 years, to refuel a receiver aircraft

from a tanker aircraft while flying. The first test was performed between two bi-planes on June

27th, 1923, with 75 gallons of fuel delivered [5]. Since then, many innovations have been made

to improve the capabilities of air forces in extending range and operational area of missions, as

well as increasing the flexibility and versatility of strategy in aerial operations [6]. Figure 1.2

shows an early refueling test between two biplanes using the looped hose method.

Figure 1.2: Refueling test: de Havilland DH-4B hanging hose to be grabbed by second DH-B4 using looped hose

method [1]

There are two common types of AAR; the “flying boom” and the probe-and-drogue

methods. The flying boom is mainly used by large tankers to deliver fuel to large receivers with a

high fuel flow rate [7]. The flying boom method relies on an operator within the refueling tanker

to manipulate a boom into a receptacle on the receiver and deliver fuel, shown in Figure 1.3. The

operator ‘flies’ the boom into a refueling port on the receiver aircraft.

 3

Figure 1.3: KC-10 refueling a B-52 using the 'flying boom' method [8]

Probe and drogue is typically applied for refueling small receiver aircraft such as fighters and

helicopters [8], [9]. Probe and drogue refueling is performed by the tanker aircraft crew

extending a hose with a drogue at the end. As illustrated in Figure 1.4, the drogue creates a drag

as its shape is similar to a parachute. The drag force generates tension in the hose and ensures the

drogue is aerodynamically stable enough to not be negatively effected by turbulence [10]. The

drogue acts as a moving target, for the receiving aircrafts pilot to ‘fly into’ such that the probe on

the receiver couples within the center of the drogue [8]. The drag on the drogue is enough to

allow the receiver pilot to overcome the connection force of the drogues coupling. The FuelBoss

is a small tanker and will mainly be refueling small planes and helicopters and therefore this

work focuses on probe-and-drogue refueling technology.

Figure 1.4: KC-130 refueling multiple F-18s using the probe and drogue method [5]

 4

1.3 Challenges in Aerial Refueling
AAR can benefit both military and commercial sectors. When a hose and drogue are

extended behind the tanker, they experience aerodynamic disturbances that are affected by a

number of factors such as air speed and atmospheric conditions. The hose and drogue possess

little to no ability to respond to these external disturbances, which leads to many challenges

when docking with the receiver aircraft [11]. For example, the hose and drogue can be disturbed

by the same factors that may disturb a conventional aircraft such as constant wind, wind gusts,

and turbulence. The drag acting on the drogue may be able to dampen these effects in light

conditions, but larger effects can lead to instability. Disturbances like the tanker’s wake and the

bow-wave effect are unique to aerial refueling. As the tanker flies through the air, it disturbs the

air behind it; this can be seen in Figure 1.5, which is taken from a study simulating the effects of

the tanker’s wake in helicopter aerial refueling. The topology in the figure shows aerodynamic

disturbances from the fuselage, propellers, wingtip, flaps, and refueling pod, all of which effect

the flight of the drogue behind the tanker. [12]

Figure 1.5: U.S. Coast Guard photo of C-130J with wake turbulence visible in clouds [12]

 5

In addition, the bow-wave effect can perturb the hose-drogue as the receiver flies close

enough to the drogue in order to couple. The bow-wave effect is caused by the aerodynamic

disturbance in-front of a fighter as it flies. This disturbance pushes away the drogue as the

receiver approaches and creates a difficult challenge for refueling pilots. [13-16]. An example of

this effect on a drogue’s flight can be seen in Figure 1.6.

 (a) (b)

Figure 1.6: Illustration of the bow-wave effect in AAR [16]: (a) drogue is displaced by approaching receiver due to

the bow-wave effect. (b) receiver reverses approach and drogue returns to natural position.

Another challenge in AAR is referred to as the hose whipping phenomenon, which occurs

when slack is created in the refueling hose as the receiver aircraft attempts to couple with the

drogue [17]. Unfortunately, there is very limited research in literature on the dynamics of the

hose and drogue during refuelling, as well as on the study of the response and control methods

when hose whipping is occurring. [18, 19]. Advanced research in drogue stabilization and

docking control could be very beneficial as it could reduce requirement from pilots and allow for

a less expensive transition to the commercial flight space.

1.4 Literature Review for Air to Air Refueling

1.4.1 Modeling and Dynamic Analysis of Hose-Drogue Systems

In existing literature several aspects of probe and drogue refuelling have been studied

This section will investigate the research and development done in this area. The first dynamic

model of the hose and drogue part of the refueling system in was made by Eichler in 1978. It

studied the effects of variable hose length, drogue drag, and drogue weight using a flight test of a

50 foot hose; some valuable findings and suggestions were made [20]. More modeling studies of

 6

AAR operations were made in the last two decades. For example, J. Yan et al. proposed a finite

element approach to hose modeling in 2004 with the intention of studying control and sensor

requirements for a future autonomous refueling system [21]. This approach simplified the

refueling hose as a single cantilever beam and found that increasing the damping effects on the

hose could, lead to faster settling of the drogue. Zhu et al. suggested a finite element method to

model the hose-drogue system with elastodynamic principals [22]. It was found that opting to

use a curved beam rather than a straight cantilever, resonance in the hose was not caused by

disturbance at the tow point, but instead by the tanker wake vortex. The hose-drogue will orbit

the wake vortex, as the hose was lengthened this disturbance became less severe [19]. Ro and

Kamman modeled the hose and drogue as a series of rigid links, attached by ball and socket

joints [23]. This method accounted for tanker wake, steady wind, and atmospheric turbulence.

Ro, et al. conducted research to study the dynamics of the hose-drogue during coupling with the

receiver [24]. It accounted for the bow-wave effect generated by the approaching receiver and

explored the effects of slack being created in the hose during coupling. This research also

showed that the drogue is displaced more by an approach from the side than one from straight

on. It was also observed that hose-whipping occurred during coupling when slack was formed

ion the hose and no reel take-up control was applied. Paniagua et al. presented a new model of

the hose and drogue, including often neglected effects such as the hoses internal bending

influence, downwash angle induced by the tanker, and the phase lag between the hose oscillation

and the aerodynamic forces [25]; this could be the most comprehensive dynamic model of a

hose-drogue to date.

1.4.2 Control and Stabilization of Hose-Drogue Models and Systems

Ro et al. proposed a concept of drogue stabilization using PID (proportional integral

derivative) control in [26]. Its objective was to address erratic drogue behaviour caused by the

fore-body or bow-wave effect of an approaching receiver aircraft. A linearized model of the

hose-drogue was used in the PID control to actively stabilize the drogues flight. A post-contact

tension control system for the hose is also applied in reducing the hose whipping phenomenon.

Kuk et al. took their previous work [23, 24, 26] into the physical domain by building a one-third

sized prototype of a drogue with control surfaces for use in wind tunnel testing. A 4-DOF, single

link model was used in these tests. A linearized state space model of the drogue with the control

 7

surfaces was applied in the feedback control. Dynamic testing results showed that an actively

stabilized drogue could reduce drogue motion by up to 90% [27–29]. Figure 1.7 shows some

photos of the prototype and its control surface arrangement.

(a)

(b)

Figure 1.7: Prototype drogue from [29]: (a) side view, (b) front view

Liu et al. presented a modeling approach based on a boundary control method [30]. It

extended Hamilton’s principle to model the flexible hose as a distributed parameter system

represented with partial differential equations. This model can accommodate varying speed, hose

length, and input constraints, while backstepping control was used to reduce the hoses vibration.

Simulation tests showed that this method could suppress hose vibration if control parameters

could be selected properly. Yuan et al. investigated the controllability of a drogue in a hose-

drogue refueling system in [31] and found that both the lateral and vertical displacement of the

drogue can be reduced significantly when using control surfaces and a conventional PID control

scheme. Fogeda et al. studied the dynamic response of the drogue under stabilization with

control surfaces [32]; several types of excitations were applied at the pod and to the environment,

and tested under different flight speeds. Test results showed that the controller could provide

expected performance, especially at higher speeds.

There are also several researchers aiming to solve the hose-whipping phenomenon using

reel take up systems driven by electric motors. For example, Cheng et al. developed a modified

tensator system with a permanent magnet synchronous motor (PMSM) that can limit the rate of

 8

take up acceleration and reduce vibration and remove the hose-whipping in testing [33]. Su and

Wang suggested a non-singular fast terminal sliding mode control method in [34] using a PMSM

as the reel-take up, rather than relying on the tensator. Satisfactory results were obtained from

flight simulation data.

1.5 Intelligent Control in Hose-Drogue Refueling Systems

1.5.1 Overview on Reinforcement Learning

Traditional industrial controllers such as PD (proportional derivative), PI (proportional

integral) or PID are mainly used to manipulate linear systems or some non-linear systems via

proper linearizing strategies. They are relatively simple and easy to implement but they may not

provide satisfactory performance for non-linear systems, especially under time-varying operating

conditions [35]. A hose-drogue is a nonlinear system and subject to variable operating conditions

in flight. It is difficult for these classical controllers to provide satisfactory performance as it is

difficult to tune the related gains to accommodate for time-varying flight conditions. For this

reason, advanced soft computing techniques such as machine learning, neural networks, fuzzy

logic and their integrated neuro-fuzzy (NF) techniques may be used in hose-drogue system

control [36-38].

Machine learning is a process to train and optimize a reasoning system using training

data. For example, a typical supervised backpropagation training routine of a neural network

involves first a forward propagation of the network from the input layer to the output layer. Then

in the backward pass, by comparing the theoretical outputs with the desired outputs, neural

network parameters such as link weights and node biases are optimized by using an appropriate

training algorithm to minimize the mapping errors [39]. Neural networks mimic biological brain

reasoning through parallel-distributed processing neurons for decision-making [40]. The main

advantage of neural networks is that they can learn and be trained in order to achieve a desired

input-output mapping; however, they have the drawbacks of using a black box decision-making

and that convergence may not be guaranteed [41].

Fuzzy logic extends classic logic only allows a conclusion that is true or false, to decision

making in situations where there is imprecise or vague information. For example, a person

deciding what temperature they feels may be based on many imprecise factors, such as room

 9

temperature, humidity, amount of clothing worn, and heart rate. Despite being unable to

accurately measure these factors a person can determine a general idea of what they are

experiencing. Several functions can be used to model each of these factors and logical operators

can be used to determine a value of how true a response may be. Fuzzy reasoning allows for a

conclusion that is somewhere between true and false, which can provide a better representation

of a similar decision made biologically [37, 38]. The main problem with fuzzy logic is that it

cannot modify its functions in response to feedback in order to improve responses.

A more advanced approach is the use of NF technique, which is an integration of the

merits of neural networks and fuzzy logic and could be more effective in reasoning. This allows

for fuzzy reasoning to be applied to inputs, while hidden layers of the network can be trained to

provide a desired output that correlates to a given fuzzy input [41]. In the forward pass, inputs

are fed through fuzzy rules to determine the degree of membership for each fuzzy rule set, which

is then passed through the networks nodes to give an output. Using an appropriate training

algorithm, the NF system parameters can be optimized properly. A NF technique can provide the

network to capture complex relationships between the input and output variables and make more

accurate predictions than both neural network- and fuzzy logic-based systems.

Reinforcement learning is a more advanced training approach, which can expand on these

general supervised training concepts and excel in environments where an optimal action policy is

unknown and training data is difficult or impossible to generate. In general, a reinforcement

learning agent takes actions in a complex environment and receives a reward based on the

success of that action. For example, the agent generates a decision-making policy 𝜋, which can

map states to a probability distribution of actions [42]. This policy is shown in Equation ((1.1),

where 𝑆𝜋 is the state space and 𝐴𝜋 is the action space.

 𝜋: 𝑆𝜋 → 𝑃(𝐴𝜋) (1.1)

Different from the classical training processes, reinforcement learning uses a Markov

Decision Process rather than training data. Consider a NF system as an example. At a given state

and at time moment 𝑡, 𝑠𝑡 , the actor can take any action 𝑎 that is made at the current state, which

will lead to a new state at 𝑡 + 1, or 𝑠𝑡+1 . The probability of state 𝑠𝑡 changing to state 𝑠𝑡+1 is

represented by 𝑃(𝑠𝑡 , 𝑠𝑡+1) and the reward received for this state change is 𝑅(𝑠𝑡 , 𝑠𝑡+1). A

policy, 𝜋 must be developed to incentivise desired performance. This policy 𝜋 will map the state

 10

space to the action space; it is chosen to maximize the sum of the rewards generated over a series

of decisions. The function to be optimized is referred to as a value function 𝑉𝜋, as illustrated in

Equation 1.2; it uses a discount factor 𝛾 (usually close to 1) to incentivise current decisions over

future decisions [43, 44]. A policy that is made by maximizing Equation (1.2) is the optimal

policy:

𝑉𝜋 = ∑[𝛾𝑖−1𝑟𝑖

∞

𝑖=1

| 𝑠, 𝜋] (1.2)

 In typical applications, Equation (1.2) takes the form in Equation (1.3), which is known

as the sum of discounted future rewards:

𝑅𝑡 = ∑[𝛾𝑖−𝑡𝑟(𝑠𝑖,𝑎𝑖)]

∞

𝑖=1

 (1.3)

The goal of reinforcement learning is to maximize the expected return from the starting

distribution represented in Equation (1.4) is the goal of reinforcement learning.

 𝐽 = [𝑅1|𝑠𝑡 , 𝑎𝑡] (1.4)

1.5.2 Literature Review for Reinforcement Learning

 Reinforcement learning has been used for system control in literature. For example, Mnih

et al. from Google DeepMind proposed the Deep-Q Network reinforcement learning algorithm in

order to learn a policy to play Atari games from raw pixel data [45, 46]. The deep-Q network

was able to develop strongly performing policies by taking only the raw pixel data and score

from various Atari games. Silver et. al used reinforcement learning to master traditionally

complex games such as Go and Chess [47, 48]. Previously these games were thought to be some

of the most challenging games for artificial intelligence to learn, due to an extremely large search

space and complex evaluation of board position and moves. Silver et al. also suggested a

Deterministic Policy Gradient algorithm for determining the policy gradient of an action-value

function, which could provide efficient performance and outperformed general stochastic

methods [49]. Lillicrap combined the Deep-Q Network and Deterministic Policy Gradient and

created the Deep Deterministic Policy Gradient (DDPG) algorithm, for continuous control [42].

 11

It is shown that the DDPG algorithm outperforms classical controllers such as PID in performing

different motor control and tracking control [50–52]. Gheisarnejad and Khooban developed a

PID controller based on the DDPG algorithm that acted as a supplementary controller to adapt to

uncertainties and disturbances; test results showed that the proposed controller outperformed

traditional PID control methods [53]. Fujimoto et al. applied a pair of critics to address function

approximation errors in actor critic methods with smaller outputs [54]; test results showed that it

could limit overestimation and improve the DDPG algorithms performance. Tobin et al.

addressed the challenges of applying an agent to a real-world problem that was training on a

simulated version of that environment with domain randomization [55]. This introduced random

variation in images taken by a virtual camera in a simulation when training an agent to detect

objects from the images. When the agent was applied to a real camera, the agent was able to

detect real objects due more accurately to the increased uncertainty during training.

1.6 Objectives of this Work
The first objective of this work is to model the AT-802 and the hose-drogue system. A

model of the aircraft will be developed and then a simulation of the hose-drogue in flight will be

created. This analysis will aid in investigating the potential of the medium sized AAR tanker,

AT-802, as a tanker, and providing a better understanding of the drogues flight-characteristics

behind the AT-802. Results will also be used to verify the controllability of a hose-drogue

system deployed by the aircraft.

The second objective is to propose a new control technique to stabilize a hose-drogue

system in flight, using a reinforcement learning algorithm. As we have no hose and drogue

prototype systems available for real testing, this research will be conducted using a smart

structure workstation in our research lab. A new technique based on reinforcement learning will

be proposed for flexible structure vibration control under varying dynamic conditions. Domain

randomization is applied to the state-space model of the smart structure to train the DDPG

controller and to increase control convergence. The effectiveness of the proposed reinforcement

learning DDPG controller will be examined by systematic experimental tests and compared to

other related controllers.

 12

1.7 Thesis Structure
The following chapters of this work are organized by areas of focus for research related

to aerial refueling:

Chapter 1 introduces the topics of focus of the thesis and includes a literature review. Research

objectives and thesis structure is outlined.

Chapter 2 discusses the primary design and modeling of an aerial refueling from the Air Tractor

802 airframe. The A dynamic simulation of a hose-drogue system is performed and the AT-802

Airframe is modeled and simulated.

Chapter 3 lays out the proposed deep deterministic policy gradient algorithm and the related

applied reinforcement learning concepts. The sim-to-real gap problem is discussed and the

technique of domain randomization is proposed as a solution to this problem for this application.

Chapter 4 proposes the experimental setup used to approximate a hose and drogue as a flexible

structure. The designed PD, NF, and DDPG controllers are introduced. System modeling of the

smart structure is performed to create a simulation environment for the reinforcement learning

agent to be trained in. Selected hyperparameters of the DDPG training algorithm are provided.

Chapter 5 examines the effectiveness of the proposed DDPG control technique experimentally

using the flexible structure workstation. The tests are undertaken to simulate variable dynamic

conditions. The performance of the proposed DDPG technique is compared with the related

control techniques.

Chapter 6 summaries the findings from this work and draws conclusions from the analysis of test

data. It also includes some future work for the improvement to the control technique, training

algorithm and advanced development.

 13

Chapter 2 – Modeling and Analysis
Hose-drogue system modeling is performed in this Chapter in order to determine the

feasibility of operating the AAR using a small tanker like the AT-802. Some considerations

include the length of hose, the packaging constraints and aircraft weight envelope. Currently,

there are no good quality models of the AT-802 in literature. Consequently, it is valuable to

create to a 3D model to support the related research and development. A 3D model of the AT-

802 FuelBoss, a hose-drogue dynamic model and a weight envelope model are created.

2.1 AT-802 3D Model
The model of the AT-802 will be created in Autodesk Inventor based on drawings from

AirTractor as well as measurements taken on-site. It will be a reference model and used in

preliminary computational fluid dynamic (CFD) testing to represent the AT-802. Figures 2.1 and

2.2 show a comparison between a photo of a two-seat AT-802 tanker and a render of the model

produced for this project. Some slight differences due to modeling complexity can be noticed,

such as small differences in the cockpit and wing tip shape. These differences would not affect

the accuracy of the modeling. The larger belly tank for carrying auxiliary fuel can be seen on the

model in Figure 2.2, which can be seen more when comparing Figure 2.3 and Figure 2.4.

Figure 2.1:AT-802 photo – Front isometric view [56]

 14

Figure 2.2: AT-802 model - Front isometric view

Figure 2.3: AT-802 photo - Rear underside view [57]

Figure 2.4: AT-802 model - Rear underside view

 15

 Pictured in Figure 2.5 is a belly tank that is installed on the AT-802 to add auxiliary fuel

capacity. This version of the AT-802 is called the FuelBoss. The fuel load and off-load ports are

covered by a long cowling, which can be seen on the underside of the model in Figure 2.4. This

differs slightly from the comparison photo used in Figure 2.3, which is from a firefighting model

with a water-dump system.

Figure 2.5:AT-802 FuelBoss belly tank

 Figures 2.6-2.9 show the top, front, and side views of the 3D model next to the Air

Tractor drawing for comparison. These examples can show the similarities between the 3D

model and the aircraft in terms of body shape and aircraft profile. As illustrated in Figure 2.6 and

Figure 2.7, the wings are longer on the model, this is due to the length of the wings on the AT-

802 that the model was based on.

 16

(a)

(b)

Figure 2.6: AT-802 model - Top view: (a) model, (b) drawing

 17

(a)

(b)

Figure 2.7: AT-802 model - Front view: (a) model, (b) drawing

 18

(a)

(b)

Figure 2.8: AT-802 model – Side view: (a) model, (b) drawing

As can be seen in Figure 2.6, Figure 2.7, Figure 2.8 proportions of the 3D model are very

close to the real-life airframe. To gain a better understanding the wake behind the AT-802, the

model will be simulated in computational fluid dynamics software. The wings in the model are

modified to match a flap setting of 10 degrees, then the model is placed in a large volume of air

moving at 110 knots horizontally. This simulates the plane moving through still air at the same

speed, with correct settings for refueling. The solution converged after 286 iterations and results

showing the velocity magnitude of the air around the aircraft from the side and rear are shown in

Figures 2.9 and 2.10 respectively. Results are in the form of a heat map, with warmer colours

representing a higher velocity magnitude.

 19

Figure 2.9: AT-802 side profile of CFD analysis (velocity magnitude)

Figure 2.10: AT-802 rear profile of CFD analysis (velocity magnitude)

Results from the CFD test showed a homogenous wake behind the AT-802 with no low

or high velocity areas. Orange coloured areas represent a speed around 105-115 knots which is

the expected speed for AAR operations. The area with the most deviation from the expected air

Approximate

drogue

location

 20

speed is near the center and which is slowed down to around 90 knots. This is due to the wake

from the aircraft and leads to an airspeed reduction of around 18%. This area is also upwards

from the location the drogue would be expected to sit in during refueling operations, which is

denoted by the blue triangle in Figure 2.10. Test results show that the wake behind the AT-802 is

not very turbulent and that a drogue in flight behind the plane would be unlikely to behave

unpredictably.

2.2 Center of Gravity (CoG) Considerations and Weight Envelope Modeling
Considering packaging of a refueling system into a FuelBoss, it is important to model the

impact of weight and balance. The model will be created to analyze effects of loading on the

position of the center of gravity and the weight envelope. Table 2.1 features sample loadings for

both an acceptable and unacceptable take off condition. This table lists the major loads on the

airframe, and the engine and body centers of gravity provided by the manufacturers. The station

is listed beside the load for each component; the station is measured in inches between the center

of the load and the datum of the airplane. There is no set location for a datum on the airframe,

which is a reference point used by designers from which load location is measured. Typically,

towards the front of the airplane from the datum is a negative measurement and towards the rear

is a positive measurement. The CoG is calculated by the moment method about a reference. The

loading differences between the presented acceptable and unacceptable cases are the position of

the refueling pod and a ballast in the engine compartment.

Table 2.1: Sample AT-802 refueling system loading

 Acceptable Sample Loading Unacceptable Sample Loading

 Load (lbs) Station (in) Load (lbs) Station (in)

Main Wheels 6116 -10.3 6116 -10.3

Tail Wheel 1064.2 275.5 1064.2 275.5

Pilot 170 84 170 84

Observer 170 123 170 123

Fuel 400 33 400 33

 21

Hopper Payload 5049 20.5 5049 20.5

Aux Tank Pay. 2431 16 2431 16

Wind. Wash 22 -27 22 -27

Refueling Pod 100 160 100 220

Drogue Shroud 8 218 8 218

Drogue 10 276 10 276

Engine Ballast 49 -76 0 -76

Total 15589.2 15540.2

CoG (inches from datum) 28.0” 28.8”

Figure 2.11 and Figure 2.12 provide a graphical representation of these weights using a

weight and balance model. Figure 2.11 shows the acceptable loading case, in which a refueling

pod is mounted underneath the second seat of the aircraft. This loading case requires an extra

49lb ballast in the engine compartment to improve the safety during take-off and landing, but the

overall weight should not be over 16000lbs. From calculations, the CoG is located 28 inches

behind the datum. In order to demonstrate an unacceptable loading case, the reel is moved 5 feet

aft of where it was originally located. Figure 2.12 illustrates the effects on the aircraft after the

ballast was removed. These changes have resulted in the variation of 28.8 inches in the CoG,

which falls outside of the weight envelope threshold at a weight near 16000 lbs.

 22

Figure 2.11: AT-802 weight envelope model - Acceptable loading condition: (a) simplified CoG diagram. (b)

graphical representation of modified CoG position

(a)

(b)

 23

Figure 2.12: AT-802 weight envelope model - Unacceptable loading condition: (a) simplified CoG diagram. (b)

graphical representation of modified CoG position

Figure 2.163 shows the center of gravities from Figures 2.11 and 2.12 on the weight

envelope for safe AT-802 operation. It can be observed that the AT-802 loaded with a refueling

system is very close to being outside of the weight envelope. Therefore, this issue must be taken

carefully during system development to ensure the aircraft is within the allowed weight envelope

when fully loaded for take-off. Suggestions for possible modifications include moving the belly

tank forward and adding components of the refueling system to balance the weight, so as to

balance the CoG.

(a)

(b)

 24

Figure 2.13: Weight envelope – plot of both acceptable and unacceptable conditions

2.3 Hose Drogue Dynamic Model
In order to gain a better understanding of the hose-drogue dynamics under aerodynamic

flight conditions, a dynamic model will be developed in this section. This modeling will be an

improved one from a simplified model in [23]. The simplified models include with the following

assumptions: a static drag for the drogue and the constant variables in air density, drag

coefficients, wind speed, wind direction, and initial conditions. In general modeling approaches,

the hose is usually modeled as link units trailing from the tanker to the drogue attached at the

other end of the hose. Hose links are connected by frictionless spherical joints that are modeled

as lumped masses. The drogue is usually modeled as a lumped mass with a constant drag force

acting on the free end of the hose. Figure 2.14 shows the reference frame used in this model 𝐹𝑊,

as well as the hose-drogue treated as linked lumped masses.

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

25 27 29 31 33 35

To
ta

l W
ei

gh
t

[l
b

s]

CoG Position (Distance Behind Datum [in])

CoG vs Total Weight
C.G. Envelope
Acceptable Condition
Unnacceptable Condition

 25

Figure 2.14: Side view of reference frame and lumped mass model [23]

The position of any lumped mass relative to the inertial frame can be characterized by

Equation (2.1) and Equation (2.2) shows the position of lumped masses, relative to the previous

linked mass.

𝑝𝐾′ = 𝑝𝐽′ + 𝑝𝐾 (2.1)

𝑝𝐾 = −𝑙𝐾(𝑐𝑜𝑠𝜃𝐾1𝑐𝑜𝑠𝜃𝐾2𝑤1 + 𝑠𝑖𝑛𝜃𝐾2𝑤2 − 𝑠𝑖𝑛𝜃𝐾1𝑐𝑜𝑠𝜃𝐾2𝑤3) (2.2)

where 𝜃𝐾1 and 𝜃𝐾2 represent the angles of link K in the vertical and horizontal

directions, respectively, when viewing the drogue from behind. The unit vectors of the tanker

frame 𝐹𝑊 are given by 𝑤1 , 𝑤2, and 𝑤3, which represent the X direction (roll axis of tanker), Y

direction (pitch axis of tanker), and Z direction (yaw axis of tanker). Figure 2.15 displays the

convention used to refer to any link, with link K being the currently observed link, link J being

the link beside link K closer to the tanker, and link L being the link next to K that is closer to the

drogue.

Drogue

Tanker

 26

Figure 2.15: Link and lumped mass notation for any link K [23]

The derivatives of the link position vector, 𝑝𝑘, are demonstrated in Equations (2.3) and

(2.4), whereas the velocity and acceleration of lumped masses are represented by Equations (2.5)

and (2.6), respectively.

𝑝̇𝐾 = ∑(𝑝𝐾,𝜃𝐾𝑖

𝜃̇𝐾𝑖) + (𝜔𝑊 × 𝑝𝐾)

𝑖

 (2.3)

𝑝̈𝐾 = ∑(𝑝𝐾,𝜃𝐾𝑖

𝜃̈𝐾𝑖)

𝑖

+ ∑(𝑝𝐾,𝜃𝐾𝑖
𝜃̇𝐾𝑖) + (𝛼𝑊 × 𝑝𝐾)

𝑖

+ (𝜔𝑊 × 𝑝̇𝐾) (2.4)

 𝑣𝐾 = 𝑣𝐽 + 𝑝̇𝐾 (2.5)

 𝑎𝐾 = 𝑎𝐽 + 𝑝̈𝐾 (2.6)

The angular velocity and acceleration of any link relative to the tanker is given by 𝜔𝑊

and 𝛼𝑊, respectively. The length of each link is −𝑙𝐾. If accelerations of all the lumped masses

are obtained, the link orientation angles and their time derivatives, as well as the angular

momentum of the frame 𝐹𝑊. Equation (2.7) is used to compute for the second derivatives of all

link angles:

𝜃̈𝐾𝑗 = 𝑝𝐾,𝜃𝐾𝑗

 ∗
[𝑎𝐾 − 𝑎𝐽 − ∑ (𝑝̇𝐾,𝜃𝐾𝑖

𝜃̇𝐾𝑖)𝑖 − (𝛼𝑊 × 𝑝𝐾) − (𝜔𝑊 × 𝑝̇𝐾)]

(𝑝𝐾,𝜃𝐾𝑗
⋅ 𝑝𝐾,𝜃𝐾𝑗

)
, 𝑗 = 1, 2 (2.7)

 27

 Next the equations of motion can be represented by Equations (2.8) and (2.9), where 𝑄⃑ 𝐾

is the external force vector acting on the Kth lumped mass, 𝑇⃑ 𝐾 is the tension vector in the Kth

link, and 𝑛𝐾𝑖 is the unit vector in the frame of the link K. Substituting Equation (2.8) into

Equation (2.7) gives a set of tension equations for each link, as represented in Equation (2.10).

This equation also can be represented in a matrix form as in Equation (2.11), where Equation

(2.10) is used to fill in the matrices of [Γ] and {𝑞}, with the exceptions being given by Equation

(2.12)

𝑎𝐾 =

𝑄⃑ 𝐾 + 𝑇⃑ 𝐾 + 𝑇⃑ 𝐿
𝑚𝐾

= 𝜇𝐾(𝑄⃑ 𝐾 + 𝑇⃑ 𝐾 + 𝑇⃑ 𝐿) (2.8)

𝑑 ((𝑝𝐾 ⋅ 𝑝𝐾) = 𝑙𝐾

2)
2

𝑑2𝑡
 ⇒ (𝑎𝐾 − 𝑎𝐽) ⋅ 𝑛𝐾1 = 𝑙𝐾𝑛̇𝐾1

2
(2.9)

 −𝜇𝐽(𝑛𝐽1 ⋅ 𝑛𝐾1)𝑇𝐽 + (𝜇𝐽 + 𝜇𝐾)𝑇𝐾 − 𝜇(𝑛𝐿1 ⋅ 𝑛𝐾1)𝑇𝐿 = 𝑙𝐾𝑛̇𝐾1
2 + (𝑢𝐽𝑄𝐽 − 𝑢𝐾𝑄𝐾) ⋅ 𝑛𝐾1 (2.10)

 [Γ]{𝑇} = {𝑞} (2.11)

 Γ11 = 𝜇𝐾 , Γ12 = −𝜇𝐾(𝑛𝐿1 ⋅ 𝑛𝐾1),

Γ𝐾(𝐾−1) = −𝜇𝐽(𝑛𝐽1 ⋅ 𝑛𝐾1), Γ𝐾𝐾 = 𝜇𝐽 + 𝜇𝐾 ,

𝑞𝐾 = 𝑙𝐾𝑛̇𝐾1
2 − 𝜇(𝑄⃑ 𝐾 ⋅ 𝑛𝐾1) + (𝑎0 ⋅ 𝑛𝐾1)

(2.12)

where 𝜇𝐾 is the reciprocal of the mass for the Kth link. The external force acting on any lumped

mass 𝐾 can be represented by Equation (2.13).

𝑄⃑ 𝐾 = 𝑚𝐾𝑔 +

1

2
(𝐷⃑⃑ 𝐾−1 + 𝐷⃑⃑ 𝐾) (2.13)

where 𝐷𝐾 is the aerodynamic force acting on the Kth lumped mass and 𝐷𝑑 is the drag of the

drogue. The external force acting on the final lumped mass, or the drogue is given by Equation

(2.14).

 28

𝑄⃑ 𝐷 = (𝑚𝑁 + 𝑚𝑑𝑟𝑜𝑔𝑢𝑒)𝑔 +

1

2
𝐷⃑⃑ 𝑁 + 𝐷⃑⃑ 𝐷 (2.14)

 The following algorithm summaries the operation procedures for system simulation using

MATLAB:

1. Recursively compute the position and velocity of each lumped mass using Equations

(2.1) - (2.4).

2. Compute the external force vectors QK for each lumped mass using Equations (2.14) and

(2.15).

3. Fill the Γ matrix and q vector using Equation (2.12) and solve [Γ]{𝑇} = {𝑞} to find the

link tension vector {T}.

4. Calculate the accelerations of each lumped mass, using Equation (2.8).

5. Compute the second derivative of each link angle, using Equation (2.7).

6. Estimate the link angles and their derivatives for the next time step using numerical

integration.

7. Repeat Steps 1-6 to simulate dynamic response of a hose-drogue deployed in flight

conditions behind an AT-802.

In simulation, the hose is 30m long with 10 links. The simulation runs until it is completed

when drogue position converges within a set limit of 1 mm among three steps. An example of

simulation results can be seen in Figure 2.16.

 29

a)

b)

 30

c)

Figure 2.16: Results for 10 link test: a) 3d representation of simulation, b) lateral and vertical trajectories of drogue,

c) drogue position (viewed from the rear)

The results show that the drogue tends to stabilize at a steady position when there is no

turbulence. The drogue must be stable in order for refueling to proceed; therefore, control of the

drogue would be a benefit to aid pilots in refueling. As it is at the initial stage of this AAR

project, we have no hose-drogue prototypes for system control testing. A flexible beam structure

in our lab will be used as a substitute for primary flexible hose system control under variable

dynamitic conditions.

 31

Chapter 3 – Development of the Reinforcement Learning Controller

3.1 Review of the Deep Deterministic Policy Gradient Strategy
Reinforcement learning control methods possess characteristics that make them attractive

for drogue stabilization applications when compared to other areas of control design such as

classical control and intelligent control. Reinforcement learning has been shown to excel at

adaptation to changing environments [58], in the context of AAR, aerodynamic effects such as

turbulence and wake are commonplace and change suddenly; an adaptable controller will better

handle these conditions. Classical controllers are typically model-based and may struggle to

adapt, whereas intelligent controllers, while flexible may require more human input to adapt

from new data. Rapidly changing dynamic conditions while a drogue is in flight can make

stabilization a challenge; reinforcement learning control implements exploration techniques that

can be beneficial in these chaotic environments. Exploration during the training of a

reinforcement learning controller can lead to the development of an action policy with unique

strategies to combat these issues [59]. Classical and intelligent controllers often rely on

predefined control rules and models, without the ability to discover less-obvious solutions.

Potential environmental variations in AAR are unpredictable and difficult to consider in

modeling or logical rules, by contrast reinforcement learning models can be expanded to

consider more input features such as wind velocity and turbulence intensity without massively

increasing controller design complexity [60]. A classical controller may require extensive

redesign to accommodate more input variables and the models used may not allow for this

increased complexity; intelligent controllers would require manual feature tuning to enable this

and a vast collection of training data spanning different conditions to optimize for additional

inputs.

There are several reinforcement learning strategies for control applications such as the

Trust Region Policy Optimization algorithm, the Model-Based Policy Optimization algorithm,

and the DDPG algorithm. While trust region methods are effective, they are very complex and

computationally intensive to train successfully, mainly due to the application of constraint

optimization [61]. Model-based methods can be effective while remaining sample and

computationally efficient; the drawback is that a system model is required to learn optimal

decision-making policy [62]. The DDPG meanwhile, is complex, but not so much as to be

 32

computationally difficult to train while producing results that are very promising for control

applications [63]. Also, the DDPG does not require a learned system model to be optimized [42].

In this work a reinforcement learning control method based on the deep deterministic policy

gradient (DDPG) will be adopted for drogue system control. To investigate the merits of the

proposed method, it is compared with a classical PD controller and an intelligent NF controller.

The DDPG technique uses deep-Q networks in conjunction with the deterministic policy

gradient algorithm. The deep-Q network uses multiple densely connected hidden layers to create

more complex interpretations of inputs [46]. A deep-Q network is model-free, or the exact policy

𝜋 and reward 𝑅 functions are formulated by learning [54] in order to approximate the optimal

action-value function 𝑄∗(𝑠, 𝑎):

 𝑄∗(𝑠, 𝑎) = max(𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯+ 𝛾𝑛𝑟𝑡+𝑛 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋]) (3.1)

Equation (3.1) represents the maximum sum of rewards, for a given state and action,

where 𝑟𝑡 is the reward at each time step 𝑡, and 𝛾 is the reward discount, and 𝔼 represents the

expected value of a finite number of random outcomes. The reward discount is applied to

incentivise actions made sooner rather than those made later. Equation (3.1) is also known as the

Bellman equation [64]. The applications of deep-Q networks for control are limited in that they

can only generate an action function for systems with discrete action, and state spaces cannot be

used for continuous control applications. To overcome these limitations, the deep-Q network is

combined with an actor-critic method such as the deterministic policy gradient algorithm. An

actor-critic algorithm uses two parallel neural networks (NNs): the actor, 𝑢(𝑠|𝜓𝑢), which has

NN parameters represented by 𝜓𝑢, and the critic NN, 𝑄(𝑠, 𝑎|𝜓𝑄), where 𝜓𝑄represent the NN

parameters [63]. The actor NN takes the current state as inputs and generates an action output.

The critic NN takes the current state and the actor action as inputs, and outputs a reward value

referred to as a Q-value. Equation ((3.2)) indicates that the actor is updated by applying the chain

rule to the expected return from the start distribution, 𝐽.

 ∇𝜓𝑢
𝐽 ≈ 𝔼 [∇𝜓𝑢𝑄(𝑠, 𝑎|𝜓𝑄)|𝑠=𝑠𝑡,𝑎=𝑢(𝑠𝑡|𝜓

𝑢
)]

 = 𝔼[∇𝑎𝑄(𝑠, 𝑎|𝜓𝑄)|𝑠=𝑠𝑡,𝑎=𝑢(𝑠𝑡) ∇𝜓𝑢𝑢(𝑠|𝜓𝑢)|𝑠=𝑠𝑡
]

(3.2)

where ∇𝜓𝑢 and ∇𝜓𝑄 represent the gradients of the parameters for the actor and critic NNs

respectively, and ∇𝑎 is the gradient of the action output from the actor NN.

 33

Equation (3.2) has been proven to be the gradient of the policy’s performance, or the

policy gradient [49]. The deterministic policy gradient integrates over the state space only, using

much less computational power, and yielding the expected gradient of the approximated action-

value function, represented by the critic NN. The DDPG algorithm is an integration of

deterministic policy gradient algorithm with deep-Q networks; allowing the DDPG to learn in

continuous action and state spaces, while taking advantage of the deep-Q network’s ability to

approximate non-linear functions as NNs.

3.2 Actor and Critic Networks
 In reinforcement learning, the optimal action-value function, or the Q-function,

represents the expected cumulative reward of taking a particular action for a given state and

following an optimal policy thereafter. While the Q-function can be directly optimized to find

the optimal policy, it can be computationally intensive or infeasible for large state and action

spaces [65]. The critic NN is introduced to the DDPG technique to estimate the value function of

a state-action pair, which can provide an approximation of the expected cumulative reward that

an agent can achieve. The output of the critic NN is used by the agent's policy to update its actor

NN. Specifically, the actor NN is updated in the direction that increases the expected cumulative

reward, as estimated by the critic NN. This is done by minimizing the loss function given by:

 𝐿(𝜓𝑄) = 𝔼[(𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑦𝑡|𝜓
𝑄)2] (3.3)

where 𝐿(𝜓𝑄) represents the expected loss of the output of the critic 𝑄(𝑠𝑡, 𝑎𝑡), at the current state

𝑠𝑡 and action 𝑎𝑡, parameterized by 𝜓𝑄.

𝑦𝑡 can be determined by:

 𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, (𝑢(𝑠𝑡+1)|𝜓
𝑢)|𝜓𝑄) (3.4)

where 𝑟(𝑠𝑡, 𝑎𝑡) is the returned reward at the current state 𝑠𝑡 and action 𝑎𝑡, 𝛾 is the discount factor

for future rewards, and 𝑄(𝑠𝑡+1, 𝑢(𝑠𝑡+1|𝜓
𝑢)|𝜓𝑄) is the output given by the critic NN

parameterized by 𝜓𝑄at the next state 𝑠𝑡+1 and at the action produced by the actor NN

(𝑢(𝑠𝑡+1)|𝜓
𝑢
) parameterized by 𝜓𝑢 at the next state 𝑠𝑡+1.

By optimizing the value function, the agent can indirectly optimize its policy without

having to compute the optimal action-value function directly [42]. In the DDPG technique this

 34

value function is approximated by the critic NN and is optimized through the training process.

However, reinforcement learning NNs have limitations such as slow divergence and instability

when approximating non-linear functions such as Q-functions [66]. This can be corrected with

two methods using off-policy training and the implementation of experience replay [67], as

discussed in the following section

3.2 Implementation of the DDPG Algorithm

3.2.1 Off-Policy Training

Off-policy training uses additional NNs known as target networks. Target networks are

initially created as copies of the actor and critic NNs. These target NNs are updated over each

time step; the actor and critic NNs are updated using the error from the output of the target NNs

by [68]:

 𝜓′ ← 𝜏𝜓 + (1 − 𝜏)𝜓′ (3.5)

where 𝜓 represents the parameters of either target network and 𝜏 is the update rate of the target

networks. 𝜏 ⸦ (0, 1) is a typically small parameter as to change the targets slowly each time step

to improve system stability when estimating non-linear functions.

The off-policy training can improve stability because the learning does not depend on the

current policy and is also isolated from policy fluctuations. Furthermore, off-policy training

allows for more efficient exploration of the state-action space. On-policy learning has limitations

in exploring actions that are consistent with the current policy, which can lead to an inefficient

search for optimal behavior. Conversely, off-policy learning can learn from experiences outside

of the currently learned policy and facilitate the training operation.

3.2.2 Experience Replay

Experience replay is an algorithm that stores and reuses past experiences or transitions of

an agent from its actions with an environment; it can break the temporal correlations between

consecutive experiences and reuse them for learning. Inclusion of experience replay has been

demonstrated to improve stability and efficiency in reinforcement learning [69]. Experience

replay stores a buffer of previous states, actions, and rewards, as represented by:

 35

 𝜘𝑡 ∶= (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) (3.6)

where 𝜘𝑡 represents an experience replay sample at time step 𝑡, which includes the current state,

action, and returned reward 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, respectively as well as the next state 𝑠𝑡+1.

For each time step, the state, action, reward, and next state are stored in a large buffer.

During training this buffer is sampled randomly in batches to avoid overfitting to the most recent

experiences. Typically, the batching method employed is called minibatching, which is not the

full buffer but rather a sample of 𝑁 transitions. This makes it more computationally efficient and

introduces more diversity to the training process [70]. Once the buffer is full, the oldest sample is

replaced by the newest after each sample. Using off-policy training for the DDPG, the buffer will

be large, and uniformly sample batches from this buffer allow learning across a set of

uncorrelated transitions. The buffer acts similarly to training data but, rather than being labeled

and provided to the algorithm, it is created and stored as the actor takes actions within the

environment [66, 67]. This does not require external training data, but only an environment the

agent can act in.

3.2.3 Gradient Descent using the Adaptive Moment Estimation Optimization Algorithm

The Adaptive Moment Estimation (ADAM) algorithm is a stochastic gradient descent

algorithm that requires only the first order gradients and has a low memory requirement. It

computes adaptive learning rates for all parameters, while keeping an exponentially decaying

average of both the first and second order gradients [67]. ADAM has been applied for many

reinforcement learning applications [68].

The process of the ADAM algorithm begins with initializing the first moment vector

𝑚̂0 ← 0, the second moment vector 𝑣0 ← 0, and time step 𝑡 = 0. The function 𝑓(𝜓) is assumed

to be stochastic and differentiable with respect to its parameters. In this case because we use

randomly sampled minibatches, the stochasticity requirement is satisfied. Equation (3.7) gives

the gradient ∇𝑡, which is a vector of partial derivatives of the output of the function at time step

𝑡.

 36

 ∇𝑡 = ∇𝜓𝑓𝑡(𝜓) (3.7)

where 𝑓(𝜓) represents the generalized objective function to be minimized and 𝜓 is the

generalized NN parameters. This is a generalized form, for example to find the gradient of the

actor output ∇𝑎, the equation would take the form given by:

 ∇𝑎 = ∇𝜓𝑢(𝑢(𝑠𝑡+1)|𝜓
𝑢) (3.8)

where ∇𝜓𝑢 is the gradient of the parameters for the actor NN, (𝑢(𝑠𝑡+1)|𝜓
𝑢
) is the action produced

by the actor NN, parameterized by 𝜓𝑢 at the next state 𝑠𝑡+1.

Next, the exponential moving averages of the gradient 𝑚̂𝑡, and the squared gradient 𝑣𝑡,

are updated as in Equation (3.9).

 𝑚̂𝑡 = 𝛽1𝑚̂𝑡−1 + 𝑔𝑡(1 − 𝛽1)

𝑣𝑡 = 𝛽2𝑚̂𝑡−1 + 𝑔𝑡(1 − 𝛽2)
2

(3.9)

where, 𝛽1 and 𝛽2 are hyperparameters; by trial and error 𝛽1 is set to 0.9 and 𝛽2 is set to 0.999.

The moving averages 𝑚̂𝑡 and 𝑣𝑡 estimate the mean and the uncentered variance of the

parameter gradient, respectively. This tracks past gradient behaviour for each parameter and

allows for the parameter learning rate to be adjusted accordingly. A noisy gradient may require a

low learning rate to ensure excessively large steps are not taken, whereas lower gradient variance

for a parameter can enable a higher learning rate to achieve faster convergence. As they are

initialized as vectors of zeros, the estimates contain biases corrected by:

𝑚̂𝑡′ =

𝑚̂𝑡

(1 − 𝛽1)
 (3.10)

𝑣̂𝑡′ =

𝑣𝑡

(1 − 𝛽2)
 (3.11)

where 𝑚̂𝑡′ and 𝑣𝑡̂′ are the respective bias corrected moving averages. Then, the parameters are

updated by:

 37

𝜓𝑡 = 𝜓𝑡−1 −

𝜚𝑚̂𝑡′

√𝑣𝑡̂′ + 𝜍
 (3.12)

where 𝜚 represents the learning rate and 𝜍 is a small constant selected to avoid division by zero,

respectively.

Updating with the ADAM algorithm is performed at every time step of the training

process, leading to convergence of the agent’s policy over the course of training.

3.3 DDPG Training

3.3.1 Hyperparameters

Hyperparameters are parameters that are not updated during the training process of the

reinforcement learning model but are instead set by the user prior to training. Hyperparameters

can have a significant impact on the performance and convergence of a model, and as such, it is

important to choose appropriate values for them. The hyperparameters used in this work are

listed in Table .

Table 3.1: Hyperparameters for a DDPG algorithm

Symbol Hyperparameter Description

𝜸 Discount factor for future rewards

𝝉 Target learning rate

𝝓𝒖, 𝝓𝑸 Actor and critic learning rates, respectively

𝝁, 𝝈 Action noise hyperparameters, mean and standard deviation, respectively

𝒃 Replay buffer size

𝑵𝑬 Number of training episodes

𝜺𝒌 State observation noise scaling constant, 𝑘 = 1,2,… , 𝑛 where 𝑛 is the number of

inputs into the actor network

𝝔, 𝜷𝟏, 𝜷𝟐 Step size, parameters for use in ADAM gradient descent

Selecting the appropriate hyperparameters can be a challenging task. Manual tuning by

trial and error will be employed. The selection of these specific hyperparameter in this work will

be discussed in Chapter 4. The respective actor and critic learning rates, 𝜙𝜇and 𝜙𝑄, can have a

 38

great effect on the learning process; a larger learning rate 𝜙 can lead to faster convergence, but

increase the risk of overshooting and instability.

3.3.2 DDPG Algorithm

To begin the DDPG technique the experience replay is initialized as a large buffer 𝔹, the

actor, 𝑢(𝑠|𝜓𝑢) and the critic, 𝑄(𝑠, 𝑎|𝜓𝑄), are randomly initialized with weights 𝜓𝑢 and 𝜓𝑄.

Next, the target actor 𝑢′, and the target critic 𝑄′, are initialized as copies of the actor and critic

networks as shown:

𝜓𝑄′
← 𝜓𝑄 , 𝜓𝜇′

← 𝜓𝜇 (3.13)

where 𝜓𝑄′and 𝜓𝜇′ are the parameters of the target critic NN and target actor NN, respectively.

Ensuring the agent can effectively explore the action space is a challenge in

reinforcement learning for continuous problems [75]. The actor policy is modified to include a

noise process to aid in exploration, as represented by Equation (3.14), where the noise

component [76] is represented by 𝒩 that is chosen based on the application. For this work, a

normal distribution will be used to provide random action noise, as represented in Equation

(3.15), where 𝜎, is the standard deviation and 𝑥̅, is the mean.

 𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜓𝑡
𝜇
) + 𝒩𝑡 (3.14)

𝒩𝑡 = 𝒩(𝑥, 𝜎, 𝑥̅) =

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝑥̅)2

2𝜎2
(3.15)

 The following procedures are performed by the algorithm for each 𝑡𝑡ℎ time step:

1. Initialize state observation 𝑠1. Select an action 𝑎𝑡, using Equation ((3.14)) to take in the

environment from the current policy.

2. Perform action 𝑎𝑡 in the environment and observe new state 𝑠𝑡+1, and reward 𝑟𝑡.

3. Store the transition 𝜘𝑡, in the replay buffer 𝔹; if the buffer is full, overwrite the oldest

transition.

4. Take a random mini-batch sample of 𝑁 transitions, 𝜘𝑖 ∶= (𝑠𝑖, 𝑎𝑖 , 𝑟𝑖, 𝑠𝑖+1) from 𝔹.

5. Solve for 𝑦𝑖 using Equation ((3.16)) and compute the loss.

 39

 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜓
𝜇′

)|𝜓𝑄′
) (3.16)

where 𝑟𝑖 is the reward at the 𝑖𝑡ℎ time step; 𝛾 is the discount factor; and 𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1)) is the

Q-value given by the target critic at the next state as well as the next action at that state. This is

performed in a matrix operation for all 𝑁 sampled transitions from the batch and used to find the

mean squared loss such that:

𝐿𝑄 =

1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜓

𝑄))
2
, 𝑖 = 1,2, … ,𝑁

𝑖

 (3.17)

where 𝐿𝑄 represents the loss function of the critic and 𝑁 is the mini-batch sample size.

6. Update the critic by minimizing the loss 𝐿𝑄, using the ADAM algorithm as described in

Equations (3.7) - (3.12)

7. Update the actor policy with policy gradient from the 𝑁 samples, using the ADAM

algorithm as in Equations (3.7) - (3.12)

8. Update the target networks using Equation ((3.5).

These steps are repeated until the specified number of episodes has been completed for

training. An episode is defined as a sequence of states, actions, and rewards that occur when the

agent interacts with the environment until a terminal state is reached [77]. Each episode starts

with an initial state and progresses through the training process until it reaches a defined terminal

point. Generally, the terminal point is a fixed number of steps and/or a condition. Once an

episode is completed, the next episode begins, by resetting the environment. Once all episodes

are completed the training is finished. The critic is not necessary when training is not being

performed; once trained the actor can be used as a state-action map for control.

3.4 Bridging the Sim-to-Real Gap
The sim-to-real gap problem in reinforcement learning arises when an agent trained in a

simulated environment fails to transfer its learned policy to a real-world environment [73, 74].

This is a common problem, especially for robotics applications, where the agent is trained in a

simulated environment before being deployed on a robot [75, 76]. This problem is caused by

several factors, including differences between the simulated and real-world environments,

modeling errors, and sensory and actuation discrepancies. Simulated environments may not

 40

include all the relevant factors that affect the performance of the agent. For example, the model

of the flexible beam in this work may not perfectly match the real dynamics of the flexible beam

in the lab. As a result, the policy learned in a simulated environment may not be robust enough to

handle the variations and uncertainties present in the real world, which will lead to poor

performance or failure of the agent. To address this problem, researchers have suggested some

techniques for closing the sim-to-real gap, such as domain randomization [55, 77], as discussed

in the following subsection.

3.4.1 Domain Randomization

Domain randomization involves introducing random variations into the simulated

environment during training to make the agent more robust to variations in the real-world

environment. In this work this is done in the form of state observation noise, the perturbed state

can be realized as:

 𝑠𝑡
′ ← 𝜀𝑘𝑠𝑡 ∗ (𝒩|𝜇=0,𝜎=1) (3.18)

where 𝑠𝑡
′ is the perturbed value of state 𝑠𝑡, 𝜀𝑘 is the scaling constant for the 𝑘𝑡ℎ input, and

𝒩|𝜇=0,𝜎=1, is the random output of a normal distribution with mean, 𝜇 = 0 and standard

deviation, 𝜎 = 1. These hyperparameters scale the noise to a size compatible with the domain of

each observed input.

During training, after 50% of the episodes are complete, the domain randomization

begins to perturb the state observations of the actor network before an action is taken. This will

increase in intensity for another 25% of the episodes before reaching a maximum intensity at

75% of the training cycles. Then the training continues while the actor will undertake maximal

state observation noise for the remaining episodes. The addition of domain randomization will

allow the controller to operate on the physical apparatus more effectively. Details will be

discussed in Chapter 4.

 41

Chapter 4 – Experimental Setup and System Modeling
The primary objective of this work is to propose a novel control technique that can

stabilize a refueling drogue when deployed during an AAR mission. Since access to real aircraft

and equipment is limited for research and development (R&D) purposes, the control research

will be undertaken using an apparatus that can simulate a similar dynamic response to that of a

refueling drogue. For this reason, the Smart Structure experimental setup will be modified and

used for this R&D work. This smart structure workstation could be a good approximation for a

hose-drogue in 2D space and can be used to validate the performance of the proposed DDPG

controller. To train a reinforcement learning agent this structure, a simulation is created. The

equations of motions of the smart structure are derived and used to create a set of state-space

equations. These state space equations are used to simulate the dynamics of the smart structure,

where an agent can be trained, which will be discussed in detailed in the following sections.

4.1 Experimental Setup
Figure 4.1 shows the flexible beam experimental setup, or smart structure, used in this

work. The tested flexible beam is a 1.5mm thick 110mm by 440 mm steel beam, which is

clamped to the base. Another end of the flexible beam is connected with a rigid bar system. The

shaft is driven by a servo motor mounted at the top of the link through a 70:1 gear ratio. This

motor is powered by a power supply unit controlled by a computer. An encoder on the shaft has

a 1024 count disc, which allows for a measurement the angular position of the shaft of 𝜃 with a

resolution of 4096 counts/rev via a quadrature. Strain gauges are glued at the base of the flexible

beam to measure the deflection of the top of the flexible beam 𝑥𝑏. The strain gauges are

calibrated to 1 volt per 2.54 cm. The data from the encoder and the strain gauges is transmitted

through the power supply unit into the data acquisition (DAQ) board connected to the computer.

This structure will be used to approximate the hose-drogue system in 2D space as well as to

validate the performance of the proposed DDPG control technique. The equations of motions of

the smart structure are derived and used for state-space modeling and simulation of the dynamics

of the smart structure, where an agent can be trained.

 42

Figure 4.1: The smart structure workstation: (1) computer with to DAQ card. (2) rigid bar. (3) flexible beam. (4)

Quanser DAQ board. (5) strain gauge signal conditioning board. (6) DC motor and gearbox. (7) rotary encoder. (8)

mass block. (9) Quanser universal power module.

4.2 Smart Structure State-Space Modeling

4.2.1 Equations of Motion

To develop a model of the smart structure, the non-linear equations of motion are derived

using the Euler-Lagrange method [83]. Firstly, a free body diagram is created as illustrated in

Figure 4.2. The flexible beam has length 𝑙𝑏 and is secured at its base, standing upright. The

motor with mass 𝑚𝑚 is attached at its free end. The motor drives the rigid bar through a gearbox,

and the rigid bar can be modeled as a simple pendulum with length 𝑙𝑟 and mass 𝑚𝑟. The

deflection of the flexible beam is denoted by 𝑥𝑏 where 𝑥𝑏 = 0 when the flexible beam is

completely upright and experiences no deflection.

 43

Figure 4.2: Free-body diagram of the smart structure

In modeling, a generalized coordinate system, also referred to as Lagrangian coordinates,

is established and represented by:

 𝑠𝑡 = [𝑥𝑏(𝑡), 𝜃(𝑡) , 𝑥̇𝑏(𝑡), 𝜃̇(𝑡)] (4.1)

where 𝑠𝑡 represents 𝑥𝑏(𝑡), the displacement of the motor at the top of the flexible beam, and

𝜃(𝑡), the angular position of the rigid bar, both at time moment 𝑡, as well as their derivatives

𝑥̇𝑏(𝑡) and 𝜃̇(𝑡).

It is assumed that 𝜃(𝑡) is changing positively when the rigid bar is moving clockwise

when viewed from the left side, as shown in Figure 4.2. The first derivative of 𝑠𝑡 with respect to

time 𝑡 is given by:

 𝑠̇𝑡 = [𝑥̇𝑏(𝑡), 𝜃̇(𝑡), 𝑥̈𝑏(𝑡), 𝜃̈(𝑡)] (4.2)

To simplify representation, we can drop time constant 𝑡 from 𝑥𝑏(𝑡) and 𝜃(𝑡), which are

simplified as 𝑥𝑏 and 𝜃. The translation matrix from the initial position to the point of deflection

 44

at time 𝑡 is represented by 𝑇0,1
𝑇 in Equation (4.3). Equation (4.4) is the rotation matrix for the

rigid beam from an upright position, to the free end of the beam. Equation (4.5) is the translation

matrix from the motor to the free end of the rigid beam.

𝑇0,1

𝑇 = [

1 0 0 𝑥𝑏

0 1 0 0
0 0 1 0
0 0 0 1

] (4.3)

𝑇1,2

𝑅 = [

𝑐𝑜𝑠 (𝜃) 0 𝑠𝑖𝑛 (𝜃) 0
0 1 0 0

−𝑠𝑖𝑛 (𝜃) 0 𝑐𝑜𝑠 (𝜃) 0
0 0 0 1

] (4.4)

𝑇2,3

𝑇 = [

1 0 0 0
0 1 0 0
0 0 1 𝑙𝑟
0 0 0 1

] (4.5)

The transformation matrix from the initial position to the free end of the rigid bar can be

represented by substituting Equations (4.3), (4.4), and (4.5) into Equation (4.6).

 𝑇0,3 = 𝑇0,1
𝑇 𝑇1,2

𝑅 𝑇2,3
𝑇 =

 [

1 0 0 𝑥𝑏

0 1 0 0
0 0 1 0
0 0 0 1

]

[

[

1 0 0 0
0 1 0 0
0 0 1 𝑙𝑟
0 0 0 1

] [

𝑐𝑜𝑠 (𝜃) 0 𝑠𝑖𝑛 (𝜃) 𝑠𝑖𝑛 (𝜃)𝑙𝑟
0 1 0 0

−𝑠𝑖𝑛 (𝜃) 0 𝑐𝑜𝑠 (𝜃) 𝑐𝑜𝑠 (𝜃)𝑙𝑟
0 0 0 1

]

]

= [

𝑐𝑜𝑠 (𝜃) 0 𝑠𝑖𝑛 (𝜃) 𝑠𝑖𝑛 (𝜃)𝑙𝑟 + 𝑥𝑏

0 1 0 0
−𝑠𝑖𝑛 (𝜃) 0 𝑐𝑜𝑠 (𝜃) 𝑐𝑜𝑠 (𝜃)𝑙𝑟

0 0 0 1

]

(4.6)

The three-dimensional Cartesian coordinates of the free end of the rigid bar can be

represented by:

 𝑥𝑟 = sin(𝜃) 𝑙𝑟 + 𝑥𝑏

𝑦𝑟 = 0

𝑧𝑟 = cos(𝜃) 𝑙𝑟

(4.7)

where 𝑙𝑟 is the length of the rigid beam.

Equations (4.7) are derived by the following representation:

 45

 𝑥̇𝑟 = 𝜃̇ cos(𝜃) 𝑙𝑟 + 𝑥̇𝑏

𝑦̇𝑟 = 0

𝑧̇𝑟 = −𝜃̇ sin(𝜃) 𝑙𝑟

(4.8)

By the use of the Euler-Lagrange method, the Lagrangian, 𝐿𝑎 is will be:

 𝐿𝑎 = 𝐾 − 𝑉 (4.9)

where 𝐾 represents the total kinetic energy of the system; 𝑉 is the total potential energy of the

system represented by:

 𝑉 = 𝑉𝐸 + 𝑉𝐺 (4.10)

where, 𝑉𝐸 is the elastic potential energy of the system of the flexible beam, determined by

Equation (4.11); 𝑉𝐺 is the gravitational potential energy of the system found with Equation

(4.12):

𝑉𝐸 =

𝐾𝑠𝑥𝑏
2

2
 (4.11)

 𝑉𝐺 = 𝑚𝑟𝑔 𝑐𝑜𝑠 (𝜃)𝑙𝑟 (4.12)

where 𝑔 is the gravitational acceleration constant and 𝐾𝑠 is the spring constant of the flexible

beam. The natural frequency of the beam in rad/sec can be represented by:

𝜔𝑛 = √

𝐾𝑠

𝑚𝑚 + 𝑚𝑟
 (4.13)

where 𝑚𝑚 is the mass of the motor mounted to the free end of the flexible beam and 𝑚𝑟 is the

mass of the rigid bar.

In general, the natural frequency 𝜔𝑛 can be determined experimentally. Then the spring

constant of the flexible beam 𝐾𝑠 can be estimated by:

 𝐾𝑠 = 𝜔𝑛
2(𝑚𝑚 + 𝑚𝑏) (4.14)

then, the total potential energy becomes:

 46

𝑉 =

𝐾𝑠𝑥𝑏
2

2
+ 𝑚𝑟𝑔 𝑐𝑜𝑠 (𝜃)𝑙𝑟 (4.15)

The total kinetic energy of the system will be:

 𝐾 = 𝐾𝑅 + 𝐾𝑇1 + 𝐾𝑇2 (4.16)

where 𝐾𝑅 is the rotational kinetic energy, 𝐾𝑇1 is the translational kinetic energy of the motor and

gearbox, and 𝐾𝑇2 is the translational kinetic energy of the flexible beam, which are determined

by Equations (4.17), (4.18), and (4.19), respectively:

𝐾𝑅 =

𝐼𝑟𝜃
2

2
 (4.17)

𝐾𝑇1 =

𝑚𝑚𝑥̇𝑏
2

2
 (4.18)

 𝐾𝑇2 =
𝑚𝑟𝑣𝑟

2

2
 = 𝑚𝑟

2
√𝑥̇𝑟

2 + 𝑦̇𝑟
2 + 𝑧̇𝑟

2

 =
𝑚𝑟

2
[[𝜃̇ cos(𝜃) 𝑙𝑟 + 𝑥̇𝑏]

2
+ [𝜃̇ sin(𝜃) 𝑙𝑟]

2
]

(4.19)

where 𝐼𝑟 is the rotational moment of inertia of the rigid bar, 𝑣𝑟, is the velocity of the free end of

the rigid bar, and 𝑥̇𝑟 , 𝑦̇𝑟 , 𝑧̇𝑟 are the velocities of the free end of the rigid in the Cartesian

coordinate system.

The total kinetic energy can be determined by:

𝐾 =

𝐽𝑟𝜃̇
2

2
+

𝑚𝑚𝑥̇𝑏
2

2
+

𝑚𝑟

2
[[𝜃̇ cos(𝜃) 𝑙𝑟 + 𝑥̇𝑏]

2
+ [𝜃̇ sin(𝜃) 𝑙𝑟]

2
] (4.20)

In a 𝑁 degree of freedom system Lagrange’s Equations [83] l can be represented by:

 𝜕

𝜕𝑡
(

𝜕

𝜕𝑠𝑖̇
𝐿) − (

𝜕

𝜕𝑠𝑖
𝐿) = 𝑄𝑖 (4.21)

where 𝑄𝑖 are the generalized forces acting on each coordinate system, 𝑖 = 1, 2, … ,𝑁𝑐 and 𝑁𝐶 is

the number of coordinate systems used to represent the system; 𝑁𝑐 = 2 in this case. Then

Lagrange’s equations for this system become:

 47

 𝜕

𝜕𝑡
(

𝜕

𝜕𝑥̇𝑏
𝐾 −

𝜕

𝜕𝑥̇𝑏
𝑉) − (

𝜕

𝜕𝑥𝑏
𝐾 −

𝜕

𝜕𝑥𝑏
𝑉) = 𝑄1

𝜕

𝜕𝑡
(

𝜕

𝜕𝜃̇
𝐾 −

𝜕

𝜕𝜃̇
𝑉) − (

𝜕

𝜕𝜃
𝐾 −

𝜕

𝜕𝜃
𝑉) = 𝑄2

(4.22)

where 𝑄1 and 𝑄2, are the generalized forces, a summation of external forces acting on the system

in each of the two coordinate systems.

Considering,

 𝜕

𝜕𝑥̇𝑏
𝑉 = 0,

𝜕

𝜕𝜃̇
𝑉 = 0 (4.23)

Equation (4.20) can be simplified as:

 𝜕

𝜕𝑡
(

𝜕

𝜕𝑥̇𝑏
𝐾) − (

𝜕

𝜕𝑥𝑏
𝐾) + (

𝜕

𝜕𝑥𝑏
𝑉) = 𝑄1

𝜕

𝜕𝑡
(

𝜕

𝜕𝜃̇
𝐾) − (

𝜕

𝜕𝜃
𝐾) + (

𝜕

𝜕𝜃
𝑉) = 𝑄2

(4.24)

The generalized forces 𝑄1 and 𝑄2, are represented by:

 𝑄1 = 𝐵𝑏𝑥̇𝑏

𝑄2 = 𝜏𝑚 − 𝐵𝑟𝜃̇
(4.25)

where 𝐵𝑏 is the viscous friction torque coefficient for the flexible beam; 𝐵𝑟 is the viscous friction

torque coefficient for the rigid bar. These coefficients are assumed to be zero because air

resistance is negligible and does not affect the dynamics of the system meaningfully.

The torque produced by the motor 𝜏𝑚 can be estimated by:

𝜏𝑚 =

𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡(−𝐾𝑔𝐾𝑚𝜃̇ + 𝑉𝑚)

𝑅𝑚
 (4.26)

where related motor parameters are summarized in Table 4.1.

 48

Table 4.1: Motor parameters [84]

Symbol Parameter Value

𝜼𝒈 Gearbox efficiency 0.9 ± 10%

𝑲𝒈 Gearbox ratio 70:1

𝜼𝒎 Motor efficiency 0.69 ± 5%

𝑲𝒕 Motor torque constant 7.68(10)−3 𝑁̇ ∙ 𝑚

𝑽𝒎 Motor applied voltage [-4, 4] Volts

𝑹𝒎 Motor armature resistance 2.6 Ω

𝑲𝒎 Back-emf constant 7.68(10)−3 𝑉

𝑟𝑎𝑑/𝑠

The external force vector can be represented as [85]:

𝑄 = [0,

𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡(−𝐾𝑔𝐾𝑚𝜃̇ + 𝑉𝑚)

𝑅𝑚
] (4.27)

where the motor parameters are listed in the Table 4.1.

Substitute Equations (4.15), (4.20), and (4.27) into Equation (4.24). By manipulation the

equations of motion in Equations (4.28) and (4.29) can be obtained:

 (𝑚𝑚 + 𝑚𝑟)𝑥̈𝑏 + 𝑚𝑟𝑙𝑟 cos(𝜃) 𝜃̈ − 𝑚𝑟𝑙𝑟 sin(𝜃) 𝜃̇2 + 𝐾𝑠𝑥𝑏 = 0 (4.28)

 (𝐽𝑟 + 𝑚𝑟𝑙𝑟
2)𝜃̈ + 𝑚𝑟 cos(𝜃) 𝑙𝑟𝑥̈𝑏 − 𝑔𝑚𝑟 sin(𝜃) 𝑙𝑟

=
𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡

𝑅𝑚
𝑉𝑚 −

𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡𝐾𝑔𝐾𝑚

𝑅𝑚
𝜃̇

(4.29)

Assume small amplitude oscillations, or:

 sin(𝜃) ≈ 𝜃, cos(𝜃) ≈ 1, 𝜃2 = 0 (4.30)

The equations of motion in Equations (4.28) and (4.29) can be linearized and simplified

as:

 49

 (𝑚𝑚 + 𝑚𝑟)𝑥̈𝑏 + 𝑚𝑟𝑙𝑟𝜃̈ + 𝐾𝑠𝑥𝑏 = 0 (4.31)

(𝐽𝑟 + 𝑚𝑟𝑙𝑟

2)𝜃̈ + 𝑚𝑟𝑙𝑟𝑥̈𝑏 =
𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡

𝑅𝑚
𝑉𝑚 −

𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡𝐾𝑔𝐾𝑚

𝑅𝑚
𝜃̇ (4.32)

4.3 State Space Equations

The linear state space equations can be written as:

 𝑠̇ = 𝐴𝑠 + 𝐵𝑢

𝑟 = 𝐶𝑠 + 𝐷𝑢
(4.33)

where 𝑢 is the control input, 𝑠 represents the state space variables, and 𝐴, 𝐵, 𝐶, and 𝐷 are state

space matrices.

𝑠 = [

𝑠1
𝑠2
𝑠3

𝑠4

] = [

𝑥𝑏

𝜃
𝑥̇𝑏

𝜃̇

] (4.34)

𝑠̇ = [

𝑠̇1

𝑠̇2

𝑠̇3

𝑠̇4

] = [

𝑥̇𝑏

𝜃̇
𝑥̈𝑏

𝜃̈

] = [

𝑠3
𝑠4

𝑠̇3

𝑠̇4

] (4.35)

here, Equations (4.31) and (4.32) are rearranged and substituted into Equations (4.34) and (4.35)

and then isolated for 𝑠̇3 and 𝑠̇4:

𝑠̇3 = −

(𝐽𝑟 + 𝑚𝑟𝑙𝑟
2)𝐾𝑠

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

𝑠1 −
𝑔𝑙𝑟

2𝑚𝑟
2

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

𝑠2

+
𝐾𝑔

2𝐾𝑚𝐾𝑡𝜂𝑔𝜂𝑚𝑙𝑟𝑚𝑟

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

𝑠4 −
𝐾𝑔𝐾𝑡𝑉𝑚𝜂𝑔𝜂𝑚𝑙𝑟𝑚𝑟

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

(4.36)

𝑠̇4 =

𝑚𝑟𝑙𝑟𝐾𝑠

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

𝑠1 +
𝑔𝑚𝑟𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

𝑠2

−
𝐾𝑔

2𝐾𝑚𝐾𝑡𝜂𝑔𝜂𝑚𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

𝑠4 +
𝐾𝑔𝐾𝑡𝑉𝑚𝜂𝑔𝜂𝑚𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

(4.37)

The state space matrices 𝐴, 𝐵, 𝐶, and 𝐷 can be defined as

 50

𝐴 =

[

0 0 1 0
0 0 0 1

−
(𝐽𝑟 + 𝑚𝑟𝑙𝑟

2)𝐾𝑠

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

−
𝑔𝑙𝑟

2𝑚𝑟
2

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

0
𝐾𝑔

2𝐾𝑚𝐾𝑡𝜂𝑔𝜂𝑚𝑙𝑟𝑚𝑟

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

𝑚𝑟𝑙𝑟𝐾𝑠

𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚

𝑔𝑚𝑟𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

0 −
𝐾𝑔

2𝐾𝑚𝐾𝑡𝜂𝑔𝜂𝑚𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚]

𝐵 =

[

0
0

−
𝐾𝑔𝐾𝑡𝑉𝑚𝜂𝑔𝜂𝑚𝑙𝑟𝑚𝑟

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚

𝐾𝑔𝐾𝑡𝑉𝑚𝜂𝑔𝜂𝑚𝑙𝑟(𝑚𝑚 + 𝑚𝑟)

(𝐽𝑟(𝑚𝑚 + 𝑚𝑟) + 𝑙𝑟
2𝑚𝑟𝑚𝑚)𝑅𝑚]

𝐶 = [
1 0 0 0
0 1 0 0

]

𝐷 = [
0
0
]

(4.38)

Using the system parameters as listed in Table 4.1, the state space matrices can be

represented as:

𝐴 = [

0 0 1 0
0 0 0 1

−69.4440 −0.4007 0 0.1932
121.3376 17.8410 0 −8.5994

]

𝐵 = [

0
0

−0.3594
16.0008

]

𝐶 = [
1 0 0 0
0 1 0 0

]

𝐷 = [
0
0
]

(4.39)

The state space model can now be used to create a simulation environment to train a

reinforcement learning agent.

 51

4.3 Classical and Intelligent Controllers

4.3.1 PD Controller

The PD controller is used to evaluate the performance of the proposed DDPG control

technique. The PD controller is selected a baseline for controller performance, PD is a robust and

reliable control technique and results from the PD test will be used to verify the robustness of the

DDPG under varied dynamic conditions. As reinforcement learning is a relatively new area of

research a comparison with a classical and well understood control method such as PD can

demonstrate the new potential of reinforcement learning control.

The desired output for the PD controller is given by:

 𝑢 = −(𝑘𝑥𝑏

𝑝
𝑥𝑏 + 𝑘𝜃

𝑝
𝜃 + 𝑘𝑥

𝑑𝑥̇𝑏 + 𝑘𝜃
𝑑𝜃̇) (4.40)

where 𝑢 is the output control voltage; 𝑘𝑥𝑏

𝑝 and 𝑘𝜃
𝑝 are the proportional gains for 𝑥𝑏 and 𝜃,

respectively; 𝑘𝑥𝑏
𝑑 and 𝑘𝜃

𝑑 are the derivative gains for 𝑥̇𝑏 and 𝜃̇, respectively.

A feedback controller using the linear quadratic regulator method will be designed, using

the state space matrices 𝐴, 𝐵, 𝐶, and 𝐷 in Equations (4.41) and (4.42). A set of weight matrices 𝑸

and 𝑹 are used to determine the gains of the controller:

𝑸 = [

8800 0 0 0
0 50 0 0
0 0 1.2 0
0 0 0 1

] ; 𝑹 = [1] (4.41)

The control gains can be computed by:

𝑘 =

[

𝑘𝑥𝑏

𝑝

𝑘𝜃
𝑝

𝑘𝑥
𝑑

𝑘𝜃
𝑑]

= [

−83.9958
8.2734
2.8734
1.1269

] (4.42)

The designed PD controller can be represented as:

 𝒖 = −(−83.9958𝑥𝑏 + 8.2734𝜃 + 2.8734𝑥̇𝑏 + 1.1269𝜃̇) (4.43)

4.3.2 NF Controller

The MATLAB Fuzzy Logic toolbox is used to design and train a NF controller for

comparison. The NF controller is selected for comparison as it is a common machine learning

 52

technique that is not in a reinforcement learning technique but rather it is a supervised learning

technique, which requires supplied training data. Optimization using training data improves the

performance of the NF controller, but properly capturing and selecting this data is a challenge.

Incorrectly chosen training data can possibly leading to improved performance in some areas and

losses in others, this problem is alleviated by the DDPG as it does not require supply of training

data. PD control tests using the controller as described in section 4.3.1 are used to capture the

training data for the proposed NF controller. Results are used to investigate the potential of the

DDPG controller as a machine learning control technique for stabilization.

Figure 4.3 shows the NN architecture of the NF system. It has 5 layers:

Layer 1 is the input layer. The NF system has 4 input variables corresponding to each of

the state space variables, 𝑠𝑛 = [𝑥𝑏 , 𝜃, 𝑥̇𝑏 , 𝜃̇] = [𝑠1, 𝑠2, … , 𝑠𝑁], where 𝑠𝑛 is any of the 4 input

variables, 𝑛 = 1, 2, … ,𝑁𝑠 and 𝑁𝑠 = 4.

Layer 2 is the fuzzification layer. Here each input variable is fuzzified using membership

functions (MFs) as given by:

𝑔(𝑠𝑛) = 𝑒
−

(𝑠𝑛−𝑐𝜆)2

2𝑎𝜆
2

(4.44)

where 𝑐𝜆 is the mean, and 𝑎𝜆 is the standard deviation, 𝜆 = 1, 2, … , 10; these are the non-linear

parameters to be trained.

The positional inputs 𝑥𝑏 and 𝜃, are each defuzzied by 3 MFs, each representing the

positive, negative, or neutral positions. The rate inputs 𝑥̇𝑏 and 𝜃̇, are each defuzzied by 2 MFs

each representing positive and negative rates of change. This leads to a set of 36 fuzzy rules in

layer 3.

Layer 3 is the fuzzy operation layer. Here, firing strengths of each fuzzy rule are

computed using a T-norm operator as in:
 𝑊ℎ = 𝑔𝜆(𝑠1) × 𝑔𝜆(𝑠2) × 𝑔𝜆(𝑠3) × 𝑔𝜆(𝑠4) (4.45)

where 𝑊ℎ is the ℎth fuzzy rule and ℎ = 1, 2, … , 36.

Layer 4 is the normalization layer. Firing strength output of each fuzzy rule is normalized

such that all outputs add to 1.

 53

𝑊ℎ

′ =
𝑊ℎ

∑𝑊
 (4.46)

Layer 5 is the defuzzification layer. Centroid defuzzification is performed in order to

determine network output by:
 𝑢ℎ = 𝑊ℎ

′(𝑝ℎ1
𝑠1 + 𝑝ℎ2

𝑠2 + 𝑝ℎ3
𝑠3 + 𝑝ℎ4

𝑠4 + 𝑝ℎ5
) (4.47)

where 𝑢ℎ is the defuzzied output of rule ℎ and 𝑝ℎ𝑛
 represents the linear parameters of each rule.

Layer 6 is the output layer. The control action is taken as the sum of the outputs from

each fuzzy rule as given by:

𝑢 = ∑ 𝑢ℎ

36

ℎ=1

 (4.48)

Figure 4.3: Network architecture of selected NF controller.

 54

4.4 DDPG Controller
Reinforcement learning benefits from its large number of training steps, sometimes

requiring millions of steps to achieve an optimal result. Performing training on the physical

environment may take up to a minute per episode, where as a simulation can instantly reset and

perform an order of magnitude more training episodes in the same amount of time. Open AI’s

Gym will be used as a platform for creating, running, and rendering simulation environments for

reinforcement learning Python 3.9.0 will be used with this application program interface (API) as

well as the TensorFlow and Keras APIs, where TensorFlow is a deep learning framework

developed by Google, for building and training reinforcement learning algorithms. Furthermore,

Gym adds a math library for use with NNs [87]. TensorFlow uses the Keras API for the creation

of NNs. Keras allows the user to chose network features such as defining layers, number of

nodes, inputs, outputs, connections, and functions [88]. These tools are free and commonly used

in reinforcement learning research so they have large libraries of documentation and support

online.

4.4.1 Actor and Critic NN Architecture

The architecture of the actor NN used by the agent can be seen in Figure 4.4, it has 4

layers:

Layer 1 is the input layer. The actor NN has 4 input variables corresponding to each of

the state space variables, 𝑠𝑛 = [𝑠1, 𝑠2, … , 𝑠𝑁], where 𝑠𝑛 is any of the 4 input variables and 𝑛 =

1, 2, … ,𝑁𝑠 and 𝑁𝑠 = 4.

Layer 2 is a densely connected layer of 256 nodes. This means each output from the

previous layer connects to all the nodes in this layer. The firing strength of each node is

computed as the product of all inputs to the node and the weight parameter of the node as shown

in:

𝑂𝑗

𝑖 = 𝜓𝑖,𝑗
𝑢 ∏𝑠𝑛

𝑁𝑠

𝑛=1

 (4.49)

where 𝑂𝑗
𝑖 is the firing strength of the node 𝑂, at position 𝑗, in layer 𝑖 and 𝜓𝑖,𝑗

𝑢 is the weight

parameter for that node. Here 𝑗 = 1, 2, … ,𝑁𝑖, where 𝑁𝑖 is the number of nodes in layer 𝑖.

 55

Before firing strengths are output to the next layer they are passed through an activation

function. In this network the Rectified Linear Units (ReLU) function is used due to it being fast

to compute [89] and non-linear, it is given by:

 𝑈(𝑥) = max(0, 𝑥) (4.50)

where 𝑈(𝑥) represents the ReLU function and max(0, 𝑥) returns the maximum between the

input value and zero, turning negative inputs to zero, which makes this function non-linear. After

firing strengths are activated they pass to the next layer of nodes

Layer 3 is a densely connected layer of 256 nodes. The general form of the firing strength

of a densely connected node is given as:

𝑂𝑗

𝑖 = 𝜓𝑖,𝑗
𝑢 ∏ 𝑂𝑗

𝑖−1

𝑁𝑖−1

𝑗=1

 (4.51)

where 𝑂𝑗
𝑖 is the firing strength of the node 𝑂, at position 𝑗, in layer 𝑖 and 𝜓𝑖,𝑗

𝑢 is the linear

parameter for that node. 𝑁𝑖−1 is the number of nodes in the previous layer.

Layer 4 is the output layer of a single node. The hyperbolic tangent function is used as

the activation function for the output layer, defined as [90]:

𝐻(𝑂1

4) =
𝑒𝑂1

4
− 𝑒−𝑂1

4

𝑒𝑂1
4
+ 𝑒−𝑂1

4 (4.52)

where 𝐻(𝑂1
4) is the hyperbolic tangent function output for the output node 𝑂1

4, and 𝑒 is Euler’s

number.

 56

Figure 4.4: Actor network architecture

The architecture of the critic NN used by the agent can be seen in Figure 4.6, it has 7

layers:

Layer 1 is the input layer. The critic NN has 4 input variables corresponding to each of

the state space variables, 𝑠𝑛 = [𝑠1, 𝑠2, … , 𝑠𝑁], where 𝑠𝑛 is any of the 4 input variables and 𝑛 =

1, 2, … ,𝑁𝑠 and 𝑁𝑠 = 4 as well as 1 input variable corresponding action taken by the actor. In this

network layers 1 and 3 feature two parallel sets of nodes, separated connection to relation the

action or state inputs.

Layer 2 is a densely connected layer of 128 nodes. The ReLU function is used for

activation in all layers of this network besides the output. Layer 2 does not contain any nodes

connected to the action input, rather the action input node connects directly to specific nodes in

layer 3. The generalized form of the firing strength of any densely connected node in the critic

NN is given by:

 57

𝑂𝑗

𝑖 = 𝜓𝑖,𝑗
𝑄

∏ 𝑂𝑗
𝑖−1

𝑁𝑖−1

𝑗=1

 (4.53)

where 𝑂𝑗
𝑖 is the firing strength of the node 𝑂, at position 𝑗, in layer 𝑖 and 𝜓𝑖,𝑗

𝑄 is the linear

parameter for that node. 𝑁𝑖−1 is the number of nodes in the previous layer connected to node 𝑂.

Layer 3 is a densely connected layer of 512 nodes, which are split into two groupings of

256 with one densely connected to the output from layer 2 and the other to the action input.

Layer 4 is a concatenation layer. The concatenation operation takes two vectors and

combines them into one vector, this combines the outputs from the state and action groups of

nodes. An example of the operation for layer 3 can be seen in:

 [𝑂1
3, 𝑂2

3, … , 𝑂255
3] + [𝑂256

3 , 𝑂257
3 , … , 𝑂512

3] = [𝑂1
3, 𝑂256

3 , 𝑂2
3, 𝑂257

3 , … , 𝑂255
3 , 𝑂512

3] (4.54)

 Layer 5 is a densely connected layer of 256 nodes. Node connections follow the same

general form as in Equation (4.53).

Layer 6 is a densely connected layer of 256 nodes. Node connections follow the same

general form as in Equation (4.53).

Layer 7 is the output layer. The output is a summation operation given by:

𝑄 = ∑ 𝑂𝑗

𝑖=6

𝑁𝑖=6

𝑗=1

 (4.55)

 58

Figure 4.5: Critic network architecture

4.4.2 Smart Structure Simulation Environment

To create the smart structure simulation environment, first the environment must be

initialized; Table 4.2 summarizes the hyperparameters used. When the environment is called by

the agent for the first time the environment is initialized.

 59

Table 4.2: Smart structure simulation environment parameters

Symbol Parameter Value

𝜻 Step size for simulation 1/80 seconds

𝑵 Maximum episode steps 500 steps

𝒍𝒃, 𝒍𝒓 Length of beam, bar, respectively 𝑙𝑏 = 1
2

3
, 𝑙𝑟 = 1 feet

𝑨,𝑩 State space matrices See Equation 4.41-4.42

𝑽𝒎𝒂𝒙 Maximum allowable voltage output 4V

𝒙𝒕𝒉𝒓𝒆𝒔𝒉 Maximum allowable deflection 61 mm or 2.4 inches

𝜽𝒕𝒉𝒓𝒆𝒔𝒉 Maximum allowable angular position 45 degrees

𝒔𝒕=𝟎 Starting state [0, 0, 0, 0]

When the agent calls the smart structure environment, it sends an action from the actor

NN at the current state. The environment stores its current state between calls from the agent and

returns the updated state, reward, and previous state to the agent after a step. When the

environment is called the state space variables will be set equal to the current state of the model

structure 𝑠𝑡
𝑇 = [𝑥𝑏(𝑡), 𝜃(𝑡), 𝑥̇𝑏(𝑡), 𝜃̇(𝑡)], if 𝑡 = 0, 𝑠𝑡 = 𝑠0. Next the action is clipped to the

maximum allowable voltage:

 𝑢(𝑡) = 𝑢(𝑡), 𝑖𝑓, |𝑢(𝑡)| ≤ 𝑉𝑚𝑎𝑥

𝑢(𝑡) =
𝑢(𝑡)

|𝑢(𝑡)|
𝑉𝑚𝑎𝑥, 𝑖𝑓, |𝑢(𝑡)| > 𝑉𝑚𝑎𝑥

(4.56)

where 𝑢(𝑡) is the action output from the controller and 𝑉𝑚𝑎𝑥 is the maximum allowable voltage.

In calculating the reward for the current state and action, the reward, 𝑟 is calculated as a

sum of rewards for each state and the action such that:

 𝑟 = −(𝑟𝑥𝑏
+ 𝑟𝜃 + 𝑟𝑥̇𝑏

+ 𝑟𝜃̇ + 𝑟𝑢) (4.57)

 The reward functions for the DDPG controller in this work are tuned based on the

expected size of each of the variables. The equations arrived at are given as:

 60

𝑟𝑥𝑏

= 525𝑥𝑏
2, 𝑟𝜃 =

32

𝜋2
𝜃2, 𝑟𝑥̇𝑏

= 8𝑥̇2, 𝑟𝜃̇ =
1

5
𝜃̈2, 𝑟𝑢 =

1

10
𝑢2 (4.58)

 Next the state is transitioned to the updated state using the state spaces matrices 𝐴 and 𝐵

by solving 𝑠̇ such as:

 𝑠̇ = 𝐴𝑠 + 𝐵𝑢

𝑠̇ = [

𝑠̇1

𝑠̇2

𝑠̇3

𝑠̇4

] = [

𝑥̇𝑏

𝜃̇
𝑥̈𝑏

𝜃̈

] = [

𝑠3
𝑠4

𝑠̇3

𝑠̇4

]
(4.59)

Then 𝑠̇, can be used to determine the next state such that:

 𝑥𝑏(𝑡 + 1) = 𝑥𝑏(𝑡) + 𝜁𝑥̇𝑏(𝑡)

𝑥̇𝑏(𝑡 + 1) = 𝑥̇𝑏(𝑡) + 𝜁𝑥̈𝑏(𝑡)

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝜁𝜃̇(𝑡)

𝜃̇(𝑡 + 1) = 𝜃̇(𝑡) + 𝜁𝜃̈(𝑡)

(4.60)

where 𝜁 is the step size.

After determining the next state, the step counter is increased by one and the environment

returns the next state, reward, and a Boolean representing the episode completion check. The

step is checked to see if the episode is complete, which happens when the maximum number of

steps has been reached or the angle of the beam or position of deflection is within the set

thresholds. If the episode is determined to be complete, the state will be reset to the starting state

and the next episode begins from the beginning, which will be discussed in Section 4.4.2.

After every step, the environment is rendered as a visual indicator of the system state.

Figure 4.6 shows an example of this rendering in a training episode. This rendering process is

turned off during general system training to increase training speed.

 61

(a)

 (b)

(c)

Figure 4.6: Simulated training environment render - (a) starting state, (b) control begins after disturbance, (c)

controller overshooting

4.4.3 Agent Training

In implementation of the reinforcement learning, the agent will follow the algorithm

outline previously in Section 4.4.1. Firstly, the agent is initialized with the hyperparameters

listed in Table 4.3. Selecting the appropriate hyperparameters can be a challenging task. Due to

the circumstances of the control problem in this work, manual tuning by trial and error is

employed.

Table 4.3: DDPG learning agent parameters

Symbol Parameter Value

𝒃 Replay buffer size 1’000’000 steps

𝑵𝑬 Number of training episodes 4000 episodes

𝑵𝒃 Batch size for replay buffer sampling 64 samples

𝝁, 𝝈 Mean and standard deviation for noise 𝜇 = 0, 𝜎 = 1

𝑵𝑬 Number of episodes for training 4000 episodes

 62

𝜸 Discount factor for future rewards 0.999

𝝉 Target learning rate 0.1

𝝓𝜽, 𝝓𝝁 Critic and actor learning rates, respectively 𝜙𝜃 = 0.001, 𝜙𝜇 = 0.005

𝜺𝒌 State observation noise scaling constant, 𝑘 =

1,2,… , 𝑛 where 𝑛 is equal to the number of inputs

into the actor network

 𝜀1 = 0.005, 𝜀2 = 0.05,

𝜀3 =
𝜋

2048
, 𝜀4 = 0.5

𝝔, 𝜷𝟏, 𝜷𝟐, 𝝇 Step size, other constants for use in ADAM gradient

descent

𝜚 = 𝜁, 𝜍 = (10)−8,

𝛽1 = 0.9, 𝛽2 = 0.999

The following summarizes the test operation procedures:

1) Firstly, the environment is initialized, and the buffer and NNs are created.

2) At the beginning of each episode, the initial state of the smart structure environment is

set to zero flexible beam deflection and the bar at zero angular position (i.e., the flexible beam

and rigid bar are standing straight up).

3) The agent provides a disturbance to the simulated structure by applying a negative

voltage to the motor to generate an angular position of the rigid bar of [-0.8, -1.2] rad. The

structure starts to vibrate.

3) The agent takes the control training actions on the structure. Random noise is added

intentionally during training to better explore the action space of the environment and develop a

more robust policy.

4) The noisy-action chosen by the agent is used to update the current state of the

environment. This returns a vector called a state transition containing the previous states, new

states, action taken, and the reward for that action. This transition is then stored in the replay

buffer.

5) The networks are updated based on a minibatch of samples from the replay buffer; the

critic is updated using the target critic and target actor networks, which can be used to estimate

the effectiveness of the control action, compute the loss of the critic, and optimize the critic.

6) The actor network is updated using the loss from the critic calculated with Equation

(3.17), and then the target actor and target critic networks are updated using Equation (3.5).

 63

7) Steps 4)-7) are repeated until the episode is finished.

8) Steps 2)-8) are repeated until the specified training episodes are completed. Then the

actor is fully trained, and performance can be evaluated to ensure training is appropriate.

Once 50% of the training episodes have been performed, domain randomization is

initiated by applying state perturbation. Perturbed states are then fed to the actor network to

determine an action for the current environment. This allows the agent to learn an effective

policy and to increase the robustness of the policy. Each input is modulated by a noise scaling

constant, as summarised in Table . Domain randomization noise increases linearly once it begins

to affect the system states, which can reach its maximum after another half of the remaining

episodes, or:

𝑠𝑡 ← 𝜀𝑘𝑠𝑡 × (𝒩|𝜇=0,𝜎=1) ×

max(0, 𝐸 − 0.5𝑁𝐸)

0.25𝑁𝐸
 (4.61)

where 𝜀𝑘, is the scaling constant; 𝒩 is the noise output from the noise function; 𝐸 is the

current episode; and 𝑁𝐸 is the total number of episodes.

The effectiveness of related controllers for vibration suppression of the flexible beam

structure will be discussed in Chapter 5.

 64

Chapter 5 - Performance Verification

 5.1 Proposed Methodology
Experiments are conducted using the smart structure workstation to verify the

effectiveness of the proposed DDPG technique for vibration control of flexible beams with

variable dynamics. The DDPG controller is evaluated using two other related controllers: the

classical PD controller and an intelligent NF controller. The purpose of selecting the PD

controller is to demonstrate the robustness of the performance of the DDPG. PD control is a

classical and commonly used control technique for flexible beam vibration control, which can

perform well even when conditions vary from the expected; in addition, the PD controller has

been optimized and implemented in smart structure workstation by the manufacturer for

demonstration purpose. The NF controller is selected to compare the ability of DDPG controller

in reinforcement learning while generating a non-sensitive policy. The comparison tests will be

undertaken to examine the effectiveness of the related controllers under variable dynamic

conditions.

A testing procedure is devised and implemented as previously described in Section 4.1.

The initial state for the smart structure is upright with no initial deflection, which is the position

to begin a test. Figure 5.1(a) shows the structure in the resting position, and Figure 5.1(b) shows

the structure in the initial state for testing.

(a)

(b)

Figure 5.1: Smart structure in the - (a) upright position, (b) initial position

 65

After the flexible beam has reached a steady state solution (i.e., completely upright), a

disturbance is applied by the motor to the rigid bar. The maximum voltage is supplied until the

rigid bar reaches a set position (1.0 rad in this case) to simulate a strong disturbance. After the

disturbance is applied, the controllers are enabled to suppress the disturbance vibration.

The tests are undertaken to examine controller’s abilities to suppress the vibration in the

beam until it returns to a steady state solution. The performance indicators used to evaluate the

performance of the related controllers in this test are settling time, overshoot, and mean error.

The steady state condition is reached when the deflection over the test window is within

±1.5mm. The overshoot is the maximum deflection of the beam when it exceeds the steady state

position. The mean error is the average absolute deflection of the beam over the control time.

These indicators are chosen to simulate a drogue control scenario in AAR flight with

disturbances. For this reason, settling time is chosen to represent the speed of vibration

suppression or convergence. Overshoot indicator is selected to reflect the predictability of

stabilization; and the mean error is used to represent the displacement over the control window.

5.2 Simulation of Variable System Dynamics
To simulate the effects of variable system dynamics of the flexible beam structure, a set

of additional mass blocks are attached at three different positions on the flexible beam. The

purpose is to test the robustness of the related controllers to accommodate with variable system

dynamics. Each mass block is approximately 100 grams, and a pair of mass blocks are placed on

each side of the beam. These three positions are selected as 100mm, 150mm, and 200mm from

the rotational axis of the rigid bar, as illustrated in Figure 5.2.

 66

(a)

(b)

Figure 5.2: Dynamic loading of the smart structure workstation – (a) diagram (b) photo - (1) rigid bar, (2) flexible

beam, (3) tape markers, (4) mass block positions

5.3 Experimental Test Result Analysis
Testing is comprised of 4 trials at each loading position for all controllers. The results in

48 tests are performed and recorded; detailed test indicators for all trials are summarised in

Appendix A. For each dynamic loading condition, the response 𝑥𝑏 is the deflection of the

 67

flexible beam as illustrated in Figures 5.3-5.6. Typical test results are demonstrated below to

represent the average results for each loading condition.

5.3.1 Test Results for the Flexible Beam without Extra Mass Blocks

Figure 5.3 shows the test results of the flexible beam using the related controllers with no

mass blocks attached to flexible beam. The results of this trial are summarized in Table 5.1. The

percentage change of each performance indicator is relative to the performance of the PD

controller; a negative percentage indicates an increase in performance compared to the PD. The

NF controller achieves a 19.87% reduction in settling time compared to the PD controller;

however, this improved performance comes at the cost of an increased overshoot and mean error,

by 18.22% and 24.27%, respectively. The proposed DDPG controller achieves the best

performance with a faster settling time with a 23.84% reduction from the PD controller. It can

also reduce the overshoot by 19.55% and the mean error by 2.57% in comparison with the

reference PD control. The DDPG outperforms the PD and the NF controller due to its unique

reasoning function and proper training by using the proposed domain randomization method.

 68

Figure 5.3: Deflections of the flexible beam without extra mass blocks, using the related controllers: (a) PD

controller, (b) NF controller, (c) DDPG controller.

Table 5.1: Experimental results without extra mass blocks using the related controllers

Controller Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

1 - PD 2.52 - 35.39 - 13.52 -

2 - NF 2.02 -19.87% 41.84 18.22% 16.79 24.27%

3 - DDPG 1.92 -23.84% 28.47 -19.55% 13.17 -2.57%

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at a Top Position

Mass blocks are then placed in the top position of the flexible beam, with the center of

the mass blocks 100mm below the rigid bar’s rotational axis. Figure 5.4 shows the testing results

using the related controllers, and the results of the tests are summarized in Table 5.2. In this

loading condition the PD controller performs similarly to the PD control without additional mass

blocks loading condition above. This is general indicator the reliability of the use of the

 69

optimized PD controller for vibration suppression in this flexible beam. The NF control does not

perform as well as the PD control in this case with a slightly slower settling time and poor

overshoot (41.8%); it is mainly due to the reason that the NF controller is trained using data sets

generated from the flexible beam without no extra mass blocks, but controlled using the default

PD controller. The DDPG is not affected by this because it does not require any externally

provided training data. The proposed DDPG control technique can provide the best performance

in this case, with an improved settling time (22.01%), overshoot (27.14%) and mean error

(4.66%), with reference to the PD control due to the use of domain randomization and the unique

reinforcement learning.

Figure 5.4: Deflections of the flexible beam with mass blocks at the top position (100mm below the rotational axis

of the rigid bar), using the related controllers: (a) PD controller, (b) NF controller, (c) DDPG controller.

Table 5.2: Experimental results with mass blocks at the top position using the related controllers

Controller Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

1 - PD 2.65 - 34.79 - 13.44 -

 70

2 - NF 2.68 1.26% 49.33 41.80% 15.58 15.94%

3 - DDPG 2.07 -22.01% 25.34 -27.14% 12.81 -4.66%

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at the Middle Position

The mass blocks are placed to the second position, 150mm from the rigid bar’s rotational

axis to simulate a different dynamics condition of the flexible beam. Figure 5.5 shows the test

results using the related control techniques, and Table 5.3 summaries the results with the

reference of the PD control. The PD controller performs reliably reasonably well in this case.

The NF controller performs reasonably well under this loading condition; although it has a

longer settling time (21.88%) compared to the PD controller, the NF control has a better

response in, the overshoot and mean error than the PD control. The DDPG controller

outperforms both the PD and NF controllers, with a (24.38%) decrease in settling time, a

(21.79%) decrease in overshoot, and a minimally improved (0.72%) reduction in mean error.

Although the DDPG controller does not perform as good as in other beam dynamic conditions,

with only a minor reduction in mean error, it still can provide the best performance due to the

application of domain randomization during training.

 71

Figure 5.5: Deflections of the flexible beam with mass blocks at the middle position (150 mm below the rotational

axis of the rigid bar) using the related controllers: (a) PD controller, (b) NF controller, (c) DDPG controller.

Table 5.3: Experimental results with mass blocks at the middle position using the related controllers

Controller Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

1 - PD 2.67 - 34.89 - 13.30 -

2 - NF 2.08 -21.88% 47.11 35.00% 16.49 23.95%

3 - DDPG 2.02 -24.38% 27.29 -21.79% 13.20 -0.72%

5.3.2 Test Results for the Flexible Beam with Additional Mass Blocks at the Low Position

The mass blocks are then moved to the lower position, 200mm below the rotational axis

of the rigid bar. Figure 5.6 shows the performance under this loading condition using the related

controllers, which are summarized in Table 5.4. Here, the PD controller can still provide a

reasonably well performance similarly to the previous dynamic conditions. The NF controller

outperforms the PD in settling time while sacrificing the overshoot and mean error. The DDPG

controller shows better performance when compared to both the PD controller and NF controller.

 72

The DDPG settles (22.44%) faster than the PD, reduces the overshoot by almost half with a

(45.15%) decrease and improves the mean error by (7.84%). Examining the results from each

loading condition for the DDPG controller has demonstrated its fast convergence and more

reliable performance corresponding to different flexible beam dynamics. The reinforcement

learning algorithm allows the agent to generate an optimized policy for the given control

problem, and the policy evolves without relying on any external data. The DDPG reinforcement

learning agent generates an effective but sensitive policy and the domain randomization can

correct the sensitivity so as to improve control convergence and accuracy. This demonstrates that

a DDPG reinforcement learning controller has potential to be applied for continuous control

problems, such as controlling a drogue in an aerial refuelling mission.

Figure 5.6: Deflections of the flexible beam with mass blocks at the low position (200 mm below the rotational axis

of the rigid bar) using the related controllers: (a) PD controller, (b) NF controller, (c) DDPG controller.

Table 5.4: Experimental results with mass blocks at the low position using the related controllers

Controller Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

1 - PD 2.60 - 35.15 - 13.43 -

 73

2 - NF 2.07 -20.51% 40.56 15.38% 16.61 23.62%

3 - DDPG 2.02 -22.44% 19.28 -45.15% 12.38 -7.84%

 74

Chapter 6 - Conclusion and Future Work
6.1 Conclusion

Historically, AAR is a technology that been limited to military use due to the cost of

maintaining the capability and the risk involved. There are many possible benefits of bringing

this technology to civilian air operations such as reduced costs, increased payload capacity, and

less aircraft wear and tear. This work investigates the feasibility of converting a civilian tanker

into an aerial refueling tanker. To address the issue of cost with civilian AAR the Air Tractor 802

is considered due to it’s relatively low-cost compared to large tanker platforms. Risk involved in

AAR is largely due to the chaotic aerodynamic conditions that can occur during refueling; to

mitigate this an actively stabilized drogue is considered.

The first objective of this thesis was to model the AT-802 and a hose-drogue aerial

refueling system that could be mounted onboard. A three-dimensional model of the aircraft was

produced and used in computational fluid dynamics simulations. These results were analysed to

determine if there may be any regions of wake behind the AT-802 that may make a drogue

respond erratically. Simulations showed that the wake behind the aircraft was relatively

homogenous and would not significantly affect a drogues stable flight. A dynamic model of the

airframe was developed using a lumped mass model of the hose and drogue. The hose-drogue

system in flight was simulated to investigate possible drogue behaviour in the flight conditions

expected for refueling from the AT-802. Results showed that the drogue stabilized on a single

point and did not oscillate dramatically during the simulation. Results indicate that a drogue

flying behind an AT-802 should behave at least as well as it would behind a large tanker.

The second object of this thesis was to develop a Deep Deterministic Policy Gradient

(DDPG) technology for vibration control of a drogue in flight. Since the hose-drogue prototype

could not be developed in time to support this research, while access to military equipment of

this kind is also restricted, an equivalent flexible beam workstation was used for the research of

drogue vibration control. Extra mass blocks were used in the flexible smart structure to simulate

variable dynamics conditions. The proposed vibration control technique uses an agent trained

using reinforcement learning with the DDPG strategy. Additionally, domain randomization was

used to increase the adaptive capability of the controller and to transfer system characteristics

from the simulated training environment to the experimental apparatus it is tested on. The

 75

effectiveness of the proposed DDPG technique was examined systematically by experimental

tests; its performance was compared with two related controllers, the optimal PD control

implemented in the flexible beam workstation, and the NF controller. The result results showed

that the NF controller could outperform the PD control when the test conditions were ideal, but

in some other conditions the NF controller performed similarly to the PD control. However, the

proposed DDPG controller could provide the best control performance under all these test and

dynamics conditions with reduced settling time, lower overshoot and smallest mean errors. The

best performance of the DDPG technique was due to its unique control policy that was

developed with reinforcement learning, combined with domain randomization to improve

robustness. It has potential to be applied for drogue control in the real aerial refueling

prototyping.

6.2 Future Work

This project was the preliminary work in the research and development of exploring Air

Tractor 802 for an aerial refueling of helicopters.

In the future this will be expanded on in the following areas:

• Prototype systems will be manufactured and installed into a FuelBoss aircraft to

test and improve the control technology, as well as to pursue Transport Canada

approval.

• The aeroelastic model of the hose-drogue will be improved using real flight-

testing data such as turbulence, wind gusts, tanker wake.

• The DDPG controller will be improved by optimizing the network architecture

and including real environmental conditions, hose length, and receiver aircraft

conditions.

 76

References
[1] S. Lamarche, “The backbone of reach & power: air-to-air refueling in the RCAF,” M.S.

thesis, Department of National Defence, Canadian Forces College, Toronto, ON, Canada,

2015.

[2] Royal United Services Institute of Nova Scotia, “Refuelling RCAF aircraft post-2020”,

2020. [Online] Available: https://rusi-ns.ca/refuelling-rcaf-aircraft-post-2020/.

[3] FuelBoss. (2020). Purpose-built for elevated results. [Online] Available:

https://fuelboss.ca/

[4] Air Tractor, Aircraft overview - Air Tractor® AT-802F, 2020. [Online] Available:

https://at802f.com/aircraft-overview/

[5] R. K. Smith, “75 years of inflight refueling”. Air Force History and Museums Program,

1998.

[6] S. J. Dougherty, “Air refueling: the cornerstone of global reach-global power,” Air War

College, Alabama, Report. 1996.

[7] B. J. Theiss, “A comparison of in-flight refueling methods for fighter aircraft: boom-

receptacle vs. probe-and-drogue,” College Aviation Review International, vol. 25, no. 2,

pp. 51–72, 2007.

[8] C. Bolkcom, “Air force aerial refueling methods: flying boom versus hose-and-drogue,”

CRS Report to Congress, p. 11, 2006, [Online]. Available:

https://www.fas.org/sgp/crs/weapons/RL32910.pdf

[9] P. S. Killingsworth, “Multipoint aerial refueling - a review and assessment.” RAND

National Defense Research Institute, Santa Monica, CA, p. 86, 1996.

[10] D. H. Kalt, R. Tipton, L. Martin, D. Ferwereda, D. A. Benson, and A. Ezfa, “Aerial

refueling probe / drogue system," Aerial Refueling Systems Advisory Group, Guidance

Document, 2018, [Online] Available: https://apps.dtic.mil/sti/pdfs/AD1064517.pdf

[11] X. Dai, Q. Quan, J. Ren, and K. Y. Cai, “Iterative learning control and initial value

estimation for probe–drogue autonomous aerial refueling of UAVs,” Aerospace Science

and Technology, vol. 82–83, pp. 583–593, 2018.

 77

[12] D. Silva, Photograph of wingtip vortices created by a U.S. Coast Guard C-130J Super

Hercules aircraft on 16 April 2009, [Online]. Available:

http://chamorrobible.org/gpw/gpw-201305.htm

[13] X. Dai, Z. Wei, and Q. Quan, “Modeling and simulation of bow wave effect in probe and

drogue aerial refueling,” Chinese Journal of Aeronautics, vol. 29, no. 2, pp. 448–461,

2016.

[14] Y. Sun, H. Duan, and N. Xian, “Fractional-order controllers optimized via heterogeneous

comprehensive learning pigeon-inspired optimization for autonomous aerial refueling

hose–drogue system,” Aerospace Science and Technology, vol. 81, pp. 1–13, 2018.

[15] A. Dogan and W. Blake, “Modeling of bow wave effect in aerial refueling,” AIAA

Atmospheric Flight Mechanics Conference 2010, Toronto, Ontario, August, 2010.

[16] U. Bhandari, P. R. Thomas, S. Bullock, T. S. Richardson, and J. L. du Bois, “Bow wave

effect in probe and drogue aerial refuelling,” AIAA Guidance, Navigation, and Control

(GNC) Conference, pp. 1–21, 2013.

[17] H. Wang, X. Dong, J. Xue, and J. Liu, “Dynamic modeling of a hose-drogue aerial

refueling system and integral sliding mode backstepping control for the hose whipping

phenomenon,” Chinese Journal of Aeronautics, vol. 27, no. 4, pp. 930–946, 2014.

[18] Q. He, H. Wang, Y. Chen, M. Xu, and W. Jin, “Command filtered backstepping sliding

mode control for the hose whipping phenomenon in aerial refueling,” Aerospace Science

and Technology, vol. 67, pp. 495–505, 2017.

[19] Z. H. Zhu and S. A. Meguid, “Elastodynamic analysis of aerial refueling hose using

curved beam element,” AIAA Journal, vol. 44, no. 6, pp. 1317–1324, 2006.

[20] J. Eichler, “Dynamic analysis of an in-flight refueling system,” Journal of Aircraft, vol.

15, no. 5, pp. 311–318, 1978.

[21] J. Yan, “Modeling of probe-and-drogue part of an in-flight refueling system", Thesis,

Rochester Institute of Technology, 2004.

[22] Z. H. Zhu and S. A. Meguid, “Modeling and simulation of aerial refueling by finite

element method,” International Journal of Solids and Structures, vol. 44, no. 24, pp.

 78

8057–8073, 2007.

[23] K. Ro, J. W. Kamman, S. Ki, and C. Ki, “Modeling and simulation of hose-paradrogue

aerial refueling systems,” Journal of Fluids and Structures, vol. 33, no. 1, 2010.

[24] K. Ro, T. Kuk, and J. Kamman, “Dynamics and control of hose-drogue refueling systems

during coupling,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 6, 2011.

[25] K. Salehi Paniagua, P. García-Fogeda, F. Arévalo, and J. Barrera Rodriguez, “Aeroelastic

analysis of an air-to-air refueling hose–drogue system through an efficient novel

mathematical model,” Journal of Fluids and Structures, vol. 100, p. 103164, 2021.

[26] K. Ro, T. Kuk, and J. W. Kamman, “Active control of aerial refueling hose-drogue

systems,” AIAA Guidance, Navigation, and Control Conference, no. August, pp. 1–12,

2010.

[27] T. Kuk, K. Ro, and J. W. Kamman, “Design, test and evaluation of an actively stabilized

drogue refueling system,” AIAA Infotech at Aerospace Conference and Exhibit 2011, no.

March, pp. 1–13, 2011.

[28] T. Kuk and K. Ro, “Design, test and evaluation of an actively stabilised drogue refuelling

system,” Aeronautical Journal, vol. 117, no. 1197, pp. 1103–1118, 2013.

[29] T. Kuk, “Active Control of Aerial Refueling Drogue,” Disertations vol 256, 2014.

[30] Z. Liu, J. Liu, and W. He, “Modeling and vibration control of a flexible aerial refueling

hose with variable lengths and input constraint,” Automatica, vol. 77, pp. 302–310, 2017.

[31] D. Yuan et al., “Study on the controllability of a drogue for hose-drogue aerial refueling

system,” 2017 Asian Control Conference, ASCC 2017, vol. 2018-Janua, no. 1, pp. 2592–

2595, 2018.

[32] P. García-Fogeda, J. Esteban Molina, and F. Arévalo, “Dynamic response of aerial

refueling hose-drogue system with automated control surfaces,” Journal of Aerospace

Engineering, vol. 31, no. 6, p. 1-13, 2018.

[33] J. Cheng, F. Deng, X. Liu, and K. Ji, “Active control of aerial refueling hose-drogue

dynamics with the improved reel take-up system,” International Journal of Aerospace

Engineering, vol. 2022, 2022.

 79

[34] Z. Su and H. Wang, “Antidisturbance vibration suppression of the aerial refueling hose

during the coupling process,” International Journal of Aerospace Engineering, vol. 2017,

2017.

[35] J. Ariss and S. Rabat, “A comparison between a traditional PID controller and an

Artificial Neural Network controller in manipulating a robotic arm,” Thesis KTH Royal

Institue of Technology, Stockholm, Sweden, 2019.

[36] M. Aamir, “On replacing PID controller with ANN controller for DC motor position

control,” International Journal of Research Studies in Computing, vol. 2, no. 1, pp. 21–29,

2013.

[37] Y. Dote, “Introduction to fuzzy logic,” IECON Proceedings (Industrial Electronics

Conference), vol. 1, no. October, pp. 50–56, 1995.

[38] J. H. Lilly, Fuzzy Control and Identification. Hoboken, New Jersey: Wiley 2010.

[39] Y. S. Maslennikova and V. V Bochkarev, “Training algorithm for neuro-fuzzy network

based on singular spectrum analysis,” Cornell arXiv:1410.1151, 2014, [Online].

Available: http://www.arxiv.org/pdf/1410.1151.pdf

[40] F. O. Karray and de C. Silva, “Soft computing and intelligent systems design,” p. 139,

Essex, England: Pearson 2004.

[41] X. Ji and W. Wang, “A neural fuzzy system for vibration control in flexible structures,”

Intelligent Control and Automation, vol. 2, no. 3, pp. 258–266, 2011.

[42] T. P. Lillicrap, et al., “Continuous control with deep reinforcement learning,” 4th

International Conference on Learning Representations, ICLR 2016 - Conference Track

Proceedings, 2016.

[43] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm for near-optimal

planning in large Markov decision processes,” IJCAI International Joint Conference on

Artificial Intelligence, vol. 2, pp. 1324–1331, 1999.

[44] R. Bellman, “A Markovian decision process,” Mathematics in Science and Engineering,

vol. 130, no. 3. pp. 172–187, 1977.

[45] V. Mnih et al., “Playing atari with deep reinforcement learning,” Cornell

 80

arXiv:1312.5602, pp. 1–9, 2013, [Online]. Available: http://arxiv.org/abs/1312.5602

[46] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, pp. 529–533, 2015.

[47] D. Silver et al., “Mastering the game of go with deep neural networks and tree search,”

Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[48] D. Silver et al., “Mastering chess and shogi by self-play with a general reinforcement

learning algorithm,” Cornell arXiv:1712.1815, pp. 1–19, 2017, [Online]. Available:

http://arxiv.org/abs/1712.01815

[49] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic

policy gradient algorithms,” 31st International Conference on Machine Learning, ICML

2014, vol. 1, pp. 605–619, 2014.

[50] A. Hassan, A. U. Rehman, N. Shabbir, S. R. Hassan, M. T. Sadiq, and J. Arshad, “Impact

of inertial response for the variable speed wind turbine,” 2019 International Conference

on Engineering and Emerging Technologies, ICEET 2019, no. 10, pp. 1–6, 2019.

[51] P. Chen, Z. He, C. Chen, and J. Xu, “Control strategy of speed servo systems based on

deep reinforcement learning,” Algorithms, vol. 11, no. 5, 2018.

[52] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma, “Deep reinforcement learning based optimal

trajectory tracking control of autonomous underwater vehicle,” Chinese Control

Conference, CCC, no. July 2017, pp. 4958–4965, 2017.

[53] M. Gheisarnejad and M. H. Khooban, “An intelligent non-integer pid controller-based

deep reinforcement learning: implementation and experimental results,” IEEE

Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3609–3618, 2021.

[54] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” 35th International Conference on Machine Learning, ICML 2018,

vol. 4, pp. 2587–2601, 2018.

[55] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real world,”

IEEE International Conference on Intelligent Robots and Systems, vol. 2017, no. 9, pp.

 81

23–30, 2017.

[56] F. Muro, Air Tractor AT-802 | Aviation Photo #6176597 | Airliners.net. [Online].

Available: https://www.airliners.net/photo/Untitled/Air-Tractor-AT-

802/6176597/L?qsp=eJxtjTEOwjAQBP9ytZskAiF3pKGEgg%2BczgtYCol1viJRlL9jHIm

KbjW7ml1JptEw231JIE8ZrPIiR4mV35n8ShxVlB/Wc46yz05N4378ghH6tyHftt3BUZ7U

%2BqXYAxvOIkiGQDu/aoB%2BK2Spt89iKY4EvdVM3bHwEHMauDpgHAfatg9TUT3

6 (accessed Aug. 25, 2022).

[57] A. H. León, Air Tractor AT-802 - FAASA Chile | Aviation Photo #2101778 | Airliners.net.

[Online]. Available: https://www.airliners.net/photo/FAASA-Chile/Air-Tractor-AT-

802/2101778 (accessed Aug. 25, 2022).

[58] M. Attar and M. Dabirian, “Reinforcement Learning for Learning of Dynamical Systems

in Uncertain Environment: a Tutorial,” Cornell arXiv:1905.07727 pp. 1–27, 2019,

[Online]. Available: http://arxiv.org/abs/1905.07727

[59] H. Modares and F. L. Lewis, “Linear quadratic tracking control of partially-unknown

continuous-time systems using reinforcement learning,” IEEE Transactions Automation

and Control, vol. 59, no. 11, pp. 3051–3056, 2014.

[60] A. M. Annaswamy, A. Guha, Y. Cui, S. Tang, P. A. Fisher, and J. E. Gaudio, “Integration

of adaptive control and reinforcement learning for real-time control and learning,” Cornell

arXiv:2105.06577, 2021, pp 1-39 [Online]. Available: http://arxiv.org/abs/2105.06577

[61] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy

optimization,” 32nd International Conference on Machine Learning ICML 2015, vol. 3,

pp. 1889–1897, 2015.

[62] S. Curi, F. Berkenkamp, and A. Krause, “Efficient model-based reinforcement learning

through optimistic policy search and planning,” Advances in Neural Information

Processing Systems, vol. 2020-December, no. NeurIPS, 2020.

[63] J. Arshad et al., “Deep deterministic policy gradient to regulate feedback control systems

using reinforcement learning,” Computers. Materials. Continua, vol. 71, no. 1, pp. 1153–

1169, 2022.

[64] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The uncertainty Bellman equation

 82

and exploration,” 35th International Conference on Machine Learning, ICML 2018, vol.

9, pp. 6154–6173, 2018.

[65] J. Arshad et al., “Deep deterministic policy gradient to regulate feedback control systems

using reinforcement learning,” Computers, Materials and Continua, vol. 71, no. 1, pp.

1153–1169, 2022.

[66] A. Agostini and E. Celaya, “Exploiting domain symmetries in reinforcement learning with

continuous state and action spaces,” 8th International Conference on Machine Learning

and Applications, ICMLA 2009, pp. 331–336, 2009.

[67] John N. Tsitsiklis, “An analysis of temporal-difference learning with function

approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 32–33, 37,

1997.

[68] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,

pp. 26–38, 2017.

[69] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,

Massachusetts: MIT Press 2020.

[70] D. Zha, K. H. Lai, K. Zhou, and X. Hu, “Experience replay optimization,” IJCAI

International Joint Conference on Artificial Intelligence, vol. 2019, no. 8, pp. 4243–4249,

2019.

[71] X. Peng, L. Li, and F. Y. Wang, “Accelerating minibatch stochastic gradient descent using

typicality sampling,” IEEE Transactions on Neural Networks and Learning Systems, vol.

31, no. 11, pp. 4649–4659, 2020.

[72] W. Fedus et al., “Revisiting fundamentals of experience replay,” 37th International

Conference on Machine Learning, ICML 2020, vol. PartF16814, pp. 3042–3052, 2020.

[73] D. Horgan et al., “Distributed prioritized experience replay,” 6th International Conference

on Learning Representations, ICLR 2018 - Conference Track Proceedings, pp. 1–19,

2018.

[74] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd

 83

International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, pp. 1–15, 2015.

[75] S. Ruder, “An overview of gradient descent optimization algorithms,” Cornell

arXiv:1609.04747, pp. 1–14, 2016, [Online]. Available: http://arxiv.org/abs/1609.04747

[76] A. Vemula, W. Sun, and J. A. Bagnell, “Exploration in action space,” 2020, [Online].

Available: http://arxiv.org/abs/2004.00500

[77] J. Hollenstein, S. Auddy, M. Saveriano, E. Renaudo, and J. Piater, “Action noise in off-

policy deep reinforcement learning: impact on exploration and performance,” Cornell

arXiv: 2206.03787, pp. 1–27, 2022, [Online]. Available: http://arxiv.org/abs/2206.03787

[78] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits in reinforcement

learning,” 35th International Conference on Machine Learning, ICML 2018, vol. 9, pp.

6443–6452, 2018.

[79] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement

learning for robotics: a survey,” 2020 IEEE Symposium Series on Computational

Intelligence, SSCI 2020, pp. 737–744, 2020.

[80] R. Ramakrishnan, E. Kamar, D. Dey, E. Horvitz, and J. Shah, “Blind spot detection for

safe sim-to-real transfer,” Journal of Artificial Intelligence Research, vol. 67, pp. 191–

234, 2020.

[81] C. Rizzardo, F. Chen, and D. Caldwell, “Sim-to-real via latent prediction: Transferring

visual non-prehensile manipulation policies,” Frontiers in Robotics and AI, vol. 9, no. 1,

pp. 1–14, 2023.

[82] R. Vrabič et al., “An architecture for sim-to-real and real-to-sim experimentation in

robotic systems,” Procedia CIRP, vol. 104, no. March, pp. 336–341, 2021.

[83] X. Bin Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of

robotic control with dynamics randomization,” Proceedings - IEEE International

Conference on Robotics and Automation, pp. 3803–3810, 2018.

[84] W. H. Lee, “Lagrangian method,” Computer simulation of shaped charge problems, pp.

5–30, 2006.

 84

[85] Manual - Quanser Inc., Smart Structure Control, 2005.

[86] Manual - Quanser Inc., Modeling and Vibration Control, 2005.

[87] Manual - OpenAI, AIGym - Release 0.24.1, 2022. [Online] Available:

https://github.com/openai/gym/releases/tag/0.24.1

[88] Manual - Tensorflow, TensorFlow Core. [Online]. Available:

https://www.tensorflow.org/guide (accessed Aug. 22, 2022).

[89] Manual - Keras, Keras API reference. [Online]. Available: https://keras.io/api/ (accessed

Aug. 22, 2022).

[90] Y.-H. Wu, F.-Y. Sun, Y.-Y. Chang, and S.-D. Lin, “ANS: adaptive network scaling for

deep rectifier reinforcement learning models,” Cornell arXiv:1809.02112, 2018, [Online].

Available: http://arxiv.org/abs/1809.02112

[91] D. Lee, “Comparison of reinforcement learning activation functions to improve the

performance of the racing game learning agent,” Journal of Information Processing

Systems, vol. 16, no. 5, pp. 1074–1082, 2020.

 A1

Appendix A: Experimental Data
Table A.1: Complete experimental results - No mass blocks

Mass @ 0 mm Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

T
ri

al
 1

Controller 1 2.52 - 35.39 - 13.52 -

Controller 2 2.02 -19.87% 41.84 18.22% 16.79 24.27%

Controller 3 1.92 -23.84% 28.47 -19.55% 13.17 -2.57%

T
ri

al
 2

Controller 1 2.62 - 35.34 - 13.22 -

Controller 2 2.00 -23.57% 41.51 17.48% 16.81 27.14%

Controller 3 2.07 -21.02% 20.92 -40.81% 12.07 -8.67%

T
ri

al
 3

Controller 1 2.52 - 35.78 - 13.65 -

Controller 2 2.07 -17.88% 46.94 31.20% 16.89 23.74%

Controller 3 1.67 -33.77% 26.55 -25.79% 14.24 4.31%

T
ri

al
 4

Controller 1 2.58 - 35.90 - 13.03 -

Controller 2 2.08 -19.35% 47.49 32.27% 16.37 25.60%

Controller 3 1.68 -34.84% 25.72 -28.36% 14.33 9.95%

 A2

Table A.2: Complete experimental results – Mass blocks @ 100mm position

Mass @ 100 mm Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

T
ri

al
 1

Controller 1 2.67 - 34.51 - 13.34 -

Controller 2 2.12 -20.63% 45.64 32.24% 15.87 19.03%

Controller 3 2.73 2.50% 25.27 -26.77% 11.37 -14.71%

T
ri

al
 2

Controller 1 2.65 - 34.79 - 13.44 -

Controller 2 2.68 1.26% 49.33 41.80% 15.58 15.94%

Controller 3 2.07 -22.01% 25.34 -27.14% 12.81 -4.66%

T
ri

al
 3

Controller 1 2.65 - 35.16 - 13.37 -

Controller 2 2.20 -16.98% 45.72 30.05% 17.55 31.31%

Controller 3 2.13 -19.50% 24.51 -30.28% 13.30 -0.48%

T
ri

al
 4

Controller 1 2.70 - 35.84 - 13.41 -

Controller 2 2.18 -19.14% 45.89 28.06% 16.95 26.38%

Controller 3 2.05 -24.07% 25.60 -28.57% 12.97 -3.29%

 A3

Table A.3: Complete experimental results – Mass blocks @ 150mm position

Mass @ 150 mm Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

T
ri

al
 1

Controller 1 2.65 - 34.57 - 13.10 -

Controller 2 2.12 -20.13% 46.72 35.12% 16.52 26.07%

Controller 3 2.03 -23.27% 27.21 -21.31% 13.44 2.57%

T
ri

al
 2

Controller 1 2.67 - 34.89 - 13.30 -

Controller 2 2.08 -21.88% 47.11 35.00% 16.49 23.95%

Controller 3 2.02 -24.38% 27.29 -21.79% 13.20 -0.72%

T
ri

al
 3

Controller 1 2.60 - 34.80 - 13.54 -

Controller 2 2.08 -19.87% 41.12 18.18% 16.87 24.60%

Controller 3 2.08 -19.87% 23.81 -31.58% 13.04 -3.72%

T
ri

al
 4

Controller 1 2.60 - 34.98 - 13.54 -

Controller 2 2.15 -17.31% 46.51 32.96% 16.82 24.25%

Controller 3 2.70 3.85% 19.89 -43.14% 10.60 -21.69%

 A4

Table A.4: Complete experimental results – Mass blocks @ 200mm position

Mass @ 200 mm Settling

Time (s)

Change

(%)

Overshoot

(mm)

Change

(%)

Mean Error

(mm)

Change

(%)

T
ri

al
 1

Controller 1 2.60 - 35.41 - 13.47 -

Controller 2 2.08 -19.87% 46.48 31.28% 15.82 17.48%

Controller 3 1.93 -25.64% 27.23 -23.09% 13.15 -2.34%

T
ri

al
 2

Controller 1 2.60 - 35.15 - 13.43 -

Controller 2 2.07 -20.51% 40.56 15.38% 16.61 23.62%

Controller 3 2.02 -22.44% 19.28 -45.15% 12.38 -7.84%

T
ri

al
 3

Controller 1 2.62 - 35.64 - 13.23 -

Controller 2 2.12 -19.11% 39.78 11.63% 18.14 37.14%

Controller 3 1.93 -26.11% 27.44 -23.01% 13.19 -0.30%

T
ri

al
 4

Controller 1 2.65 - 35.69 - 13.21 -

Controller 2 2.12 -20.13% 47.37 32.71% 16.43 24.36%

Controller 3 2.02 -23.90% 26.89 -24.67% 12.92 -2.19%

