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ABSTRACT

Intelligent Transportation Systems (ITS) showcase cutting-edge services designed to
revolutionize transportation and mobility, especially within future smart cities. These ser-
vices play a pivotal role in bolstering traffic safety, tratfic low management, infotainment,
and the dependability of edge-assisted autonomous driving. Consequently, ITS introduces
the Vehicle-to-Vehicle (V2V) communication paradigm, facilitating continuous connectiv-
ity between moving vehicles and their surroundings. Real-time data exchange regarding
acceleration, position, speed, and braking status enables collision avoidance and congestion
mitigation. V2V communication streamlines communication pathways, resulting in safer
and more comfortable driving experiences, particularly in high-risk scenarios. This thesis

investigates two distinct challenges within V2V communications:

1. Multi-Group V2V Communications: This study addresses the establishment and
scheduling of data streams and packets between wvehicles within a multi-group com-
munication setup. In scenarios involving police cars, ambulances, buses, or city fleets,
each group of vehicles communicates within itself. The objective is to establish com-
munication links between all vehicle pairs within a group, utilizing WiFi technology to
alleviate the load on cellular networks. Since not all pairs have direct communication
capabilities, the problem extends to relaying and scheduling data packets through
multi-hop transmissions. Resource blocks, including designated channels and time
slots, are allocated. The study aims to maximize communication efficiency among
vehicle groups while ensuring fairness and allowing resource block reuse under the
SINR constraint.

2. Age of Information (Aol) Minimization: Traditional metrics like throughput and la-
tency do not sufficiently capture data stream timeliness and freshness, critical for
autonomous driving and accident prevention. This study targets the minimization of
Aol across all data streams in autonomous vehicular networks. The goal is to reduce
the total or average Aol over a specified timeframe. Unlike the first study, direct data
stream connections between vehicle pairs are absent. Instead, a vehicle broadcasts
data to nearby wvehicles based on data importance. Minimizing Aol requires optimiz-
ing relaying decisions, transmission timing, and data packet dropping. Complexity
arises from optimizing nodes for data relaying, transmission timing, and prioritizing
newer data packets.

In both studies, mathematical formulations employing mixed-integer linear program-
ming (MILP) are initially employed for optimal solutions. Due to optimization model
complexity, scalable heuristic methods are proposed for larger networks. To capture dy-
namic environmental dynamics, both problems are modeled as Markov Decision Processes
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(MDP) and tackled using reinforcement learning (RL) techniques such as (Qlearning and
Double Deep Q-Networks (DDQN).

Additionally, hybrid heuristic-based RL methods are introduced to enhance learning
behavior and overall performance. Numerical results underscore the efficacy of hybrid
approaches in comparison to optimal solutions, random agents, proposed heuristics, and
conventional RL methods across networks of varying sizes.

In conclusion, this thesis contributes to intelligent transportation systems and future
smart cities by offering innovative solutions for vehicular communications. These approaches
hold the potential to enhance data transmission efficiency and reliability for autonomous

vehicles, paving the way for safer and more responsive autonomous driving experiences.
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Chapter 1

Introduction

In the persistent demand for modern transportation, Intelligent Transportation Systems
(ITS) deliver a wide range of state-of-the-art services that mainly focus on drastically en-
hancing transportation and mobility on roadways for the future generation [1]. These
cutting-edge services not only expand traffic safety, flow control, and infotainment but also
ensure the reliability, and confidentiality of edge-assisted autonomous driving [2-4].

However, to enable seamless communication between vehicles and dynamically improve
overall traffic efficiency, ITS introduces a fully connected component known as a vehicular
communication network, which enables vehicle-to-vehicle communication and creates a dy-
namic and interconnected ecosystem. Then, with the help of this dynamic ecosystem, V2V
communication allows moving vehicles to stay online and connected to their surroundings
by using wireless fidelity technologies (WiFi), known as Dedicated Short Range Communi-
cations (DSRC) [5,6].

While communicating with nearby vehicles considering WiFi protocols, V2V allows ve-
hicles to share a stream of data packets based on three distinct types of communication
methods including unicast, multicast, and broadcast, as shown in Fig. 1.1. In that sense,
V2V communication also provides several real-time decision-making information on roads
such as autonomous driving, road surveillance, source and destination locations, dangerous
situation detection, real-time data sharing (vehicle’s acceleration, position, speed, braking
status, and heading), information about driving behaviors, communication services between
neighboring vehicles, and many more [7]. These shared activities result in more efficient,
safer, and comfortable driving experiences, especially in high-risk scenarios (i.e., blind spots,
highway merging, and intersections), and create new opportunities in various business sec-
tors [8-12]. Hence, the networking industry and academia have shown a deep interest in
developing V2V communications and leveraging relevant services.

In the unicast method, if source-destination pairs are in the communication range, this
approach can communicate directly through WiFi to send data packets from a specific



Figure 1.1: An illustration of Unicast, Multicast and Broadcast communication methods
where 51, 52, 53 indicate source nodes, D1, D2, D3 indicate destination nodes, and H1, H2,
H3 denote relay nodes between source and destination nodes.

source node to a specific destination node and establish a point-to-point connection between
them [13,14]. Unlike the first method, the multicast method is mainly responsible for point-
to-multipoint communications in which a sender transmits data packets to multiple receivers
belonging to a specific set of groups [15,16]. On the other hand, the broadcast method sends
packets from a source node to all nearby nodes within the communication range [14,17].
Hence, the unicast and multicast methods are one-to-one and one-to-many communication
methods respectively, while the broadcast method is a one-to-all communication method
that disseminates information to multiple destination nodes simultaneously. However, in all
scenarios of communication methods, not all the source-destination pairs have a direct link
because of a communication range (which can be defined by transmission power, distance,
and fading). Hence, for some, we need to create a path by relaying transmissions over
multi-hop nodes.

4 Channel
c3 Vehicle3
A
2 )
c c2 Vehicle2
2
(o]
cl Vehiclel
Time

Figure 1.2: An illustration of frequency division multiple access (FDMA) where an FDMA
media is divided into three equal orthogonal channels (i.e., cl, ¢2, and ¢3). Here, each
channel contains a single vehicle (i.e., c1 contains a vehiclel) and we consider the length of
the time frame to be 1.



We consider a frequency division multiple access (FDMA) media [18] that is applied
to share the available frequency spectrum into different frequency bands or channels (see
Fig. 1.2). Then, each resource or vehicle is allocated to a specific channel for transmissions.
During the resource allocation phase, the resources might face some factors such as inter-
ference and traffic conditions, particularly when two vehicles are in close proximity. Hence,
the channel allocation mechanism plays a crucial role in preventing these causing factors,
trying to allocate all available channels one after another.

We also consider a time division multiple access (TDMA) media that is used for sharing
the same frequency band or channel into different time slots. Here, each time slot is assigned
to a specific vehicle. Also, the TDMA mechanism supports multiple channels (i.e., 3)

F'y

E =

AR RERE

Sl 2|2 |2 ph

2223
f1 2 t3 >
Time Slots

Figure 1.3: An illustration of time division multiple access (TDMA) where a TDMA mecha-
nism is divided into three equal time slots (i.e., t1, t2, and t3). Here, each time slot contains
a single vehicle (i.e., t2 contains a vehicle2) and we refer the entire bandwidth to a single
channel (c).

as shown in Fig. 1.3, and allows multiple resources to be shared on the same channel.
For instance, in a scenario of a three-time slot TDMA, at least three vehicles among all
possibilities are allowed to use the current channel without causing significant interference
to others.

In modern communication systems, when we combine the principles of both TDMA and
FDMA then we get a key concept of the wireless spectrum named Resource Blocks (RBs).
Resource blocks are mainly considered to allocate the available resources for communications
between vehicles with a stream of data packets. For instance, as depicted in Fig. 1.4, the
combination of a specific time slot (t3) in a given time frame and a specific orthogonal
channel (c4) from all available channels is called a resource block (RB).

To reduce interference and increase the success rate of V2V communications, we intro-
duce a well-known approach named Half duplex transmission mode. In this mode, a vehicle
cannot send or receive multiple data packets at the same time to/from a specific receiver

or transmitter. Instead. it can either transmit a packet to a specific receiver or receive a
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Figure 1.4: An explanation of resource blocks (RBs) where each RB consists of one orthog-
onal channel and one time slot. Here, we divide a time frame into three time slots (i.e., t1,
t2, and t3) and a frequency band into four orthogonal channels (i.e., cl, ¢2, c3, and c4).

packet from a specific transmitter. As per the discussions above, when the resource block is
empty and we have a data packet (i.e., 1 and 2) on a resource block (t1.c1) that is shown in
Fig. 1.5 as black color, we can transmit the packet from its source node 1 to its destination
node 2. However, owing to the Half-Duplex mode, another packet shown in red cannot be
transmitted from its source node (2) to its destination node (1) as both of them are already

allocated.
aHalf-Duplex R
A

c2 2{}1 7--=5|9--=8

cl|1--22|3-->5|9--=7

il 2 t3
Time Slots

Channels

Figure 1.5: An explanation of Half-Duplex (HD) communication mode where a vehicle
cannot receive or transmit at the same time. Here, packets shown on resource blocks (RBs)
in red colors cannot be transmitted due to the Half-Duplex mode, while the colors in black
can successfully be transmitted to their destinations.

To allocate even more resources to resource blocks for obtaining more successful commu-
nication, we introduce another crucial metric called Signal-to-Interference-plus-Noise Ratio
(SINR). This metric checks the quality of the received signal strength, interference to the
newly allocated receivers from other transmitters, and background noise. If the obtained
SINE. value at receivers is above a certain threshold S, then we can observe simultaneous
transmissions in the network. Two different scenarios are shown in Fig. 1.6 where we marked
them by black and red. It is observed that we have two simultaneous transmissions on re-
source blocks of (t1, ¢2) and (t3, ¢2). Here, we assume that the simultaneous transmissions
on (tl, ¢2) are allowed due to the obtained SINR value which is equal to or greater than
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Figure 1.6: An explanation of signal-to-interference plus noise ratio (SINR). Here, we divide
a time frame into three time slots (i.e., tl1, t2, and t3) and a frequency band into two
orthogonal channels (i.e., c1, and ¢2). Also, packets shown on resource blocks (RBs) in red
colors cannot be transmitted due to either Half-Duplex or SINR or both of them, while the
colors in black can successfully be transmitted to their destinations.

the SINR threshold 8. So, we can do simultaneous transmissions for the available packets
on tl, ¢2. On the other hand, we cannot do simultaneous transmissions even though both
packets satisfy the Half-Duplex mode as the achieved SINR value is not equal or higher
than the threshold sample. Therefore, only the source node 2 can send its data packet to
its receiver node 8.

To show the importance of data and prevent collisions or hazardous situations during
communications, we also introduce a metric called Age of Information (Aol) that focuses
on how up-to-date the information is from the perspective of the receivers. In a V2V
communication mechanism, this metric not only indicates the freshness of data packets
from its sender to its receiver but also shows the time difference since the most recently
delivered message was generated at the sender node. For instance, we can consider a scenario
where a packet is just generated at time slot t=0 by a transmitter. In the next time slot
when t=1, the newly generated packet by a transmitter would be ready for the transmission
to the nearest receivers within its coverage area. At t=2, one of the destination nodes will
receive that transmitted packet. Now, if we calculate the Aol from the perspective of the
receivers at time slot t=2, then the most recently delivered message generated at the sender
node will be 2 seconds (i.e., units are seconds).

In this thesis, scheduling itself is one of the complex tasks which determine the frequency
of each transmission between all vehicles within its coverage area in the network. Then,
with the addition of various challenging factors such as multi-hops, Half-Duplex, and SINR
is make the scheduling decisions even more difficult. For instance, in some cases of V2V
scenarios, the transmitted packet may need to be relayed through multiple V2V nodes hefore
reaching its destination as the routing paths between sources and destinations are affected

by communication distance or fading issues. Hence, changing vehicle movement with the



network topology dynamically may affect other transmissions. In another V2V scenario
considering the Half-Duplex mode, we may have very limited resources as a node cannot
transmit or receive at the same time. The consideration of this constraint poses another
major aspect during scheduling. Afterward, due to the dynamic movements of vehicles,
scheduling available resources on resource blocks under the SINR constraint is even more
difficult as it is affected by potential interference, particularly for those vehicles which are
often in close proximity. At that time, finding a correct routing path and schedule links by
allocating RBs with a consideration of varying power transmission, half-duplex and SINR
constraints in the network make the scheduling decisions even harder. Hence, to handle the
arising challenges, we later devise effective machine learning and artificial intelligence-based
approaches that play a crucial role in preventing the complexity of the scheduling algorithm
while exchanging information in the network.

In this thesis, we discuss two separate studies to design an effective autonomous vehicular
transportation system. Our first study (MVGCF, Maximizing V2V Group Communications,
and Fairness) described in Chapter 3 is referred to as a unicast communication method,
while the second study (Online Age of Information (Aol) Minimization Method) explained
in Chapter 4 is offered to as a broadcast communication method [19]. The fundamental

objectives are given below.

1. The first study of this thesis is to maximize the total number of communications for

groups of vehicles while maintaining fairness among all V2V communication pairs

2. While another crucial study of the thesis is to minimize the total or average Aol of
all data streams that are intended for antonomous vehicles in the network within the

road segment for the entire time frame

Study 1 (maximizing the total number of communications while maintaining fairness for
all V2V communication pairs):

Chapter 3 solves the routing paths (i.e., a set of intermediate links between source and
destination pairs), resource allocation, and link scheduling for a stream of packets between
vehicles within a multi-group communication configuration. For instance, groups of vehicles
(i.e., police cars, ambulances, firefighters, buses, and city fleets) communicate with each
member of its group [20]. This chapter aims at setting communication links between all
vehicle pairs within a group utilizing WiFi technology to alleviate the load on cellular
networks and then schedules transmission links to RBs. Since not all pairs have direct
commmunication capabilities, the problem extends to relaying and scheduling data packets
through multi-hop transmissions. The study aims to maximize communication efficiency
among vehicle groups while ensuring fairness and allowing resource block reuse under the
Half-Duplex and SINR constraint. It is assumed that by maximizing the total number of



data packets, the system will always choose a pair of nodes that are close to each other to
save allocated resources. Therefore, a pair of nodes that are far from each other and require
multi-hop transmissions, has a very low or maybe zero chance to be considered for a V2V

data communication.

Study 2 (minimizing Aol for all data streams):

As traditional metrics like throughput and latency do not sufficiently capture data
stream timeliness and freshness [21-23], Chapter 4 focuses on the minimization of Aol across
all data streams in autonomous vehicular networks to prevent accidents or hazardous sit-
uations. Unlike the first objective, direct data stream connections between wvehicle pairs
are absent. Instead, a vehicle can participate in relaying or rebroadcasting data streams
to nearby vehicles based on data importance while considering the limitations imposed by
the half-duplex constraint, transmission range, and SINR thresholds [24,25]. To achieve
the mentioned objective of this chapter, an array of decision-making information, includ-
ing relaying, transmission timing, and data packet dropping, is required to minimize the
total/average Aol of all data streams at all nodes for the entire time frame. Hence, several
complexities arise in deciding which packets of data streams to broadcast over transmission
links, scheduling links on time slots, and ensuring packet order transmission on multi-hop
paths.

The contributions of the thesis can be summarized as follows:

¢ The studies of Multi-Group V2V communications and Age of Information (Aol) min-
imization are first mathematically formulated as a mixed integer linear programming

(MILP) to obtain optimal solutions for static environments.

s Due to the NP-hardness of the introduced problems and overcoming the complexity
of both optimization models, two scalable heuristic-based methods are proposed.

¢ We then formulate both problems as an MDP, and the structured framework for

1

modeling and analyzing the problems is demonstrated.

¢ To make informed and effective decisions and solve both problems, two reinforcement
learning (RL) based methods, namely Qlearning and DDQN are employed.

s To further enhance the learning behaviour of each RL agent and improve the per-
formance of the aforementioned methods, two innovative hybrid heuristic-based RL
methods are employed by combining the strength of the heuristic methods and RL
algorithms.

¢ Finally, comprehensive comparisons between proposed approaches; conventional RL

methods, hybrid methods, and heuristic methods, are shown with the MILP-based
optimal solutions and Random method on small instances for both problems. Then,



we compare the performance of the introduced methods for both problems without
the optimization model on both medium and large instances. Later, the effectiveness
of the hybrid approaches in terms of the number of successful communications and
attainment of max-min fairness is shown for the Multi-Group V2V communications
problem. In contrast, the effectiveness of the hybrid approach is evaluated for the Aol
minimization problem in terms of efficiently minimizing the expected weighted sum
of Aol

The rest of the thesis is organized as follows.

s Chapter 2 provides an overview of the related work, such as Routing and Scheduling to
maximize communication throughput, Fairness, and a thorough review of the Age of

Information. Besides, we provide explanations and limitations of the current studies.

o Chapter 3 gives an introduction and description of the Multi-Group V2V Commu-
nications problem. Then, we mathematically model the problem. We also show the
hardness of the problem and explanations of the proposed scalable method. Further-
more, we evaluate the performance of the proposed methods with key findings.

s Chapter 4 gives a detailed introduction and description of the Age of Information
(Aol) minimization problem. We then formulate the mathematical formulation. We
also show the hardness of the problem and explanations of the proposed scalable
method. Furthermore, we evaluate the performance of the proposed methods with
key findings.

o Chapter 5 concludes the thesis, summarizing the findings and suggesting potential

avenues for future research.



Chapter 2

Related Work

In Vehicle-to-Vehicle (V2V) communications, scheduling is considered to be a prominent
process in arranging, controlling, and optimizing the operation of the service provider for
any application. As a result, the key goal is to construct an effective resource allocation
system that allows multiple vehicles to communicate simultaneously with each other [26].
Alongside, another crucial and reliable aspect in V2V communications is to maintain fair-
ness in vehicular networks to ensure equitable and effective sharing of data among various
vehicles. Also, the recent rapid growth of Aol scheduling that provides the freshness of
information in V2V communications stands as a prominent research challenge because it
requires an optimal selection of broadcasted nodes in V2V communications. In the following
subsections, we present a detailed overview on each of them and highlight the novelty of

our work.

2.0.1 Routing and Scheduling to maximize communication throughputs

The authors in [26] investigated TDMA |, in which the time frame is divided into numerous
time slots in order to share the same frequency channel without interfering with other
nodes in vehicle-to-everything (V2X) and classify them based on their scheduling technique
known as fuzzy logic-based resource allocation. The proposed method was accomplished
by allocating resources to all RBs, followed by the Half-Duplex characteristics. Similar to
our work, the goal is to maximize network throughput. However, they did not consider any
priority queues and fairness in their system. The authors in [27] focused on maximizing
system throughput through a power control scheme called Belief Propagation based on
Real-time Update of Messages (BPRUM), where multiple links can share the same RB.
On the other hand, the authors in [28] proposed a beamforming-based multi-point trans-
mission algorithm to improve system throughput by considering simultaneous transmissions
on several channels. Similarly, in [29], the authors proposed an approach to maximize sys-
tem throughput by reusing an RB. Additionally, they analyzed and programmed the po-
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tential reduction in power consumption in a cellular network using MILP and solved it by
a Gurobi optimizer. Moreover, the authors in [30] presented an interference-aware relay se-
lection mechanism that schedules transmission and routing in a multi-hop network, aiming
to improve network throughput while considering the SINR model.

In [31,32], the authors proposed a RB sharing algorithm that allows multiple vehicles to
share a single RB. with the objective of maximizing concurrent data transmissions while ad-
hering to SINR constraints. The authors in [33] examined the compressive data gathering
(CDG) and scheduling problem in wireless sensor networks and divided it into two sub-
problems: tree construction and link scheduling. They also discussed how well the system
handled transmissions and gathered delays.

Vehicle-to-everything (V2X) communication is essential for road safety while maintain-
ing high dependability and low latency. A unique strategy of joint power control and
resource allocation mode selection was proposed, utilizing two resource allocation methods
in [34] to solve the resource allocation problem under diverse networks. Also, they aimed to
enhance the overall information value of V2X communication while minimizing SINR and
maximizing transmit power.

Similar to this, the study in [35] discussed resource block allocation in D2D-based V2V
communications under the restricted condition of SINR. They used function mapping to
convert the problem into an inference problem on a factor graph model and explained
the message-passing technique. Afterward, to address the issue, a BPRUM algorithm was
proposed to maximize the concurrent links while ensuring the satisfaction of quality of
service ((JoS).

However, they did not formulate their problem as Mixed Integer Linear Programming
and consider fairness in their system. Unlike the aforementioned studies, our work strongly
emphasizes maintaining max-min fairness among communication pairs while maximizing
the total number of V2V communications considering the RB allocation and scheduling
techniques. By incorporating fairness as one of the key objectives, our approach aims to
ensure equitable utilization of resources among all V2V communication pairs, leading to a
more balanced and efficient system operation.

The authors in [36] introduced RL to solve a Constraint Satisfaction Problem (CSP)
in cellular networks, where their goal was to ensure quick data transmission while saving
power. In [37], they introduced a decentralized method called Fed-MARL that combines
deep reinforcement learning (DRL) and federated learning (FL) to improve communications
between vehicles (V2V) while maximizing data transmission over cellular links. They cre-
ated individual "agents” for each V2V pair using dueling double deep Q-network (D3QN)
and enabled these agents to work together by sharing information.

In [38], the authors investigated the resource allocation problem in vehicular commu-
nications using deep Q-network (DQN) and deep deterministic policy-gradient (DDPG)
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approaches. The former was responsible for sub-band assignment, while the latter was used
for continuous power allocation. Also, to handle dynamic environments, a meta-based DRL
algorithm was introduced to improve adaptability.

In [39], a decoupling approach was considered in vehicular communications for channel
allocation and power control schemes. They also proposed a hybrid approach to maximize
the systems’ efficiency while ensuring the scheduling of V2V links on RBs.

The authors in [40] studied how to allocate channels and control power in vehicular and
cellular networks to ensure good quality of services (QoS) for different types of traffic. They
proposed a Multi-agent deep deterministic policy gradient (MADDPG) framework to solve
this problem for V2V communications, where the primary objective is to maximize the
utility of vehicular users while ensuring (JoS for all users. However, it is important to note
that their framework did not address the issue of fairness among all V2V links. Unlike the
problem proposed in this paper, our research emphasizes the importance of fairness among
V2V links in addition to system performance.

Similarly, in [41], the authors explored the allocation of sub-channels and power control
in a group of connected and self-driving vehicles to ensure stable communication. In their
work, two methods have been compared: one where a central station makes decisions based
on limited information about the links, and another where each vehicle independently uses
RL to make decisions. The goal is to maximize the transmission rate while maintaining
stability. However, their approach has limitations in terms of fairness. In [42], the authors
focused on a problem known as multi-task offloading (MTO), which involves ofloading tasks
while varying network requirements. They proposed a method called SMRL-MTO that uses
meta-reinforcement learning to adapt quickly to different situations. However, they did not
consider throughput and the amount of information that can be transmitted in their system
while optimizing task completion time in various offloading scenarios.

In [43], the authors proposed a DRL-based scheme called JoOBARS to improve commu-
nication in vehicular networks using mmWave base stations. They considered joint beam
allocation and relay selection to optimize the total transmission rate. They also introduced a
rate punishment restriction and relaying incentive mechanism to ensure high-quality service
for vehicles and fair relay selection but did not consider throughput in their system.

Although the reviewed papers presented innovative approaches for resource allocation in
vehicular networks and used several RL and /or DRL algorithms for implementation, they
did not explicitly address both throughput and fairness for group-based V2V communica-

tions in their systems.

2.0.2 Fairness

In order to analyze a drone-assisted vehicular network problem, the authors in [44] tried

to maximize network transmission utility while reducing random data transmission. Unlike
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our work, despite explaining the system’s fairness, they did not maintain any queues based
on the priority of requests. The authors in [45] presented a greedy algorithm that aims to
maximize throughput while minimizing service disruption for multiple requesting vehicles
within the range of roadside Units (RSUs). In order to serve the vehicles’ download requests,
they developed a joint frequency scheduling and power control scheme over both 12V and
V2V communications, where the former is addressed as a linear programming problem.
Unlike our study, this paper did not concentrate on improving the amount of fairness based
on the request’s priority queue while ensuring fairness in vehicular communications.

In [46], the authors investigated a cellular network where D2D nodes are allowed to share
the same time slots with cellular user equipments (CUEs) under certain constraints. After-
ward, to maximize the normalized sum of throughput for all D2D users, a hybrid spectrum
scheme approach, which learned an optimal strategy to allocate resources autonomously,
was proposed. Later, to address fairness issues among all D2D users, they considered the
double deep Q-network (DDQN) to achieve fairness for all D2D users. However, they did
not formulate their problem as MILP and explore the V2V communications using WiFi with
the reuse of resource blocks under the Half-Duplex constraint. Also, they failed to devise
a heuristic method using priority queues while considering fairness for a large network in
their system. Moreover, they did not show the concept of a hybrid deep learning approach
to run the experiments over an extremely large network.

Later, anthors in [47] showed that not all items were broadcasted several times to maxi-
mize the channel bandwidth. Hence, the system created unfairness to others. Due to having
such unfairness in the system, they introduced a fairness-friendly (FF) solution to balance
the trade-off between fairness and throughput. However, the proposed algorithm provides
a fair service if and only if the value between Uniformly Distributed Request Served Per-
centage (UDRSP) and Skewed Distributed Request Served Percentage (SDRSP) are equal
or nearly equivalent.

In a study presented in [48], the authors showed that popular data items are broadcasted
multiple times to maximize the bandwidth of the broadcast channel, which may create
unfairness for non-popular items. To balance throughput and fairness, they proposed a
solution called RoadNet that prioritizes transmissions based on the user satisfaction ratio.
In contrast, the authors in [49] analyzed a satellite-terrestrial integrated network (STIN)
and showed fairness in user association while maximizing the throughput by reusing RBs.

However, in the above-mentioned studies, none of them used max-min fairness by maxi-
mizing the number of communications for the one with the least number of communications.
In addition to the fact that none of them studied the combinatorial problem presented in

this paper.
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2.0.3 Age of Information

The study in [50] investigated the Aol minimization problem in wireless networks with time-
varying channels. They formulated the relaxed problem as a constrained Markov decision
process (CMDP) and utilized linear programming to find an optimal solution. Building
an optimal policy derived from the relaxed problem, they proposed a truncated scheduling
policy that adheres to the original strict power constraint while achieving effective Aol
minimization. Similar to our work, they also aimed to minimize the total weighted sum
of Aol. However, they did not formulate their problem as MILP and explore the V2V
commmunications with the reuse of resource blocks under the Half-Duplex constraint.

In [51], the authors introduced WiFresh, which aimed to achieve nearly optimal infor-
mation freshness in wireless networks, even in overloaded networks. Their experimental
findings demonstrated the effectiveness of WiFresh, which incorporates two strategies in
improving information freshness compared to standard WiFi networks to achieve a signifi-
cant improvement of two orders of magnitude. In [52], they examined a base station that
handles traffic streams in an [oT network with mobile edge computing (MEC) assistance.
To minimize the expected sum of Aol, the authors initially employed linear programming
(LP) to derive an optimal policy. However, due to the complexity of the LP approach, they
later introduced low-complexity algorithms.

The authors of [53] investigated an algorithm that calculates the necessary charging
time for each source node while considering the weighted Aol in a wireless-powered network.
Similar to our work, their goal was to minimize the total weighted sum of Aol. However,
they did not formulate their problem as MILP and explore the V2V communications using
WiFi with the reuse of resource blocks under the Half-Duplex constraint.

The authors of [54] considered transmission capacity, focusing on a network scenario
where a base station regularly updates multiple users with randomly arriving information.
By considering offline and online scenarios, the scheduling algorithms were proposed to
minimize the average Aol in the wireless network. The authors of [55] studied Aol-oriented
scheduling for a wireless multiuser uplink network and formulated the scheduling problem
using a partially observable Markov decision process (POMDP). To simplify the problem,
they transformed the POMDP into a belief Markov decision process (belie-MDP). Then,
using the belief-MDP framework, they developed the POMW policy to minimize the ex-
pected weighted sum of Aol in the next slot.

Similarly, the authors of [56] focused on wireless powered sensor networks (WPSNs) and
aimed to minimize the average weighted sum of Aol. Then, they formulated it as a multi-
stage stochastic non-linear integer programming (NLP) challenge. To tackle this problem
effectively, they devised an algorithm named DRLL that combines Deep Reinforcement
Learning (DRL) and Lyapunov optimization methods. The DRLL algorithm efficiently
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manages the scheduling of energy transfer and packet transmission in the WPSNs. The
anthors of [54-56] discussed transmission scheduling strategies and introduced RL-based
solutions to minimize the total weighted sum of Aol. However, they did not formulate
their problem as MILP and explore the V2V communications using WiFi with the reuse of
resource blocks under the Half-Duplex constraint.

The authors of [57] investigated the transmission scheduling strategy for autonomous
underwater vehicles (AUVs) in an underwater wireless sensor network (UWSN), where
AUVs with random lifetime are considered. Also, the AUVs were responsible for selecting
an underwater data collection station to update data, which was then uploaded to the
surface base station. To optimize the scheduling strategy for the AUV and prove the
threshold structure characteristics of the optimal strategy, the problem was formulated as
a discounted Markov decision process. Similar to our work, they discussed transmission
scheduling strategy and introduced RL-based solutions to deal with the dynamic nature of
the environment. However, the goal was not to minimize the weighted sum of Aol allowing
multiple transmissions under the Half-Duplex constraint.

The authors of [58] focused on analyzing the Aol performance in a multi-source system.
The system consists of multiple sources generating updates, with the constraint that only
one update was transmitted to a monitor at any given time. The authors considered four
different scheduling policies, including random scheduling, round-robin scheduling, age-
greedy scheduling, and the Whittle index-based policy, to compare the Aol performance in
such a multi-source system. In [59], the authors considered a base station scheduling that
broadcasts status updates containing randomly arriving information to multiple nodes over
a shared bandwidth-limited channel. They proposed optimal stationary randomized and
Max-Weight policies, where the former is investigated when the transmission feedback is
unavailable, and the latter is introduced when the feedback is available. With the help of
these approaches, they aimed to minimize the weighted sum of the average AoS of all the
nodes while meeting the minimum throughput requirement of each node. Though the goal
is to minimize the total weighted sum of Aol by varying several heuristic methods, they
failed to validate their performance with the help of an optimal solution. Alongside this,
scheduling decision and the reuses of resource blocks under Half-Duplex constraint was not
explored.

In this study, unlike mentioned works above, we are mainly focused on the problem of
Aol in V2V communications, where multiple transmissions are allocated to resource blocks
while adhering to the Half-Duplex constraint. This paper aims to model the problem
as a Markov Decision Process (MDP). Furthermore, we devise a hybrid heuristic-based
reinforcement learning method to find an efficient solution that minimizes the total Aol in
intelligent transportation systems.

To the best of our knowledge, we are the first who studies the combinatorial problem



of routing and scheduling data packets in two different communication methods (Unicast
and Broadcast). In the MVGCF problem, we consider routing and scheduling for multiple
V2V communication pairs of vehicles that communicate in groups to maximize the total
number of successful communications while maintaining fairness, while the OAMM prob-
lem was responsible for traversal of broadcasted nodes between sources and destinations
to minimize the total or average Aol of all data streams for autonomous vehicles. Both
of them pose significant challenges, where the MVGCF problem has to find appropriate
paths through multi-hops to establish communication between a pair of vehicles, schedule
links and allocate RBs, reuse RBs by tuning power transmission and considering SINR for
simultaneous transmissions. On the other hand, the OAMM problem takes into account re-
source allocation under the Half-Duplex constraint, traversal of broadcasted nodes between

sources and destinations, link scheduling, and the reuse of resource blocks.
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Chapter 3

Maximizing Communications and

Fairness Within Groups of Vehicles

Intelligent vehicle-to-vehicle (V2V) communications offer promising solutions to the future
of vehicular networks and autonomous driving. This chapter investigates the challenge of
establishing efficient communications among pairs of vehicles using WiFi technology. It is
assumed that there are multiple groups, and vehicles which belong to a group have a dedi-
cated data stream to each wvehicle in their group. As a result, each source-destination pair
within a group is associated with a distinct data stream, providing an efficient and reliable
means of data transmission. However, due to communication range limitations, not all pairs
can communicate directly, and they have to relay data packets through multi-hops. The
objective of this chapter is to maximize the total number of communications while ensur-
ing fairness among V2V communication pairs. To achieve this, the problem of scheduling
and relaying data through multi-hop vehicle nodes for source-destination pairs by sharing
resource blocks within a time frame under the constraint of signal-to-interference-plus-noise
ratio (SINR) is investigated. In this chapter, first, the problem of Maximizing V2V Group
Communications and Fairness (MVGCF) is mathematically formulated to find optimal so-
lutions. Then, it is shown that the problem is NP-hard, and owing to its complexity, a
scalable method is proposed for more extensive networks. To tackle the dynamic nature of
the environment and wvehicle mobility, the problem is modeled as MDP, and two reinforce-
ment learning (RL) algorithms, namely Qlearning and Double Deep ()-Networks (DDQN),
are proposed to solve it. Furthermore, to improve the performance of both methods, two
hybrid heuristic-based RL methods, namely MVGCF-Qlearning and MVGCF-DDQN, are
devised. The numerical results demonstrate the effectiveness of the hybrid methods in
terms of the number of successful communications and max-min fairness when compared
to a state-of-the-art heuristic method and the conventional RL methods for small, medium,
and large networks.
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3.1 Introduction

Intelligent transportation systems (I'TS) are developing quickly to offer cutting-edge services
for vehicles, such as infotainment, traffic control and safety among others. I'TS also foster
intelligent vehicular environments through a fully connected paradigm known as vehicular
communication networks [5], which enable moving vehicles to remain online and linked to
their surroundings while traveling. In that sense, vehicular communication networks pro-
vide various activities such as autonomous driving, road surveillance, source and destination
locations, dangerous situation detection, data sharing, information about driving behaviors,
communication services between neighboring vehicles, and many more [7]. These activities
result in more efficient, safer, and comfortable driving experiences and create new oppor-
tunities in various business sectors. Therefore, the networking industry and academia have
expressed a strong interest in developing vehicular communication networks and leveraging
relevant services.

The recent growth of group communication applications has been widely studied because
of vehicles’ high data packet delivery ratios, and throughput. As a result, the communi-
cations between groups of vehicles (i.e.; police cars, ambulances, fire-fighters, buses, and
city fleets) are required in the network to provide high throughputs, and fewer network
congestions [20]. For example, when a patient requests an ambulance in case of emergency,
a nearest group member of ambulances can quickly respond via WiF'i to the requested place
to provide services and learn about high mobility and traffic congestion from other members
on the road within the communication range by sharing its current location. Also, until
reaching the final destination, it can automatically learn about the road’s ongoing mobility
and traffic from its group members within the coverage, significantly making traveling more
comfortable.

In this chapter, we consider group communications, where any pair of nodes (vehicles)
that belong to the same group has a data stream to transmit to each other. We refer to
any source-destination pair as a communication pair. Because of a communication range
(which can be defined by transmission power and fading), not all the communication pairs
have a direct link. Hence. for some, we need to create a path by relaying transmissions
over multi-hop nodes (vehicles). We consider a time division multiple access (TDMA)
medium, where the time frame is divided into equal time slots. The size of the time frame
is considered very small such that the position of vehicles, based on their maximum speed,
will not significantly change to affect the broadcasting of data even when having multi-hop
transmissions. Therefore, we can consider a new time frame for the future vehicle position
change. We also consider that the bandwidth [18] is divided into equal orthogonal channels,
and we assume that the size of data packets is fixed that can be fitted and transmitted

using one resource block (i.e., one channel and one time slot). However, we might have
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simultaneous transmissions in a resource block (RB) if signal-to-interference-plus-noise ratio
(SINR) at receivers allows that.

In this chapter, our problem is first to find a route (path) between each pair of nodes
in a group, and then schedule transmissions (links) by allocating RBs. The objective here
is to maximize the total number of data packets while maintaining fairness among all com-
munication pairs. It is observed that by maximizing the total number of data packets, the
system will always choose a pair of nodes which are close to each other to save allocated
resources. Therefore, a pair of nodes which are far from each other and require multi-hop
transmissions, has a very low or maybe zero chance to be considered for a V2V data commu-
nication. Hence, it is also essential to maintain communication fairness by maximizing the
total number of V2V communication packets for a pair of nodes which have communicated
the least within a time frame (i.e., maximizing the minimum V2V communication pair). In
other words, it tries to achieve fairness by maximizing the V2V communication pair with
a minimum number of communications, promoting equitable communication opportunities
across all pairs of nodes.

The problem of routing and scheduling data packets for multiple V2V communication
pairs in multiple groups of vehicles to maximize the total number of successful communica-
tions while maintaining fairness (MVGCF, Maximizing V2V Group Communications and
Fairness) is a combinatorial and challenging problem; need to assign links for communica-
tion pairs, schedule links on RBs, and consider RB reuse for simultaneous transmissions by
considering SINR while maintaining fairness among all communication pairs. Therefore,
solving such a combinatorial problem is not a trivial task, and to the best of our knowl-
edge, no such problem has been tackled and solved hefore. However, we have modeled
the problem mathematically and solved it using the optimization model and the MVGCF
method. In this chapter, to consider the dynamic nature of the environment more precisely,
we model the problem as Markov Decision Process (MDP), and solve it using two reinforce-
ment learning (RL) algorithms, namely Qlearning and Double Deep ()-Networks (DDQN).
Furthermore, to improve the performance of both methods, we merge our heuristic algo-
rithm MVGCF with them and propose two hybrid heuristic-based RL methods, namely
MVGCF-Qlearning and MVGCF-DDQN.

The rest of the chapter is organized as follows. The system model and problem descrip-
tion are presented in Section 3.2, while the mathematical formulation is given in Section 3.3.
The hardness of the problem and explanations of the proposed scalable method are given
in Section 3.4. Section 3.5 presents the explanations of both RL and hybrid RL methods.
Section 3.6 evaluates the performance of the proposed methods, and Section 3.7 summarizes
the chapter with key findings and suggesting potential avenues for future research.
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3.2 System Model and Problem Description

3.2.1 System Model

We consider a road structure, as shown in Fig. 3.1, where vehicles are grouped in different
groups and that each vehicle has a data stream with another vehicle in its group within a
fixed range. The size of this range depends on the importance of data to be shared with
other group members, which can vary from a few hundred meters to a few kilometers. In
the figure, for example, we have three groups shown with red, blue, and yellow colors; a
member of each group has a data stream with each and every wvehicle that belongs to the
same group. We consider the system over multiple time frames. Each frame is partitioned
into equal time slots, ¢ = 1,2, ...,T. The total number of time slots in a frame is T. We
consider our system at each time frame, as shown in the figure, as a graph G = (N, E),
where N is a set of nodes (vehicles) in the road segment, and F is a set of edges (links),
which based on different factors such as, the distance, maximum communication power,
presence of obstacles and fading, connect any two nodes. In the graph, edges are shown
with dotted lines. The graph G is constructed in advance at the beginning of each time
frame. To be noted that the size of the time frame T is considered very small such that
the position of vehicles, based on their maximum speed, does not significantly change to
affect the constructed graph G. Therefore, a new graph will be constructed for the next
time frame. The vehicles’ speed is considered to follow a truncated Gaussian distribution
ranging from Vmin t0 Vmar [60], and vehicles travel at random speed [30,61]. Also, the
vehicles’ arrival into the road segment is considered to follow a Poisson distribution with
density p Vehicle/Km [62].

For simplicity, we assume in the network we have M communication pairs to transmit
data packets from a source to a destination, and since not all the sources and destinations
have a direct communication link, sometimes a data packet must be transmitted over multi-
hops as shown in the figure with arrows. We consider that the bandwidth is divided into
multiple orthogonal channels, ¢ = 1,2,..,C. where C' is the total number of channels.
We also consider a Time Division Multiple Access (TDMA) medium access where time is
divided into slots of equal length as explained earlier. We assume any data packet can
be fitted and transmitted over one resource block (i.e, channel ¢ and time slot £). We
assume at each time slot a node can either transmit or receive one data packet because of
the Half-Duplex transmission mode. However, we might have simultaneous transmissions
in the network if different channels have been considered or/and the signal-to-interference
plus noise ratio (SINR) at receivers is above a certain threshold 5. Let P;. Gj;, and o
be respectively the transmission power, distance, and power decay from transmitter i to
receiver j, then, the SINR under the physical interference model [31,63] in the presence of



LY

My,
g
~
o
)

Figure 3.1: Mlustration of the system model; the wireless communication between vehicles is
shown by dotted lines and the packet transmission for a V2V communication pair is shown
by multiple arrows from a source to a destination.

concurrent transmissions is obtained as follows:

P;G;®

SINR; = —
)" gt 2 v(hk)cE:hei PhiGhj

= B,v(i,j)e & (3.1)

where 77 is the background noise.

3.2.2 Problem Definition

‘We are interested in maximizing the total number of communication packets in the network
within a time frame T for all V2V communication pairs while maintaining fairness. For most

of the V2V communication pairs, source nodes may have no direct links with destination
nodes, hence a packet has to be relayed and retransmitted over multi-hops. Therefore,
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a node, other than its own data packets, may retransmit packets that belong to other
communication pairs. Consequently, there should be a scheduler that coordinates these
transmissions for all nodes and for all different packets over multiple channels and time
slots (resource blocks). However, a node due to the Half-Duplex characteristics cannot
receive and transmit more than a packet at each time slot even though there are multiple
orthogonal channels. Also, a node cannot retransmit a packet unless it receives it first. So,
the order of transmissions in a multi-hop path from a source to a destination is at most an
important constraint.

Now, maximizing the total number of communications might affect the fairness in the
system. If the objective is to maximize the total number of communication packets, then
the system will mostly allocate resource blocks to V2V communication pairs that are close
to each other in order to save resources for other transmissions. In this way, V2V communi-
cation pairs, which are far away from each other and require long routing paths, might have
a very low, even zero chance to be considered for data transmissions. Therefore, the sched-
uler should count the total number of transmitted data packets for each communication pair
and tries to maximize it if it has been scheduled the least among all V2V communication
pairs (i.e., maximizing the minimum V2V communication pair) to maintain fairness among

all communication pairs within a time frame T'.

Problem Definition (MVGCF)

Given a graph G of N nodes connected through E edges, the problem of MVGCF is to allo-
cate resource blocks (time slots and channels) for M V2V communication pairs to transmit
a large number of data packets D) in a road segment within a time frame T (where the
frame is partitioned into multiple equal time slots) such that the total number of commu-
nication packets in the network is marimized while maintaining fairness among all V2V

communication pairs.

3.3 Problem Formulation Using Linear Programming

In this section, we mathematically formulate the problem as a mixed integer linear pro-
gramming (MILP). The used notations are listed in Table 3.1. Let X% € {0,1} be the
indicator of successful transmission of data packet d for V2V communication pair m, and F
be the minimum number of data packets that a V2V communication pair has sent among
all communication pairs to ensure fairness. The objective of the optimization model is to

maximize the total number of V2V communication packets while maintaining fairness. It
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Tahble 3.1: Notations used in problem formulation

Set of nodes.

Set of edges (links).

Set of V2V communication pairs.

Time frame (total number of time slots).
Total number of sub-channels.

Large constant bigger than T.

Large constant.

;7 |Distance from transmitter ¢ to receiver j.

SINR threshold.

Background noise.

Pry ax |[Maximum transmission power.

Purrwy |Minimum transmission power.

Maximum number of data packets that are predicted to be

SEREEREEEE

D transmitted within the time frame T
X4 |e 0,1} Indicate whether data packet d for V2V

m ' ecommunication pair m has been transmitted.
r =0 Minimum number of data packets that a V2V

communication pair has sent among all pairs.
phet | g Transmission power for data packet d of V2V com.
- pair m on link (i, 7) at time slot ¢ using channel c.
Indicate whether the data packet d for V2V Com.
pair m has been traverse on link (i, ).
Indicate whether the link (i, §) for data packet d of]
V2V com. pair m is scheduled at time slot ¢ using
sub-channel e

can be mathematically written as follows:

o
Mazximize Z Z X4 F (3.2)

meM d=1
subject to: (3.3) - (3.15), where these constraints are derived in details in Sections 3.3.1 to

3.3.8.

The first term in the objective function corresponds to the total number of successful
transmitted data packets, and the second one maximizes the minimum transmitted data
packets for V2V communication pairs to ensure fairness. The details of the constraints are

given in the following:

3.3.1 VFairness

Here, max-min fairness is considered. Max-min fairness is a principle that seeks to distribute

resources equitably among multiple users or applications in a system. By maintaining a
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minimum allocation of resources for each user before distributing any remaining resources
to others, this approach not only prevents any user from being completely deprived of
resources but also promotes efficient allocation [64]. In order to obtain max-min fairness,
the following constraint is required to find the minimum number of data packets that a

V2V communication pair has sent among all communication pairs:

F<» X; Vm e M. (3.3)

3.3.2 Data Routing
Let R?

tm € 10,1} be the indicator for a data packet d to be traversed on link (i,j) for a
V2V communication pair m. The following constraints are required in order to construct a
routing-path for a data packet d to be traversed from the source to the destination of each

V2V communication pair m:

1, i= Sourcey,:
Z Ri'm - Z Rf‘i,m =4 —1, i= Dest.p; -
ek g0k 0, otherwise. (3-4)

Yme M, d=1..D.

The above constraints obtain the difference between the number of incoming and outgo-
ing transmissions of the data packet d on node j. If node i is the source of the communication
pair m, denoted by Sourcen,, it originates a data packet, and hence the difference between
the number of outgoing and incoming data packet d is one. If node i is the destination of
the communication pair m, denoted by Dest,,, then the difference is -1, since the number
of incoming active links to node j is zero and the number of outgoing active links is one.
Consequently, when node i is a relay node or neutral (none of the above), the difference is
zero; that is, if there is an incoming link to a relay node, there should be an outgoing link,
and if there is no incoming link, there must be no outgoing link as well.

In addition, the following constraint ensures that a link cannot act as a bidirectional
link in a routing data for loop avoidance:

RY 4+ RS <1 ¥(i,j) € E,¥m e M,d=1...D. (3.5)

Ji,m

3.3.3 Link Scheduling

Let S:;"‘mt indicates whether link (i, j) for data packet d of V2V communication pair m in
sub-channel ¢ is scheduled at time slot ¢ or not. The following constraint enforces a link
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not to be scheduled within a time-frame T if it is a non-active link:

d,ct .. _
Sy < Bijm V(i,j)e E,¥YmeM,d=1..D,

= (3.6)
c=1.Ct=1.T.

3.3.4 Transmitted Data

The following constraints assert that the data packet d for the communication pair m is
transmitted if the links on the routing path from the source to the destination have been
scheduled; we can assure that by checking whether the outgoing/incoming link to/from
source/destination has been scheduled:

T C
Xn<> ) > Shet Yme M,

t=1 e=1 (i j)cE:i=Sourcem {3?}
d=1.D
T
d .t
X<y 3 St ¥m € M,
t=1 e=1 (i j)cE j=Dest., {3‘8}

3.3.5 Simultaneous Transmissions

To reduce interference and increase the successful transmission rate, we restrict a node not
to receive multiple data packets from different transmitters at the same time. Similarly, we

restrict a node to transmit several packets simultaneously.

3.3.5.1 Simultaneous Receiving

This constraint ensures that a receiver does not receive data packets from multiple trans-

mitters simultaneously:

o o
3NN sim<i VieNi=1.T. (3.9)

meM d=1 e=1 i:(i,j)eE



3.3.5.2 Simultaneous Transmitting

The following constraint restricts a transmitter not to transmit several data packets to

different receivers at the same time:

D c
ZZZ Z S’;rj;fgl Vie N,t =1..T. (3.10)

meM d=1 c=1 j:{i j)cE

3.3.5.3 Simultaneous Receive and Transmit

Using the following constraint, we ensure that a node does not transmit and receive at the

same time:

D D
)P ILZED 3P HILEF -

meM d=1 =1 meM d=1 e=1
V(i k)&(k,j) € E,t = 1...T.

3.3.6 Power Limits

In the following, we force the power of non active links to be zero; that is when S:;“: =0=

P:_’;;“ =0, and Pi’;;“ > 0, only when S;;.':E“ =1:

P2 < PyaxSest c=1.Ct=1.T, 12

Yi,jle E,Yme M, d=1...D.

Lot Lot _ _
.F:im = PMINS;,“ ce=1.Ct=1.T, (3.13)

W(i,jle E\Nme M,d=1...D.

where Pyrax and Py are the maximum and minimum allowed power transmissions,

respectively.
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3.3.7 SINR

The following constraint ensures that the SINR for active links are above the SINR. threshold
g:

PEoes + K(1- 559 >

ij,m :.jm

B+ ) Z > PGS (3.14)

meM g—1 (kh)cE
ki

V(i,j) € E,¥me M,d=1..D,c=1..C,t = 1..T.

To simplify the above constraint, let K be a big constant that satisfies the following:
K=n+ E{i,j‘)EL F;G. If link (i,7) is active in time slot £ (i.e. S:;'i; = 1), then (3.14)
reduces to SINR expression (3.1).

3.3.8 Transmission Order

This constraint is required to ensure that a relay node cannot transmit unless it receives
data from its previous node. That is, a link (k, j) for the V2V communication pair m can
be scheduled at time slot ¢, if link (i, k) for the same packet has been scheduled before (i.e.,

in a time slot between 1 and ¢t — 1).

[

.
_ZZ Z S:‘rcni + B 1- S:_-;c‘ni} = Z }ﬁk,m

1 i:(i k)R i:(ik)eE (3.15)
V(k,j) € E,Nm € M,d=1..D,c=1..C,t = 1..T.

where B is a big constant, which is bigger than the number of time slots in T. When

Sfjm = 0, inequality (3.15) is always satisfied. But, when S::;; = 1, (3.15) reduces to

E=1 EE=1 E,-:,:,-J,:,Eg Si,m = Ei’.:{i,k](—: I Jﬁk‘m, which implies that any link carrying packet
for communication pair m coming to node k had to be activated at a time slot between 1 and
t — 1, otherwise, node k can not transmit (or, link (k, j) can not be active, ie., gdet #1)

kjm
at time slot f.

3.4 NP-Hardness of the MVGCF Problem and the Proposed
Algorithmic Method

In this section, we first prove the NP-hardness of the MVGCF problem, and then propose

a heuristic method to solve it.
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3.4.1 NP-Hardness of the MVGCF Problem

The maximization of V2V group communications and fairness problem is complex because
it must address multiple challenges: 1) finding the connected routing path for each V2V
communication pair, (2) scheduling links over RBs by considering the Half-Duplex and
SINR constraints for each V2V communication pair, and 3) maintaining fairness among
all communication pairs. Note that the scheduling problem under SINR is generally an
NP-hard problem [65]. If we consider our problem to be a series of scheduling a maximum
number of V2V links in each time slot, we can decompose our scheduling problem into a
series of Max-Connections Scheduling [66] sub-problems. The Max-Connections Scheduling
problem is to choose appropriate transmission power levels to maximize the number of
successful connections, which has been shown to be NP-hard in [66]. Without loss of
generality, the link scheduling problem over time-frame T with the precedence constraints
is NP-hard by reducing from the Preemptive Scheduling problem. which is proven to be
NP-hard in [31]. The Preemptive Scheduling is to schedule a set of P tasks - within a
deadline T' € Z+, where each task y € P is subdivided into sub-tasks yy, y9, ..., Yy such that

o 1 L(t;) = L(t), where L(t) is the length of task t, and the scheduling of ¢; precedes
t;11. For example, P is a set of V2V communication pairs where each pair can have a
long routing path y. Each routing path y can have one or more links from 3, to y,, to be
allocated within RBs, representing the Preemptive Scheduling maps problem. Since our
problem is a combination of multiple NP-hard sub-problems explained above, so without a
doubt it is an NP-hard problem. To overcome the complexity of the MVGCF problem, in
the next subsection, we propose a scalable algorithmic method.

3.4.2 The Proposed MVGCF Algorithm

The main concept behind the MVGCF method, described in Algorithm 1, is to maintain
the priority queue P({) of communication pairs that must be scheduled in the system to
achieve fairness (i.e., to maximize the number of communication packets for pairs that have
transmitted the least. In other words, maximizing the minimum communication pair). The
priority queue P() is inherently sorted by the number of communications NC. Another
central aspect of the method is to use a sorted communication pair list C PL sorted by the
length of communication paths to maximize the V2V communications. The algorithm also
makes use of a temporary list of completed communications LCC which is sorted by the
communication path length and number of communications N C' on insertion.

The input to the algorithm is the list of all communication pairs and their respective
paths C'FPs. Each pair in C'Ps, consists of a source 5 and a destination d, as well as a path
of transmission links which routes a packet from s to d.

The outputs of the algorithm are the total number of communications TN C, the fairness
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F. and the resource block allocation RE. At initialization, the priority queue P} and the
list of completed communication pairs LCC are empty. CP{{jﬂg refers to the first link
(1,7) of the communication path C'P, 4, from source s to destination d. The path of the
communication pair C'F, 4 is pre-calculated from graph G(N,E). The total number of
successful communications NC' for all pairs (s, d) is zero. All communication pairs are also
sorted and stored in C'PL according to the length of their shortest communication path.

In line 2 of the algorithm, the time slot t iterates over the time frame T. For each time
slot, we initialize the sets of transmitters (T,.n) and receivers (Re.) to empty (see line 3).
In line 4, when we start the algorithm at t = 0, the priority quene P() is empty, so lines 5-6
will not be executed. In subsequent time slots (i.e., t > 0) when the priority quene PQ is
not empty for each communication pair CP{&@ in priority queue P(), the algorithm scans
all orthogonal channels (line 5) to allocate transmission link (i,j) from communication
pair CP, 4y on channel c. To do so, the algorithm calls function Schedule presented in
Algorithm 2 to allocate the transmission link into the resource block RB;, where t and
¢ are respectively the time slot and channel. This function also checks whether a packet
that belongs to a communication pair has already arrived at its destination and completed
its communication or not. The explanation of Algorithm 2 about function Schedule will
be given below. After evaluating any pairs in priority queue P(), the algorithm moves to
allocate transmissions from the list of communication pairs C PL. When transmission links
for all communication pairs in P{) have been considered for scheduling, Algorithm 1 checks
to allocate transmissions for communication pairs in list C'PL (lines 7-9). To be noted that
this list includes all the communication pairs when ¢ = 0. At the end of each time slot,
when the list of communication pairs C'PL is empty, the list of completed communication
pairs LCC is copied into the list CPL to be considered for future scheduling in the next
round, and then the LCC list is set to null (line 10). The algorithm, at the end, finds
the communication pair that has transmitted the least number of packets in the system to
calculate the fairness F (line 11) and sums the total number of communications TNC' from
all communication pairs counter NCi, 4 (line 12).

In Algorithm 2, the function Schedule takes as an input a link (i, 7) which belongs to
a communication pair C'F, 4), time slot ¢, and channel ¢. This function checks the half-
duplex and SINR constraints and whether node j is the destination of the communication
pair CP 4 (i.e., whether j = d). The half-duplex and SINR constraints are checked in
line 2 of the algorithm, which first ensures that both nodes i and j are not in the sets of
transmitters T, and receivers K., and also makes sure that by allocating link (i, 7) in the
resource block RBf, the newly added transmission will not cause harmful interference on
the receivers of all other simultaneous transmissions which already have been allocated into
the resource block RBf; that is the SINR at all receivers (H..) as well as the new added
one (i.e., j) is not below the threshold 5. If both constraints are satisfied then transmission
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Algorithm 1: Maximizing the total number of V2V communications while
maintaining fairness (MVGCF)
Data: CPs
Result: TNC, F, RB
1 Initialize: PQ = @, CP\%) = firstLink(CP(, ) ¥(s,d) € CPs,LCC = ,NC(, 4 =
0V(s,d) € CPs,CPL = sorted(CPs).
2 fort=0;t<=T;t++ do
3 Tran =9, Bee = 2
4 for CP, 4 in PQ do
4]
8

forc=1;c<=C:c++ do
L Schedule(CP™) ¢, ¢)

(a.d)?
for CP, 4 in CPL do
8 forc=1;e<=C:c++ do
(i.4)
°o | | L Schedule(C'P{:2). ¢, )

10 | CPL=LCC ,LCC =2

11 F = min(NC_, ) ¥(s,d) € CPs

12TNC= Y NCug
Ws,d)eC Pa

link (i, ) will be allocated to the resource block HBf, and nodes i and j respectively will be
inserted into Tr4n and R.. (lines 3-4). In case the link (i, j) has been allocated into BBy, the
algorithm checks whether node j is the destination of the communication pair CF, 4 (i.e.,
if j = d, line 5); if yes, then it means that all the links for the communication pair CP{EJJ
have been scheduled. Hence, the algorithm in lines 6-8 increments the total number of
successful packet transmissions of NC, 4), reset the communication pair CF, 4 to its first
link on its path for the future scheduling, and adds it into the completed communication
pair list LCC. If in line 5, node j is not the destination node of the communication pair
CPl,q) (i-e., j # d) however the transmission link (i, j) has been scheduled, then the next
transmission link on the path of the communication pair CP{EJJ is considered for the future
time slot scheduling and the communication pair is inserted into the priority queue P(Q) to
be given the highest priority (lines 9-11). If link (4, j) in line 2 of the algorithm has not been
scheduled in the first place, then the algorithm inserts the communication into the priority
queue P() to be given a high priority for the future time slot scheduling (line 12-13).

3.4.3 Time Complexity of the MVGCF Method

To obtain the time complexity of the MVGCF method, we first drive the time complexity of
Algorithm 2, and then calculate the running time of Algorithm 1. For the function Schedule
in Algorithm 2, the if statement in line 2 takes in the worst case O[nz}, where in total there
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Algorithm 2: Scheduling a Resource Block

1 Function Schedule(CP{E’g, t, c):

e . . . Flun)Giuh)
2 if i Trap &80 j & Tran & i ¢ R && j & R && =
¢ j¢ ¢ i T Y PunCun
YureTran
Vi € {Trgn Ui, ¥Vh € {Re Ui} then

3 Allocate (i, j) to RBE}

4 Insert i into Tyapn and j into Re.

5 if j == d then

6 Ncgs,d}} = NC{S,_{J +1

T CPI:S:;} = firstLink(C' P, 4))

8 | Move CP, 4) to sorted LCC

0 else

10 CP{D) = nextLink(CP, 4))

11 Move C'F, 4 to PQ if not already in PQ
12 el_se
13 | Move CP,q) to PQ if not already in PQ

are n/2 transmitters and the same number of receivers. The statements in lines (3-4) take
constant time O(1). In lines (5-8) the if statement takes in the worst case O(p). where
p is the total number of communication pairs. Again, the statements in lines (9-11) take
constant time O(1). Similarly, the statement in line 13 takes constant time O(1). Hence,
the time complexity of the function in Algorithm 2 is D{n2+ p). Since n? > p, then the time
complexity of the algorithm can be reduced to G{ng}. As for Algorithm 1, for each time
slot, the for loop in line 4 contributes to the complexity of the method with O(p) where p
is the number of pairs in priority queue P(). The third nested for loop in line 5 contributes
with O(C") because it checks all ' orthogonal channels. Subsequently, the function in line 6
takes in the worst case O(n?) as explained earlier. Hence, the running time of lines (4-6) all
together is O(n?). Similarly, the running time of lines (7-9) is O(n?). The time complexity
of each of the statements in lines (11-12) is O(p). Hence, the time complexity of Algorithm 1
is O(T * ((p* C *n%) + (p* C * n?))) + p, which can be simplified to O(T * C * p * n?).

Lemma 1. Correctness of the Algorithms.

Proof: In Algorithm 1, the main for loop in line 2 terminates when all the time slots are
covered, similarly the two for loops in lines (5-8) for multiple channels. The two for loops
in lines (4-7) respectively will terminate when the priority queue P} and communication
pair list C'PL are empty. The only concern for the algorithm not to terminate is when more
elements are inserted into these queues than removing them. Since there are no statements
in Algorithm 1 indicates insertion of elements into queues except for C'PL in line 10 which



31

is safe because it is outside the for loop. Hence the termination of Algorithm 1 depends on
the execution of function Schedule in Algorithm 2. There is no for loop in Algorithm 2 that
might get stuck into a loop and avoid termination of the algorithm. However, we need to
check any insertion into priority queue P and the communication pair list C'PL. There is
no insertion into C'PL in Algorithm 2, however when a link has not been scheduled due to
the Half-Duplex or SINR, or the end of the path of a communication pair is not reached,
Algorithm 2 inserts that communication pair into P() to be considered and given a high
priority for the future scheduling. However, any communication pairs in P(} will eventually
be allocated in one of the available resource blocks and thus the termination of Algorithm 1.

3.5 The Introduced Reinforcement Learning and Hybrid Ap-

proaches

Reinforcement learning (RL) is an approach where an agent interacts with an environment
to learn a policy that maximizes its long-term rewards. The agent takes actions from the
given states in the environment, obtains feedback in the form of rewards, and uses the
information to update its policy.

On the other hand, Deep reinforcement learning (DRL) takes this concept further by
using neural networks to learn from data. DRL has proven to be effective in solving intricate
decision-making problems and optimizing resource allocation. The agent updates its neural
networks based on the rewards it receives and stores past experiences in a replay buffer.
During training, batches of experiences are sampled from the replay buffer to update the
neural network parameters [67).

In our method, we formulate our MVGCF problem as Markov Decision Process (MDP)
to allocate resources into RBs within a time frame. An MDP is represented by a tuple (5,
A, «, P, R), where: S is a finite set of states, denoted as s; € 5 at time slot ¢; A is an action
space such that if we let 4 to be a set of all possible actions in state s; and a; is one of the
actions at any time slot ¢, then a; € A; v € [0, 1] is the discount factor, which determines the
weight of future rewards in the decision-making process; P is a Markovian transition model,
denoted as P(s¢y1||s¢, a:), which represents the probability of transitioning from state s; to
state s;y1 when an action a; is taken; R is the reward distribution, denoted as P(r¢||s:, a:),
which gives the immediate reward r; € R after an action a; is taken in a state s; at time slot
t. The state, action, and reward functions under the MDP framework are given as follows:

3.5.0.1 Agent

Roadside Unit (RSU) is considered to be an agent.
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3.5.0.2 State

Each state s; is defined as a tuple of multiple vectors: i) a vector of the total number of
communications for different V2V pairs at time slot t, ne, = {nc}, nef, ..., ncM}; i) a vector
of the current packet position for different V2V pairs in using a multi-hop path at time slot ¢,
eppe = {cpp}, cppi, ...,cppM}; iii) a vector of the number of hops in the shortest path for
different V2V pairs at time slot ¢, mh; = {mhtl?mh.?, ceny mhf }: and respectively vectors of
the iv) transmitters and v) receivers of all V2V pairs at time slot ¢, tr; = {t-rgl..,t-r?? vl }
and rec; = {rec%, recs, ..., recy’ }. Thus the system state s at time slot £ can be expressed

as:
s = (nee, cppy, mhy, tre, Tec). (3.16)

3.5.0.3 Action

Each action a; is defined as a tuple of multiple vectors: i) a vector used to assign V2V
communication pairs to transmit at time slot t, cp, = {ep},epi,...,epM}; ii) a vector of
scheduled transmission links for different V2V pairs at time slot t, tp; = {tp}, tp, ...,tpM };
iii) a vector of considered channels for different V2V pairs at time slot t, ¢; = {c}, ¢, ...,cM};
and iv) a vector of transmission power levels for different V2V pairs at time slot £, p; =
{p},p?, ...,p{“f}. The system action a at time slot ¢ can be expressed as:

az = (cpt, tPe, Ct, Pt). (3.17)

3.5.0.4 Reward

We use a reward function to provide feedback on each action a; taken in a given state s;
to the RL agent. The agent selects an action a; from a set of possible actions 4, at time
slot ¢, where A represents the available resource allocation choices. Let r; be the immediate
reward at each time slot t. The reward function r¢(s;, a:) at time slot t can be expressed as
follows:

0, if P, = Poner
ri(seac) = ¢ 1, if 3. =2 +L (3.18)
B, if min(ncgy1) > min(neg).

ri(s¢,a¢) = 0, if A communication from a source to a destination is not completed; 1, if a
commmunication from a source to a destination is completed, but note that here the reward

is considered when fairness is not achieved; whereas r¢(s¢, a;) = B (a very big reward), if
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Figure 3.2: The generation process of pseudo-random sorted List prsCPL.

a communication from a source to a destination is completed and fairness is achieved by

completing a communication for a pair with the least number of V2V packet transmissions.

3.5.0.5 Initial MVGCF Solution

We start by generating our initial sorted communication pairs list C PL, as described in [68].
This list is sorted based on the communication path length and the number of communica-
tions upon insertion. Fig. 3.2 illustrates three distinct groups, labeled as X, Y, and Z. Each
group consists of a list of communication pairs, where the red color represents the number
of communications and the blue color indicates the communication path length. It is worth
noting that the values of individual communication pairs in group Y are lower than those in
group Z but higher than those in group X, both in terms of the number of communications
and communication path length. Group X contains only one subgroup, since communica-
tion pair 1 (i.e., CP1) and communication pair 2 (i.e., CP2) exhibit a similar number of
communications and communication path lengths. On the other hand, groups Y and Z
have two different subgroups due to their varying communication path lengths, as shown
in blue color. To ensure randomness, we then shuffle the communication pairs within each
subgroup and construct a new List called pseudo-random sorted prsC FPL, maintaining the
order of initial communication pairs.

Algorithm 3 takes a sorted list of communication pairs as an input and generates a
sequence of states, actions, and rewards, stored in the SARlist list. Initially, the SARlist
is empty (line 1). The algorithm then iterates over all episodes, starting from k& = 1 (line 2).
In each episode, a psendo-random sorted list prsC' PL is generated from the given sorted
C'PL list (line 3). The prsC'PL list is used as an input for the MVGCF method, which
runs on this list to obtain a sequence of states (5), actions (A4), and rewards (R) (line 5).
Finally, the obtained sequences of S, A, and R are stored in the initialized SARlist (line 6).
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Algorithm 3: Initial MVGCF Solution
Data: Sorted CPL
Result: SARlist

1 Initialize: SARlist = @

2 fork+— 1: K do

3 Generates a pseudo-random sorted list prsC PL.

4 Execute the MVGCF method using prsCPL list as an input.

5 Observe the MVGCF method execution to collect a sequence of states (5), actions (A),
and rewards (R).

(] Store the sequences (5, A, R) into the SARlist.

3.5.1 The Qlearning Approach

In our approach, we use a Qlearning network [67] that utilizes an off-policy method and
runs for 75,000 episodes to allocate resources into RBs within a time frame T'. Here, the
input to Algorithm 4 is an interface of the environment. The outputs of the algorithm are
the total number of communications TN, the fairness F', and the resource block allocation
RB. At initialization, the Q) table (J(s,a) consisting of states and actions is empty. In line 2
of the algorithm, episode k iterates across all episodes, K. Afterward, line 3 iterates over
the time slots as long as the terminal state st is not reached. At each time slot, we initialize
the sets of transmitters (Tran) and receivers (Re.) to empty (see line 4). In line 5, when we
start the algorithm at t = 1, we observe a set of state components, consisting of the number
of communications (ne), current packet position (cpp:), min-hops (mh;), transmitters (try)
and receivers (rec;) from the environment. In line 6, we choose an action a; from a list of
possible actions 4; in a given state s, utilizing an ¢ Greedy policy. We then allocate a; into
a resource block (BB, .). In line 8, after choosing an action a;, we receive a reward (ry)
from the environment, and then we update the {)(s;, a;) value in the Q-table (see line 9).
In line 9 of the algorithm, o represents the learning rate (which is 0.0001), and -y signifies
the discount rate applied to future rewards (set to 0.99). The Q-value for action a; in the
current state s; is updated by adding the existing value (}(s¢, a;) which determines the best
action in the current state s,. (Jlearning continuously updates the ()-value for each state
s; based on a policy and transitions to the next state using the equation given in line 9.
This process is repeated multiple times until the overall (}-value converges. The algorithm,
when it reaches the final state, it executes the trained agent in the environment (line 10),
determines the fairness F' by finding the communication pair with the least number of packet

transmissions in the entire time frame T'. and sums the total number of communications
TNC (line 11).



Algorithm 4: Proposed Qlearning-based Solution

Data: Environment Interface

Result: TNC,F, RB

Initialize: Q(s,a) =@

fork+ 1: K do

fort «+ 1 : T and 5; # st do

Tran = @, Ree = @.

Observe s¢ (nce, cppe, mhy, try, rec;) from the environment.

Choose a; (cpy, tpy, ¢, p;) from a list of possible actions A; using an € Greedy
policy and allocate a; into RB; .

T Receive a Reward (r;) from the environment.

s | | Update Q(s,ar) ¢ Q(sear) + alre +vmaxa Q(ser1, acs1) — Q(se, ac)].

=T < TR R

9 Execute trained DDQN agent on environment interface.

M
10 Given terminal state sy, F = min(ncr) and TNC = ¥ ndy.
p=1

MVGCF-Qlearning

The conventional (Ylearning follows an exploration and exploitation approach to gather
information about state-action pairs until it converges. The sizes of state and action spaces
can be caleulated as follows:

8§ = O(nec x cpp x mh x tr x rec) (3.19)

A=0(cpxtpxcxp) (3.20)

In fact, since the number of options for s; and a; is extremely high. exploring the
entire S and A spaces becomes challenging and computationally expensive, leading to poor
performance and slow convergence. To handle this issue, we propose MVGCF-Qlearning,
a heuristic-based reinforcement learning method, where we first find the initial solutions
by varying a randomly sorted C'PL list in Algorithm 3. We initially run this method for
10,000 episodes and update the ()-table with the set of states and actions observed from
the output of the heuristic method. These state-action samples guide the exploration to a
high-quality state-action subspace. By integrating the heuristic MVGCF insights into the
learning process, the MVGCF-Qlearning agent accelerates its learning by understanding
which actions in specific states yield the best rewards. This approach delegates the model
to enhance the quality of solutions obtained to converge faster toward optimal solutions.
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Table 3.2: SIMULATION PARAMETERS

Parameters Values
Activation Functions ReLU
Number of Neurons  [256, 128, 64, 32, 16
Number of Hidden Layers 8
Learning Hate 0.0001
Optimizer Adam
Total Number of Episodes 235
Decay Rate 1/Episodes * 2
Discounted Heward 0.99

3.5.2 The Double Deep Q-Networks (DDQN) Approach

The traditional DDQN [67], as shown in Fig. 3.3 and Fig. 3.4, is an extension of the DQN
algorithm of DRL which runs multiple episodes to allocate resources into RBs within a
time frame T. The used notations are listed in Table 3.2. Here, the input and outputs
to Algorithm 5 are similar to Algorithm 4. At initialization, the primary network () is
initialized with random weights, while the target network t:? is initialized by directly copying
the weights from the primary network ().

All the steps in lines 2-7 are similar to Algorithm 4 which have been explained earlier. In
line 8, after choosing an action a;, we receive a reward r; for moving to the next state 5541
which includes a list of next possible actions A¢;1 from the environment. Line 9 stores those
values obtained at time slot ¢ as one single transition (s,a,r, s, 4) in the replay memory
(RM). In line 10, a random minibatch of transitions (s;, a;,r;, s;,.4;) is sampled from the
replay memory HM. For each transition in the minibatch (line 11), the target Q-value
(Ji(s;.a;) is computed using the target network Q. The ()i (s;.a;) is calculated as the sum
of the immediate reward r; and the discounted maximum Q-value @[s;? Aj;) from the next
state s_’?. using the primary network ¢ (line 13). We then perform gradient descent on the
difference between the target ()-value (};(s;, a;) and the primary network € (line 14). Next,
target ()-network weights {é} are updated. The update process involves adjusting the target
network parameter #' towards the primary network parameter #, where the rate of averaging
value 1 is typically set to 0.01 (line 15). In this way, target network weights {é} are updated
by copying the weights from the primary network. Once the termination condition is met,
the algorithm proceeds to the next episode until all episodes are completed. In the end,
similar to Algorithm 1, the final agent is executed in the environment (line 16), and the
total number of successful communications TNC' and fairness F are calculated (line 17).

MVGCF-DDQN

When the conventional DDQN has very large state s; and action a; spaces (refer to equa-
tions (4.32) and (4.33)), exploring the entire state and action spaces becomes challenging
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and computationally expensive, which will lead to poor performance and slow learning con-
vergence. To address such an issue, we introduce another heuristic-based DRL method
called MVGCF-DDON. We first find solutions for the MVGCF problem using the heuristic
method proposed in [68] for 10,000 episodes. By leveraging the heuristic MVGCF method,
we sequentially populate the replay memory (RM) with a subset of promising states, ac-
tions, rewards, next states, and next actions. This targeted approach reduces the amount of
time spent on exploration, allowing the agent to focus on learning from these high-quality
states. Hence, the MVGCF-DDON agent explores and exploits the state-action space more
effectively, since it understands which actions in specific states yield the best rewards, and

accelerates learning convergence by leveraging prior knowledge.

3.6 Performance Evaluation

To evaluate the performance of the proposed methods, in this section, we first compare the
Random (the explanations of the method are explained below), the heuristic OAMM, Qle
arning, DDQN, the hybrid OAMM-Qlearn., and the hybrid OAMM-DDQN with the optimal
solutions obtained from the optimization model on small networks. Then, we consider all of
them except the optimization model on both medium and large instances. The performance
of these methods is compared with respect to the number of V2V communication packets
and Fairness.

Fig. 3.5(a) and Fig. 3.5(b) illustrate an example of the considered V2V networks, where
the numhber of groups is set to be half the total number of V2V nodes. Here, each color
represents a group of vehicles, where if two colors are similar to each other then it means
that they belong to a similar vehicle’s group; otherwise, they are just acting as a relay node
to send the received packets to its destination node.
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Algorithm 5: Proposed Double Deep () networks-based solution
Data: Environment Interface
Result: TNC,F, RB

1 Initialize: @ + RandomWeights(), Q + Q

2 fork+ 1 :K do

3 fort+— 1 :T and 5; # st do

4 Tran = @, Rep = @

5 Observe s¢ (nce, cppe, mhy, try, rec;) from the environment.

6 Choose a; (cpy, tpy, ¢, p;) from a list of possible actions A; using an € Greedy

policy and allocate a; into RB; .

T Obtain action a;, reward r;, next state s, and next action Azyq.
8 Store (s¢, ¢, T, S, 1,.Ae41) as one transition in RM.

0 Sample random minibatch of transitions (s, a,r, s, A) from RM.
10 for Each transition (s;,a;,7;, S‘;., A;) in minibatch do

11 Compute target () value using C:;‘ network:

12 Qe(s5,a;) + 7 + 7 - Q(s}, argmax 4 Q(s}, A))

13 Perform gradient descent step on: (Qy(s;,a;) — Q(s;,a;))

14 Update target network weights: 1.0+ (1—7) 4.

15 Execute trained DIDIN agent on environment interface.

M
16 Given terminal state sy, F = min(ner) and TNC = Y nd.
p=1

Random Method
The inputs and outputs of the Random algorithm are similar to the MVGCF method, where

the variables are considered to be the same in both methods. However, instead of sorting
all communication pairs in a list, they are randomly stored. The main differences between
the MVGCF and the Random method are that line 1 of Algorithm 1 do not execute the
sorting instructions, and lines 6 and 11 of the Schedule function inserts into a not sorted
LCC.

For wireless communications, the background noise is considered as § = -111 dBm/Hz,
the power decay as o = 2.5, the threshold as 7 = 5 dB, and the maximum and minimum
transmission powers as Pyrax = 20 dB and Pyry = 0 dB, respectively [69]. We then
use CPLEX to solve our optimization model and Python3 to simulate the operation of our
algorithms. We run our program on Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz (2

processors) and 64.0 GB memory. The results are averaged over five runs.

3.6.1 Ewaluation Over Small Networks

In this subsection, the performance of different methods (Random, MVGCF, Qlearning
(Qlearn.), DDQN, MVGCF-Qlearning (MVGCF-Qlearn.), MVGCF-DDQN, MILP-based
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Figure 3.5: Examples of medium networks while considering the V2V Nodes to 10 by varying
network density to: (a) 0.4, and (b) 0.6.

solution: Optimum) is evaluated over the total number of successful communications and
achieved fairness by varying other parameters, such as number of V2V nodes, time frame
(number of time slots), number of channels, and maximum data communication range. For
all evaluations, we fix the parameters unless otherwise stated: we set the number of nodes
to 4 and 6, time slots to 10, number of channels to 2, and the V2V communication range
to 12 unit distance, which causes the total number of links in the network.

Fig. 3.6(a) and Fig. 3.7(a) respectively provide a visual representation of the total num-
ber of communications and fairness by varying the number of nodes. Here, the number of
groups is set to be half the number of nodes. The figures reveal that when considering two
nodes, all methods achieve a similar number of communications (i.e., 10) and an equal level
of fairness (i.e., F = 5), whereas with the Random method, we achieve lower fairness (i.e.,
F = 4) due to not scheduling all communication pairs in a sequence to maintain fairness.
However, as the number of V2V nodes increases, a consistent increase in the number of
communications is observed across all methods. Nonetheless, when the total number of
V2V nodes reaches 6, a slight decrease in fairness is observed specifically for MVGCF and
Qlearning. This is attributed to the increasing number of routing paths with the rise of V2V
nodes, which poses challenges in maintaining sequential scheduling of communication pairs
to ensure fairness. However, the Optimum and hybrid heuristic-based RL methods consis-
tently demonstrate performance stability, maintaining a fairness level of F' = 5 throughout
the experiments.

The obtained results presented in Fig. 3.6(b) and Fig. 3.7(b) illustrate the impact of
varying the number of time slots on the total number of communications and fairness in
small networks. As plotted in the figures, the total number of communication packets and
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Figure 3.6: Total number of communications as a comparison metric for different methods
(Random, MVGCF, Qlearn., DDQN, MVGCF-Qlearn., MVGCF-DDQN, and MILP-based
solution: Optimum solution) by varying (a) number of V2V nodes, (b) number of time
slots, (c) number of V2V channels, and (d) V2V communication range.

fairness as expected increases with the number of time slots because there is more time to
allocate packets into resource blocks RBs. Notably, when the number of time slots is set
to 10, the MVGCF, DDQN, MVGCF-Qlearning, MVGCF-DDQN, and Optimum methods
yield similar outcomes with 25 communications and achieve an equivalent level of fairness
(5). In contrast, the Random and Qlearning method exhibits a relatively lower number of
communications and fairness. However, as the number of time slots increases, the DDQN,
MVGCF-Qlearning, MVGCF-DDQN, and Optimum methods continue to generate similar
outcomes. On the other hand, the Random, MVGCF, and Qlearning methods show a slight
decrease in fairness over time. It is noteworthy that the MVGCF method outperforms the
Qlearning method and attains a better fairness due to the large size of the ()-table in the
Qlearning method and also because there wasn’t enough time to train the agent. However,
the Random method consistently shows poor performance in terms of communications and
fairness throughout the experiments.

Fig. 3.6(c) and Fig. 3.7(c) respectively show the total number of communications and
fairness by varying the number of channels. The results in the figures indicate that all
methods outperform (Qlearning in terms of the total number of communications and fairness
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Figure 3.7: Results of fairness (total number of successful communications rounds for all
pairs) for all methods by varying (a) number of V2V nodes, (b) number of time slots, (c)
number of V2V channels, and (d) V2V communication range.

when the number of channels is 2; however, a significantly lower number of communications
and fairness is observed for the Random method. However, with 3 channels, an equal
number of communications (i.e., 25) and fairness (i.e., 5) is achieved by both the Optimum
and MVGCF methods, but the Random method fails to maintain fairness. The reason is
because there are plenty of orthogonal RBs available to allocate simultaneous transmissions
(links), and the agent requires less training and it is easier to schedule transmissions. The
number of communications remains unchanged when 4 to 5 channels are available, as no
possible packets can be allocated into resource blocks.

Fig. 3.6(d) and Fig. 3.7(d) respectively show the total number of communications and
fairness by varying the V2V communication range. As plotted in the figures, the total
number of communications and fairness increases with the data communication range due
to the fact that there are more available links to be allocated into resource blocks. No-
tably, the Optimum, MVGCF-Qlearning and MVGCF-DDQN method demonstrate supe-
rior performance in terms of the total number of communications, achieving 15 successful
communications when the V2V communication range is 8 compared to 12 or less number
of communications for other methods. However, with regard to fairness, all methods re-

sult in similar values for different communication ranges, except for the Qlearning method
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when the V2V communication range is 8. Besides, the Random method does not achieve
fairness. Furthermore, it is worth noting that when the vehicle’s communication range ex-
ceeds 12 unit distance, the total number of communications and fairness do not increase
because the growth in the communication range does not increase the total number of links

(transmissions) in the network.
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Figure 3.8: Learning curves of Reinforcement Learning algorithms: (Qlearn. vs DDQN.

To show how the conventional (Qlearning and DDQN agents learn and converge, in
Fig. 3.8 we illustrate the learning curves of both methods. The x-axis describes the episode
number, while the y-axis shows the cumulative rewards. The results were obtained using a
network with 8 nodes with 80% link connectivity, using a time frame divided into 10 equal
time slots, and with 2 channels. At the beginning of the episode, the Qlearning method
begins with a cumulative reward of around 2.9, while the DDQN method starts with a
higher cumulative reward of approximate 3.32. This inequality arises because the DDQN
method uses neural networks to train a batch of samples, which yields a more promising
initial result. As both methods sustain to explore the environment further, thus accumulate
more rewards over time. However, the DDQN method displays faster learning compared to
the QJlearning method; it rapidly adjusts to the environment, achieving higher cumulative
rewards at earlier episodes. As the learning curves progress, the performance gap between
both methods becomes more pronounced. By the end of the training. specifically at episode
225 for the DDQN and at episode 75,000 for the (Qlearning method, the DDQN method
outperforms the (Qlearning method with a cumulative reward gap of around 1; the DDOQN
method receives a cumulative reward of 5.35, while the (Qlearning method arrives to a
cumulative reward of 4.35.

Fig. 3.9 shows the CPU run time for both Optimum and MVGCF by varying the number
of V2V nodes from 2 to 10. By increasing the number of V2V nodes, the optimization
model requires more time to execute, and the processing time grows exponentially, while
the execution time of the heuristic method is in milliseconds. The Optimum model failed
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Figure 3.9: Computation time of optimization model (Optimum) vs our proposed heuristic
method (MVGCF).

to obtain results for 10 or more nodes. Hence, the optimization model is not scalable or
good for large networks. Therefore, in the next subsection, we evaluate the performance of

our proposed methods without the optimization model using medium and large instances.

3.6.2 Ewaluation Over Medium Networks

In this subsection, the performance of different methods (Random, MVGCF, MVGCEF-
Qlearn., and MVGCF-DDQN) is evaluated over the total number of successful communi-
cations and achieved fairness by varying different parameters, such as the number of V2V
nodes, time frame (number of time slots), number of channels, and the density of links in
the network. For all evaluations, we fix the parameters unless otherwise stated: we set the
number of nodes to 10, time slots to 30, the number of channels to 4, and the density of links
in the network to 90% (to be noted that a 100% density means a fully connected network).
It should be noted that, for medium instances, we couldn’t obtain results for conventional
RL methods like Qlearning, and DDQN because they require a very long training time
which we couldn't afford.

Fig. 3.10(a) and Fig. 3.11(a) respectively provide insights into the total number of com-
munications and fairness metrics when the number of nodes is varied. Here, the number
of groups is set to be half of the total number of nodes. As depicted in the figures, when
considering 10 nodes, both the MVGCF-Qlearn. and MVGCF-DDQN methods achieve a
similar number of communications (i.e., 149) and equal level of fairness (i.e., F = 14). In
contrast, the MVGCF method yields a slightly lower number of communications and no-
ticeably very less fairness primarily due to the lack of sequence scheduling of transmissions
for communication pairs. The figures also show that as the number of V2V nodes increases,
an upward trend in the number of communications and a downward trend in fairness are
observed across all methods, where both the MVGCF-Qlearn. and MVGCF-DDQN meth-
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Figure 3.10: Total number of communications as a comparison metric for different methods

(Random, MVGCF, MVGCF-Qlearn., and MVGCF-DDQN) by varying (a) number of V2V
nodes, (b) number of time slots, (¢) number of V2V channels, and (d) V2V communication

range.

ods generate an almost similar result, a slight decrement in fairness for the MVGCF-Qlearn.
method, a rapid decrement for the Random method is observed because of the rising num-
ber of routing paths with the increased V2V nodes. However, the MVGCF-DDQN method
shows improved performance compared to the MVGCF-Qlearn. method with a fairness of
F=T.

With an increase in the number of time slots, there is an expected increase in the total
number of communications and fairness among all methods, as shown in Fig. 3.10(b) and
Fig. 3.11(b). When there are 20 time slots, both the MVGCF-Qlearn. and MVGCEF-
DDQN methods achieve a similar number of communications (i.e., 97) and equal fairness
(i.e., F = 9). In contrast, the MVGCF method achieves fewer communications (i.e., 72)
and fairness (F = 3). As the number of time slots increases, both the MVGCF-Qlearning
and MVGCF-DDQN methods continue to perform similarly. However, a slight decrease in
fairness is observed for the MVGCF-QQlearning method when there are 40 to 50 time slots.
On the other hand, the MVGCF method exhibits poor performance compared to others,
reaching a fairness value of eight (i.e., F = 8) when there are 50 time slots. Additionally,
the Random method consistently shows a worse result compared to others and ended up
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Figure 3.11: Results of fairness (total number of successful communications rounds for all
pairs) for all methods by varying (a) number of V2V nodes, (b) number of time slots, (c)
number of V2V channels, and (d) V2V communication range.

with a fairness equal to one (F = 1) when dealing with 50 time slots.

Fig. 3.10(c) and Fig. 3.11(c) illustrate the impact of varying the number of channels on
the total number of communications and fairness. The MVGCF-DDOQN method outper-
forms the MVGCF-Qlearn. method in terms of both the total number of communications
and fairness when 2 or 3 channels are utilized. In contrast, the MVGCF method exhibits
significantly lower values in terms of the number of communications and fairness. When
there are 4 or 5 channels, both the MVGCF-Qlearn. and MVGCF-DDQN methods achieve
the same number of communications (i.e., 150) and fairness (i.e., F = 14 when ¢ = 4 and
F = 15 when ¢ = 5). This improvement can be attributed to the increased availability
of RBs for transmitting data. However, there is a slight improvement in the number of
successful communications and fairness for the Random and MVGCF methods.

Fig. 3.10(d) and Fig. 3.11(d) illustrate the performance of the proposed methods as
the density of the network connection varies. It can be ohserved that the total number of
communications and fairness increase as the network density becomes denser. The reason is
because there are more links available to be allocated into RBs. As depicted in the figures,
the total number of communications and fairness of all methods increase while dealing with
denser networks. The reason is that there are more links to be allocated into RBs. For
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example, the fairness score of the MVGCF method starts with zero at 60% network density
and gradually increases until it reaches F = 7 when the network density is 100%. while
the MVGCF method initially starts with a fairness score of 0, it demonstrates improvement
in fairness with a score of F = 7 when the network density reaches 100 %. Similarly, the
Random method starts with a F score of 0, it eventually shows an improvement in the
fairness score with F = 1 when the network density is 100 %. However, despite this notable
improvement, the Random and MVGCF methods fall behind the RL methods in terms of

both the number of communications and fairness.
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Figure 3.12: Learning curves of Reinforcement Learning algorithms: MVGCF-Qlearn. vs
MVGCF-DDQN.

Fig. 3.12 shows the learning curve of the hybrid heuristic-based RL methods: MVGCF-
Qlearn. and MVGCF-DDQN. The x-axis represents the episode number, while the y-axis
represents the cumulative rewards. The results were received using a network with 10 nodes
with 90% link connectivity, using a time frame divided into 30 equal time slots, and with
4 channels. At the beginning, both methods begin with 9 cumulative rewards in the first
episode because of the result obtained from the heuristic MVGCF method, and gradually
accumulate rewards as they explore the environment and acquire more knowledge. However,
the MVGCF-DDOQN approach shows faster learning compared to the MVGCF-Qlearning
approach; it rapidly adapts to the environment, obtaining higher cumulative rewards at
earlier episodes. As the learning curves progress. the performance gap between the two
methods becomes more visible. By the end of training, particularly at episode 225 and
15000 for the MVGCF-DDQN and MVGCF-(learning methods respectively, the MVGCF-
DDON method outperforms the MVGCF-Qlearning method with a cumulative reward gap
of 2; the MVGCF-DDOQN method obtains a cumulative reward of 15, while the MVGCF-
Qlearning method reaches a cumulative reward of 13.



3.6.3 Evaluation Over Large Networks

In this subsection, the performance of different heuristic methods (Random, and MVGCF)
is evaluated over the total number of successful communications and achieved fairness by
varying parameters such as number of V2V nodes, time frame (number of time slots),
number of channels, and the density of communication links. For all evaluations, we fix the
parameters unless otherwise stated: we set the number of nodes to 100, number of time
slots to 7000, number of channels to 4, and the density of links in the network to 80% (to
be noted that a 100% density means a fully connected network).
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Figure 3.13: Total number of communications as a comparison metric for different methods
(Random, and MVGCF) by varying (a) number of V2V nodes, (b) number of time slots,
(c) number of V2V channels, and (d) data communication range.

Fig. 3.13(a) and Fig. 3.14(a) respectively show the total number of communications and
fairness by varying the number of nodes between 100 and 500. By setting the number of
groups to be 20 % of the total number of nodes, the figures show that the communications
gradually become harder to achieve for a larger number of nodes due to failure in main-
taining fairness as the routing paths become increasingly long. Nevertheless, the MVGCF
method still outperforms the Random method by a significant margin, with 57,428 suc-
cessful communications compared to 13,619 for 100 nodes, and an even greater disparity of
80,816 to 21,816, respectively. When it comes to fairness, the MVGCF method boasts an
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Figure 3.14: Results of fairness (total number of successful communications rounds for all
pairs) for all methods by varying (a) number of V2V nodes, (b) number of time slots, (c)
number of V2V channels, and (d) data communication range.

impressive F score of 24 for 100 nodes, which, unfortunately, drops to 0 as the number of
nodes reaches 500. The Random method, on the other hand, starts with a F score of 5 for
100 nodes, but then fails to exhibit any fairness (i.e., F = 0) when the number of nodes
increases to 500.

Fig. 3.13(b) and Fig. 3.14(b) respectively show the total number of communications
and fairness by varyving the number of time slots between 1000 and T000. As plotted in
the figures, the total number of communications and fairness of MVGCF and Random
methods increases as expected with the number of time slots due to having more BBs to
allocate transmissions. The MVGCF method outperforms the Random method with 3x
(three times) more successful communications when the total number of time slots is 1000,
and this performance gap gradually increases as the number of time slots increases. The
performance gap reaches 4x (four times) when the number of time slots reaches T000.

Fig. 3.13(c) and Fig. 3.14(c) respectively show the total number of communications and
fairness by varying the number of channels between 2 and 5. As depicted in the figures,
the total number of communications and fairness of the MVCCF and Random methods
increases with the increment of channels. For instance, the total number of successful
communications (respectively fairness) is 26,203 (respectively F' = 11) when there are only
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two channels, and it is 73,582 (respectively F = 32) when the number of channels is 5. The
reason for this increase is that there are more resource blocks to allocate transmissions.
However, there is a slight improvement in the number of successful communications and
fairness for the Random method.

The figures presented in the study, namely Fig. 3.13(d) and Fig. 3.14(d), shed light
on the performance of both methods by varying the density of network connections. As

1

depicted in the figures, the total number of communications and fairness of the MVCCF
and Random methods increase while dealing with denser networks. The reason is that there
are more links to be allocated into resource blocks. While the Random method starts with
a F score of 0, it eventually reaches a maximum fairness score of F = 11 when the network
density is 100 %. However, despite this accomplishment, the Random method pales in
comparison to the MVGCF method in terms of the number of communications.

The MVGCF method always outperforms the random method for large networks because

it prioritizes fairness while maximizing the number of V2V communications.

3.7 Summary

This chapter aims at maximizing the total number of V2V communications while maintain-
ing fairness for groups of vehicles, where in each group, vehicles are interested in communi-
cating with each other. The complexity of the problem lies in the fact that multiple factors
need to be addressed, including finding a multi-hop routing path for each source-destination
V2V communication pair, transmission power control, link scheduling, and taking into ac-
count resource allocation under the Half-Duplex and SINR constraints. We mathematically
formulated the problem and implemented an optimal solution using the mixed integer lin-
ear programming (MILP). After proving the NP-hardness of the problem and owing to
its complexity, we proposed a scalable method named Maximizing V2V Group Communi-
cations and Fairness (MVGCF) to get approximate solutions for large networks. The main
concept behind the MVGCF method is to maintain a priority queue, which is used to
achieve fairness by prioritizing the V2V communication pairs that have a fewer number of
successful communications. To address the objective, it is modeled as a Markov Decision
Process (MDP). and two RL algorithms, namely Qlearning and DDQN methods are intro-
duced. However, for faster learning and better performance, two heuristic-based RL meth-
ods, namely MVGCF-Qlearning and MVGCF-DDQN are proposed. Through numerical
results, the heuristic-based RL methods demonstrated significant improvements compared
to the conventional RL methods on small, medium, and large instances. In addition, the
MVGCF-DDOQN method outperformed other methods in terms of both the total number
of V2V communications and fairness. By contributing innovative solutions for maximiz-

ing V2V communications while maintaining fairness in AV-assisted vehicular networks, this
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chapter contributes to the advancement of intelligent transportation systems and smart

cities.
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Chapter 4

Optimizing Information Freshness
for Autonomous Vehicular

Communication

Autonomous Vehicles (AVs) are expected to play a crucial role in intelligent transportation
systems, especially in future smart cities. AV-assisted vehicular networking research has
primarily focused on throughput and latency as performance metrics to support their opera-
tions. However, these conventional metrics do not adequately capture the time-sensitiveness
of data streams and the freshness of information, which is critical for services such as au-
tonomous driving and accident prevention. Hence, this chapter addresses the problem of
minimizing the age of information (Aol) of all data streams in AV-assisted vehicular net-
works. We also consider a scenario where sensors like LiDARs and cameras on vehicles
generate time-sensitive data streams, which are utilized to collect and process this data
while maintaining a minimum Aol. Our objective is to minimize the total or average Aol of
all data streams for autonomous vehicles over a specified time frame. We first mathemat-
ically formulate the problem as a mixed integer linear programming (MILP) to obtain the
optimal solutions. However, due to its complexity, we propose a scalable heuristic method
named the Online Age of Information Minimization Method (OAMM) to solve the prob-
lem for large networks. To incorporate the dynamics of the environment, we model the
problem as a Markov decision process (MDP) and solve it using one of the reinforcement
learning (RL) algorithms called Qlearning. Furthermore, to enhance the learning behavior
of the RL agent and improve overall performance, we introduce a hybrid approach named
OAMM-Qlearning, combining both the heuristic-based and (Qlearning methods. Our nu-
merical results demonstrate the effectiveness of the hybrid approach in efficiently minimizing
the expected weighted total or average Aol compared to a Random method, the OAMM
method, and the conventional RL method over small and large networks.
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4.1 Introduction

In the rapidly evolving landscape of wireless networks, the advent of autonomous vehicles
(AVs) is expected to revolutionize the way we interact with transportation systems, espe-
cially in the context of future smart cities. As AV-assisted vehicular networking becomes
increasingly prevalent, addressing various applications’ diverse quality of service (QoS) re-
quirements becomes a critical challenge. Traditionally, performance metrics such as wireless
communication latency, throughput, and service reliability have been used to evaluate sys-
tem efficiency and support AV operations. However, for real-time applications that heavily
rely on the timeliness and freshness of information, conventional metrics may fall short of
accurately capturing the effectiveness of data delivery. To bridge this gap, researchers have
introduced the concept of the Age of Information (Aol) or status age, which quantifies the
time elapsed since the most recent status update. Aol provides a novel performance metric
to assess the freshness of collected information, offering valuable insights for time-sensitive
applications [21-23].

Ensuring the freshness of information is vital for effectively functioning Intelligent Trans-
portation System (ITS) applications, including autonomous intersection management, traf-
fic control, and autonomous driving. These applications primarily rely on real-time infor-
mation such as drivers’ behavior and emergency braking, which is generated by numerous
LiDAR sensors installed in intelligent and internet-connected vehicles. Consequently, col-
lecting timely and fresh information is crucial for enhancing driving assistance and ensuring
safety [T0-T4]. The information can be collected through WiFi technology, which can sub-
sequently be processed and analyzed at edge servers to derive meaningful insights.

In this chapter, each node possesses distinct data streams that need to be broadcasted.
However, due to restrictions imposed by transmission power and fading within the commu-
nication range, not all nodes can establish a direct link with the source node. Therefore,
for others, we may need to re-broadcast the data stream over multiple nodes (vehicles). We
consider a Time Division Multiple Access (TDMA) medium access scheme, dividing the
time frame into equal-length time slots. The duration of the time frame is intentionally
set to be very small, ensuring that the vehicles’ positions, determined by their maximum
speed, do not significantly change during the data broadcasting process, even in the case of
multi-hop transmissions. Therefore, we can allocate a new time frame to account for future
changes in vehicle positions. We assume that each packet belonging to a data stream can
be accommodated and transmitted within a single time slot. It is important to note that
due to the half-duplex nature of the system, a node can either transmit or receive a data
packet at a given time. However, simultaneous transmissions can occur within the network
if the signal-to-interference plus noise ratio (SINR) at the receivers surpasses a predefined
threshold.
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The primary objective of this chapter is to minimize the total or average Aol of all data
streams for autonomous vehicles over the entire time frame while considering the limitations
imposed by the half-duplex constraint, transmission range, and SINR thresholds. All the
nodes (vehicles and road infrastructure) can participate in relaying or rebroadcasting data
streams so that farther nodes can receive them. Here, each node may broadcast data
packets for different data streams, and therefore a scheduling scheme is required to allocate
time slots for data broadcasting such that the total/average Aol of all data streams at
all nodes is minimized for the entire time frame. This combinatorial problem involves
deciding which packets of data streams to broadcast over transmission links, scheduling
links on time slots, ensuring packet order transmission on multi-hop paths, and allowing
simultaneous transmissions under the SINR constraint. To the best of our knowledge,
no such combinatorial problem has been tackled and solved before. However, we have
modeled the problem mathematically and solved it using the optimization model and the
OAMM method. In this chapter, to consider the dynamic nature of the environment more
precisely, we model the problem as Markov Decision Process (MDP), and solve it using two
reinforcement learning (RL) algorithms, namely Qlearning and Double Deep Q-Networks
(DDQN). Furthermore, to improve the performance of both methods, we merge our heuristic
algorithm OAMM with them and propose two hybrid heuristic-based RL methods, namely
OAMM-Qlearning and OAMM-DDQN.

The system model and problem description are presented in Section 4.2, while the math-
ematical formulation is given in Section 4.3. The Online Age of Information Minimization
Method (OAMM) is detailed in Section 4.4, and the hybrid RL method, OAMM-Qlearning,
is explained in Section 4.5. Section 4.6 presents the performance evaluation, and Section 4.7
summarizes the chapter with key findings and suggests potential avenues for future research.

4.2 System Model and Problem Description

4.2.1 System Model

We consider a road structure consisting of several IoT devices like traffic lights, cameras,
LiDAR, radars, sensors, and a set of autonomous driving vehicles, where all these nodes
can collect data from their surroundings and share it with all other nodes in a vicinity V.
This vicinity V' can be from a few hundred meters to one or two kilometers depending on
the importance of data for autonomous driving. We consider the system over multiple time
frames. Each frame is segmentized into equal time slots, ¢ = 1,2, ...,T; the total number
of time slots in a frame is T. The size of the time frame T is considered very small such
that the position of vehicles, based on their maximum speed, will not significantly change
to affect the broadcasting of data even with multi-hop transmissions. Therefore, we can



55

Figure 4.1: Ilustration of the system model; the wireless communications between vehicles
as well as road IoT devices such as traffic lights and cameras are shown by dotted lines, and
the communication range is shown by a circle around a node.

consider a new time frame for the future vehicle position change. The wvehicles’ speed is
considered to follow a truncated Gaussian distribution ranging from v t0 Vmas [60], and
vehicles travel at random speed [30,61]. Also, the vehicles’ arrival into the road segment
is considered to follow a Poisson distribution with density p Vehicle/Km [68]. We consider
our system at each time frame, as shown in Fig. 4.1, as a graph &G = (N, E), where N isa
set of nodes in the road segment and FE is a set of edges (links) connecting any two nodes
residing within each other’s communication radius. For simplicity, the power transmission
is assumed to be fixed equal to P. Hence, the graph & is constructed in advance at the
beginning of each time frame.

We assume each node at random generates and broadcasts data stream to help vehicles
in the vicinity V to better decide on their auntonomous driving. Since not all the nodes in this
vicinity may have a direct link with the source node, the data stream may be re-broadcasted
over multiple hops. Hence, each node might have to broadcast data that belongs to different
streams. We consider a Time Division Multiple Access (TDMA) medium access where time
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Figure 4.2: Mlustration of data scheduling for node 1 to broadcast its packet to all nodes in
the network: a) Node 1 is scheduled first to broadcast its data to all nodes in its commu-
nication range. b) Node 3 has been scheduled next to broadcast the data packet of node
1. ¢) Nodes 2 and 8 are scheduled to broadcast simultaneously since their communication
ranges do not collide with each other. Note that node 4 can not be scheduled with either
node 2 or 8 since its communication range collides with them.

is divided into slots of equal length as explained earlier. We assume that any packet of a
data stream can be fit and transmitted over a one-time slot. It is noted that due to the half-
duplex mechanism a node can only transmit or receive one data packet at a time. However,
we might have simultaneous transmissions in the network if the signal-to-interference plus
noise ratio (SINR) at receivers is above a certain threshold 5. Let e;; be the Euclidean
distance between two nodes i and j, and o be the path loss exponent. Then, the SINR
under the physical interference model [31,63] in the presence of concurrent transmissions is
obtained as follows:

e P

SINR,, ., = L —— =8 V(ijekE (4.1)
G "y 2 W(hk)eE:hti €ng F

where 1 is the background noise. For simplicity, we assume that a node has a communication
range L so that it can communicate with other nodes within this range successfully if its
communication range does not collide with communication ranges of other simultaneous
transmissions (see Fig. 4.2(c), node 4 cannot broadcast simultaneously with either node 2 or
node 8, whereas, both nodes 2 and 8 can simultaneously transmit since their communication
areas do not collide with each other). To simplify the broadcasting scheduling and satisfy
the SINR for simultaneous transmissions, we calculate here in offline mode the safety margin
d; where a node cannot transmit if its interference on an active third-party receiver may
disturb the SINR in the receiver to a level below the threshold 5.

4.2.1.1 Determining the set of silent nodes for a given transmitter that guar-
antees that all receives successfully receive packets

If L and P are respectively the communication range and transmission power for our system,
the set of nodes N; that have to be silent for any transmitter j can be determined as follows.
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Given the half-duplex constraint of the environment under study, we can calculate the
interference upper bound by considering half of the nodes being transmitters and, as a con-
sequence, causing interference on third-party receivers. With this assumption. we identify
the node i most susceptible to interference within j's communication range L by calculating
the cumulative interference of all third-party transmitters in the network. It is worth noting
that this set of third-party transmitters is outside the j's and i's communication range due
to the half-duplex constraint.

The upper bound for the cumulative interference on node i for the transmitter j is:

Li= Y e Pu (4.2)
kg (N;UN)

where N; and N; are the set of nodes within the communication range L for the nodes i
and j, wy € [0,1] is an indicator function that assumes that the nodes outside of the set
N; and N; are sorted according to their distances to i and that the nearest node to i is a
transmitter (to achieve the interference upper-bound) followed by an alternating sequence
transmitters with g = 1 and not transmitters with wg = 0.

With the upper bound interference estimate, we can calculate STN R;; and compare it
to the threshold 3.

e
SINR;; = — 4.3
Ry =70 (@3
if SIN R;; > S then the transmission safety margin d = 0. If SINR;; < 3, then 8;; = e;—L,

where h is the transmitter node that is nearest to i and h is inserted into N; so that it is

not considered a transmitter in a new iteration of interference and SINR estimations.

The transmission safety margin 4;; is then iteratively estimated by the execution of
equations 4.2 and 4.3. Any other transmitter node in the network can use this safety
margin because the i is the receiver most susceptible to interference, and j is the least
favorable transmitter for i by being the farthest possible transmitter. It is worth noting
that at the end of this process, N; will contain the broadcast set for j (i.e. the set of nodes
that receive a packet if j is actively transmitting) and a set of nodes that must be silent for
i to successfully receive a transmission from j.

Similarly, for each node h in the network, we calculate Ny, whenever the graph G is
created, before the beginning of a time frame. The sets N can then be used to constrain
the number of active transmitters in the same manner as the half duplex constraint while
guaranteeing that the SINR constraint is satisfied for all receivers, i.e., nodes in N with
distance from h smaller than I would receive a packet if transmitted by h, nodes in Nj

with distances greater than L would be marked as silent if h is an active receiver.
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4.2.2 Aol Definition in Vehicular Networks

The concept of Aol describes the freshness of information from the perspective of the re-
ceivers, and it is defined as the time difference since the most recently delivered message
was generated. To track the Aol, we define A;‘;‘d as the Aol of data stream d at receiver
node n at time ¢. It is to be noted that data stream d refers to the node that generates this
stream. A data packet for stream d is generated with probability A; € (0,1],Vd. If we let
G% € {0,1} be the indicator of generating new data for stream d at time slot ¢, then the
probability of G% = 1 follows Bernoulli distribution with probability As. When a node n
generates a new packet for data stream d, the Aol of that data stream and the node is set
to zero (i.e Af;,d = 0), since the data stream d is generated and intended for node n (i.e.,
Node n is the generator and receiver of data stream d). Otherwise, as one time slot passes
by, either the data packet is waiting in a queue of a node or in transmission from node to
node through multi-hop, the Aol increases by one, until the data is delivered to the desti-
nation. There is a possibility that while a data packet is being delivered to a destination
node, a new data packet is generated for the same stream. Hence, it might be more efficient
to drop the old data which has not been delivered yet and schedule the newly generated
data to be transmitted and delivered to the destination so as to reduce the average Aol of

the network.

4.2.3 Problem Definition

‘We are interested in minimizing the total or average Aol of all data streams that are intended
for autonomous vehicles in the network within the road segment for the entire time frame.
All the nodes (vehicles and road infrastructure) can participate in relaying or rebroadcasting
data streams so that farther nodes can receive them. Here, each node may broadcast data
packets for different data streams, and therefore a scheduling scheme is required to allocate
time slots for data broadcasting such that the total/average Aol of all data streams at all

nodes is minimized for the entire time frame.

Problem Definition (minimizing Aol for all data streams): Given a graph G of
N nodes connected through E edges with neighbors within the communication range L, the
problem of minimizing Aol for all data streams is to schedule time slots for broadcasting
data streams generated by all nodes in the network within the read segment to be delivered
to all autonomous vehicles within the vicinity V' around each generated node in the current
time frame T (where the frame is partitioned into multiple equal time slots) such that the
total/avernge Aol of all data streams at all nodes is minimized.

Here, each node generates a data stream to broadcast to all nodes in the vicinity V.

We illustrate the data broadcasting for one node in Fig. 4.2 on a sample network shown in
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Tahble 4.1: Notations Used in problem formulation

Set of nodes.

Set of edges (links).

Total number of data streams.

Time frame (total number of time slots).

Large constant larger than any Aol in the system.
Indicates that when Gf; =1 a new data for stream d is
generated at time t, and G} = 0 otherwise.

e =

Aol of data stream d at receiver node n at
time £.
Indicates whether link (i, j) for data stream d
< {0,1}

.d " "4hs scheduled at time ¢ or not.
e > Eq:al to AL i X[, =1& ALy < Aj

' and zero otherwise.
Fqual to one, ifX:"Ld =14& A:’Idl < A’;,dl;
and zero otherwise.
Q. |=0 Equal to A;,d: if Ei:c:l:,j:: Hit.j,d =0;

14 |= and zero otherwise.

Fqual to one, ifA:’dl < A; dl;

R:j’d €{0,1} and zero otherwise. '

Fig. 4.1; namely, we illustrate the scheduling of the data stream of node 1 and highlight
the importance of nodes that should participate in relaying or rebroadcasting data so that
fewer number of time slots is used and hence the faster the data is delivered to all nodes.
MNote that the same procedure is done concurrently for other data streams in the network.
Here we show the data broadcasting for only one node. It is to be noted that the scheduling
problem will be more complex when we consider multiple data streams instead of one. In
the first time slot, illustrated in Fig. 4.2(a), node 1 broadcasts its data packet. In the
second time slot, any node that has received the data packet may relay or rebroadcast it,
however, a node must be chosen that will result in delivering data to more new nodes (see
Fig. 4.2(b)) and will increase the chance for simultaneous transmissions in the future time
slot scheduling (see Fig. 4.2(c)). Also, there is a possibility that while a data packet that
belongs to the stream is on its way to a destination, a new data packet for the same data
stream is generated. Hence, it might be more efficient to drop the old data packet and
deliver the new one. Thus, the scheduler should optimize 1) nodes that should participate
in broadecasting, 2) when nodes should transmit/broadcast, and 3) which data packets to
be broadcasted so that the Aol of the network is minimized.
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4.3 Problem Formulation

In this section, we mathematically formulate the problem as a mixed integer linear program
(MILP). The used notations are listed in Table 4.1.

Let A! ; > 0 be the Aol of data stream d in node n at time t. The objective of the
optimization model is to minimize the Aol of all data streams d = 1,2, ..., D on all nodes
n=12,..,N at all time slots t = 1,2, ...,T. It can be mathematically written as follows:

T D N
Minimize Y "% AL, (4.4)
t=1 d=1 n=1
subject to: (4.5) - (4.9), (4.13), (4.17), (4.22), (4.24) - (4.28), where these constraints
are derived in detail in Sections 4.3.1 to 4.3.4.

4.3.1 Simultaneous transmissions

To reduce interference and increase the successful transmission rate, we avoid a node receiv-
ing multiple data packets from different transmitters or transmitting multiple data packets
at the same time. Similarly, we avoid a node transmitting and receiving simultaneously.
Let X f:_,-,,,_ € {0,1} indicates whether link (i, j) for data stream d is scheduled at time t or

not.

4.3.1.1 Simultaneous Receiving

This constraint ensures that a receiver does not receive data packets from multiple trans-

mitters simultaneously:

o

YD) Xhast ¥jeN,t=1.T. (4.5)
d=1i:(i,j)cE

4.3.1.2 Simultaneous Transmitting

The following constraint prevents a transmitter from transmitting different data packets to
multiple receivers at the same time. In other words, a node cannot transmit more than one
data packet at the same time:

D
ZXEJ.,& <1 V(i,j) € E,t =1..T. (4.6)
d=1
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4.3.1.3 Simultaneous Receive and Transmit

Using the following constraint, we ensure that a node does not transmit and receive at the

same time:

D D
d=1 d=1 (4.7)

V(i, k)&(k,j) € E,t = 1..T.

4.3.2 Data Broadcasting

If a node is scheduled to transmit a data packet, based on the nature of the data broadcast-
ing, all the outgoing links from the node should be scheduled at the same time, and vice
versa, if a node is not scheduled to transmit, none of its outgoing links should be scheduled.

XLa=Xby o V(i,5)&(i,k) € E,d=1.D,t=1.T. (4.8)

4.3.3 Initial Aol

The initial Aol for all data streams and nodes is set to an initial value at time ¢ = 0 and
updated at time t = 1, 2, ..., T. Hence, the Aol for all data streams and nodes at time ¢ =0
(ie., Aid} is set to Initial except for nodes n = d that might generate a new packet at

time ¢ = 0 as follows:
A? ;= Initial Vn=1.N,d=1.D:d#n. (4.9)

When new data that belongs to the same node is generated, the Aol of that node is set
to zero (ie., A;"E‘ 4 = 0, here node n = d since the same node generates a new data packet,
thus we may write it as A*d,d = 0). Let G € {0,1} be an indicator that new data for
stream d is generated at time f. Hence, when G4 =1 and n = d, the Aol of node n is set
to zero (i.e., Af‘# = 0). At the initial time t = 0, the Aol is given as follows:

A} ;= (1 — GYInitial ¥d = 1..D. (4.10)

When GY = 0, the Aol A&d for node and data stream d is set to the initial value.
However, when G‘g =1, the Aol Ag‘ 4 = 0. Similarly, at other time slots, when £ # 0, the
Aol is set to zero (i.e., Af ; = 0) when a new packet is generated at time ¢ (i.e., G = 0).
The constraint is given in the next subsection.
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4.3.4 Aol Updates

As time goes by, the Aol is incremented by one unit as one-time slot passes by (i.e., A:_.,d =
A:_.;Il+1}. When a node receives a data packet for data stream d, if the Aol of the transmitter
is smaller than the receiver, then it updates its Aol to be equal to the Aol of the transmitter
plus one. In other words, if node j receives a new data packet of stream d from node 7 at
time ¢ (ie., X5, = 1), and Al;' < A7l then AL, = ALZ' + 1; this one Aol unit is
added because the data transmission from the transmitter to the receiver takes one-time
unit which should be added to the Aol of the receiver. The following equations show how

the Aol of a node is updated:

A:‘,d= A:::il+1, ifoj,dzl & AE,EIEA;;;I;

A;;Il +1, otherwise. (4.11)

V(i,j) € E,d=1.D,t =1.T.

As explained earlier, when a new packet is generated for data stream d at time t, the
Aol of the node that has generated the new packet is set to zero as shown below:

A, = 0, ifGh=1
’ AL +1, otherwise. (4.12)

Vd=1.D,t=1.T.

which can be linearized as follows:
Aga=(1-GH(AT/ +1) Vd=1.D,t=1.T. (4.13)

However, when a node with a smaller Aol transmits to a larger Aol node as explained
above, the updated Aol of the receiver will be equal to the Aol of the receiver at the time

of transmission plus one. Otherwise, the Aol of a node increments by one as shown here:

AE_ = Ei:{i,j} P‘Ei,d + 11‘ if Ei:{i,j} Pif;i,d ?E D'-
I A;;Il +1, otherwise. (4.14)

Vj=1.N,d=1.D:d#jt=1.T.

where P, ; is equal to the Aol of the transmitter (i) on link < i,j > (ie., Af;), if X}, ;=1
and A:}l < A;;l, and zero otherwise. So, if node j receives a data packet from a node with
smaller Aol, then the Aol of node j willbe 3=, _; ;. Pf; ;+1, which is equal to AE;I +1, since

at time £, node j can receive a packet from only one transmitter based on constraint 4.5).



Equation (4.14) can be written in a linearized form as follows:

A;,d: Z ijd T _d{]-_ Z

f g 0 e i g

Vj=1.N,d=1.D:d#jt=1.T.

or,
Al = Z Plg+ AL — A Z H ;) +1
[ e el g
Vj=1.N,d=1.D:d#jt=1.T.
or,
A;,d— Z Ptd—l-A Q;,d‘l‘]

Vj=1.N,d=1.D:d#jt=1.T.

where, Hfj g P"E G and Qt 4, are given bellow:

HE 1, leu,d—l & A”[ {A_”,,
4 0, otherwise.

V(i,j) € E,d=1.D,t=1.T.

P-*-d={ AL HE =1

o 0, otherwme.

V(i,j) € E,d=1..D,t =1.T.

gd = 0, otherwise.

t _{ A;,_dl? ifzi:{i,j} Hfjd
Vj=1.N,d=1.D,t=1.T.

Equation (4.18) can be written as follows:

HY; 4= X% 4R V(i,j) e E,d=1..D,t =1.T.

L)
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(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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and linearized by the following constraints:

(3 t
Hia<Xia
Hija < Rija

(4.22)
V(i,j) € E,d=1..D,t = 1.T.

where

1

e oai—1 1,
Rf-d= 1, 1fA§,d {A;d1
4 0, otherwise. (4.23)

V(i,j) € E,d=1.D,t = 1.T.

The above equation can be linearized using the following constraints:

i—1 t—1
A;.-‘,d - Ai,d

Rf.di:

ij +1

B (4.24)
V(i,j) € E,d=1.D,t =1.T.

t—1 t—1
Aja —Aia
B (4.25)
V(i,j) € E,d=1.D,t=1.T.

R-Ej,d =

2 t—1 t—1
Ria<|A;g — At

o (4.26)
V(i,j) € E,d=1..D,t = 1.T.

where B is a big value constant larger than any Aol in the system. Consequently, equation
(4.19) can be linearized using the following constraints:

pt t—1
id = Ai,d
pt Ht
ijd = B ij,d

PL > B(HL ;— 1)+ A

(4.27)
ijd =

Ve<i,j>eE,d=1.D,t=1.T.

and equation (4.20) can be linearized using the following constraints:



it it—1
G = A

t t
5d < BXicigs Hija

a2 B( iy Hya— 1)+ A;,_dl

Vj=1.N,d=1.D,t=1.T.

(4.28)

4.4 The Online Age of Information Minimization Method
(OAMM)

From the fact that the problem of minimizing the Aol of data streams is NP-hard, and
obtaining the optimal solutions using the optimization model given above is very complex
and non-scalable, in this section, we propose a heuristic method to solve the problem online
for consequent time frames with any vehicle location changes. The details of the heuristic
method are given in Algorithm 6.

The inputs to the algorithm are comprised of a set of nodes (N), a set of edges or links
(E), the total number of data streams (D), the total number of time slots in a given time
frame (T, and packet generation probability with Bernoulli distribution (A;). The outputs
of the algorithm are the total sum of Aol (TotalAel), and the resource block allocation
RB. At initialization, the Aol for all data streams and nodes is set to an initial value at
time slot t = 0 (i.e., A?m 4= 0), except for nodes (n) that might generate new packets for
their data streams (d), that is n = d.

In line 2, the algorithm calls function Sample, detailed in Algorithm 7, to sample G
(probability distribution of new packet generation) which follows Bernoulli distribution with
probability A;. This function takes as inputs Aol A. an indicator of generating new data
for all data streams (5, and time slots ¢. Eventually, the function creates a new packet (p)
when G:: = 1, where packet p is comprised of a packet id, a set of transmitted nodes, a
set of received nodes, and a counter to track the number of nodes that have not received
the packet. Then an ID for the packet p is generated by subtracting the current time ¢
from the frame size T (i.e., p.id =T —t, line 6 of Algorithm T) to track the packet number
for each data stream. Consequently, the transmitted set of packet p is set to null because
this packet has just been generated without being transmitted yet (i.e., p.transmitted = @,
line 7), and it will be ready to be transmitted for the next time slot. As a new packet, it is
inserted into the received set (line 8), and the number of non-visited nodes for this packet p
is decreased by one (line 9). Eventually, packet p is inserted into the packet list (d.packlist)
of data stream d which has generated this new packet (line 10), and the Aol of the stream
d is set to zero (ie., A&d =0, line 11).

In line 3 of Algorithm 6, the time slot t iterates over the time frame T. For each time
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Algorithm 6: The OAMM method
Data: N, E, D, T, A\g;
Result: Total Aol, RB;
1 Initialize: A? , = Initial;
2 SampleG(A,G,0);
sfort=1;t<=T;t++ do
Tran =9, Ree = 2, PA; = @
for data stream d in D do
for packet p in d.packlist do
L for packet n in p.received do

I B

|_ Insert the tuple (d, n,p) into PAg;

=]

Sort d based on the sum of Aol of each data stream;
10 Sort PA; in order based on the following:

11 a) Data stream d;

12 b) Maximum length of the broadcast /transmitter set;
13 c) Newest packet ID;

14 for each possible action a in PA; do

15 if a.n & (Tran U Re) then

16 if a.n.broadecast N (Tran U Be:) == @ then

17 Allocate a into RB;

18 Insert a.n into T,.,,;

19 Insert a.n.broadecast into Re.;

20 Move a.n from a.p.received into a.p.transmitted;

il Wiee = a.n.broadeast \\ (a.p.transmitted U a.p.received);
22 Update A:u,d Y € Wi according to Eq.4.11;

23 a.p.notvisited = |N|—|a.p.received|+ |a.p.trasmitted|;
24 if a.p.notvisited == 0 then

25 |_ Remove p from a.d.packlist;

26 D_rop older packets covered by newer packets;
27 SampleG(A,G.t);
o T

N
28 Totaldol = 3. 3° 3 AY
n=1d=1i=1 !

slot starting with £ = 1, in line 4, the algorithm first empties the transmitter set (Tran),
receiver set (R..), and the list of possible actions (PA;). Then, for each data stream d and
for each packet p in the data stream list (d.packlist) and received list (p.received), it inserts
the tuple (d, n, p) into the list of possible action PA;, where p is the packet id in short
(referred to p.id in Algorithm 7), and n is one of the nodes that receives packet p and ready
to broadcast it. In line 9, the algorithm computes the sum of Aol for each data stream and
then sorts them in descending order. The list of possible actions PA; is first sorted based
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Algorithm 7: Sample G from bernoulli distribution of lambda
1 Function SampleG(A.G, t):

2 Sample G* ~ Bernoulli(A;);
for data stream d in D do

if G = 1 then

Create new packet p;
pid =T —t;
p.transmitted = &),
Insert d into p.received,;
p.notvisited = [N |—1;
10 Insert p into d.packlist;
i1 Af“ =0

=T I S - T = -]

on data streams, and then based on the maximum length of the broadcast /transmitter set
followed by the newest packet ID in case of tie (lines 10-13).

In line 14, for each action a in P4, the algorithm checks the half-duplex constraint,
which ensures that a node a.n is not in the sets of transmitters Ty.n, and receivers H..
(line 15). Line 15 is essentially checking whether the intersection between the broadcast set
of a transmitter for action a and the union of the sets of transmitters Ty, and receivers
R.. is an empty set. If the condition is satisfied, it means that there are no overlapping
nodes between the broadcast set and the transmitters or receivers. So, it is possible to
allocate the action a into the resource block (RB). Once the resource block allocation is
done, both transmitter a.n and the set of receivers who received the data packet through the
broadcasting (i.e., set of a.n.broadcast) are respectively inserted into Tiu, and R, (lines
18-19). In addition, the transmitter a.n is removed from the received packet set to the
transmitted packet set (line 20). To keep track of the nodes that have not yet received data
packets for different data streams, in line 21, a new set, W,.., is constructed by taking the
difference between the broadcast set of a transmitter a.n (a.n.broadcast) and the union of
two sets, including the set of packets already transmitted a.p.transmitted and the set of
packets already received a.p.received.

In line 22, an update process is taken into consideration for each element w in the
W, set; the update is performed based on Eq.4.11, which was explained earlier. The
set of packets for unvisited nodes is obtained by removing received and transmitted node
sets (|a.p.received|) and (|a.p.fransmitted|) from the total number of nodes (|N|). If the
difference is equal to zero, then it means all nodes in the network are either considered
as the receiver or transmitter of the packet. Hence, we remove the packet from that data
stream and update the packet list (a.d.packlist) (lines 24-25).

The algorithm in line 26 before going to the next time slot drops and replaces the
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old packets if newer packets have arrived for the same data streams, and then in line 27
function SampleG is called to generate new packets based on the probability distribution G.
Finally in line 28, the algorithm sums up the Aol values for each time slot, ranging from t=1
to t=T, resulting in the TotalAol. This provides us with a comprehensive understanding of
the overall freshness of the information gathered over the time period.

4.5 Reinforcement Learning and Hybrid Approaches

Reinforcement learning (RL) is an approach where an agent interacts with an environment
to learn a policy that maximizes its long-term rewards. The agent takes actions from the
given states in the environment, obtains feedback in the form of rewards, and uses the
information to update its policy.

In our method, we formulate our maximization problem as Markov Decision Process
(MDP) to allocate resources into RBs within a time frame. An MDP is represented by
a tuple (S, A, v, P, R), where S is a finite set of states, denoted as s; € S at time slot
t: A is an action space such that if we let .4 to be a set of all possible actions in state
s and a; is one of the actions at any time slot ¢, then a; € A; v € [0,1] is the discount
factor, which determines the weight of future rewards in the decision-making process; P is
a Markovian transition model, denoted as P(s¢y1]|ss, a¢), which represents the probability
of transitioning from state s; to state s;;; when an action a; is taken; R is the reward
distribution, denoted as P(r||s;,a;), which gives the immediate reward r; € R after an
action a; is taken in a state s; at time slot ¢. The state, action, and reward functions under

the MDP framework are given as follows:

4.5.0.1 Agent

Roadside Unit (RSU) is considered to be an agent.

4.5.0.2 State

Each state s; is defined as a tuple of multiple vectors: i) a matrix containing the current
Aol at time slot ¢, aoiy; ii) a vector containing the current mean of Aol of each data stream
at time slot t, meany; iii) a vector of the current median of Aol of each data stream at time
slot t, median;. Thus the system state s at time slot ¢ can be expressed as:

sy = (aoiy, mean,, median,). (4.29)
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4.5.0.3 Action

Each action a is defined as a tuple composed of i) An identifier used to assign each data
stream to transmit, d € I); ii) An identifier of a scheduled transmitter for that data stream,
h € N iii) An identifier of a considered packet for that data stream, p. The agent action a
can be expressed as:

a = (d, h,p). (4.30)

4.5.0.4 Reward

We use a reward function to provide feedback on each action a; taken in a given state s;
by the RL agent. The agent selects an action a; from a set of possible actions A; at time
slot t, where A; represents the available resource allocation choices at the timestep ¢. Let
r; be the immediate reward at each time slot t. The reward function ry(s;, a;) at time slot ¢
can be expressed as follows:

EA‘ I_EAK

maz(maz(At—1), maz(At))

Te(st, ae) = (4.31)

If the maximum value of the previous Aol (A*"!) is greater than the maximum value
of the current Aol (A*), we normalize both of them by dividing over the maximum value
of the previous Aol. Otherwise, we normalize both by dividing over the maximum value of

the current Aol. The reward ry(s;, a;) is then computed by obtaining the difference between
the normalized values of the previous Aol and the current Aol.

4.5.1 The Qlearning Approach

For the RL approach, we use the Qlearning network [67] given in Algorithm 8 that utilizes an
off-policy method and runs for K episodes to allocate resources into resource blocks within
a time frame T. The input to the algorithm is the interface of the environment, and the
outputs are the total sum of Aol and scheduled resource blocks RE. Initially, the (Q-value for
each state s and action a is zero. The algorithm iterates over several episodes (i.e., K), and
at each episode k, for each time slot ¢, while the terminal state is not reached, it initializes
the transmitter set Tyq, and the receiver set K., to null (line 4). In line 5, the algorithm at
the start observes a set of state components, consisting of the tuple (aoi;, mean,, median,),
from the environment. Then, in line 6, the algorithm chooses an action a, from a list of
possible actions 4; in a given state s; utilizing an eGreedy policy, and allocates a; into
the resource block RB;. In line 7, after taking an action, the algorithm retrieves a reward
(r¢) from the environment and updates the (}(s¢, a;) value in the Q-table by choosing the



future action that returns the highest expected value (see line 8), taking into account a
learning rate o and discount factor . The Q-value table is repeatedly updated at multiple
iterations so that it converges and there will be no significant improvements. In the end,
the algorithm executes the trained agent in the environment (line 9), and obtains the total
sum of Aol TotalAol (line 10).

Algorithm 8: Proposed Qlearning based Solution
Data: Environment Interface;
Result: Total Aol, RB;

1 Initialize: Q(s,a) = @;

2 fork+ 1 : K do

3 fort «+ 1 : T and 5; # st do

4 Tran = &, R..= &,

5 Observe s; (noi;, mean,, median,;) from the environment;

6 Choose a; (dsq, tre, p¢) from a list of possible actions 4; using an e-Greedy policy
and allocate a; into RB;

T Receive a Reward (r;) from the environment;

8 | Update Q(s¢, a¢) + Q(s¢,a¢) + afre + ymax Q(se41, ar41 € Aey1) — Q(5e, )]s

9 Execute trained agent on environment interface;

T
10 Calculate Totaldol = 3 A';
=1

4.5.2 OAMM-Qlearning

The conventional (Qlearning approach follows an exploration and exploitation approach to

gather information about state-action pairs until it converges. The sizes of state and action
spaces can be calculated as follows:

0(S) = O(A x mean = median) (4.32)

O(A) =O0(D x N x T). (4.33)

In fact, since the size of the state-action spaces is extremely large which necessitates
creating a very large (Q-value table, exploring the entire state-action spaces to update the
()(s¢,a¢) value for each state-action becomes challenging and computationally expensive,
leading to poor performance and slow convergence. Hence, to overcome this issue, we
propose OAMM-Qlearning, a heuristic-based reinforcement learning approach, which is
the integration of the heuristic OAMM method and the conventional RL. method. By
integrating the heuristic OAMM insights into the learning process of the RL approach, the
agent accelerates its learning by understanding which actions in specific states yield the best
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rewards. This approach delegates the model to enhance the quality of solutions obtained
to converge faster toward optimal solutions. In brief, the OAMM-Qlearning method solves
the problem using the heuristic OAMM method, generates a sequence of states, actions,
and rewards, required for RL implementation, and stores these initial results in a list called
SARlist. Then it updates the ()-table with the set of states and actions observed from the
list SA Rlist. Finally, the RL agent continues training similar to the conventional Qlearning
technique given in Algorithm 8. The details of the OAMM-Qlearning method are given in
Algorithm 9. The algorithm takes a set of nodes (N), a set of edges or links (E), the total
number of data streams (D), the total number of time slots in a given time frame (T,
and packet generation probability with Bernoulli distribution (Ag) as inputs. Initially, the
SAHlist is empty (line 1). The algorithm executes the OAMM method using the inputs
(line 2), obtains a sequence of states (S), actions (A4), and rewards (R) (line 3). and stores
them in list S ARlist (line 4). Then, in line 5, the algorithm iterates over the results stored
in the list to update the (Q-table. Finally, it trains and executes the RL agent similar to
lines 2-10 given in Algorithm 8.

Algorithm 9: OAMM-Qlearning

Data: N, E, D, T, A\g;

Result: Total Aol, RB;

Initialize: SARlist = &;

Execute the OAMM method taking N, E, D. T, A; as inputs;

Observe the OAMM method execution to collect a sequence of states (S, actions (A), and
rewards ([);

Store the sequences (5, A, R) into the 5A Rlist;

Iterate over the SARliet to update the () table according to Line 8 from Algorithm 3.

Train and execute the (Jlearning agent according to Lines 2-10 of Algorithm 8.

B B =

(=T = S %

4.5.3 The Double Deep Q-Networks (DDQN) Approach

The traditional DDQN [67], as shown in Fig. 4.3 and Fig. 4.4, is an extension of the DQN
algorithm of DRL which runs multiple episodes to allocate resources into RBs within a
time frame T. The used notations are listed in Table 4.2. Here, the input and outputs to
Algorithm 10 are similar to Algorithm 8.

At initialization, the primary network () is initialized with random weights, while the
target network t:? is initialized by directly copyving the weights from the primary network Q).

All the steps in lines 2-7 are similar to Algorithm 8 which have been explained earlier. In
line 8, after choosing an action a;, we receive a reward r; for moving to the next state 5541
which includes a list of next possible actions A¢;1 from the environment. Line 9 stores those

values obtained at time slot ¢ as one single transition (s,a,r,s’,.A) in the replay memory
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Figure 4.3: The proposed DRL approach to obtain the reward policy.

(RM). In line 10, a random minibatch of transitions (s;, aj, r;, s},.4;) is sampled from the



Table 4.2: SIMULATION PARAMETERS

Parameters Values
Activation Functions RelTT
Number of Neurons  [256, 128, 64, 32 16

Number of Hidden Layers 5

Learning Rate 0.0001
Optimizer Adam
Total Number of Episodes 255
Decay Rate 1/Episodes * 2
Discounted Heward 0.99
Inputs Hidden Layers

aoig

Figure 4.4: The proposed (Q-Network.

replay memory HM. For each transition in the minibatch (line 11), the target Q-value
(Ji(s;.a;) is computed using the target network Q. The ()i (s;.a;) is calculated as the sum
of the immediate reward r; and the discounted maximum (Q-value @(s;.,..xij} from the next
state s_’,,- using the primary network ¢ (line 13). We then perform gradient descent on the
difference between the target ()-value (};(s;,a;) and the primary network € (line 14). Next,
target ()-network weights {é} are updated. The update process involves adjusting the target
network parameter § towards the primary network parameter #, where the rate of averaging
value T is typically set to 0.01 (line 15). In this way, target network weights {é} are updated
by copying the weights from the primary network. Once the termination condition is met,
the algorithm proceeds to the next episode until all episodes are completed. In the end,
similar to Algorithm 1, the final agent is executed in the environment (line 16), and the
total number of successful communications TNC' and fairness F are calculated (line 17).

OAMM-DDQN

When the conventional DDQN has very large state s; and action a; spaces (refer to equa-
tions (4.32) and (4.33)), exploring the entire state and action spaces becomes challenging and
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Algorithm 10: Proposed Double Deep () networks-based solution
Data: Environment Interface
Result: TNC,F, RB

1 Initialize: @ + RandomWeights(), Q + Q

2 fork+ 1 :K do

3 fort+— 1 :T and 5; # st do

4 Tran =9, Ree = @

5 Observe s; (aoiy, mean;, median;) from the environment

6 Choose a; (dsy, try, p;) from a list of possible actions 4; using an e-Greedy policy

and allocate a; into RB;

T Obtain action a;, reward r;, next state s;y 1, and next action .4;41
8 Store (¢, ae, T, 54, Aes1) as one transition in RM

0 Sample random minibatch of transitions (s,a,r, s, A) from RM
10 for Each transition (s;,a;,7;, .s‘;., A;) in minibatch do

11 Compute target () value using C:;‘ network:

12 Qe(s5,a;) + 7 + 7 - Q(s}, argmax 4 Q(s}, A))

13 Perform gradient descent step on: (Qy(s;,a;) — Q(s;,a;))

14 Update target network weights: 1.0+ (1—7) 0

15 Execute trained DN agent on environment interface

T
16 Civen terminal state sy, Totaldol = ¥ At
t=1

computationally expensive, which will lead to poor performance and slow learning conver-
gence. To address such an issue, we introduce another heuristic-based DRL method called
OAMM-DDOQN. We initially find solutions by using the heuristic method for an episode
and then copy the obtained solution of OAMM method for 500 times. By leveraging the
heuristic OAMM method, we sequentially populate the replay memory (RM) with a subset
of promising states, actions, rewards, next states, and next actions. This targeted approach
reduces the amount of time spent on exploration, allowing the agent to focus on learning
from these high-quality states. Hence, the OAMM-DDQN agent explores and exploits the
state-action space more effectively, since it understands which actions in specific states yield

the best rewards, and accelerates learning convergence by leveraging prior knowledge.

4.6 Performance Evaluation

To evaluate the performance of the proposed methods, in this section, we first compare
the Random (the explanations of the agent are explained below), the heuristic OAMM,
Qlearning (Qlearn.), DDQN, the hybrid OAMM-Qlearning (OAMM-Qlearn.), and the hy-
brid OAMM-DDON with the Optimum solutions obtained from the MILP-based optimiza-

tion model on small networks. Then, we consider all of them except the optimization model



on both medium and large instances. The total sum of Aol of all data streams is taken as
the performance metric, and we vary several parameters such as the number of nodes in
the network, the number of time slots, the probahility rate of packet generation, and the
network density.

Fig. 4.5(a) and Fig. 4.5(b) illustrate an example of V2V networks, where the number of
V2V nodes is considered as 25, and the V2V network density is set to 40% while varying
the packet generation probability. In Fig. 4.5(a), we consider the probability of packet
generation to be 0.25, which means only 25% data streams generate packets at any time
slot, and more than half of the packets shown in Fig. 4.5(b) are generated by all data streams
in the network. Here, each data stream broadcasts packets to its nearest neighbors within
the communication range; otherwise, each acts as a relay node to broadcast or transmit the
received packets to its destination node.

40 A 40 A

30 4 30 4
# #
g 201 S 201
c c
1= 1=
8 8
= 10 = 10

a a
0 10 20 3n 40 0 10 20 3n 40
X Coordinates X Coordinates

(a) (b)

Figure 4.5: Examples of medium networks while considering the V2V Nodes to 25 and
network density to 40% by varying packet generation probability to: (a) 0.25, and (b) 0.50.

Random Method

In the Random method, the inputs, outputs, and all variables are considered the same as in
the OAMM method, however, instead of sorting each data stream according to their sum
of Aol and giving priority to the largest length of the broadcast/transmitter set with the
newest packet 1D, the data streams, transmitters, and packets are randomly stored.

For wireless communications, the threshold is considered as § = 5dB, the background
noise as 7 = —111dBm/Hz, the power loss decay as a@ = 2.5, the transmission power as
P = 20dB [68]. We use Python3 to simulate the operation of our algorithms and run on
Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz (2 processors) and 64.0 GB memory. The
learning rate & and the discount factor + required for the ()-value updates in the (QQlearn.
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and OAMM-Q)learn. are set to 0.0001 and 0.99 respectively. The number of episodes K for
the Qlearn. and OAMM-Qlearn. was set to 15000 and 5000 respectively. The results are

then averaged over five runs.

4.6.1 Ewaluation Over Small Networks

In this subsection, the performance of different methods (Random, OAMM, Qlearn., DDQN,
OAMM-Qlearn., OAMM-DDQN, and the optimal solution obtained from the optimization
model: Optimum) is evaluated over the total sum of Aol by varying parameters, such
as the number of V2V nodes, size of the time frame (the number of time slots), packet
generation rate, and the network demnsity (the number of links). For all evaluations, we fix
the parameters unless otherwise stated: we set the number of nodes to 10, the number of
time slots to 4, the probability of packet generation to 0.5 (to be noted that the probability
of 1.0 means all data streams generate packets at any time slot), and the network density
to 80% (to be noted that a 100% density means a fully connected network).
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Figure 4.6: Total sum of Aol on small networks for all data streams as a comparison metric
for different methods (Random, OAMM, Qlearn., DDQN, OAMM-Qlearn., OAMM-DDQN,
and Optimum) by varying (a) number of V2V nodes, (b} number of time slots, (¢) packet
generation probability, and (d) V2V communication density.

Fig. 4.6(a) provides a visual representation of the total sum of Aol by varying the number
of nodes. As depicted in the figure, the Qlearn., DDQN, and OAMM-Qlearn., and OAMM-



DDOQN methods perform similarly to the Optimum in the very small network size of 5 nodes
and achieve a total sum of Aol of 201. Whereas, the OAMM and Random methods achieve
a comparatively higher sum of Aol due to not scheduling all packets in a sequence between
the source and destination pairs. Later, as the size of the network increases, an upward
trend in the total sum of Aol is observed for all, where with a network of size 20 nodes, only
the OAMM-DDOQN method has obtained similarly to the optimal solution which is a total
sum of Aol of 6415. It is observed that the Random method performs the worse among
all other methods because it poses challenges in maintaining the sequential scheduling of
packets to reduce the total sum of Aol. Moreover, the hybrid OAMM-Qlearn. method gives
optimal solutions for networks of size less than 20 nodes.

The obtained results shown in Fig. 4.6(b) illustrate the impact of varying the number
of time slots on the total sum of Aol in small networks. As expected, it is observed that
the total sum of Aol rises with a gradual increase in the number of time slots, as more time
becomes available for the allocation of packets into REs. Notably, when the number of time
slots is set to 2, all methods except the Random method achieve an optimal solution of 590
total sums of Aol. However, with larger networks, the QQlearn., DDQN, OAMM-Qlearn.,
and OAMM-DDQN methods almost perform similarly to the Optimal solutions. Whereas,
the OAMM method performs very close to the Optimum, and the Random method stands
last.

Fig. 4.6(c) describes the variation in the total sum of Aol while varying the packet
generation probability in small networks. As depicted, it is noticed that the total sum of
Aol decreases with an increment in the total number of packet generation rates, as there are
more available packets to be allocated into RBs. Notably, for different probabilities starting
from 0.25 to 1.0, the Qlearn., the DDQN, the OAMM-Qlearn., and the OAMM-DDOQN
methods result in optimal solutions and perform equally to the Optimum. Whereas, the
Random method performs worse than others with higher gaps to the Optimum, and the
OAMM method results in lower gaps to the optimal solutions.

Fig. 4.6(d) offers meaningful insights into the total sum of Aol as the network density
is varied. As depicted in the figure, the total sum of Aol exhibits a downward trend with
increasing network density, which ensures the presence of more available links to be allocated
into RBs. Notably, the OAMM-Qlearn., the DDQN and Optimum methods demonstrate
their superior performance in terms of the total sums of Aol, achieving 1474 when the
density of the V2V network is 40%. Whereas, the Random and OAMM methods start with
a total sum of Aol scores of around 1591 and 1567, respectively. The simulation result
eventually shows a decrement in the sum of Aol scores of 1498 and 1471, respectively when
the network density becomes 100%. However, despite this accomplishment, the Random and
OAMM methods pale in comparison to Qlearn., DDQN, OAMM-Qlearn., OAMM-DDQN,
and Optimum methods in terms of the total sum of Aol



23:59 -
== Optimum

L_ & = OAMM No Results

i
=
=
=

s
o
Padl
ad

9:35

2:47 }

Processing Time (hh:mm)

0:00

2 3 4 5 6
Number of Time Slots

Figure 4.7: Computation time of optimization model (Optimum) vs our proposed heuristic
method (OAMM).

Fig. 4.7 shows the computation time for both Optimum and OAMM methods by varying
the number of time slots from 2 to 6. By increasing the number of time slots, the opti-
mization model requires more time to execute, and the processing time grows exponentially,
while the execution time of the heuristic method is in milliseconds. The optimization model
failed to obtain results for 6 and higher time slots due to a lack of CPU memory. Hence,
the optimization model is not scalable or good for large networks. Therefore, in the next
subsection, we evaluate the performance of our proposed methods without the optimization
model using medium and very large instances.

4.6.2 Ewvaluation Over Medium Networks

In this subsection, the performance of different methods (Random, OAMM, Qlearn., DDQN,
and OAMM-Qlearn.) is evaluated over medium networks. For all evaluations, we fix the
parameters unless otherwise stated: we set the number of nodes to 50, the number of time
slots to 40, the probability of the packet generation to 0.5, and the network density to 80%.

Fig. 4.8(a) provides insights into the total sum of Aol when the number of nodes is
varied from 25 to 100 nodes. As depicted in the fizure, a total sum of Aol of 350149 is
achieved by the OAMM-Qlearn. method while considering twenty-five nodes. Whereas,
with the Qlearn. and OAMM methods, we achieve a comparatively higher score due to not
scheduling all packets in a sequence between the source and destination pairs. Afterward,
with the gradual increase in the number of network nodes, an upward trend in the total
sum of Aol is observed for all, where OAMM-Qlearn. generates the lower total sum of Aol
(equal to T882780) compared to other introduced methods when the number of nodes is 100.
It is observed that the Random method generates the worst result among all methods. This
can be attributed to the growing number of broadcasted nodes with an increasing number
of nodes in the network. Moreover, the OAMM-Qlearn. method minimizes the total sum
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Figure 4.8: Total sum of Aol on medium networks for all data streams as a comparison
metric for different methods (Random, OAMM., Qlearn., DDOQN, and OAMM-Qlearn.) by
varying (a) number of V2V nodes, (b) number of time slots, (c) packet generation proba-
bility, and (d) V2V communication density.

of Aol compared to the OAMM and (Jlearn. over the experiment.

With a gradual rise in the number of time slots, there is an expected increment in the
total sum of Aol among all methods, as shown in Fig. 4.8(b). When there are 30 time slots,
the OAMM-Qlearn. method achieves a total sum of Aol of just over 1064058. In contrast,
the QJlearn., and OAMM methods achieve a higher total sum Aol around 1111870, and
1128983, respectively. As anticipated. it is observed that the total sum Aol rises with an
increase in the number of time slots, as more time becomes available for the allocation of
packets into resource blocks. By increasing the number of time slots to 60, both Qlearn.
and OAMM fail to minimize the total sum of Aol when compared to the OAMM-Qlearn.
method which reach a total sum of 3360078, respectively. Moreover, the Random method
performs the worst compared to other proposed methods and ended up with a total sum of
4190766 when dealing with 60 time slots.

Fig. 4.8(c) illustrates the variation in the total sum of Aol while varying the probability of
packet generation in large networks. It is noticed that the total sum of Aol decreases with an
increment in the total number of packet generation rates, as there are more available packets
to be allocated into resource blocks. Notably, when the probability of packet generation is
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set to 0.25, the OAMM-Qlearn. method obtains a total sum Aol of around 1724190 and
1720090 respectively, whereas the Random and OAMM methods achieve a comparatively
higher sum Aol. By increasing the number of packet generation rates to 1.0, the OAMM-
QQlearn. generates a lower total sum Aol, whereas the worst result (ie., a total sum Aol of
2021438) is observed while considering the Random method.

Fig. 4.8(d) offers insights into the total sum of Aol as the density of the network varies
from 40% to 100%. As depicted in the figure, the total sum Aol decreases as the network
density becomes denser. The reason is because there are more links available to be allocated
into RBs. Notably, the OAMM-Qlearn. method demonstrates superior performance in
terms of the total sum Aol, achieving 1850256 when the density of the network is 40%, while
the Random and Qlearn. methods start with a total sum Aol of around 2064312 and 2019631
respectively, and it respectively decreases to Totaldol = 1807890 and 1753598 when the
network density becomes 100%. However, despite this accomplishment, the Random and
Qlearn. methods pale in comparison to OAMM-Qlearn. in terms of the total sum of Aol.
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Figure 4.9: Learning curves of Reinforcement Learning algorithms: (Qlearn. vs DDQN.

Fig. 4.9 shows the learning curve of the conventional Qlearn. and DDQN. The x-axis
represents the episode number, while the y-axis represents the cumulative rewards. The
results were obtained using a network with 25 nodes with 80% link connectivity, using a
time frame divided into 40 equal time slots, with a packet generation probability of 50%. At
the beginning of the episode, the DDQN. method begins with a higher cumulative reward
of around 329, while the Qlearn. method starts with a cumulative reward of approximate
303. This inequality arises because the DDQN method uses neural networks to train a
batch of samples, which yields a more promising initial result. As both techniques continue
to explore the environment, they gradually achieve more rewards over time. However,
the DDQN approach shows faster learning compared to the (Qlearn. approach; it rapidly
adapts to the environment, obtaining higher cumulative rewards at earlier episodes. As

the learning curves progress, the performance gap between the two methods becomes more
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visible. By the end of training, particularly at episode 255 and 15000 for the DDQN and
Qlearn. methods respectively, the DDQN method outperforms the Qlearn. method with
a cumulative reward gap of 132; the DDQN method obtains a cumulative reward of 555,
while the Q)learn. method reaches a cumulative reward of 423.

4.6.3 Evaluation Over Large Networks

In this subsection, the performance of different methods (Random, and OAMM) is described
over the total sum of AOI by varying other parameters, such as number of V2V nodes, time
frame (number of time slots), packet generation probability, and the density of links in the
network. For all evaluations, we fix the parameters unless otherwise stated: we set the
number of nodes to 600, time slots to 100, packet generation probability to 0.5, and the
density of links in the network to 80%.
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Figure 4.10: Total sum of Aol on Large networks for all data streams as a comparison
metric for different methods (Random, and OAMM) by varying (a) number of V2V nodes,
(b) number of time slots, (c¢) packet generation probability, and (d) V2V communication
density.

Fig. 4.10(a) respectively provides insights into the total number of sum of Aol when the
number of nodes is varied. As depicted in the figure, a total sum of Aol (i.e., 7T90361201) is
achieved by the OAMM method while considering 400 nodes, whereas with the Random. we
achieve comparatively higher sum of Aol (i.e., 812522658) due to not scheduling all packets
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in a sequence of between source and destination pairs. Afterward, with the gradual increase
in growing number of broadcasted nodes while increasing the number of V2V nodes, an
upward trend in the number of total sum of Aol is observed for both of them. where the
OAMM generates a lower sum of Aol result (i.e., 5130333402) compared to the Random
when the number of nodes is 1000. Moreover, the OAMM method minimizes the total sum
of Aol compared to the Random method over the experiment.

With a gradual rise in the number of time slots, there is an expected increment in the
total number of sum of Aol among all methods, as shown in Fig. 4.10(b). When there are 75
time slots, the OAMM method achieves a total sum of Aol (i.e., 1050069146). In contrast,
the Random achieves a higher number of sum of Aol (i.e., 1163902935). As anticipated, it
is ohserved that the total sum of Aol rises with an increase in the number of time slots,
as more time becomes available for the allocation of packets into BBs. By increasing the
number of time slots to 150, the Random method fails to minimize the total sum of Aol
when compared to the OAMM method that reaches a total of 3930687320 sum of Aol
Moreover, the Random method shows a worse result compared to the OAMM method and
ended up with a sum of Aol (i.e., 4069855458) when dealing with 150 time slots.

Fig. 4.10(c) illustrates the variation in the total sum of Aol while varying the packet
generation probability in large networks. It is noticed that the total sum of Aol decreases
with an increment in the total number of packet generation rate, as there are more available
packets to be allocated into RBs. Notably, when the number of packet generation probability
is set to 0.25, the OAMM method obtains a total sum of Aol (i.e., 1834802846), whereas
Random method achieves a comparatively higher number of sum of Aol (i.e., 1959060866).
When the number of packet generation rate increases to 1.0, the OAMM method generates
a total sum of Aol (i.e., 1782033388), whereas a higher number of total sum of Aol (i.e.,
1950648500) is observed while considering the Random method.

Fig. 4.10(d) offers meaningful insights into the total number of sum of Aol as the density
of network is varied. As depicted in the figure, the total sum of Aol exhibits a downward
trend with increasing network density. The reason is because there are more links available
to be allocated into RBs. Notably, the OAMM method demonstrates superior performance
in terms of the total sum of Aol, achieving 1816636976 when the density of V2V network is
40%, while the Random method starts with a total sum of Aol score of around 1960350679,
the obtained results eventually show an decrement in the sum of Aol score with T Aol =
1807890 and 1753598, respectively, when the network density becomes 100%. However,
despite this accomplishment, the Random method pales in comparison to OAMM in terms
of total sum of Aol.

The OAMM method always outperforms the random method for large networks because
it sorts each data stream according to their sum of Aol and giving priority to the largest
length of the broadcast /transmitter set with the newest packet ID.
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4.7 Summary

This chapter has proposed novel and effective approaches to address the critical issue of
the age of information (Aol) minimization in AV-assisted vehicular networks. The main
objective is to minimize the total or average Aol of all data streams for antonomous ve-
hicles, taking into account resource allocation under the half-duplex constraint, traversal
of broadcasted nodes between sources and destinations, link scheduling, and the reuse of
resource blocks. The problem was mathematically formulated using Mixed Integer Linear
Programming (MILP) to obtain optimal solutions on small networks. However, due to the
complexity of the optimization model, a scalable heuristic method named the Online Age
of Information Minimization Method (OAMM) was introduced to efficiently solve the prob-
lem for large networks. To address the dynamic nature of the environment, the problem
was further modeled as a Markov Decision Process (MDP) and solved using ()learning,
a reinforcement learning algorithm. The integration of the OAMM-Qlearning hybrid ap-
proach resulted in significant improvements in minimizing the expected weighted total or
average Aol. This achievement is crucial as it enables the delivery of time-sensitive and
reliable data streams for various autonomous wehicle applications. The performance of
the proposed OAMM-Qlearning approach was extensively evaluated through simulations,
demonstrating its effectiveness and practicality in real-world scenarios. By contributing
innovative solutions for Aol minimization in AV-assisted vehicular networks, this research
contributes to the advancement of intelligent transportation systems and smart cities. The
proposed approaches hold great potential in enhancing the efficiency and reliability of data
transmissions for autonomous vehicles, paving the way for safer and more responsive au-
tonomous driving experiences. As autonomous vehicles continue to play a crucial role in
shaping the future of transportation, the findings of this study have valuable implications
for the development of efficient and intelligent vehicular communication systems.



Chapter 5

Conclusion

Intelligent Transportation Systems (ITS) have become essential not only for the proliferation
of autonomous driving but also for facilitating real-time data exchange among wvehicles,
utilizing the capabilities of wireless communication. This dynamic exchange of real-time
decision-making information through V2V communications ensures efficient, reliable, safe,
and comfortable driving experiences, while simultaneously enhancing overall traffic safety
and efficiency.

Throughout this thesis, we embarked on the exploration of two distinct projects, each
with its unique objectives. The first project focused on the maximization of communication
instances within groups of vehicles, all while maintaining equity among V2V communication
pairs. This intricate challenge required us to address several critical factors, including multi-
hop routing path determination, transmission power control, link scheduling, and resource
reuse, all within the constraints of Half-Duplex and Signal-to-Interference-Plus-Noise Ratio
(SINR).

The second project delved into the minimization of the Age of Information (Aol) across
all data streams within autonomous vehicular-assisted networks, considering a specific time-
frame. This problem encompassed the optimization of data relay participation, transmission
timings, and data packet selection, all while reusing resources within the context of Half-
Duplex and SINR constraints.

To tackle both of these complex challenges, we initiated our approach by mathemat-
ically formulating the problems as Mixed Integer Linear Programming (MILP) models,
thereby obtaining optimal solutions. However, due to their computational complexity, we
introduced scalable heuristic methods tailored to address the needs of larger networks. Fur-
thermore, recognizing the dynamic nature of the environment and the mobility of vehicles,
we embraced a Markov Decision Process (MDP) framework. Within this framework, we
harnessed the power of two reinforcement learning (RL) algorithms - Q-learning and Double
Deep Q-Networks (DDQN) - to provide solutions.



Additionally, we augmented the learning capahilities of the RL agents and overall sys-
tem performance by proposing innovative hybrid heuristic-based RL methods, seamlessly
integrating the strengths of the RL agents with our introduced heuristic strategies.

Through comprehensive numerical simulations, we have conclusively demonstrated the
efficacy of these hybrid approaches in solving both problems. Our methods outperformed
random agents and introduced heuristic techniques, and conventional RL methods across
varied network sizes. Moreover, our hybrid approaches exhibited scalability, achieving a
remarkable worst performance gap of less than 5% when compared to optimal solutions on
small networks.

The findings of this research have the potential to significantly contribute to the ad-
vancement of intelligent transportation systems and smart cities. By enhancing driving
experiences through reliable, safer, and more responsive vehicular communications, we pave
the way for a future marked by seamless and efficient mobility.
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