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Abstract 

Lysophosphatidic acid receptor 1 (LPA1) is one of six G protein-coupled receptors (GPCRs) in 

the LPA receptor family (LPA1-6) and is activated by lysophosphatidic acid (LPA). LPA1 is 

involved in a wide range of cellular activities, including the regulation of cell proliferation, 

migration, invasion, and apoptosis. Numerous studies have reported its implication in the 

initiation, progression, and metastasis of breast cancer. Bioinformatic analysis has also revealed 

the role of LPA1 in breast cancer. However, the current repertoire of LPA1 ligands targeting 

cancer remains highly limited, and only one LPA1 radioligand for positron emission tomography 

(PET) imaging of pulmonary fibrosis has been reported so far. Therefore, the objective of this 

study is to develop novel LPA1 antagonists and LPA1 radioligands for breast cancer therapeutics 

and diagnosis. 

Chapter 1 provides an overview of the current development status of ligands targeting LPA1-6. 

Chapter 2 presents the detailed synthesis and biological evaluation of carbamate-derived and 

urea-derived ligands in three parts. In part 1, the first series of carbamate-derived LPA1 

antagonists were synthesized and assessed. Among these compounds, 1-(4'-(5-(((1-(3-

fluorophenyl)ethoxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid exhibited the highest potency and selectivity, effectively 

inhibiting cell survival, migration, and invasion induced by LPA in the breast cancer cell line 

MDA-MB-231. In part 2, the second series of LPA1 antagonists, derived from urea, were 

synthesized and evaluated. However, this series demonstrated overall lower activity compared to 

the first series of compounds. Lastly, in part 3 of this chapter, one of the most potent and 

selective LPA1 antagonists, 1-(4'-(5-((((3-ethylbenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-

triazol-1-yl)-[1,1'-biphenyl]-4-yl)cyclopropane-1-carboxylic acid, was chosen for radiolabeling 

in order to be used as a radiotracer for PET imaging, facilitating the diagnosis of breast cancer. 

The radiosynthesis and evaluation of this compound are discussed in detail in this section. 

The field of medicinal chemistry has entered into the 'big data era' due to the emergence of large-

scale and high-dimensional data. Traditional machine learning and deep learning, as subsets of 

artificial intelligence (AI), provide a versatile framework that enables the identification of 

intricate patterns from complex datasets, surpassing the limitations of traditional methods in drug 

discovery. Motivated by the rapid emergence of AI in medicinal chemistry, the objective was to 



apply these cutting-edge techniques to drug discovery, as discussed in chapter 3. In part 1, 

several machine learning models were constructed and trained using a diverse dataset consisting 

of peptides and small molecules, with the goal of predicting small molecule binding. The models 

developed in the study exhibited high accuracy and precision in their predictions, making them 

valuable for guiding drug design. In part 2, the exploration of AI was expanded to the field of 

deep learning. A local augmentation mechanism was incorporated into graph neural networks, 

resulting in the construction of local augmented graph convolution networks and local 

augmented graph attention networks. These neural network models were employed to predict the 

ligand type of GPCRs. The models achieved state-of-the-art performance and demonstrated 

accurate prediction capabilities. All the models developed in this chapter hold potential for 

guiding drug design in their respective fields. 
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The development of modulators for lysophosphatidic acid receptors: 

a comprehensive review 

 

Abstract:  

Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of 

cellular activities that regulate a diverse array of biological functions. They recognize two types 

of G protein-coupled receptors: LPA1-3 receptors and LPA4-6 receptors that belong to the 

endothelial differentiation gene (EDG) family and non-EDG family, respectively. In recent years, 

the LPA signaling pathway has captured an increasing amount of attention because of its 

involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular 

diseases and neuropathic pain, making it a promising target for drug development. While no 

drugs targeting LPA receptors have been approved by the FDA thus far, at least three antagonists 

have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-

986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-

986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of 

idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of 

ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic 

potential in various diseases. 
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Graphical abstract: 

 

 

Keywords: GPCRs, lysophosphatidic acid receptor, fibrosis, cancer, positron emission 

tomography 
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1. Introduction 

Lysophosphatidic acid (LPA) is a bioactive phospholipid, consisting of a phosphate headgroup 

and a glycerol backbone with a single saturated or unsaturated fatty acid chain.1 In serum and 

plasma, LPA was detected in various forms, such as 1-acyl- and 2-acyl-LPA, but when 

discussing LPA in the context of a signaling molecule, the term LPA usually refers to 1-acyl-2-

hydroxy-sn-glycero-3-phosphate.2-3 The hydrocarbon chain length and degree of saturation vary 

greatly and are dependent on the precursor phospholipid. The most abundant forms of LPA in 

human plasma are as follows: 16:0 LPA (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphate) with 

16 carbon atoms and 0 double bonds, 18:2 LPA (1-linoleoyl-2-hydroxy-sn-glycero-3-phosphate) 

with 18 carbon atoms and 2 double bonds, and 18:1 LPA (1-oleoyl-2-hydroxy-sn-glycero-3-

phosphate) with 18 carbon atoms and 1 double bond.4 LPA is produced under physiological and 

pathophysiological conditions in both cells and extracellular fluids. It mediates multiple cell 

responses and activities, including cell proliferation, migration, invasion,5-7 cytokine 

production,8-9 reactive oxygen species (ROS) generation,10 and macrophage formation.11 

Therefore, dysregulation of LPA is linked to certain kinds of diseases, including cancer,12 

atherosclerosis,9, 13 fibrosis,14 and immune system disfunction.15-16 So far, LPA has been detected 

in many human fluids, including plasma,17 serum, cerebrospinal fluid,18 saliva, gingival 

crevicular fluid,19 and pleural effusions.20 

LPA can be produced from membrane phospholipids, including phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), and phosphatidylserine (PS) through at least two enzymatic 

pathways.2, 21 In plasma and serum, LPA is mainly generated by a lysophospholipase D 

(lysoPLD) named autotaxin (ATX). Plasma levels of LPA in ATX heterozygous mice have been 

shown to decrease by 50% compared with wild type controls.22-23 In this pathway (Fig 1.1A), 

phospholipids are firstly hydrolyzed into lysophospholipids, including lysophosphatidylcholine 

(LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylserine (LPS), by 

phospholipase A enzymes (PLA1 and PLA2), followed by the cleavage of these 

lysophospholipids by ATX to produce LPA. Aside from ATX, LPA in serum and plasma is also 

produced from lecithin: cholesterol acyltransferase (LCAT). After binding to a lipoprotein, 

LCAT cleaves the sn-2 fatty acid chain of PC to produce 1-acyl-LPC, and then 1-acyl-LPC is 

converted into 1-acyl-LPA by ATX.24-25 In platelets and some malignant cells, LPA is mainly 
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produced from phosphatidic acid (PA). In this pathway (Fig 1.1B), phospholipids are converted 

into PA by phospholipase D (PLD), and PA is subsequently deacylated by PLA1 and PLA2 to 

produce LPA. 

In circulation, LPA has a half-life of around 0.5-3 minutes, depending on the LPA species.26-27 

The turnover of LPA is regulated by the enzymes that are involved in LPA production and 

degradation. Three pathways mediate the degradation of LPA.28 In the first pathway, LPA is 

dephosphorylated to monoacylglycerol (MAG) through lipid phosphate phosphatases (LPPs). In 

LPP null mice, the plasma level of LPA is significantly increased and the clearance rate of 

intravenously injected LPA is four times slower compared with wild type.29 The second pathway 

involves LPA acyltransferase, which catalyzes the transfer of the acyl group to LPA to produce 

PA. In the third pathway, LPA is converted into glycerol-3-phosphate (G3P) by phospholipases. 
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Figure 1.1. Major pathways of LPA production. X: hydrophilic head group. 

LPA functions mainly by acting on a family of G protein-coupled receptors (GPCRs) known as 

the LPA receptors.12 These LPA receptors then activate Rho (via G12/13 protein), PLC (via Gq 

protein), RAS-MAPK or PI3-Akt (via Gi/o protein), and AC (via Gs protein)-mediated pathways 

through several distinct class of heterotrimeric G proteins,4, 12, 30-32 leading to a diverse array of 

downstream signaling and cell activities (Fig 1.2). 

 In mammals, six LPA receptors (LPA1-6) have been discovered to date (Fig 1.2), and they are 

divided into two LPA receptor families according to phylogeny: the endothelial differentiation 

gene (EDG) family and the non-EDG family. All of these receptors are widely distributed in 

diverse human tissues. The EDG family, the LPA1-3 receptors, share 45-56% similarity in amino 

acid sequence with each other, while the LPA4-6 receptors form the non-EDG family and share 

35-55% similarity in amino acid sequence.33  
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Figure 1.2. LPA downstream signaling. 

As the largest family of cell transmembrane molecules, GPCRs are widely distributed in various 

cell types and play important roles in the transduction of a wide range of cell signals. Because of 

their significant roles in cell signaling, they have gained special interest for drug discovery. 

Currently, approximately 27% of marketed drugs are GPCR agonists or antagonists.34 LPA 

receptor-mediated signaling cascades are important pathways involved in many processes, 

therefore drug discovery based on LPA is an attractive platform for researchers to explore. 

Because of the heterogeneity of LPA receptor subtypes, tissue distribution and expression 

profiles, blocking LPA production globally by inhibiting ATX can lead to a myriad of 

undesirable side effects. Hence, LPA-based drug development comes down to the discovery of 
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novel, potent LPA ligands targeting a specific receptor subtype without negating the 

physiological roles of other subtypes. 

In recent years, there have been numerous studies on the synthesis and biological evaluation of 

agonists and antagonists that target LPA signaling, with variable efficacy and selectivity. The 

initial studies on ligands targeting LPA receptors were LPA-like compounds with a phosphate 

moiety and a long fatty acid chain. Based on the structure of 18:1 LPA, several aspects of this 

endogenous ligand have been modified in structure-activity relationship studies to identify new 

drugs. These include modifications to the fatty acid chain length and its saturation, conversion of 

the phosphate group to isosteres, and substitution at the sn-2 position.35-36 However, these 

compounds demonstrate undesirable bioavailability due to their hydrophobic nature. The first 

non-lipid LPA1 ligands, isoxazole and thiazole derivatives, were reported in 2001,37 followed by 

the development of the isoxazole-derived LPA receptor antagonist Ki16425. The phenylethoxy 

carbamoyl moiety of Ki16425 inspired many other LPA ligands discovery with different five 

membered rings to achieve subtype activity and selectivity.38-40 Among ligands targeting LPA 

receptors, LPA1- and LPA1/LPA3-targeting ligands have been the most studied. The aim of this 

chapter is to review recent developments in drug discovery that target LPA receptors, as well as 

LPA ligands under clinical trials for diagnostic and therapeutic purposes. 

2. LPA1 ligands 

2.1 Agonists 

N-acyl ethanolamide phosphoric acid (NAEPA) (Fig 1.3A) was the first agonist based on LPA.41 

It was synthesized by replacing the glycerol on LPA with ethanolamine and characterized as an 

LPA mimetic with an EC50 of around 40 nM in human platelet aggregation. Later, this 

compound was confirmed as an LPA1/LPA2 dual agonist which is equipotent with 18:1 LPA at 

inducing calcium release in vitro.35 

By using NAEPA as a lead compound, several modifications were made to achieve higher 

activity and selectivity. Substituting the α-carbon of its phosphate head group with an electron-

withdrawing α-keto group (1) (Fig 1.3A) resulted in a selective LPA1 agonist (EC50 = 221 nM) 

with minimal LPA2 activity and no LPA3 activity from GTP[γ35S] assays (data not available for 

LPA4-6 receptors).42 Furthermore, isosteric substitution of the phosphate with thiophosphate (2) 

(Fig 1.3A) resulted in a highly selective compound with LPA1 agonistic activity (EC50 = 318 nM) 
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without any LPA2-3 agonism (Table 1.1).42 However, α-monofluoromethylene- (3) (Fig 1.3A) 

and α-difluoromethylene- (4) (Fig 1.3A) substituted alkyl LPA analogues were found to be weak 

LPA1-3 agonists in inducing cell migration.43 

 

Figure 1.3. Lipid-based (A and B) and non-lipid (C) LPA1 agonists. NE: No effect was observed. 
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Based on NAEPA, substitutions were made at the second carbon to obtain a series of 2-

substituted NAEPA analogues (5, 6, 7) (Fig 1.3A). It was found that the agonistic activity 

decreased as the substituent bulk increased. Smaller substituents showed greater potency, with 

the methyl (5), methylene hydroxy (6), and methylene amino substituents (7) being more potent 

at the LPA1 receptor than 18:1 LPA from the GTP[γ35S] binding assay. Strong stereoselectivity 

was also observed in this series of ligands, with the (R)-configured ligands being more potent.44 

Based on the structure of 18:1 LPA, Xu et al. replaced the ester by exchanging this functional 

group with an ether, resulting in (R) and (S) enantiomeric alkyl LPA analogues (8) (Fig 1.3A). 

These two alkyl LPA analogues were equipotent at inducing cell migration as 18:1 LPA in three 

cancer cell lines, and were confirmed as non-enantioselective, non-selective agonists for the 

LPA1-3 receptors.43 

Modifications were also made at the sn-2 position of LPA to obtain compounds in racemic or 

optically pure forms. Gajewiak et al. introduced nucleophilic aminooxy (AO) functionality at the 

sn-2 position in a stereo-controlled way to produce enantiomerically pure sn-2 AO-LPA 

analogues with a palmitoyl (9) or oleoyl (10) acyl chain (Fig 1.3A). These AO-LPA analogues 

showed LPA1 (EC50 > 4630 nM), LPA2 (EC50 = 382-2450 nM), and LPA4 (EC50 ~1880 nM) 

receptor agonistic activity, with the LPA2 receptor activity being the most potent. Antagonistic 

activity was observed towards the LPA3 receptor (IC50 = 56-2670 nM). The oleoyl ligand was the 

most potent LPA2 agonist among this series of compounds with an EC50 of 382 nM for LPA2 

(LPA1 EC50 > 7440 nM, LPA4 EC50 = 1880 nM).45 

The length and structure of the alkyl chain of LPA also influence the activity. In an attempt to 

discover novel compounds with specific LPA1 agonistic activity, González-Gil et al. started with 

the structure of 18:1 LPA and made comprehensive modifications on the alkyl chain to obtain a 

series of compounds. The activities of these compounds were evaluated by the calcium 

mobilization assay. It was found that small changes in the number of methylene units exerted 

significant influence on EC50 values. Cutting two methylene units resulted in a twofold 

improvement in LPA1 agonistic activity, while adding two more methylene units resulted in a 

completely inactive compound (Fig 1.3B).46 By replacing the hydrophobic chain with a phenyl 

moiety, the most potent and selective LPA1 agonist to date was identified (Table 1.1), with 
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enantioselectivity towards the (S) configuration (11) (Fig 1.3A). This compound had an EC50 of 

0.24 μM for the LPA1 receptor without any activity on LPA2-6.
46 

In 2020, two non-lipid benzofuran ethanolamine derivatives were reported as LPA1-3 agonists 

which were initially characterized as orphan receptor smooth muscle contracting agents. These 

agonists, CpX and CpY (Fig 1.3C), showed lower potency in the calcium assay compared with 

18:1 LPA, but higher in vivo efficacy because of better plasma stability. In a rat model, these 

two LPA agonists could induce intraurethral pressure, which was dose-dependently antagonized 

by the LPA antagonist Ki16425 (Fig 1.5).47 

2.2 Antagonists 

In some cases, agonists and antagonists for the same target can share similar structures; a good 

agonist can be used as an inspiration for antagonist design. The LPA1/LPA3 dual antagonist 

VPC12249 (Fig 1.4) was discovered by changing substituents at the second carbon of the LPA1 

agonist NAEPA. In this series of NAEPA analogues, compounds with small 2-substituted 

moieties were potent LPA agonists. However, this agonism was changed into antagonism with 

the introduction of a bulky group containing two aromatic rings (Fig 1.4). This benzyl-4-

oxybenzyl-substituted NAEPA analogue, VPC12249, was found to be devoid of any agonist 

activity. It turned out to be an LPA1/LPA3 antagonist with an enantiomeric preference for the (S) 

configuration, having Ki values of 137 nM and 428 nM for the LPA1 and LPA3 receptors, 

respectively.44 

Based on the structure of VPC12249, the acyl chain and linker regions were modified and a 

series of VPC12249 analogues were synthesized. In this new series of VPC12249 analogues, a 

2-pyridyl derivative (12) (Fig 1.4) was found to be a potent dual LPA1/LPA3 antagonist, with a 

Ki value of 18 nM at LPA1 in the GTPγS binding assay.48 
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Figure 1.4. Lipid-based LPA1 antagonists. 

Cyclic phosphatidic acid (CPA) is a naturally occurring analogue of LPA in which an 

oxaphospholane is formed by the sn-2 hydroxy group and the sn-3 phosphate group (Fig 1.4). 

Based on the structure of CPA, Xu et al. replaced the phosphate group with its bioactive 

mimetics and found that phosphonothioate (13, 14) (LPA1 IC50 = 799-941 nM, LPA3 IC50 = 

1270-2340 nM) and monofluoromethylene phosphonate (15) (LPA1 IC50 = 106 nM, LPA3 IC50 = 

7720 nM) analogues were LPA1/LPA3 dual antagonists with no activity on the LPA2 receptor. 

However, the antagonism was lost and weak agonism was observed with the introduction of a 

second fluorine atom (16) (Fig 1.4).49 

The non-lipid low-molecular-weight compound Ki16425 (Fig 1.5) was discovered by screening 

from a library established by the Kirin Brewery Co. Ltd, and its pharmacological properties were 

tested in vitro.50 Ki16425 showed effective antagonism against the LPA1 and LPA3 receptors in 

several cell types in both the calcium assay and the GTPγS binding assay. As well, this 

compound markedly inhibited 18:1 LPA-induced cell proliferation and migration in 3T3 

fibroblasts.50 By using Ki16425 as a lead compound, Yamamoto et al. converted the 3-methyl-

isoxazole ring of Ki16425 to 3- and 5-unsubstituted-isoxazolyl derivatives and a 

chlorocyclopentene isoxazole derivative (17) (Fig 1.5), resulting in 5 times higher LPA1 

antagonistic activity (IC50 = 0.13 µM).51 Later, enantiomers of Ki16425 were synthesized using a 

1,3-dipolar cycloaddition strategy. (R)-Ki16425 showed greater potency and inhibitory activity 

against cell migration than racemic and (S)-Ki16425.52 
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Figure 1.5. Ki16425-derived non-lipid LPA1 antagonists. 

Based on the structure of (R)-Ki16425, Komachi et al. prepared a methyl ester derivative of 

Ki16425 to improve its oral activity. This ester product, Ki16198 (Fig 1.5), showed similar 

potency and selectivity as Ki16425. Ki16198 prevented pancreatic cancer cell migration and 

invasion induced by 18:1 LPA in vitro and, when orally administered in a mouse model of 

pancreatic cancer, ameliorated metastasis.53 

Based on the structure of Ki16425, Amira Pharmaceuticals designed and synthesized a series of 

biphenyl-substituted isoxazole analogues. Among them, AM966, AM095, and BMS-986020 

(previously AM152/BMS-986202) (Fig 1.5) stand out as promising LPA ligands. AM966 is an 

orally active LPA1 antagonist with significantly greater potency and selectivity than Ki16425. 

The IC50 of AM966 is 17 nM at the LPA1 receptor as determined by the calcium assay in CHO 

cells, with negligible activity on the LPA2, LPA3, LPA4 and LPA5 receptors (IC50 = 1700 nM, 

1600 nM, 7700 nM, and 8600 nM, respectively). In human melanoma cells, lung fibroblasts, and 

CHO cells, AM966 inhibited chemotaxis induced by 18:1 LPA. Administration of AM966 in a 

lung-injured mouse model ameliorated markers of injury, vascular leakage, fibrosis, and 

inflammation.54 
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AM095 has a similar structure compared to AM966, but has an unsubstituted phenyl group 

rather than a chlorine-substituted phenyl group (Fig 1.5). This gives a similar potency as AM966 

but dramatically higher selectivity towards LPA1 (LPA1 IC50 = 25 nM, LPA2-5 IC50 > 8000 nM) 

(Table 1.1). In a mouse model of scleroderma, pharmacological inhibition of LPA1 with AM095 

attenuated dermal fibrosis.55 Furthermore, AM095 also inhibited histamine release stimulated by 

18:1 LPA in a mouse model and attenuated lung injury by reducing lung collagen, vascular 

leakage, and inflammation. The antifibrotic properties of AM095 were further observed in the 

kidney of a mouse model of unilateral ureteral obstruction56 and diabetic nephropathy.57 In recent 

years, the therapeutic potential of AM095 was also shown in mouse models of cerebral ischemia 

by antagonizing both LPA-induced brain damage and proinflammatory responses through the 

LPA1 receptor.58 

In 2012, Qian et al. discovered the triazole-derived carboxylic acid compound RO6842262 (Fig 

1.5),59-60 which had great potency and high LPA1 selectivity (LPA1 IC50 = 25 nM, LPA3 IC50 > 

30 µM) (Table 1.1) in the calcium release assay. This compound decreased 18:1 LPA-induced 

proliferation and contraction in human lung fibroblasts. Oral dosing of this compound in 

experimental mice showed attenuated plasma histamine release induced by LPA in a dose-

dependent manner,60 showing great potential for the treatment of lung fibrosis. Two years later, 

the same group reported a novel chemical class of non-carboxylic acid 5-amino-4-cyanopyrazole 

analogues with antagonism against the LPA1 receptor. Among this group of compounds, three 

ligands (18, 19, 20) (Fig 1.6) showed high potency and selectivity towards the LPA1 receptor by 

the FLIPR assay (LPA1 IC50 = 74-111 nM, LPA3 IC50 > 30 µM) (data not available for LPA2, 4-6 

receptors), and these novel compounds showed an inhibitory effect towards lung fibroblast 

proliferation and contraction in response to 18:1 LPA.61 

Over the past two decades, it has been discovered that some GPCR ligands can preferentially 

target specific pathways while blocking other pathways of a receptor. These compounds turned 

out to be ‘biased’ ligands that can achieve functional selectivity. The development of biased 

ligands is now an active area of research, as selectively activating or blocking specific signaling 

pathways results in increased drug efficacy with reduced side effects.62 

In order to achieve functional selectivity, Shimizu et al. used high-throughput screening to 

discover five LPA1 negative allosteric modulators with biased antagonism that preferentially 
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inhibit LPA-induced activation of Gq intracellular downstream signals. These five ligands 

showed comparable inhibitory activity in the calcium mobilization assay with Ki16425, with 

compound LQ4 (Fig 1.6) being the most potent (IC50 = 17 nM). None of these ligands showed 

any activity in cAMP accumulation or β-arrestin recruitment assays,63 which suggests that these 

ligands induced biased signaling. 

 

 

Figure 1.6. LPA1 antagonists with novel chemical scaffolds. 

By optimizing a hit compound from high-throughput screening, the benzamide derivative with 

high antagonistic activity against LPA1 (LPA1 IC50 = 160 nM, LPA2 IC50 = 8600 nM, LPA3 IC50 > 

10000 nM), ONO-7300243 (Fig 1.7) (Table 1.1), was discovered.64 This compound showed 

strong therapeutic effects in vivo in a rat intraurethral pressure model induced by LPA dose-

dependently, highlighting the potential for the treatment of benign prostatic hyperplasia. 

Furthermore, in the lung cancer cell line A549, treatment with ONO-7300243 completely 

inhibited cell migration, proliferation and colony formation induced by 18:1 LPA.65 By using 

ONO-7300243 as a lead compound, the same research group converted the amide to a secondary 

alcohol group by scaffold hopping and synthesized a series of compounds to attain better in vivo 

efficacy. The best LPA1 antagonist was obtained by incorporating an indane and pyrrole 

structure into the benzene rings. This ligand, named ONO-0300302 (Fig 1.7), showed the best 

reduction of intraurethral pressure in rat and dog models of prostatic hyperplasia, with an in vitro 

efficacy of 0.16 nM as shown by the calcium assay after 24h incubation.66 
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Figure 1.7. ONO-7300243-derived LPA1 antagonists. 

ASP6432 is an ONO-7300243 analogue with a sulfamoyl thiazole moiety developed by Astellas 

Pharma Inc (Fig 1.7). ASP6432 has an IC50 of 11 nM in human LPA1 and 30 nM in rat LPA1 

with high selectivity for the LPA1 receptor (LPA2 IC50 > 10000 nM, LPA3 IC50 > 10000 nM, 

LPA4 IC50 = 114 nM, and LPA5 IC50 > 30000 nM; LPA6 not tested). In a rat model, 

administration of ASP6432 inhibited LPA-induced urethral and prostate strips contractions and 

intraurethral pressure elevation. In cultured human prostate stromal cells, ASP6432 suppressed 

18:1 LPA-induced cell proliferation.67 Furthermore, ASP6432 decreased urethral perfusion 

pressure and improved voiding dysfunction in a rat model, showing potential for the treatment of 

prostate hyperplasia and other lower urinary tract diseases.68 
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In 2015, three crystal structures of human LPA1 bound with antagonists (PDB: 4Z34, 4Z35, 

4Z36) were reported.69 Three antagonists, ONO-3080573, ONO-9780307, and ONO-9910539 

(Fig 1.7) were designed to be co-crystalized with the LPA1 receptor. ONO-9780307 was selected 

as the initial structure based on the stability assay data in order to stabilize the LPA1 receptor in a 

single conformation. Based on ONO-9780307, ONO-9910539 and ONO-3080573 were 

designed with ideal stability and lipophilicity to improve interactions with the LPA1 receptor and 

reduce torsional strain. These three antagonists, ONO-3080573, ONO-9780307, and ONO-

9910539, have respective IC50 values of 11 nM, 27 nM, and 22 nM for the LPA1 receptor by the 

calcium assay.  

3. LPA2 ligands 

3.1 Agonists 

Based on computational models, Virag et al. selected fatty alcohol phosphate (FAP) as the lead 

scaffold to synthesize a series of compounds with a phosphate headgroup attached to a 

hydrocarbon chain with varying lengths, leading to the discovery of the first LPA2-selective 

agonist with weak antagonistic activities for the LPA1 and LPA3 receptors, the dodecyl fatty 

alcohol phosphate compound 21 (EC50 = 700 nM) (Fig 1.8).70 This finding suggested that FAP, 

which does not contain a glycerol backbone, represents the minimal pharmacophore that can 

recognize LPA receptors. Based on the structure of these FAP-LPA analogues, the phosphate 

was replaced by thiophosphate and an oleoyl-thiophosphate compound was produced (22) (Fig 

1.8) that turned out to be a full LPA2 agonist (EC50 = 244 nM) with partial agonistic activity 

towards LPA1 and LPA3.
71  
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Figure 1.8. LPA2 agonists. 

Based on the structures of PA and LPA, a methylene group was inserted between the glycerol 

and the phosphate head to develop bis-acylated PA analogues (23, 24) (Fig 1.8) and sn-2-OH 

alkoxymethylene phosphonate LPA analogues (25, 26) (Fig 1.8). These four ligands were tested 

in HT-29 colon cancer cell lines, in which the LPA2 receptor is exclusively expressed. In HT-29 

cells, it was found that these four ligands were more potent than 18:1 LPA in activating 

downstream kinase of LPA signaling pathways, suggesting that these compounds are LPA2 

agonists.72 

In search of non-lipid LPA2 agonists, structure-based virtual screening was performed, and four 

non-lipid compounds stood out as LPA2 agonists. Among these LPA2 agonists, GRI977143 (Fig 

1.8), which has a specific agonistic activity towards LPA2 (EC50 = 3.3 μM), was selected for 

further evaluation. In several cell types, GRI977143 could mimic the effect of LPA on cell 

growth and cell invasion. Furthermore, GRI977143 played a pro-survival role in several cell 

types through the LPA2 receptor.73 The therapeutic potential of GRI977143 was also proved in 

an autoimmune encephalomyelitis disease model, which could counterbalance the loss of 

endogenous LPA.74 
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By using GRI977143 as a scaffold, a series of sulfamoyl benzoic acid analogues were developed 

by using an LPA2 homology model, and these compounds were tested for LPA1-5 activity. In 

doing this, the first non-lipid agonist of LPA2 with picomolar activity was discovered (27) (Fig 

1.8); furthermore, this ligand was able to specifically target LPA2 without any activity on other 

LPA receptor subtypes (LPA2 EC50 = 5.1 pM, LPA1 EC50 > 10000 nM, LPA3 EC50 > 10000 nM, 

LPA4 EC50 > 10000 nM, and LPA5 EC50 > 10000 nM) (Table 1.1).75 DBIBB (2-[[[4-(1,3-dioxo-

1H-benz[de]isoquinolin-2(3H)-yl)butyl]amino]sulfonyl]-benzoic acid) (Fig 1.8) is another 

compound in this series with an EC50 of 1.42 μM towards the LPA2 receptor and no effect on 

other LPA receptor subtypes (data not available for LPA6 receptor). In a mouse model of asthma, 

administration of DBIBB reduced respiratory inflammation and cytokines.76 Potential for the 

therapeutic use of DBIBB in treating acute radiation syndrome caused by γ-radiation was also 

observed.77 

3.2 Antagonists 

The first reported LPA2 antagonist was a tetradecyl phosphonate FAP analogue (28) (Fig 1.9) 

with an IC50 of 5.5 μM for LPA2 (LPA1 IC50 > 30 μM, LPA3 IC50 = 3.1 μM), and this compound 

reduced LPA-induced responses in RH7777 cells.71 

The first non-lipid LPA2 antagonist with high potency and selectivity was discovered by high-

throughput screening. The HTS hit compound was modified to afford two different chemotypes 

of compounds that are potent LPA2 antagonists with high selectivity: a thienopyrimidine tolyl 

derivative (29) (Fig 1.9) (LPA2 IC50 = 0.26 μM, LPA1 IC50 > 50 μM, LPA3 IC50 > 50 μM) (Table 

1.1), and a thienopyrimidine sulfonyl derivative (30) (Fig 1.9) (LPA2 IC50 = 0.017 μM, LPA1 

IC50 > 50 μM, LPA3 IC50 > 50 μM) (Table 1.1). The sulfonyl derivative was further tested in 

vitro and showed an inhibitory effect on ERK phosphorylation and cell proliferation induced by 

LPA in the HCT-116 colon cancer cell line.78 
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Figure 1.9. LPA2 antagonists. 

The most potent LPA2 antagonist, H2L5186303 (Fig 1.9), was discovered by structure-based 

virtual screening using a three-point pharmacophore. H2L5186303 showed the highest potency 

and selectivity for LPA2 (LPA2 IC50 = 9 nM, LPA1 IC50 = 27354 nM, LPA3 IC50 = 1230 nM) 

(Table 1.1) among over 250 000 compounds screened.79 In a mouse model of allergic 

inflammation, treatment with H2L5186303 reduced airway hyperresponsiveness by inhibiting 

inflammation and decreasing the production of cytokines induced by LPA.80   

4. LPA3 ligands 

4.1 Agonists 

Initial structural-relationship studies on LPA ligands suggested that the phosphate headgroup on 

LPA is critical for LPA function.81 Inspired by this, OMPT (1-oleoyl-2-O-methyl-rac-

glycerophosphothionate) was discovered by converting the LPA 18:1 hydroxy and phosphate 

groups to O-methoxy and thiophosphate groups (Fig 1.10), respectively. Indeed, OMPT 

conferred great potency and selectivity towards LPA3.
82 OMPT induced downstream ERK 
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phosphorylation equipotently as 18:1 LPA with a stronger proliferative effect. It induced these 

responses through the LPA3 receptor specifically while the LPA1 and LPA2 receptors were not 

involved, suggesting high selectivity towards the LPA3 receptor.82 Later, enantiomerically pure 

OMPT was synthesized. It was reported that the unnatural configuration (2S)-OMPT was 5- to 

20-fold more potent than (2R)-OMPT at activating the LPA3 receptor and its downstream 

signaling due to less steric interference compared with (2R)-OMPT.83 In OVCAR3 ovarian 

cancer cells, (2S)-OMPT had an EC50 value of 9.0 nM as ascertained by calcium release, while 

the EC50 of (2R)-OMPT was 46.5 nM.  

 

Figure 1.10. LPA3 agonists. 

Based on the structure of OMPT, the sn-1 O-acyl group was converted to an O-alkyl ether, and a 

series of enantiospecific alkyl phosphorothioate LPA analogues was obtained. These alkyl 

OMPT analogues were also found to be LPA3 agonists, with (R)-alkyl OMPT (31) (Fig 1.10) 

being the most potent (EC50 of 62 nM in RH7777 cells). This LPA3 agonist stimulated cell 

growth dose-dependently.84 

Further replacement of the sn-2 methoxy group on OMPT by a methoxyethane group was 

carried out by Jiang et al. The resulting sn-2 radyl-OMPT analogues showed similar agonism 

towards the LPA1-6 receptors as their parent compound OMPT. An 18:1 acyl phosphorothioate 

analogue (32) (Fig 1.10) proved to be the most potent LPA3 agonist, with an EC50 of 0.21 nM by 

the TGFα shedding assay.85 

Based on the structure of sn-1-/sn-2-acyl-LPA, Xu et al. made isosteric substitutions on the 

phosphate group with fluorine-containing groups and consequently found a potent acyl α-

fluoromethylene phosphate analogue (33) (Fig 1.10) which displayed an EC50 of 0.5 nM for the 

LPA3 receptor. This compound was more potent than 18:1 LPA at inducing calcium 
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mobilization and could activate downstream MAPK/AKT signaling more effectively.86-87 

However, changing the acyl chain of the fluoromethylene phosphate analogues to an alkyl chain 

resulted in the loss of LPA agonistic activity.87 

Darmstoff analogues are LPA-like ligands with dioxolane incorporated into the hydrocarbon 

chain. Inspired by the structure of Darmstoff analogues, the phosphate group was replaced by 

thiophosphate and a series of optically pure Darmstoff analogues were developed. These pure 

stereoisomers with a thiophosphate group (34) (Fig 1.10) were pan-agonists of LPA1-3, with the 

greatest potency for the LPA3 receptor (LPA3 EC50 = 127-265 nM). However, their 

corresponding stereoisomers with a phosphate group turned out to be LPA3 antagonists (LPA3 

IC50 = 136-484 nM). Introduction of an aromatic ring in the hydrocarbon chain (35) (Fig 1.10) 

resulted in a selective LPA3 agonist (EC50 = 692 nM) without any activity on the LPA1 and LPA2 

receptors (Table 1.1).88 

4.2 Antagonists 

Diacylglycerol pyrophosphate (DGPP) and dioctyl-phosphatidic acid (PA) are naturally 

occurring phospholipids with an ionic phosphate group and a hydrophobic chain identified in 

microorganisms. It was reported that short chain 8:0 DGPP and 8:0 PA (Fig 1.11) are 

competitive, selective LPA3 receptor antagonists with a weak antagonistic effect on LPA1 and no 

activity at LPA2. They inhibited LPA-induced responses in several cell types, with an IC50 value 

of 250 nM for LPA3 and an IC50 value of 3 μM for LPA1.
89 8:0 DGPP and 8:0 PA are also 

involved in atherosclerotic processes by inhibiting platelet activities induced by acyl- and alkyl-

LPA.90 Based on the structure of 8:0 PA, enantiomerically pure PA analogues with 

thiophosphate replacing the phosphate headgroup were synthesized, and these analogues 

antagonized the LPA1/LPA3 receptors with enantioselectivity. The (2R)-dioctanoyl PA analogue 

(36) (Fig 1.11) was the most potent LPA3 antagonist with an IC50 value of 11 nM, while its (2S)-

isomer was found to be an LPA3 agonist with an EC50 value of 115 nM. The (2R)-dioctyl PA 

analogue (37) (Fig 1.11) was the most potent LPA3 agonist with an EC50 value of 3 nM, while its 

(2S)-isomer was found to be an LPA1/LPA3 dual antagonist.91 
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Figure 1.11. LPA3 antagonists. 

The first metabolically stable LPA3-selective antagonist was developed in 2004. In order to 

achieve better stability, nonhydrolyzable phosphate head group mimetics were incorporated into 

the LPA1/LPA3 dual antagonist VPC12249, and a novel series of compounds with 2-pyridyl 

substituents was developed. Among them, a compound with a methoxy dimethylpyridine 

substituent (38) (Fig 1.11) was found to be a highly subtype-selective LPA3 antagonist (IC50 = 

150 nM) without any activity on the LPA1 receptor (Table 1.1). Another compound with a 

trifluoroethoxy substituent, VPC51098 (Fig 1.11), was found to be a potent LPA1/LPA3 dual 
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antagonist (LPA1 IC50 = 84 nM, LPA3 IC50 = 48 nM) with greater potency at the LPA3 receptor 

than VPC12249.92  

Based on the structure of VPC51098, the labile phosphate head group was converted to vinyl 

phosphonate to achieve better stability. This phosphatase-resistant compound VPC51299 (Fig 

1.11) was validated as an LPA1/LPA3 dual antagonist with an indistinguishable potency from 

Ki16425. It blocked LPA agonist-induced calcium release dose-dependently with a half-life of 

90 minutes in rats by intravenous dosing.93 

In order to identify novel non-lipid LPA3 antagonists with subtype selectivity, a pharmacophore 

was built for virtual screening. Two compounds had stood out as promising LPA3 antagonists in 

this study, NSC47091 and NSC161613 (Fig 1.11). NSC47091 was the first reported LPA2/LPA3 

dual antagonist, with an IC50 of 355 nM and 30 nM for the LPA2 and LPA3 receptors, 

respectively. NSC161613 showed high potency and subtype selectivity towards the LPA3 

receptor with an IC50 of 24 nM while it did not show any detectable activity on other LPA 

receptor subtypes (Table 1.1), making it the first reported non-lipid selective antagonist for the 

LPA3 receptor. In an attempt to find more LPA3 antagonists, a similarity search was performed 

by using NSC47091 as the search target and five more LPA3 antagonists were screened out. 

Among them, compound 6637041 (Fig 1.11) exhibited the greatest potency for LPA3 by having 

an IC50 of 347 nM.94 By using the weak LPA3 antagonist H2L5747876 as the target, another 

similarity search was performed by the same research group and 10 novel antagonists were 

identified. The most potent compound was an LPA1/LPA3/LPA5 antagonist (39) (Fig 1.11) with 

an IC50 of 94 nM for LPA1, 752 nM for LPA3, and 463 nM for LPA5.
79 

5. LPA4 ligands 

5.1 Agonists 

LPA4 is the first of the non-EDG family of LPA receptors. There has been significantly less 

success in the discovery of selective agonists and antagonists for LPA4-6. Nevertheless, some 

ligands have still been reported, although mostly as partial or pan-agonists and antagonists (Fig 

1.12A).  
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Figure 1.12. LPA4 agonists (A) and antagonists (B). 

Based on 18:1 LPA, the phosphate group was modified to a methylene or substituted methylene 

group to achieve better stability, and several LPA4 agonists were discovered.95 The α-methylene 

phosphonate analogue (40) (Fig 1.12A) was seen to be weakly agonistic towards LPA4, 

displaying an EC50 of 3900 nM.95 However, it was seen to have a stronger agonistic effect 

towards the LPA1-3 receptors, with respective EC50 values of > 2520 nM, > 281 nM, and > 1710 

nM for these receptor isoforms. The α-hydroxymethylene phosphonate analogue (41) (Fig 1.12A) 

was discovered to be a potent and selective LPA3 agonist (IC50 value of 393 nM) with weak 

agonistic activity towards LPA1, LPA2, and LPA4, exhibiting an IC50 of > 1150 nM for LPA4.
95 

The α-chloromethylene phosphonate analogue (42) (Fig 1.12A) was shown to have a mixed 

agonist-antagonist profile.95 This ligand displayed agonistic activity towards LPA4 as well as 

LPA1 and LPA3, with respective EC50 values of 3480 nM, 528 nM, and > 2670 nM, but had an 

IC50 of 1690 nM for the LPA2 receptor. This group employed calcium mobilization assays for the 

determination of ligand properties, utilizing RH7777 cells for LPA1-3 assays and CHO cells for 

LPA4 assays.95 

In 2013, Jiang et al. reported on the synthesis and bioactivities of several phosphorothioate LPA 

analogues on LPA1-6. These were measured by using the TGFα shedding assay in HEK293 cells, 

which endogenously express all members of the LPA receptor family. For the sn-2 alkyl 
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phosphorothioate analogues 43 and 44 (Fig 1.12A), good LPA4 agonistic activity was seen, 

having EC50 values of 3.8 nM and 4.5 nM, respectively. As well, an EC50 of 2.4 nM was 

observed for the racemic acyl OPMT analogue 32 (Fig 1.10). However, these compounds were 

not shown to be specific for LPA4, as they demonstrated a higher potency for both the LPA3 and 

LPA5 receptors.85 

5.2 Antagonists 

In 2007, Jiang et al. reported the first antagonists for LPA4. Their palmitoyl α-bromo analogue of 

LPA (45) (Fig 1.12B) was determined to have an IC50 of 266 nM for LPA4. This ligand was 

observed to be a pan-antagonist of the LPA receptor family, displaying weak antagonistic 

activity towards LPA1, LPA2, and LPA3, with respective IC50 values of 1500 nM, 1420 nM, and 

1160 nM.95 In a virtual screening that was done to identify LPA2 agonists, a ligand named 

H2L5547924 (Fig 1.12B) was reported to demonstrate moderate antagonist activity towards 

LPA4, with an IC50 of 1.3 μM. However, it also demonstrated similar levels of antagonist activity 

towards LPA1 and LPA3, as well as a similar agonist potency for LPA2, making it highly 

nonspecific.73 

6. LPA5 ligands 

6.1 Agonists 

Several LPA5 agonists have been reported in the recent literature. Williams et al. succinctly 

summarized the effects of 14 previously reported lipid-based LPA receptor agonists on LPA5, 

performing calcium mobilization assays with RH7777 and CHO cells. Among these ligands, 

18:1 LPA and 18:1 AGP (Fig 1.13) had agonistic activity for the LPA5 receptor, with the EC50 

values being 15 nM and 2 nM, respectively.96 Oh et al. reported the potencies for small lipid-

based molecules in 2008.97 They studied several ligands, and their EC50 values were measured by 

the serum response element (SRE)-luciferase assay in CV-1 cells infected with the LPA5 

receptor. Among these ligands, farnesyl pyrophosphate (FPP) (Fig 1.13) had the highest 

agonistic activity for the LPA5 receptor, displaying an EC50 of 260 nM. In Jiang et al.’s report on 

phosphorothioate analogues of LPA, the most important finding concerning LPA5 was that 

compound 43 (Fig 1.12A), an sn-2 alkyl phosphorothioate analogue, was the most potent for this 

receptor, showing an EC50 of 0.26 nM in the TGFα shedding assay using HEK293 cells.85 
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Figure 1.13. LPA5 agonists. 

6.2 Antagonists 

Based on computational methods and previous ligands, a pharmacophore of the LPA5 receptor 

was established and used for in silico screening, and two novel LPA5 antagonists with non-lipid 

structures, H2L5987411 and H2L5765834 (Fig 1.14), were discovered. Their respective IC50 

values were 3.5 M and 463 nM for LPA5 in the calcium assay. H2L5987411 also displayed an 

IC50 of 1.4 M for LPA4 (no effect on LPA1-3), while H2L5765834 had respective IC50 values of 

94 nM and 752 nM for LPA1 and LPA3 (no effect on LPA2 and LPA4). Each of the two 

antagonists play an inhibitory role in LPA-induced platelet shape change.96 

In 2012, Kozian et al. identified a diphenyl pyrazole carboxylic acid modulator of LPA5 activity 

via high-throughput screening at Sanofi-Aventis Deutschland GmbH. This compound (47) (Fig 

1.14) was seen to have an IC50 of 2.2 M on LPA5 receptor-mediated platelet aggregation. When 

this compound was tested as an inhibitor in an RH7777 cell line stably expressing human LPA5, 

it was determined to have an IC50 of 0.8 M.98  

In 2013, Nazaré et al. from Sanofi-Aventis reported on the activities of exemplary compounds 

from a series of pyridine derivatives, a series of pyrazole derivatives, and a series of 

benzo[1,3]dioxine derivatives, as well as their uses as LPA5 antagonists. Within each series, 

three assays were performed: a platelet aggregation assay using human washed platelets, a 

FLIPR assay using the human mast cell line HMC-1, and a second FLIPR assay using the murine 

microglia cell line BV-2. The most potent compound among the series of pyridine derivatives 

was compound 48 (Fig 1.14), which had IC50 values of 3.6 M, 0.13 M, and 3.2 M with 

respect to the assays listed above. Among the series of pyrazole derivatives, compound 49 (Fig 

1.14) was the most potent, showing IC50 values of 0.03 M for the HMC-1 FLIPR assay and 0.2 

M for the BV-2 FLIPR assay. The most potent compound in the platelet aggregation assay for 

this series was compound 50 (Fig 1.14), with an IC50 of 2.9 M. Lastly, among the series of 
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benzo[1,3]dioxine derivatives, compounds 51 (Fig 1.14) and 52 (Fig 1.14) were seen to be the 

most potent. Compound 51 had respective IC50 values of 1.1 M, 3.2 M, and 4.1 M, whereas 

compound 52 had an IC50 of 1.5 M in both FLIPR assays.99-101 

 

Figure 1.14. LPA5 antagonists. 

In 2017, researchers at Astellas Pharma Inc. examined the analgesic effects of two novel LPA5 

antagonists, AS2717638 and AS2548635 (Fig 1.14), in mouse and rat models. In CHO cells, 

these novel compounds were able to potently inhibit cAMP production, exhibiting respective 

IC50 values of 0.038 M and 0.042 M. These values are about 3-90 times more potent than 

previously reported LPA5 antagonists. Both compounds showed significantly worse activity 
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against LPA1-3, having IC50 values of ≥ 9.9 M in LPA-induced calcium mobilization assays, 

meaning that based on these results, both compounds are potent LPA5 antagonists that are highly 

selective against LPA1-3 (LPA4 and LPA6 receptors were not tested) (Table 1.1). The therapeutic 

effects of AS2717638 were further tested in experimental animals. It was found that at an oral 

dosage of 10 mg/kg, 18:1 LPA-induced allodynia and thermal hyperalgesia were ameliorated 

significantly, indicating that antagonism of the LPA5 receptor is a promising new method for 

pain therapy.102 Furthermore, AS2717638 was able to inhibit LPA-mediated pro-inflammatory 

transcription factor phosphorylation and attenuate LPA-induced cyto-/chemokine secretion by 

murine BV-2 microglia.103 

In a similar study in 2018, Kawamoto et al. performed a high-throughput screening in order to 

identify novel LPA5 antagonists that possessed the ability to pass through the blood-brain barrier 

(BBB). Other than AS2717638 and AS2548635, most of the other LPA5 antagonists that had 

been reported until that point were either phosphorothioate LPA analogues or contained a 

carboxylic acid moiety, neither of which demonstrate a high BBB permeability. A 2H-

isoquinolin-1-one derivative was identified to have moderate antagonist activity towards the 

LPA5 receptor. Modifications on this hit compound were made in order to maximize its 

pharmacokinetic properties, resulting in the generation of several new compounds, including 

compound 53 (Fig 1.14). Structurally, this compound used indoline as a substituent at the 2-

position and fluoropiperidinamide at the 4-position of the core scaffold. Compound 53 displayed 

good potency for the LPA5 receptor in the cAMP accumulation assay with an IC50 of 0.12 M. 

Another compound (54) (Fig 1.14) that was created from the SAR study displayed a slightly 

improved IC50 of 0.11 M, but was found to have worse CNS druglikeness.104 

7. LPA6 ligands 

7.1 Agonists 

Some of the first ligands that showed agonist activity towards LPA6 were reported by Lee et al. 

in 2009. This group reported that at a concentration of 5 M, both FPP, which had recently been 

identified as an LPA5 agonist along with its known role as an LPA1-3 antagonist, as well as the 

compound geranylgeranyl diphosphate (GGPP) (Fig 1.15), were able to induce SRE reporter 

activity in LPA6-transfected hBRIE 380i cells.105 This suggests that both of these ligands are able 

to activate LPA signaling pathways through the LPA6 receptor. 
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Figure 1.15. LPA6 agonists. 

7.2 Antagonists 

To the best of existing knowledge, no LPA6 antagonists have been reported in the literature thus 

far. However, Taniguchi et al. were able to determine the crystal structure of zebrafish LPA6 

(PDB: 5XSZ) in the absence of any ligand,106 which can facilitate future drug development 

targeting the LPA6 receptor. It is anticipated that novel antagonists for the LPA6 receptor will be 

discovered in the near future, likely assisted by structure-based design using the reported crystal 

structure. 

8. Conclusion 

The LPA family of GPCRs has been implicated in the progression of numerous diseases 

including cancer and fibrosis. Much of the interest in targeting LPA receptors for therapy is 

focused on cancer, as LPA receptor signaling has been shown to be involved in every aspect of 

tumour development12, 107-112 for many cancer types, including ovarian, breast, brain, and colon 

cancer.113-116 In recent years, significant research efforts have been made in search of small, 

novel, non-lipid ligands that can target this family of receptors in order to exploit them for both 

diagnostic and therapeutic effects. Most of the modulators reported so far have cross-activities on 

more than one LPA receptors, potentially leading to complicated therapeutic outcomes and thus 

hindering the clinical transformation of targeting LPA receptors using the modulators. 

Modulators with high subtype selectivity are highly desirable due to the complicated and 

probably contradictory cellular activities mediated by different LPA receptors. For example, in 

colon cancer cells, LPA1 promotes colony formation while LPA6 inhibits colony formation.117 

For a proof-of-concept study to treat colon cancer, a ligand with activity for LPA1 but little or no 

activity for LPA6, or a ligand with antagonist activity for LPA1 but agonist activity for LPA6 will 

be more beneficial. Another challenge in targeting LPA receptors is their rather complex G 

protein coupling and subsequent downstream signaling pathways. Most of the LPA receptors 

couple more than two G proteins, resulting in multifaceted outcomes.118 For example, LPA4 

couples four trimeric G proteins (Ga12/13, Gaq/11, Gai/o, and Gas) (Figure 1.2). However, the 
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Gi/RAS/MAPK pathway is associated with tumour-promoting activities, while the Gs/AC/cAMP 

pathway plays an anticancer role. Potent and selective ligands targeting the EDG family of LPA 

receptors have been reported, including RO6842262 for LPA1, 27 for LPA2, and 35 for LPA3, 

among other ligands (Table 1.1). As well, many ligands that target both LPA1 and LPA3 have 

been discovered due to their high homologies. However, for the non-EDG family of LPA 

receptors, less progress has been made. Though ligands have been discovered that can target 

LPA4, LPA5, and LPA6 with high potency, many of these ligands are dual- or pan-agonists or 

antagonists, such as phosphorothioate LPA analogues. One bright spot regarding the non-EDG 

LPA receptors is that several potent and selective LPA5 antagonists have been discovered, such 

as those reported by Astellas Pharma Inc. in 2017 (Table 1.1). Needless to say, further research 

will be required in order to develop more selective ligands for LPA4-6, and especially LPA6, 

considering that no LPA6 antagonists have been reported as of yet.  

Although LPA receptors are widely expressed in many normal tissues, their expression levels are 

low. High expression of LPA receptors has been found in many types of cancers, such as 

ovarian,119 breast,120 liver,121 colon,122 and thyroid123 cancer, naturally making them potential 

targets for the development of PET radioligands for diagnostic applications. More research will 

need to be performed regarding the synthesis and evaluation of LPA receptor-targeting 

radioligands, as only one has been reported. The discovery and development of LPA receptor-

targeting ligands has proven to be a difficult task, but considering the potential clinical benefits 

of exploiting these receptors, such research is crucial in the advancement of the medical toolbox.  

Table 1.1. LPA ligands with high subtype selectivity. 

Ligands IC50 (nM) Refs 

LPA1 LPA2 LPA3 LPA4 LPA5 LPA6 

2 a 318 >5000 > 5000 -2 - - 42 

11 a 240 >10000 > 10000 - - - 46 

27 a >10000 0.005 > 10000 >10000 >10000 - 75 

35 a >30000 >30000 692 - - - 88 

29 b >50000 260 > 50000 - - - 78 

30 b >50000 17 >50000 - - - 78 
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38 b >10000 - 150 - - - 92 

AM095 b 25 >10000 >10000 8500 >10000 - 55 

AS2548635 b 9900 >10000 > 10000 - 42 - 124 

AS2717638 b >10000 >10000 > 10000 - 38 - 124 

H2L5186303 b  27354 9 1230 NE3 NE - 79 

NSC161613 b NE NE 24 NE NE - 94 

ONO-7300243 b 160 8600 > 10000 - - - 64 

RO6842262 b 25 - > 30000 - - - 60 

1 a : agonist; b : antagonist; 

2 “-” data is not available for a given receptor; 

3 no effect was reported. 
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Part one 

Design, synthesis and biological evaluation of fluorine-containing 

carbamate compounds targeting lysophosphatidic acid receptor 1 

for the treatment of breast cancer 

 

Abstract:  

Lysophosphatidic acid receptor 1 (LPA1) belongs to the G protein-coupled receptor (GPCR) 

family and is widely expressed in several types of tissues and cells. Activation of LPA1 by its 

ligand is involved in a diverse array of cellular activities. Aberrant expression of LPA1 is 

associated with breast cancer development and progression. LPA1 overexpression enhanced 

tumor growth, while silencing or pharmacological inhibition of LPA1 significantly reduces the 

tumor size and blocked metastases in breast cancer mouse models. The bioinformatics analysis 

has also suggested that LPA1 is widely involved in cancer cell activities. Higher expression of 

LPA1 is associated with lower survival in breast cancer patients. The aim of this study was to 

develop ligands targeting LPA1 as a novel therapy for breast cancer. The triazole derivatives 

initially developed by Roche for the treatment of idiopathic pulmonary fibrosis were used as the 

starting point. Based on the most potent and selective compound (RO6842262) discovered in 

their work, fluorine was incorporated in different regions of the compound guided. A total of 

nine novel compounds were synthesized. Among them, compound (12f) exhibited the highest 

potency against LPA1, with an IC50 of 16.0 nM in cAMP assay. The in vitro studies showed that 

12f blocked LPA-induced cell survival, migration, and invasion of the breast cancer cell line 

MDA-MB-231. The LPA1 antagonists developed in this study have the potential to create a 

novel therapy for breast cancer. In addition, these fluorine-containing compounds could 

potentially be used as positron emission tomography (PET) imaging agents for early diagnosis of 

breast cancer. 
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Graphical abstract: 

 

Key words: G protein-coupled receptor, lysophosphatidic acid receptor 1, breast cancer, 

carbamate, cAMP assay 
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1. Introduction 

Lysophosphatidic acid receptor 1 (LPA1) is one of six GPCRs in the LPA receptor family (LPA1-

6), and it is activated by the bioactive phospholipid, lysophosphatidic acid (LPA). LPA1 is 

implicated in a diverse array of cellular pathways that regulate cell proliferation, migration, 

invasion, and apoptosis.1-2 It has been reported that the mRNA expression of LPA1 is elevated in 

advanced stages of breast cancer compared with early stages. In several breast cancer cell lines, 

the expression of LPA1 is significantly higher compared with non-tumorigenic cell lines.3 In 

several breast cancer cell lines, activation of LPA1 stimulated cell migration and invasion, while 

LPA antagonists inhibited the effects of LPA-induced proliferation and migration.4-5 In breast 

cancer mouse models, overexpression of LPA1 enhanced tumor growth and promoted breast 

cancer metastasis to the bone, while the silencing or pharmacological inhibition of LPA1 

significantly reduced the tumor size and blocked metastasis.5-6 In metastasis mouse models, both 

administration of LPA1 inhibitor and knockdown of LPA1 expression blocked the metastasis of 

breast cancer cells to liver and lungs. Mechanistic studies showed that treatment with LPA1 

inhibitor reduced the expression level of the proliferation markers Ki67 and pERK on the 

metastatic sites, while increased the phosphorylation level of the antitumorigenic marker p38.7 

In addition to the evidence above, a bioinformatics analysis was conducted using various 

integrative analyzing tools and websites to further understand the association between LPA1 and 

diseases. LPA1 receptor-related diseases were first explored on OpenTarget, and the constructed 

bubble graph (Figure 2.1.1 A) showed that LPA1 is associated with several types of cancer, 

including breast cancer and ovarian cancer, among others. To investigate the functional roles of 

LPA1 and its interactive or co-expressed proteins, functional enrichment studies were performed. 

Ten molecules showed significant interaction with LPA1, including CXCL8, EGFR, GNA13, 

GNAI1, LPA5, LPA4, CD97, LPA6, ENPP2, and GNA12 (Figure 2.1.1 B). KEGG pathway 

analysis showed that these proteins were mainly enriched in cancer pathways, followed by the 

Rap1 signaling pathway. This analysis further proved that LPA1 is widely involved in cancer 

disease activities (Figure 2.1.1 C). To investigate the relationship between LPA1 and breast 

cancer, the prognostic value of LPA1 in breast cancer was analysed (Figure 2.1.1 D). The result 

suggested that higher expression of LPA1 is significantly associated with lower overall survival 

rate in breast cancer patients.  
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Figure 2.1.1 Bioinformatics analysis. A. The diseases associated with LPA1 were analyzed using 

the OpenTarget web tool. B. Protein-protein interaction network of LPA1 and LPA1-related 

genes. C. KEGG pathway analysis of LPA1 and LPA1-related genes. D. LPA1 was identified as a 

prognostic gene in breast cancer. 

 

These pieces of evidence strongly indicate that LPA1 plays a significant role in both the initiation 

and progression of breast cancer. Consequently, it holds substantial potential as a therapeutic 

target, particularly in cases involving breast cancer metastasis. However, the current repertoire of 

LPA1 ligands targeting cancer remains remarkably limited.   

The initial investigations into ligands targeting LPA1 primarily focused on lipid-like molecules 

featuring lengthy fatty acid chains. These compounds were designed based on the structure of the 
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native LPA ligand (Figure 2.1.2). However, these molecules often exhibited suboptimal drug-

like properties, mainly due to the hydrophobic nature of the moiety. The first non-lipid 

compound Ki16425 was reported to be a LPA1/LPA3 dual antagonist.8 Based on the isoxazole 

scaffold of Ki16425 (Figure 2.1.2), other potent and selective LPA1 antagonists were discovered, 

for example, AM095, BMS-986020 and 11C-BMT-136088. BMS-986020 (Figure 2.1.2) are 

currently under phase Ⅱ clinical trials for the treatment of idiopathic pulmonary fibrosis.9 11C-

BMT-136088 is the only LPA1 radiotracer reported, and it is at phase Ⅰ of clinical trials.10-11 

RO6842262 is another Ki16425-derived LPA1 antagonist for the treatment of idiopathic 

pulmonary fibrosis. By substituting the isoxazole to the triazole scaffold, RO6842262 (Figure 

2.1.2) was found to be a potent and selective LPA1 antagonist with an IC50 value of 25 nM (LPA3 

IC50 > 30 µM) in calcium release assay.12 RO684226 inhibited lung fibroblast proliferation and 

contraction induced by LPA in vitro, and ameliorated histamine release induced by LPA in vivo, 

demonstrating great therapeutic potential for lung fibrosis.12 

 

Figure 2.1.2 The structures of the endogenous LPA ligand (18:1 LPA) and known LPA1 

antagonists. 

 

A key element in drug design and development, fluorine is the most electronegative element, and 

it is used as a common substitution to modulate molecular properties, such as conformation, pKa, 

potency, permeability, and pharmacokinetics.13 Systematic fluorine substitution of ligands is a 
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promising strategy that could enhance protein-ligand binding.14 Additionally, fluorine is also one 

of the most prominent elements used in positron emission tomography (PET) in the form of 

fluorine-18. To investigate the potential use of LPA1 antagonist in breast cancer, the structure of 

RO6842262 was used as a starting point, and fluorine was incorporated into this compound to 

develop novel and potent LPA1 antagonists for the treatment of breast cancer and the potential 

usage as PET imaging agents. Several compounds with high potency and selectivity were 

discovered. Particularly, compound 12f was the most potent in this study with its IC50 being 16.0 

nM in cAMP assay. It inhibited survival, migration, and invasion in the breast cancer cell line 

MDA-MB-231 in a dose-dependent manner.  
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2. Materials and methods 

2.1 Materials 

2.1 1. Cells 

Chinese hamster ovary (CHO)-K1 cell line was a kind gift from Dr. Rithwik Ramachandran 

(University of Western Ontario). The human breast cancer cell line MDA-MB-231 and cervical 

cancer cell line HeLa were kind gifts from Dr. Simon Lees (NOSM University). The human 

ovarian cancer cell line OVCAR-8 was a kind gift from Dr. Leonard Luyt (University of Western 

Ontario).  

2.1.2. Reagents and consumables 

2.1.2.1 Cell culture 

Dulbecco's Modified Eagle Medium (DMEM) WISENT Bioproducts 

Kaighn's Modification of Ham's F-12 Medium (F-12K) WISENT Bioproducts 

Fetal bovine serum WISENT Bioproducts 

Trypsin WISENT Bioproducts 

Phosphate buffer saline (PBS) WISENT Bioproducts 

Dimethyl sulfoxide (DMSO) Corning 

2.1.2.2 Bacterial transformation 

DH5α competent E. coli Dr. Wensheng Qin’s lab 

Terrific broth (TB) Bio Basic 

LB Agar Plates with 100 µg/mL Ampicillin Dr. Wensheng Qin’s lab 

PureLink™ HiPure Plasmid DNA Purification Kits Invitrogen 

2.1.2.3 Transfection 

X-tremeGENE 9 DNA Transfection Reagent Roche 

pCMV6-AC-GFP-LPAR1 plasmid OriGene Technologies 
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pCMV6-AC-GFP-LPAR2 plasmid           OriGene Technologies 

pCMV6-AC-GFP-LPAR3 plasmid OriGene Technologies 

2.1.2.4 cAMP assay 

18:1 Lyso PA                  Avanti Polar Lipids 

Bovine serum albumin WISENT Bioproducts 

cAMP-Glo™ Assay kit Promega 

Isobutyl-1-methylxanthine (IBMX) Thermo scientific 

Ro 20-1724 MilliporeSigma 

Forskolin MilliporeSigma 

2.1.2.5 Colony formation assay 

Paraformaldehyde  Thermo scientific 

Crystal violet  Thermo scientific 

2.1.2.6 Transwell cell migration and invasion assays 

Basement membrane extract  R&D Systems 

2.1.2.7 Consumerbles 

100-1000 µL pipette tips Bio Basic 

200 µL pipette tips Bio Basic 

0.1-10 µL pipette tips Bio Basic 

8.0 µm cell culture insert Corning 

0.2 µm filter Whatman 

15 mL graduated centrifuge tube Bio Basic 

50 mL graduated centrifuge tube Bio Basic 

75 cm2 cell culture flask Thermo scientific 

25 cm2 cell culture flask Thermo scientific 
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6-well cell culture plate Corning 

24-well cell culture plate Corning 

96-well cell culture plate Corning 

96-well white, clear-bottom plate Corning 

2 mL Cryogenic Vial Fisherbrand 

5 mL serological pipette Bio Basic 

1.5 mL microcentrifuge tube Corning 

2.1.3. Instruments and software 

Eppendorf Pipette Eppendorf 

Centrifuge Thermo scientific 

IX51 Inverted Microscope Olympus 

Inverted Fluorescence Microscope EVOS FL 

Cell culture incubator Thermo scientific 

Biosafety cabinet Labconco 

Incubating shaker VWR 

NanoDrop spectrophotometer Thermo scientific 

Multi-mode microplate reader  BioTek Synergy HTX 

ImageJ NIH 

GraphPad Prism GraphPad Software 

AutoDock Vina Scripps Research 

Discovery Studio Visualizer Dassault Systemes 

500 MHz Avance Nuclear Magnetic Resonance (NMR) 

Spectrometer 

Bruker 

Liquid chromatography–mass spectrometry (LC–MS) Waters 

Freeze dryer Labconco 
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2.2 Methods 

2.2.1. Cell culture 

Chinese hamster ovary (CHO)-K1 cell line was cultured in F-12K medium supplemented with 

10% fetal bovine serum and 1% streptomycin/penicillin at 37°C, 5% CO2. The MDA-MB-231, 

HeLa, and OVCAR-8 was cultured in DMEM supplemented with 10% fetal bovine serum and 1% 

streptomycin/penicillin at 37 °C, 5% CO2 (Figure 2.1.3).  

Figure 2.1.3. The CHO-K1 (A), MDA-MB-231 (B), HeLa (C), and OVCAR-8 (D) cell lines 

under inverted microscope. 

2.2.2. Transformation Procedure 

The following protocol was followed to conduct the experiment: 

1) Thaw DH5α competent E. coli cells on wet ice. Place required number of 1.5mL 

Eppendorf tubes on ice.   
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2) Gently mix cells, then aliquot 100 µL of DH5α cells into chilled tubes. 

3) Refreeze any unused DH5α cells in a dry ice bath for 5 minutes before returning them to 

the -80°C freezer. Do not use liquid nitrogen. 

4) Take 1 µL LPA plasmid, dilute it 10-fold in 10 mM Tris-HCl (pH 7.5) and 1 mM EDTA 

to a final concentration of 10 ng/µL. Add 1 µL of the dilution to the DH5α cells, moving 

the pipette through the cells while dispensing. Gently tap tubes to mix. 

5) Incubate DH5α cells on ice for 30 minutes. 

6) Heat-shock DH5α cells 45 seconds in a 42°C water bath; do not shake. 

7) Place the tube on ice for 2 minutes. 

8) Add 0.9 mL of room temperature terrific broth (TB) and shake at 225 rpm (37°C) for 1 

hour. 

9) Spread 100 µL of this dilution on LB plates with 100 µg/mL ampicillin and 50 µg/mL X-

gal. 

10) Incubate plates overnight at 37°C. 

11) Use a 10 µL tip to one clone into a culture tube containing 1.5 mL LB with ampicillin, 

and culture the clone in a shaker at 37°C with shaking at 220 rpm overnight.  

12) Next day, use the PureLink™ HiPure Plasmid Purification Kit to isolate plasmid DNA. 

2.2.3. Plasmid isolation 

The following protocol was followed to conduct the experiment: 

Equilibrate the column: Apply 10 mL Equilibration Buffer (EQ1) to the column. Allow the 

solution in the column to drain by gravity flow. Proceed to Prepare cell lysate, while the column 

is equilibrating.   

Prepare cell lysate:  

1) Use 1-3 mL of an overnight LB culture in a disposable 15 mL conical tube. 

2) Harvest the cells by centrifuging the overnight LB culture at 4000 × g for 10 minutes. 

Remove all medium. 

3) Add 0.4 mL Resuspension Buffer (R3) with RNase A to the cell pellet and resuspend the 

cells until homogeneous.  
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4) Add 0.4 mL Lysis Buffer (L7). Mix gently by inverting the capped tube until the lysate 

mixture is thoroughly homogenous. Do not vortex. Incubate at room temperature for 5 

minutes. Note: Do not allow lysis to proceed for more than 5 minutes.  

5) Add 0.4 mL Precipitation Buffer (N3) and mix immediately by inverting the capped tube 

until the mixture is thoroughly homogeneous. Do not vortex.  

6) Centrifuge the mixture at >12,000 × g for 10 minutes at room temperature.  

7) Proceed to Bind and wash DNA. 

Bind and wash DNA:  

1) Load the supernatant from Prepare cell lysate, step 6 onto the equilibrated column. Allow 

the solution in the column to drain by gravity flow.  

2) Wash the column twice with 2.5 mL Wash Buffer (W8). Allow the solution in the 

column to drain by gravity flow after each wash. Discard the flow-through.  

3) Proceed to Elute and precipitate DNA. 

Elute and precipitate DNA:  

1) Place a sterile 15 mL centrifuge tube (elution tube) under the column.  

2) Add 0.9 mL Elution Buffer (E4) to the column to elute the DNA. Allow the solution to 

drain by gravity flow. Do not force out any remaining solution.  

3) Add 0.63 mL isopropanol to the elution tube. Mix well.  

4) Centrifuge the tube at >12,000 × g for 30 minutes at 4°C. Carefully remove and discard 

the supernatant.  

5) Resuspend the pellet in 1 mL 70% ethanol.  

6) Centrifuge the tube at >12,000 × g for 5 minutes at 4°C. Carefully remove and discard 

the supernatant.  

7) Air-dry the pellet for 10 minutes.  

8) Resuspend the DNA pellet in 50 µL TE Buffer (TE).  

9) Measure the concentration of the plasmid using a NanoDrop spectrophotometer. 

10) To avoid repeated freezing and thawing of DNA, store the purified DNA at 4°C for 

immediate use or aliquot the DNA and store at –20°C for long-term storage.  

The sequence of the plasmids was verified by Sanger sequencing/whole plasmid sequencing 

performed by Eurofins Genomics (Appendix E). 
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2.2.4. Transfection of pCMV6-AC-GFP-LPAR1/pCMV6-AC-GFP-LPAR2/pCMV6-AC-GFP-

LPAR3 plasmid DNA into CHO-K1 cells in a 96-well cell culture plate 

The day before transfection, the cells were trypsinized and counted. 8  103 cells per well were 

plated in 100 µL of complete growth medium. The following protocol was used to conduct the 

experiment: 

1) Allow X-tremeGENE 9 DNA Transfection Reagent, DNA, and diluent to equilibrate. 

2) Dilute X-tremeGENE 9 DNA Transfection Reagent with serum-free medium to a 

concentration of 3 µL reagent/100 µL medium for a ratio of 3:1, using a sterile tube and 

gentle mixing. 

3) Add 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, and 1 µg of DNA to 100 µL of diluted X-

tremeGENE 9 DNA Transfection Reagent, respectively; mix gently. 

4) Incubate the transfection reagent: DNA complex for 15 minutes at room temperature. 

5) Remove the culture vessel from the incubator; removal of growth medium is not 

necessary. Add 5 µL of the transfection complex to the cells in a dropwise manner in a 

96-well plate. 

6) Use a fluorescence microscope to observe green fluorescent protein (GFP) and calculate 

transfection efficiency after 24-48 hours.  

Based on the transfection results, 0.8 µg of pCMV6-AC-GFP-LPAR1/ pCMV6-AC-GFP-LPAR2/ 

pCMV6-AC-GFP-LPAR3 plasmid in 100 µL of diluted transfection reagent was used in the 

following experiments (Figure 2.1.4). 
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Figure 2.1.4. Determination of transfection efficiencies by GFP visualization. The CHO-K1 cell 

line was transfected with different concentration of pCMV6-AC-GFP-LPAR1 (A), pCMV6-AC-
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GFP-LPAR2 (B), and pCMV6-AC-GFP-LPAR3 (C) plasmid and visualized 48 hours post-

transfection under a fluorescence microscopy. 

2.2.5. cAMP assay 

2.2.5.1 Determining EC90 values of 18:1 LPA 

The CHO-K1 cells overexpressing LPAR1/LPAR2/LPAR3 were prepared in a white, clear-

bottom 96-well plate. Prior to performing the cAMP assay, a serial 5-fold dilution of 18:1 LPA 

with induction buffer containing 100 nM forskolin was performed. The protocol outlined below 

was followed: 

1) Remove the medium and transfer 20 µL of the various concentrations of 18:1 LPA to the 

assay plate. Incubate the plate at room temperature for 15 minutes to allow cells and 

compound to interact. 

2) Add 20 µL of Lysis Buffer to all wells. Incubate the plate at room temperature for 15 

minutes. 

3) Add 2.5 µL Protein Kinase A to 1.0 mL of cAMP-Glo Reaction Buffer to prepare cAMP 

Detection Solution. Add 40 µL of cAMP Detection Solution to all wells. Mix the plate by 

shaking for 30-60 seconds, and incubate the plate at room temperature for 20 minutes. 

4) Add 80 µL of room-temperature Kinase-Glo Reagent to all wells. Mix the plate by 

shaking for 30-60 seconds, and incubate the plate at room temperature for 10 minutes. 

5) Measure luminescence in each well using a microplate reader. 

Relative light units (RLU) were plotted against the log of 18:1 LPA concentrations. Data were 

fit to a three-parameter logistic curve to generate the EC90 value of 18:1 LPA. It was determined 

that 18:1 LPA has an EC90 value of 968.4 nM for LPA1, 421.56 nM for LPA2, and 2071.8 nM 

for LPA3, respectively (Figure 2.1.5). Based on these EC90 values, the cAMP assay was 

conducted using a final concentration of 1 µM 18:1 LPA for LPA1, 500 nM for LPA2, and 2.1 

µM for LPA3.  
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Figure 2.1.5 Dose-response curves of 18:1 LPA towards the LPA1, LPA2, and LPA3 receptors. 

2.2.5.2 Determining IC50 values of the test compounds 

The CHO-K1 cells overexpressing LPAR1/LPAR2/LPAR3 were prepared in a white, clear-

bottom 96-well plate. Prior to performing the cAMP assay, a serial 5-fold dilution of test 

compounds with induction buffer containing 100 nM forskolin and 1 µM 18:1 LPA (500 nM for 

LPA2, and 2.1 µM for LPA3) were performed. The following protocol was followed: 

1) Remove the medium and transfer 20 µL of the various concentrations of test compounds 

to the assay plate. Incubate the plate at room temperature for 15 minutes to allow cells 

and compound to interact. 

2) Add 20 µL of Lysis Buffer to all wells. Incubate the plate at room temperature for 15 

minutes. 

3) Add 2.5 µL Protein Kinase A to 1.0 mL of cAMP-Glo Reaction Buffer to prepare cAMP 

Detection Solution. Add 40 µL of cAMP Detection Solution to all wells. Mix the plate by 

shaking for 30-60 seconds, and incubate the plate at room temperature for 20 minutes. 

4) Add 80 µL of room-temperature Kinase-Glo Reagent to all wells. Mix the plate by 

shaking for 30-60 seconds, and incubate the plate at room temperature for 10 minutes. 

5) Measure luminescence in each well using a microplate reader. 

Relative light units (RLU) were plotted against the log of the test compounds concentrations. 

Data were fit to a three-parameter logistic curve to generate the IC50 values of the test 

compounds. 
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2.2.6. Wound healing assay 

MDA-MB-231, OVCAR-8, and HeLa cells were seeded in a six-well plate at a density of 3 × 105 

cells/well. When the cells formed a tight cell monolayer, a 200-μL plastic pipette tip was used to 

make a scratch. Cells were washed with PBS to remove cell debris, cultured in serum‑free 

DMEM medium and exposed to 18:1 LPA or 18:1 LPA with the LPA1 antagonists (1, 5, 10 or 

20 µM) for a duration of 48 hours. To conduct serum-induced migration assays, cells were 

cultured in DMEM supplemented with 10% FBS and exposed to varying concentrations of LPA1 

antagonists (1, 5, 10 or 20 µM) for a duration of 48 hours. Wound photographs were recorded at 

the indicated times and analyzed by ImageJ software. All assays were conducted three times in 

this study. 

2.2.7. Colony formation assay 

MDA-MB-231, OVCAR-8, and HeLa cells were trypsinized and plated in 6-well plate at a 

density of 1,000 cells/well and then cultured in 10% FBS DMEM. Cells were allowed to attach 

overnight and then exposed to 18:1 LPA or 18:1 LPA with the LPA1 antagonists (1, 5, 10 or 20 

µM). Forty-eight hours after chemical treatment, the media was replaced with fresh media, and 

the plates were incubated at 37°C. Ten days later, the cells were fixed and stained with 4% 

paraformaldehyde in 0.1% crystal violet. The number of colonies, defined as > 50 cells/colony 

were counted, and the number of colonies were calculated using ImageJ. 

2.2.8. Transwell migration and invasion assays 

Transwell assays were conducted in 24-well transwell plates (pore size: 8 µm) to assess the 

migratory and invasive capacities of MDA-MB-231 cells. For migration assays, 2 × 104 cells 

were placed in 200 µL of serum-free DMEM in the upper chamber and then 500 µL of DMEM 

was added to the lower chamber. For the invasion assays, the chamber inserts were precoated 

with 50 µL of 1:9 mixture of basement membrane extract and DMEM overnight in a 37 °C 

incubator, then 6 × 104 cells were seeded in the upper chamber. Cells were treated with 18:1 

LPA or 18:1 LPA with the LPA1 antagonists (1, 5, 10 or 20 µM) for 48 h. 4% paraformaldehyde 

was used to fix the cells that had migrated or invaded to the lower surface of the membrane. 

Crystal violet (0.1%) was applied for staining the fixed cells for 15 min. Five random 100× 

microscopic fields were selected to count the stained cells.   
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2.2.9. Molecular docking study 

The crystal structure of LPA1 (PBD ID:4z36)15 was used to perform molecular docking studies. 

The 3D structure of RO6842262 and the synthesized compounds in this study were generated 

using DS Viewer 3.5. Molecular docking was performed using AutoDock Vina.16 The 

dimensions of the grid box were set large enough to encompass the whole binding pocket of the 

LPA1 structure. All other parameters were left as default.  

2.2.10. Statistical analysis 

The experimental results are expressed as mean ± standard error of mean (SEM). GraphPad 

Prism 9.0.0 was used for data processing. Student’s t-test or One-way ANOVA were used to 

analyze the statistical P values between different groups. A P value of < 0.05 (two-tailed) was 

considered as statistically significant. 

2.2.11. Synthesis 

All solvents and chemicals were reagent grade and purchased from commercial manufacturers. 

Purity and characterization of compounds were determined by a combination of HPLC, TLC, 

high-resolution mass spectrometry (HRMS), 1H NMR and 13C NMR analyses. Spectral data was 

compared with reference data from the literature where possible; for RO6842262, 1H NMR was 

compared.12 Experimental data and reported data compared favourably in all cases.12,17-18 

1-(4-Bromophenyl) cyclopropane-1-carbonitrile (1).  

Sodium hydroxide (3.05 g, 76.5 mmol) was dissolved in H2O (5 mL) and toluene (12 mL). 4-

bromophenylacetonitrile (1.5 g, 7.65 mmol) and tetrabutylammonium bromide (0.123 g, 0.38 

mmol) were added, followed by dibromoethane (0.975 mL, 11.4 mmol) dropwise. The reaction 

was stirred at 85 ℃ for 5 hours. The reaction mixture was partitioned between DCM and water. 

The organic layer was extracted with DCM and washed with 1N HCl and brine, dried over 

Na2SO4, filtered, and concentrated. The residue was purified by column chromatography (Hexane: 

EtOAc = 20:1) to give compound 1 (523.33 mg, yield: 30.85%). 1H NMR (500 MHz, 

Chloroform-d) δ 7.47 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 1.74 (dd, J = 8.0, 5.1 Hz, 2H), 

1.38 (dd, J = 7.5, 5.1 Hz, 2H). 

l-(4-Bromophenyl) cyclopropane-1-carboxylic acid (2).  
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Compound 1 (1.5 g, 6.75 mmol) and sodium hydroxide (1.07 g, 26.80 mmol) were dissolved in 

ethylene glycol (21 mL), and the reaction was stirred at 180℃ for 5 hours. The mixture was 

added with water and acidified with concentrated HCl. The resulting mixture was then filtered 

under reduced pressure to give compound 2 (1.53 g, yield: 98.00%). This compound was used in 

the next step without further purification. 

l-(4-Bromophenyl) cyclopropane-1-carboxylic acid ethyl ester (3).  

Compound 2 (1.53 g, 5.20 mmol) was dissolved in anhydrous EtOH (20 mL) and concentrated 

H2SO4 (1 mL) was added. The reaction was stirred at 80℃ for 9 hours. The mixture was diluted 

with EtOAc, washed with brine, dried over Na2SO4, filtered, and concentrated to give compound 

3 (1.10 g, yield: 80.88%). 1H NMR (500 MHz, Chloroform-d) δ 7.42 (d, J = 8.2 Hz, 2H), 7.21 (d, 

J = 8.3 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 1.60 (dd, J = 7.0, 4.0 Hz, 2H), 1.20 – 1.10 (m, 5H). 

Ethyl 1-(4-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) phenyl) cyclopropane-1-carboxylate 

(4).  

The mixture of compound 3 (200 mg, 0.75 mmol), bis(pinacolato)diboron (208.45 mg, 0.825 

mmol), and potassium acetate (184.03 mg, 1.875 mmol) were dissolved in dry dioxane (2 mL), 

and PdCl2(dppf) (54.88 mg, 0.075 mmol) was added. The mixture was bubbled with argon and 

then stirred at 100℃ under argon for 6 hours. The mixture was filtered through diatomaceous 

earth and partitioned between EtOAc and water. The organic phase was extracted with EtOAc, 

washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by 

column chromatography (Hexane: EtOAc = 20:1) to give compound 4 (149 mg, yield: 63.15%). 

1H NMR (500 MHz, Chloroform-d) δ 7.76 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 4.07 (q, 

J = 7.1 Hz, 2H), 1.59 (dd, J = 7.0, 4.0 Hz, 2H), 1.33 (s, J = 1.7 Hz, 12H), 1.20 – 1.09 (m, 5H). 

ESI-MS m/z calcd C18H25BO4 [M + H]+ 317.19, found 317.3. 

Ethyl 2-(4-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) phenyl) acetate (6). 

The mixture of compound 5 (1 g, 4.11 mmol), bis(pinacolato)diboron (1.149 mg, 4.52 mmol), 

and potassium acetate (1.008 g, 10.28 mmol) were dissolved in dry dioxane (10 mL), and 

PdCl2(dppf) (0.301 g, 0.411 mmol) was added. The mixture was bubbled with argon and then 

stirred at 100℃ under argon for 6 hours. The mixture was filtered through diatomaceous earth 

and partitioned between EtOAc and water. The organic phase was extracted with EtOAc, washed 
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with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by column 

chromatography (Hexane: EtOAc = 20:1) to give compound 6 (828 mg, yield: 69.00%). 1H 

NMR (500 MHz, Chloroform-d) δ 7.77 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 4.13 (q, J = 

7.1 Hz, 2H), 3.62 (s, 2H), 1.33 (s, 12H), 1.23 (t, J = 7.1 Hz, 3H). 

1-Azido-4-bromobenzene (7).  

4-Bromoaniline (2 g, 11.63 mmol) was dissolved in 4N HCl (15 mL) and was cooled to 0℃ and 

stirred. To this suspension was added sodium nitrite (0.883 g, 12.79 mmol) dissolved in water 

(2.33 mL) dropwise. After 30 minutes, sodium azide (0.907 g, 13.95 mmol) was added and the 

reaction mixture was slowly warmed to rt and stirred for 1 hour. The reaction mixture was stored 

at 4℃ overnight and the resulting residue was filtered to give compound 7 (2.06 g, yield: 

89.57%). 1H NMR (500 MHz, Chloroform-d) δ 7.46 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H). 

Ethyl 1-(4-bromophenyl)-4-methyl-1H-1, 2, 3-triazole-5-carboxylate (8).  

To a solution of compound 7 (200 mg, 1.01 mmol) in toluene (1 mL) was added but-2-ynoic acid 

ethyl ester (0.14 mL, 1.21 mmol). The reaction mixture was heated to reflux at 110℃ under 

argon for 15 hours. The reaction mixture was concentrated and then purified by column 

chromatography (Hexane: EtOAc = 10:1) to give compound 8 (85 mg, yield: 27.16%). 1H NMR 

(500 MHz, Chloroform-d) δ 7.65 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 4.29 (q, J = 7.1 Hz, 

2H), 2.63 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). 

Ethyl 1-(4-bromophenyl)-4-methyl-1H-1, 2, 3-triazole-5-carboxylic acid (9).  

To a solution of compound 8 (80 mg, 0.26 mmol) in MeOH/THF/H2O (0.6/0.6/0.6 mL) was 

added sodium hydroxide (51.72 mg, 1.29 mmol). The reaction mixture was stirred at rt overnight. 

The mixture was cooled down to 0℃ and neutralized to pH = 4.0 with 3N HCl. The mixture was 

extracted with EtOAc and the organic phase was dried over Na2SO4, filtered and concentrated to 

give crude compound 9 (70 mg, yield: 96.21%). ESI-MS m/z calcd C10H8BrN3O2 [M + H]+ 

281.99, found 282.0. 

2-Phenylpropan-2-yl (1-(4-bromophenyl)-4-methyl-1H-1, 2, 3-triazol-5-yl) carbamate (10).  

To a solution of compound 9 (70 mg, 0.248 mmol) in anhydrous toluene (1.75 mL) was added 

(4-fluorophenyl)methanol (40.36 mg, 0.32 mmol), triethylamine (50 mg), and DPPA (89.25 mg, 
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0.32 mmol). The reaction mixture was heated to 120℃ for 5 hours. The mixture was diluted with 

EtOAc, washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was 

purified by column chromatography (Hexane: EtOAc = 5:1) to give compound 10 (50 mg, yield: 

49.8%). 1H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.3 Hz, 4H), 

7.05 (s, 2H), 5.09 (s, 2H), 2.31 (s, 3H). 

Ethyl 1-(4'-(5-((((4-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)cyclopropane-1-carboxylate (11). 

To a stirred mixture of compound 10 (100 mg, 0.25 mmol), compound 4 (93.6 mg, 0.30 mmol), 

and sodium carbonate (55.92 mg, 0.53 mmol) in dioxane (6 mL) and water (2 mL) was added 

PdCl2(dppf) (18.27 mg, 0.025 mmol). The mixture was bubbled with argon and stirred at 80℃ 

under argon for 6 hours. The mixture was filtered through diatomaceous earth and partitioned 

between EtOAc and water. The organic phase was extracted with EtOAc, washed with brine, 

dried over Na2SO4, filtered, and concentrated. The residue was purified by column 

chromatography (DCM: MeOH = 50:1) to give compound 11 (102 mg, yield: 65.88%). 1H NMR 

(500 MHz, Chloroform-d) δ 7.63 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 7.9 Hz, 

2H), 7.44 (d, J = 8.1 Hz, 2H), 7.29 (s, 2H), 7.00 (s, 2H), 5.09 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 

2.28 (s, 3H), 1.65 (dd, J = 7.0, 4.0 Hz, 2H), 1.23 (dd, J = 6.8, 4.0 Hz, 2H), 1.19 (t, J = 7.1 Hz, 

3H). 

1-(4'-(5-((((4-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)cyclopropane-1-carboxylic acid (12b). 

To a stirred solution of compound 11 (100 mg, 0.19 mmol) in THF (9.9 mL) and water (3.3 mL) 

was added lithium hydroxide (23.95 mg, 0.97 mmol). The reaction mixture was stirred at rt for 

24 hours. The reaction mixture was cooled down to 0℃ and neutralized with conc. HCl to pH = 

2. The mixture was extracted with EtOAc. The combined organic phase was dried over Na2SO4, 

filtered, and concentrated. The residue was purified by column chromatography (Hexane: EtOAc 

= 1:1) to give compound 12b (80 mg, yield: 84.61%). 1H NMR (500 MHz, Methanol-d4) δ 7.79 

(d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 

7.36 (s, 2H), 7.05 (s, 2H), 5.13 (s, 2H), 2.29 (s, 3H), 1.64 (dd, J = 7.0, 4.0 Hz, 2H), 1.27 (dd, J = 

6.9, 3.9 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 170.31, 165.06, 163.11, 143.57, 141.59, 

139.45, 135.92, 132.27, 131.54, 131.47, 128.94, 127.84, 125.70, 125.68, 116.37, 116.20, 67.88, 
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29.65, 17.02, 9.64. HRMS (ESI) m/z: [M + Na]+ Calcd for C27H23FN4NaO4 509.1596; Found 

509.1600. 

1-(4'-(5-((((3-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)cyclopropane-1-carboxylic acid (12c) 

Compound 12c was prepared in a similar way as compound 12b, except that (3-

fluorophenyl)methanol was used from step 4 in scheme 1 (yield: 83.21%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.77 (d, J = 7.8 Hz, 2H), 7.63 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 7.7 Hz, 2H), 7.49 

(d, J = 7.7 Hz, 2H), 7.30 (s, 1H), 7.04 (m, 3H), 5.14 (s, 2H), 2.28 (s, 3H), 1.62 (br s, 2H), 1.25 

(br s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 175.27, 163.07, 161.13, 154.00, 140.83, 140.02, 

139.12, 138.35, 137.29, 134.53, 131.01, 130.56, 130.49, 129.57, 127.69, 126.46, 124.08, 123.62, 

123.60, 114.95, 114.78, 114.40, 114.23, 65.76, 28.29, 15.84, 9.62. HRMS (ESI) m/z: [M + Na]+ 

Calcd for C27H23FN4NaO4 509.1596; Found 509.1598. 

1-(4'-(5-((((2-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)cyclopropane-1-carboxylic acid (12d) 

Compound 12d was prepared in a similar way as compound 12b, except that (2-

fluorophenyl)methanol was used from step 4 in scheme 1 (yield: 80.56%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.76 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 6.8 Hz, 2H), 7.49 

(d, J = 7.7 Hz, 2H), 7.31 (d, J = 6.0 Hz, 2H), 7.08 (s, 2H), 5.20 (s, 2H), 2.27 (s, 3H), 1.63 (br s, 

2H), 1.25 (br s, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.24, 163.33, 161.36, 143.52, 

141.42, 139.55, 135.89, 132.25, 131.75, 131.68, 131.21, 128.95, 127.87, 125.60, 125.41, 125.38, 

116.43, 116.26, 62.49, 29.56, 17.07, 9.63. HRMS (ESI) m/z: [M + Na]+ Calcd for 

C27H23FN4NaO4 509.1596; Found 509.1588. 

1-(4'-(5-(((1-(4-fluorophenyl)ethoxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)cyclopropane-1-carboxylic acid (12e) 

Compound 12e was prepared in a similar way as compound 12b, except that 1-(4-

fluorophenyl)ethan-1-ol was used from step 4 in scheme 1 (yield: 79.98%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.74 (d, J = 6.8 Hz, 2H), 7.61 (d, J = 7.7 Hz, 2H), 7.53 (s, 2H), 7.48 (d, J = 7.7 

Hz, 2H), 7.34 (s, 2H), 7.02 (s, 2H), 5.72 (s, 1H), 2.24 (s, 3H), 1.62 (br s, 2H), 1.50 (s, 3H), 1.25 

(br s, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.23, 164.72, 162.77, 143.51, 141.43, 140.16, 
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139.48, 135.92, 132.26, 131.23, 129.01, 128.94, 127.84, 125.54, 116.29, 116.12, 74.98, 29.55, 

22.59, 17.07, 9.61. HRMS (ESI) m/z: [M + Na]+ Calcd for C28H25FN4NaO4 523.1752; Found 

523.1768. 

1-(4'-(5-(((1-(3-fluorophenyl)ethoxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)cyclopropane-1-carboxylic acid (12f) 

Compound 12f was prepared in a similar way as compound 12b, except that 1-(3-

fluorophenyl)ethan-1-ol was used from step 4 in scheme 1 (yield: 75.65%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.75 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.51 (dd, J = 19.9, 8.0 Hz, 4H), 

7.29 (s, 1H), 7.19 – 6.68 (m, 3H), 5.73 (s, 1H), 2.26 (s, 3H), 1.63 (dd, J = 7.1, 3.9 Hz, 2H), 1.51 

(s, 3H), 1.25 (dd, J = 6.8, 4.0 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.29, 165.21, 

163.26, 143.55, 141.46, 140.20, 139.52, 132.24, 131.46, 131.39, 131.17, 128.94, 127.85, 125.55, 

122.63, 122.61, 115.70, 115.53, 74.83, 29.59, 22.70, 17.06, 9.60. HRMS (ESI) m/z: [M + Na]+ 

Calcd for C28H25FN4NaO4 523.1752; Found 523.1748.  

1-(4'-(5-(((1-(2-fluorophenyl)ethoxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)cyclopropane-1-carboxylic acid (12g) 

Compound 12g was prepared in a similar way as compound 12b, except that 1-(2-

fluorophenyl)ethan-1-ol was used from step 4 in scheme 1 (yield: 73.81%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.75 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.49 

(d, J = 8.2 Hz, 2H), 7.37 (s, 1H), 7.25 (q, J = 6.3 Hz, 1H), 7.15 – 6.84 (m, 2H), 5.98 (s, 1H), 2.26 

(s, 3H), 1.63 (dd, J = 7.0, 3.9 Hz, 2H), 1.53 (s, 3H), 1.25 (dd, J = 6.9, 4.0 Hz, 2H). 13C NMR 

(126 MHz, Methanol-d4) δ 178.27, 161.92, 159.96, 143.52, 141.46, 140.21, 139.54, 135.90, 

132.26, 131.18, 130.83, 130.77, 128.96, 127.87, 125.57, 125.54, 116.52, 116.35, 69.79, 29.58, 

21.51, 17.06, 9.60. HRMS (ESI) m/z: [M + Na]+ Calcd for C28H25FN4NaO4 523.1752; Found 

523.1759. 

1-(4'-(5-((((3-ethylbenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)cyclopropane-1-carboxylic acid (12h) 

Compound 12h was prepared in a similar way as compound 12b, except that (3-

ethylphenyl)methanol was used from step 4 in scheme 1 (yield: 70.09%). 1H NMR (500 MHz, 

Methanol-d4) δ 7.74 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.48 
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(d, J = 7.9 Hz, 2H), 7.40 – 6.91 (m, 4H), 5.13 (s, 2H), 4.55 (s, 2H), 2.27 (s, 3H), 1.61 (dd, J = 6.9, 

4.0 Hz, 2H), 1.23 (dd, J = 6.8, 4.0 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.53, 156.27, 

143.48, 143.17, 141.64, 140.20, 139.39, 137.61, 135.85, 132.22, 131.26, 129.60, 128.93, 127.91, 

127.83, 127.58, 125.58, 68.58, 64.89, 29.72, 16.99, 9.69. HRMS (ESI) m/z: [M + Na]+ Calcd for 

C28H26N4NaO5 521.1795; Found 521.1826.  

 2-(4'-(5-((((4-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)acetic acid (12i) 

Compound 12i was prepared in a similar way as compound 12b, except that (4-

ethylphenyl)methanol was used from step 4 in scheme 1 (yield: 86.75%). 1H NMR (500 MHz, 

DMSO-d6) δ 9.68 (s, 1H), 7.83 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.1 Hz, 

2H), 7.46 (d, J = 8.3 Hz, 2H), 7.28 (s, 4H), 5.09 (s, 2H), 4.46 (s, 2H), 2.19 (s, 3H), 1.48 (dd, J = 

6.8, 3.8 Hz, 2H), 1.18 (dd, J = 6.7, 3.9 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 175.81, 

154.66, 143.01, 141.25, 140.76, 138.76, 137.61, 134.97, 131.45, 130.13, 128.19, 128.11, 126.89, 

124.56, 67.00, 63.02, 28.86, 16.17, 10.08. HRMS (ESI) m/z: [M + Na]+ Calcd for C28H26N4NaO5 

521.1795; Found 521.1790. 

2-(4'-(5-((((4-fluorobenzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)acetic acid (14a) 

Compound 14a was prepared in a similar way as compound 12b, except that compound 6 was 

used from step 5 in scheme 1 (yield: 87.72%). 1H NMR (500 MHz, Methanol-d4) δ 7.77 (d, J = 

8.1 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 7.7 Hz, 2H), 7.34 (s, 

2H), 7.03 (s, 2H), 5.11 (s, 2H), 3.68 (s, 2H), 2.27 (s, 3H). 13C NMR (126 MHz, Methanol-d4) δ 

175.42, 165.04, 163.09, 143.46, 140.16, 139.37, 136.22, 135.92, 131.48, 131.43, 131.17, 128.90, 

128.17, 125.66, 116.36, 116.19, 67.87, 41.58, 9.64. HRMS (ESI) m/z: [M + Na]+ Calcd for 

C25H21FN4NaO4 483.1439; Found 483.1453.  
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3. Results and discussion 

The synthesis of fluorine-containing RO6842262 analogues 12b-12i and 14a was outlined in 

Scheme 1. 1-(4-Bromophenyl)cyclopropane-1-carbonitrile (1) was obtained in moderate yield 

following a similar approach reported previously.17 Compound 1 was then reacted with ethylene 

glycol to get compound 2, followed by esterification to get compound 3. Compound 3 was 

reacted with bis(pinacolato)diboron to get compound 4 by Suzuki coupling. Similarly, compound 

6 was synthesized by the reaction of commercially available ethyl 2-(4-bromophenyl)acetate (5) 

and bis(pinacolato)diboron (Scheme 1).  

1-Azido-4-bromobenzene (7) was obtained in high yield by the reaction of 4-bromoaniline and 

sodium nitrite. Compound 7 was then treated with but-2-ynoic acid ethyl ester to form compound 

8, which was further reacted with sodium hydroxide to form the corresponding carboxylic acid 9. 

Curtius rearrangement reaction was then performed with a benzyl alcohol building block to form 

the intermediate compound 10, followed by the Suzuki-coupling reaction to afford compound 11. 

Lastly, the ester on compound 11 was hydrolysed to afford the final carboxylic acid compound 

12b-12i. Compound 14a was synthesized in a similar way, except that compound 6 was used 

from step 5 of Suzuki coupling (Scheme 1). 

LPA1 receptor activation results in the inhibition of cAMP production, and antagonizing LPA1 

activation induces a change in cAMP production that can be quantified by measuring 

luminescence. Compounds prepared in Scheme 1 were tested in an in vitro cAMP assay using 

the Chinese hamster ovary (CHO) cell line overexpressing the LPA1 receptor. The endogenous 

ligand 18:1 LPA was used to activate the LPA1 receptor. The LPA1 antagonist activity is 

presented as IC50, which is the concentration needed to reverse 50% of the inhibitory effect of 

18:1 LPA on forskolin-mediated cAMP production. 
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Scheme 1. Synthesis of compounds 12b-12i and 14a. 

Firstly, three fluorine-containing compounds without the methyl group at the alpha position of 

the carbamate were synthesized (12b, 12c, and 12d). The results suggested that the removal of 

the methyl substitution resulted in a dramatic decrease in the activity (Table 2.1.1). In an attempt 

to extend hydrogen-bond networks, a hydroxymethyl group was introduced to replace the 

fluorine (12h and 12i), producing a small series of benzyl alcohols. Interestingly, substituting the 

fluorine (12b and 12c) with a hydroxymethyl group (12i and 12h) resulted in a drastic increase in 

activity. For isoxazole-derived LPA1 antagonists, the absence of the cyclopropane at the alpha 

position of the carboxylic acid did not affect the potency, as was reflected with AM095. To 
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explore the effect of the cyclopropane for triazole-derived LPA1 antagonists, compound 14a was 

synthesized. The result showed that removal of the cyclopropane at the alpha position of the 

carboxylic acid resulted in a total loss of activity. 

Since the removal of the alpha methyl substituent decreased the potency, compounds with the 

methyl substitution were synthesized. Compounds with the methyl group (12e, 12f, and 12g) 

demonstrate drastically higher activity compared with those without. As shown in Table 2.1.1, 

among this series of compounds (12e, 12f, and 12g), the compound with meta substitution, 

compound 12f, is the most potent with a IC50 of 16.0 nM, followed by para (IC50 = 93.3 nM) and 

ortho (IC50 = 192.7 nM) substitutions.  

Table 2.1.1. SAR of carbamate-derived LPA1 antagonists 12b-12i and 14a. 

 

Compounds IC50 (nM) pIC50 
a % inhibition b 

RO6842262 18.3 7.74 ± 0.05 111.60 ± 2.84 

12b 3337 5.49 ± 0.10 58.43 ± 13.03 

12c 2146 5.67 ± 0.06 77.08 ± 10.44 

12d 1488 6.01 ± 0.42 81.92 ± 10.15 

12e 93.3 7.11 ± 0.27 102.1 ± 10.95 

12f 16.0 7.91 ± 0.22 109.90 ± 2.15 

12g 192.7 6.73 ± 0.09 96.41 ± 5.09 

12h 91.3 7.04 ± 0.05 115.80 ± 11.81 

12i 624.5 6.21 ± 0.02 107.40 ± 6.48 

14a NE NE c NE 

a: Values are the mean pIC50 ± SEM of at least two independent experiments performed in duplicate. 
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b: % maximal inhibition of the response to 1 µM 18:1 LPA. 

c: No effect was observed at the highest concentration tested. 

Molecular docking studies were performed using the X-ray crystal structure of LPA1 (PDB ID: 

4z36)15 to investigate the binding mode of the most potent compound discovered in this study, 

compound 12f, as well as RO6842262. Both compounds were found to bind to the orthosteric 

binding pocket of LPA1 in a similar fashion, with the carboxylate oxygen forming hydrogen 

bonds with Gly110, Thr109, and Thr113. However, additional interactions were observed 

between 12f and LPA1. The deprotonated oxygen from the carboxylic acid of 12f interacted with 

the nitrogen from Arg124 through hydrogen bonding, while the nitrogen on the triazole moiety 

formed hydrogen bonds with Gln125 (Figure 2.1.6). These findings could possibly explain the 

greater potency of 1f compared to RO6842262. 

 

Figure 2.1.6. The binding modes of compound 12f (A) and RO6842262 (B) with LPA1. 

The six LPA receptor subtypes are divided into two LPA receptor families according to 

phylogeny: the endothelial differentiation gene (EDG) family and the non-EDG family. The 

LPA1-3 receptors belong to the EDG family with 50–60% similarity in amino acid sequence.19 

Studies have shown that LPA2 and LPA3 signaling are involved in cell function and survival. 

Both LPA2 and LPA3 signaling maintain vascular homeostasis and improve heart function after 

ischemic injuries.20-21 It is important to develop potent and highly selective LPA1 antagonists to 

reduce the potential off target effects. As two of the most potent compounds from the series, 

compounds 12f and 12h were selected for further testing for their selectivity against the LPA2-3 

receptors. As shown in Figure 2.1.7, both of the compounds showed no significant activity for 

the LPA2-3 receptors, suggesting decent LPA1 selectivity (Table 2.1.2). 
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Figure 2.1.7. Dose-response curves of selected compounds 12f (left) and 12h (right) towards the 

LPA1, LPA2, and LPA3 receptors. 

Table 2.1.2. Activity of compound 12f and 12h towards the LPA1, LPA2, and LPA3 receptors. 

Compounds LPA1 
a (nM) LPA2 

a (nM) LPA3 
a (nM) 

12f 16.0 > 10000 > 10000 

12h 91.3 NE b NE 

a: Values are the mean IC50 of at least two independent experiments performed in duplicate. 

b: No effect was observed at the highest concentration tested. 

The most potent compound (12f) in this series was then further studied to determine its 

therapeutic effects in breast cancer. MDA-MB-231 is a commonly used breast cancer cell line 

and has the highest expression of LPA1 compared with other breast cancer cell lines,3 so MDA-

MB-231 was selected in this study. In order to evaluate the effect of LPA and the compound 12f 

on the survival, migration, and invasion of MDA-MB-231, several in vitro assays were 

performed.  

Wound healing assay is one of the most common methods to study cell migration, which is based 

on the observation of cell migration into a wound created on a cell monolayer.22 The MDA-MB-

231 cells were treated with various concentrations of 18:1 LPA to evaluate its effect on breast 

cancer cell migration using the wound healing assay. This study showed that stimulation with 

LPA enhanced cell migratory ability dose-dependently (Figure 2.1.8 A). LPA was able to induce 

cell migration at concentrations as low as 1.25 µM, with the maximum effect at 20 µM. 

Following 10 µM LPA stimulation, LPA1 antagonist 12f impeded cell migration in a dose-

dependent manner as shown in Figure 2.1.8 B. At a concentration as low as 1 µM, compound 12f 
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exhibited the capability to decrease LPA-induced migration by 27.67%. The highest 

concentration tested, 20 µM, demonstrated the largest inhibitory effect. When 20 µM of 

compound 12f was added, it resulted in a remarkable decrease of LPA-induced migration by 

56.39%. 

Cancer cells can be stimulated to proliferate and migrate by serum. The anti-migratory effect of 

compound 12f was further investigated using serum. The findings revealed that serum was more 

effective in promoting cell migration compared to LPA alone. The addition of 10% serum 

resulted in complete wound closure within 48 hours (Figure 2.1.8 C). This outcome was 

expected, as serum contains multiple growth factors and mitogens in addition to LPA, 

contributing to enhanced migration.  

The impact of compound 12f on serum-induced cell migration was examined next (Figure 2.1.8 

C). The results showed that compound 12f exerted an inhibitory effect on serum-induced cell 

migration. Notably, this inhibitory effect was observed at a concentration of 5 µM, resulting in a 

29.08% inhibition of serum-induced migration. Moreover, the maximum effect was observed at a 

concentration of 20 µM of compound 12f, leading to a substantial inhibition of serum-induced 

migration by 49.45%. These findings highlight the dose-dependent anti-migratory effect of 

compound 12f in the context of serum-induced cell migration.  
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Figure 2.1.8. Effects of LPA, serum and 12f on cell migration in wound healing assays using 

MDA-MB-231 cells. A. Effects of various concentrations of LPA on cell migration (left) and its 

quantification (right). B. Effects of 10 µM LPA and various concentrations of 12f on cell 

migration (left) and its quantification (right). C. Effects of 10% serum and various concentrations 

of 12f on cell migration (left) and its quantification (right). * P < 0.05, *** P < 0.001, **** P < 

0.0001, ns P > 0.05.  

Transwell assay is based on a two-chamber system separated by a membrane pore through which 

cells migrate in vertical direction. Transwell migration and invasion assays were introduced in 

this study to further confirm the effect of LPA and 12f on cell migratory abilities. As shown in 

Figure 2.1.9, it was suggested that LPA induced both cell migration and invasion in MDA-MB-

231 cells, which was hindered by 12f dose-dependently. Taken together, these results suggested 

that LPA promoted breast cancer cell migration, while the LPA antagonist 12f inhibited cell 

migration induced by LPA. In addition, 12f inhibited serum-induced breast cancer cell migration 

in the absence of LPA. 
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Figure 2.1.9. Effects of 10 µM LPA and various concentrations of 12f on cell migration and 

invasion in MDA-MB-231 cells. A. Effects of LPA and 12f on cell migration and invasion by 

Transwell assays in MDA-MB-231 cells. B-C. Quantification of Transwell migration (B) and 

Transwell invasion (C) assays. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, ns P > 

0.05. 

Colony formation assay is a cell survival assay based on the ability of a single cell to grow into a 

colony. It was performed to evaluate cell survival.23 The experimental findings revealed that the 

presence of 10 µM LPA resulted in enhanced survival of MDA-MB-231 cells. However, when 

compound 12f was introduced, it displayed a dose-dependent inhibitory effect on LPA-induced 

cell survival. Notably, the minimum effective concentration of 12f was found to be 5 µM, 

indicating a significant reduction in LPA-induced MDA-MB-231 cell survival (Figure 2.1.10).  
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Figure 2.1.10. Effects of 10 µM LPA and various concentrations of 12f on cell survival in colony 

formation assays using MDA-MB-231 cells. * P < 0.05, ** P < 0.01, **** P < 0.0001, ns P > 

0.05. 

LPA1 has been implicated in the initiation and progression of various cancer types, such as renal 

cancer,24 prostate cancer,25 and gastrointestinal cancers.26 It exerts its effects by enhancing 

tumor-promoting activities and interacting with other receptors, including the epidermal growth 

factor receptor (EGFR) and other relevant targets.2 In addition to investigating the role of LPA1 

in MDA-MB-231, the analysis was extended to several other cancer cell lines, including the 

human cervical cancer cell line HeLa and the human ovarian cancer cell line OVCAR8, aiming 

to explore the potential involvement of LPA1 in different cancer types. The wound healing assay 

and colony formation assay were conducted. The results suggested that LPA is not involved in 

cell survival and migration in either HeLa or OVCAR8. Additionally, adding the compound 12f 

after LPA stimulation did not have any impact on cell survival or migration (Figure 2.1.11). 
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Figure 2.1.11. Wound healing (A and B) and colony formation assays (C and D) using the HeLa 

(A and C) and OVCAR8 (B and D) cell lines. LPA and LPA1 antagonist 12f did not affect HeLa 

and OVCAR8 cell survival and migration. 
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Cancer is a leading cause of death and a significant obstacle to increasing life expectancy 

worldwide. In 2020, there were proximately 19.3 million new cases of cancer and 10.0 million 

deaths attributed to the disease. Among these cases, breast cancer stands out as the most 

commonly diagnosed cancer in the female population.27 Current breast cancer chemotherapies 

aim to target multiple receptors such as estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (HER2). However, these treatments often come with 

adverse effects, and the emergence of drug resistance remains a significant concern.28 By 

identifying alternative targets, the development of more effective and personalized treatment 

strategies that address the limitations of the current therapies becomes possible. Studies suggest 

that targeting LPA1 for the treatment of breast cancer holds potential, given its involvement in 

the initiation and progress of breast cancer.29-30 The findings of this study are in line with 

previously reported research,3-7 demonstrating that the activation of the LPA1 receptor promotes 

cell migration, and invasion in breast cancer. Through the utilization of the most potent LPA1 

antagonist discovered in this study, the pro-proliferative and pro-migratory effects of LPA in 

breast cancer can be effectively inhibited. In addition, several other cancer cell lines were tested, 

and the results indicated that neither LPA or the LPA1 antagonist played a role in their cell 

survival and migration These findings imply that the LPA1 receptor does not function as a 

universal marker across all cancer types; rather, its involvement appears to be specific to certain 

cancer types.  

The current study broadened the collection of triazole-derived LPA1 antagonists and validated 

their function across several cancer cell lines. Moreover, the successful integration of fluorine 

into these compounds without compromising their activity opens the door for their potential 

development into PET tracers. A noteworthy limitation of this study is the racemic nature of 

these compounds. Despite their decent activity, evaluating both enantiomers of these racemic 

compounds would prove valuable. Future studies will be essential to investigate the enantiomeric 

SAR trend. 

4. Conclusion 

LPA1 plays an important role in breast caner. The present study examined SAR on a series of 

fluorine-containing triazole derivatives and evaluated their potential as potent and selective LPA1 

antagonists. Among them, compound 12f demonstrated the highest LPA1 antagonistic activity 
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and demonstrated excellent inhibitory activity of LPA-induced cell survival, migration, and 

invasion of a breast cancer cell line. The LPA1 antagonists synthesized in this study have 

potential to be developed into novel therapies for breast cancer. Moreover, these fluorine-

containing compounds could be further developed into 18F-labeled PET imaging agents for use 

as radiotracers to facilitate breast cancer diagnosis and staging. 
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Part two  

Design, synthesis and biological evaluation of urea-derived small 

molecules targeting lysophosphatidic acid receptor 1 for the 

treatment of breast cancer 

 

Abstract:  

The discovery of fluorine-containing carbamate-derived small molecules as potent and selective 

LPA1 antagonists was previously reported. To further expand the library of LPA1 antagonists and 

potentially enhance their activity, a urea moiety was introduced in replacement of the carbamate 

group and a second series of LPA1 antagonists based on a urea scaffold were synthesized and 

evaluated. Within this series, several compounds exhibited potent LPA1 antagonism. Notably, 

compound 17f emerged as the most active, with an IC50 of 215.2 nM in the cAMP assay. 

Biologically, compound 17f demonstrated the ability to block LPA-induced cell migration and 

invasion in the breast cancer cell line MDA-MB-231. The development of these urea-derived 

LPA1 antagonists in this study has expanded the repertoire of LPA1 antagonists and holds 

promising potential for the development of a novel therapy for breast cancer. 
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Graphical abstract: 

 

Key words: lysophosphatidic acid receptor 1, breast cancer, urea 
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1. Introduction 

Lysophosphatidic acid receptor 1, known as LPA1, belongs to the family of six G protein-

coupled receptors (LPA1-6). LPA1 is activated by its endogenous ligand, lysophosphatidic acid 

(LPA), leading to a diverse range of cellular responses, such as cell proliferation, migration, and 

survival in various cell types.1 In recent years, LPA1 has emerged as a promising therapeutic 

target for breast cancer. Aberrant mRNA expression of LPA1 has been detected in several breast 

cancer cell lines.2 In breast cancer mouse models, overexpression of LPA1 promoted the 

formation of bone metastasis,3 while pharmacological inhibition of LPA1 using an LPA1 

inhibitor blocked the progression of bone metastasis.4 Furthermore, in the 4T1 spontaneous 

metastasis mouse model, inhibition of LPA1 had no effect on the growth of breast primary 

tumors but effectively suppressed spontaneous metastasis.5, 6 These studies strongly suggest that 

LPA1 is closely associated with breast cancer metastasis. However, the current availability of 

LPA1 antagonists developed for the treatment of cancer remains very limited. 

In order to address the aforementioned challenges, the approach was initiated by leveraging a 

potent and selective LPA1 antagonist known as RO6842262 (Figure 2.2.1), originally identified 

by Roche for the treatment of lung fibrosis.7 The carbamate within this compound was converted 

into a urea, leading to the discovery of a range of compounds with a urea moiety (Figure 2.2.1). 

The core focus of the endeavor was to evaluate the potential enhancement in functional activity 

achieved by substituting the hydrogen bond acceptor (oxygen, O) with a hydrogen bond donor 

(nitrogen, NH). This motivation stemmed from the recognition that urea compounds have the 

capacity to establish multiple stable hydrogen bonds with receptor targets. These intricate ligand-

receptor interactions significantly influence specific biological activities, drug actions, and 

overall drug characteristics.8, 9 Within this study, incorporation of a urea moiety was readily 

achieved through the transformation of the benzyl alcohol building block into its corresponding 

benzylamine counterpart (Scheme 2). As a result, the substitution of O with NH was performed 

in an endeavor to enhance the ligand-receptor interaction. Furthermore, urea is generally 

considered to be more stable than carbamate. 

A total of eight urea-derived LPA1 antagonists were synthesized and evaluated. Several 

compounds with high potency and selectivity were discovered in this study. Particularly, 

compound 17f was the most potent in this study with its IC50 being 215.2 nM in the cAMP assay. 
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It inhibited LPA-induced migration, and invasion in the breast cancer cell line MDA-MB-231 in 

a dose-dependent manner.  

 

 

Figure 2.2.1. Structural modification of RO6842262 leading to urea-derived LPA1 antagonists. 

  



91 
 

2. Materials and methods 

2.1 Synthesis 

All solvents and chemicals were of reagent grade and purchased from commercial manufacturers. 

The purity and characterization of compounds were ascertained through a combination of 

techniques including HPLC, TLC, high-resolution mass spectrometry (HRMS), as well as 1H 

NMR and 13C NMR analyses. Spectral data was compared with reference data from the literature 

where possible; for RO6842262, 1H NMR was compared.7 Experimental data and reported data 

compared favourably in all cases.7,10-11 

1-(1-(4-bromophenyl)-4-methyl-1H-1,2,3-triazol-5-yl)-3-(pyridin-2-ylmethyl)urea (15).  

To a solution of compound 9 (250 mg, 0.89 mmol) in anhydrous toluene (6.25 mL) was added 

pyridin-2-ylmethanamine (143.91 mg, 1.33 mmol), triethylamine (150 mg), and diphenyl 

phosphoryl azide (316.5 mg, 1.15 mmol). The reaction mixture was heated to 120℃ for 10 hours. 

The mixture was diluted with EtOAc, washed with brine, dried over Na2SO4, filtered, and 

concentrated. The residue was purified by column chromatography (Hexane: EtOAc = 2:1) to 

give compound 15 (150 mg, yield: 43.00%). 1H NMR (500 MHz, Chloroform-d) δ 8.46 (d, J = 

4.7 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.60 (d, J = 7.9 Hz, 2H), 7.50 (s, 1H), 7.40 (d, J = 7.9 Hz, 

2H), 7.24 (d, J = 8.2 Hz, 2H), 4.65 (d, J = 4.5 Hz, 2H), 2.63 (s, 3H). 13C NMR (126 MHz, 

Chloroform-d) δ 158.38, 154.66, 148.83, 144.26, 136.93, 135.55, 132.38, 129.25, 126.37, 123.65, 

122.67, 122.03, 44.20, 11.50. 

ethyl 1-(4'-(4-methyl-5-(3-(pyridin-2-ylmethyl)ureido)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylate (16). 

To a stirred mixture of compound 15 (150 mg, 0.39 mmol), compound 4 (146.9 mg, 0.46 mmol), 

and sodium carbonate (86.56 mg, 0.82 mmol) in dioxane (6 mL) and water (2 mL) was added 

PdCl2(dppf) (28.32 mg, 0.039 mmol). The mixture was purged with argon and stirred at 80 ℃ 

under argon for 6 hours. Following this, the mixture was filtered through diatomaceous earth and 

partitioned between EtOAc and water. The organic phase was extracted with EtOAc, washed 

with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by column 

chromatography (DCM: MeOH = 30:1) to give compound 16 (125 mg, yield: 65.00%). 1H NMR 

(500 MHz, Chloroform-d) δ 8.37 (d, J = 4.7 Hz, 1H), 7.64 (t, J = 9.6 Hz, 4H), 7.56 (d, J = 7.8 Hz, 
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2H), 7.52 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 6.3 

Hz, 1H), 4.64 (d, J = 4.7 Hz, 2H), 4.12 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.64 (br s, 2H), 1.25 – 

1.15 (m, 5H). 13C NMR (126 MHz, Chloroform-d) δ 174.33, 158.63, 154.76, 148.84, 144.49, 

142.27, 139.54, 138.36, 136.85, 135.59, 131.03, 129.21, 127.83, 126.88, 125.19, 122.57, 121.97, 

61.06, 44.27, 28.80, 16.50, 14.18, 11.59. 

1-(4'-(4-methyl-5-(3-(pyridin-2-ylmethyl)ureido)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17a) 

To a stirred solution of compound 16 (125 mg, 0.25 mmol) in THF (9.9 mL) and water (3.3 mL) 

was added lithium hydroxide (30.81 mg, 1.28 mmol). The reaction mixture was stirred at rt for 

24 hours. The reaction mixture was cooled down to 0℃ and neutralized with conc. HCl to pH = 

2. The mixture was extracted with EtOAc. The combined organic phase was dried over Na2SO4, 

filtered, and concentrated. The residue was purified by column chromatography (Hexane: EtOAc 

= 1:1) to give compound 17a (97 mg, yield: 78.00%). 1H NMR (500 MHz, Methanol-d4) δ 8.50 

(d, J = 4.7 Hz, 1H), 7.77 (dd, J = 18.3, 8.1 Hz, 3H), 7.64 (t, J = 7.0 Hz, 4H), 7.51 (d, J = 7.6 Hz, 

2H), 7.35 – 7.26 (m, 2H), 4.64 (s, 2H), 2.53 (s, 3H), 1.64 (br s, 2H), 1.27 (br s, 2H). 13C NMR 

(126 MHz, Methanol-d4) δ 178.33, 161.47, 158.17, 150.03, 144.40, 143.72, 141.54, 139.47, 

138.75, 136.80, 132.28, 131.58, 128.88, 127.85, 125.80, 124.02, 123.29, 45.86, 29.61, 17.04, 

10.65. ESI-MS m/z calcd C26H24N6O3 [M + H]+ 469.20, found 468.63. 

1-(4'-(5-(3-(4-fluorobenzyl)ureido)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17b) 

Compound 17b was prepared in a similar way as compound 17a, except that (4-

fluorophenyl)methanamine was used from step 4 in scheme 1 (yield: 73.53%). 1H NMR (500 

MHz, Methanol-d4) δ 7.78 (d, J = 8.6 Hz, 2H), 7.61 (dd, J = 10.8, 8.4 Hz, 4H), 7.48 (d, J = 8.4 

Hz, 2H), 7.17 (dd, J = 8.5, 5.6 Hz, 2H), 6.94 (t, J = 8.8 Hz, 2H), 4.26 (s, 2H), 2.28 (s, 3H), 1.60 

(dd, J = 7.0, 3.9 Hz, 2H), 1.23 (dd, J = 6.9, 4.0 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 

178.58, 164.31, 162.37, 157.97, 143.49, 141.76, 140.60, 139.43, 136.82, 136.07, 132.27, 131.90, 

130.13, 130.06, 128.89, 127.81, 125.78, 116.16, 115.99, 44.00, 29.77, 16.96, 9.76. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C27H24FN5NaO3 508.1755; Found 508.1770.   
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1-(4'-(5-(3-(3-fluorobenzyl)ureido)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17c) 

Compound 17c was prepared in a similar way as compound 17a, except that (3-

fluorophenyl)methanamine was used from step 4 in scheme 1 (yield: 72.65%). 1H NMR (500 

MHz, Methanol-d4) δ 7.77 (d, J = 8.1 Hz, 2H), 7.61 (dd, J = 8.1, 5.3 Hz, 4H), 7.48 (d, J = 7.9 Hz, 

2H), 7.22 (dd, J = 8.0, 5.9 Hz, 1H), 7.03 – 6.84 (m, 3H), 4.30 (s, 2H), 2.28 (s, 3H), 1.61 (dd, J = 

7.0, 4.0 Hz, 2H), 1.24 (dd, J = 6.9, 4.0 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.41, 

165.31, 163.37, 158.05, 143.52, 141.54, 140.69, 139.52, 136.05, 132.23, 131.83, 131.27, 131.20, 

128.91, 127.83, 125.72, 123.86, 123.84, 114.81, 114.64, 44.15, 29.66, 17.03, 9.75. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C27H24FN5NaO3 508.1755; Found 508.1776.   

1-(4'-(5-(3-(2-fluorobenzyl)ureido)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17d) 

Compound 17d was prepared in a similar way as compound 17a, except that (2-

fluorophenyl)methanamine was used from step 4 in scheme 1 (yield: 78.90%). 1H NMR (500 

MHz, Methanol-d4) δ 7.76 (d, J = 8.5 Hz, 2H), 7.60 (dd, J = 10.6, 8.4 Hz, 4H), 7.48 (d, J = 8.3 

Hz, 2H), 7.24 – 7.12 (m, 2H), 7.06 – 6.96 (m, 2H), 4.35 (s, 2H), 2.28 (s, 3H), 1.61 (dd, J = 7.0, 

3.9 Hz, 2H), 1.24 (dd, J = 6.9, 4.0 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.37, 163.03, 

161.08, 157.93, 143.46, 141.53, 140.63, 139.55, 136.06, 132.26, 131.86, 130.37, 130.34, 130.14, 

130.08, 128.91, 127.84, 127.46, 127.34, 125.76, 125.30, 125.27, 116.18, 116.01, 38.64, 29.63, 

17.04, 9.75. HRMS (ESI) m/z: [M + Na]+ Calcd for C27H24FN5NaO3 508.1755; Found 508.1770.  

(R)-1-(4'-(5-(3-(1-(4-fluorophenyl)ethyl)ureido)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-

4-yl)cyclopropane-1-carboxylic acid (17e) 

Compound 17e was prepared in a similar way as compound 17a, except that (R)-1-(4-

fluorophenyl)ethan-1-amine was used from step 4 in scheme 1 (yield: 70.57%). 1H NMR (500 

MHz, Methanol-d4) δ 7.72 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 

7.47 (d, J = 7.9 Hz, 2H), 7.24 (dd, J = 8.5, 5.3 Hz, 2H), 6.97 (t, J = 8.6 Hz, 2H), 4.80 (q, J = 6.9 

Hz, 1H), 2.24 (s, 3H), 1.60 (dd, J = 7.0, 3.9 Hz, 2H), 1.38 (d, J = 7.1 Hz, 3H), 1.22 (dd, J = 6.8, 

3.8 Hz, 2H). 13C NMR (126 MHz, Methanol-d4) δ 178.48, 164.17, 162.23, 157.10, 143.43, 

141.70, 141.67, 141.64, 140.53, 139.46, 136.06, 132.24, 131.93, 128.85, 128.75, 128.68, 127.80, 
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125.71, 116.14, 115.97, 50.47, 29.71, 22.77, 16.99, 9.77. HRMS (ESI) m/z: [M + Na]+ Calcd for 

C28H26FN5NaO3 522.1912; Found 522.1909.  

(R)-1-(4'-(4-methyl-5-(3-(1-phenylethyl)ureido)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17f) 

Compound 17f was prepared in a similar way as compound 17a, except that (R)-1-phenylethan-

1-amine was used from step 4 in scheme 1 (yield: 80.32%). 1H NMR (500 MHz, Methanol-d4) δ 

7.73 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.3 Hz, 

2H), 7.30 – 7.22 (m, 4H), 7.22 – 7.15 (m, 1H), 4.82 (q, J = 7.0 Hz, 1H), 2.25 (s, 3H), 1.59 (dd, J 

= 6.9, 3.8 Hz, 2H), 1.41 (d, J = 7.0 Hz, 3H), 1.19 (dd, J = 6.8, 3.9 Hz, 2H). 13C NMR (126 MHz, 

Methanol-d4) δ 179.24, 157.22, 145.68, 143.50, 142.35, 140.57, 139.28, 135.98, 132.19, 131.98, 

129.53, 128.85, 128.05, 127.75, 126.83, 125.69, 51.10, 30.14, 22.88, 16.73, 9.78. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C28H27N5NaO3 504.2006; Found 504.2002. 

(S)-1-(4'-(4-methyl-5-(3-(1-phenylethyl)ureido)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17g) 

Compound 17g was prepared in a similar way as compound 17a, except that (S)-1-phenylethan-

1-amine was used from step 4 in scheme 1 (yield: 79.05%). 1H NMR (500 MHz, Methanol-d4) δ 

7.73 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.3 Hz, 

2H), 7.31 – 7.22 (m, 4H), 7.22 – 7.16 (m, 1H), 4.83 (q, J = 7.0 Hz, 1H), 2.25 (s, 3H), 1.63 (dd, J 

= 7.0, 3.9 Hz, 2H), 1.41 (d, J = 7.0 Hz, 3H), 1.25 (dd, J = 7.0, 4.0 Hz, 2H). 13C NMR (126 MHz, 

Methanol-d4) δ 178.30, 157.18, 145.64, 143.39, 141.44, 140.56, 139.57, 136.04, 132.25, 131.94, 

129.53, 128.89, 128.06, 127.83, 126.83, 125.69, 51.09, 29.59, 22.86, 17.06, 9.77. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C28H27N5NaO3 504.2006; Found 504.2034.  

1-(4'-(4-methyl-5-(3-(1-phenylethyl)ureido)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-

yl)cyclopropane-1-carboxylic acid (17h) 

Compound 17h was prepared in a similar way as compound 17a, except that 1-phenylethan-1-

amine was used from step 4 in scheme 1 (yield: 71.01%). 1H NMR (500 MHz, Methanol-d4) δ 

7.73 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.3 Hz, 

2H), 7.30 – 7.22 (m, 4H), 7.22 – 7.15 (m, 1H), 4.83 (q, J = 7.0 Hz, 1H), 2.25 (s, 3H), 1.60 (dd, J 

= 6.9, 3.9 Hz, 2H), 1.41 (d, J = 7.0 Hz, 3H), 1.21 (dd, J = 6.9, 3.9 Hz, 2H). 13C NMR (126 MHz, 
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Methanol-d4) δ 179.00, 157.21, 145.67, 143.46, 142.06, 140.56, 139.37, 136.00, 132.21, 131.97, 

129.53, 128.86, 128.05, 127.78, 126.83, 125.69, 51.10, 30.02, 22.88, 16.83, 9.78. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C28H27N5NaO3 504.2006; Found 504.2001. 

2.2 Cell culture 

All media and cell culture reagents were purchased from WISENT Bioproducts (Quebec, 

Canada). The Chinese hamster ovary (CHO)-K1 cell line was cultured in F-12K medium 

supplemented with 10% fetal bovine serum and 1% streptomycin/penicillin at 37°C, 5% CO2. 

The MDA-MB-231 cell line was cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% streptomycin/penicillin at 37°C, 5% CO2. 

2.3 Biological evaluation 

The biological studies were conducted in accordance with the methods outlined in the first part 

of this chapter. 

2.4 Molecular docking study  

The crystal structure of LPA1 (PBD ID:4z36)12 was used to perform molecular docking studies. 

The 3D structures of RO6842262 and the compounds synthesized in this study were generated 

using DS Viewer 3.5. The actual docking was executed using AutoDock Vina,13 with the grid 

box dimensions adjusted to adequately cover the entire binding pocket within the LPA1 structure. 

The remaining parameters were maintained at their default values.  

2.5 Statistical analysis 

The experimental outcomes are presented as the mean ± standard error of the mean (SEM). Data 

processing was carried out using GraphPad Prism 9.0.0. One-way ANOVA was used to analyze 

the statistical P values between different groups. A P value of < 0.05 (two-tailed) was considered 

as statistically significant.  
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3. Results and discussion 

The synthetic procedure is illustrated in Scheme 2, depicting the synthesis of urea-derived 

analogues of RO6842262 (17a-17h). Initially, 2-(4-bromophenyl)acetonitrile underwent a 

reaction with 1,2-dibromoethane, yielding 1-(4-bromophenyl)cyclopropane-1-carbonitrile (1). 

Subsequent steps involved the conversion of compound 1 to 1-(4-bromophenyl)cyclopropane-1-

carboxylic acid (2) through a reaction with ethylene glycol, followed by esterification to obtain 

compound 3. Compound 3 was then reacted in a Suzuki coupling reaction with 

bis(pinacolato)diboron, resulting in the formation of ethyl 1-(4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)phenyl)cyclopropane-1-carboxylate (4). 

1-Azido-4-bromobenzene (7) was obtained by reacting 4-bromoaniline with sodium nitrite. 

Subsequently, compound 7 underwent a reaction with but-2-ynoic acid ethyl ester, yielding ethyl 

1-(4-bromophenyl)-4-methyl-1H-1,2,3-triazole-5-carboxylate (8). Further reaction with sodium 

hydroxide led to the formation of the corresponding carboxylic acid 9. Curtius rearrangement 

reaction was then performed with an benzylamine building block, leading to the formation of the 

urea compound 15. Following this, a Suzuki-coupling reaction was performed to generated 

compound 16. Lastly, hydrolysis of the ester in compound 16 yielded the final carboxylic acid 

compounds 17a-17h, as depicted in Scheme 2. 
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Scheme 2. Synthesis of compounds 17a-17h. 

The compounds prepared in Scheme 2 were tested in the cAMP assay using the Chinese hamster 

ovary (CHO) cell line overexpressing the LPA1 receptor, following the procedure detailed in part 

one of this chapter. The endogenous ligand 18:1 LPA was used for activating the LPA1 receptor. 

The LPA1 antagonist activity is presented as IC50, representing the concentration required to 

reverse 50% of the inhibitory effect caused by 18:1 LPA on forskolin-mediated cAMP 

production. 

To investigate the significance of methyl substitution at the alpha position of the urea for 

compound activity, three fluorine-containing compounds without the methyl group were 

synthesized (17b, 17c, and 17d). The results suggested that urea-derived compounds without the 

methyl substitution showed weak LPA1 antagonistic activity (Table 2.2.1). As a scaffold that is 

commonly used in medicinal chemistry, the heterocyclic compound pyridine was also introduced 

to replace the benzene ring (17a), resulting in a slight increase in activity. 
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Since compounds without the alpha methyl substitution showed weak activity, compounds with 

the methyl substitution were synthesized. Those with the methyl group (17f, 17g, and 17h) 

exhibited significantly higher activity when compared to those without it, as shown in Table 

2.2.1. Among them, the (R)-configuration (17f) exhibited the highest activity (IC50 = 215.2), 

followed by the racemate (17h) (IC50 = 239.7). Given that the (R)-configuration is more active 

than the (S)-configuration, a fluorine atom was introduced into the aromatic ring, resulting in the 

synthesis of compound 17e. However, the addition of fluorine led to a decrease in activity.  

 

Table 2.2.1. SAR of urea-derived LPA1 antagonists 17a-17h using the cAMP assay.  

Compounds IC50 (nM) pIC50 
a % inhibition b 

RO6842262 18.3 7.74 ± 0.05 111.6 ± 2.8 

17a 1005 6.55 ± 0.83 41.84 ± 1.22 

17b 3152 5.59 ± 0.28 40.48 ± 20.99 

17c 1519 5.83 ± 0.10 88.09 ± 20.46 

17d 4469 5.51 ± 0.39 49.52 ± 33.15 

17e 780.2 6.11 ± 0.04 102.00 ± 17.70 

17f 215.2 6.83 ± 0.28 97.64 ± 5.02 

17g 242.4 6.66 ± 0.19 108.10 ± 0.26 

17h 239.7 6.81 ± 0.43 83.75 ± 6.24 

a: Values are the mean pIC50 ± SEM of at least two independent experiments performed in duplicate. 

b: % maximal inhibition of the response to 1 µM 18:1 LPA presented as mean ± SEM.  
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As one of the most potent compounds from this series, compounds 17f was selected for further 

testing for its selectivity against the LPA2-3 receptors. As shown in Figure 2.2.2, 17f showed no 

significant activity for the LPA2-3 receptors, suggesting great LPA1 selectivity (Table 2.2.3). 

 

Figure 2.2.2. Dose-response curves of compound 17f towards the LPA1, LPA2, and LPA3 

receptors. 

Table 2.2.3. Selectivity of compound 17f. 

Compounds LPA1 
a (nM) LPA2 

a (nM) LPA3 
a (nM) 

17f 215.2 > 10000 NE b 

a: Values are the mean IC50 of at least two independent experiments performed in duplicate. 

b: No effect was observed at the highest concentration tested. 

Molecular docking studies were conducted using the X-ray crystal structure of LPA1 (PDB ID: 

4z36)10 to explore the possible binding mode of the best compound identified in this study, 

compound 17f. The compound exhibited binding to the orthosteric binding pocket of LPA1 in a 

similar fashion as RO6842262, with the carboxylate oxygen forming hydrogen bonds with 

Gly110, Thr109, and Thr113 (Figure 2.2.3).  
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Figure 2.2.3. Binding modes of compound 17f (A) and RO6842262 (B) with the LPA1 receptor. 

Green dashed lines represent hydrogen bond interactions. 

Subsequently, the most potent compound (17f) within this series was subjected to further 

investigation to assess its therapeutic impact on metastatic breast cancer using the breast cancer 

cell line MDA-MB-231. The wound healing assay was firstly performed to investigate the effect 

of LPA on the migration of MDA-MB-231 cells. When exposed to 10 µM 18:1 LPA, a notable 

enhancement in cell migration rate was observed, with the migration rate increasing from the 

baseline of 41.3% to 93.5% in comparison to control cells. Following LPA stimulation, the 

introduction of the LPA1 antagonist 17f resulted in a dose-dependent inhibition of cell migration, 

as illustrated in Figure 2.2.4A. The antimigration effect of compound 17f became noticeable at a 

concentration of 5 µM. The addition of 10 µM and 20 µM of compound 17f led to reductions in 

LPA-induced migration by 31.16% and 40.52%, respectively.  

The impact of compound 17f on cell migration was also assessed in the presence of serum. As 

depicted in Figure 2.2.4B, 17f exhibited a modest inhibitory effect on serum-induced cell 

migration, displaying efficacy at a minimum concentration of 20 µM. The introduction of 20 µM 

of compound 17f led to a reduction of 19.55% in serum-induced migration. However, 

concentrations of compound 17f below 20 µM did not yield any notable impact on cell migration. 

The antimigratory effect of 17f is comparatively weaker in serum-induced migration compared 

to LPA-induced migration. This is unsurprising given that serum contains a wide range of 

bioactive molecules aside from LPA. In summary, compound 17f independently hindered serum-

induced cell migration in MDA-MB-231 cells, even in the absence of LPA. 
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Figure 2.2.4. Effects of LPA, serum and 17f on cell migration in wound healing assays using 

MDA-MB-231 cells. A. Effects of 10 µM 18:1 LPA and various concentrations of 17f on cell 

migration (left) and its quantification (right). B. Effects of serum and various concentrations of 

17f on cell migration (left) and its quantification (right). * P < 0.05, ** P < 0.01, *** P < 0.001, 

**** P < 0.0001, ns P > 0.05.  

The impact of LPA and 17f on MDA-MB-231 cell migration was further substantiated through 

Transwell migration/invasion assays. As depicted in Figure 2.2.5, the exposure to 10 µM 18:1 

LPA led to noticeable cell migration and invasion in MDA-MB-231. However, this effect was 

progressively impeded by 17f in a dose-dependent manner. These findings collectively indicate 

that LPA promotes migration and invasion of breast cancer cells, while the LPA antagonist 17f 

effectively counteracts the migratory and invasive effects induced by LPA. Furthermore, 17f 

demonstrated the ability to inhibit serum-induced migration of MDA-MB-231 even without the 

presence of LPA. 
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Figure 2.2.5. Effects of LPA and various concentrations of 17f on cell migration/invasion in 

Transwell migration/invasion assays using MDA-MB-231 cells. A. Effects of 10 µM 18:1 LPA 

and various concentrations of 17f on cell migration (top) and invasion (bottom). B. 

Quantification of Transwell migration assay. C. Quantification of Transwell invasion assay. * P 

< 0.05, *** P < 0.001, **** P < 0.0001, ns P > 0.05.  

Metastasis is the main cause of death of cancer patients, accounting for more than 90% of tumor 

mortality.14 In breast cancer patients, most deaths are caused by the metastatic behavior instead 

of the primary tumor growth. Approximately 6% to 10% of breast cancer patients are diagnosed 

with metastatic disease at the initial diagnosis, and approximately 30% of patients initially 

diagnosed with early-stage breast cancer eventually experience recurrence or metastatic disease. 

15 Consequently, addressing the factors responsible for breast cancer metastasis formation poses 

a significant challenge. This study revealed a connection between LPA1 and breast cancer 

migration, offering a potentially promising avenue for addressing the issue of metastatic breast 

cancer. 
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LPA1 is linked to several intracellular signaling pathways that regulate cell behavior. LPA is 

recognized for instigating the migration and invasion of breast cancer cells by mobilizing LPA 

receptors and triggering downstream beta-arrestin/Ral signaling pathway.2 Among LPA receptor 

subtypes, LPA1 emerged as the mediator of LPA-induced migration across multiple cancer cell 

lines.16 The outcomes of this study are in agreement with previous findings,3-6 confirming LPA1's 

role in breast cancer metastasis. Hence, directing efforts toward LPA1 for drug development 

holds significant promise. 

While the urea-derived compounds identified in this study demonstrated generally lower activity 

in comparison to the carbamate-derived compounds detailed in the first part of this chapter, there 

is potential for them to exhibit improved drug properties due to the inherent stability of urea in 

contrast to carbamate. Moreover, the most potent compound discovered in this study offers the 

prospect of further modifications to enhance its activity in future studies.  
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4. Conclusion 

In conclusion, LPA1 was identified as a novel marker for metastatic breast cancer, leading to the 

synthesis and assessment of a series of urea-derived LPA1 antagonists. Notably, compound 17f 

demonstrated remarkable LPA1 antagonistic activity in the cAMP assay. Moreover, it displayed 

exceptional inhibitory effects on LPA-induced cell migration and invasion in a breast cancer cell 

line. The LPA1 antagonists developed herein hold the potential to introduce a new therapeutic 

avenue for breast cancer. The most potent compound discovered may serve as the starting point 

for future investigations, facilitating further refinement and optimization.  
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Part three 

Synthesis and evaluation of a lysophosphatidic acid receptor 1 

radioligand for positron emission tomography imaging 

 

Abstract: 

Lysophosphatidic acid receptor 1 (LPA1) belongs to the G-protein coupled receptor (GPCR) 

family activated by lysophosphatidic acids. The previous studies have shown that LPA1 mediates 

cell migration, and invasion in triple negative breast cancer, which can be inhibited by LPA1 

antagonists. In the field of oncology, positron emission tomography (PET) is a valuable tool for 

early cancer diagnosis, accurate staging, and detection of recurrence. However, as of now, there 

is no reported radio tracer specifically designed to target LPA1 for cancer diagnosis. Therefore, 

the development of a PET radioligand that targets LPA1 could be beneficial for studying triple 

negative breast cancer, facilitating early diagnosis, staging, and enabling prognostic evaluations. 

In earlier studies, a potent and selective LPA1 antagonist, compound 12h, was successfully 

synthesized. This compound was selected for radiolabeling by conducting tosylation followed by 

fluorination. The resulting fluorinated cold compound 12k exhibited an IC50 of 432.5 nM in the 

cAMP assay for LPA1 and showed no activity towards LPA2 and LPA3, demonstrating promising 

potentials as a novel LPA1 radioligand. The next step involves replacing the fluorine atom with 

18-fluorine and evaluating its performance in vivo using mouse models of triple negative breast 

cancer. 
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Graphical abstract: 
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1. Introduction 

As one of the most commonly used cancer imaging techniques, positron emission tomography 

(PET) enables the visualization of metabolic and functional processes within the body. In the 

field of breast cancer, the FDA has approved two radiotracers for clinical use in PET imaging. 

The primary FDA-approved radiotracer for PET imaging of breast cancer is 2-deoxy-2-

[18F]fluoro-D-glucose (FDG). FDG-PET surpasses conventional imaging methods in its 

effectiveness for detecting distant recurrence and metastases in advanced-stage breast cancer, 

thereby allowing early detection and accurate staging of the disease.1 However, there are 

concerns regarding the accuracy and sensitivity of FDG-PET in detecting breast cancer.2 This is 

because FDG uptake itself lacks tumor-specificity, making it challenging to differentiate between 

malignant and benign breast cells, especially when dealing with instances of breast 

hypermetabolism.3 Another PET imaging agent, [18F]-Fluoroestradiol (FES), has recently gained 

FDA approval for breast cancer. This agent is specifically intended for patients with recurrent or 

metastatic breast cancer. FES functions as an estrogen analogue, with its uptake directly linked to 

the concentration of estrogen receptors (ER).4  

In addition to these two FDA-approved PET tracers for breast cancer, there are ongoing 

developments of other radioligands for breast cancer PET imaging that target either the 

progesterone receptor (PR) or the human epidermal growth factor receptor type 2 (HER2).5 

However, there exists a subset of breast cancer patients, approximately 12-17%, who lack the 

expression of these three receptors. This subtype is known as triple-negative breast cancer 

(TNBC).6 TNBC represents the most aggressive form of breast cancer, characterized by early 

metastasis and a poor prognosis. Due to its stem cell-like characteristics and resistance to 

targeted therapies, TNBC remains a significant challenge in clinical practice.7  

Hence, the development of novel radiotracers is imperative to address this issue and fully 

leverage the potential of PET in the early detection and staging of breast cancer, particularly in 

instances of TNBC where metastases and recurrences are involved. 

Based on the prior research, it has been established that LPA1 exerts a detrimental impact on 

TNBC.8-10 In several TNBC cell lines, the expression of LPA1 is notably elevated in contrast to 

non-tumorigenic cells,11 rendering it a promising target for the development of radiotracers for 

PET imaging. The primary goal of this study is to develop radioligands that specifically target 
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LPA1 for PET imaging in TNBC, with the aim of improving both the sensitivity and accuracy in 

comparison to FDG. Among the LPA1 antagonists investigated in the previous study, compound 

12h demonstrated exceptional potency and selectivity, making it an ideal candidate for 

radiolabeling. The hydroxyl group located on the aromatic ring of compound 12h can be 

fluorinated via tosylation, thereby serving as a starting point for further exploration. 
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2. Materials and methods 

2.1 Synthesis 

All solvents and chemicals were of reagent grade and purchased from commercial manufacturers. 

The purity and characterization of compounds were ascertained through a combination of 

techniques including HPLC, TLC, high-resolution mass spectrometry (HRMS), as well as 1H 

NMR and 13C NMR analyses.  

ethyl 1-(4'-(4-methyl-5-((((3-((tosyloxy)methyl)benzyl)oxy)carbonyl)amino)-1H-1,2,3-triazol-1-

yl)-[1,1'-biphenyl]-4-yl)cyclopropane-1-carboxylate (18) 

To a stirred mixture of compound 11h (90 mg, 0.17 mmol) and p-toluenesulfonic anhydride 

(111.63 mg, 0.34 mmol) in dry DCM (2 mL) was added Ytterbium(III) 

trifluoromethanesulfonate (106.06 mg, 0.17 mmol). The mixture was bubbled with argon and 

then stirred at 40℃ under argon for 6 hours. The mixture was filtered and partitioned between 

DCM and water. The organic phase was extracted with DCM, washed with brine, dried over 

Na2SO4, filtered, and concentrated. The residue was purified by column chromatography (Hexane: 

EtoAc = 2:1) to give compound 18 (50 mg, yield: 43.00%). ESI-MS m/z calcd C37H36N4O7S [M 

+ H]+ 681.24, found 681.40. 

1-(4'-(5-((((3-(fluoromethyl)benzyl)oxy)carbonyl)amino)-4-methyl-1H-1,2,3-triazol-1-yl)-[1,1'-

biphenyl]-4-yl)cyclopropane-1-carboxylic acid (12k) 

To a stirred mixture of compound 18 (5 mg, 0.0073 mmol) and tetra-n-butylammonium fluoride 

(2.3 mg, 0.0088 mmol) in THF was added LiOH (1.76 mg, 0.073 mmol). The mixture was 

bubbled with argon and then stirred at 90℃ under argon for 2 hours. The reaction mixture was 

cooled down to 0℃ and neutralized with conc. HCl to pH = 2. The mixture was extracted with 

EtOAc. The combined organic phase was dried over Na2SO4, filtered, and concentrated. The 

residue was purified by column chromatography (DCM: MeOH = 30:1) to give compound 12k 

(1.9 mg, yield: 25.00%). 1H NMR (500 MHz, Methanol-d4) δ 7.75 (d, J = 8.1 Hz, 2H), 7.61 (d, J 

= 8.1 Hz, 2H), 7.54 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 7.44 – 7.14 (m, 4H), 5.35 (s, 

1H), 5.26 (s, 1H), 5.16 (s, 2H), 2.27 (s, 3H), 1.60 (br s, 2H), 1.20 (br s, 2H). 13C NMR (126 MHz, 

DMSO-d6) δ 170.87, 154.59, 141.33, 138.77, 137.35, 137.07, 137.04, 136.97, 136.84, 134.91, 

131.41, 130.07, 129.20, 128.62, 128.60, 128.07, 127.98, 127.94, 127.58, 127.53, 126.74, 124.52, 
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85.11, 83.82, 66.84, 55.39, 15.86, 10.08. ESI-MS m/z calcd C28H25FN4O4 [M + H]+ 501.19, 

found 501.36. 

2.2 Biological evaluation 

The biological studies were conducted in accordance with the methods outlined in the first part 

of this chapter. 
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3. Results and discussion 

The synthesis of both the fluorinated cold compound 12k and its radiolabeled counterpart were 

detailed in Scheme 3. Starting from the ester form (11h) of compound 12h, the reaction with p-

toluenesulfonic anhydride yielded the tosylated compound 18. Subsequently, compound 18 was 

subjected to reactions with tetra-n-butylammonium fluoride (TBAF) and LiOH to obtain the final 

compound 12k. Likewise, for the proposed radiolabeling, compound 18 will undergo a reaction 

with 18F- and Kryptofix 222 to generate 18F-12k.  

 

 

 

Scheme 3. Synthesis of compound 12k: from cold to hot. 
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The synthesis of the cold compound 12k was successfully accomplished and its activity towards 

LPA1, LPA2, and LPA3 was evaluated using the CHO cell line, following the previously 

described cAMP assay. The results of these experiments are presented in Figure 2.3.1 and Table 

2.3.1. 

Table 2.3.1 Activity of compound 12k towards LPA1, LPA2, and LPA3. 

Targets pIC50 
a IC50 (nM) % of inhibition b  

LPA1 6.37 ± 0.04 432.5 104.60 ± 0.73  

LPA2 < 5 > 10,000 -  

LPA3 < 5 > 10,000 -  

a: Values are the mean pIC50 ± SEM of at least two independent experiments performed in duplicate. 

b: % maximal inhibition of the response to 1 µM 18:1 LPA. 

 

Figure 2.3.1 Dose-response curves of compounds 12k towards the LPA1, LPA2, and LPA3 

receptors. 

Replacing the hydroxyl group with fluorine on the aromatic ring resulted in a decrease in ligand 

activity from 91.3 nM to 432.5 nM (12h vs. 12k). However, this modification did not affect the 

selectivity of the compound. Despite the reduced activity, compound 12k remains a promising 

candidate as a PET radioligand targeting LPA1 as its highly selective towards LPA1. 

The successful synthesis and evaluation of a fluorinated analogue, 12k, have been achieved by 

replacing the hydroxyl group with fluorine on compound 12h. Compound 12k exhibits favorable 

activity and high selectivity towards LPA1, indicating its significant potential for radiolabeling. 

Moving forward, the corresponding radiolabeling process will be conducted to acquire 18F-12k. 
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The binding affinity of this radiolabeled compound for a triple-negative breast cancer cell line, 

MDA-MB-231, will be measured using a cell uptake assay. This will be succeeded by 

comprehensive evaluations of 18F-12k using mouse models exhibiting TNBC characteristics. 
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Part one 

Can Machine Learning ‘Transform’ Peptides/Peptidomimetics into 

Small Molecules? A Case Study with Ghrelin Receptor Ligands 

 

Abstract:  

There has been considerable interest in transforming peptides into small molecules as peptide-

based molecules often present poorer bioavailability and lower metabolic stability. This study 

looked into building machine learning (ML) models to investigate if ML is able to identify the 

‘bioactive’ features of peptides and use the features to accurately discriminate between binding 

and non-binding small molecules. The Ghrelin receptor (GR), a receptor that is implicated in 

various diseases, was used as an example to demonstrate whether ML models derived from a 

peptide library can be used to predict small molecule binders. ML models based on three 

different algorithms, namely random forest, support vector machine, and extreme gradient 

boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small 

molecule GR ligands. The results indicated that ML models trained with a dataset exclusively 

composed of peptides/peptidomimetics provide limited predictive power for small molecules, but 

that ML models trained with a diverse dataset composed of an array of both 

peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy 

and false rates. The diversified models can accurately differentiate the binding small molecules 

from non-binding small molecules using an external validation set with new small molecules that 

were synthesized previously. Structural features that are the most critical contributors to binding 

activity were extracted and are remarkably consistent with the crystallography and mutagenesis 

studies.  
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1. Introduction 

In recent years, machine learning (ML) has captured a high degree of attention because of its 

wide applicability in all branches of research fields. The aim of ML is to develop and apply 

different algorithms that perform specific tasks, including classification, regression, and 

clustering, by learning from input data.1-2 In medicinal chemistry, ML is usually employed to 

predict categories, such as active/inactive or binding/non-binding, or values, such as IC50 or EC50, 

for test compounds with a specific target by learning from a large collection of training data. 

Chemical properties of the compounds are transformed into molecular descriptors, which are 

numerical representations of quantitative physiochemical information for a molecule, in order to 

be recognised by ML models.3-4 To date, an increasing number of molecular descriptors have 

been defined based on different ways of encoding chemical structures. One of the most 

commonly used types of molecule descriptors in cheminformatics is the fingerprint descriptor, 

which represents compound information through a chain or vector of bits with varying lengths. 

Each binary bit vector encodes a specific substructure defined by the fingerprint itself: the 

presence of the substructure is denoted by 1, and the absence is denoted by 0.1 

ML models can be categorized into several types based on their algorithms. The most widely 

used types in medicinal chemistry include decision trees, random forest (RF), support vector 

machine (SVM), gradient boosting, and different types of neural networks.1-2 With the 

increasingly large amount of experimental data available and the development of different ML 

algorithms, ML models are able to obtain useful information from existing data by characterizing 

drug molecules based on molecular descriptors. Moreover, successful applications of ML models 

using different kinds of fingerprints in the field of drug discovery have been reported. For 

example, Nav1.7 sodium channel inhibitors were accurately identified and optimized based on 

the prediction from an RF ML model developed with the Chemistry Development Kit (CDK) 

fingerprint.5 A deep generative ML model was implemented to facilitate the lead optimization 

process based on a pyrazolo[3,4-d]pyridazinone scaffold, leading to the successful discovery of 

potent and selective inhibitors towards discoidin domain receptor 1 (DDR1).6 Three 

classification models, namely RF, SVM, and deep neural network (DNN), were built with the 

extended-connectivity fingerprint (ECFP4) and Molecular ACCess System keys (MACCS) 

fingerprints to distinguish kinase inhibitors with different binding modes, and with these models, 
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different kinase inhibitor classes can be predicted with high accuracy.7 A rapid and effective de 

novo drug design method based on generative tensorial reinforcement learning with the Morgan 

fingerprint was established for the successful discovery of inhibitors of DDR1.8 ML approaches 

have achieved state-of-the-art performance in medicinal chemistry, and predictions from ML 

models have been able to direct drug design, enabling faster generation of drug candidates and 

reducing cost and time in the process of drug discovery. The rationale for ML approaches can be 

applied in all stages of drug development, speeding up the drug discovery process and reducing 

failure rates. 

Ghrelin receptor (GR), previously known as growth hormone secretagogue receptor 1a (GHS-

R1a), belongs to the G-protein coupled receptor (GPCR) protein family and is predominantly 

expressed in the pituitary gland and hypothalamus.9 Chemical modification of met-enkephalin, 

an endogenous pentapeptide, led to the discovery of ghrelin as the endogenous ligand for GR, a 

peptide hormone with 28 amino acids.10 This ligand is involved in growth hormone metabolism 

and glucose homeostasis.11 It has been reported that the expression of GR is significantly 

increased in several types of cancer, including prostate,12 breast,13 and ovarian cancer.14 Given 

the wide range of functions that GR displays, the development of drug candidates targeting GR is 

of great importance both therapeutically and diagnostically. GR ligands with high potency and 

selectivity have been described in various studies,15-16 and radiolabelled compounds with 

nanomolar binding affinity towards GR have also been reported.17-18 Based on their chemical 

structures, GR ligands can be divided into two categories: peptides/peptidomimetics and small 

molecules. Such structurally different types of molecules make the GR ligand pool incredibly 

diverse as peptides/peptidomimetics and small molecules inherently have large differences in 

physical and chemical properties.  

Peptides have been used as pharmaceuticals for approximately 100 years. Since the discovery of 

insulin in the 1920s, much research has been performed for the development of other peptide-

based drugs.19 However, as of 2017, peptide drugs only make up a small fraction of drugs 

available on the market, with around 60 peptide drugs having been approved.19 This is in stark 

contrast with the many thousands of drugs that have been approved across major global markets, 

many of which are small molecule drugs. Although peptides have been shown to generally have 

higher specificity and lower toxicity than small molecules, there are several drawbacks that limit 



123 
 

the viability of peptides as drug candidates.20 The most prominent limiting factors for peptide-

based drugs are that they have poor stability within the body due to proteases within the 

gastrointestinal tract, and furthermore, that they generally have difficulties passing through the 

intestinal mucosal barrier and into the bloodstream.21 These factors, among others, make it 

difficult to develop a viable orally administered peptide drug. However, although very few 

peptide drugs have successfully entered the market, it is believed that they may yet be able to 

guide future drug development. As previously mentioned, peptides regularly display exceptional 

specificity for their target. This is largely due to their large size relative to typical small molecule 

drugs; by having relatively long and varied side chains, peptides can often achieve a very high 

level of binding with their target by interacting with binding pockets with which small molecules 

are unable to interact.21 Ideally, a drug candidate would display a binding affinity similar to that 

of a peptide while also having the higher stability of small molecules; by combining the key 

attributes of both peptides and small molecules, it is possible that new drugs with unprecedented 

levels of both specificity and stability could be developed.  

Although some potent peptide/peptidomimetic ligands targeting GR have been discovered,22-23 

they have low stability and incur high levels of degradation in the gastrointestinal tract.24 It is 

hoped that ML may be able to determine the key features of both peptides and small molecules 

and apply them to aid in the design of such drugs. To the best of existing knowledge, no studies 

have used peptides/peptidomimetics as input data to predict the activity of small molecules with 

ML. Whether a ML model trained with a compound pool consisting of peptides/peptidomimetics 

could accurately identify small molecule binders remains unknown. 

To address this gap, in this study, different ML models trained with a dataset of 

peptide/peptidomimetic and small molecule GR ligands split in different strategies were built for 

the identification of small molecules with binding affinity towards GR. Firstly, binding data from 

the ChEMBL database was retrieved, compounds with different molecular fingerprints were 

characterized, and ML classification models were generated based on different splitting 

strategies. The performance of these models was then evaluated. Models with the best 

performance were selected to analyse important features that contribute to classification 

prediction. Key substructures associated with compound binding affinity were identified. The 

rationality of the models was further confirmed by external validation data. 
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2. Methods 

2.1 Data collection and preparation 

Molecules with binding affinity towards GR were collected from the ChEMBL database based 

on the following criteria: 1) Compounds with a target ChEMBL ID of CHEMBL4616. 2) 

Compounds with a molecular weight <2000. 3) Compounds with the standard unit being ‘nM’. 4) 

Compounds with the assay type being ‘binding’. Duplicates in the dataset were deleted, and the 

mean value was used for compounds with multiple values from different binding affinity tests. 

Compounds with IC50/Ki/Kb <1000 nM were considered as ligands with binding affinity, and 

those with an IC50/Ki/Kb >1000 nM were considered as molecules without binding affinity 

towards GR. Using this method, a total of 1444 compounds with GR binding data were obtained, 

among which 1080 compounds were molecules with binding affinity towards GR, while 364 

compounds did not display binding affinity towards GR (Table 3.1.1). In order to have a well-

balanced dataset to avoid biased prediction, the coverage of non-binding molecules was 

expanded by randomly selecting 1297 molecules from the ChEMBL database with molecular 

weights between 320 and 2000 (Table 3.1.1).  

Table 3.1.1. Summary of the dataset. 

 
No. of peptides/ 

peptidomimetics 

No. of small 

molecules 
Total 

Binding compounds 312 768 1080 

Non-binding compounds 182 182 364 

Random compounds 54 1243 1297 

Total 548 2193 2741 

 

In order to explore the common scaffold shared by the GR ligands, the binding molecules were 

clustered based on their Tanimoto coefficients by using the py4cytoscape25 package in Python 

(Figure 3.1.1). Tanimoto correlation is the most commonly used algorithm to calculate 

similarities among molecules by comparing their molecular fingerprints. The Tanimoto value 
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ranges from 0, when the molecules have nothing in common, to 1, when the molecules are 

identical. Compounds clustered in groups 2 and 5 (Figure 3.1.1) were defined as 

peptides/peptidomimetics, and the rest of the compounds were defined as small molecules. The 

non-binding compounds were defined in the same way (Table 3.1.1). 

 

Figure 3.1.1. Binding compounds in the dataset were clustered based on their Tanimoto 

similarities. The common scaffold in each cluster was highlighted in red. Those in the 

peptides/peptidomimetics class are highlighted in the rectangular boxes. 

To investigate whether ML model derived from different types of compound libraries can be 

used to accurately identify small molecule binders, four strategies were used to divide the dataset 

into different training and test sets. For strategy 1, all of the 2741 compounds were randomly 

split into training, test, and validation sets with a respective ratio of 2:1:1. Therefore, it does not 

separate peptides/peptidomimetics from small molecules. For strategy 2, the whole dataset was 

split by compound type. The 548 peptide/peptidomimetic compounds were used as a training set 
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and the rest of the 2193 small molecules were separated into a test set and a validation set in 1:1 

ratio. This strategy was used to see if the ML model derived from the peptide/peptidomimetic 

library is useful for identifying small molecule binders. For strategy 3, only small molecules 

were included. Each of the 2193 small molecules were randomly assigned into training, test and 

validation sets with a ratio of 2:1:1. For strategy 4, all of the 548 peptide/peptidomimetic 

molecules and 822 randomly chosen small molecules were assigned to a training set, and the rest 

of the small molecules were evenly distributed into test and validation sets (Table 3.1.2).  

All of the data were collected and processed by using the “chembl_webresource_client” package 

(https://github.com/chembl/chembl_webresource_client)26 in Python. 

Table 3.1.2. Summary of data grouping. 

 Training set Test set Validation set Sum 

Strategy 

1 

1370 

(mixture) 

685 

(mixture) 

686 

(mixture) 

2741 

(mixture) 

Strategy 

2 

548  

(peptides/peptidomimetics) 

1096  

(small 

molecules) 

1097  

(small 

molecules) 

2741 

(mixture) 

Strategy 

3 

1096  

(small molecules) 

548 

(small 

molecules) 

549 

(small 

molecules) 

2193 

(small 

molecules) 

Strategy 

4 

1370 

(mixture) 

685 

(small 

molecules) 

686 

(small 

molecules) 

2741 

(mixture) 

  

https://github.com/chembl/chembl_webresource_client
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2.2 Molecular representations 

The Morgan, RDKit, MACCS, and PubChem fingerprints were employed due to their excellent 

performance in previous studies.7, 27-29 The Morgan fingerprint is a commonly used circular 

topological descriptor that encodes fragments for a compound with a hashing function based on 

its atomic neighborhood.30-31 A radius of 2 and bit size of 1024 were selected for the Morgan 

fingerprint in this study. The MACCS fingerprint, originally designed for substructure searching, 

is a fragment fingerprint containing 166 bit of information, each of which encodes the presence 

or absence of a particular chemical substructure.32 The RDKit fingerprint is an RDKit-specific 

topological fingerprint. Inspired by the Daylight fingerprint, this fingerprint generates a bit ID by 

hashing subgraphs in a compound using bond types and each bond’s neighbor count.33 The bit 

size was set as 1024 for the RDKit fingerprint. The PubChem fingerprint encodes chemical 

fragments defined by PubChem with 881 binary bits. The Morgan, MACCS, and RDKit 

fingerprints were generated by using the open-source cheminformatics tool kit ‘RDKit’ (version 

2021.09.5) in Python.34 The PubChem fingerprint was generated by using PaDEL-Descriptor.35 

The key information for each fingerprint is summarized in Table 3.1.S1.  

To visualize the chemical space of the binding and non-binding compounds in the dataset, t-

distributed stochastic neighbor embedding (t-SNE) analyses36 were performed by using the 

individual bits as features of each fingerprint. t-SNE is an unsupervised, non-linear technique 

primarily used for the visualization of high-dimensional data by casting the data into a two- or 

three-dimensional representation. This technique was widely used in previous medicinal 

chemistry studies for chemical space analysis.37-38 The scikit-learn39 and matplotlib packages40 in 

Python were employed for t-SNE analysis and visualization. 

2.3 ML model development 

For each data splitting strategy, a total of 12 ML classification models were built with a 

combination of RF, SVM, and eXtrem Gradient Boosting (XGBoost) algorithms and the Morgan, 

RDKit, MACCS, and PubChem fingerprints.  

Random forest. RF is constructed from an ensemble of decision trees built from a bootstrapped 

sample of training data. For RF models, node splitting is based on a random subset of features 

for individual trees.41 The hyperparameters were tuned based on the number of trees in the forest 
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(n_estimators) and the quality of the split (criterion). The best hyperparameters were determined 

by setting ‘n_estimators’ with candidate values of 10, 50, 80, 100, 150, 200, 250, and 280 and by 

setting the ‘criterion’ as either gini or entropy. The rest of other parameters were left as default. 

Support vector machine. SVM is one of the most commonly used classification algorithms in 

ML due to its good performance. It constructs a linear or non-linear hyper-plane that separates 

two classes based on the position and feature values of the data.42 The SVM kernel was tuned to 

obtain the best hyperplane by setting the kernel value as either linear, rbf, poly, or sigmoid. The 

regularization parameter ‘C’ was optimized using values of 0.5, 0.8, 1.0, 1.5, 1.8, 2.0, and 2.2.  

eXtrem Gradient Boosting. XGBoost is based on a gradient boosting decision tree algorithm that 

is akin to the one used in RF models. Each new model is sequentially created through the 

improvement of the prior model and then ensembled together to make the final prediction.43 

Similar to RF models, the number of trees (n_estimators) were optimized using candidate values 

of 10, 50, 100, 150, 200, 250, and 300. The learning rate was tuned from 0.001 to 0.1. The rest of 

the other parameters were left as default. 

The RF and SVM models were built and trained using the scikit-learn package39 in Python, and 

the XGBoost model was built and trained using the XGBoost package43 in Python. 

Hyperparameters for each model were optimized by validation data using a grid search strategy. 

2.4 Performance evaluation 

In order to compare the performance of the models and select the best models for further analysis, 

several metrics were used for model evaluation, including accuracy (ACC), F1 score, Matthews 

correlation coefficient (MCC), and area under the receiver operating characteristic curve (AUC).  

Simply put, accuracy is the fraction of classifications that were correctly predicted by a particular 

model. F1 score can be regarded as an average of both ‘recall’, the fraction of true positives that 

were correctly predicted, and ‘precision’, the fraction of true positives out of all positive 

predictions. However, F1 score does not consider false negatives, so the Matthews correlation 

coefficient was also used. The MCC score is a balanced metric that takes into account true and 

false positives and negatives, and the score will only be high if both positives and negatives are 

correctly predicted. AUC score is obtained from integrating the area under a receiver operating 
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characteristic (ROC) curve and is indicative of a model’s ability to distinguish between positives 

and negatives. The equations that define these metrics are shown below: 

 

𝐴𝐶𝐶 =
TP + TN

TP + TN + FP + FN
 

 

𝐹1 = 2 ×
TP

2TP + FP + FN
 

 

𝑀𝐶𝐶 =
TP × TN − FP × FN

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅 − 1(𝑥))𝑑𝑥
1

𝑥=0

 

 

where TP represents true positives; TN, true negatives; FP, false positives; FN, false negatives; 

TPR, true positive rate; FPR, false positive rate. 

2.5 Feature importance 

Based on a game theory approach, SHapley Additive exPlanations (SHAP) values are 

measurements of feature importance calculated to explain the output of ML models, where the 

success/total score of a team is considered as the output of a model and the contributions made 

by each player are considered as the features of the model.44 This approach has been successfully 

employed in clinical and drug discovery studies for the identification of crucial features that 

contribute to ML outputs.45-46 

To recognise important structural patterns that affect the prediction of binding and non-binding 

molecules, SHAP values were calculated for each fingerprint bit as a feature value to identify 

substructures that determine the final prediction of the models.44 The SHAP values for the RF 

and XGBoost models were calculated using the TreeExplainer module, and the SHAP values for 

the SVM models were calculated using the KernelExplainer module in the SHAP package in 
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Python. The fingerprint bit information was visualized using the DrawMorganBit module in 

RDKit. 

2.6 Molecular docking study 

The crystal structure of GR (PDB ID: 6KO5)47 was used to perform molecular docking studies. 

The 3D structure of compound 17 was generated using DS Viewer 3.5. Molecular docking was 

performed using AutoDock Vina.48 The dimensions of the grid box were set large enough to 

encompass the whole binding pocket of the GR structure. All other parameters were left as 

default. 

3. Results 

3.1 Dataset overview 

The general chemical profiles of the whole dataset were overviewed before the data was split and 

before the models were evaluated. A flowchart for the entire study is shown in Figure 3.1.2. To 

explore the chemical properties of the compounds in this dataset, several parameters were 

calculated and compared between binding and non-binding peptides/peptidomimetics and small 

molecules. These parameters include molecular properties associated with molecule size 

(molecular weight (MW), and topological polar surface area (TPSA)), hydrophilicity (lipid–

water partition coefficient (ALogP)), hydrogen bonding ability (number of hydrogen bond 

acceptors (NHA) and donors (NHD), number of rotatable bonds (NRB), and number of NHs or 

OHs), and complexity (fraction of SP3 hybridized carbons and number of aromatic rings (NAR)). 

These properties have great impact on the binding affinity of a molecule and were widely used in 

previous studies to compare compounds of different categories.5, 49 Furthermore, the 

relationships between MW, ALogP, and TPSA were paired into scatter plots (Figure 3.1.3A). 
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Figure 3.1.2. Schematic summary of the workflow illustrating the course of the study. 

The P values were calculated by using the Kruskal-Wallis H test50 to assess the statistical 

significance among the four groups of molecules. Statistical significance was observed between 

peptides/peptidomimetics and small molecules, and between binding and non-binding molecules 

for all these parameters, except for the fraction of sp3 hybridized carbons, where binding and 

non-binding molecules showed no difference for both peptides/peptidomimetic and small 

molecules (Figure 3.1.3B). Although statistical differences were observed for some of the 

molecular properties between the binding and non-binding compounds, none of these properties 

could possibly be a crucial factor for the determination of compound binding affinity. It is 

necessary to build sophisticated ML models to recognize important patterns that differentiate 

between binding and non-binding compounds. 
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Figure 3.1.3. Chemical space analysis. A. Scatter plot of MW vs ALogP vs TPSA for binding 

small molecule (red), non-binding small molecule (blue), binding peptide/peptidomimetic 

(green), and non-binding peptide/peptidomimetic (purple) compounds in the dataset. B. Violin 

plots showing the distributions of molecular properties for binding small molecule (red), non-

binding small molecule (blue), binding peptide/peptidomimetic (green), and non-binding 

peptide/peptidomimetic (purple) compounds, including molecular weight (MW), lipid–water 

partition coefficient (ALogP), fraction of sp3 hybridized carbons (sp3), topological polar surface 

area (TPSA), number of hydrogen bond acceptors (NHA) and donors (NHD), number of 

rotatable bonds (NRB), number of NHs or OHs (NHOH), and number of aromatic rings (NAR).  
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3.2 Model performance 

For each data splitting strategy, twelve classification ML models were constructed using a 

combination of RF, SVM, and XGBoost algorithms and four molecular fingerprints. The RF, 

SVM, and XGBoost methods were selected because they are widely used in the field of 

medicinal chemistry, and classification and regression tasks performed by these three methods 

were reported to have high accuracy in previous studies.45, 51-53 

To obtain models with the best performance, the two most important hyperparameters were 

tuned by using each of the three validation sets for each model. The results of hyperparameter 

optimization for each model are shown in Figure 3.1.S1, 3.1.S2, 3.1.S3 and 3.1.S4. The 

hyperparameter combinations that provided the greatest ACC scores were selected to build each 

respective model. In SVM models, the choice of kernel had a huge influence on model 

performance, with either ‘poly’ or ‘rbf’ being the best. However, the variation of C values only 

slightly affected the outcome. In XGBoost models, the scores increased as the number of 

estimators and learning rate increased. As shown in Figure 3.1.S1, the ACC scores gradually 

increased from the lower left to upper right.  

Overall, good performances for the models based on strategy 1, strategy 3 and strategy 4 were 

consistently observed in terms of their AUC values (Figure 3.1.4), which range from 0.93 to 0.96, 

0.96 to 0.97, and 0.88 to 0.96, respectively. Models based on strategy 3 provided slightly 

superior performances compared with strategy 1 and strategy 4 in regard to their AUC scores. 

Models built with strategy 2 provided the worst results, with AUC values ranging from 0.44 to 

0.68. For each strategy, the models generated with the Morgan fingerprint were marginally better 

than other fingerprints, with the AUC values consistently being 0.96 and 0.97 from strategy 

1/strategy 4 and strategy 3, respectively (Figure 3.1.4). 
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Figure 3.1.4. ROC curves for the models generated with the Morgan, PubChem, RDKit, and 

MACCS fingerprints using the test sets from strategy 1 (A), strategy 2 (B), strategy 3 (C), and 

strategy 4 (D). Each graph includes three curves representative of the RF (green), SVM (orange), 

and XGBoost (blue) classification models.  

 

Given the nearly indistinguishable AUC values from all the models generated with different 

fingerprint types and ML techniques from each strategy, other widely used metrics, including F1 

score and MCC, were also employed to extensively evaluate and compare each model. The 

metric scores for each model are shown in Table 3.1.3.  
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Using strategy 1, overall good performances were observed for each model. In particular, the 

ACC scores were between 0.86 to 0.92, the F1 scores were between 0.83 to 0.93, and the MCC 

scores were between 0.71 to 0.82. The RF and SVM models built with the same fingerprint 

demonstrated comparable results in terms of ACC, F1, and MCC scores, whereas the XGBoost 

models showed slightly worse results. The ACC, F1, and MCC scores of models developed with 

the Morgan fingerprint were consistently higher than the rest of other models, with the best 

performing models being RF and SVM.    

Using strategy 2, all the metrics were less satisfying. The ACC scores ranged from 0.62 to 0.70, 

the F1 scores from 0.73 to 0.80, and the MCC scores from 0.01 to 0.31. Although the metrics for 

strategy 2 are not high compared with those from the other strategies in this study, some of the 

models may still be used for the identification of small molecule binders. For example, the SVM 

models built with the Morgan and PubChem fingerprints achieved acceptable results in this 

series of models with the respective AUC values being 0.68 and 0.66.  

Using strategy 3, the scores from each model were consistently high, with the ACC scores 

ranging from 0.90 to 0.93, F1 scores from 0.91 to 0.95, and MCC scores from 0.79 to 0.86. The 

three models built with the Morgan fingerprint performed the best compared with models built 

with the other fingerprints. 

Using strategy 4, all the models showed comparable performance with the models from strategy 

3. The ACC scores were between 0.83 to 0.93, the F1 scores were between 0.87 to 0.95, and the 

MCC scores were between 0.63 to 0.84. The models built with the same fingerprint showed 

nearly equivalent performance. However, the choice of the fingerprint had a bigger influence on 

the results. Among the four fingerprints, models built with the Morgan fingerprint performed the 

best, followed by the RDKit and MACCS fingerprint. The PubChem fingerprint afforded the 

worst performing models.   
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Table 3.1.3. Summary of model performance using the test sets from strategy 1, strategy 2, 

strategy 3, and strategy 4. 

Strategy Fingerprint Model ACC F1 MCC AUC 

1 Morgan RF 0.92 0.93 0.82 0.96 

  XGBoost 0.89 0.86 0.76 0.96 

  SVM 0.91 0.93 0.82 0.96 

 PubChem RF 0.88 0.90 0.74 0.94 

  XGBoost 0.86 0.83 0.71 0.94 

  SVM 0.88 0.90 0.75 0.93 

 RDKit RF 0.89 0.91 0.77 0.94 

  XGBoost 0.89 0.86 0.77 0.95 

  SVM 0.90 0.91 0.79 0.95 

 MACCS RF 0.89 0.91 0.76 0.94 

  XGBoost 0.86 0.83 0.71 0.93 

  SVM 0.88 0.90 0.76 0.94 

2 Morgan RF 0.66 0.79 0.05 0.57 

  XGBoost 0.66 0.80 0.04 0.50 

  SVM 0.68 0.80 0.16 0.68 

 PubChem RF 0.63 0.74 0.11 0.59 

  XGBoost 0.63 0.73 0.14 0.60 

  SVM 0.70 0.78 0.31 0.66 

 RDKit RF 0.66 0.80 0.07 0.44 
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  XGBoost 0.66 0.79 0.05 0.51 

  SVM 0.67 0.80 0.14 0.63 

 MACCS RF 0.62 0.76 0.01 0.52 

  XGBoost 0.64 0.77 0.02 0.55 

  SVM 0.65 0.78 0.04 0.52 

3 Morgan RF 0.92 0.94 0.84 0.97 

  XGBoost 0.93 0.91 0.85 0.97 

  SVM 0.93 0.95 0.86 0.97 

 PubChem RF 0.92 0.93 0.82 0.97 

  XGBoost 0.91 0.93 0.82 0.97 

  SVM 0.91 0.93 0.81 0.96 

 RDKit RF 0.91 0.93 0.81 0.96 

  XGBoost 0.92 0.94 0.83 0.96 

  SVM 0.93 0.94 0.84 0.96 

 MACCS RF 0.91 0.93 0.81 0.96 

  XGBoost 0.90 0.92 0.79 0.96 

  SVM 0.92 0.93 0.82 0.96 

4 Morgan RF 0.93 0.94 0.84 0.96 

  XGBoost 0.91 0.87 0.80 0.96 

  SVM 0.93 0.95 0.84 0.96 

 PubChem RF 0.85 0.89 0.65 0.88 

  XGBoost 0.83 0.87 0.63 0.88 
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From the four data splitting strategies, comparably high levels of accuracy were consistently 

achieved by models that employed strategy 1, strategy 3 and strategy 4, with scores from strategy 

3 being marginally higher. The lowest scores were observed with strategy 2, where 548 

peptides/peptidomimetics were used to train models for the prediction of a large set of small 

molecules. Such low scores were achieved partially due to the fact that the training set for this 

strategy was composed of a small number of molecules. Based on such a limited size of training 

set, the models were not able to learn sufficient information to produce powerful predictions. 

Another possible reason may be that the structural diversity of the training set was fairly limited 

since only peptide/peptidomimetic compounds were used to train the models with strategy 2. It 

has been reported that increasing the number of structurally diverse compounds resulted in 

increased model performance.27 Therefore, models developed with the homogenous 

peptide/peptidomimetic training set of strategy 2 yielded poor results compared with models 

developed with the more structurally diverse training sets used for strategy 1, strategy 3 and 

strategy 4. However, when the models were trained with a combination of 

peptides/peptidomimetics and small molecules, all the metric scores were significantly improved, 

as was shown with the use of strategy 4. These results further suggest that the size of available 

data in hand and structural diversity of the dataset influence model performance. 

Taken together, a ML model trained solely with a limited number of peptides/peptidomimetics 

may not be able to identify small molecule binders. However, a ML model trained with a diverse 

  SVM 0.84 0.88 0.64 0.88 

 RDKit RF 0.90 0.93 0.78 0.94 

  XGBoost 0.91 0.93 0.80 0.95 

  SVM 0.92 0.94 0.83 0.95 

 MACCS RF 0.92 0.94 0.82 0.95 

  XGBoost 0.91 0.93 0.79 0.96 

  SVM 0.91 0.93 0.80 0.95 
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dataset composed of both peptides/peptidomimetics and small molecules has the ability to 

accurately identify small molecule binders. 

The choice of molecular fingerprint is another factor that affects model performance. The RF, 

XGBoost, and SVM models provided comparable results within the same fingerprint type, 

suggesting that these three ML models perform equally well, irrespective of their different 

algorithms. However, different molecular fingerprints yielded different model performances. 

Among the four fingerprint types, the models built with the Morgan fingerprint provided superior 

performance in terms of AUC, F1, ACC, and MCC values compared with the rest of the other 

fingerprints, followed by the RDKit fingerprint. Models developed with the PubChem and 

MACCS fingerprints provided slightly lower values with respect to ACC, F1, and MCC scores 

compared with the Morgan and RDKit fingerprints.  

To further analyze the dissimilar performances resulting from different fingerprint types, the four 

fingerprints were explored and visualized using t-SNE.36 The t-SNE plots in Figure 3.1.5 suggest 

that the binding molecules could be better discriminated from the non-binding molecules by 

using the Morgan and RDKit fingerprints, whereas the binding and non-binding compounds are 

less distinguishable by using the MACCS and PubChem fingerprints. Additionally, small 

molecules and peptides/peptidomimetics were distributed in different clusters from these t-SNE 

plots, suggesting that these two types of molecules show great structural dissimilarity. Such 

structural dissimilarity may be another reason for the poor performance observed from the 

models using strategy 2.   

Altogether, the Morgan fingerprint produced the best performing models regardless of the ML 

algorithms. Importantly, it has been shown that ML models trained with a mixture of 

peptides/peptidomimetics and small molecules are able to provide accurate prediction of the 

binding category of small molecules. Therefore, the important features of the Morgan fingerprint 

were further assessed using strategy 4.  
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Figure 3.1.5. The t-SNE analysis of the compounds using the Morgan (A), RDKit (B), MACCS 

(C), and PubChem (D) fingerprints.  The red dots indicate binding small molecule, blue: non-

binding small molecule; green: binding peptide/peptidomimetic; and purple: non-binding 

peptide/peptidomimetic compounds.  
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3.3 Important substructures 

In order to interpret the binding predictions from ML models, the important features from 

models built with the Morgan fingerprint were identified and analysed to present the structural 

patterns that contribute to the predicted probability of binding category. SHAP44 was introduced 

to explain the predictions made by the models by calculating the contribution of each feature.  

The Morgan fingerprint bit information was translated to chemical structure features that 

determine binding category predictions. The top 20 features for the three classification models 

built with the Morgan fingerprint using strategy 1 (Figure 3.1.S5A), strategy 2 (Figure 3.1.S5B), 

strategy 3 (Figure 3.1.S5C), and strategy 4 (Figure 3.1.6A, Table 3.1.S2) are shown. Furthermore, 

the features that are present in all of the three models in each strategy were further extracted. 

Venn diagrams of the 20 most important features for the models from strategy 1 (Figure 

3.1.S6A), strategy 2 (Figure 3.1.S6B), strategy 3 (Figure 3.1.S6C), and strategy 4 (Figure 3.1.6B) 

are shown. The overlapping sets include 4, 2, 7, and 5 common features from strategy 1, strategy 

2, strategy 3, and strategy 4, respectively. As shown in Figure 3.1.6A, almost all of the top 20 

features are positive Morgan features that are positively associated with the binding affinity of 

the GR ligands.  

The top-ranked features from strategy 4 can be divided into several categories based on structural 

similarities. The most prevalent category contains N-bearing conjugated systems, which includes 

bits 90, 104, 119, 121, 189, 328, 364, 476, 758, 802, 806, 831, 855, and 913. The second most 

prevalent category contains amine groups, which includes primary, secondary, and tertiary 

amines. Bits 117, 128, 285, 366, 751, 881, and 896 belong to this category. The next category is 

the oxygen-containing functional group, which includes bits 169, 320, 650, and 695. The last 

category contains aliphatic and aromatic carbons, including bits 4, 33, 212, 291, 305, 310, 319, 

325, 341, 366, 389, 648, 730, 777 and 878. Conjugated ring systems, amine groups, and oxygen-

containing groups are usually active moieties involved in ligand-receptor interactions which 

contribute to ligand binding affinity. Aliphatic and aromatic carbons, on the other hand, provide 

hydrophobic environments that interact with the nonpolar parts of GR.  

The feature weights from the RF, XGBoost, and SVM models from strategy 4 for one exemplary 

compound is shown using the SHAP force plot (Figure 3.1.6C). The positive and negative 

feature contributions are drawn with respective sequential red and blue arrows. The size of each 
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arrow is proportionate to the SHAP value for the corresponding feature. The top-ranked 

topological features were mapped onto the displayed compound. The majority of the important 

features for this compound are patterns that belong to N-containing conjugated ring systems and 

amine groups. 
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Figure 3.1.6. A. The top 20 important features ranked by SHAP for the RF, XGBoost, and SVM 

models using strategy 4. B. Venn diagrams demonstrating the features of bit information that are 
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commonly present among the RF, XGBoost, and SVM models using strategy 4 and their 

corresponding substructures (the central atom is highlighted in blue, and aromatic atoms are 

highlighted in yellow. Atoms/bonds in light gray indicate pieces of the structure that affect the 

connectivity invariants of the atoms, but they are not directly part of the fingerprint).33 C. 

Exemplary compound demonstrating top-ranked features for the Morgan fingerprint. The highly 

weighted features are highlighted in red in the structure of the compound. 

3.4 External validation 

Recently, a series of fluorine-bearing quinazolinone small molecule derivatives as GR 

antagonists with high binding affinity towards GR was reported.17-18 This series of compounds 

has not yet been included in the ChEMBL database, so these compounds were not used for ML 

model development. Instead, these compounds were used as external data to additionally 

investigate the performance of the best model from strategy 2, strategy 3, and strategy 4 in order 

to test if these models could be used to identify small molecules with binding affinity in a real-

world situation. Since only one non-binding GR ligand was found in this study, a total of 32 

random small molecules were added to the external validation dataset as non-binding ligands to 

offset any bias. The ACC, F1 score, and MCC were determined for the external dataset, and 

important features were mapped onto one compound (17).  

The results of the metrics using the external data were shown in Table 3.1.4. Excellent 

performances were observed from SVM models using strategy 3 and strategy 4. Using strategy 2, 

the binding category for only 33 out of 62 compounds was correctly predicted using SVM. 

However, the binding category for 54 out of 62 compounds was correctly predicted from strategy 

3, demonstrating SVM model possessed very high accuracy. The highest accuracy was achieved 

using strategy 4, where 57 out of 62 compounds were correctly predicted (Table 3.1.S3). Table 

3.1.4 also shows that the SVM model using strategy 2 demonstrated less satisfactory 

performance. The model trained with strategy 4 in this study performed the best in terms of ACC, 

F1, and MCC scores. The model trained with strategy 3 showed marginally lower scores 

compared with that using strategy 4. These results are similar to the ones obtained with the test 

dataset (Table 3.1.3), which further suggests that a ML model trained with a large number of 

peptides/peptidomimetics and small molecules is able to yield trustworthy predictions for the 

binding category of small molecules, but a ML model trained with a limited number of 
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peptides/peptidomimetics provides unsatisfactory prediction power. Overall, the external 

validation further proved that models built with strategy 3 and strategy 4 are robust, and 

predictions from the models are reliable and capable of predicting true positive and negative 

molecules with high accuracy.   

Table 3.1.4. Model performance using the external data. 

Strategy Model ACC F1 MCC 

2 SVM_Morgan 0.53 0 0 

3 SVM_Morgan 0.87 0.85 0.75 

4 SVM_Morgan 0.92 0.93 0.84 

 

The top-ranked features for a representative compound (17) that were correctly predicted by the 

SVM model from both strategy 3 and strategy 4 are shown using the SHAP force plot, and all of 

these top-ranked features are from the piperidine and quinazolinone scaffold of the compound 

(Figure 3.1.7A). To further confirm the important features found in compound 17 by ML, a 

molecular docking study was performed. Recently, the crystal structure of GR bound to a ligand 

with a quinazolinone scaffold was revealed.47 This co-crystalized quinazolinone derivative 

compound (21) in complex with GR has a very similar structure to compound 17. Therefore, this 

crystal structure (PDB ID: 6KO5)47 was used to perform molecular docking studies as shown in 

Figure 3.1.7B. The crucial interactions revealed by the crystal structure of compound 21-bound 

GR include 1) a π–cation interaction between the 5-azaquinazolinone moiety of compound 21 

and ARG102; 2) hydrophobic interactions between the isopropylpiperidine moiety and residues 

PHE279, PHE309, and PHE312; and 3) a salt bridge interaction between the positively charged 

amine in the isopropylpiperidine moiety due to protonation under physiological conditions and 

ASP99 (Figure 3.1.7B). Further mutagenesis studies have showed that alanine mutations of 

ASP99 and ARG102 abolished the receptor activity, confirming the critical roles of the 5-

azaquinazolinone moiety and the isopropylpiperidine moiety. The docking studies showed that 

compound 17 is able to bind to the orthosteric pocket of GR in an identical fashion as compound 

21 (Figure 3.1.7C). All the crucial interactions involving the quinazolinone moiety and the 
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isopropylpiperidine moiety are preserved. The results show that the ML models derived from 

strategy 3 and 4 are able to precisely identify the most crucial substructural features responsible 

for receptor binding.   
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Figure 3.1.7. A. Highly weighted features for one representative compound (17) in the validation 

set, whose binding affinity of 0.3 nM was determined using a radio-ligand binding assay. The 

binding category of this compound was correctly predicted by the SVM model using strategy 3 

and strategy 4. The substructures of the most highly weighted features are shown below the force 

plot (the central atom is highlighted in blue, and aromatic atoms are highlighted in yellow. 

Atoms/bonds in light gray indicate pieces of the structure that affect the connectivity invariants 

of the atoms, but they are not directly part of the fingerprint). The highly weighted features are 

highlighted in red in the structure of the compound. B. The crystal structure of compound 21 in 

complex with GR. The ligand and key residues are shown in yellow and orange sticks, 

respectively. C. The binding mode of compound 17 from the molecular docking study. The 

ligand and key residues are shown in pink and orange sticks, respectively.  

4. Conclusions 

In this study, different ML methods including RF, XGBoost, and SVM were developed with 

training sets of distinct size and chemical composition in an attempt to distinguish GR binding 

small molecules from those without any binding affinity. To the best of existing knowledge, this 

is the first study on the development of ML models based on a dataset of compounds that could 

be split into peptides/peptidomimetics and small molecules. Robust models were obtained, as 

demonstrated by different performance metrics. Highly weighted features contributing to 

positive predictions were identified and mapped onto representative compounds. The correct 

identification of positive features provided a rationale for successful classification tasks. 

Furthermore, the best performing models in this study were further successfully validated by 

using 62 new small molecules, and the major substructures contributing to the receptor-ligand 

interactions were further supported by the crystal structure of GR in complex with a small 

molecule that has similar structure with the molecules in the validation set.  

It was found that the size of the dataset, the structural diversity of the compounds, and the choice 

of molecular fingerprint influence the model performance the most. ML models trained with a 

combination of peptides/peptidomimetics and small molecules can be used to identify small 

molecule binders. However, whether ML models trained solely with peptides/peptidomimetics 

are able to accurately perform these predictions remains to be seen. More available 

peptides/peptidomimetics need to be included in future studies to determine the validity of using 
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these models trained solely with peptides/peptidomimetics. Furthermore, in this study, only the 

one-hot encoding vectorization method was used for molecule representation. However, this one-

hot encoding method is sparse and high-dimensional, and similar entities are not placed close to 

one another in vector space by this method.54 As is shown in Figure 3.1.5, small molecules and 

peptides/peptidomimetics were plotted in different spaces from t-SNE analyses. Such 

dissimilarity rendered by the one-hot encoding method also led to the poor performance of ML 

models built solely with peptides/peptidomimetics as with strategy 2. This is the major limitation 

in this study. As ML models’ ability to learn is affected by the conversion from a molecular 

structure to a vector representation, better representations of molecular structure (i.e., graph 

embedding representation)55 need to be developed in the future studies in order to effectively 

‘transform’ peptide-based molecules into small molecules. Nevertheless, it has been shown that 

some of the models in this study have great potential to guide the drug design of small molecules, 

with key attributes of both peptides and small molecules, for the ghrelin receptor. The discovery 

and development of compounds displaying advantages of both peptides and small molecules 

remains a difficult task. Therefore, the trained RF and SVM models from strategy 4 are made 

available upon request.  
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Part two 

Local Augmented Graph Neural Networks for the Classification of 

GPCR Modulators 

 

Abstract:  

G-protein coupled receptors (GPCRs), the largest family of cell transmembrane molecules, are 

distributed across various cell types and play crucial roles in signal transduction. GPCRs-

mediated signaling pathways are involved in many pathological conditions. At least one third of 

marketed drugs target GPCRs, emphasizing their therapeutic importance. GPCR ligands can be 

classified as agonist, antagonist, and inverse agonist based on their functionality. The ability to 

accurately identify a ligand’s functional profile is immensely useful for structural optimization of 

the ligand to selectively activate or block relevant pathways, which is important to accelerate 

drug discovery and reduce costs. In this study, a local augmented feature was incorporated into 

Graph Convolutional Network (LAGCN) and Graph Attention Network (LAGAT) in an attempt 

to predict the functional profile of GPCR ligands. A total of 5 representative GPCRs, including 

C-X-C chemokine receptor type 4 (CXCR4), ghrelin receptor (GR), histamine H3 receptor (H3R), 

lysophosphatidic acid receptor 1 (LPA1), and cannabinoid 1 receptor (CB1) were included. The 

results showed that the LAGCN and LAGAT models achieved state-of-the-art accuracy for the 

classification of GPCR ligands. The inclusion of the local augmented feature consistently 

improved the accuracy, precision, recall, and F1 score in the dataset when compared to the base 

models without data augmentation. The average accuracies of LAGNN and LAGAN is 83% and 

81%, respectively. This study showed that local augmented feature is a powerful tool to improve 

graph neural network model performance for GPCR functionality prediction. The models are 

promising tools to be used for screening novel therapeutic agents targeting GPCRs. 
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Graphical abstract: 

 

 

 

Key words: G-protein coupled receptors, local augmented graph convolutional network, local 

augmented graph attention network 
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1. Introduction 

The emergence of large-scale and high-dimensional data has driven the successful application of 

artificial intelligence (AI) to medicinal chemistry in the past few years.1-4 As a subset of AI, deep 

learning offers a versatile framework that enables the extraction of intricate patterns and 

relationships from complicated datasets, transcending the limitations of traditional methods in 

drug discovery. Deep learning methods, the driving force behind today’s AI boom, possess 

immense potential to advance the drug discovery process and reduce failure rates, sparking a 

revolution in how the design and development of new pharmaceuticals are approached.5-6 The 

commonly used deep learning methods in medicinal chemistry include feed-forward network, 

recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and 

graph neural network (GNN). The feed-forward network represents the fundamental form of an 

artificial neural network, characterized by unidirectional connections that flow from the input 

layer to the hidden layers, and then onward to the output layer. It operates without loops or 

cycles within its architecture.5 RNN is designed as an approach for modelling sequential data. In 

contrast to feed-forward network, RNN introduces feedback connections, allowing information 

to flow in cycles within its network architecture.7 RNN and its variants, including long-short-

term memory (LSTM) and gated recurrent unit (GRU), have gained prominence as powerful 

generative models used in de novo drug design.8 An AE consists of two main components: an 

encoder and a decoder. The encoder transforms high-dimensional data into a low-dimensional 

representation, while the decoder reconstructs the low-dimensional representation back to the 

original input space. AE and its variants, including variational autoencoder (VAE) and 

adversarial autoencoder (AAE), are usually used to achieve unsupervised deep learning tasks.9 A 

GAN is composed of two key parts: a generator and a discriminator, which undergo competitive 

training. The discriminator learns from its errors and enhances its ability to distinguish real from 

generated inputs, while the generator produces new samples that closely mimic real samples, 

trying to deceive the discriminator.10 This adversarial interplay drives gradual enhancements in 

the abilities of both the generator and discriminator. Graph Neural Networks (GNNs) are 

specifically designed to tackle tasks that involve graph-structured data. They operate directly on 

the graph structure, making them ideal for analyzing relational information. The key idea for 

GNNs is to capture and leverage the local neighborhood information of nodes in a graph to learn 

informative representations. 
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In the field of medicinal chemistry, GNNs have captured significant attention due to their ability 

to represent chemical molecules using graphs in a highly intuitive and concise way.11 In these 

graphs, atoms are represented as nodes, while bonds are represented as edges. This 

representation allows GNNs to capture the intricate relationships between atoms and bonds, 

enabling them to make accurate predictions. Over the past few years, there has been a surge in 

the utilization of various GNN variants, such as Graph Convolutional Networks (GCNs) and 

Graph Attention Networks (GATs), for a wide range of tasks in medicinal chemistry. These 

GNN variants have found successful applications in predicting drug-target interactions,12-13 

estimating ligand binding affinities,14 and assessing the synthetic accessibility of organic 

molecules.15 However, when dealing with nodes that have few neighbors, there may be 

challenges in adequately aggregating neighborhood information. The limited amount of available 

local information can result in incomplete or insufficient representations for such nodes. This 

crucial limitation of GNN hinders its broader utilization in drug discovery, necessitating 

attention and resolution to improve the capabilities and robustness of GNNs. 

GPCRs, the largest family of cell transmembrane molecules, are extensively found in diverse cell 

types and play crucial roles in transducing a wide array of cell signals. Due to their significant 

involvement in cell signaling pathways, GPCRs have captured considerable attention in the field 

of drug discovery. These receptors have emerged as attractive targets for therapeutic/diagnostic 

intervention due to their ability to modulate important physiological processes.16 Currently, 

approximately 30-35% of the FDA-approved drugs are designed to target GPCRs.17 Based on the 

mechanism of action and interaction with the receptor, GPCR ligands can be categorized into 

several types: agonist, antagonist, inverse agonist and inactive molecules. Accurate classification 

of GPCR ligands into agonists, antagonists, inverse agonists, or inactive molecules is essential 

for comprehending their distinct effects on GPCRs and their implications in therapeutic 

applications. This classification provides insights into their biological effects, therapeutic 

potential, and possible side effects. Traditionally, the classification of GPCR ligands has been 

accomplished through costly and time-consuming biological experiments. While deep learning 

has found extensive application in the field of drug discovery, there have been no specific deep 

learning models developed to address this particular issue.  
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By harnessing the power of deep learning modeling, the objective is to explore the potential of 

deep learning in accurately classifying potential GPCR ligands, thereby addressing the 

aforementioned problem. In order to tackle the challenges associated with inadequate 

aggregation of neighborhood information in GNNs, the local augmented graph convolutional 

network (LAGCN) and local augmented graph attention network (LAGAT) were introduced as 

novel approaches to boost the performance of multi-classification tasks on graph-structured data. 

In LAGCN and LAGAT, a local augmentation mechanism was incorporated into the graphs in 

an attempt to enhance the graph topological representations and feature extraction processes. 

 

Figure 3.2.1. Phylogenetic tree of class A GPCRs as drug targets. Node represents GPCR named 

according to its gene name. 
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2. Methods 

2.1 Data collection and preparation 

Five GPCRs, namely C-X-C chemokine receptor type 4 (CXCR4), ghrelin receptor (GR), 

histamine H3 receptor (H3R), lysophosphatidic acid receptor 1 (LPA1), and cannabinoid 1 

receptor (CB1) with their endogenous ligand representing protein (CXCR4), peptide (GR), 

aminergic (H3R), and lipid were selected (LPA1 and CB1) (Figure 3.2.1). The ChEMBL18 

database was employed to create ligand type datasets for the GPCRs. Duplicates and compounds 

with missing values were removed from the dataset. In cases where compounds had multiple 

values from different biological tests, the mean value was used. Compounds with an IC50/EC50 < 

1000 nM were classified as active ligands and further categorized as agonists, antagonists, or 

inverse agonists. Compounds with an IC50/EC50 ≥ 1000 nM were considered as inactive 

molecules. The dataset of all the receptors was summarized in Table 3.2.1. For each dataset, the 

compounds were randomly split into training and test set with a respective ratio of 7:3. All of the 

data were collected and processed by using the “chembl_webresource_client” package (https:// 

github.com/chembl/chembl_webresource_client) in Python. The chemophysical properties of all 

compounds were generated using the RDKit19 package in Python. 

Table 3.2.1. Summary of the dataset. 

Target No. of agonist No. of antagonist No. of inverse agonist No. of inactive 

LPA1 48 234 0 73 

CB1 541 753 471 2213 

H3R 194 1024 239 291 

GR 842 368 106 193 

CXCR4 8 519 0 253 

 

2.2 Graph construction 

In this study, the Deep Graph Library (DGL)-LifeSci20 was used to convert molecule objects 

from SMILES strings into a bidirectional graph format. The conversion process involved 
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representing each compound's atoms as nodes and covalent bonds as edges. To encode atom and 

bond information, the CanonicalAtomFeaturizer module and the CanonicalBondFeaturizer 

module from the DGL-LifeSci package in Python were utilized, respectively. The conversion 

tool provided eight atom features, resulting in a 1x74 dimensional atom feature matrix (Table 

3.2.2). For a compound with N atoms, the resulting atom feature matrix would be N x 74. 

Additionally, four bond features were provided, resulting in a 1x12 dimensional bond feature 

matrix (Table 3.2.2). For a compound with N bonds, the conversion produced a bond feature 

matrix of size N x 12. 

Table 3.2.2. Atom and bond features in the graph conversion tool from the DGL-LifeSci 

package.20 

 No. Description of features No. of bits Form 

Atom 

1 One hot encoding of the atom type 1-43 Binary 

2 One hot encoding of the atom degree 44-54 Binary 

3 One hot encoding of implicit H count on atoms 55-61 Binary 

4 Formal charge of the atom 62 Numerical 

5 Atom's radical electron count 63 Numerical 

6 One hot encoding of the atom hybridization. 64-68 Binary 

7 Whether the atom is aromatic 69 binary 

8 One-hot encoding of total H count on atoms 70-74 binary 

     

Bond 

1 One hot encoding of the bond type 1-4 binary 

2 Bond conjugation 5 binary 

3 Bond connectivity 6 binary 

4 One hot encoding of bond stereo configuration 7-12 binary 
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2.3 Local augmentation 

To address issues associated with inadequate aggregation of neighborhood information in GNNs, 

a data augmentation framework, Local Augmentation for Graph Neural Networks (LAGNN) 

proposed by Liu et al21 was used, in order to generate more features in the local neighborhood, 

enabling the acquisition of effective representations. Consequently, this approach enhances the 

expressive capacity of GNNs and leads to improved model performance. The term "local 

augmentation" denotes the process of generating neighborhood features using a conditional 

variational autoencoder (CVAE) model that is conditioned on local structures and node 

features.21 The architecture of CVAE is shown in Figure 3.2.2.  

A graph is represented as G = (V, Ε), where V is a collection of N nodes {ν1, ν2, …, νn}, and Ε is 

the set of edges. The adjacency matrix, denoted as A ∈ {0,1}N×N, indicates a value of 1 for Ai,j if 

and only if there exists an edge between nodes νi and νj in Ε. The neighborhood of a node is 

defined as Νi = {νj|Ai,j = 1}, representing the set of neighboring nodes connected to node νi. The 

diagonal degree matrix is defined as Di,i  = ∑ 𝐀i, j𝑛
𝑗=0 . It calculates the sum of all the edges 

connected to node νi from j = 0 to n. The feature matrix is represented as X ∈ ℝ NF, where each 

node ν is related to an F-dimensional feature vector Xν. 

For a node ν and its neighbors Νν, neighboring pairs (Xν, Xμ) was extracted as input for CVAE, 

where μ belongs to Νν. In the inference stage, the latent space vector z was sampled from a 

standard normal distribution N (0, I). Subsequently, the condition vector c and z were 

concatenated and fed into the decoder. This process allows us to obtain the generation of 

augmented feature vector 𝚾̅ν.   

 

Figure 3.2.2. A schematic representation of CVAE.  
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2.4 LAGCN and LAGAT 

In this work, LAGCN and LAGAT were implemented as proposed by Liu et al.21 The first layer 

of LAGCN is defined as: 

H(1) = (𝑷̃XW
(1) 

0 )∥(𝑷̃𝑿̅W
(1) 

1 ), 

where 𝑷̃ = 𝑫̃-1/2𝑨̃𝑫̃-1/2. The symbol ∥ denotes the concatenation applied to matrices along the 

second dimension. In the weigh matrix W, the subscripts and superscripts indicate the ordinal 

numbers of the layers and parameters, respectively. 

The first layer of LAGAT is defined as: 

H(1) = (∥D/2 

d=1∑ (α 𝑑
νμ

𝑾 (1)
d

 𝐗μ)μ ∈ Νν ) ∥ (∥D 

d=D/2+1∑ (α 𝑑
νμ

𝑾 (1)
d

 𝐱̅μ)μ ∈ Νν ),  

where α
d 

νμ is computed on X (1 ≤ d ≤ D/2) or 𝚾̅ (D/2+1 ≤ d ≤ D).  

2.5 Model architecture and performance evaluation 

The architectures of the LAGCN and LAGAT are shown in Figure 3.2.3. For LAGCN, local 

augmentation graphs were employed as input, which were then passed through three graph 

convolution layers interconnected by a ReLU function. The resulting information was 

subsequently utilized as input for a fully connected layer composed of two linear layers. Finally, 

a classifier was employed to calculate the ultimate prediction. For LAGAT, it utilized local 

augmentation graphs as the initial input, which were then propagated through three graph 

attention layers. The resulting information was further utilized as input for a fully connected 

layer consisting of two linear layers. Lastly, a classifier was employed to calculate the final 

prediction. 

The model performances were evaluated using multiple metrics, including accuracy (ACC), 

precision (Prec), recall (Rec), and F1 scores. The equations that define these metrics are provided 

below: 

ACC = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Prec = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
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Rec = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F1 = 2  
𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

where TP represents true positives; TN, true negatives; FP, false positives; FN, false negatives. 

In addition, the confusion matrix is used to show the performance of multiclassification models 

by offering comprehensive details about the model’s performance for each individual class.  

2.6 Implementation detail 

In this study, all implementations and experiments were conducted in an environment with the 

following software/package: Python 3.10.12, Scikit-learn 1.2.2, RDKit v2022.09.5. PyTorch 

2.0.1 with CUDA 11.8 was used as the basic framework. The deep learning models were 

implemented using DGL 1.1.022 and its supplementary package DGL-LifeSci 0.3.2.20 The Adam 

optimizer with a learning rate of 0.001 was used for model training. The data was shuffled for 

each epoch, and a batch size of 32 was used. Figure 3.2.S1 demonstrate the training of the 

LAGCN and LAGAT models. 

3. Results and discussion 

3.1 Dataset overview 

The overall chemical profiles of the whole dataset were reviewed prior to data splitting. A 

flowchart for the entire study is shown in Figure 3.2.3. To investigate the chemophysical 

properties of the compounds in the dataset, various parameters were calculated across agonist, 

antagonist, inverse agonist, and inactive molecules within a receptor (Figure 3.2.4). These 

parameters include molecular weight (MW), topological polar surface area (TPSA), lipid–water 

partition coefficient (ALogP), number of hydrogen bond acceptors (NHA) and donors (NHD), 

number of rotatable bonds (NRB), number of NHs or OHs (NHOH), and fractions of sp3 

hybridized carbons (sp3). These properties are important for the functional activity of a molecule 

and have been extensively used in previous studies to compare compounds belonging to different 

categories.23 
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Figure 3.2.3. Overview of the LAGCN and LAGAT framework. A. Features on the graph were 

augmented by a conditional variational autoencoder (CVAE). B. Graphs with augmented 

features were fed into LAGCN. C. Graphs with augmented features were fed into LAGAT. 
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Figure 3.2.4. Chemical space analysis. Box plots illustrating the distribution of molecular 

properties across agonist (green), antagonist (blue), inverse agonist (purple), and inactive 

molecules (orange) of the five GPCRs.  
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3.2 Model performance 

For each receptor examined in this study, both LAGCN and LAGAT models were constructed. 

The metric scores for each model are shown in Table 3.2.3. Overall, the LAGCN and LAGAT 

models consistently demonstrated good performance in terms of accuracy, with values ranging 

from 0.76 to 0.82 and 0.70 to 0.80, respectively. Across all receptors, the LAGCN model 

exhibited slightly higher accuracy scores compared to the LAGAT model. The largest difference 

was observed in the case of GR, where the LAGCN model achieved an accuracy score 8% 

higher than the LAGAT model. Additionally, the LAGAT models generally displayed higher 

precision, recall, and F1 scores compared to the LAGCN models. 

Table 3.2.3. Summary of model performance. 

  ACC Precision Recall F1 

CB1 

GAT 0.77 0.72 0.73 0.72 

GCN 0.80 0.77 0.76 0.76 

LAGAT 0.78 0.75 0.71 0.72 

LAGCN 0.81 0.77 0.80 0.78 

      

LPA1 

GAT 0.76 0.63 0.75 0.67 

GCN 0.75 0.62 0.73 0.65 

LAGAT 0.77 0.64 0.74 0.68 

LAGCN 0.77 0.73 0.70 0.70 

      

H3R 

GAT 0.70 0.67 0.66 0.64 

GCN 0.79 0.72 0.78 0.74 

LAGAT 0.80 0.72 0.74 0.73 
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LAGCN 0.82 0.76 0.77 0.77 

      

GR 

GAT 0.72 0.62 0.65 0.61 

GCN 0.70 0.56 0.61 0.57 

LAGAT 0.70 0.59 0.61 0.59 

LAGCN 0.78 0.66 0.64 0.63 

      

CXCR4 

GAT 0.74 0.45 0.45 0.45 

GCN 0.68 0.42 0.43 0.42 

LAGAT 0.75 0.62 0.57 0.59 

LAGCN 0.76 0.69 0.70 0.70 

 

In comparison to their counterpart models without data augmentation, LAGCN demonstrated an 

average improvement of 4% in accuracy, 10% in precision, 7% in recall, and 8% in F1 score. On 

the other hand, LAGAT exhibited an average improvement of 2% in accuracy, 5% in precision, 2% 

in recall, and 4% in F1 score. The results suggest that the augmented graph features generated by 

the CVAE effectively captured the underlying patterns in the dataset. By incorporating these 

augmented representations into the graph neural network models, namely GCN and GAT, the 

models acquired the abilities to recognize and leverage latent features critical for accurate 

predictions. This enhancement enabled the models to make informed decisions and improve their 

overall performance. 

The model performances were further analyzed using the confusion matrix in an attempt to 

assess the class-specific performance. The confusion matrix allowed for easy observation of 

well-predicted classes and those that exhibited confusion and misclassification. Given the 

imbalanced nature of the dataset for each receptor, a normalized confusion matrix was employed. 
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In this matrix, each cell represents the percentage of instances classified into the true class. The 

corresponding results are depicted in Figure 3.2.5 and Figure 3.2.S2.  
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Figure 3.2.5. Confusion matrix for LAGCN (left) and LAGAT (right) models. 
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For the CB1 and H3R datasets, both LAGCN and LAGAT demonstrated satisfactory performance 

in classifying all four ligand types. LAGCN slightly outperformed LAGAT. However, when 

using LAGAT on the CB1 dataset, a small number of agonists were misclassified as inactive 

molecules, and in the H3R dataset, some inverse agonists were misclassified as antagonists. In 

the GR dataset, both LAGCN and LAGAT exhibited excellent ability in classifying agonists and 

antagonists, achieving an overall accuracy of more than 0.83. However, both models struggled to 

accurately classify inactive molecules, with over 60% of them being misclassified as either 

agonists or antagonists. For the LPA1 dataset, both LAGCN and LAGAT exhibited correct 

classification of agonists and antagonists. Despite the small number of agonists in the overall 

dataset, both models were able to correctly identify the majority of true agonists, achieving an 

accuracy of 0.73 for LAGCN and 0.82 for LAGAT. In the CXCR4 dataset, LAGCN 

outperformed LAGAT in classifying agonists and inactive molecules. Although the number of 

agonists in this dataset was very limited, LAGCN achieved an accuracy of 0.67 in correctly 

classifying agonists. However, LAGAT misclassified more than 60% of the true agonists as 

inactive molecules. The limited number of trainable compounds in the CXCR4 dataset 

contributes to the model's inability to capture underlying patterns for precise predictions. In 

summary, both LAGCN and LAGAT demonstrated state-of-the-art performance based on the 

confusion matrix. 

The fundamental concept behind GNNs is to iteratively update node representations in a graph 

by aggregating information from neighboring nodes, enabling the model to capture complex 

interactions and propagate information throughout the graph structure. In a GCN, predetermined 

weights are used for aggregating information from neighboring nodes,24 while GAT employs 

attention mechanisms to assign different weights to neighboring nodes during aggregation.25 This 

enables the model to selectively emphasize more informative nodes while de-emphasizing less 

important nodes, improving its ability to capture important patterns and relationships in the graph. 

In this study, the base models of GCN and GAT exhibited comparable performances when the 

data was not locally augmented. However, upon local augmentation of the input data, both 

models demonstrated significantly enhanced performance. In particular, LAGCN displayed a 

more substantial improvement in overall metrics compared to LAGAT. This is partially due to 

the fact that GAT models typically have a higher number of parameters compared to GCN 
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models, as they involve attention mechanisms that introduce additional complexity. Data 

augmentation introduced additional diversity and variability into the input data, which may lead 

to a relatively higher risk of overfitting for GAT models. In this study, LAGCN demonstrated a 

superior ability to leverage the augmented features, effectively utilizing the additional 

information to improve performance. 

4. Conclusion 

In this research, local data augmentation was applied to enhance the performance of two graph 

neural network variations, GCN and GAT, in predicting GPCR ligand types. The utilization of 

locally augmented graphs generated by the CVAE resulted in a significant enhancement in 

model performance. On average, the accuracy of LAGCN improved by 4%, while LAGAT saw a 

2% improvement. Accurate classification of GPCR ligands based on their ligand type is crucial 

for drug design and development. This study represents a pioneering effort in this field, as two 

advanced deep learning models have been developed, LAGCN and LAGAT, specifically 

designed for this precise classification task. By integrating a local augmented mechanism into 

LAGCN and LAGAT, the aim is to enhance their performance in multi-classification tasks 

involving graph-structured data. This incorporation empowers the models to effectively utilize 

the inherent structure and connectivity within the graphs, resulting in more precise and effective 

predictions. Ultimately, this advancement significantly improves the overall efficiency of the 

drug discovery pipeline. 
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1. Conclusions and future work 

The connection between the activation of LPA1 and the progression of breast cancer is becoming 

increasingly apparent. The mRNA expression of LPA1 is significantly increased across multiple 

breast cancer cell lines,1 with a particularly pronounced increase observed in the triple-negative 

breast cancer cell line MDA-MB-231, where LPA1 expression is approximately 86 times higher 

than in non-tumorigenic cells.1 LPA1 is recognized for its role in mediating LPA-induced cell 

migration and invasion, demonstrated in both in vitro breast cancer cell lines and in vivo mouse 

models of breast cancer.2-4 Our bioinformatic analysis further supports the correlation between 

LPA1 and the development of breast cancer. The convergence of these pieces of evidence 

establishes LPA1 as a promising target for the advancement of drug development for breast 

cancer treatment.  

Chapter one offers a comprehensive review of drug development efforts targeting LPA1 and its 

associated family members, LPA2-6. This review serves as a valuable reference for fellow 

researchers engaged in LPA1-related studies.  

In chapter two, a comprehensive description of the synthesis and assessment of novel carbamate-

based and urea-based LPA1 antagonists is presented. The study delves into the elucidation of the 

structure-activity relationship (SAR) concerning the previously reported LPA1 antagonist, 

RO6842262. Notably, successful incorporation of fluorine was achieved, enhancing our 

understanding of the compound's SAR. Among the array of carbamate-derived analogues of 

RO6842262, compound 12f emerged as the most potent. This compound underwent further 

evaluation on the MDA-MB-231 breast cancer cell line, where it exhibited a dose-dependent 

inhibition of LPA-induced cell survival, migration, and invasion.  

Given the promising outcomes observed with compound 12f on MDA-MB-231, the subsequent 

phase involves in vivo experiment employing breast cancer mouse models. To begin with this 

study, a breast cancer mouse model will be established through the injection of 4T1 cells into the 

mammary fat pads of female mice. Once the successful creation of the breast cancer mouse 

model is accomplished, the administration of compound 12f will ensue. This aims to 

comprehensively assess the properties of 12f, including its drug-like properties, in vivo potency, 

efficacy, and therapeutic impact. 
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Subsequently, the benzyl alcohol building block was changed into a benzylamine building block 

during the Curtius rearrangement reaction, leading to the production of a second series of LPA1 

antagonists featuring a urea moiety. A total of eight urea-based LPA1 antagonists were 

synthesized and subjected to evaluation. Notably, this series of urea-derived compounds 

generally exhibited lower activity in comparison to the initial series of carbamate-derived 

compounds. Nevertheless, these urea-derived compounds hold potential as improved drug 

candidates due to the inherent stability of urea over carbamate. Within this series, compound 17f 

emerged as the most potent candidate. Therefore, it was selected for biological evaluation using 

the breast cancer cell line MDA-MB-231. 

The results suggested that 17f effectively inhibits LPA-induced cell migration and invasion in a 

dose-dependent manner, thus showing promising therapeutic implications for addressing breast 

cancer metastasis. Subsequent investigations will involve subjecting compound 17f to in vivo 

evaluations using breast cancer mouse models. Comprehensive assessments will be carried out to 

determine the drug-like properties and in vivo potency of this compound, providing valuable 

insights into its potential as a therapeutic agent. 

In the third section of this chapter, modifications were made to the ester form of compound 12h, 

initially discovered in the first section, in an endeavor to create PET tracers. The successful 

synthesis of the fluorinated counterpart, designated as 12k, was achieved. Notably, this 

fluorinated compound, 12k, maintains a high degree of selectivity for LPA1, although its activity 

has shown a slight reduction. Moving ahead, efforts will focus on the synthesis and purification 

of the corresponding 18F-labeled hot compound, 18F-12k. 

To assess the binding affinity of 18F-12k toward various breast cancer tumor cells, a cell uptake 

assay will be performed. Following this, an in vivo evaluation using breast cancer mouse models 

is planned. In this phase, the mice will receive intravenous administration of the radiotracer 18F-

12k via the tail vein, and subsequent imaging will be performed using a microPET scanner. This 

process is expected to yield valuable insights into the biodistribution characteristics of the 

radiotracer. 

Upon the successful completion of animal studies, these ligands could then move forward into 

clinical trials. Notably, compounds 12f and 17f have the potential to emerge as promising 

treatments for breast cancer patients, particularly those with metastasis and recurrence. Given 
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that metastasis is the primary contributor to breast cancer-related fatalities,5 compounds 12f and 

17f could play a crucial role in enhancing the prognosis for individuals affected by breast cancer. 

Furthermore, the radiolabeled compound 18F-12k holds the promise of finding application in 

breast cancer diagnosis through PET scans. Early diagnosis and accurate staging would offer 

significant benefits to breast cancer patients, and the innovative tracer 18F-12k possesses the 

potential to facilitate this critical aspect of patient care. 

During the course of this study, conventional drug discovery methodologies were exclusively 

used for the development of LPA1 antagonists. The design of these antagonists was based on the 

structure of a potent LPA1 antagonist previously reported, and molecular docking studies were 

used to guide the process of drug design. It is our hope that more cutting-edge methods can be 

applied to LPA1 drug design in order to improve success rate and reduce failure. 

With the advent of extensive, high-dimensional data, our society has entered a 'big data' era 

powered by artificial intelligence (AI). AI-related technologies have become ubiquitous in daily 

life, including applications like facial recognition, chatbots, and language translation. In the field 

of medicinal chemistry, AI-assisted drug discovery is rapidly emerging as a new methodology. 

To harness the potential of this emerging technology and explore its use in drug discovery, the 

first part of chapter three focused on developing various machine learning models to predict 

ligand binding for a GPCR. In the second part of this chapter, we delved deeper into this field 

and created state-of-the-art deep learning models to predict the ligand type for various GPCRs. 

This study represents the first attempt to classify GPCR ligand using deep learning techniques. 

Overall, the machine learning and deep learning models developed in these studies achieved high 

accuracy in predicting ligand binding and ligand type. In upcoming research, these models will 

be helpful in shaping LPA1 drug design. Using the best AI model developed in these studies, 

virtual screening will be performed with a large compound library to discover novel LPA1 

ligands with unique scaffolds. Additionally, the next step will involve building deep generative 

models, a prospective approach for generating potent molecules targeting LPA1.  

The discovery and development of LPA1 ligands has proven to be a difficult task. However, the 

integration of cutting-edge AI technology holds the potential to streamline the drug discovery 
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pipeline, enhancing success rates. Considering the potential benefits of exploiting these novel 

technologies, such research emerges as pivotal in advancing the medical toolkit.  
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Appendix A: U-HPLC Chromatograms and Purities 

 

Compds. HPLC Chromatograms Purity 

(%) 

12b 

 

96 

12c 

 

95 

12d 

 

96 
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12e 

 

100 

12f 

 

99 

12g 

 

100 

12h 

 

96 
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12i 

 

97 

14a 

 

100 

12k 

 

100 

17a 

 

98 
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17b 

 

99 

17c 

 

97 

17d 

 

92 

17e 

 

99 
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17f 

 

99 

17g 

 

99 

17h 

 

100 
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Appendix B: 1H and 13C NMR spectra 
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Appendix C: Dose-response curves 

 

ID Compds. Dose-response curves 

12b 

 
  

12c 

  

12d 
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Appendix D: High-resolution mass spectrometry (HRMS) 

 

ID Formula Calcd Found 

12b C27H23FN4NaO4 509.1596 509.1600 

 

    

12c C27H23FN4NaO4 509.1596 509.1598 

 

    

12d C27H23FN4NaO4 509.1596 509.1588 
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12e C28H25FN4NaO4 523.1752 523.1768 

 

    

12f C28H25FN4NaO4 523.1752 523.1748 

 

    

12g C28H25FN4NaO4 523.1752 523.1759 

 



212 
 

    

12h C28H26N4NaO5 521.1795 521.1826 

 

    

12i C28H26N4NaO5 521.1795 521.1790 

 

    

14a C25H21FN4NaO4 483.1439 483.1453 
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17b C27H24FN5NaO3 508.1755 508.1770 

 

    

17c C27H24FN5NaO3 508.1755 508.1776 

 

    

17d C27H24FN5NaO3 508.1755 508.1770 
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17e C28H26FN5NaO3 522.1912 522.1909 

 

    

17f C28H27N5NaO3 504.2006 504.2002 

 

    

17g C28H27N5NaO3 504.2006 504.2034 
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17h C28H27N5NaO3 504.2006 504.2001 
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Appendix E 

Sanger DNA sequencing/Whole plasmid sequencing Data: 

pCMV6-AC-GFP-LPAR1 

ACCGCCGTTGCGCAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTG

AACCGTCAGAATTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACC

GAGGAGATCTGCCGCCGCGATCGCCATGGCTGCCATCTCTACTTCCATCCCTGTAATTTCACAGCCCCA

GTTCACAGCCATGAATGAACCACAGTGCTTCTACAACGAGTCCATTGCCTTCTTTTATAACCGAAGTGG

AAAGCATCTTGCCACAGAATGGAACACAGTCAGCAAGCTGGTGATGGGACTTGGAATCACTGTTTGTA

TCTTCATCATGTTGGCCAACCTATTGGTCATGGTGGCAATCTATGTCAACCGCCGCTTCCATTTTCCTAT

TTATTACCTAATGGCTAATCTGGCTGCTGCAGACTTCTTTGCTGGGTTGGCCTACTTCTATCTCATGTTC

AACACAGGACCCAATACTCGGAGACTGACTGTTAGCACATGGCTCCTTCGTCAGGGCCTCATTGACAC

CAGCCTGACGGCATCTGTGGCCAACTTACTGGCTATTGCAATCGAGAGGCACATTACGGTTTTCCGCAT

GCAGCTCCACACACGGATGAGCAACCGGCGGGTAGTGGTGGTCATTGTGGTCATCTGGACTATGGCCA

TCGTTATGGGTGCTATACCCAGTGTGGGCTGGAACTGTATCTGTGATATTGAAAATTGTTCCAACATGG

CACCCCTCTACAGTGACTCTTACTTAGTCTTCTGGGCCATTTTCAACTTGGTGACCTTTGTGGTAATGGT

GGTTCTCTATGCTCACATCTTTGGCTATGTTCGCCAGAGGACTATGAGAATGTCTCGGCATAGTTCTGG

ACCCCGGCGGAATCGGGATACCATGATGAGTCTTCTGAAGACTGTGGTCATTGTGCTTGGGGCCTTTAT

CATCTGCTGGACTCCTGGATTGGTTTTGTTACTTCTAGACGTGTGCTGTCCACAGTGCGACGTGCTGGC

CTATT 

CCCGCGGNNTTCAGGGCCAGGAGAGGCACTGGGGAGGGGTCACAGGGATGCCACCCGGGATCTGTTC

AGGAAACAGCTATGACCGCGGCCGGCCGTTTAAACTCTTTCTTCACCGGCATCTGCATCCGGGGTCTTG

AAGGCGTGCTGGTACTCCACGATGCCCAGCTCGGTGTTGCTGTGATCCTCCTCCACGCGGCGGAAGGC

GAACATGGGGCCCCCGTTCTGCAGGATGCTGGGGTGGATGGCGCTCTTGAAGTGCATGTGGCTGTCCA

CCACGGAGCTGTAGTAGCCGCCGTCGCGCAGGCTGAAGGTGCGGGTGAAGCTGCCATCCAGATCGTTA

TCGCCCATGGGGTGCAGGTGCTCCACGGTGGCGTTGCTGCGGATGATCTTGTCGGTGAAGATCACGCT

GTCCTCGGGGAAGCCGGTGCCCATCACCTTGAAGTCGCCGATCACGCGGCCGGCCTCGTAGCGGTAGC

TGAAGCTCACGTGCAGCACGCCGCCGTCCTCGTACTTCTCGATGCGGGTGTTGGTGTAGCCGCCGTTGT

TGATGGCGTGCAGGAAGGGGTTCTCGTAGCCGCTGGGGTAGGTGCCGAAGTGGTAGAAGCCGTAGCC

CATCACGTGGCTCAGCAGGTAGGGGCTGAAGGTCAGGGCGCCTTTGGTGCTCTTCATCTTGTTGGTCAT

GCGGCCCTGCTCGGGGGTGCCCTCTCCGCCGCCCACCAGCTCGAACTCCACGCCGTTCAGGGTGCCGG

TGATGCGGCACTCGATCTCCATGGCGGGCAGGCCGCTCTCGTCGCTCTCCATCTCGAGCGGCCGCGTA

CGCGTAACCACAGAGTGGTCATTGCTGTGAACTCCAGCCAAGATGGTGTGGTTGAGGGAGGAAGCCG

AGCGGTCTGAGCCTTCTGTGGGGCCGGTGGGGTTCTCACTGCGCTGGCAGCAGAGGATCTGCCTAAAG

GTGGCGCTCATTTCTTTGTCGCGGTAGGAGTAAATGATGGGGTTCATGGCAGAGTTGAATTCAGCAAG

GAGAAGGAAGAATTTCTCATAGGCCAGCACGTCGCACTGTGGACAGCACACGTCTAGAAGA 

pCMV6-AC-GFP-LPAR2 

TCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTG

CGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGC

TCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTT

CGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCA

TAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATT

CTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCAC

ATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTA

CCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC

ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACA

CGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCA
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TGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGA

AAAGTGCCACCTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGT

GACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC

GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCAC

CTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTT

TCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAA

CCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAG

CTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTCCATTCGCCATTCA

GGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGG

GGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC

GGCCAGTGCCAAGCTGATCTATACATTGAATCAATATTGGCAATTAGCCATATTAGTCATTGGTTATAT

AGCATAAATCAATATTGGCTATTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTTATAT

TGGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTAC

GGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTG

GCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATA

GGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGT

GTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCC

AGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGG

TGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTC

CACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA

TAACCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTC

GTTTAGTGAACCGTCAGAATTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGAT

CCGGTACCGAGGAGATCTGCCGCCGCGATCGCCATGGTCATCATGGGCCAGTGCTACTACAACGAGAC

CATCGGCTTCTTCTATAACAACAGTGGCAAAGAGCTCAGCTCCCACTGGCGGCCCAAGGATGTGGTCG

TGGTGGCACTGGGGCTGACCGTCAGCGTGCTGGTGCTGCTGACCAATCTGCTGGTCATAGCAGCCATC

GCCTCCAACCGCCGCTTCCACCAGCCCATCTACTACCTGCTCGGCAATCTGGCCGCGGCTGACCTCTTC

GCGGGCGTGGCCTACCTCTTCCTCATGTTCCACACTGGTCCCCGCACAGCCCGACTTTCACTTGAGGGC

TGGTTCCTGCGGCAGGGCTTGCTGGACACAAGCCTCACTGCGTCGGTGGCCACACTGCTGGCCATCGC

CGTGGAGCGGCACCGCAGTGTGATGGCCGTGCAGCTGCACAGCCGCCTGCCCCGTGGCCGCGTGGTCA

TGCTCATTGTGGGCGTGTGGGTGGCTGCCCTGGGCCTGGGGCTGCTGCCTGCCCACTCCTGGCACTGCC

TCTGTGCCCTGGACCGCTGCTCACGCATGGCACCCCTGCTCAGCCGCTCCTATTTGGCCGTCTGGGCTC

TGTCGAGCCTGCTTGTCTTCCTGCTCATGGTGGCTGTGTACACCCGCATTTTCTTCTACGTGCGGCGGC

GAGTGCAGCGCATGGCAGAGCATGTCAGCTGCCACCCCCGCTACCGAGAGACCACGCTCAGCCTGGTC

AAGACTGTTGTCATCATCCTGGGGGCGTTCGTGGTCTGCTGGACACCAGGCCAGGTGGTACTGCTCCT

GGATGGTTTAGGCTGTGAGTCCTGCAATGTCCTGGCTGTAGAAAAGTACTTCCTACTGTTGGCCGAGG

CCAACTCACTGGTCAATGCTGCTGTGTACTCTTGCCGAGATGCTGAGATGCGCCGCACCTTCCGCCGCC

TTCTCTGCTGCGCGTGCCTCCGCCAGTCCACCCGCGAGTCTGTCCACTATACATCCTCTGCCCAGGGAG

GTGCCAGCACTCGCATCATGCTTCCCGAGAACGGCCACCCACTGATGGACTCCACCCTTACGCGTACG

CGGCCGCTCGAGATGGAGAGCGACGAGAGCGGCCTGCCCGCCATGGAGATCGAGTGCCGCATCACCG

GCACCCTGAACGGCGTGGAGTTCGAGCTGGTGGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCAT

GACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAGCCACGTGATG

GGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCTGCACGCCATCAA

CAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGCTGCACGTGAGCTTC

AGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGATGGGCACCGGCTTCCCCGAGGA

CAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAGCACCTGCACCCCATGGGCG

ATAACGATCTGGATGGCAGCTTCACCCGCACCTTCAGCCTGCGCGACGGCGGCTACTACAGCTCCGTG

GTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGGGCCCCATGTT

CGCCTTCCGCCGCGTGGAGGAGGATCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAGCACGCC

TTCAAGACCCCGGATGCAGATGCCGGTGAAGAAAGAGTTTAAACGGCCGGCCGCGGTCATAGCTGTTT

CCTGAACAGATCCCGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCA

CTCCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCT

ATAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGC
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CTGCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCT

CCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGC

TCAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCT

AATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCT

TCCCTGTCCTTCTGATTTTAAAATAACTATACCAGCAGGAGGACGTCCAGACACAGCATAGGCTACCT

GGCCATGCCCAACCGGTGGGACATTTGAGTTGCTTGCTTGGCACTGTCCTCTCATGCGTTGGGTCCACT

CAGTAGATGCCTGTTGAATTGGGTACGCGGCCAGCTTGGCTGTGGAATGTGTGTCAGTTAGGGTGTGG

AAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGT

GTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACC

ATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCAT

GGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAG

TGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGA

TCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCC

GGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCG

CCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGA

ATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTG

CTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCT

GTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCT

TGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGG

AAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTC

GCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCC

GAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCCGACC

GCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGC

TTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT

TCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATT

TCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGA

TCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATG

GTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTG

GTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGT

AATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCG

GAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCA

CTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAG

AGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCT

GCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCA

GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCG

TTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA

CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGAC

CCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACG

CTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA

GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCC

ACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTG

AAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGT

TACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTT

TTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACG

GGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT

CTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG

GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCAT

AGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTG

CAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAG

GGCCGAGCGCAGAAGTGGTCCTGCAACTTTA 

pCMV6-AC-GFP-LPAR3 
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CACCTTTTCACATGCTGCACGCCACACTGCCTGCAGTTCAGGCCGTCGAGGAGCAGAACCACCAGGCC

CGGGGTCCAGCATACCACAAACGCCCCTAAGACAGTCATCACCGTCTTCATTAGCTTCATGGGTGTCCT

CCGGCGGCTGATGGACCCACTTGTATGCGGAGACAAGACGTTGGTTTTCCTCTTGACGTACACGTAGA

TCCGCAGGTACACCACAACCATGATGAGGAAGGCCATGAGGTTGGACACTGTCCAGAAAACAAGGTA

ACTCCTGCTGTAAATGGGGGCCAGGGAAGAGCAGGCAGAGATGTTGCAGAGGCAATTCCAGCCCAGT

GTGGGGACCGCCCCCATAAAAATGGCGATGGCCCAGACAAGCAAAATGAGCAGTGTCACCCTCTTTTT

GGTCAGGTTGCTATGGACCCGCATCCTCATGATTGACATGTGCCTCTCCACGGCGATAACCAGCAAGT

TGGTGAGGGAAGCAGTCAAGCTACTGTCCAGAAGCCCCTGACGGAGAAACCAGCGGTTGACAGTCAA

AGTTTTTGAAACTGGGCCTGTGTTAAACATCAGGAATACATAGGCAATTCCAGCGAAGAAATCGGCAG

CAGCTAAATTAGCCAACAGGTAGTAGAAGGGGAAATGAAATTTTCTGTTTTTGATCACTGCCGCGATG

ACCAGAGAATTAGAAAAAAAAAATAAACAGGCAGAAAAACGTCCCAACACACAAAACAATCACAAG

CTTTGTTCCTGTCCAGTCATCGACAGTATCAGTGTTGCTCCTATTATAAAAAAAGTCCATGTGCTTGTC

ATAGTGACACTCATTCATGGCGATCGCGGCGGCAGATCTCCTCGGTACCGGATCCAGTCGACGAATTC

CCGGCCGCCCTATAGTGAGTCGTATTACAAAATTCTGACGGTTCACTAAACGAGCTCTGCTTATATAGA

CCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAACGGGGCGGGGTTATTACGACATTTTGGAAAG

TCCCGTTGATTTTGGTGCCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCG

TGAGTCAAACCGCTATCCACGCCCATTGGTGTACTGCCAAAACCGCATCACCATGGTAATAGCGATGA

CTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCGTAAGGTCATGTACTGGGCATAATGCCAGGCG

GGCCATTTACCGTCATTGACGTCAATAGGGGGCGGACTTGGCATATGATACACTTGATGTACTGCCAA

GTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGG

GAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACC

GTAAGTTATGTAACGCGGAACTCCATATATGGGCTATGAACTAATGACCCCGTAATTGATTACTATTA

ATAACTAGTCAATAATCAATGTCAACATGGCGGTCATATTGGACATGAGCCAATATAAATGTACATAT

TATGATATAGATACAACGTATGCAATGGCCAATAGCCAATATTGATTTATGCTATATAACCAATGACT

AATATGGCTAATTGCCAATATTGATTCAATGTATAGATCAGCTTGGCACTGGCCGTCGTTTTACAACGT

CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGG

CGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGA

AATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAA

TAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCC

AGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTAT

CAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGC

ACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCG

AGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTG

CGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGG

AAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACA

ATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG

CCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAA

AGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCC

TTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGG

TATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG

GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC

TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGC

TAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAAT

GAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAAC

TATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAA

GTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGT

GAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTAT

CTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCA

CTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCAT

TTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAG

TTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTTCT

GCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG
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AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAG

TGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCC

TGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTA

CCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGA

CCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAA

GGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG

AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATG

CTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTT

GCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT

TGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCG

GAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGA

CAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGG

CACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTC

ACACAGGAAACAGCTATGACCATGATTACGCCAAGCTCTAGCTAGAGGTCGACGGTATACAGACATG

ATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGA

AATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTGGGGTGGGCGAAG

AACTCCAGCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCC

CAACCTTTCATAGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGG

TCATTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGC

GAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAG

CAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCGGCCACACCCAGCCGGCCACAGTCGATG

AATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAG

ATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCT

CTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTT

TCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATG

ATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAG

CAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCA

GCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAA

AGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGC

CCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAA

TCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGATCCGAAAATGGATATACAAGCTCCCGGGAGC

TTTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGAGGC

GGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGC

GGAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGC

TTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGATGCA

TGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACA

GCCAAGCTGGCCGCGTACCCAATTCAACAGGCATCTACTGAGTGGACCCAACGCATGAGAGGACAGT

GCCAAGCAAGCAACTCAAATGTCCCACCGGTTGGGCATGGCCAGGTAGCCTATGCTGTGTCTGGACGT

CCTCCTGCTGGTATAGTTATTTTAAAATCAGAAGGACAGGGAAGGGAGCAGTGGTTCACGCCTGTAAT

CCCAGCAATTTGGGAGGCCAAGGTGGGTAGATCACCTGAGATTAGGAGTTGGAGACCAGCCTGGCCA

ATATGGTGAAACCCCGTCTCTACCAAAAAAACAAAAATTAGCTGAGCCTGGTCATGCATGCCTGGAAT

CCCAACAACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGATTGCAGTGAGCC

AAGATTGTGCCACTGCACTCCAGCTTGGTTCCCAATAGACCCCGCAGGCCCTACAGGTTGTCTTCCCAA

CTTGCCCCTTGCTCCATACCACCCCCCTCCACCCCATAATATTATAGAAGGACACCTAGTCAGACAAAA

TGATGCAACTTAATTTTATTAGGACAAGGCTGGTGGGCACTGGAGTGGCAACTTCCAGGGCCAGGAGA

GGCACTGGGGAGGGGTCACAGGGATGCCACCCGGGATCTGTTCAGGAAACAGCTATGACCGCGGCCG

GCCGTTTAAACTCTTTCTTCACCGGCATCTGCATCCGGGGTCTTGAAGGCGTGCTGGTACTCCACGATG

CCCAGCTCGGTGTTGCTGTGATCCTCCTCCACGCGGCGGAAGGCGAACATGGGGCCCCCGTTCTGCAG

GATGCTGGGGTGGATGGCGCTCTTGAAGTGCATGTGGCTGTCCACCACGGAGCTGTAGTAGCCGCCGT

CGCGCAGGCTGAAGGTGCGGGTGAAGCTGCCATCCAGATCGTTATCGCCCATGGGGTGCAGGTGCTCC

ACGGTGGCGTTGCTGCGGATGATCTTGTCGGTGAAGATCACGCTGTCCTCGGGGAAGCCGGTGCCCAT

CACCTTGAAGTCGCCGATCACGCGGCCGGCCTCGTAGCGGTAGCTGAAGCTCACGTGCAGCACGCCGC
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CGTCCTCGTACTTCTCGATGCGGGTGTTGGTGTAGCCGCCGTTGTTGATGGCGTGCAGGAAGGGGTTCT

CGTAGCCGCTGGGGTAGGTGCCGAAGTGGTAGAAGCCGTAGCCCATCACGTGGCTCAGCAGGTAGGG

GCTGAAGGTCAGGGCGCCTTTGGTGCTCTTCATCTTGTTGGTCATGCGGCCCTGCTCGGGGGTGCCCTC

TCCGCCGCCCACCAGCTCGAACTCCACGCCGTTCAGGGTGCCGGTGATGCGGCACTCGATCTCCATGG

CGGGCAGGCCGCTCTCGTCGCTCTCCATCTCGAGCGGCCGCGTACGCGTGGAAGTGCTTTTATTGCAG

ACTGCACCTTGGCTAATACTATCCTCTATGTACTGGCTGCCTGTGTCACTCCTGCTGAGGACTGTGGAG

GGGATGCGAGAGGGACGCCTCTCTGGGTTCTCCTGAGAGAAGCAGCAGATCATCTTCTTCATGGTGCC

ATACATGTCCTCGTCCTTGTAGGAGTAGATGATGGGGTTCACGACGGAGTTGAGCAGCGCCAGCAGCA

GGAAC 
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Table 3.1.S1. List of the fingerprints used in this study for building ML classification models. 

Name Description Bit Form 

Morgan 
Representing fragments enumerating layered atom 

environments 
1024 binary 

Pubchem Representing substructures defined by PubChem 881 binary 

MACCS Representing chemical patterns defined by MACCS keys 166 binary 

RDkit Representing subgraphs defined by RDKit 1024 binary 
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Figure 3.1.S1. Heatmaps demonstrate accuracy scores on the validation set with different 

hyperparameter combinations from strategy 1. A. RF models built with the four fingerprints. The 

heatmap illustrates the results from Grid search regarding number of estimators and criterion. B. 

SVM models built with the four fingerprints. The heatmap illustrates the results from Grid search 

regarding kernel and C. C. XGBoost models built with the four fingerprints. The heatmap 

illustrates the results from Grid search regarding number of estimators and learning rate. 
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Figure 3.1.S2. Heatmaps demonstrate accuracy scores on the validation set with different 

hyperparameter combinations from strategy 2. A. RF models built with the four fingerprints. The 

heatmap illustrates the results from Grid search regarding number of estimators and criterion. B. 

SVM models built with the four fingerprints. The heatmap illustrates the results from Grid search 

regarding kernel and C. C. XGBoost models built with the four fingerprints. The heatmap 

illustrates the results from Grid search regarding number of estimators and learning rate. 
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Figure 3.1.S3. Heatmaps demonstrate accuracy scores on the validation set with different 

hyperparameter combinations from strategy 3. A. RF models built with the four fingerprints. The 

heatmap illustrates the results from Grid search regarding number of estimators and criterion. B. 

SVM models built with the four fingerprints. The heatmap illustrates the results from Grid search 

regarding kernel and C. C. XGBoost models built with the four fingerprints. The heatmap 

illustrates the results from Grid search regarding number of estimators and learning rate. 
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Figure 3.1.S4. Heatmaps demonstrate accuracy scores on the validation set with different 

hyperparameter combinations from strategy 4. A. RF models built with the four fingerprints. The 

heatmap illustrates the results from Grid search regarding number of estimators and criterion. B. 

SVM models built with the four fingerprints. The heatmap illustrates the results from Grid search 

regarding kernel and C. C. XGBoost models built with the four fingerprints. The heatmap 

illustrates the results from Grid search regarding number of estimators and learning rate. 
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Figure 3.1.S5. The top 20 important features ranked by SHAP for the RF, XGBoost, and SVM 

models using strategy 1 (A), strategy 2 (B), and strategy 3 (C). 
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Figure 3.1.S6. Venn diagrams demonstrating the features of bit information that are commonly 

present among the RF, XGBoost, and SVM models using strategy 1 (A), strategy 2 (B), and 

strategy 3 (C) and their corresponding substructures. 
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Table 3.1.S2. The corresponding substructures of the top 20 important features ranked by SHAP 

for the RF, XGBoost, and SVM models using strategy 4.  

 

Bit  Structure Bit  Structure Bit  Structure 

457 
 

802 
 

831 
 

730 
 

730 
 

90 
 

802 
 

831 
 

730 
 

4 
 

212 
 

305 
 

90 
 

650 
 

119 
 

913 
 

457 
 

457 
 

328 
 

648 

 

659 
 

659 
 

119 

 

758 

 

806 
 

476 

 

121 

 

310 

 

695 
 

325 
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119 
 

366 
 

881 
 

212 
 

341 
 

168 

 

831 
 

319 
 

285 

 

476 

 

659 
 

310 

 

364 
 

33 
 

117 
 

320 

 

389 
 

913 

 

777 

 

189 

 

128 
 

104 

 

881 
 

855 
 

319 

 

4 
 

896 

 

291 
 

751 

 

878 

 

1. The central atom is highlighted in blue, and aromatic atoms are highlighted in yellow. Atoms/bonds in light 

gray indicate pieces of the structure that affect the connectivity invariants of the atoms, but they are not 

directly part of the fingerprint. 

 



231 
 

Table 3.1.S3. Detailed information about the external data and the prediction made by the best 

model from this study. 

Ligand Canonical smiles IC50 (nM) 
Strategy 2 

prediction 

Strategy 3 

prediction 

Strategy 4 

prediction 

19 

Cc1ccccc1-

c1nc2ccc(C(=O)c3ccc(F)cc3)cc2c(=O)n1C

[C@H]1CCCNC1 

4 non-binding 
non-binding 

 
non-binding 

20 

Cc1ccccc1-

c1nc2ccc(C(=O)c3ccc(F)cc3)cc2c(=O)n1C

[C@H]1CCCN(C(C)C)C1 

3.8 non-binding binding binding 

17 

Cc1ccccc1-

c1nc2ccc(Cc3ccc(F)cc3)cc2c(=O)n1C[C@

H]1CCCN(C(C)C)C1 

0.3 non-binding binding binding 

10a 

CC(C)N1CCC[C@H](Cn2c(-

c3ccccc3F)nc3ccc(Oc4ccc(F)cn4)cc3c2=O

)C1 

70.5 non-binding binding binding 

10b 

CC(C)N1CCC[C@H](Cn2c(-

c3ccccc3F)nc3ccc(Oc4ccc5ncsc5c4)cc3c2

=O)C1 

0.02 non-binding binding binding 

10c 
O=c1c2cc(Oc3ccc4ncsc4c3)ccc2nc(-

c2ccccc2F)n1C[C@H]1CCCN(CCF)C1 
8.1 non-binding binding binding 

14a 
O=c1c2cc(Oc3ccc(F)cn3)ccc2nc(-

c2ccc(OCCO)cc2F)n1C[C@H]1CCCNC1 
353.1 non-binding non-binding non-binding 

14b 
O=c1c2cc(Oc3ccc(F)cc3)ccc2nc(-

c2ccc(OCCO)cc2F)n1C[C@H]1CCCNC1 
19.8 non-binding non-binding non-binding 

15a 

CC(C)N1CCC[C@H](Cn2c(-

c3ccc(OCCO)cc3F)nc3ccc(Oc4ccc(F)cn4)

cc3c2=O)C1 

40.1 non-binding binding binding 

15b 

CC(C)N1CCC[C@H](Cn2c(-

c3ccc(OCCO)cc3F)nc3ccc(Oc4ccc(F)cc4)

cc3c2=O)C1 

2.3 non-binding binding binding 

17a 

CC(C)N1CCC[C@H](Cn2c(-

c3ccc(OCCF)cc3F)nc3ccc(Oc4ccc(F)cn4)

cc3c2=O)C1 

17.6 non-binding binding binding 

17b 

CC(C)N1CCC[C@H](Cn2c(-

c3ccc(OCCF)cc3F)nc3ccc(Oc4ccc(F)cc4)c

c3c2=O)C1 

0.33 non-binding binding binding 

4a 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cc3)cc2c(=O)n1C[C@

H]1CCCNC1 

5.6 non-binding non-binding binding 
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4b 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cn3)cc2c(=O)n1C[C

@H]1CCCNC1 

52 non-binding non-binding binding 

4c 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)nc3)cc2c(=O)n1C[C

@H]1CCCNC1 

68.5 non-binding binding binding 

4d 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(Oc4ccc(F)nc4)nc3)cc2c(

=O)n1C[C@H]1CCCNC1 

82.9 non-binding binding binding 

4e 

Cc1ccccc1-

c1nc2ccc(Oc3ccc4ncsc4c3)cc2c(=O)n1C[

C@H]1CCCNC1 

5.3 non-binding binding binding 

4f 

CC(=O)N1CCN(c2ccc(Oc3ccc4nc(-

c5ccccc5C)n(C[C@H]5CCCNC5)c(=O)c4

c3)cc2)CC1 

587 non-binding binding binding 

5a 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cc3)cc2c(=O)n1C[C@

H]1CCCN(CCF)C1 

29.5 non-binding binding binding 

5b 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cn3)cc2c(=O)n1C[C

@H]1CCCN(CCF)C1 

20.6 non-binding binding binding 

5c 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)nc3)cc2c(=O)n1C[C

@H]1CCCN(CCF)C1 

64.2 non-binding binding binding 

5d 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(Oc4ccc(F)nc4)nc3)cc2c(

=O)n1C[C@H]1CCCN(CCO)C1 

65.2 non-binding binding binding 

5e 

Cc1ccccc1-

c1nc2ccc(Oc3ccc4ncsc4c3)cc2c(=O)n1C[

C@H]1CCCN(CCF)C1 

9.3 non-binding binding binding 

5f 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cc3)cc2c(=O)n1C[C@

H]1CCCN(C(C)C)C1 

3.7 non-binding binding binding 

5g 

Cc1ccccc1-

c1nc2ccc(Oc3ccc4ncsc4c3)cc2c(=O)n1C[

C@H]1CCCN(C(C)C)C1 

1.8 non-binding binding binding 

5h 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cn3)cc2c(=O)n1C[C

@H]1CCCN(CCO)C1 

18.2 non-binding binding binding 

5i 

Cc1ccccc1-

c1nc2ccc(Oc3ccc4ncsc4c3)cc2c(=O)n1C[

C@H]1CCCN(CCO)C1 

0.4 non-binding binding binding 
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5j 

Cc1ccccc1-

c1nc2ccc(Oc3ccc(F)cn3)cc2c(=O)n1C[C

@H]1CCCN(C(=O)C(C)F)C1 

1000 non-binding binding binding 

9a 
O=c1c2cc(Oc3ccc(F)cn3)ccc2nc(-

c2ccccc2F)n1C[C@H]1CCCNC1 
935.2 non-binding non-binding binding 

9b 
O=c1c2cc(Oc3ccc4ncsc4c3)ccc2nc(-

c2ccccc2F)n1C[C@H]1CCCNC1 
16 non-binding non-binding non-binding 

1r 

CCN1C(C(=O)N[C@@H](Cc2ccccc2)C(=

O)C(=O)NCCCN2CCOCC2)Cc2cc3c(cc2

S1(=O)=O)OCCO3 

non-binding non-binding non-binding non-binding 

2r 
C[C@@H]1CC(C)(C)O[C@@]2(CCC3=

Cc4c(cnn4-c4ccc(F)cc4)C[C@@]32C)O1 
non-binding non-binding non-binding non-binding 

3r 

O=C(Cc1ccccc1)Nc1ccc(-

c2ccc3ncc4ccc(=O)n(-

c5cccc(C(F)(F)F)c5)c4c3c2)cn1 

non-binding non-binding non-binding non-binding 

4r 

CC(C)[C@H](NC(=O)OCc1cncs1)C(=O)

N[C@@H](Cc1ccccc1)[C@H](O)CN1CC

N(Cc2ccccc2)C[C@H]1C(=O)NC(C)(C)C 

non-binding non-binding non-binding non-binding 

5r 
Cc1ncc([N+](=O)[O-

])n1CCOC(c1ccccc1)c1ccc(Cl)s1 
non-binding non-binding non-binding non-binding 

6r 
COc1ccc(C2CNC(=O)N2C)cc1OC1CC2C

3CCC(C3)C2C1 
non-binding non-binding non-binding non-binding 

7r COc1ccc(Cl)cc1N=C(S)NNC(=O)CC(C)C non-binding non-binding non-binding non-binding 

8r 
Cc1cccc(Nc2cc(C(F)(F)F)nc(SCC(=O)O)n

2)c1C 
non-binding non-binding non-binding non-binding 

9r 
COc1ccc2c(c1)CN(C(=O)N(C)C)N=C2Cc

1c(Cl)cncc1Cl 
non-binding non-binding non-binding non-binding 

10r 
CCO/C(O)=C1\C(COCCN2CCOCC2)=N

C(C)=C(C(=O)OC)C1c1ccccc1Cl 
non-binding non-binding non-binding non-binding 

11r 
Cc1cc(-c2nn(-

c3ccccc3F)cc2CN2CCCC(CO)C2)c(C)s1 
non-binding non-binding non-binding non-binding 

12r Nc1nc(O)nc2ccc(Sc3ccc4ccccc4c3)cc12 non-binding non-binding non-binding non-binding 

13r 

O=C(O)Cn1c(=O)c(=O)[nH]c2cc([N+](=

O)[O-])c(-

n3ccc(CC(=O)N4CCCCC4)c3)cc21 

non-binding non-binding non-binding non-binding 

14r 

NC(=O)c1cccc(N2C(=O)N(c3cccc(C(N)=

O)c3)[C@@H](Cc3ccccc3)[C@@H](O)[

C@@H]2CCc2ccccc2)c1 

non-binding non-binding non-binding non-binding 

15r 
O=C1OCC2=C1C(c1ccc3c(c1)OC(F)(F)O

3)c1cc3c(cc1N2)OCO3 
non-binding non-binding non-binding non-binding 
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16r 
Clc1ccc(Nc2nnc(Cc3ccncc3)c3ccncc23)cc

1 
non-binding non-binding non-binding non-binding 

17r 
N=C(N)c1ccc2[nH]c(-c3ccc(OCc4cn(-

c5ccc(I)cc5)nn4)cc3)nc2c1 
non-binding non-binding non-binding non-binding 

18r 
O=C(Nc1ccc(F)cc1-

c1ccc(F)c(Cl)c1)OCC1CCNCC1 
non-binding non-binding non-binding non-binding 

19r 
N/C(=N/O)c1cncc(N2CC[C@@H]3CN[C

@@H]3C2)c1 
non-binding non-binding non-binding non-binding 

20r c1ccc(B2OCc3ccccc32)cc1 non-binding non-binding non-binding non-binding 

21r 

Cc1nnc2n1-

c1ccc(NC(=O)C3CCN(Cc4ccccc4F)CC3)c

c1CC2 

non-binding non-binding non-binding non-binding 

22r 
Cc1cc(C)c2sc(NC(=O)c3ccc(C#N)cc3)nc2

c1 
non-binding non-binding non-binding non-binding 

23r 
Cc1noc(C)c1COc1ccc(C(=O)OCC(=O)Nc

2ccc3c(c2)OCO3)cc1 
non-binding non-binding non-binding non-binding 

24r 
O=S1(=O)NCc2ccccc2N1C1CCN(C2CCc

3ccccc3C2)CC1 
non-binding non-binding non-binding non-binding 

25r 
Cc1nc2cnc(Oc3ccccc3)nc2n(CCc2ccccc2)

c1=O 
non-binding non-binding non-binding non-binding 

26r 
O=C(/C=C/c1ccccc1)NC(NC(=S)Nc1cccc

2cccnc12)C(Cl)(Cl)Cl 
non-binding non-binding non-binding non-binding 

27r 
CC(C)CN(Cc1ccccn1)C(=O)Cc1c(-

c2ccccc2)[nH]c2ccccc12 
non-binding non-binding non-binding non-binding 

28r 
CCCCc1ccc2[nH]c(-

c3ccccc3)c(C3=C(Br)C(=O)NC3=O)c2c1 
non-binding non-binding non-binding non-binding 

29r 
C[C@]1(c2ccccc2Cl)N[C@H](C(=O)O)C

c2c1[nH]c1ccccc21 
non-binding non-binding non-binding non-binding 

30r 
CC1(C)C[C@H](O)C[C@](C)(C/N=C(\S)

c2cccc(Cl)c2)C1 
non-binding non-binding non-binding non-binding 

31r 
O=C(NC1CCN(C2CCCCC2)CC1)c1cc(-

c2cccnc2)on1 
non-binding non-binding non-binding non-binding 

32r 

CC(C)CCOc1ccccc1-

c1ccccc1OCc1cn([C@H](CCCNC(=N)N)

C(=O)NCC2CCCCC2)nn1 

non-binding non-binding non-binding non-binding 

 

  



235 
 

 

Figure 3.2.S1. Training of LAGCN (left) and LAGAT (right) models. The curves show the 

training accuracy and loss across each epoch of training on the five datasets. 
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Figure 3.2.S2. Confusion matrix for the base GCN (left) and GAT (right) models. 
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