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Abstract

Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground,

and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) net-

works. However, the success of SAGSI networks is constrained by several challenges including

resource optimization when the users have diverse requirements and applications. We present a

comprehensive review of SAGSI networks from a resource optimization perspective. We discuss

use case scenarios and possible applications of SAGSI networks. The resource optimization dis-

cussion considers the challenges associated with SAGSI networks. In our review, we categorized

resource optimization techniques based on throughput and capacity maximization, delay mini-

mization, energy consumption, task offloading, task scheduling, resource allocation or utilization,

network operation cost, outage probability, and the average age of information, joint optimiza-

tion (data rate difference, storage or caching, CPU cycle frequency), the overall performance of

network and performance degradation, software-defined networking, and intelligent surveillance

and relay communication. We then formulate a mathematical framework for maximizing energy

efficiency, resource utilization, and user association. We optimize user association while satisfying

the constraints of transmit power, data rate, and user association with priority. The binary decision

variable is used to associate users with system resources. Since the decision variable is binary and

constraints are linear, the formulated problem is a binary linear programming problem. Based on

our formulated framework, we simulate and analyze the performance of three different algorithms

(branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare

the results. Simulation results show that the branch and bound algorithm shows the best results,

so this is our benchmark algorithm. The complexity of branch and bound increases exponentially

as the number of users and stations increases in the SAGSI network. We got comparable results

for the interior point method and barrier simplex algorithm to the benchmark algorithm with low

complexity. Finally, we discuss future research directions and challenges of resource optimization

in SAGSI networks.
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Chapter 1

Introduction

Wireless communication technologies have played a critical role in the evolution of modern con-

nected societies. Advances in wireless systems have significantly changed the way people ac-

cess and exchange information, from earlier analog mobile systems to more sophisticated digi-

tal systems [1]. Multi-dimensional heterogeneous networks can be more tightly integrated using

cutting-edge technologies such as low-power vast area networks, wireless sensing, improved loca-

tion tracking, millimeter-wave (mmWave), wireless backscatter networking, and software-defined

radios in beyond fifth-generation (B5G) and sixth-generation (6G) networks. Future wireless net-

works will face deployment, coverage, and capacity constraints due to traditional terrestrial net-

working technology. Despite significant advances in wireless networks, the evolving smart in-

frastructure, efficient technologies, and diverse wireless applications (e.g., autonomous vehicles,

virtual and augmented reality, remote surgery, and holographic projection) make the launch of

space-air-ground-sea integrated (SAGSI) networks in 6G inevitable [2].

Airborne users frequently imagine a positive online experience while flying. Current data

communication techniques used in space and ground communications cannot ensure aerial users’

quality-of-service (QoS). They consume a lot of energy to execute content requests due to high

propagation delays and restricted network coverage [3]. We need more resources for highly reli-

able connectivity in all the network layers in future SAGSI networks. Similarly, in [4], the authors

1



stated that the demand for Internet-based services such as web services and video streaming on

airplanes is growing. Offering Internet-based services in the air increases the challenge of pro-

viding cost-effective solutions, which is already a challenge in core networks. Provisioning and

managing Internet-based services entails considering routing and placement concerns in the core

network and new link connections, such as air-to-ground connections from satellites and direct

air-to-ground links. The authors of [5] argued that the ever-growing power of quantum computers

poses a severe security risk to SAGSI networks. Fortunately, information-theoretic security may

be achieved via quantum key distribution to provide secure communications. SAGSI networks are

more flexible and reliable than traditional wireless networks, with better coverage and high-quality

seamless connectivity. To fully utilize the advantages of heterogeneous networks, SAGSI networks

connect space-based, air-based, ground-based, and maritime networks. However, because of the

heterogeneity, time-varying, and self-organizing properties of SAGSI networks, the deployment

and utilization still face significant challenges [6]. Research efforts in [7], such as air-to-ground

link connections and direct air-to-ground links, need to be considered as developed solutions to

overcome the heterogeneous nature of SAGSI networks and apply to all the network layers for

high-speed, seamless communication. Hence, SAGSI networks are vital for today’s communica-

tion.

In SAGSI networks, satellites and space stations play an essential role. Satellites use solar

energy, making them energy sustainable, and as they orbit around the globe, they have wide cover-

age. Aerial networks are also essential in SAGSI networks for various industrial, mission-critical,

and emergency applications. An efficient airborne ad-hoc network can be quickly developed using

miniature balloons and fixed-wing high-altitude flying aircraft. With the emergence of under-

water networks [8] leveraging standard platforms, ground networks can be further extended [9].

Recently, SAGSI networks have been deployed for cross-region, cross-airspace, and cross-sea in-

tegrated SAGSI networks to achieve seamless global coverage [9]. As SAGSI networks mature,

they will play a significant role in cyberspace, interactivity, intelligence, and connectivity [10].

In [11], the authors noted that the energy resources of satellites, unmanned aerial vehicles (UAVs),
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and gadgets are limited due to low battery capacity and inconsistent energy supply, which re-

duces network lifetime and results in service disruption in SAGSI networks. There are significant

hardware differences among communication systems, which makes it challenging to communicate

between them. The authors of [12] proposed a SAGSI Internet of vehicle (IoV) edge-cloud archi-

tecture based on network function virtualization (NFV) and software-defined networking (SDN)

to handle various communication networks (satellite, air, and terrestrial networks) and computing

resources in IoV. They also developed an optimization model based on the specifications of the

SAGSI-service IoV.

Key parameters must be optimized to meet the technical needs of SAGSI networks. Moreover,

efficient management of resources can help provide better services to heterogeneous resource-

constrained devices and a wide range of applications. For example, a gamer wearing a lightweight

virtual reality headset to play interactively engaging games requires a fast data rate and low latency.

Autonomous vehicles on the road, or UAVs, require high-throughput, high-reliability, and low-

latency connectivity. Hence, it is important to investigate different requirements that must be con-

sidered while managing and optimizing resources in SAGSI networks to improve the quality, reli-

ability, and deployability of SAGSI networks. Several radio resource management schemes have

been developed for SAGSI networks while considering different objectives and constraints, includ-

ing but not limited to optimizing throughput [13, 14], latency [14, 15], energy consumption [16],

network cost [17], outage probability [18], task scheduling [19,20], caching [21], and performance

coverage [22]. The constraints faced include power/energy [23], capacity [24], security [12],

QoS [25, 26], quality-of-experience (QoE), mobility [15, 27], trajectory [28], central processing

unit (CPU) cycle frequency [29], delay [30], location [31], time and radio resources [32, 33].

1.1 Architecture, Use Cases and Requirements

Fig. 1.1 illustrates the SAGSI network’s architecture that includes mainly four types of networks,

namely, space, aerial, ground, and sea networks. Each network has different communication chan-
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Satellite      UAV   Tethered balloon   Ground BS         Ships            Submarines

Figure 1.1: An illustration of SAGSI network’s architecture.

nel models and components that communicate within and with integrated networks. For example,

the ground network consists of base stations (BSs) and user equipment (UE). These components

use the terrestrial infrastructure of ground networks, which can be either in short-range, medium-

range or long-range communication. Similarly, aerial networks include UAVs to connect BSs and

UAVs. HAPs are also part of aerial networks. In the space network, UAVs are connected to

satellites. Aerial networks also provide internetwork communications between UAVs and tethered

balloons, another component of future aerial networks. In this architecture, the sea network, ships,

and submarines are the significant components of the network, and they are connected to both BSs

and UAVs. SAGSI networks will address the challenges of connecting billions of devices with

diverse QoS requirements, increasing traffic volume, and providing reliable connectivity all the

time and everywhere. For instance, enhanced mobile broadband (eMBB) addressed human-centric

applications for high-data-rate access to mobile services and multi-media content. With a peak
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Use case scenarios 
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Use case 
scenarios Applications Enabling 

technologies

Figure 1.2: Use cases, applications, and enabling technologies for SAGSI networks. uMBB:
Ubiquitous mobile broadband; mULC: Massive ultra-reliable low latency communication; ULBC:
Ultra-reliable low latency broadband communication.

data rate of 10 to 20 Gbps, or 10,000 times more traffic, and support for macro and small cells

with a high mobility range of roughly 500 km/h, eMBB can be characterized as a scenario [7].

Another aspect of future SAGSI networks is the support of massive machine-type communications

(MTC), over 100 times more devices per unit area than existing networks [34]. Massive MTC

also provides a 10-years battery life and supports asynchronous access [7]. At the same time,

the ultra-reliability and low latency communication (URLLC) scenario provides ultra-responsive

connections. It offers less than 1 ms air interface latency and 5 ms E2E latency between UE and

BS [35]. It guarantees 99.9999 percent availability and ultra-reliable connectivity. The authors

of [36] claimed that URLLC offers high-speed mobility while offering low to medium data rates

(50 kbps to 10 Mbps). A combination of eMBB, massive MTC, URLLC, extreme low energy and

cost, and extreme coverage results in various scenarios which support use cases and applications

in SAGSI networks, as Fig. 1.2 shows.
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1.1.1 Ultra-reliable low-latency broadband communication (ULBC)

The ultra-reliable low-latency broadband communication (ULBC) is a use case scenario with

eMBB and URLLC requirements. ULBC enables mission-critical connectivity for emerging ap-

plications requiring high dependability, latency, and availability, including industry 5.0, the smart

grid, and autonomous cars. Holographic communication, extended reality, tactile Internet, multi-

sense experiences, and pervasive intelligence are some application areas for ULBC. As an illustra-

tion, holographic communication-based immersive gaming and multi-sensory experiences require

both broadband and ultra-reliable low-latency communication as service requirements [37]. The

enabling technology for ULBC is terahertz (THz) communication which offers high capacity, al-

lowing wide spectrum channels and very high-speed data. Furthermore, THz communications can

achieve high data rates via visible light communication. Recently, the idea of using artificial in-

telligence (AI) and ML in the physical and medium access control (MAC) layers has been put

up, this can also be an application scenario for ULBC [38]. ML can help with synchronization,

power management, modulation, and coding methods. Additionally, effective spectrum sharing,

channel prediction, and adaptive and real-time operations might benefit from ML. Additionally,

massive multiple-input multiple-output (MIMO) uses numerous inputs and outputs to meet the

data throughput, reliability, and latency requirements. However, such solutions must be improved

further to achieve the goals of future wireless networks. As a result, more sophisticated algorithms

must be created to identify the areas where ULBC can efficiently share the spectrum [7]. The

UAV network is convinced that a significant component of B5G and 6G networks are desired to

accommodate multiple types of service requirements simultaneously. However, how to converge

different types of services onto a common UAV network without deploying an individual network

solution for each type of service is challenging [39].

1.1.2 Massive ultra-reliable low-latency communication (mULC)

Massive ultra-reliable low-latency communication (mULC) is an emerging use case scenario wherein

users need high reliability and low latency and consists of many devices. Hence, mULC combines
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massive MTC and URLLC. Applications covering this use case scenario include tactile Internet,

intelligent transport and logistics, and ubiquitous global connectivity. Enabling technologies that

can help the mULC scenario are deep learning-based transmission prediction, which is an emerg-

ing solution for reducing latency [37]. Data-driven deep learning systems can predict user demands

and time-varying channel states in advance, resulting in lower transmission delay. To improve op-

eration latency, model-driven deep learning can train deep neural networks and replace standard

techniques with accelerated online deep neural networks. Distributed and cooperative process-

ing, based on local and cooperative operations on edge devices, are other important strategies for

reducing operation latency. Several challenges are associated with dependability such as lower

frequency means it can penetrate into different medium easily, however, if frequency rises block-

ages may occur between transmitters and receivers. Re-configurable meta-surfaces can control the

propagation of the environment during communications to increase dependability. Cooperative

mobile edge computing (MEC) [36] is another enabling technology for mULC, which supports

the underlying network. A tightly connected hybrid cloud and MEC strategy are required for

coordinated and load-balanced operations. The cloud assists the MEC (and vice versa) in meet-

ing the heterogeneous service requirements of essential mULC. A cooperative hybrid strategy can

address issues associated with delay-sensitive and delay-tolerant equipment [40]. In a shared re-

source block, the mULC can be thought of as employing power-domain non-orthogonal multiple

access (NOMA). Devices that are both delay-sensitive and tolerant can share a sub-carrier. In ad-

dition, sub-carrier and transmission power distribution can be combined to increase the number

of successfully connected IoT devices that can meet QoS requirements. An appealing radio ac-

cess network slicing approach for mULC services might also be adaptive resource coordination

for crucial MTC devices [36].

1.1.3 Ubiquitos mobile broadband (uMBB)

The requirements of eMBB and massive MTC are combined in ubiquitous mobile broadband

(uMBB). Applications under this scenario include increased onboard communications, pervasive
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global networking, digital twinning, and pervasive intelligence [37]. Orthogonal frequency divi-

sion multiple access (OFDMA), enhanced antenna techniques, reverse link sector capacity opti-

mization, adaptive interference management mechanism, and effective reverse link control design

are examples of enabling technologies [41]. Two primary technologies can be used as enablers, out

of which one is improved MTC, and the second is narrowband IoT [42]. Numerous 6G-enabled

applications, such as the IoVs, can benefit from the upgraded MTC’s high mobility and high band-

width data rates (up to 1 Mbps) [43].

1.1.4 Extreme low energy

Devices in SAGSI networks are expected to use sophisticated signal-processing algorithms. They

also must deal with big data, which requires a lot of processing and energy. As a result, en-

ergy is a concern in SAGSI networks. Zero energy is a major driving force behind future SAGSI

networks that will enable many IoT devices to maintenance-free and battery-free operations. Wire-

less power transfer (WPT), energy harvesting, and intelligent reflecting surface (IRS) are enabling

technologies for low energy consumption. Enabling technologies for low cost also use visible light

communication, which is part of optical wireless communication technologies. Existing network

infrastructures do not support energy harvesting, owing to the inefficiency of electronic circuitry

in converting captured energy into electric current [7]. As a result, the future communication net-

work can facilitate effective energy harvesting. Energy-harvesting circuits should also enable the

self-powering of devices, enabling off-grid operations, durable IoT devices, and longer standby

intervals. The authors looked at the energy-harvesting methods typically employed in the IoT con-

text [44]. They concluded that some energy harvesting methods could use small-size piezovoltic

cells or piezoelectric devices to supply considerable energy for an extended period. Other energy

harvesting methods, in contrast, depend on specific cycles such as day and night, working days

and weekends, and require vast circuits for capturing the energy. According to the authors of [45],

intelligent energy management may be essential for enabling energy efficiency for IoT gadgets

that communicate. For instance, obtaining energy from intentionally created or naturally occur-
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ring environmental resources can eliminate the need for batteries in IoT networks. Nowadays, IoT

systems offer energy harvesting techniques so that they can be self-sustainable up to some extent.

Also, novel waveforms and modulations with low peak-to-average power ratios are necessary to

reduce power usage [46].

1.1.5 Extreme coverage

The coverage expansion is intended to reach regions not currently covered by the traditional mo-

bile communication system, such as space, the ocean, and the sky. Non-terrestrial networks using

geostationary satellites, low earth orbit (LEO) satellites, and HAPs are a potential option for offer-

ing high-quality communication services in locations the typical mobile communication network

cannot reach. In addition, the digital divide in rural and urban areas is another motivation behind

the extreme coverage use case scenario; people who do not have access to the Internet can be eas-

ily marginalized politically, socially, and economically. Furthermore, the disadvantages of lack of

connectivity access are readily amplified for network’s overall performance elderly, disadvantaged

communities, and the disabled affected by it. Despite this, as the number and capacity of undersea

fiber cables have lately increased, information and communication technologies infrastructure and

solutions have advanced dramatically in the previous century. This has increased investments in

terrestrial fiber capacity. Logistics services such as home delivery using UAVs is a compelling

use case, and unmanned or highly complex operations in primary industries such as agriculture,

forestry, and fisheries are examples of prospective use cases. Applications use cases include fu-

ture flying cars, space travel, and submarine travel. For extreme coverage, enabling technologies

include THz communication, swarm UAVs and IRS [7].

1.2 Motivation and Objectives

Efficient resource management is necessary in SAGSI networks to ensure uninterrupted connec-

tivity for various devices. Optimizing SAGSI networks can improve energy efficiency, resource
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utilization, and user association, bridging the digital divide in remote areas and enabling seamless

connectivity for various devices and applications. Network resource optimization can enhance the

design and deployment of future SAGSI networks, leading to enhanced network performance and

user experience. Moreover, exploring optimization algorithms such as the branch and bound algo-

rithm adds to the body of knowledge in network optimization techniques. Ultimately, this thesis

aims to contribute to advancing efficient and reliable wireless connectivity by benefiting users,

industries, and society.

The objective is to design a resource management scheme while considering energy efficiency,

resource utilization, user association, and prioritizing users in the SAGSI networks. The goal is

to optimize the network’s performance by deploying UAVs at optimal locations with high user

density. This optimization problem considers data rate, power, and available resource constraints.

1.3 Thesis Contributions

The following are the main contributions of this thesis:

• We offer a thorough analysis of SAGSI networks from resource optimization studies that

have been looked into during the previous five years.

• We examine the creation of numerous anticipated new applications and how the capabilities

of upcoming 6G networks will make it possible to put these applications into use.

• We propose two cutting-edge use case scenarios essential for SAGSI networks in 6G, in-

cluding low energy, cost, and extensive coverage.

• We review efforts in SAGSI networks and research activities in a 6G environment from a

resource optimization perspective. To the best of our knowledge, this is the first time such a

review has been done.

• We mathematically formulate the problem of optimizing user association in a SAGSI net-

work. Considering the complexities introduced by different channel models for each com-
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munication layer, we addressed the challenge of maximizing energy efficiency while accom-

modating constraints on data rate, power, resource demand, and the total number of resources

available.

• We solve the formulated problem using three different algorithms: branch and bound algo-

rithm (BBA), interior point method (IPM), and barrier simplex algorithm (BSA).

• We compare the simulation results in which the optimal results obtained using the BBA

are considered as benchmarks. Through this analysis, we evaluated the effectiveness and

efficiency of each method in achieving efficient user association and energy efficiency within

the context of a SAGSI network.

1.4 Organization of Thesis

The rest of the thesis is organized as follows: Chapter 2 provides a background and literature

review on resource optimization in SAGSI networks. This chapter includes a detailed review of

existing surveys and a comprehensive discussion on optimization categories in different domains

and layers of SAGSI networks. In contrast, non-radio resource management is out of the scope

of our work. We discuss the solutions and techniques for joint optimization problems and perfor-

mance metrics and measurements used in the literature to access the solutions discussed. Chapter

3 provides the system model and optimization problem for optimizing user association with and

without urgent priorities while maximizing the system’s energy efficiency, resource utilization, and

user association. Chapter 4 presents simulation results obtained using three algorithms (BBA, IPM,

and BSA) while considering various scenarios in network configuration. The simulation results of

IPM and BSA are compared with the BBA in terms of associated users to BSs and UAVs, and

satellites. Finally, the thesis concludes, and future research directions are highlighted in Chapter

5.
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Chapter 2

Literature Review

Many recent surveys are available related to SAGSI networks such as [1, 37, 42, 47–53]. Some

authors considered two layers (e.g., ground and air), whereas some considered three layers (e.g.,

space, air, and ground). However, only a few have targeted all the layers of an integrated network,

and one such work is [50]. Hence, in this survey, we consider all the layers of the integrated

network to understand how resources can be managed in all the layers and how it is possible to

communicate securely while transmitting in a heterogeneous network. For instance, the authors

of [47] presented a survey on 6G wireless communications networks and focused primarily on key

performance indicators in SAGSI networks. The authors presented a detailed review of 6G net-

works, their key performance indicators, and novel use cases, such as holographic communication

and industrial automation. The potential 6G requirements, challenges, and trends are also high-

lighted, e.g., green 6G and three-dimensional (3D) coverage. While the authors of [54] reviewed

the essential technologies that can be used in 6G networks. The core performance parameters

covered in this survey were essential factors in developing 6G networks. In contrast to the survey

in [47], we considered all the above aspects briefly, with our primary objective being resource

management in SAGSI networks.

The authors of [37, 42, 52, 53] reviewed the development of 6G networks, including use cases,

requirements, technologies, architectures, and future challenges. In [37], the authors explored the
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need for 6G by describing critical drivers, the disruptive use cases, and the fast rise of mobile

traffic. The authors suggested an architecture for 3D coverage incorporating both terrestrial and

non-terrestrial networks. They showed how, under 6G deployment scenarios, the average data con-

sumption would rise from 5 GB in 2020 to 250 GB in 2030. The authors argued that 6G networks

would be a radio-optical system, an intelligent connected platform, and an integrated space-air-

ground network. The authors of [42] explored the recent trends driving 6G, discussed emerging

applications (e.g., smart grid, industry 5.0, collaborative robots, and intelligent healthcare), pre-

sented a vision and requirements of 6G, and summarized projects such as Google Loon which uses

how to deliver reliable Internet connections to remote and rural regions using aerial networks (e.g.,

UAVs or balloons). They also highlighted low-coverage, medium-coverage, and high-coverage

surveys on 6G networks.

In [52], the authors analyzed the development status of the SAGSI network, including the de-

velopment of satellite communication and key technologies for integrating space-air-ground net-

works. They discussed, how SAGSI networks are applied in 6G. However, for their successful im-

plementation, the technology supporting the network architecture, mobility management, resource

allocation, and load balancing still must address specific significant issues. In [53], the authors

proposed a vision toward architecture based on intelligent communication environments with its

layered approach and discussed future research directions in 6G networks. The authors presented a

taxonomy of 6G wireless systems, use cases, emerging machine learning (ML) schemes, and com-

munication and computing technologies. They investigated resource management in SAGSI net-

works and all the previously listed factors to implement integrated networks successfully. In [48],

the authors focused on heterogeneity in SAGSI networks and studied the current literature on

spectral efficiency. The unique features of heterogeneous networks are identified, including sys-

tem capacity, ultra density, reduced uncovered areas, reduced link loss and delays, and improved

spectral efficiency. In contrast to their work, we focus on additional resource parameters including

system capacity and delay minimization to improve the overall performance of SAGSI networks.

The authors of [49] focused their research on the tactile Internet of things (IoT) and exten-
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sively reviewed architectures, protocols, algorithms for radio resource optimization, and non-radio

resource allocation techniques. The authors evaluated the performance of tactile Internet based

on different use cases from distinct application domains. Since we investigated every aspect of

SAGSI networks and all potential use cases, requirements, and applications, our work differs from

theirs. Non-radio resources, however, are outside of the scope of this paper. The authors of [1]

provided an overview of aerial radio access networks. They proposed an architecture that swiftly

sets up a flexible access infrastructure on demand and uses airborne components like UAVs and

satellites. They also explored system models where mobility, energy consumption, transmission

propagation, and communication latency are all real-world phenomena. In [51], the author’s fo-

cus was on end-to-end (E2E) network optimization using ML. They looked at four topics from an

optimization point of view, ML for network access, ML for network routing, ML for controlling

network congestion, and adaptive streaming control.

The authors of [32] focused on space-air-ground networks, and they presented an overview

of the most recent state-of-the-art results on resource allocation applications. They demonstrated

the benefits of a single-use scenario comprising integrated space high-altitude platforms (HAPs),

ground networks, and non-radio resource scheduling policies by exploiting deep neural networks.

In [50], the authors reviewed existing SAGSI networks and their architectures and discussed the

characteristics of SAGSI networks and potential challenges. The authors highlighted the secu-

rity requirements of SAGSI networks, emphasizing the differences among typical networks. They

discussed security threats, attack methodologies, and countermeasures for SAGSI networks. The

authors of [55] discussed the technical issues related to post-disaster networks, including the phys-

ical and networking challenges that must be addressed. They focused on the networking layer

while discussing integrated space-air-ground designs, routing, and delay-tolerant/software-defined

networks. At the physical layer, they reviewed the literature on channel modeling, coverage and

capacity, radio resource management, localization, and energy efficiency. They also presented in-

teresting simulation results demonstrating how to apply ad-hoc network designs in emergencies.

The authors also reviewed ML techniques for optimizing the network.
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We reviewed available technologies that are potential candidates for deployment in SAGSI

networks. From all the discussions above and Table 2.1, we found that all the state-of-the-art

surveys address only one part of the overall development of SAGSI networks in 6G. Most existing

surveys discuss enabling technologies, applications, and performance indicators. However, none

of the works we discussed above focused on resource optimization in SAGSI networks. In contrast

to existing surveys, we comprehensively review all the resource management aspects of SAGSI

networks.

2.1 Radio Resource Optimization

Resource optimization aims to ensure efficient network design and performance of the SAGSI

network while satisfying constraints. Factors that impact SAGSI network performance include

latency, availability, packet loss, network jitter, and network utilization. Consequently, if we can

optimize network resources, we can significantly improve the networks’ quality and overall perfor-

mance. The key aspects of resource optimization in SGAINs include throughput, energy consump-

tion, delay, task offloading and resource utilization, network operation cost, outage probability, the

average age-of-information, CPU cycle frequency, task scheduling, the network’s overall perfor-

mance, intelligent surveillance, SDNs, performance degradation, the convergence of 6G and IoTs

and relay communication, which we explain next.

2.1.1 Throughput and capacity maximization

Throughput and capacity maximization is one of the main goals of recent research on resource

optimization for SAGSI networks which falls under the ULBC use case scenario to ensure higher

data rates and maximize the capacity of network. In [56, 57], the authors considered UAV as-

sociation in SAGSI networks. In these papers, the authors tried to improve the throughput and

capacity of SAGSI networks in association with UAVs. In particular, the authors of [56] con-

sidered a SAGSI network association supported by a UAV. The authors developed an optimization
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Table 2.1: Existing surveys on SAGSI Networks
RMF: Resource management focused; SAG: Space-air-ground integrated network; HET: Hetero-
geneity of Network; APP: Applications; CS: Core Services; ET: Enabling Technologies; UC: Use
cases.

Ref. Year 6G RMF SAG APP CS ET UC Remarks

[47]
2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ Reviewed the need for 6G, use cases, en-

abling technologies, challenges and fu-
ture directions.

[37]
2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ State-of-the-art analysis is presented and

provided a comprehensive survey of re-
lated works.

[48]
2021 ✗ ✓ ✗ ✗ ✗ ✗ ✗ Emphasized on the heterogeneous nature

but in 5G networks.

[54]
2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ A comprehensive review of the future

evolution of 6G networks is presented.

[49]
2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ Reviewed existing architectures and algo-

rithms for tactile Internet.

[50]
2021 ✓ ✗ ✓ ✗ ✗ ✓ ✗ Reviewed main security issues, chal-

lenges in SAGSI networks.

[42]
2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ Reviewed a broad-range of 6G concepts

including standardization.
[1] 2021 ✓ ✗ ✗ ✓ ✓ ✓ ✓ Reviewed 6G infrastructure with a focus

on radio access networks.

[51]
2021 ✓ ✗ ✗ ✓ ✗ ✗ ✗ Reviewed 6G networks with a focus on

machine learning (ML) enabled end-to-
end (E2E) communications.

[52]
2021 ✓ ✗ ✓ ✓ ✗ ✗ ✗ A short review on current developments

in SAGSI networks is presented.

[53]
2020 ✓ ✗ ✗ ✗ ✗ ✓ ✓ Reviewed 6G taxonomy, Q-learning and

federated learning-based transceivers.
Our
Sur-
vey

- ✓ ✓ ✓ ✓ ✓ ✓ ✓ We present a comprehensive survey on
SAGSI networks from a resource opti-
mization perspective in 6G networks.
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problem to maximize overall UAV network capacity while satisfying power, altitude, QoS, interfer-

ence from macrocell and satellite networks, and sub-channel allocation constraints. It is a convex

optimization problem that optimizes sub-channel and power control. The proposed approach is

a two-stage joint hovering altitude and power control system. Stage 1 entails joint sub-channel

and power control while considering a fixed altitude, utilizing the Lagrangian dual decomposi-

tion method. Stage 2 consists of the optimal hovering altitude of each UAV based on the results

obtained from Stage 1. The performance of the proposed work is evaluated in terms of the proba-

bilities of violating the interference limit, spectral efficiency (bps/Hz), and probability of satisfying

the capacity requirement concerning QoS. The scalability of the proposed work needs to be evalu-

ated, and only a limited area and number of UAVs have been considered. Moreover, the algorithm’s

complexity needs to be considered for its practicality.

The authors of [57] considered the inevitable cross-tier interference in SAGSI networks. The

objective is to provide joint optimization for power and altitude. The constraints include power,

safety, and hovering altitude, QoS guarantee, interference, and sub-channel allocation. The prob-

lem defined is a concave-convex optimization problem. This problem is solved via the Lagrange

dual decomposition and concave-convex process approach, followed by a low-complexity greedy

search algorithm. The performance of the proposed work is evaluated in terms of spectral ef-

ficiency, probabilities of satisfying the capacity requirements, and probabilities of violating the

interference limit. The altitude of UAVs is limited to 200m to 400m in simulations. In [58], the

authors proposed to boost the distributed throughput of SAGSI networks, the authors developed a

solution to optimize the access and backhaul lines jointly. They assumed that LEO satellites would

provide backhaul connectivity while space BSs and UAVs would provide downlink service for

ground clients. To choose the best BSs approaches, reinforcement learning algorithms are utilized.

To distribute resources between the space BSs and the UAVs and to enhance the 3D trajectories

of the UAVs, they proposed two techniques based on the multi-armed bandit and satisfaction al-

gorithms. Average throughput and user outages are used to gauge how effective the suggested

processes were.
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The authors of [33] achieved flexible, dependable, and scalable network resource management

for SAGSI vehicular networks, and a software-defined architecture was considered. Mobility man-

agement, QoS-aware resource allocation, and energy efficiency are just a few of the restrictions

considered. To achieve the trade-off between signaling overhead and system status acquisition

in various scenarios, the authors proposed a hybrid and hierarchical SAGSI control architecture.

The placement of the material, the caching parameter, and the content delivery are all optimized.

The proposed work’s effectiveness is assessed using the average throughput per vehicle and the

execution time of the SDN control algorithm. In [59], the authors highlighted that conventional

offloading techniques are insufficient for dynamic SAGSI networks. Thus, they looked at SAGSI

networks’ reinforcement learning-based traffic offloading while considering node mobility, an ex-

tensive and frequent change in network traffic and link condition. The energy, queue capacity, and

power consumption limits are considered for the traffic offloading problem. The authors proposed

a double-deep Q-learning algorithm with an improved delay-sensitive replay memory mechanism

to educate the node to select the offloading approach based on adjacent nodes and primary data.

The authors also developed a unified data-gathering system utilizing the hello package and of-

fline training to aid the suggested offloading technique. The performance of the suggested task

is evaluated in terms of network throughput, drop rate, average latency, training loss, and value

estimation.

In [60], the authors proposed combining the ground-to-space transmission technique with a

HAP-reserved transmission scheme to improve terrestrial communication and conserve transmis-

sion power. They maximized the overall throughput and optimal probability of the network. The

constraints on the number of ground users and the competition of users with feasibility are con-

sidered in the mixed integer non-linear programming problem (MINLP). The authors proposed a

transmission control strategy wherein the user determines the transmission scheme, i.e., switches

between the ground-air-space link transmission and the ground-to-space link transmission with a

probability. They emphasized maximizing the throughput and obtained the optimal probability that

a user selects the ground-air-space transmission scheme. The authors evaluated the performance
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of the proposed work in terms of normalized throughput. However, the performance is limited by

the number of users and the probability of users accessing the network.

Intelligent reflecting surfaces can offer an energy-efficient and cost-effective solution to achieve

high spectral efficiency in SAGSI networks by intelligently reconfiguring signal propagation using

passive reflecting elements. Meanwhile, there is a growing demand for high-throughput geosta-

tionary satellite communications to provide broadband services in inaccessible or poorly covered

areas. The authors of [61] proposed a satellite communication network where a satellite transmits

signals to a ground mobile terminal using multicarrier communications. The signal delivery from

the satellite to the ground mobile terminal is assisted by intelligent reflecting surfaces, which shift

the signal phase smartly toward the ground terminal to enhance the effective gain. The intelligent

reflecting surfaces are mounted on a high building with multiple reconfigurable passive elements

and a smart controller. Power allocation and phase shift design are jointly optimized to maximize

the system’s channel capacity. The joint optimization problem is non-convex, which is difficult

to solve through traditional convex optimization methods. Therefore, the authors proposed an

epsilon-optimal algorithm based on mesh adaptive direct search algorithm to obtain an efficient

solution. Simulation results obtained with this approach demonstrate the benefits of intelligent

reflecting surfaces-assisted satellite communication in terms of system channel capacity.

In [62], the authors aimed to improve the data throughput of ground users by integrating ground

BS with air stations (such as balloons). Several constraints have been considered: bandwidth,

power, association, HAP- and tethered balloon placement, access link associations, user QoS con-

straints, back-hauling bandwidth, and peak power. The solution proposed is access link optimiza-

tion and back-hauling optimization. The performance is evaluated in terms of the average uplink

data rate and average downlink data rate. In [19], the authors considered a SAGSI network for

supporting maritime communications, where the LEO satellite constellations, passenger airplanes,

terrestrial BSs, and ships serve as the space-air-ground-sea layers, respectively. The objective is

to use a distributed topology rather than a quasi-predictable network topology. The constraints

include minimum throughput and a minimum lifetime of the path. The challenge is constrained
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minimum delay routing. The proposed solution is a complete Pareto solution that uses single and

multiple objective routing instead of all Pareto-optimal routes rather than delay-throughput pair.

The authors evaluated the proposed work using latitude, E2E throughput, coverage ratio, and path

lifetime. It uses a distributed operating system and takes advantage of the somewhat predictable

network topology.

Table 2.2: Throughput and Capacity Maximization
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[56]
Sub channel
and power
control
jointly;
hovering
altitude.

Power,
altitude, QoS,
interference,
and
subchannel
allocation.

Convex
optimization.

Two-stage
joint hovering
altitude and
power control,
joint
subchannel
and power
control using
Lagrangian
dual
decomposition
method while
considering
the fixed
altitude.

500 m × 500 m
area with ten
macrocells and 10
satellite users. The
coverage radius of
each UAV is 50m
and users are
randomly
distributed in each
coverage area.
The complexity of
the algorithm was
not discussed.

20



[58]
Average
throughput of
system.

QoS aware
resource
allocation,
determine the
feasible region
in the 3D
space for the
UAVs
locations, set
of available
power levels
for the BSs.

A multi-armed
bandit
problem
which is an
association
problem.

Utilized a
method in
which each
BS aims at
satisfying its
reward
function: i)
backhaul
links:
BS-satellite
association
and ii) access
links:
learning-based
algorithms.

Storage or cache
capacities are not
discussed in this
work.

[33]
Resource
management,
content
placement,
caching and
content
delivery.

Mobility
management,
QoS aware
resource
allocation and
energy
efficiency.

Joint
optimization
of resource
utilization.

Hybrid and
hierarchical
SAGVN
control
architecture.

Cross-layer
network security is
not considered.

[59]
To improve
overall
network
throughput
and average
delay.

Energy, power
consumption
and capacity
of network.

Traffic
offloading.

Double deep
Q-learning
algorithm with
improved
delay sensitive
replay
memory
algorithm.

The proposed
algorithm solely
depends on Hello
packet protocol,
we cannot
comment on its
performance for
other topologies.

[60]
Ground-air-
space
transmission
scheme.

Number of
ground users
and their
competition.

MINLP. Integration of
two
transmission
techniques.

Only feasible
when total users
on the ground are
less than 80 and
probability is
between 0.1 and
0.7.
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[57]
Joint
subchannel
and power
control,
hovering
altitude.

Power, safety
and hovering
altitude, QoS
guarantee,
interference
and
subchannel
allocation.

Concave-
convex.

Two-stage
joint
optimization
algorithm for
uplink
resource
allocation.

Altitude of UAVs
has a limited range
of 200 to 400
meters.

[62]
Access link
optimization
and backhaul
optimization.

Bandwidth
and power
constraints,
association,
back-hauling
bandwidth and
rate, station
and user peak
powers, access
link
associations,
and user QoS.

A linear and
convex
optimization
problem for
solving the
associations
and power
allocations.

Integrating the
ground BSs.
Ground BSs
with higher
altitude
stations.

Simulation results
are limited to an
area of 70 by 70
km.

[19]
Complete
Pareto front
out of all
Pareto-
optimal
routes.

Path lifetime. Multi-
objective
routing
problem.

Single
objective
routing and
multiple
objective
routing.

The dataset trained
here is random and
generated within a
window of six
hours, the increase
or decrease of
time window may
impact dataset
training/testing
and latency.

Lessons learnt: Table 2.2 presents a summary of the main lessons learned from the works dis-

cussed above.

• Physical location and frequency planning should be more widely researched with various

optimization approaches in SAGSI networks.

• In [24], the authors concluded that there exists a trade-off among throughput, UAV deploy-

ment cost, and queueing states.
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• The authors of [33] did not consider maximizing throughput, cross-layer network security.

Storage or cache can enhance the work done in [58], and the datasets used in [19] were very

limited and randomly generated.

2.1.2 Energy consumption

The devices involved in SAGSI networks are generally resource-constrained in terms of battery

life. The question of extending these devices’ life becomes a significant concern. This requires

efforts in two areas: i) energy efficiency, which will minimize energy consumption, and ii) energy

self-supply, which will provide new energy to devices in SAGSI networks [63]. This section

reviews the current literature on different aspects of energy consumption in SAGSI networks.

With the increasing use of renewable energy sources in power systems, there is a need for fast

and reliable connections between renewable energy sources components and equipment to ensure

the delivery of quality power. In [64], the authors explored the potential of SAGSI networks to

accelerate the use of RES by providing faster and more stable data bandwidth. The applications

of SAGSI networks in RES include the point-to-point energy trade market, vehicular networks,

wireless energy transfer, energy management systems, smart grids, self-healing, smart batteries,

and AI-based weather forecasting. The authors of [64] discussed the advantages and challenges of

implementing SAGSI network in RES sectors, as well as practical applications and potential im-

plementations. Their discussion highlights that, although SAGSI network can help improve renew-

able energy sources’ security, connectivity, integration, and sensory data processing, it still faces

various technical limitations, such as incompatibility issues with older devices, higher power con-

sumption, and operating cost. Further, future research should address these limitations to ensure

the cost-effectiveness and compatibility of 6G in RES. Additionally, the authors also highlighted

that the SAGSI network in the RES sector needs intensive development to address security and

privacy issues, hardware support, and ultra-fast communications with low latency.

The authors of [4] examined the best offloading strategy and the distribution of communication

and computing resources for a satellite performing while energy is minimized in SAGSI networks.
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In [25,65,66], the author’s considered UAVs network energy or power consumption, its efficiency,

and management in SAGSI networks. In [65], the authors explained that the exponentially grow-

ing UAV communications demand is dramatically increased by UAV applications, which causes a

dearth of spectrum resources for UAVs. Here, energy is a restriction, and sue at hand is the lack

of spectrum resources for UAVs, which requires semi-definite programming, relaxation, and con-

vex optimization. The authors proposed a cooperative networking architecture UAV-swarm-aided

SAGSI network to address this problem. The performance measures are in terms of potential

applications of UAV communications.

In [25], the authors proposed an intelligent UAV-assisted fault diagnosis technique which uses

data from buoys and UAVs to identify preliminary faults using a Cubature Kalman filter-based

radial bias function neural network server, it uses data from buoys and UAVs to identify prelimi-

nary faults. The authors used deep reinforcement learning (DRL) algorithm for the data collection

path and deep deterministic policy gradient on B5G-MEC servers for energy efficiency. The fault

status of each buoy is determined by the collective decision made by diagnosis centers resulting in

a high aggregation ratio and low energy cost. The QoS was improved while the performance was

evaluated using metrics such as test error, multi-fault classification, aggregation ratio, and energy

cost. In [66], the authors considered remote IoT networks as an effective approach for providing

services to smart devices, which are often remote and dispersed over in a wide area. Since the

ground BS deployment is difficult, and the power consumption of smart devices is limited in re-

mote IoT networks, the hierarchical space-air-ground architecture is required for these scenarios.

They investigated the energy-efficient resource allocation problem in a two-hop uplink communi-

cation with UAV relays. They solved two sub-problems optimally with different algorithms. They

discussed the power constraints as a major issue for 6G networks whereas the problem type they

defined is a non-convex MINLP. Their algorithms were evaluated based on the number of smart

devices and energy efficiency.

In [12], the authors proposed solutions to efficiently manage several communication networks

(satellite, air, and terrestrial networks) and computation resources in the IoV. They proposed a
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SAGSI-IoV edge-cloud architecture based on SDN and NFV. They developed an optimization

model based on the service requirements of the SAGSI network and proposed an improved algo-

rithm. Constraints on service delays, resource use, energy consumption, and security are consid-

ered. The proposed model was evaluated based on how often the task failed and how much energy

is consumed. In [16], the authors considered the gateway selection problem to minimize the trans-

mission energy. Toward this end, they formulated the issue of inter-segment gateway selection as

a constrained optimization problem. They proposed two algorithms, i.e., an optimal enumeration

algorithm and a simulated annealing-based algorithm. They considered the link capacity constraint

with the problem type as a constrained optimization problem, and they evaluated the performance

based on the average transmission energy consumption of the system.

Lessons learnt: Table 2.3 presents a summary of the main lessons learned from the works re-

viewed above.

• Energy consumption and power utilization can be optimized using different algorithms such

as those described in [16] and [66]. However, there is still much work to be done to satisfy

the heterogeneous nature of SAGSI networks.

• The basic hardware differences in different layers of the SAGSI network must still be ad-

dressed for optimal usage of energy resources as [12] describes.

• The authors did not explain how angle-based diversity selection enhances their work [12]

whereas the scalability of [66] needs to be evaluated while considering computational com-

plexity.

Table 2.3: Energy Consumption
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[12]
Energy
efficiency of
SAGSI-IoV
edge-cloud
architecture.

Service
delays,
resource use,
energy
consumption,
and security.

Edge-cloud
resource
scheduling.

Solution
includes i)
population
initialization,
ii)
reproduction,
iii) update
strategy for
convergence.

Limited discussion
on the angle-based
diversity selection.

[65]
QoS guarantee
energy
efficiency.

Energy
consumption.

Semi-definite
programming
and convex.

Cooperative
networking
architecture
UAV-swarm-
aided SAGSI
network.

Only the energy
consumption of
UAVs is
considered here.

[16]
Minimizing
transmission
energy.

Capacity. Inter-segment
gateway
selection.

An optimal
enumeration
algorithm. and
a simulated
annealing-
based
algorithm.

They used 10
nodes with a
communication
distance of less
than one km.

[25]
Energy cost
and
aggregation
ratio.

QoS. Linear indis-
cernibility.

Intelligent
fault-
diagnosis
algorithm.

They compared
different
algorithms with
proposed one for
energy cost.

[66]
System energy
efficiency.

Power
constraints.

Non-convex
MINLP.

Two
sub-problems
are solved
using different
algorithms.

Computational
complexity is very
high when adding
up the complexity
of all algorithms
in their work.

2.1.3 Delay minimization

In SAGSI networks, guaranteed QoS for particular traffic types (e.g., delay-sensitive traffic) is

challenging mainly because of the limited resources of different network layers [67]. Next, we

review recent works on delay minimization in SAGSI networks.
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The authors of [68] proposed power systems impose stringent security and delay requirements

on computation offloading, which cannot be satisfied by existing power IoT networks. They

addressed this challenge by combining blockchain, space-air-ground integrated power IoT and

ML. A consensus message is broadcasted using LEO satellites to reduce the block creation delay,

and UAVs provide variable coverage enhancement. Specifically, they proposed a semi-distributed

learning-based secure and low-latency electromagnetic interference-aware compute offloading al-

gorithm to minimize the total queuing delay over the long term. They also proposed the federated

deep actor-critic-based electromagnetic interference-aware algorithm, a task-offloading algorithm.

Performance is evaluated based on queuing delay of task offloading and task computation versus

time. The constraint observed in their work is security. We observe that the area (400m by 400m)

is too small for delay optimization with 12 power IoT devices distributed evenly and four ground

BSs, two UAVs, and one LEO satellite.

Deep learning techniques are used in [19,59,69,70] for optimizing delay issues in SAGSI net-

works. In [69], the authors investigated the problem of IoT task offloading for the SAGSI network

scenario wherein computing resources are shared by IoT devices cooperatively. They formulated

the task offloading problem to minimize the processing delay of all tasks, considering the tasks of

each IoT device, UAV mobility, and computing power difference between the UAV and the LEO

satellite. Next, they formulated the problem as a Markov decision process (MDP) linear program-

ming. They proposed a curriculum learning-multi-agent deep deterministic policy gradient ap-

proach to learn the near-optimal offloading strategy. The performance was evaluated using metrics

such as transmission delay, the number of IoT devices and the value of the UAV utility function.

The computational complexity should have been discussed in their work. The authors of [70] pro-

posed a task scheduling scheme to minimize offloading and computing delay while considering

the UAV energy capacity and the task processing delay. They formulated online scheduling as an

integer non-linear optimization problem and developed a risk-sensitive DRL algorithm. The al-

gorithm evaluates the risk, which measures the energy consumption that exceeds the UAV energy

capacity constraint. The algorithm finds the optimal delay parameter and each state’s risk. The
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authors measured the performance by calculating how much energy is consumed and how much

delay can be expected. The authors should have discussed the computational complexity of their

scheme.

The authors of [59] proposed a double Q-learning algorithm with a delay-sensitive replay

memory algorithm in SAGSI networks to minimize the network delay. The authors considered

constraints such as the high mobility of nodes, frequently changing network traffic, and link state.

They used performance metrics such as signaling overhead, dynamic adaptivity, packet drop rate

and transmission delay. When the UAV’s speed increases from 5m per second to 30m/second

there is a decrease in the packet drop rate but also a decrease in the throughput which is not feasi-

ble for network optimization. The authors of [19] proposed a deep learning-aided multi-objective

routing algorithm for heterogeneous service requirements in SAGSI networks. The distributed

algorithm exploits the quasi-predictable network topology. The constraints considered are E2E

delay, E2E throughput and path lifetime. The problem defined is a multi-objective optimization

problem. They called the algorithm aeronautical ad-hoc networking. The authors evaluated the

performance in terms of the average performance of max E2E delay. The authors of [71] con-

sidered the optimization of energy and delay simultaneously. They proposed a task scheduling

scheme to minimize the offloading and computing delay of all tasks while considering the con-

straint of UAV energy capacity. The authors proposed a distributed, robust latency optimization

algorithm for the mixed integer linear problem (MILP). They evaluated the performance using

metrics such as energy consumed and delay.

The authors of [72] described how frequent link errors and dynamic connections in SAGSI net-

works worsen data failure and computation slowdown and constrain the improvement of AI service

efficiency. They proposed a novel coded storage and computation architecture with artificial intel-

ligence services, which can offer reliable storage and flexible computation offloading to accelerate

distributed ML. The constraints observed are energy constraints, fault tolerance, mobility, and lo-

cation. The problems identified include data failure and computation slowdown. The performance

measures used include average offloading delay, average retrieval delay and block rate/congestion
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rate. In SAGSI networks, UAV delay optimization is the main concern in [15, 59, 73]. Radio

resource allocation and bidirectional offloading configuration are jointly optimized in [74]. The

formulated optimization problem is non-convex and considered constraints on the sum of radio

resources and the stability of the queue. The authors solved the problem in two steps: i) op-

timization of bidirectional offloading configuration with known radio resource allocation and ii)

optimization of radio resource allocation using the brute-force search method. They concluded that

performance depends on average delay, broadcasting capacity, and task arrival rate and analyzed

the average delay of network using queuing theory.

In [73], the authors elaborated on the prominent future of SAGSI network architecture to sup-

port the demands of IoT applications. They considered a UAV to collect the data from IoT devices

within the coverage range. Then a decision can be made at the UAV using local processing or

offloading to the nearby BS or the far-away satellite. Constraints considered included QoS, en-

ergy resources, and uncertainty of the system dynamics. The problem type is linear programming.

The authors proposed a stochastic policy for task offloading, where multiple devices are comput-

ing tasks to be processed. The performance was measured using energy consumption, delay, task

drop, and arrival rates. In [15], the authors minimized the maximum computation delay among

IoT devices by scheduling association control, task allocation, transmission power and bandwidth

allocation, UAV computation resource, and deployment position. The constraints involved include

resources, delay, and bandwidth for this convex optimization problem. They also proposed an ef-

ficient algorithm whose convergence is further proved. The performance evaluation is measured

using metrics such as maximum computation delay versus computation capability of IoT devices,

UAV, and cloud computation capability.

Lessons learnt: Table 2.4 the main lessons learnt from the research works discussed above.

• Blockchain, ML, AI, and deep learning are promising solutions for all kinds of delay prob-

lems in SAGSI networks [68], [72], [19].

• The quality of service and overall delay of SAGSI networks depend heavily on each other

due to their versatile and heterogeneous nature [73].
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• The author’s work is valid for only a limited area of 400m by 400m [68]. Similarly, in [69]

there is no discussion of computational complexity.

Table 2.4: Delay Minimization
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[68]
Security and
queuing delay.

Long-term
security.

Joint
optimization
of task
offloading and
resource
allocation.

A
learning-based
interference-
aware
computation
offloading
algorithm and
the federated
deep actor-
critic-based
interference-
aware
algorithm.

Their work is valid
for a limited area
of 400 m × 400 m.

[69]
Delay. Average time

of a task.
MDP linear
programming.

A curriculum
learning-
multi-agent
deep
deterministic
policy
gradient
approach.

No discussion on
computational
complexity.

[71]
Average
offload delay
(total latency)
and energy.

Noise spectral
density
(parameter),
UAV capacity,
BS capacity,
cloud
capacity.

MILP. Distributed
robust latency
optimization
algorithm.

The UAV switches
the BS if the BS
capacity reaches to
a critical value.
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[70]
Minimize time
average task
processing
delay.

UAV capacity
and task
processing
delay.

Integer
non-linear
optimization
problem.

Delay-
orientated IoT
task
scheduling
scheme.

The authors did
not discuss the
complexity of the
proposed scheme.

[72]
Average
retrieval delay
and average
offloading
delay.

AI service
efficiency,
data failure,
and
computation
slowdown.

Intelligence
incorporation
in the
network.

Coded
storage-and-
computation
architecture
with AI
services.

Proposed
architecture can be
used for
distributed
networks to
improve node
slowdown and
node failure.

[59]
Global delay
of network.

High
dynamics or
location
changes.

Mix-integer
non-convex
optimization
problem.

A double
Q-learning
algorithm with
improved
delay-
sensitive
replay
memory
algorithm.

Increase in UAVs
speed from 5m per
second to
30m/second; a
decrease in the
packet drop rate
and throughput.

[74]
Average delay
and overall
QoS.

Sum of radio
resources and
stability of
queue.

Non-convex. Heuristic
algorithm.

The work
demonstrated the
trade-off between
broadcast
resources and
unicast resources.

[73]
Delay aware
IoT task
scheduling.

QoS, energy
resources and
uncertainty of
system
dynamics.

Linear
programming.

Stochastic
policy.

UAV trajectory is
fixed in this work.

[15]
UAV position
optimization
and resource
scheduling.

Resources,
delay and
bandwidth.

Convex
optimization.

Alternating
optimization
algorithm.

Resource sharing
in SAGSI
networks with
mixed cloud edge
computing.
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[19]
Delay. E2E delay,

E2E
throughput
and path
lifetime.

Multi-
objective
optimization.

Proposed
aeronautical
ad-hoc
networking.

A real scenario of
the Atlantic Ocean
is considered, and
it is not clear how
the algorithm will
behave when
applied to any
other locations.

2.1.4 Task offloading, task scheduling, and resource allocation/utilization.

Task scheduling, task offloading, and resource utilization must be appropriate for the overall re-

source management of SAGSI networks. Hence, in this section, we review different aspects of

resource allocation, resource utilization by different task scheduling techniques and task offload-

ing schemes available in the literature.

In [30], the authors proposed a learning-based queue-aware task offloading and resource alloca-

tion algorithm. The constraints observed here are queuing delay and short-term decision-making.

The problem type is a joint optimization problem and is divided into three sub-problems: i) device-

side task splitting and resource allocation; ii) task offloading; and iii) server-side resource alloca-

tion. The performance metrics observed are energy consumption, convergence performance and

queue blockage delay. In [75], the authors maximized the achievable rate of vehicles on the ground

by jointly optimizing the transmit power and the UAV trajectory. They considered constraints re-

lated to UAVs which included energy, transmission, and mobility. The authors decomposed the

non-convex formulated problem into two sub-problems to find the trajectory and transmit power

allocation. They derived the closed-form expressions for the transmit power allocation for the

given UAV trajectory. On the other hand, they calculated the UAV trajectory using the succes-

sive convex approximation technique for the sub-problem with the given power allocations. The

performance measures used were the ground vehicle’s sum rate and the maximum transmit power.

In [76], the objective was to minimize the system’s power consumption. The problem type
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defined is mix-integer non-convex programming. They proposed an algorithm which divides the

problem into two sub-problems to find a near-optimal solution with low computational complexity.

The solution uses two algorithms, the optimal sub-channel selection and power control algorithm,

and the joint resource allocation and HAP deployment algorithm. The constraints observed in

their work are smart devices’ power constraint, HAPs power constraint, sub-channel allocation

constraint, and HAP deployment constraint. The performance metric used is system power con-

sumption. Although the authors discussed computational complexity, they assumed a square search

space, it is not clear if the computational complexity increases or decreases when the search space

is not limited to a square.

In [76], the author’s objective was to minimize the system’s power consumption. The problem

type defined is mix-integer non-convex programming. To discover a close-to-optimal solution with

little computing cost, they created a method that splits the problem into two more minor problems.

The optimal sub-channel selection and power control method and the combined resource alloca-

tion and HAP deployment algorithm are the two algorithms used in the solution. The limitations

seen in their research include the power limitations of intelligent devices, the power limitations of

HAPs, the limitation of sub-channel allocation, and the limitation of HAP deployment. System

power consumption is used as a performance parameter. The authors did not discuss when the

computational complexity grows or reduces if the search space is not restricted to a square, even

though the authors’ discussion of computational complexity was based on a square search space.

In [31], the authors highlighted the limited storage capacity of the space-air network. The

servers in the air also do not have the storage capacity to handle the data uploaded by the edge

server. Thus, the coordination of storage resources in SAGSI networks must be investigated. They

proposed a storage resource management algorithm based on distributed DRL in which the re-

source management process is modeled as an MDP. The network attributes of storage resources

are extracted in each physical edge domain to develop a training environment. The authors pro-

posed a radio resource management framework for SAGSI networks based on distributed DRL.

The constraints are the location constraint of the request node mapping and resource allocation.
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The problem is how to coordinate the storage resources of SAGSI networks. The performance was

evaluated based on time, revenue rate, requests from users, and acceptance rate. They claimed that

the algorithm is flexible in dealing with the changes in resource conditions. However, they do not

provide any information about the resource conditions their proposed algorithm is flexible.

In [77], the authors reviewed edge computing research on SAGSI networks. They proposed a

framework of edge computing-enabled SAGSI networks to provide several services for vehicles in

remote areas. The objective is to minimize task completion time and satellite resource usage. The

authors proposed a pre-classification scheme to reduce the action space’s size. They developed

a deep imitation learning-driven offloading and caching algorithm to enable real-time decision-

making. The problem defined here is a fine-grained offloading and caching problem as a multi-

label classification process which can also be defined as a reinforcement learning scenario or MDP.

The authors considered energy supply and time constraints as well as trajectory optimization. The

performance is measured in terms of accuracy and task completion time. It will be a challenge to

modify the hardware on a large scale and the hardware cost will likely increase.

The authors of [78] optimized the planning of the service function chains under limited het-

erogeneous resources to map them on physical networks while considering the trade-off between

resource utilization of both communication and computation. The service function chain (SFC)

planning problem is formulated as an integer non-linear programming problem. They also pro-

posed a heuristic SFC planning algorithm to reduce the computational complexity and a new met-

ric, aggregation ratio, to observe the trade-off between communication and computation resource

consumption. The algorithms proposed are heuristic SFC planning for the SAGSI network algo-

rithm, service flow routing algorithm, and virtual network functions (VNFs) placement algorithm.

The constraints observed are computation resource constraints and communication resource con-

straints. The performance was measured based on the computation resource consumption, band-

width resource consumption, resource costs per completed service request, and the number of

service requests. Moreover, they used a single hop delay of 10-15ms, if and only if nodes are

distributed uniformly. The impact on the delay is not clear if nodes are not distributed uniformly.
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In [79], the authors proposed an integrated space-air-ground network that can achieve ubiquitous

network coverage and can be effective in an emergency communication scenario. The authors

discussed the network constraints in their work. The problems identified include network updates

and on-demand network optimization. Therefore, they introduced network-slicing technology to

the wireless communication part of the integrated space-air-ground network to solve the problems

faced by the current power communication network. They analyzed the current state of the power

communication network and proposed a space-air-ground integrated network architecture based

on network slicing.

The authors of [80] investigated the efficient data delivery and task management in SAGSI

networks. They developed a SAGSI model to reduce the number of satellite attitude adjustments

and increase the task scheduling time, which satellites, UAVs, and ground stations introduce. Then,

the scheduling problem in SAGSI is formulated as an MDP to maximize the sum of priorities of

successfully scheduled tasks under some constraints. The constraints are switch time and storage

capacity. The problem defined is task scheduling which is non-convex. Next, the authors proposed

an adaptive particle swarm optimization intelligent coordinated scheduling algorithm to adjust the

global and local search capabilities dynamically. In their proposed algorithm, three task scheduling

processes: collection, storage and transmission are considered jointly for resource interaction, and

the global and local search capabilities of particles, and are coordinated dynamically with adaptive

inertia weight. Furthermore, the authors developed a two-criterion resource allocation method for

less scheduling conflict, and the scheduling order is determined based on the task’s priority and

deadline. The performance is measured in terms of sum priority and the number of tasks.

In [81], the authors proposed an offloading scheme that addressed the co-existing requirements

of heterogeneous devices by offloading the traffic effectively to the suitable segment of SAGSI

networks. The constraints considered are the offloaded eMBB and URLLC traffic vectors, the

bandwidth resources allocated to the micro BSs, and the trajectory of UAVs. The problem is for-

mulated as a multi-objective non-convex problem. Specifically, the URLLC traffic is offloaded to

the UAV and terrestrial links to satisfy its stringent latency requirements. The algorithm proposed
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is deep deterministic policy gradient reinforcement learning. The results emphasized the integra-

tion of different segments of SAGSI networks to address heterogeneous QoS requirements. The

performance was measured regarding the number of UAVs and the eMBB availability as a function

of the number of UAVs. In [82], the authors surveyed state-of-the-art results on SAGSI networks.

The performance SAGSI networks is affected by the limited resource at each network layer. Thus,

it is crucial to integrate systems efficiently, optimize protocols, and manage resources in SAGSI

networks. The authors presented a comprehensive literature review from a network design and

resource management perspective to analyze performance and optimization in SAGSI networks.

The research results discussed above mainly focused on task scheduling, task offloading, re-

source allocation, and utilization in different layers of SAGSI networks using different algorithms

and techniques. However, computational complexity is a major issue in many of these techniques.

The number of devices used is limited, which can make their practical deployments hard to achieve

where we often have many devices connected to networks. Interoperability (among different layers

of networks) is also a major challenge that was not fully discussed. Moreover, flexibility, security,

and optimization of task scheduling, offloading, allocation, and utilization are areas that need fur-

ther research to demonstrate the efficacy of these techniques and algorithms.

Table 2.5 summarizes the results of the works we have reviewed above.

• For different segments or slices of SAGSI networks, we must have a universal task schedul-

ing and task offloading technique, then it would be easy to reap the maximum benefit from

resource utilization.

• Reinforcement learning and deep learning are optimal techniques which must be considered

for task scheduling and task offloading [31] and [81].
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Table 2.5: Task offloading, task scheduling, and resource utilization
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[30]
Long-term
time average
energy
consumption
and Joint
optimization.

Queuing delay
and short-term
energy
consumption.

Lyapunov
optimization
problem.

Queue-aware
task offloading
and resource
allocation
algorithm.

Tested on a very
limited area of
1km × 1km.

[75]
Maximize the
vehicle’s
achievable
data rate by
jointly
optimizing
transmit
power and
UAV
trajectory.

UAV energy,
UAV power
transmission,
UAV mobility.

Non-convex. Successive
convex
approximation
technique,
alteration
algorithm.

Jointly optimize
transmit power
and UAV
trajectory.

[76]
Minimize
system power
consumption.

Smart devices
power, HAPs
power,
sub-channel
allocation,
HAP
deployment.

Mix-integer
non-convex
programming
problem.

Optimal
sub-channel
selection and
power control
algorithm,
joint resource
allocation and
HAP
deployment
algorithm.

It is unclear if the
computational
complexity
increases or
decreases if the
search space is not
limited to a
square.
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[31]
Storage
capacity of
SAGSI
network.

Location,
bandwidth
demands,
delay, and
data rate.

MDP. A SAGSI
storage
resource
management
algorithm
based on
distributed
DRL.

They do not
provide enough
details on the
resource
conditions and did
not specify how
the algorithm is
flexible which is
claimed in work.

[78]
Optimize the
planning of
SFCs under
limited
heterogeneous
resources and
map them
onto physical
networks,
considering
the balance of
resource
utilization of
both commu-
nication and
computation.

Computation
resource
constraints
and communi-
cation
resource
constraints.

Integer
non-linear
programming
problem.

Aggregate
ratio, heuristic
SFC planning
algorithm,
service flow
routing
algorithm,
VNFs
placement
algorithm.

Nodes are
distributed
uniformly with a
delay of 10, 15ms,
and if the
distribution of
nodes is not
uniform, the delay
behavior is
unexpected.

[79]
Proposed an
architecture to
fulfill different
demands of
bandwidth,
delay, and
data rate.

Network
constraint.

Network
update and
network
optimization.

Integrated
SAGSI
network
architecture
using slicing
technology.

Network slicing
technology is
emerging
technique for
different resource
optimization
techniques in
SAGSI networks.

[80]
Data delivery
and task
management.

Switching
time between
two satellites
and storage
capacity.

Non-convex. Adaptive
particle swarm
optimization
intelligent
coordinated
scheduling
algorithm.

For tasks with
same priorities,
tasks are chosen
based on early
deadlines.
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[81]
Better QoS. The offloaded

eMBB and
URLLC traffic
vectors, the
bandwidth
resources
allocated to
the micro BSs,
and the
trajectory of
UAVs.

Multi-
objective
non-convex
problem.

Deep
deterministic
policy
gradient
reinforcement
learning
algorithm.

Proposed
offloading
approach
enhanced the
network’s
availability and
reduced the
latency in SAGSI
networks.

[82]
State-of-the-
art
comprehen-
sive survey of
existing
research
focusing on
network
design,
resource
allocation,
performance
analysis, and
optimization.

Integrates all
three network
segments.

Best
performance
for traffic
delivery.

Review on
SAGSI
networks from
network
design and
resource
allocation.

Shed light on three
segments of
heterogeneous
networks.

2.1.5 Network operation cost, outage probability, and average age-of-information

Resource management in different areas of SAGSI networks is vital. Areas such as network oper-

ational cost, the level of outage expected, and the average age of information must be optimized

very carefully. This section discusses the related works in this area and identifies the lesson learnt.

The authors of [23] considered UAV-assisted WPT in SAGSI networks to provide power to IoT

devices to satisfy their QoS, safety, and stability requirements. The authors developed an archi-

tecture for SAGSI power IoT for task offloading and resource scheduling. They also proposed an

online algorithm to minimize the network operation cost by jointly optimizing task assignment,

local and UAV computing resources, and association control. Here, the constraints are the moving
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nature of satellites (geographical environment) and the energy of power IoT devices. The opti-

mization problem is decomposed into three sub-problems and solved separately using Lyapunov

optimization. Moreover, the authors analyzed the proposed algorithm in terms of stability and sus-

tainability. They also discussed the trade-off between network stability and operation cost. They

evaluated the performance in terms of the sum queue backlog of the powered IoT devices, average

energy consumption, and cost.

In [83], the authors calculated the routing path and data center deployment to satisfy the QoS

requirements of the passengers with minimum cost. Hence, adapting the service location is an

important task due to flight movements. In their work, they formulated two MILPs for the problem

of joint service placement and routing: i) static and ii) mobility-aware in SAGSI networks to min-

imize the total cost. They compared static and mobility-aware approaches using comprehensive

evaluations in a realistic European-based SAGSI network. The constraints in this work are the

number of service requests, capacity limit, the sum of assigned traffic, QoS in terms of delay, and

flow conservation. The performance measures include average total cost which includes deploy-

ment and service costs, and the average number of total migrations. In [18], the authors viewed

the SAGSI networks in terms of cooperative communications and introduced relay networking to

model the SAGSI system from the cooperative perspective, wherein the cooperating HAP and BS

assist the transmission from GEO to UE. The approximated and asymptotic closed-form expres-

sions for outage probabilities of each link were derived as well as the outage probability of the

SAGSI system. They also proposed sub-optimal solutions with low complexity whose efficiency

was verified by Monte Carlo simulations. The problem defined here is the spatial distribution of

HAP. Based on the constructed framework of SAGSI, they analyzed the outage performance and

approximated the outage probability as well as the asymptotic outage probability in closed form.

Mobility and location changes are the major constraints. The performance metrics are outage and

error analysis for both single hop and double hop, asymptotic analysis of signal-to-noise ratio

(SNR) for both uplink and downlink scenarios.

In [84], the authors proposed covert wireless uplink communication in SAGSI vehicular net-
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works by hiding the transmission behavior in public channels. They minimized the outage prob-

ability by jointly optimizing the transmit power and the improper Gaussian signaling. They de-

rived the optimal transmit power by considering the constraint on the QoS of the system using

the Gaussian signaling scheme. The authors evaluated the performance based on the data trans-

mission efficiency, outage probability, noise uncertainty and maximum available transmit power.

The authors of [85] investigated the optimal actions that minimize the long-term average age-of-

information. The authors considered the parameter characterizing the event of channel erasure,

following an independent and identically distributed Bernoulli distribution. The authors used the

age-of-information to capture the timeliness of the status updates. The authors proposed two hy-

brid automatic repeat request (HARQ) schemes, and an incremental redundancy HARQ scheme

to mitigate errors during transmissions. To minimize the long-term average age-of-information,

they formulated an MDP, and prove that the optimal transmission policies for the classical HARQ

scheme and the incremental redundancy HARQ scheme behave differently in threshold structures

(relative values iteration is an algorithm used for finite values and the finite number of iterations).

The problem type is the age-oriented optimization problem, and the performance metrics are the

length of information redundancy and re-transmission times. They did not discuss the complexity

of their proposed system and scheme.

The authors of [86] studied the age-of-information of vehicular status updates in SAGSI net-

works for intelligent transportation systems. They proposed a model to predict the vehicular com-

munication link and transmit it in advance to the receiver. The parameters of the proposed sys-

tem model are arrival rate and propagation delay. The authors found that prediction has more

advantages in short-range compared to long-range communications. The performance of the av-

erage age-of-information is improved using an MDP framework to find a switching strategy for

the prediction policy. The algorithm developed as a solution is the value iteration method. Fur-

ther, to improve the age-of-information performance, they developed an MDP framework whose

performance depends on prediction time (how much delay is expected) and the average age-of-

information.
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The difference between bandwidth and data rate needs resource management for QoS require-

ments. Storage or caching also have some interdependent bandwidth and delay requirements and

needs to be optimized at a low cost. Another important resource to be optimized according to

SAGSI requirements is CPU cycle frequency which is again very important and is related to trans-

mission frequencies in wireless communications. This section reviewed recent research on data

rate difference and bandwidth discrepancy, storage, and CPU cycle frequency.

In [87], the authors used a time-expanding graph to deal with the periodic motion of LEO

satellites in SAGSI networks. The time-expanding graph represents the resources and task flow

transmission processes. The objective was to maximize the total amount of data received by the

data center on the ground while considering resource constraints and flow restrictions. The formu-

lated MILP is solved using a brute-force algorithm and Benders decomposition-based algorithm

to obtain an optimal solution with less complexity. For the scalability of the proposed system, the

authors proposed an acceleration algorithm based on an approximation algorithm and unit-flow

shortest path algorithm. The performance is measured based on energy capacity, iterations, num-

ber of users, total received data, and storage capacity. They found that the distance between HAPs

and LEO satellites is much larger than the distance from the users to HAPs, the reduced distance

between HAPs and LEO satellites has a slight effect on the network performance.

In [26], the authors investigated fair resource allocation and resource auction strategies. The

difference between the allocated and the required data rate is maximized while considering con-

straints on QoS of users, sub-channel and power. Their proposed solution uses a civil aircraft-

augmented SAGSI network architecture. They proposed a sub-channel allocation algorithm, a

service-oriented fair iteration algorithm, and a resource auction iteration algorithm. The problem

defined is convex-relaxation and logarithmic approximation. Sub-channel and power allocation

are jointly optimized using the service-oriented fair iteration algorithm. They used performance

measures such as user density, number of users, and sum rate. The network capacity is saturated

when the number of users exceeds 250.

The authors of [72] proposed a novel coded storage and computation architecture, which can
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offer reliable storage and flexible computation offloading to accelerate distributed ML. Energy

and mobility are the major constraints while performance measures are average offloading delay,

average retrieval delay, and block rate or congestion rate. The authors of [33] proposed AI-based

engineering solutions to facilitate efficient network slicing, mobility management, and cooperative

content caching and delivery. Resource allocation is a challenge or constraint, while performance

measures are time, average throughput, and the number of vehicles. In [29], the authors proposed

an online resource scheduling scheme that jointly optimizes CPU cycle frequency, power control,

and UAV trajectory planning. Their objective was to maximize the long-term time-averaged total

system computation rate. The constraints here are CPU cycle frequency, network stability and

sustainability of the remote IoT devices, energy sustainability, and network sustainability. The

problem formulated is a nonlinear stochastic optimization problem that is non-convex. The main

problem is decoupled into three subproblems using Lyapunov optimization. They also proposed an

online algorithm, namely joint optimization of CPU cycle frequency, allocation, power control, and

UAV trajectory in remote IoT networks, to obtain the optimal CPU cycle frequency, power control,

and UAV trajectory planning. The performance metrics used include the average computation rate

and the cumulative density function (CDF) on different voltages. In [88], the authors discussed a

healthcare IoT system in SAGSI networks based on cellular technology, where the channel state

information may not be perfect. A healthcare IoT device receives RF energy from the small cell

BS in this system. Then it transmits physiological status updates to the corresponding small BS

promptly. The authors formulated a distributionally robust optimization problem to minimize the

average age of information (metric to measure the freshness of the data) under energy harvesting

and information transmission probability constraints. To efficiently solve the NP-hard problem, the

authors proposed a low-complexity iterative algorithm that decomposes the optimization problem

into two subproblems. Simulation results obtained show a tradeoff between the age of information

and energy consumption in the healthcare IoT system.

Lessons learnt: Table 2.6 summarizes the main lessons learnt from the works discussed above.

• Co-operative channel models can reduce the outage probability in SAGSI networks [18].
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• Long-term average age-of-information can be improved by using intelligent transportation

systems [86]. To minimize the average time for network operation cost, WPT can be used in

SAGSI networks for task offloading and resource scheduling [23].

• Storage resource management is vital for SAGSI networks [72].

• If the data rate difference of task offloading and task scheduling of tasks can be efficiently

managed, the performance of system can be improved significantly [26].

Table 2.6: Network operation cost, outage probability, and average age of information
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[23]
The battery
capacity of
power IoT
devices.

Geographical
environment
and energy of
power IoT.

Stochastic
optimization
problem.

Matching
game-based
association
optimization
algorithm;
Improved
queue
awareness-
based greedy
UAV
computing
resource
allocation
algorithm.

Joint task
offloading is
performed in the
WPT-enabled
network.
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[83]
To minimize
total cost of
network.

Number of
service
requests,
capacity limit,
sum of
assigned
traffic, QoS in
terms of delay,
flow
conservation.

Two MILPs
for the
problem of
joint service
placement and
routing.

Joint service
placement and
routing: i)
static and ii)
mobility
aware. The
mobility-
aware
approach can
utilize direct
air-to-ground
and satellite
connections to
satisfy the
passenger
service
requests cost-
effectively
compared
with static
approach.

Joint service
placement and
routing in SAGSI
networks.

[18]
Optimization
of spatial
distribution of
HAPs.

Mobility and
location
changes.

Spatial
distribution of
HAPs.

Cooperative
communica-
tions and relay
communica-
tion to model
and construct
the framework
of SAGSI
networks for
different
outage
scenarios.

Outage
performance
analysis of
integrated
networks.
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[84]
Data
transmission
efficiency and
outage
probability.

QoS of host
communica-
tion system,
covertness
requirement,
and maximum
power budget.

Joint transmit
power and
improper
Gaussian
signaling
factor
optimization
problem.

The optimal
solution was
derived
strictly for the
transmit
power with a
Gaussian
signaling
scheme. Then,
with the
approximate
outage
probability of
the host
system, the
optimal
transmit
power and
circularity
coefficient
factor pair
were jointly
designed for
an improper
Gaussian
signaling
scenario.

Improper
Gaussian signaling
performs better in
outage probability
but needs more
power, and it
needs to be
clarified how
much trade-off is
needed between
power utilization
and outage
probability.

[85]
Find the
optimal
actions that
minimize the
long-term
average
age-of-
information.

Assumed
event of
channel
erasure
occurs, which
follows an
independent
and identically
distributed
Bernoulli
distribution
parameter.

MDP. Two HARQ
schemes and
an incremental
redundancy
HARQ
scheme were
developed to
mitigate
transmission
errors.

The complexity of
the system and the
proposed schemes
have not been
discussed.
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[86]
Minimize the
long-term
average
information
age.

Arrival rate
and
propagation
delay.

MDP. Value iteration
method whose
prediction is
more
advantageous
for
short-range
communica-
tions.

Prediction policy
for in-time status
updates in SAGSI
networks.

[87]
Cooperative
HAP and LEO
satellite
schemes.

Multiple
resource and
flow
restrictions.

MILNP. Benders
decomposition-
based
algorithm,
acceleration
algorithm,
unit-flow
shortest path
algorithm,
approximation
algorithm.

The authors did
not discuss how
the performance
could be affected
for longer
distances between
HAP and LEO.

[26]
To minimize
the difference
between the
allocated and
required data
rate of users.

QoS of user,
subchannel
and power
constraints.

Convex-
relaxation and
logarithmic
approxima-
tion.

Subchannel
allocation
algorithm,
service-
oriented fair
iteration
algorithm and
resource
auction
iteration
algorithm.

Network growth is
very slow if the
number of users
exceeds 250.

[72]
A new
paradigm to
enhance
intelligent
services in
space-air-
ground
integrated
networks.

Energy
constraint.

Data failure
and
computation
slowdown.

Coded
storage-and-
computation
architecture.

For distributed
ML they
considered coded
storage and
computation
architecture.
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[33]
Resource
management
efficiency.

Network
constraint.

Resource
management
problems.

They
considered a
case study and
discussed the
results.

Optimal resource
management
strategies are
proposed in this
work.

[29]
Sustainable
device
operation and
enhanced
computational
capability.

CPU cycle
frequency,
network
stability and
sustainability
of remote IoT
devices,
energy
sustainability
and network
sustainability
constraint.

Non-linear
stochastic
(non-convex).

An online
algorithm,
joint
optimization
of CPU cycle
frequency,
allocation,
power control
and UAV
trajectory in
remote IoT
networks.

This work
increases
long-term
time-averaged
total system
computation rate
while satisfying
network stability
and sustainability.

2.1.6 Joint optimization

Joint optimization refers to a resource management technique where multiple parameters are con-

sidered simultaneously to improve the performance of SAGSI networks. In this section, we review

recent efforts which jointly optimized the network components to achieve high efficiency from the

network.

In [89], the authors maximized the system sum rate by considering the proportional rate and

sustainability of ground nodes. They formulated two optimization problems to jointly optimize

power control, time allocation, and UAV trajectory while maximizing the sum rate. The constraints

defined here are energy-neutral, information casualty, and proportional rate. They adopted decode

and forward (DF) and amplify and forward (AF) protocols. The authors solved the non-convex

problems using two near-optimal iterative algorithms with successive convex approximation and

alternating optimization methods. The performance of DF and AF algorithms depends on satisfy-

ing the proportional rate and the sustainability of the ground network.

The authors of [90] formulated a non-convex problem to optimize the time slot division, sub-

48



channel allocation, power control and UAV deployment to maximize the system sum rate. Hence,

they applied alternating optimization and successive convex approximation techniques to transform

the non-convex problem into a solvable form. The constraints defined here are distance, power,

and manufacturing cost for batteries. Next, the authors proposed a near-optimal multi-variable

alternating iterative algorithm to obtain a resource allocation scheme for the overall problem. The

performance measures are sum rate, transmit power and harvested energy.

In [91], the authors formulated a channel model usage problem. The authors considered param-

eters such as link parameters, turbulence parameters whereas for their simulations they considered

parameters such as wavelength, HAP altitude, LEO altitude, variance of background noise and

receiver noise bandwidth. In this research, the authors dealt with free space optics (FSO) RF tech-

nologies for uplink SAGSI networks by utilizing UAV such as HAP as a relay station for achieving

better reliability. In this context, they proposed single-hop satellite communication and SAGSI-

based dual hop satellite communication system models for uplink with hybrid FSO/RF links. The

authors investigated the performance of proposed system models using analytical and simulation

results. They used performance metrics such as outage and error analysis of both single hop and

two hops, asymptotic analysis of SNR for both uplink and downlink scenarios. In [92], the authors

focused on providing a reliable, asynchronous, and fully distributed approach that associates nodes

across the layers so that the total end-to-end rate of the assigned agents is maximized. The problem

is modeled as a multi-sided many-to-one matching game. The constraints are network constraints.

The authors proposed a randomized matching algorithm with low information exchange. The

algorithm showed an efficient and stable association between nodes in adjacent layers. The perfor-

mance is measured in terms of sum rate, final association with the multi-sided algorithm and the

number of users.

In [22], the authors proposed a novel approach to address the optimization problem of gateway

selection, bandwidth allocation, and UAV deployment to maximize the system’s spectral efficiency.

Here the problem defined is non-convex MINLP. Although the space-air-ground IoT systems bring

about several benefits, they also need to overcome many challenges due to the high mobility, un-
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reliable satellite links, and limited resources. Specifically, when multiple UAVs act as relays for

cross-tier communications to transfer the collected data from the ground network layer to the satel-

lite layer, how to select an appropriate number of UAVs as gateways to improve system spectral

efficiency remains a challenge. Most existing works utilize all UAVs as relay nodes and neglect

the spectrum allocation. Constraints can be considered as limited power, bandwidth, and resource

allocation. The authors proposed a Dinkelbach method-based iterative algorithm as their solution

by alternately adopting simulated annealing and successively convex programming technologies.

They also proposed another algorithm called a simulated annealing-based gateway selection al-

gorithm and joint optimization of gateway selection, UAV deployment, and bandwidth allocation.

They evaluated the performance using metrics such as spectral efficiency, and the number of UAVs

and IoT devices on the ground.

Marine IoT systems have increased significantly with the development of aerial and space ve-

hicles in the SAGSI network. Marine IoT systems can assist in environmental protection, military

surveillance, and sea transportation. However, the unpredictable climate changes and the extreme

channel conditions of maritime networks make it difficult to collect and process a large amount

of maritime data efficiently and reliably. To address this issue, the authors of [93] proposed a

hybrid LEO and UAV edge computing method in SAGSI networks for marine IoT systems. This

system uses two edge servers mounted on UAVs and LEO satellites to process the collected data

in real-time. The aim is to minimize the total energy consumption of the battery-constrained UAV

by jointly optimizing the communication and computation bit allocation along with the UAV path

planning under latency, energy budget, and operational constraints. The proposed methods are

developed for three different cases according to the accessibility of the LEO satellite: always on,

always off, and intermediate disconnected, using successive convex approximation strategies. The

numerical results obtained show that significant energy savings can be achieved by optimizing

the bit allocation and UAV path planning for all cases of LEO accessibility compared to partial

optimization schemes that design only the bit allocation or UAV trajectory.

Lessons learnt: Table 2.7 summarizes the main lessons from the research works discussed above.
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• We can improve the system’s sum rate by jointly optimizing the time slot division, subchan-

nel allocation, power control and UAV relays deployment [90].

• Spectral efficiency can be improved by optimizing the overall bandwidth and channel model

usage [22, 91].

Table 2.7: Joint optimization
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[89]
Maximize the
system sum
rate.

Energy
neutral,
information
causality, and
proportional
rate
constraints.

Non-convex. DF protocol
and AF
protocol.

DF and AF
protocols are used
for WPT.

[90]
Maximize the
system sum
rate by jointly
optimizing the
time slot
division,
sub-channel
allocation,
power control,
and UAV relay
deployment.

Distance,
power, and
manufacturing
cost for
batteries.

Non-convex
MINLP.

Multi-variable
alternating
iterative
resource
allocation
algorithm.

WPT and wireless
information
transfer are shown
by different links.
Furthermore, the
authors argued
that improving the
link cannot
improve data rate.
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[91]
Integrating
free space
optics and RF
in SAGSI
networks
using UAVs,
HAP, and
LEO.

Link
parameters,
turbulence
parameters.

Channel
model
improvement.

Single-hop
satellite com-
munication
and SAGSI
network-based
dual-hop
satellite com-
munication
system models
for uplink
satellite com-
munication
with hybrid
FSO/RF links.

Link between
HAPS and
satellites is not
very sensitive, the
authors considered
weak turbulence
and minor
pointing errors,
which is not the
case in real life.

[22]
Joint
optimization
problem of
gateway
selection,
bandwidth
allocation, and
UAV
deployment to
maximize the
system
spectral
efficiency.

Limited
power,
bandwidth,
and resource
allocation.

Non-convex
MINLP.

A Dinkelbach
method-based
iterative
algorithm and
joint
optimization
of gateway
selection,
UAV
deployment,
and bandwidth
allocation.

Spectral efficiency
has been improved
in the across-tier
network.

[92]
To maximize
total E2E
transmission
data rate of
the assigned
agents.

Network
constraints.

Many-to-one
matching
game
problem.

Multi-sided
algorithm.

Association is
discussed in a
heterogeneous
network with
matching game
theory.

2.1.7 Overall performance of network and performance degradation

Like all other factors, we must focus on the overall performance of SAGSI networks. If we opti-

mize multiple resources, the overall performance of networks will be increased in multiple areas.

Similarly, in contrast, if few resources are not managed properly, it will lead to a state where the
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performance of SAGSI networks degrades. In this section, we review the available literature on

performance degradation and the overall performance of SAGSI networks.

In [94], the authors investigated THz ultra massive MIMO-based aeronautical communications

and proposed an effective channel estimation and tracking scheme, which can solve the perfor-

mance degradation problem. The constraint considered is space constraint. The problem type

can be generalized as performance degradation. An initial aeronautical link is established based

on the rough angle estimates acquired from the navigation information. The delay-beam squint

at the transceiver can be substantially reduced by using a grouping true-time delay unit module

(GTTDU). The solution developed comprises three algorithms. First, the prior-aided iterative an-

gle estimation algorithm is used to estimate azimuth/elevation angles. These angles are used to

find the precise beam alignment and refine the GTTDU module to eliminate the delay-beam squint

further. Second, the authors proposed the prior-aided iterative Doppler shift estimation algorithm.

An initial aeronautical link is established based on the angle estimates acquired from the naviga-

tion information. Third, the authors developed an algorithm for data transmissions to track the

beam-aligned effective channels based on a data-driven decision.

In [95], the authors proposed heterogeneous network switching algorithms which usually use

fixed weights of attributes (such as delay) to make decisions. Here, the problem defined is switch-

ing between networks, non-convex in nature as the constraints include network quality indicators

(NQI). In their work, the authors proposed the Monte Carlo-MDP algorithm to balance the net-

work load of multiple networks. It can dynamically adjust the access networks of users in the

system while considering the users’ service requirements and network differences. The Monte

Carlo method is used to improve the convergence speed of the MDP algorithm. The performance

measures used include the number of users and the system’s utilization. In [27], the authors pro-

posed an architecture called civil aircrafts augmented space-air-ground integrated vehicular net-

works. The main goal of the sky access platforms’ deployment with UAVs is to provide maximum

communication coverage under the constraints of QoS. The problem defined is resource allocation

in hybrid networks. The proposed network architecture is novel in three main aspects: a normal
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network architecture, collaboration with multiple SAPs, and service-oriented fair allocation. Al-

though civil aircraft augmented-SAGSI networks can bring out many benefits, it also faces issues

due to their high mobility and cross-layer characteristics.

In [96], the authors explored providing QoS guarantees to vehicles. They proposed an architec-

ture called QoS guaranteed access assistance to serve vehicles. The parameters considered include

a set of access assistants, deployment cost and several BSs, satellite stations, and the maximum

number of vehicles. The problem defined is non-convex. The access assistance uses a virtualized

layer that consists of the logical resources of ground infrastructure for deployment. After deploy-

ing access assistance, vehicles can obtain network services to meet QoS requirements. The authors

proposed three algorithms: basic deployment, deep Q-learning-based on-demand deployment, and

cost-effective access assistant deployment. They evaluated performance of the algorithms in terms

of the success rate of autonomous driving requests.

In [10], the authors analyzed the development of the mobile communication network of high-

speed railways, and discussed the SAGSI network architecture and the application scenarios (in

high-speed railways) along with the network structure. At the same time, the authors also discussed

the communication services, existing problems, and key technologies in the SAGSI networks.

They also studied the use of AI technologies in enabling the efficient resource utilization of smart

railways communication in SAGSI networks. The performance measures used were throughput,

transmission delay, reliability, and security. The authors of [97] aimed to improve the performance

of SAGSI networks which remains a significant challenge. The authors proposed an AI technique

to optimize SAGSI networks because AI shows promise in many applications. First, they analyzed

several main challenges of SAGSI networks and discussed how AI can solve these problems. Then,

they considered the satellite traffic balance as an example and proposed a deep learning-based

scheme to improve traffic control performance. They used performance metrics such as network

throughput and packet loss in their performance evaluation tests.

In [28], the authors proposed the framework of a SAGSI network wherein drones act as relays

to upload data from smart devices to low earth orbit satellites. Considering many smart devices,
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the authors tried to maximize the system capacity by jointly optimizing smart devices connection

scheduling, power control, and UAV trajectory, where joint optimization is a non-convex opti-

mization problem. The formulated problem is a mixed integer non-convex optimization problem,

which is challenging to solve directly. The constraints considered are UAV trajectory, safety, cov-

erage, and LEO satellite capacity. Hence, the authors proposed an efficient iterative algorithm to

solve the above-mentioned non-convex optimization problem by applying variable substitution,

successive convex optimization techniques, and the block coordinate descent algorithm. The algo-

rithms presented in their work are resource allocation algorithms for joint smart device connection

scheduling, power control, and UAV trajectory design. Specifically, they alternately iterate smart

device connection scheduling, power control, and UAV trajectory design to obtain the maximum

system capacity. They evaluated the performance of their algorithms based on the number of smart

devices and the system’s maximum capacity. In [98], the authors highlighted that the emergence of

advanced applications such as smart cities, healthcare, and virtual reality requires more demand-

ing requirements from SAGSI networks. These requirements include improved secrecy, greater

integrity, non-repudiation, authentication, and access control.

Lessons learnt: Table 2.8 presents the main lessons learned from the past works we have reviewed

above.

• AI is playing a significant role in performance improvement and QoS requirements [10,97].

• By balancing the varying network load and optimized trajectory, we can increase the net-

work’s overall performance, the number of users and resource utilization [28, 95].
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Table 2.8: Overall Performance of Network and Performance Degradation
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[94]
Solution of
performance
degradation.

Triple delay-
beam-doppler
squint effects.

Performance
degradation
problem.

Prior-aided
iterative angle
estimation and
iterative
doppler shift
estimation
algorithms; a
channel
tracking
algorithm
based on
data-driven
decision-
directed.

Computational
complexity is too
high and needs
improvements.

[95]
Switching
algorithm in
heterogeneous
networks.

Network
quality
indicators.

Non-convex
MDP.

Monte
Carlo-MDP.

Optimal
performance refers
to when the
number of users is
120, which is far
less in actual
practice.

[96]
IoVs access
decisions to
satisfy QoS
requirements.

Set of access
assistants,
deployment
cost, several
BSs, satellite
stations, and a
maximum
number of
vehicles.

Non-convex. Basic
deployment,
deep
Q-learning
based
on-demand
deployment
and
cost-effective
access
assistant
deployment.

Basic deployment
and on-demand
deployment
schemes are
adapted and based
on this
cost-effective
deployment is
observed.
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[27]
Sky access
platform
deployment
related to
UAVs.

QoS and
power
constraints.

Resource
allocation in
hybrid
networks.

CAA-SAGSI
networks.

Deployment of
this network is
difficult and
expensive.

[10]
Application
trend of
SAGSI
networks in
HSRs.

Worked in
high-speed
railways.

Updated
research work
available in
integrated
network
development
and
high-speed
railways.

Application
scenarios of
AI
technologies
in enabling
efficient
resource
utilization.

Resource
allocation and
coverage were not
considered.

[97]
To improve
the overall
performance
of SAGSI
network

Several main
challenges
solved by AI
in SAGSI
networks.

Applications
of SAGSI
networks.

A deep
learning-based
scheme to
improve traffic
control.

Future research
directions should
also include
cost-effectiveness.

[28]
Improve
performance
of SAGSI
network.

UAV
trajectory
constraints,
safety
constraints,
coverage
constraints,
and LEO
satellite
capacity
constraints.

Non-convex
MINLP.

Resource
allocation
algorithm for
joint smart
device
connection
scheduling,
power control,
and UAV
trajectory
design.

With the increase
in the number of
intelligent devices,
demand for the
number of UAVs
will increase to
increase the
capacity of
systems with low
complexity.

2.1.8 Software-defined networking (SDN)

SDN and NFV are important areas of SAGSI networks as they are the agile and flexible way to

visualize and validate our architectures afterward and how they will perform in a virtual setting

while considering different layers of SAGSI networks. There are several research efforts in this

area where several authors [6,99–104] proposed different architectures and discussed their validity

and performance. We review such works here from a resource management perspective.
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In [99], the authors proposed a software-defined SAGSI network architecture with a layered

structure to support seamless, cost-effective, and efficient vehicular services. The resource in each

segment of SAGSI networks is sliced using network slicing to obtain service isolation. A resource

pool is created for all available resources and is hierarchically managed to offer vehicular services.

The parameters used in their proposed architecture are LEO altitude (1414 km), period 114 130

min, inclination angle 0 degrees, altitude of HAP 20 km and minimum elevation angle 10 degrees

and radius of Earth is 6371 km. The problem is a bipartite one-to-many matching one. They

evaluated the performance of their architecture using the maximum number of satellite beams and

the number of HAPs.

In [6], the authors proposed a cross-domain virtual network embedding (VNE) algorithm to

solve the multi-domain VNE problem (which is a decision-making problem to show whether the

virtual node is embedded in the physical layer) in the SAGSI network. They modeled the different

network segments and their attributes based on the user needs and the actual situation of the SAGSI

networks. A DRL algorithm is trained based on the extracted network attributes. The probability of

each underlying node being embedded can be derived through training. The VNE algorithm which

is based on DRL is better than the one based on heuristic methods. In [101], the authors discussed

the use of mmWave and UAVs and studied channel effects in new scenarios. ML algorithms could

enhance the performance of SAGSI networks using mmWave. The authors considered parameters

such as channel, bandwidth characteristics of radio wave propagation, and each path of multiple

signals. The authors proposed a cloud-based modular simulation system to support emerging ap-

plications and technologies in B5G networks. The performance measures used include average

received power, frequency, number of UAVs, delay spread, and angle spread arrival. The delay in

the received signals increases when the density of UAVs increases. This is because the reflection,

scattering, and diffraction effects increase when the density increases resulting in high angular

spread thereby resulting in a higher system delay.

The authors of [100] pointed out that NFV and SDN are complementary and promising tech-

nologies that reduce the function provisioning cost and coordinate the heterogeneous physical
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resources in the SAGSI networks. The authors investigated the online dynamic VNF mapping and

scheduling in SAGSI networks, considering the dynamicity of IoV services or mobility which is

a constraint. The VNF live migration, re-instantiation, and rescheduling are enabled to enhance

the service acceptance ratio and profit of the service provider. Considering the heterogeneity of

SAGSI network nodes, the authors modeled the migration cost and additional delay incurred by

VNF live migration and re-instantiation. Next, they jointly optimized the dynamic VNF map-

ping and scheduling as a MILP problem with specified cost and delay models. They proposed

two Tabu search-based algorithms: i) VNF remapping and rescheduling algorithm and ii) pure

VNF rescheduling algorithm to obtain suboptimal solutions efficiently. The authors evaluated the

performance in terms of service providers’ profit, service acceptance ratio, and QoS satisfaction

level. With a small service arrival rate, physical resources are adequate to support the new ser-

vices. Therefore, there is little room for improvement in the proposed remapping and rescheduling

strategies when the network load is light.

The authors of [102] proposed a SAGSI network architecture where satellites can provide

seamless coverage. UAVs can enhance the data processing capacity to support terrestrial IoT

services. The constraints observed in their work are resource constraints and UAV operation time

(due to limited battery) constraint. The problem can be defined as resource allocation in SAGSI

networks. To support the edge computing functionalities of SAGSI networks, they proposed two

novel frameworks for satellites and UAVs called intelligent enhanced satellites and intelligent en-

hanced UAVs, respectively. These presented three typical application scenarios wherein SAGSI

networks can support and specify the application domain of each segment. The performance mea-

sure used is data rate of the proposed system. In [104], the authors identified the role of network

reconfiguration in SAGSI networks to coordinate heterogeneous resources and studied how the

NFV and SFC can improve mission offloading. The number of successfully served mission re-

quests is maximized while bandwidth and computation cost are minimized. The major constraint

is the physical network’s resource capacity, bandwidth, and computation resources. Here, the prob-

lem is a non-linear integer programming one. The solution provided is reconfiguration in SAGSI

59



networks via NFV and SFC. The performance metrics used are the average number of offloaded

missions, number of missions, cost per completed mission. SFC should also be planned by jointly

considering the possible threats such as jamming and eavesdropping. Mitigating security threats

can also be the key motivation for mission offloading.

In [103], the authors highlighted that diversifying large numbers of static small cells faces many

fundamental challenges such as the deployment cost, energy consumption and control. This moti-

vated the authors to develop the SAGSI network, a programmable, scalable, and flexible framework

to integrate space, air, and ground resources for matching dynamic traffic demands with network

capacity supplies. First, they presented a comprehensive review of state-of-the-art literature avail-

able in SAGSI networks. Then, they described the conceptual architecture of SAGSI networks

and emphasized its benefits. Next, they presented four typical application cases of SAGSI net-

works. Here the constraints are limited network capacity supplies. The performance measures are

normalized throughput versus moving cell involvement factor and service success probability for

a new request versus normalized active loads. The proposed architecture has many deployment

issues, including data acquisition, data integrity, privacy and security, and energy efficiency. The

authors of [105] proposed integration of MEC with the control of SDN-autonomous underwater

vehicle navigation systems (AUVNS) to improve the system’s performance. Specifically, they

suggested upgrading the control plane of the SDN-AUVNS to support multi-tier edge computing.

The artificial potential field theory [106] is used to construct the network controlling model and

develop an underwater tracking model for SDN-AUVNS. This model is used to track underwa-

ter pollution equipotential lines of specific concentrations. To provide accurate path planning for

equipotential line tracking, the authors used the linearizability mechanism to optimize and revise

the control input for the SDN-AUVNS. Finally, the authors proposed a fast united control algo-

rithm that schedules the SDN-AUVNS to intelligently track underwater pollution equipotential

lines.

Lessons learnt: Table 2.9 presents a summary of the main lessons learned from the research

works we have reviewed above.
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• SDN, NFV, and SFC enable more effective use of bandwidth resources and system capacity

[100, 104].

• ML algorithms are highly effective in SDN networks with resource management and QoS

requirements [97].

• A concept of software-defined space-air-ground integrated moving cells, a programmable,

scalable, and flexible framework to integrate space-air-ground resources for meeting the dy-

namic traffic demands with network capacity supplies is significant. However, it has several

limitations [103].

Table 2.9: Software Defined Networking
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[99]
The
motivations
and challenges
for the
integration of
space-air-
ground
networks.

LEO altitude
(1414 km),
period
114 130 min,
inclination
angle 0
degrees,
altitude of
HAP 20 km
and minimum
elevation
angle 10
degrees, and
radius of the
earth is 6371
km.

Bipartite
one-to-many
matching
problem.

Software-
defined
integrated
vehicular
networks.

For successful
integration of
different layers of
networks, all
research
challenges should
be solved to
incorporate SDN
features.
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[6] Model SAGSI
networks
heterogeneous
resource
orchestration,
VNE.

Binary
variable to
show whether
the virtual
node is
embedded into
the physical
layer.

Decision-
making
problem.

They built a
feature matrix
based on
network
attributes
extracted from
the SAGSI
network and
used it as the
agent training
environment.

The VNE
algorithm based
on the ML method
is better than the
one based on
heuristic methods.

[100]
NFV and SDN
are used to
reduce the
function
provisioning
cost and
coordinate the
heterogeneous
physical
resources in
the SAGSI
networks.

Mobility, cost,
and delay.

MINLP. Tabu
search-based
algorithms, a
slackness-
based
algorithm.

When the network
load is light, the
room for further
performance
improvement is
limited.

[101]
Proposed
different
SAGSI
network
paradigms,
including its
composition
and network
architecture.

Channel and
bandwidth
characteristics
of radio wave
propagation
and each path
of multiple
signals.

Multilayer
satellite
networks.

The scattering
characteristics
of UAVs on
mmWave are
investigated
using
mmWave 3D
imaging, and
the authors
also examined
the signal
frequency
shift. A future
cloud-based
modular
simulation
system for
SAG IoT
applications is
proposed.

The latency in
receiving signals
likewise increases
as the density of
UAVs rises. The
effects of
reflection,
scattering, and
diffraction on the
signal grow
increasingly
significant as the
number of UAVs
rises.
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[102]
Space-air-
ground
enabled edge
computing
architecture.

Resource
constraints
and volume
constraints.

Resource
allocation in
space-air-
ground
edge-enabled
networks.

Intelligent
enhanced
satellites and
intelligent
enhanced
UAVs are two
revolutionary
frameworks
for satellites
and UAVs.

Security issues are
still significant
concerns,
according to their
research.

[103]
To create a
pro-
grammable,
scalable, and
adaptable
framework to
combine
space, air, and
ground
resources for
balancing
dynamic
traffic needs.

Coverage of
network.

- Software-
defined
space-air-
ground
integrated
moving cells
in different
application
scenarios.

Many deployment
issues are there,
e.g., like data
acquisition
integrity and
privacy.

[104]
Reduce
bandwidth and
computing
costs to
increase the
number of
mission
requests that
can be
successfully
processed.

The physical
network’s
resource
capability,
including its
bandwidth and
computing
resources.

Non-linear
integer
programming
problem.

NFV and SFC
network re-
configuration
in space, air,
and ground
integrated
networks.

Security and
privacy issues are
a major concern
here.

2.1.9 Intelligent surveillance and relay communication

Intelligent surveillance and relay communication are a major concern of systems (e.g., military

and healthcare systems), which are highly sensitive from a security and reliability point of view
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in SAGSI networks. Next, we review recent works focused on intelligent surveillance and relay

communication from a resource management perspective.

In [107], the authors proposed a passive location estimator for moving aerial targets using mul-

tiple satellites. The proposed estimator first filtered direct wave signals in the channel using a

bandpass filter and then the direct path and multipath interference are suppressed using a sequence

cancellation algorithm. Then, the fourth-order cyclic cumulant cross-ambiguity function of the

signals in the reference channels and the four-weighted fractional Fourier transform fourth-order

cyclic cumulant cross-ambiguity function of signals in the surveillance channels are derived. The

performance measures used are normalized mean square error and SNR. In [20], the authors de-

veloped a new communication structure. The parameters considered in that work include radio

frequency between the high-altitude platform (HAP) and the UAV and the between each HAP

and UAV. The problem is stable matching between HAPs and UAVs (by using stable marriage

matching). In a stable marriage matching the authors proposed a matching HAP and UAV using

the Gale-Shapley algorithm [20]. The authors evaluated the performance using metrics such as

the number of UAVs and the average evaluation score of random matching and matching with the

Gale-Shapley algorithm.

Lessons learnt: Table 2.10 summarizes the main lessons learnt which include:

• If we want to incorporate intelligence in SAGSI networks, there will be an increase in the

computational complexity of the overall system due to surveillance data processing [107].

• The stable marriage algorithm in SAGSI networks provides reliable results for stable com-

munications [20].
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Table 2.10: Intelligent Surveillance and Relay Communication
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[107]
Intelligent
surveillance of
moving target
location
parameters.

Mobility. Estimation of
location
parameters.

Utilizing
several
satellites, time
difference of
arrival and
frequency
difference of
arrival are
computed, as
well as the
distance
between the
target and the
receiver and
the velocity of
the moving
aerial object.

Computational
complexity is high
due to matrix
operations.

[20]
Proposed a
new commu-
nication
structure.

RF and
distance
between HAP
and UAV.

Stable
marriage
algorithm.

The
Gale-Shapley
algorithm.

They assumed 100
to 500 HAPs and
500 to 2500
UAVs, which is
not a practical
approach, usually
the number of
UAVs is less than
the number of
HAPs.
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2.2 Summary

SAGSI networks are regarded as the most beneficial designs to meet the requirements of future

applications. In this literature review, we reviewed resource optimization strategies in SAGSI net-

works. We found that each optimization domain is crucial to efficiently using communication

and computing resources in SAGSI networks. We categorized and thoroughly analyzed resource

optimization’s relevant aspects, including throughput, capacity, delay, energy, SDN, overall per-

formance, and joint optimization. The resource optimization of categories is studied from the

viewpoint of how a problem is solved for an optimization problem under certain constraints, as-

sessed to what extent researchers are successful in achieving their objective, and criticized their

work where it has some room for improvement. Moreover, we also pour our thoughts into lessons

learned from each resource (s) category. We discussed numerous issues in research and possible

solutions for SAGSI networks. Based on this review, we concluded that the dependability and

coverage of SAGSI networks would significantly improve if we could efficiently optimize radio

resources like bandwidth, energy, power, etc. We also identified the significant results of many

recent related works on SAGSI networks and enabling technologies such as blockchain, AI/ML,

and NOMA in SAGSI networks.
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Chapter 3

Multi-objective Optimization in SAGSI

Networks

In this chapter, we address the optimization of SAGSI networks by formulating a multi-objective

problem that focuses on energy efficiency, resource utilization, and priority-based user associa-

tion. These objectives are crucial in enhancing the overall network performance and ensuring a

satisfactory user experience. We employ advanced optimization techniques to balance energy con-

sumption, efficient resource allocation, and prioritized user association. We also discuss the key

factors that affect energy efficiency and resource utilization and the challenges of prioritizing user

association in a dynamic network environment.

3.1 Related Work

Researchers have investigated multi-objective optimization to optimize multiple network param-

eters simultaneously. These studies have demonstrated the potential to enhance network perfor-

mance and reduce latency in SAGSI networks. This section discusses some of the latest studies

in this field. However, there is still a need for more research in this area to improve further the

efficiency and effectiveness of SAGSI networks in 6G. In [108], the authors proposed an analyt-

ical framework to evaluate the outage probability of energy efficiency in IRS-assisted wireless
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communication systems. The limitations of the proposed model for complex real-world scenarios

and network dynamics are not discussed. The study assumed ideal channel conditions without

considering practical impairments such as fading and interference. Similarly, in [109], the au-

thors proposed a robust model for addressing uncertainty in user traffic demand and developed

a heuristic approach. The scalability of the proposed method for large-scale instances remains a

limitation. The evaluation mainly compared existing approaches without considering other metrics

such as computational complexity or convergence analysis.

In [110] proposed storage resource management algorithm based on distributed deep reinforce-

ment learning shows promising results. However, the practical challenges of deploying and train-

ing the deep reinforcement learning model in a real-time, dynamic network environment should

be discussed. The algorithm’s scalability concerning network size and complexity needs to be

addressed. In [111], the authors proposed an alternating optimization approach to minimize en-

ergy consumption and meet delay constraints; however, the study needs a comprehensive analysis

of the algorithm’s convergence properties and computational complexity. Additionally, the evalu-

ation mainly focused on energy consumption, and the trade-offs with other performance metrics,

such as throughput and fairness, are not extensively explored. Authors of [112] proposed a data ac-

cess scheme for civil aircraft-enabled SAGSI network, which shows energy consumption reduction

and processing delay improvement. However, the limitations of the reinforcement learning-based

approach, such as training time, exploration-exploitation trade-offs, and model convergence, still

need to be addressed. The evaluation focused on reducing energy consumption without considering

other key performance indicators.

In [113], the joint optimization algorithm for user association, power allocation, and UAV tra-

jectory demonstrated improved energy efficiency. The algorithm’s computational complexity and

scalability are not discussed. The evaluation mainly focused on energy efficiency improvement,

and the trade-offs with other performance metrics, such as throughput and latency, should be more

extensively analyzed. In [114], the authors proposed a hybrid offloading scheme to minimize en-

ergy consumption, the evaluation is limited to comparing energy consumption with benchmark
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schemes, and the trade-offs with other performance metrics, such as latency and reliability, should

be more extensively discussed. The scalability of the proposed algorithm for large-scale networks

needs to be addressed. In [115], a deep reinforcement learning-based offloading method is pro-

posed to show energy-saving and computation efficiency effectiveness. The challenges of training

deep learning models in resource-constrained IoT devices or the scalability of the proposed ap-

proach to handle large-scale networks should be discussed. Similarly, in [116], the ANFCQGSOR

protocol shows improvement in clustering and routing for vehicular ad hoc networks (VANETs),

the study lacks a comprehensive analysis of the protocol’s scalability, overhead, and robustness in

dynamic and highly mobile vehicular environments. The evaluation primarily focuses on perfor-

mance comparison with existing techniques without discussing the limitations or potential chal-

lenges of the proposed protocol.

To overcome the abovementioned limitations, we propose a framework for multi-objective

optimization to improve network performance and user experience. The goal is to achieve high

energy efficiency, effectively utilize available resources, and prioritize user association based on

their requirements. Integrating multiple objectives into a unified framework presents a novel ap-

proach to network optimization. The research findings can guide network operators, engineers,

and policymakers in making informed decisions and designing efficient SAGSI networks.

3.2 System Model and Problem Formulation

We consider the SAGSI network that consists of N number of users. The SAGSI network consists

of three layers: ground, aerial, and space layers represented L1, L2, and L3, respectively. The

number of BSs on the ground layer is denoted by M1, the number of UAVs in the aerial layer is

denoted by M2, and the number of satellites in the space layer is represented by M3. We assume

that n-th user can be associated with either BS or UAV or satellite at a given time, i.e., all three

layers of the SAGSI network are available to users. However, we do not consider the connections

of BSs to UAVs and satellites or vice versa in this thesis. For the sea network, we are considering

69



Optimization Problem

Control center

Ta
sk

 R
eq

u
es

t

O
p

tim
al asso

cia
tio

n
 o

f U
sers

Figure 3.1: An illustration of the system model for SAGSI networks.

only seashore BSs that cover a certain distance over the sea, whereas deep sea stations are not

considered in our work. Fig. 3.1 illustrates the system model for SAGSI networks.

We assume the users have low-power devices with limited communication and computation

resources. The n-th user can offload its task Tn represent data size in bits to m-th station of l-th

layer for computation. The association of n-th user with m-th station (which can be on the ground

with layer L1, in the air with layer L2 or in space with layer L3) of l-th layer is represented by a

binary variable as:
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an,m,l =


1 if associated with m-th station of l-th layer

0 Otherwise.
(3.1)

When n-th user offloads a task Tn to the m-th station of l-th layer, communication resources

are needed. The data rate of n-th user can be calculated as:

Rn,m,l = Wn,m,llog2

(
1 +

Png
2
n,m,l

σ2

)
,∀n, m, l, (3.2)

where g2n,m,l is the channel gain, Pn is the transmission power of n-th user, Wn,m,l is the channel

bandwidth, σ2 is the power of Gaussian noise at n-th user. The channel gain g2n,m,l depends on the

network layer in which it is operating. We use the Hata model for the ground layer considering the

urban scenario [117]. We use the 2-ray reflection model for the aerial communication [118]. For

the space layer, we use the Friis transmission equation, which is used for space communication in

literature [119].

The energy efficiency of the SAGSI network can be defined as the ratio of the total data rate to

transmit power of the system. This can be written as:

En,m,l =

∑
l

∑
m

∑
n

Rn,m,l∑
n

Pn

. (3.3)

We consider the utilization of computational resources denoted by ηuti, which is the ratio of

the number of computational resources required to the total resources provided by the system as:

ηuti =

∑
n

∑
m

∑
l

an,m,lTn∑
m

∑
l

fm,l

, (3.4)
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where fm,l represents resources available by m-th station of l-th layer.

We define a utility function to maximize energy efficiency, resource utilization, and priority-

based user association as:

U = ω1an,m,lEn,m,l + ω2ηuti + ω3βn

∑
n

∑
m

∑
l

an,m,l, (3.5)

where βn is the priority of each user, which is defined based on their residual energy. For illustra-

tion purposes, the task’s priority generated by n-th user varies from 1 to 4 (1 is for lowest priority,

and 4 is the highest priority). ω1, ω2, and ω3 are weights associated with energy efficiency, resource

utilization, and use association, respectively. By adjusting these weights, we can emphasize partic-

ular objectives over others, depending on the specific requirements and priorities of the users. This

multi-objective approach allows us to find a balanced solution that maximizes the overall system

performance.

We formulate a multi-objective optimization problem to maximize energy efficiency, resource

utilization, and user association with users’ priority while optimizing user association. The opti-

mization problem can be written as:

max
a

: U,

Subject to:

C1 :Pn ≤ PMAX
n , ∀ n

C2 :Rn,m,l ≥ RMIN
n , ∀ n,m, l

C3 :
∑
m

∑
l

an,m,l ≤ 1, ∀n

C4 :
∑
n

an,m,lTn ≤ fm,l, ∀m, l

C5 :
∑
n

an,m,l ≤ γm,l, ∀m, l

C6 :an,m,l = {0, 1} ∀n,

(3.6)
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where C1 depicts the transmit power of n-th user is less than the maximum transmit power PMAX
n .

C2 ensures that offloading data rate of n-th user must meet the minimum data rate requirement

RMIN
n . C3 restricts that n-th user can only be associated with maximum one station of l-th layer.

C4 is the resources the user requests should be less than or equal to resources available by the

network. C5 restricts the number of connections associated with m-th station of l-th layer should

be less than the maximum limit γm,l, where γm,l is the maximum number of users served by m-th

station of l-th layer. C6 ensures that the user can be connected or not connected at a given time.

The decision variable an,m,l is binary and constraints are linear. Thus, the problem is a binary

linear programming problem.

3.3 Solution Approach

The n-th user can request a task Tn to the control center in the proposed framework. The control

center then run the optimization problem in (3.6) to assign m-th station from l-th layer to n-th user

based on the task requirements, channel conditions, and resource availability. We solve the opti-

mization problem using the branch and bound algorithm (BBA), interior point method (IPM), and

barrier simplex algorithm (BSA). The results obtained using BBA are considered as a benchmark

to evaluate the performance of IPM and BSA.

3.3.1 Branch and bound algorithm (BBA)

The BBA is a powerful optimization technique to solve combinatorial problems with integer vari-

ables. This algorithm combines branching and bounding to explore the solution space and find the

optimal solution efficiently. In the branch phase, the algorithm divides the problem into smaller

subproblems by branching on specific variables, creating a tree-like search structure. The bound-

ing phase involves estimating an upper bound on the objective function value for each subproblem.

Using linear programming relaxation, the algorithm can tighten these bounds and prune branches

guaranteed to lead to suboptimal solutions. The BBA also incorporates cutting planes and valid
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inequalities that refine the bounds. By iteratively applying these branching, bounding, and cutting

techniques, the algorithm systematically explores the solution space, reducing it until the optimal

solution is found.

To solve the optimization problem in (3.6) with BBA, we input the number of users, the number

of stations (BSs, UAVs, and satellites), calculated data rates from three different channel models

(ground, air, and space), and input that value to BBA optimizer; we also input the values of transmit

power, several resources needed, a total number of available resources from the system, and the

range of priorities which users can have from 4 being the highest priority and 1 as the least priority.

The algorithm returns the optimal user association an,m,l and the system’s utility.

3.3.2 Interior point method (IPM)

The IPM algorithm explores the interior of the feasible region to find the solution. The algorithm

iteratively solves a series of barrier subproblems by adding logarithmic barrier terms to the origi-

nal objective function and constraints. These barrier terms guide the algorithm toward the feasible

interior region while preserving the convexity of the problem. The IPM utilizes Newton’s method

to solve the barrier subproblems, iteratively updating the solution and moving toward the opti-

mal solution. The algorithm converges to the solution when the duality gap, which measures the

difference between the primal and dual objective function values, becomes sufficiently small.

We provide several inputs to tackle our optimization problems using the IPM. We input the

number of users and the number of stations encompassing BSs, UAVs, and satellites. Addition-

ally, we calculate data rates for three different layers, which become input to the IPM optimizer.

Furthermore, we incorporate parameters such as transmit power, the required number of resources,

and the total number of available resources within the system. These parameters play a vital role

in the optimization process. Additionally, we define a priority range for users, with values ranging

from 1 (least priority) to 4 (maximum priority). Once we have all the required inputs, we execute

the IPM algorithm to determine the system’s user associations an,m,l and overall utility.
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3.3.3 Barrier Simplex Algorithm (BSA) (Gurobi)

Gurobi Optimizer is a powerful mathematical optimization software designed to solve complex

optimization problems. Gurobi is known for its high-performance capabilities, efficiency, and

versatility, making it a popular choice among researchers, practitioners, and organizations across

various sectors. It is mainly known for its exceptional performance on large-scale, real-world

problems, where it can handle millions of variables and constraints with remarkable speed and

accuracy. We used the academic version of Gurobi, which offers various solution techniques,

including BSA. We solve the problem in (3.6) using BSA. We input the number of UEs, the number

of stations (BSs, UAVs, and sattelites), and the calculated data rates obtained from three distinct

channel models: ground, aerial, and space. Additionally, we input values such as transmit power,

the number of required resources, and the total number of available resources within the system.

Moreover, we specify a range of user priorities, where 4 represents the highest priority and 1

represents the lowest priority. Once we have all the necessary inputs, we execute the BSA to

determine the optimal user associations an,m,l and the system’s overall utility.

3.3.4 Complexity Analysis

We can solve the problem using BBA; however, the computational complexity is high. The worst-

case complexity of the BBA algorithm is equal to exhaustive search [120]. The time complexity of

the BBA algorithm depends on the branching factor, the number of feasible solutions, and the prun-

ing strategy. The computation complexity of BBA algorithm is O(2N+NM). The computation com-

plexity of the IPM depends on the problem size, the number of variables and constraints, and the

convergence rate. In practice, IPM has a polynomial time complexity of O((N +M)3.5 log(1/ϵ),

where ϵ denotes the precision accuracy [121]. The BSA algorithm has a polynomial time com-

plexity of O((N + M)3 [122]. Table 3.1 compares these algorithms. We can conclude that the

complexity of the BBA algorithm is increasing exponentially as we increase the number of users

and stations. In contrast, the IPM algorithm has less complexity than BBA for increasing the

number of users and stations; while BSA (Gurobi) has similar complexity as of IPM.
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Table 3.1: Complexity comparison of BBA, IPM, and BSA algorithms

Parameters BBA Algorithm IPM Algorithm BSA Algorithm
N = 2, M = 6 262,144 324,000 320,000
N = 2, M = 8 16,777,216 576,000 570,000
N = 3, M = 6 16,800,000 576,000 569,530
N = 3, M = 8 4.2950e+09 1,024,000 1,022,000

3.3.5 Summary

This chapter focused on optimizing user association and resource allocation in an integrated SAGSI

network, considering multiple layers such as BSs, UAVs, and satellites. Users send their task

requests to the control center, which assigned associations and allocated resources based on task

requirements and channel conditions. We formulated an optimization problem to optimize network

performance and applied the BBA, IPM, and BSA to solve the optimization problem. BBA is

considered as a benchmark to evaluate the performance of the other two algorithms.
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Chapter 4

Simulation Results

This chapter presents the simulation results to evaluate the performance of the proposed multi-

objective framework for the SAGSI network. We evaluate the performance of the proposed frame-

work using BBA, IPM, and BSA. The BBA provides optimal results with high computation com-

plexity compared to the other two algorithms. Thus, the results obtained using the BBA algorithm

are used as a benchmark to evaluate the performance of the IPM and BSA. We consider a SAGSI

network with the number of users varying from N = 10 − 100, the number of BSs is M1 = 4 in

layer L1, the number of UAVs is M2 = 3 in layer L2, and the number of satellites is M3 = 2 in

layer L3. The objective of assigning BSs, UAVs, or SATs for the task Tn is to maximize network

energy efficiency, resource utilization, and priority-based user association. The detailed simulation

parameters are given in Table 4.1.

Fig. 4.1 shows user association with BSs (red dots), UAVs (green dots), and satellites (blue

dots) for N = 20− 100, M1 = 3, M2 = 2, and M3 = 1. We consider an area of 100km × 100km

and a height of up to 250km. Fig. 4.1(a) shows the user association based only on distance. For

example, all the users are associated with the closest available BSs. Fig. 4.1(b) represents the op-

timal association in which users are associated with UAVs and satellites based on the optimization

problem in (3.6). When resources are unavailable on the ground layer, users can be associated with

UAVs; when UAVs cannot fulfill resources demand, users will be associated with satellites. To op-
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Table 4.1: Simulation parameters.

Parameter Value
Number of users (N ) 20− 100
Number of BSs (M1) 3
BSs frequency 900 MHz [123]
BSs bandwidth 20 MHz
BSs noise floor −90 dBm
BSs height 5m
BSs transmit power 23 dBm [124]
Number of UAVs (M2) 2
UAVs frequency 2.4 GHz [125]
UAVs bandwidth 20 MHz
UAVs noise floor −90 dBm
UAVs height 100m
UAVs transmit Power 23 dbm [126]
Number of satellites (M3) 1
Satellite frequency 4 GHz [127]
Satellite bandwidth 20 MHz
Satellite noise floor −90 dBm
Satellite height 20000m
Satellite transmit power 36 dBm [128]
User equipment height 1.65 meters

timize the placement of UAVs, we use the K-mean clustering algorithm to determine the optimal

coordinates for the UAVs. We obtained the cluster centers as the UAV coordinates by clustering the

UE coordinates into a specified number of clusters equal to the number of UAVs. Once the UAV

coordinates are determined, we update the locations of UAVs in the system. The height of the

UAV is set to a constant value of 100m. From Fig. 4.1, we can conclude that optimal association

is more effective than distance-based association methods in certain situations. The optimal asso-

ciation considers factors beyond the distance between entities, such as cost, efficiency, feasibility,

and other relevant constraints. This broader perspective can lead to more accurate and significant

associations. In complex scenarios involving multiple entities and constraints, optimal association

methods can provide more precise and robust solutions.
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(a) (b)

Figure 4.1: User association with BSs, UAVs, and satellites for N = 80, M1 = 3, M2 = 2, and
M3 = 1 (a) distance-based association and (b) optimal association.

4.1 Number of associated users versus the total number of users

Fig. 4.2 shows the number of associated users versus the total number of users. We consider the

number of BSs M1 = 3, the number of UAVs M2 = 2, and the number of satellites M3 = 1. We

evaluate the performance of BBA, IPM, and BSA for users varying from 10-80. For N = 10, the

number of resources users request is deficient compared to system resources, so all the users are

associated. For N = 20, the same trend is observed as BSs can fulfill the requirements of user

demands. For N = 30, all three algorithms started associating users with UAVs, and this trend

carried on as users grew to 40; when N = 50, the maximum capacity of BSs and UAVs reached,

so users started associating with satellites, and this trend went on until 80 UEs. Comparing the

three algorithms, we can infer that the BBA algorithm prioritizes stable associations with BSs and

gradually incorporates UAVs into the user associations. On the other hand, the IPM demonstrates

a more dynamic behaviour, adjusting the associations with UAVs and satellites based on specific

requirements and resource availability. The observed patterns highlight the algorithms’ differences,

showcasing each approach’s strengths and trade-offs.
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Figure 4.2: Number of associated users versus the total number of users.

4.2 Capacity utilized versus total number of users

Fig. 4.3 shows the capacity utilized versus the total number of users. We consider the number of

BSs M1 = 3, the number of UAVs M2 = 2, and the number of satellites M3 = 1. When the number

of users N = 10, all users are using the capacities of BSs. The number of resources users request

is deficient compared to system resources compares the capacity utilization for three algorithms

BBA, IPM, and BSA. When the total number of users varies from 10-80, we see consistent capacity

utilization of resources with all three algorithms. We analyzed the capacity utilization patterns for

each algorithm. For BSs utilization, all three BBA, IPM, and BSA exhibit similar trends, with a

gradual increase in capacity utilization when the number of users increased. This suggests that all

three algorithms effectively allocate users to BSs, UAVs, and SATs to meet their demands. While

all three algorithms effectively utilize BSs, the IPM and BSA also demonstrate greater adaptability

and efficient utilization of UAVs and SATs. These findings highlight that all three algorithms

optimize resource allocation and meet user demands in a dynamic network environment.
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Figure 4.3: Capacity utilized versus the total number of users.

4.3 Task priority

Fig. 4.4 number of connected users with priority versus the total number of users. For illustration

purposes, the task priorities range from 1 to 4, with 4 being the highest priority. We consider 25%

users in each priority level. By examining the distribution of task priorities, we can assess how

the system handles the different priority levels. The graph provides insights into the utilization

and allocation of resources based on priority considerations. It helps evaluate the system’s ability

to handle high-priority tasks effectively and ensures that essential tasks receive attention. The

second last bar representing priority 1 tasks in the task priority graph signifies that these tasks are

the least prioritized and may experience compromises or reduced resource allocation compared to

higher-priority tasks. Similarly, the last bar shows the compromise of level 2 priority while serving

priority levels 3 and 4. This visualization underscores the need for careful resource management

and decision-making to appropriately address critical and high-priority tasks while acknowledging

the trade-offs associated with lower-priority tasks.

By examining the graphs collectively, we gain valuable insights into the system’s performance

regarding task prioritization, user association, and capacity utilization. These findings contribute

to a comprehensive understanding of the system’s effectiveness in balancing multiple objectives,
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Figure 4.4: Number of connected users with priority versus total number of users.

managing task priorities, and optimizing resource allocation to meet user requirements and achieve

desired performance outcomes.

4.4 Energy Efficiency

Figs. 4.5(a)-(c) show the performance of the proposed framework when ω1 = 1 (energy efficiency),

ω2 = 0 (resource utilization), and ω3 = 0 (association with priority). The energy efficiency

analysis focuses on how effectively the system utilizes energy resources while meeting the desired

performance requirements. The results represent energy efficiency and showcase the relationship

between energy efficiency and system performance metrics, such as the number of users or tasks.

It provides insights into the system’s ability to optimize energy consumption while maintaining

satisfactory performance levels. Fig. 4.5(a) depicts the number of associated users versus the

total number of users and provides insights into the system’s capacity to establish connections.

As the total number of users increases, the number of associated users also rises, indicating that

the framework can effectively accommodate a growing user population while prioritizing energy

efficiency. At the same time, three bars illustrate three algorithms (BBA, IPM, and BSA). Fig.
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(c)

Figure 4.5: Performance of the proposed framework for only energy efficiency when ω1 = 1,
ω2 = 0, and ω3 = 0 (a) number of associated users versus the total number of users, (b) capacity
utilized versus the total number of users, and (c) number of connected users with priority versus
the total number of users.

4.5(b) shows the capacity utilized versus the total number of users, demonstrating the efficient

utilization of available resources. As the number of users increases, the capacity utilization remains

relatively stable, indicating that the proposed framework can effectively allocate resources to meet

the demand while optimizing energy efficiency. Fig. 4.5(c) shows the number of connected users

with priority versus the total number of users, highlighting the framework’s ability to prioritize

users based on their specific requirements. As the total number of users increases, the number

of connected users with priority also increases, indicating the system’s capability to cater to the

needs of critical users while still maintaining energy efficiency as a primary objective. Overall,

the results presented in Figs. 4.5 provide evidence of the proposed framework’s effectiveness in
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achieving energy efficiency goals. The framework demonstrates the ability to handle increasing

users while maintaining efficient resource utilization and prioritizing critical connections. These

findings emphasize the framework’s potential to balance energy efficiency and other objectives,

showcasing its value in practical applications where energy optimization is crucial.

4.5 Resource Utilization

Figs. 4.6 presents the outcomes of evaluating the proposed framework, specifically focusing on

resource utilization as the sole objective while assigning zero weights to energy efficiency and

association with priority ω1 = 0 (energy efficiency), ω2 = 1 (resource utilization), ω3 = 0 (asso-

ciation with priority). Fig. 4.6(a) shows the number of associated users versus the total number

of users and provides insights into the framework’s ability to establish connections while priori-

tizing resource utilization. As the total number of users increases, the number of associated users

also rises, indicating that the framework effectively accommodates a larger number of users while

maximizing resource utilization as the primary objective. Fig. 4.6(b) depicts the capacity utilized

versus the total number of users, demonstrating the efficient allocation of resources. As the num-

ber of users increases, capacity utilization also increases, indicating that the proposed framework

optimizes resource allocation to meet the growing demand while focusing on resource utilization.

Fig. 4.6(c) illustrates the number of connected users with priority versus the total number of users,

highlighting the framework’s ability to connect users with priority while emphasizing resource uti-

lization. As the total number of users increases, the number of connected users with priority also

increases, showcasing the framework’s capability to cater to critical users while ensuring efficient

resource utilization. However, we can see that all three algorithms cater to priorities with different

association patterns. In summary, the results presented in Figs. 4.6 demonstrate the effectiveness

of the proposed framework in maximizing resource utilization as the sole objective. The frame-

work can handle increasing users while optimizing resource allocation and prioritizing connections

based on user requirements.
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Figure 4.6: Performance of the proposed framework for resource utilization when ω1 = 0, ω2 = 1,
and ω3 = 0 (a) number of associated users versus the total number of users, (b) capacity utilized
versus the total number of users, and (c) number of connected users with priority versus total
number of users.

4.6 Task Priorities

Figs. 4.7 shows the performance of the proposed framework with a focus on user association

with priority as the primary objective and zero weights assigned to energy efficiency and resource

utilization, i.e., ω1 = 0 (energy efficiency), ω2 = 0 (resource utilization), ω3 = 1 (association with

priority). It helps in understanding how tasks with varying priorities are allocated resources and the

impact of task prioritization on the system’s overall performance. Fig. 4.7(a) shows the number of

associated users versus the total number of users and provides insights into the framework’s ability

to establish connections with priority users. As the total number of users increases, the number

of associated users also rises, indicating that the framework effectively prioritizes connections
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Figure 4.7: Performance of the proposed framework for task priority when ω1 = 0, ω2 = 0, and
ω3 = 1 (a) number of associated users versus the total number of users, (b) capacity utilized versus
the total number of users, and (c) number of connected users with priority versus total number of
users.

with users requiring special attention while disregarding energy efficiency and resource utilization.

Fig. 4.7(b) shows the capacity utilized versus the total number of users and does not emphasize

resource utilization in this scenario. Therefore, capacity utilization remains constant or exhibits

no significant trend with the increasing number of users, as the primary objective is focused on

association with priority rather than resource optimization. Fig. 4.7(c) illustrates the number

of connected users with priority versus the total number of users and highlights the framework’s

capability to connect and cater to priority users. As the total number of users increases, the number

of connected users with priority also increases, demonstrating the framework’s ability to prioritize

specific users while overlooking energy efficiency and resource utilization; only users with the least
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Figure 4.8: Utility or Objective function of the proposed framework for resource utilization when
ω1 = 1, ω2 = 1, and ω3 = 1.

priority are compromised, as we can see in last three bars of all three algorithms (BBA, IPM, and

BSA). In conclusion, the results presented in Figs. 4.7 highlight the effectiveness of the proposed

framework in achieving association with priority as the primary objective.

Fig. 4.8 shows the overall utility given in (3.5) (which comprised of energy efficiency, resource

utilization, and number of associated users) versus the total number of users. It is observed that

when the number of users increases, the objective function’s values may exhibit almost the similar

trend for BBA, IPM, and BSA; our objective function utility is increasing. We considered ω1 =

1, ω2 = 1, and ω3 = 1 whereas all other simulation parameters are given in Tabel 4.1. The

relationship between the total number of users and the corresponding accurate function values is

crucial for optimizing system design and decision-making.

87



4.7 Summary

This chapter presented the simulation results of implementing the proposed framework for user

association in a wireless network. The performance of three algorithms, BBA, IPM, and BSA,

was evaluated based on several metrics, including energy efficiency, resource utilization, and task

priorities. The BBA demonstrated a stable association pattern with BSs while gradually incorpo-

rating UAVs over iterations. The IPM exhibited a dynamic behaviour, adjusting associations with

UAVs and satellites based on specific requirements and resource availability. The BSA showed

similar association patterns as the BBA but with slight variations in the associations with UAVs.

Overall, the simulation results highlighted the strengths and trade-offs of each algorithm, providing

insights into their performance and suitability for different system requirements and constraints.

We learned that our benchmark algorithm BBA shows the best results but with higher complexity,

it’s relatively inexpensive in terms of time if the number of users and stations is less, but as we

increase our number in iterations, its complexity is very high. Hence, IPM and BSA, are equally

good with less complexity.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

SAGSI networks and designs have strong potential to meet the requirements of future applica-

tions. In this thesis, we reviewed resource optimization strategies in SAGSI networks. We found

that each optimization domain is crucial to the efficient use of communication and computing

resources in SAGSI networks. We categorized and thoroughly analyzed resource optimization’s

relevant aspects such as throughput, capacity, delay, energy, SDN, overall performance, and joint

optimization. We studied the resource optimization categories from the perspective of how a prob-

lem can be solved for an optimization problem under certain constraints, and we evaluated the

extent to which researchers have been successful in achieving their objectives and we identified

areas where we need further improvements and research. Moreover, we summarized the lessons

learned from each resource category.

We discussed numerous research issues and possible solutions for SAGSI networks. Based on

this review, we concluded that the dependability and coverage of SAGSI networks would improve

significantly if we could efficiently optimize the resources of these networks. We also identified

the significant results of many recent related works on SAGSI networks along with enabling tech-

nologies such as blockchain, AI/ML, and NOMA in SAGSI networks. We then mathematically
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formulate an optimization problem that combines energy efficiency, resource utilization, and task

priorities to optimize the performance of our system. Through extensive simulations and analy-

sis, we evaluated the system’s performance regarding associated users, capacity utilization, task

priorities, and utility achieved.

The results demonstrated the effectiveness of our objective function in achieving a balance be-

tween energy efficiency, resource utilization, and task priorities, ultimately improving the overall

system performance. By incorporating the priority of users in the objective function, we also ob-

serve the impact of different priorities on the overall system performance. The results of our anal-

ysis demonstrate the effectiveness of our objective function in achieving a balance between energy

efficiency, resource utilization, and task priorities. This balanced approach ensures that higher-

priority tasks are efficiently handled while maximizing the overall system performance. Overall,

by incorporating the concept of user priority and exploring both individual and multi-objective

optimization approaches, we effectively manage and allocate resources based on the importance

of tasks, leading to improved system performance and the satisfaction of user requirements.

5.2 Challenges and Future Research Directions

Next, we discuss open research challenges and future research directions based on recent works

we have reviewed and analyzed. In SAGSI networks, we must resolve the issues and challenges of

integrated networks. In [1], the authors argued that intelligent radio, very high spectrum utilization,

and network stability should exist. Security and privacy issues and simulation tools should also

be improved and updated according to the current needs of QoS and QoE standards. In [53], the

authors stated that a few areas must be investigated to reap the benefits of SAGSI networks in

6G. These areas include adaptive ML, scalable and reliable blockchain, intelligent service, self-

sustaining 6G networks, modeling for THz and mmWave communication, zero energy enabled

6G, routing schemes for 6G enabled nano-IoT and bio-IoT and meta-learning enabled 6G [50].

All these research areas have their challenges and show promise for the successful implementation
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of SAGSI networks in 6G. Adaptive ML-enabled 6G is one of these topics. The authors of [50]

also identified security as one of the challenges that must be addressed in SAGSI networks. In

[49], the authors stated that tactile Internet and SAGSI networks are novel topics which must

be investigated in the future. They also pointed out that future research works must focus on

algorithms, architectures, protocols, and intelligent prediction schemes for SAGSI networks.

The authors of [129] developed AI systems based on deep learning and big data analytics which

require significant communication and computation resources resulting in increased latency, en-

ergy consumption, network congestion and also raised privacy concerns in training and inference

processes. The authors of [130] and [131] described the evolution of device-to-device (D2D)

communication. However, challenges related to radio resource optimization, interference mini-

mization, mobility, security, and trust must be addressed to take full advantage of D2D networks.

The authors of [132] analyzed and designed a security framework for multiple networks coexisting

together. For example, such networks can result in high-security threats compared to standalone

networks which can handle unknown and out-of-network accesses. In [133] proposed that the

routing strategy needs to be updated timely according to the time-varying topology due to satellite

links’ high dynamics and delay. SDNs are considered for efficient operation and management of

complex networks. SDN can implement reliable, centralized control, and secure automation so-

lutions for traditional and future networks [134]. For example, the complexity of future networks

needs security automation using SDN to overcome delays caused by security operations. Thus,

this is a potential area for future research.

In [48], the authors proposed new network scenarios in SAGSI networks, communication secu-

rity, spectrum efficiency, deep heterogeneous structures, and energy efficiency. Interestingly, they

also emphasized that new deep learning, ML techniques, and optimal transmit power schemes

have great potential to improve SAGSI network efficiency. In [7] the authors discussed research

directions covering six main domains: ultimate mobile experience, hyper-intelligent networking,

harmonized networks, extreme global network coverage, sustainable networks and ultimate se-

curity, privacy, and trust. All research opportunities mentioned above, research directions, and
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challenges have been described in the most recent works done SAGSI networks in 6G. Interoper-

ability and complexity are significant challenges in designing and implementing integrated SAGSI

networks. These networks require seamless and reliable communication among multiple nodes that

operate in diverse environments, such as terrestrial, aerial, and underwater domains. Achieving in-

teroperability in such heterogeneous networks is critical due to the differences in communication

protocols, hardware and software architectures, and network topologies. Moreover, the complexity

of these networks arises from the need to integrate various technologies, including satellite com-

munication, airborne networks, terrestrial cellular networks, and underwater communication, into

a cohesive and efficient system. In [135], the authors argued that the SAGSI network architecture

faces new challenges at the network layer that are not present in traditional terrestrial communica-

tion systems.

These challenges include network design and optimization, data transmission between differ-

ent networks, and interoperability of hardware devices. One of the primary challenges is ensuring

that the network can support mobility and has the necessary emergency networking and dispatch

capabilities to deal with unexpected situations. This is particularly important when reliable and un-

interrupted communication is critical, such as in emergency response scenarios. Therefore, SAGSI

networks must be designed and optimized to ensure that they can provide seamless communication

in dynamic and complex environments.

Additionally, the network should be capable of providing reliable and secure data transmission

between different networks, despite differences in protocols, hardware, and topology. Achieving

interoperability of hardware devices is also a crucial challenge that must be addressed to ensure

seamless communication across the network. Similarly, the authors of [136] provided a compre-

hensive and systematic overview of the complexities of SAGSI networks in disaster management

applications, including hardware-based, network-based, protocols-based, and security-based com-

plexities. They also highlighted the challenges associated with disaster management systems and

the need to address them to ensure reliable and effective disaster management. The findings of

this study have significant implications for disaster management practitioners and researchers, as
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the authors provided a better understanding of the challenges and opportunities associated with

utilizing SAGSI networks in disaster management applications.

After reviewing the literature available, next, we point out some limitations and relevant re-

search concerns from all the above discussions:

• Security standards and architectures still need to be defined for SAGSI networks which

means these networks would be vulnerable to attacks on any layer of integrated networks.

• Managing seamless 3D mobility intelligently while moving up in the layers, in air or space

or down the ground level or deep in ocean or submarine level remains an open challenge.

• How to achieve global coverage while optimizing power losses and improve system effi-

ciency is another challenge [7].

• Smart energy management and resource management is key to the success of SAGSI net-

works.

• Being backward compatible with previous generations of cellular networks is very impor-

tant for 6G integrated networks. Thus, we need flexible network topologies and backward

compatibility with legacy networks.

• We must develop a global-level optimization mechanism to increase the collaborative uti-

lization of available resources at different layers in SAGSI networks.

• A system is required to generate standard and good-quality datasets for learning tasks with

different properties, densification, and channel modeling.

• The hybrid centralized-distributed AI solutions are needed to efficiently use the computing

capabilities of the cloud servers and massive IoT devices at the network edge in SAGSI

networks.

• Gadget-free communication is only possible if we integrate sensors and interfaces into the

environment to provide seamless communication in SAGSI networks in 6G.
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• The interoperability of hardware devices and communication protocols remains a critical

future research direction and challenge in developing SAGSI networks.

• The increasing complexity of SAGSI networks remains a significant challenge in the design

and optimization of SAGSI networks.

5.3 Limitations of Proposed Framework and Potential Improve-

ments

We highlight some limitations in the proposed framework at the end of the thesis as follows:

• The objective function in the proposed framework combines energy efficiency, resource uti-

lization, and task priorities. However, it may need to be more accurate in the complexities

of real-world scenarios. Future research can explore more sophisticated objective functions,

additional factors, and constraints.

• The proposed framework focused on optimizing user association. However, in practical

scenarios, there may be multiple parameters that can be optimized to improve the system’s

performance.

• The current analysis relies on simplified resource utilization metrics, such as capacity utiliza-

tion. Future research can explore more comprehensive and accurate resource utilization met-

rics considering various resources, interdependencies, and quality-of-service requirements.

Following are possible directions to improve the proposed framework in future:

• Develop an adaptive objective function that dynamically adjusts its weights or parameters

based on the system’s operating conditions, user demands, and environmental factors. This

would allow the system to adaptively prioritize energy efficiency, resource utilization, and

task priorities based on real-time conditions.
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• Explore combining machine learning techniques, such as reinforcement learning or genetic

algorithms, to optimize the objective function. These approaches can learn and adapt the

system’s behaviour over time, leading to more efficient resource allocation and improved

performance.

• Investigate the impact of network dynamics on the objective function, such as user mobility,

varying traffic patterns, and changing network conditions. Dynamic factors can help enhance

the objective function’s adaptability and robustness in real-world scenarios.

• Conduct extensive scalability analysis to assess the objective function’s performance as the

system size and complexity increase. Investigate the trade-offs between computational com-

plexity and optimization performance to ensure the objective function remains efficient and

effective for large-scale deployments.

Addressing these limitations and exploring future research directions can further refine the

objective function, leading to more effective resource allocation, improved system performance,

and enhanced user satisfaction in dynamic and resource-constrained environments.
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ture, protocols, and security,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3701–3709,

Oct. 2018.

[44] T. Sanislav, G. D. Mois, S. Zeadally, and S. C. Folea, “Energy harvesting techniques for

Internet of things (IoT),” IEEE Access, vol. 9, pp. 39530–39549, Mar. 2021.

101



[45] S. Zeadally, F. K. Shaikh, A. Talpur, and Q. Z. Sheng, “Design architectures for energy

harvesting in the Internet of Things,” Renewable and Sustainable Energy Reviews, vol. 128,

p. 109901, Aug. 2020.

[46] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for

OFDM signals,” IEEE Transactions on broadcasting, vol. 54, no. 2, pp. 257–268, Jun. 2008.

[47] A. Shahraki, M. Abbasi, M. Piran, A. Taherkordi, et al., “A comprehensive survey on 6G

networks: Applications, core services, enabling technologies, and future challenges,” arXiv

preprint arXiv:2101.12475, Jan, 2021.

[48] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey on resource allocation for 5G hetero-

geneous networks: Current research, future trends and challenges,” IEEE Communications

Surveys & Tutorials, vol. 23, no. 2, pp. 668–695, Secondquarter 2021.

[49] N. Promwongsa, A. Ebrahimzadeh, D. Naboulsi, S. Kianpisheh, F. Belqasmi, R. Glitho,

N. Crespi, and O. Alfandi, “A comprehensive survey of the tactile Internet: State-of-the-

art and research directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1,

pp. 472–523, Firstquarter 2021.

[50] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A survey on space-air-ground-sea integrated

network security in 6G,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 53–

87, Firstquarter 2022.

[51] F. Tang, B. Mao, Y. Kawamoto, and N. Kato, “Survey on machine learning for intelligent

end-to-end communication toward 6G: From network access, routing to traffic control and

streaming adaption,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1578–

1598, Thirdquarter 2021.

[52] H. Wang, X. Xia, T. Song, and Y. Xing, “Survey on space-air-ground integrated networks

in 6G,” in IEEE/CIC International Conference on Communications in China (ICCC Work-

shops), pp. 315–320, IEEE, Jul. 2021.

102



[53] L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, “6G wireless systems: A vision,

architectural elements, and future directions,” IEEE Access, vol. 8, pp. 147029–147044,

Aug. 2020.

[54] M. Alsabah, M. A. Naser, B. M. Mahmmod, S. H. Abdulhussain, M. R. Eissa, A. Al-

Baidhani, N. K. Noordin, S. M. Sait, K. A. Al-Utaibi, and F. Hashim, “6G wireless com-

munications networks: A comprehensive survey,” IEEE Access, vol. 9, pp. 148191–148243,

Nov. 2021.

[55] M. Matracia, N. Saeed, M. A. Kishk, and M.-S. Alouini, “Post-disaster communi-

cations: Enabling technologies, architectures, and open challenges,” arXiv preprint

arXiv:2203.13621, Mar. 2022.

[56] J. Wang, C. Jiang, Z. Wei, T. Bai, H. Zhang, and Y. Ren, “UAV aided network association in

space-air-ground communication networks,” in IEEE Global Communications Conference

(GLOBECOM), pp. 1–6, IEEE, Dec. 2018.

[57] J. Wang, C. Jiang, Z. Wei, C. Pan, H. Zhang, and Y. Ren, “Joint UAV hovering altitude and

power control for space-air-ground IoT networks,” IEEE Internet of Things Journal, vol. 6,

no. 2, pp. 1741–1753, Apr. 2019.

[58] A. H. Arani, P. Hu, and Y. Zhu, “Re-envisioning space-air-ground integrated networks:

Reinforcement learning for link optimization,” in IEEE International Conference on Com-

munications (ICC), pp. 1–7, IEEE, Jun. 2021.

[59] F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai, “A deep reinforce-

ment learning-based dynamic traffic offloading in space-air-ground integrated networks

(SAGIN),” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 276–

289, Jan. 2022.

103



[60] X. Cao, B. Yang, C. Yuen, and Z. Han, “HAP-reserved communications in space-air-ground

integrated networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8286–

8291, Aug. 2021.

[61] W. U. Khan, E. Lagunas, A. Mahmood, B. M. ElHalawany, S. Chatzinotas, and B. Ot-

tersten, “When RIS meets GEO satellite communications: A new sustainable optimization

framework in 6G,” in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring),

pp. 1–6, IEEE, Jun. 2022.

[62] A. Alsharoa and M.-S. Alouini, “Facilitating satellite-airborne-balloon-terrestrial integra-

tion for dynamic and infrastructure-less networks,” arXiv preprint arXiv:2111.07506, Nov.

2021.

[63] J. Hu, Q. Wang, and K. Yang, “Energy self-sustainability in full-spectrum 6G,” IEEE Wire-

less Communications, vol. 28, no. 1, pp. 104–111, Feb. 2021.
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