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Abstract

Generally, in real-world engineering disciplines a dynamical system is nonlinear, having
multi-input and multi-output (MIMO) variables, and high-level parameter uncertainties.
Although there are many approaches proposed in the literature for system modeling and
optimization, it remains a challenging topic to derive the precise mathematical models to
characterize complex, dynamic and globally described systems. If training data in a real-
world system are available, artificial neural network theories can be applied for system
parameter recognition and optimization. The objective of this work is to develop a new
fuzzy formulation based on the semi-tensor product (STP) method to construct fuzzy
logic models for MIMO systems in a matrix representation. It involves the following
processing operations: fuzzy modeling, structure and parameters identification, system
optimization, and adaptive control of closed-loop fuzzy systems based on the fuzzy
relation matrix (FRM) models and STP algorithms. The related contributions are

summarized below:

* The STP operations of logic matrices are proposed for fuzzy logic reasoning by the
extension of STP for conventional matrices. And then some properties are developed

for the fuzzy STP operations.

* A vector expression of fuzzy variables and matrix representation of fuzzy relations,
are proposed for advanced research. Matrix expression of multi-dimensional data is

applied to multi-variable fuzzy relations and fuzzy rules.

* Two modeling methods, direct modeling and indirect identification are proposed to

identify the FRM models for MIMO fuzzy systems.

* A universal approximation with the approximation accuracy is proposed for MIMO

fuzzy models based on FRMs and the fuzzy logic STP algorithm.

II



* A neural-fuzzy STP network is developed to train the parameters in MIMO fuzzy
systems based on the FRM and fuzzy logic STP algorithm, and a hybrid optimization

method is adopted to train parameters for FRM models.

* Based on the FRM model and fuzzy logic STP algorithm, an indirect adaptive FRM

control law is suggested to improve the performance of FRM control systems.

The effectiveness of the proposed modeling, optimization, and adaptive control
design techniques in the multi-variable FRMs and STP algorithms platform is validated

by simulation tests in the Matlab environment.

Key Words: System identification; Semi-tensor product (STP); Fuzzy relation matrix

(FRM); MIMO systems; Matrix representation; Adaptive control.
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Chapter 1 Introduction and Literature Review

1.1 Research Motivation

With the wide application of computing devices, most real-world systems have become
more and more complex. Correspondingly, it becomes more challenging to precisely
describe their dynamic characteristics especially for those with multi-variables,
nonlinearity, uncertain parameters, and unknown disturbance, based on exact
mathematical models or classical mathematical formulation and analysis. Although a
great deal of effort has been undertaken in the past decades for theoretical study of linear
systems, most of the traditional and modern system theories are constructed on the basis
of deterministic expressions such as using polynomial functions, differential equations,
state matrices, probability, and statistics [1]. As a result, it still remains a challenging
research topic to construct precise nonlinear mathematical models for system
identification, analysis and synthesis [2].

In general, a good engineering system model should make use of available data and
information effectively. In application, some important information comes from expertise
knowledge and reasoning, sensor measurements, data analysis, as well as physical laws.
Therefore, it is desirable to combine these types of information into system modeling and
design. Hence, the critical question is how to efficiently identify suitable mathematical

models based on the sampling input-output data for different applications [3, 4].

1.2 Brief Background

Generally, the analysis for linear and nonlinear multi-input and multi-output (MIMO)
systems concentrates on the use of conventional system identification methods, such as
frequency-domain analysis, time-domain analysis, transfer function, state-space
expression, differential equations, limit cycle theory, phase plane methods, describing

functions, and Lyapunov stability theories, etc.[5, 6]. The most common method could be



linearization in a limited discourse so that the linear control system theories can be used
for locally or piecewise linearized nonlinear models [7]. However, most of these analysis
techniques are on the basis of exact mathematical models, where precise models are
difficult to derive especially for complex multi-variable systems with coupled multi-
output variables. On the other hand, some expertise and/or knowledge can provide
valuable insight to system identification, reasoning, and operation, even though it could
be difficult to obtain accurate mathematical models. Under these linguistic knowledge
representations, fuzzy systems could provide a promising alternative for system modeling
and performance control when the accurate mathematical model of a process is difficult
to derive [8, 9].

The fuzzy logic theory is an effective tool to formulate human knowledge in a
systematic manner by the use of fuzzy IF-THEN rules. As an important element of
artificial intelligence (Al), fuzzy logic theory has been making accelerating progress in
recent decades especially in fuzzy control applications to consumer products and
industrial control [10]. However, it is difficult to incorporate a fuzzy model with other
conventional mathematical expression for advanced modeling and analysis, since fuzzy
rules and reasoning processes are realized by linguistic and logic operations [11].

The semi-tensor product (STP) of matrices was first proposed by Cheng in 2011 [12],
which is a useful mathematical tool to express binary logic and multi-valued. The STP of
matrices can realize the multiplication operation between two arbitrary matrices without
following the conventional necessary conditions for matrix product such as the dimension
of the column for the first matrix has to be equal to the dimension of the row for the
second matrix. Therefore, it can provide an efficient tool to tackle many problems related
to matrix operations. As a generalization of matrix product operation, the STP not only
can keep all the properties of the conventional matrix product operations, but also can
have its unique properties such as pseudo-communicative law [13]. Hence, STP has been
applied to many research fields related to matrix operations [14], including the analysis
and control of multi-valued logic and mix-valued logic inference systems through matrix
representation of logical variables [15, 16]. It also has the potential to be used with some
soft-computing paradigms such as artificial neural networks (ANNs) and genetic

algorithms, to facilitate the design and implementation of intelligent systems [17].



1.3 Literature Review

Most real-world systems are nonlinear and continuous in nature, which do not obey the
superposition principle [18, 19]. Compared with linear systems, there are very limited
mathematical tools that can be used to nonlinear MIMO system analysis, except
differential equations, limit cycle theory, Lyapunov stability theorems, and describing
functions etc. [20-22]. If solutions near an equilibrium position are of interest only, a
nonlinear system could be approximately linearized over a local region [23, 24].
Typically, the behavior of a nonlinear system is often described mathematically by
nonlinear equations with unknown and uncertain parameters. However, as it is usually
difficult to solve nonlinear equations precisely, nonlinear systems are commonly
approximated by linear equations. On the other hand, because some phenomena like
chaos and singularities could be ignored by linearization, some aspects of dynamic
behaviors of a nonlinear system could become counterintuitive, unpredictable, even
chaotic or random. As a result, it is critical to develop appropriate mathematical modeling

methods for nonlinear system analysis and control [25].

1.3.1 Introduction to fuzzy logic inference theory and applications

The fuzzy logic theory was initiated by Zadeh in 1965 [26], by using fuzzy sets, fuzzy
logic, and fuzzy IF-THEN rules to formulate human knowledge [27-29]. Generally, based
on the type of the consequent reasoning in fuzzy rules, fuzzy systems can be categorized
into Mamdani models, Takagi-Sugeno-Kang (TSK) models, and dynamical fuzzy models
[30-32]. Hence, the rules-based fuzzy system can provide many promising results [33],
especially, fuzzy control theories was applied successfully in real world since 1970s [34-
37]. For example, Lee proposed a robust adaptive fuzzy controller by backstepping for a
class of MIMO nonlinear systems [38]. Li et al. have investigated the latticized linear
programming subjected to fuzzy relation inequality constraints with the max-min
composition [39]. Feng et al. have proposed a fuzzy dynamic model and the related
synthesis theory in [40]. Li et al. have represented a class of robust adaptive-fuzzy-
tracking control for nonlinear multi-variable systems by a fuzzy approximation approach

[41].



Additionally, fuzzy controllers have found many successful applications in real-world
systems, but generally using simplified multi-input and single-output (MISO) fuzzy
models. Besides, it is difficult to use MIMO fuzzy models in real-world systems because
the fuzzy output variables are usually coupled and dependent on each other. Accordingly,
the fuzzy rules may not be accurate enough to represent the relationship between each
input and each output for MIMO fuzzy controllers [42, 43]. To date, the fundamental
challenge in this research area is the lack of efficient mathematical modeling strategy to
deal with extensive databases [44, 45]. Thus, a new analytical strategy is needed to
improve the performance of conventional fuzzy models.

On the other hand, fuzzy logic has been applied in many fields such as system control
and decision, signal processing, communications, integrated circuit manufacturing, and
expert systems [46]. However, most of its applications are related to system control [47]
including fuzzy washing machines, digital image stabilizers, fuzzy systems in cars, fuzzy
control of subway train, etc. [48]. Moreover, if the training data can be used to improve
the modeling accuracy of fuzzy systems, the application of fuzzy systems will be
expanded significantly. With the combination with other processing strategies, especially
with soft-computing tools, the performance of fuzzy systems can be significantly

improved for different applications [49, 50].

1.3.2 Modeling of MIMO fuzzy systems

In general, for a general multi-variable system, system identification is the first step to
model a nonlinear system, which is to obtain information about the kernels or transfer
functions of the unknown system from input-output experiments [51]. It is usually
composed of two sequential procedures: structure identification and parameter
identification. In system identification, the dynamic system of interest can be
characterized by mechanical, physical, chemical, or biological objects, and then
processed according to some information transformation algorithms [52]. The models can
be further improved through the comparative analysis between the theoretical and
experimental results [53].

Fuzzy logic inference models have been widely used in many industrial and

commercial plants applications [54, 55], since it was firstly applied by Mandani to



control steam engine locomotive system in 1974 [30]. Generally, a fuzzy model is built
based on fuzzy IF-THEN rules that could be inferred from linguistic knowledge or
expertise from operators and experts. Then, the fuzzy model can be realized by structure
identification and parameters optimization through algorithms such as fuzzy
approximation, fuzzy clustering, evolutionary computing, and immune modeling, etc.
[56-58]. However, with the rapid development of the internet and computer technology
including microprocessors, the information processing abilities are also increasing [59],
so that, there are no clear advancements in modeling and optimization in traditional fuzzy
systems [60-63]. One of the reasons may be related to the uncertainty in fuzzy linguistic
description. In addition, it is difficult to model and optimize fuzzy systems by directly
using the traditional computing strategies based on vectors and matrices in programming,

digital strategies, discrete mathematics, multi-value logic, etc. [64].

1.3.3 Universal approximation of fuzzy models

Since most systems are nonlinear, MIMO, and subjected to unpredictable disturbance,
and variable operating conditions, it is challenging to derive precise mathematical models.
Although the universal approximation capability of fuzzy logic systems is studied for
nonlinear system identification [65, 66], these fuzzy approximators are composed of
conventional fuzzy rules and fuzzy reasoning process. Therefore, there exists some
limitation for them to estimate any nonlinear functions, especially the MIMO systems.
But, many techniques have been used to improve the universal approximation for the
fuzzy rule-based models. A rough set method has been introduced in [67] to approximate
preference relations using fuzzy inference with multi-attribute dominance. The mean
approximation of regular fuzzy neural networks is investigated in [68] for Choquet
integral. The concept of intuitionistic fuzzy S-approximation spaces is suggested in [69]
to process the uncertainty in fuzzy decision-making. The aforementioned methods can
provide the fundamental tool to apply approximation theory to fuzzy systems, however,
most of the current results focus on the fuzzy model based on fuzzy rule sets and
conventional fuzzy logic reasoning process.

On the other hand, the universal approximation theory in [32] can be applied in the

analysis and synthesis of some types of nonlinear systems [70, 71], such as fuzzy



modeling with second-order approximation [72], adaptive fuzzy neural network
approximation [73], reinforcement learning [74], and fuzzy adaptive control of nonlinear
systems [75, 76]. For example, an observer-based adaptive fuzzy control is proposed in
[77] to approximate the unknown nonlinear functions for a class of MIMO non-strict
feedback nonlinear systems; a backstepping state feedback controller is developed in [78]
for nonlinear MIMO time-delay systems based on fuzzy approximation. In these works,
fuzzy logic is used to approximate unknown nonlinear functions, but a series of MISO
fuzzy rules-based systems are designed as approximators in the respective MIMO
nonlinear systems. The universal approximation of an MIMO nonlinear function is

seldom to be considered directly due to lacking available mathematical tools.

1.3.4 Optimization of fuzzy models

The modeling accuracy can be improved by optimization of system parameters, subjected
to some physical constraints and performance requirements. In general, the optimization
operation can be classified as static optimization and dynamic optimization [79]. Static
optimization is relevant to a plant with steady-state conditions, or the system variables are
not changing with time. The plant can be described by algebraic equations by the use of
ordinary calculus, Lagrange multipliers, linear and nonlinear programming, etc. [52]. On
the other hand, dynamic optimization is corresponding to plants with time-varying
properties by the use of search techniques such as dynamic programming, calculus of
variations, and Pontryagin principle of optimality, etc. [80].

Generally, fuzzy optimization process is usually composed of two operations: fuzzy
decision and parameter identification [81]. The fuzzy decision [82] can be undertaken by
the use of fuzzy linear programming models, fuzzy nonlinear programming models,
fuzzy dynamical programming, feasibility linear programming models, etc. [83]. Several
algorithms are proposed in recent years for structure and parameter optimization of fuzzy
logic systems, such as fuzzy sorting, fuzzy sets operation, sensitivity analysis, and dual
theory [84]. On the other hand, in order to improve the rigorous fuzzy models in
conventional rules-based fuzzy systems, an appropriate optimization algorithm is selected
to update system parameters based on the proper objective functions or design

requirements. Some conventional optimal strategies include Least squares estimator (LSE)



and gradient descent algorithms, etc. [85], while more advanced nature-inspired
optimization algorithms consist of ant colony optimization [86], particle swarm

optimization [87], and simulated annealing, etc. [88-90].

1.3.5 Fuzzy control of MIMO systems

A nonlinear dynamical system is regarded as a challenging endeavor in both theory and
applications. Many physical processes are represented by nonlinear models in
applications such as process control, biomedical engineering, robotics, aircraft, and
spacecraft control, etc. [91]. More advanced control laws are needed to meet stringent
design specifications of nonlinear control systems [92]. Most systems are inherently
nonlinear, even though nonlinear systems could be simplified as linear under certain
operating and application conditions [93]. Hence, compared with the wide variety of
techniques available for linear system analysis, the tools for the analysis and design of
nonlinear systems are very limited [94].

Conventional fuzzy models based on fuzzy rules and fuzzy logic reasoning are
generally used as nonlinear controllers. There are three main types of fuzzy control
systems commonly used. The first type is related to classical fuzzy controller, including
self-tuning, self-supervised, self-adaptive fuzzy controllers [95-97]. The second type is
related to the fuzzy PID controller, where the proportional, integral, and derivative tuning
parameters can be adjusted by proper fuzzy operations [98, 99]. The third type is related
to synergistic system control, such as fuzzy expert control, neural fuzzy control, and
adaptive neural fuzzy inference systems (ANFIS) control [100-102]. In general, the
output variables of a fuzzy controller are associated with control laws for the plant, and
the input variables are related to the controlled system. The basic fuzzy operations
include fuzzification, fuzzy inference, fuzzy rules set, and defuzzification, etc. [103]. To
simplify programming, in the current research results, an MIMO rules-based fuzzy
system 1is usually decomposed into several two-input and single-output (TISO) and/or

MISO fuzzy models [104].

1.3.6 Semi-tensor product of matrices as a mathematical tool

The STP of matrices is a generalization of the conventional matrix product, which has a

potential to be used in mathematical modeling and system identification applications [12].



In general, the traditional matrix product operation must satisfy some necessary
conditions. However, the STP can soften these limitations, which has been effectively
used in many applications such as converting a logical relationship into a standard
discrete-time dynamic algebra operation [13, 14, 105], logic analysis [106, 107], and
games [108, 109]. Some research results have been undertaken in Boolean networks
based on STP [110-113], the Lyapunov stability and construction of Lyapunov functions
[114], and STP-based stability analysis of Boolean control networks [115, 116]. The STP
can also represent fuzzy logic operators and fuzzy reasoning processes with matrices of
MIMO fuzzy systems [117].

In system science and engineering, the STP method has two main possible
applications. The first is related to modeling and control of nonlinear systems such as
Morgan’s problem [118], stability region [119], feedback linearization [120], and
symmetry of control systems [121]. The other area is related to the analysis and control of
logical dynamic systems represented by algebraic state-space models [122-124]. On the
other hand, the STP method has been applied to some real applications including gene
regulation [125], power system [126], wireless communication [127], smart grid [128],
finite automata [129], information security [130], vehicle control [131], indoor thermal
comfort [132], fault detection of circuits [133], spacecraft [134], epidemic vaccination
[135], and mobile robot [136].

In particular, the STP method can be extended to multi-valued logic and mix-valued
logic operation, logic mapping, and logic functions [137]. For example, it can express the
logical variables in a matrix form and realize the logic reasoning process. The author's
research teams have undertaken a series of innovative research works to extend the STP
to fuzzy systems [113, 117, 138-140]. However, these works have considered the
discrete-time fuzzy systems only, and the initial matrix model is constructed without
considering the different membership functions (MFs), fuzzy reasoning operations,
parameter identification, etc. Thus these works could be considered as the primary efforts

to transform the matrix description to fuzzy logic modeling.



1.4 Research Challenges

From the above literature review, although the traditional fuzzy logic model based on a
set of fuzzy rules has many merits in system modeling and control, it has some
limitations in applications. Since the STP method can extend the conventional matrix
product operation and realized the matrix expression of multi-valued logic to a more
general domain, it has a potential to extend the functionality of traditional fuzzy logic
inference systems. Hence, the following challenging topics are proposed.

(1) Both the conventional fuzzy relation matrix and composition operation can be
realized for two fuzzy sets or fuzzy variables, but it lacks mathematical expression for
multiple fuzzy sets, fuzzy variables or fuzzy relationships. The MIMO fuzzy logic rules-
based models cannot be expressed in a matrix form. Moreover, the fuzzy reasoning
operation cannot be realized by conventional matrix operators.

(2) STP of matrices can be used to express the logic operations such as AND and OR
in the logic reasoning process, so that STP can be used to matrix express the multi-valued
logic reasoning process instead of multi-valued mappings and functions. As fuzzy logic is
one type of logic algebra with fuzzy relations and fuzzy inference, it is possible to be
expressed by matrices and STP algorithms for fuzzy logic inference systems.

(3) The fuzzy models are mainly knowledge-based linguistic description. The
sampling database is rarely used to identify the structure and parameters in the traditional
fuzzy modeling. If the matrix expression can be realized for the conventional fuzzy logic
systems, then, the modeling of fuzzy systems can be constructed based on the input-
output sampling database.

(4) Universal approximation of traditional fuzzy logic models mostly focuses on
analyzing the TISO and MISO functions rather than general MIMO nonlinear functions,
due to lacking the necessary mathematical tool to express the multi-variable fuzzy logic
systems. When the general multi-variable fuzzy logic systems can be expressed by the
fuzzy relation matrices, the corresponding approximation can also be analyzed based on
the MIMO FRM models.

(5) Fuzzy logic systems lack the capability of online self-learning. And generally,
fuzzy parameters cannot be updated by training data. When the matrix expression of

fuzzy logic reasoning process can be realized as the algebraic model and digital logic



operation, it will be easier for the fuzzy logic inference systems to train fuzzy parameters
by some optimization algorithms.

(6) It is difficult to use the classical models-based system theories to improve fuzzy
models because there is no precise mathematical model to represent multi-variable fuzzy
relations and fuzzy logic reasoning process. Once the matrix expression can be realized
for MIMO fuzzy models, the conventional theory and applications can be implemented
by FRM models. Then, the relevant theoretical expression can be constructed for

conventional fuzzy logic systems based on the FRM models and STP operations.

1.5 Objective Strategies

To tackle the limitations of existing MIMO fuzzy system theories, a new fuzzy
formulation platform will be proposed based on the STP algorithm and matrix expression
of multi-dimensional data. The goal of this research work is to apply the STP to realize
algebraic representation for conventional MIMO fuzzy logic inference systems. It will
systematically investigate the issues in system identification, approximation analysis,
parameter training, and controller design for MIMO fuzzy systems. The specific research

objectives are listed below:

1) Fuzzy STP operations are proposed by extension of STP from conventional
matrices to multi-valued logic matrices. The vector and matrix expression of multi-

dimensional data is developed for the matrix expression of multi-variable fuzzy relation.

2) The theoretical matrix formulation is proposed for multi-variable fuzzy systems.
The general definition of fuzzy relation matrix (FRM) is formulated based on vector
expression of fuzzy variables and fuzzy sets. Then, the matrix expression is developed for

the MIMO fuzzy rules-based systems based on STP of logic matrices.

3) The FRM models are identified by a direct modeling and an indirect identification
strategy using sampling input-output training data. Then, it is demonstrated that a general
fuzzy system with an FRM model is a nonlinear mapping from input to output variables,

which can be represented by the product of two matrices.
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4) A universal approximation is proposed for a nonlinear multi-variable function via
FRM models and fuzzy logic STP algorithms. This approach can be used to design

arbitrary fuzzy systems with FRM models and to approximate nonlinear functions.

5) FRM model parameters will be optimized based on a novel neural-fuzzy STP
network and fuzzy logic STP operations, where the recursive least squares estimator and
the recursive Levenberg-Marquaedt algorithms are used to optimize the linear and

nonlinear parameters, respectively.

6) A closed-loop FRM control system is constructed by using fuzzy logic STP and an
indirect adaptive fuzzy controller is constructed on the basis of FRM models for a n-th
order nonlinear system. An adaptation law is proposed to optimize the unknown
parameters. The effectiveness of the proposed FRM control design techniques is verified

by simulation tests.

1.6 Outline of the Thesis

Based on the challenging topics in Section 1.4 and the objective proposed in Section 1.5,

the overall structure of this dissertation is described in Fig. 1.1.

Matrix expression of multi-

STP of matrices . ’
dimensional data

in Ch 2
in Chapter in Chapter 2
STP of Matrix expression of

logic matrices multi-variable fuzzy relation

in Chapter 2 in Chapter 3

y v
Direct and indirect
FRM modeling
in Chapter 4
Universal Parameter Adaptive

Approximation Optimization fuzzy control

in Chapter 5 in Chapter 6 in Chapter 7

Fig.1.1 The structure of the whole thesis.
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The main contents of this dissertation are organized as follows:

In Chapter 2, the STP of logic matrices is proposed, in addition with the related
preliminaries about the STP of matrices.

In Chapter 3, vector expression is defined for fuzzy sets and fuzzy variables; the
matrix expression of multi-variable fuzzy relations is proposed to formulate a novel fuzzy
model.

Chapter 4 discusses the proposed methods for direct modeling and indirect
identification of the fuzzy matrix expression for MIMO fuzzy systems.

In Chapter 5, a universal approximation approach of MIMO fuzzy systems is
proposed based on the FRM and STP methods.

Chapter 6 discusses parameter training and optimization by using a new neural-fuzzy
network based on FRM and fuzzy STP algorithms.

In Chapter 7, the proposed FRM model is applied to design adaptive FRM controller
for fuzzy systems with unknown parameters.

Chapter 8 summarizes the main conclusions and contributions in this thesis and some

ideas in the future work.
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Chapter 2 Semi-Tensor Product of Matrices

The semi-tensor product (STP) of matrices is a fundamental mathematical tool for the
whole work in this thesis and the proposed fuzzy relation matrix (FRM) depends on STP
algorithms to formulate the novel theoretical architecture for fuzzy logic inference. In this
chapter, the relevant mathematical knowledge about the STP algorithm is introduced in
order to describe the related contributions in the following chapters.

Firstly, some related notational definitions and preliminaries will be given for STP of
matrices in Section 2.1, followed by the multi-dimensional data in Section 2.2. Section
2.3 will introduce the basic definitions and properties of STP of matrices, and then the

STP operation of logic matrices will be proposed.

2.1 Introduction of the Related Notations

Firstly, some necessary notations are introduced, which will be used throughout the

thesis:

D ={0, 1}: "1" means “true or 7" and "0" means “false or F”. A logical variable x

takes value from D, which is expressed as x[1D.

« D, =40, ! , 2 ,---,k_z,l, k=2: A set of k-index logic scalars, where k is a
k=1 k-1 k-1

positive integer. A logical variable x takes value from Dy, which is expressed as

xUD,.

* D:Asetof mxn k-index logic matrices with their entries in D, , which are called

the k-valued logic matrices.

mXn

e B _=D":1f AUB, ,Aiscalled a Boolean matrix.
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Z": A set of positive integers.

[J": A set of n-order real column vectors.

O™ : A set of mxn real matrices.

lem{a, b} : The least common multiple of @ and b, where a,b[1Z".

A >, B: The dimensional relationis n=1p, A=(a,) 00" and B =(b,) "
Row,(A) : The i-th row of the matrix A, AOI™".

Col (A): The j-th column of the matrix A, AU -

T-norm [141]: A binary algebraic function 7: [0, 1]x[0, 1] - [0, 1]. It satisfies the
following properties:
o Commutativity: T(a,b) =T (b, a)
o  Monotonicity: T(a,b) <T(c,d) if a<c and b<d
o Associativity: T(a,T(b,c)) =T(T(a,b),c)
o The number 1 acts as the identity element 7'(a,1) = a
o The T-norm operators commonly used are as follows:
a. {xLy=min{x, y}}
b. {x[y = xy}
C. {xD y = max{0, x + y—l}}
S-norm (7-conorm) [141]: A binary algebraic function S: [0, 1]x[0, 1] - [0, 1]. It
satisfies the following properties:
o Commutativity: S(a,b) =S(b,a)
o Monotonicity: S(a,b) < S(c,d) if a<c and b<d
o Associativity: S(a, S(b,c))=S8(S(a,b),c)
o Identity element S(a,0)=a

o  The S-norm operators commonly used are as follows:

a. {xL y=max{x, y}}
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b. {x+y=x+y-xy}
C. {x Uy=min{l, x+ y}}
* De Morgan's law [141]: is generalized to describe the relationship between 7-norm
and S-norm:
S(a,b) =1-T((1-a),(1-b)).
. . 1 2 k=2 .
Definition 2.1: Consider D, =<0, ——, —— ,--, ——, 1;, where k=2 is an
k-1 k-1 k-1
integer. Given two logical variables a, S D, , the operations are as follows [12]:

* Boolean Addition:

a+, p=aolp, a,pUD,. (2.1)
* Boolean Product:

ax, f=alp, a,pUD,. (2.2)

where "[" and "[" can be chosen as an S-norm operator (e.g., max) and a 7-norm
operator (e.g., min), respectively. In general, the following notations can also be used for

multiple logical variables.

e Boolean Multi-Addition:

n

ZBai ::(+B)i‘z=l a =a, +Ba2+3"'+3an' (23)
i=1

e Boolean Multi-Product:

n

I] p 0= (XB);I:I a =a, Xpy Xp- X, A, (24)

n

where o, UD_, i=1,2,---,n.

Definition 2.2 [12]: Assume A =(q,)U O™ . A is a multi-valued or k-valued matrix,

with entries @, 1D, 2<k <.

When k =2, A is a binary-valued matrix, usually a Boolean matrix.
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When k=, D_:=[0, 1], A is a fuzzy matrix.

D" denotes a set of k-valued m*n matrices. When m=1, A is a row k-valued
vector. D/ denotes a set of the n-dimensional k-valued vector. When n=1, A is a
column k-valued vector. D;" denotes a set of the m-dimensional k-valued vector.

The two basic logic operations can be extended to the following definitions for

matrices with their entries over D, , if the matrix can be expressed into a fundamental -

valued logic.

Definition 2.3 [12]:

e If A=(a)0D" and B=(b,)0ID;", the operator of logical addition for logic

matrices will be:

AO,B=C=(c)0 D", (2.5)

where C; :ZB(a, +b ), i=l-,m j=1,-, p.

ig BT q
g=1

e If A=(a,))0D" and B=(b,)UD;”", the operator of logical product for logic

matrices will be:
AO,B=D= (d,y) oD, (2.6)

where d, :;B (a,%,b,), i=1,---,m; j=1-,p.

 If a0D, and A=(a,) D™, then,

a0,A=AD,a=(@0a) 0D 2.7)

2.2 Multi-Dimensional Data

2.2.1 The related Definitions

Generally, there are many types of datasets in real-world systems. To facilitate analysis,

the following definition is given to describe multi-dimensional data.
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Definition 2.4 (Multi-dimensional data) [137]: Suppose a multi-dimensional data is

related to k factors i,i,---,i, , and each factor i, has n; levels from 1 to n,,

j=12,---,k . A finite set of the data is defined as
Da={d,, .|1si <n,j=12,k}, (2.8)

where k =dim(Da) denotes the dimension of the data set Da, or Da is a set of k-

dimensional data. Then, the number of all datain Da willbe N =nn,---n,.

Definition 2.5 (Vector expression of multi-dimensional data) [137]: If the data can be

labeled by indices i,i,,---,i, and arranged in the order of dm’m’pk <dq1,~»,qk’ a set of k-

dimensional data can be arranged as a vector with an ordered k-index

ld,i,---,i;n,n,---,n). Then there exists an integer r: 1<r <k, such that p, =g,

and p <gq,, i<r.

Consider a set of N data with N = |_|f:1 n, . A single index can be used to label the data

such as
Da =[x, x,,---, x,1,
then, the data can also be represented using a multi-index Id (i, i,, - -,i,; n,n,,---,n):

Da - I:'xll---l ’ xl]---?_’ 'xll---nk ER xnlnz---nk] *

Example 2.1:

Let Da ={x,.j.k| 1<i<2; 1£j<3; 1<k <4}. It can be arranged by the multi-indexes

Id(i, j, k;2,3,4) such as

I:'xlll’ 'xlll’ xllS’ 'xll4’ xlll’ 'x122’ x123’ x124’ 'x131’ xI32’ 'x133’ 'x134’

X

2]1"x

212"x

213° X

2142 X,

22]’x

X

223° x224 ’ 'x231 ’ 'x232 ’ 'x233 ’ x234 ] *

222°

If it is arranged by the multi-index Id(j,i, k; 3,2,4), then

I:'xlll’ 'x112’ 'x113’ 'x114’ xZIl ’ 'x2]2’ 'x213’ 'x214’ 'xl2]’ 'x122’ 'xl23’ 'xl24’

x221 ’ 'x222’ 'x223’ 'x224’ x]3] ’ xl32’ x]33’ x]34’ x23l ’ 'x232’ 'x233’ 'x234]‘
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If it is arranged by the multi-index Id(k, j,i; 4,3,2), then

[0 X00s Xiors Xy Xy X

231

xIl}’ x213’ x123’ 'x223’ 'x133’ 'x233’ xIl4’ 'x2]4’ 'x124’ x224’ 'x134’ x234]'

X, X, s X

1112 772112 2212 “¥131° 112’x212’ 1222 222’x132’x232’

Remarks: Generally, the ordered multi-index 1d(i,,i,,---,i; n,,n,,---,n,) of one set of

data is not unique; it can be expressed by a column vector, or a row vector, or a matrix

whose column and row are composed of different ordered indexes.

2.2.2 Arrangement and matrix expression of multi-dimensional data

In this subsection, a set of multi-dimensional data will be arranged into a matrix form.

Assume that Id(i,i,,---,i; n,n

i -,n,) has multi-index {ijl’ijz""’ij,,} Ui,i,-i},

- 2,..

then, Id(ljl,ljz,'--,ljp; njl,njz,---,njp) will be a sub-index of 1d(i,i,,---,i; n,n,,---,n).

Definition 2.6 (Matrix expression of multi-dimensional data) [137]: Assume that Da is

a k-dimensional data with N =i X7, X--- X

=

" -~-nﬂq)><(na1 -~-nap) , and there are two

disjoint sub-indices {i, i, ,-~-,iap}U{iﬂ],iﬂz,n-,iﬁq}={il,i2,~- i} and {i,,i,, '--,iap}ﬂ

{iﬁl,iﬁz, o } =@, which forms a partition of the index of Da. Then, Da can be
q

expressed as

Da - {J/]lml]’ 1120 """ 1l-+lng, ? 11---21° 1225 """ 1lngg-nyng, ° J/lnazmnal,n/;]mnﬂq’ B J/nmnazmnapnﬂ]mn/;q } ’

(2.9)

Da can be arranged into a matrix in the order of

Id(z ﬁ,n-,iﬂq; Mg, Ny ,oo N )XId(zal, ML ,iap; ”al’”az""’”a,,)-
For M, in Eq. (2.10), its rows are vectors labeled by multi-index
Id(z 50 --,iﬁq; Ny, Mg,y Ny ) and its columns are vectors labeled by multi-index
1d(i, iy, o0y 5 Ry My eees )
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B 1---1n, nooeng, |
111 <12 ap a1 My
1/14..11 L.11 }/lm]l }/I.Hll
Vi sz ylmma” T A ( »x( )
— L.12 L.12 1..12 1...12 /zplmnpq gy Mg,
M, = . . . . . . ud . (2.10)
a . . . . . .
y|...|1 yl___12 1---1/10,11 Ny g,
B npy--np, ng--ng, ng g, ngy g, |

With a comparison of the entry in the vector expression in Eq. (2.9),

@SZ“W%MW%%w is the entry of M, with i, O{L2-,n,}
i, O{1L,2,-,n, } and ig O{1,2,, 0}, iy O{1, 2,1, ).
Example 2.2:

For the data set Da :{xijk| 1i<2; 1£j<3; 1<k <4} in Example 2.1, we can re-

arrange it into a matrix with multi-index Id(k; 4) %X Id(i, j; 2,3) such that

11 12 13 21 22 23
X X X X X X

11 12 13 21 22 23
X, X, X, X, X, X, 4x6
11 12 13 21 22 23 D D ’
x3 x3 x3 x3 xs x3

1 12 13 21 22 23

Xy Xy Xy Xy Xy Xy

where x/ = x,, i=1,2; j=1,2,3;k =1,2,3,4.

Example 2.3:
If Da is a 5-dimensional data set with N =1x2x3x4x5 =120, and there are two disjoint
sub-indices forming a partition of the index set of Da as {i,,i,,i,}U{i,, i} ={i,, i,,---, i},

then, according to Definition 2.5, Da can be expressed as the following vector

—_ 1><12()
Da = ['xlllll’ X s Xpss mo0 s X Xiarias "7 12345]DD

At the same time, according to Definition 2.6, Da can be arranged into matrices with

different orders of 5-dimensional factor Id{i,i,,1i,,1,, i}, for example,
d(,,i; n,n)xI1d(i,i,,i; n,n,n), n=1L,n =2,n=3n =4,n, =5.

Then, the matrix M, can be expressed as
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[ 111 112 113 121 122 1237
11 11 11 11 11 11
111 112 113 121 122 123
12 12 12 12 12 12
111 112 113 121 122 123
Xis Xis Xis Xis Xis Xis
_ . (4x5)x(1x2x3)  — 20%6
M, = ; 00 =0*,
111 112 13 121 122 123
41 41 41 41 41 41
111 112 113 121 122 123
42 42 42 42 42 42
111 112 113 121 122 123
_x45 Xys Xss Xys 45 Xys i

where the rows of M, are arranged by multi-index 1d(i,, i;; n,,n,), and the columns are
arranged by multi-index 1d (i, i,,1,; n,, n,,n,).
Comparing the entries in the vector and the matrix of the same matrix Da yields

Qb3 —
x pu—

i4,i5 i],iz,l‘},i4,i5’

where i =1, i, 0{1,2}, i, 0{1,2,3}, i, 0{1,2,3,4}, i, 0{1,2,3,4,5}.

2.2.3 Product operators of matrices

A brief review of conventional matrix products will be given first.

(1) “0” is the Kronecker product of matrices [12], which is also called the tensor

product. Specifically, if A=(a,)00™" and B =(b,) 10", then the Kronrcker product

of A and B is defined as
a,*B a,xB - a,*XB
app=|® B @XE B g, @1
a .XB a XB - a .XB

ml m2 mn

Given a constant a [1[J, the Kronrcker product satisfies

aUA=AlOa=aA=(axa,) 00" . (2.12)

(2) “o” is Hadamard product of matrices [12]. If A=(a,), B =(b,) 00", then

the Hadamard product of A and B is defined as
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AoB=(ab,)00™ . (2.13)
(3) “L” is Khatri-Rao Product of matrices [12]. Specifically, if A=(qa,)00™",

B =(b,)00O"", the Khatri-Rao product of A and B will be
A0B =[Col (A)0 Col,(B), Col,(A) O Col,(B), -+, Col (A) T Col (B)]OT™". (2.14)

where U is the Kronecker product, and Col.(A) and Col,(B) are the i-th columns of A

and B, respectively, i =1,2,---,r.

2.3 Definitions of the Semi-Tensor Product of Matrices

2.3.1 Left STP of two matrices with multiplier dimension

As a generalization of the conventional matrix products, STP operation of matrices
remains the major properties of the conventional matrix product. Moreover, via the swap
matrix [137], the STP has some unique pseudo-commutative properties over the

conventional matrix product.
Let A=(a,)00" and B=(b,)000",0r A=(a,)ID™ and B=(b,)D"™:
() If n= p, A and B are said to be of “equal dimension”;

(2)If n=tp or nt = p, A and B are said to be of “multiplier dimension”, where 7 is a

positive integer. In representation, A>, B if n=tp,and A<, B if nt=p;
(3) Otherwise, A and B are said to be “arbitrary dimension”.

Based on the above conventions, the STP is defined as follows.

Definition 2.7 (Left STP of vectors) [137]:

() If XOO™ isarow and Y OO™ is a column, then, X can be split into m equal-size
blocks as (X' X* --- X"),such that X' OO, i=1,2,---,m. The left STP of X and

Y can be defined as

Xey=Y" X'y 00", (2.15)
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(2) If X OO™ is a row vector and Y O™ is a column vector, then, the left STP of X

and Y can be defined as
XY =">X"HOOg™. (2.16)

By the STP operation, it can generalize the matrix expression from a bilinear function
to a multi-linear function. This thesis mainly focuses on processing the left STP of the

multiple-dimension matrices, rather than the STP of arbitrary matrices.

Example 2.4:

(DIf X=[1 3 2 4]and Y =[2 -1]", the left STP of X and Y will be
X>Y=[1 3]x2+([2 4]x(-1)=[0 2].

QI X=[1 2 -1]andY=[2 1 -1 0 =2 17", the left STP of X and Y will be

2 -1 -2 2
Xp>Y=1x +2 X +(-1) % = .
1 0 1 0
Definition 2.8 (Left STP of matrices with multiplier dimension) [137]: If
A=(a)U O™, B= (b,) 00 7 ,and A> B, then the left STP of A and B is defined as

A> B =
Row,(A)> Col (B) Row,(A)> Col,(B) --- Row,(A)> Col (B)
Row,(A) > Col (B) Row,(A)»> Col,(B) --- Row,(A)r> Col (B) ggm™e, (2.17)
Row, (A) > Col,(B) Row,(A)> Col,(B) --- Row,(A)> Col (B)

where r=" , Row,(A) is the i-th row of A, Col (B) is the j-th column of B,
D .
i=1,2,"',m,j=1,2,"',q.

Example 2.5:

1 2 -1 2 |9
fxX=01 2 3,Y:{ | 3},then,
33
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Ix(1 2)—-1%x(-1 2) 2x(1 2)+3%x(-1 2) 2 0O -1 10
XoY=1x0 D-1%x2 3) 2x0 DH+3x%x(2 3) |[=|-2 -2 6 11].
I1x(3 3)-1x1 1 2x(3 3)+3x(1 1 2 2 9 9
It is obviously seen that if n = p in the above definition, the STP becomes the

conventional product of matrices, or
A> B=AB. (2.18)

Thus the left STP is a generalization of the conventional matrix product. To simplify

2

representation, the symbol “>" is omitted in the following chapters unless specified

separately.

2.3.2 General STP of matrices with arbitrary dimension

Following the definition strategy of the left STP, the right STP and general STP over
arbitrary matrices will be discussed in this subsection.

Recall the Kronecker product of matrices. If A =(a,)00™" and B =(b,)00"™,
then the Kronecker product ALUB=(ALI ), UB), where I, and I, are identity

matrices. Hence, the left STP has the following alternative definition

ADB:{(AD 1)B, if A< B 2.19)

ABOIL), if A=, B.

If A and B are of multiplier dimension, the matching right identity matrix can be

obtained. Then, the right STP of A and B can be defined as follows.

Definition 2.9 (Right STP of matrices with multiplier dimension) [137]: Given two
matrices A and B, and if either A <, B or A >, B, then the right STP of A and B, denoted

by A < B, is defined as

AaB= {(1, 0 A)B, if A< B 2.20)

“|AU,OB), if A, B

In order to realize the matrix expression for a multi-valued logic, especially for multi-

variable fuzzy logic relations, the STP algorithms in Definitions 2.7-2.9 will be extended
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from the conventional matrix operation to the logic matrix operation, based on the

following definitions and algorithms:

Definition 2.10 (Left STP of logic matrices with multiplier dimension): Given two

arbitrary logic matrices with multiplier dimension, A =(a,)d0™" and B =(b,) 00",
the left STP of logic matrices can be defined as

2.21)

e AO(BOL)OO™™, ifnip=1,
(a0 )oBoOO™, if pin=1,

where [, and I, are identity matrices; [l and [ are the conventional Kronecker product

and T-norm operator, respectively.

Definition 2.11 (Right STP of logic matrices with multiplier dimension): Given two

arbitrary logic matrices with multiplier dimension A =(a,) 00" and B =(b,)) 00",

the right STP of logic matrices can be defined as

[ OA)OBOO™™, if p/ln=t
A<B:{( " ) p ‘ (2.22)

AD(r,_ 0B)OO™=, ifn/p=1,

where I, and I are identity matrices; [J and L are the conventional Kronecker product

and T-norm operator, respectively.
Furthermore, if a and b are two positive integers a, b[JZ", denote the least common

multiple of @ and b by lem{a, b} .

Definition 2.12 (STPs of two arbitrary matrices) [137]: Given two matrices

A=(a,)00™ , B=(b)UIO™ , and a =lcm{n, p} where “lecm” denotes the least
common multiple operation, then

(1) The general left STP of A and B is defined as

A>B=(AOI,,)(BOI,); (2.23)

(2) The general right STP of A and B is defined as
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A<B=(I,,0A) U, 0B). (2.24)

When n = p, the left and right STP of matrices become the conventional product of
matrices. If lem{n, p} =n or lcm{n, p} = p, the left STP becomes Definition 2.8, and the
right STP is compatible with Definition 2.9. Based on STP algorithms of Eq. (2.23) and
Eq. (2.24) in Definition 2.12, the definitions of the STP of two arbitrary logic matrices

can be made:

Definition 2.13 (General STP of two arbitrary logic matrices): Given two arbitrary

logic matrices A =(a,) 00" and B =(b,) 0 7 the STP of A and B can be defined as

(1) The general left STP of A and B:

A>B=(AUI

aln

YOBO1,,,); (2.25)

(2) The general right STP of A and B:

A<B=(, OA)OU

alp

OB), (2.26)

where a =lecm{n, p}; I, and I, are identity matrices; [ and [ are the conventional

aln P

Kronecker product and 7-norm operator, respectively.

2.3.3 Properties of the STP

The STP of matrices is a generalization of the conventional matrix product. The general
STP algorithms have similar properties as those in the conventional matrix product;
details can be found in [137].

Consider two general properties of associative law and distributive law as examples

for illustration. We will show that the left STP also satisfies these two laws.

Theorem 2.1 [137]: Assume that dimensions of the matrices A, B and C in the following

equations meet the dimension requirements (e.g., the STP operator > ). Then, we have

(1) Distributive Law

A (aBxbC)=aAr> B+xbA> C
a,bd0. (2.27)

(aAxbB)>C=aA>CxbB1> C,
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(2) Associative Law
(A B)>C=A> (B> (). (2.28)

The proofs of Eq. (2.27) and Eq. (2.28) can be found in [137].

2.4 Concluding Remarks

In this chapter, some related definitions and preliminaries are introduced first, and then,
the measures of multi-dimensional data are defined. The definitions and basic properties
of the STP of matrices are given. Finally, the STP algorithms of logic matrices are
defined to process conventional logic matrices. Based on the defined mathematical
concepts and tools, the matrix expression for specific fuzzy logic and fuzzy reasoning
will be discussed in the following chapters. The related contribution in this chapter has

been published in:

(1) H. Lyu, W. Wang, X. Liu, “Modeling of multi-variable fuzzy systems by semi-tensor
product”, IEEE Transactions on Fuzzy Systems, Vol. 28, No. 2, pp. 228-235, Feb.
2020.
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Chapter 3 Formulation of the Fuzzy Relation Matrices

In the multi-valued logic variables, when k — oo for the discrete set D, , the continuous
interval set D, ={a|0<a<1}=[0, 1]00 will be obtained from D,. When the fuzzy

sets are discrete, their ranges still can be described by the multi-valued logic set D, , but

they may also be non-discrete logic sets such as fuzzy sets with different membership
functions (MFs) of a fuzzy variable. This chapter will extend the STP concepts of logic
matrices into the fuzzy logic inference, multi-variable fuzzy relations, and vector and
matrix representations.

In this chapter, firstly, the fundamental representation of the fuzzy logic and fuzzy
operations will be reviewed in Section 3.1. The vector expression of fuzzy variables and
multi-variable fuzzy logic relations will be developed in Section 3.2. Matrix expressions
of multi-variable fuzzy logic relations will be proposed in Section 3.3. Finally, the
representation of fuzzy relation matrix (FRM) will be constructed in Section 3.4 for

multi-variable fuzzy logic rules.

3.1 Fundamentals of the Related Fuzzy Logic Concepts

This section will summarize the related mathematical preliminaries about fuzzy sets,
fuzzy variables, fuzzy relation, and fuzzy reasoning operations using the STP algorithm

and the FRM representation.

Definition 3.1 (Fuzzy sets) [142]: A set X is a fuzzy set over a universe of discourse E, if

for a variable x [ E, there exits an MF grade p, (x) [0, 1].

 If E={x,---,x,} is a finite discrete set, then X can be expressed as
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X:h+ﬁ+...+£’ (3.1)

xl 'x2 'xn

where y, =y, (x,) [0, 1] is the MF grade of x, on the fuzzy setX, i=1,---,n.

* If Eis a continuous set, then continuous fuzzy set X over E can be expressed as

X :jbf‘x(x). (3.2)
X

Generally, if a fuzzy set X is convex and there exists f/, (x) =1 for at least one

element x [J E, then, X is normal, and X is usually called a fuzzy number [142].
Moreover, if x takes a fuzzy number with the corresponding MFs over a universe of

discourse, then, x is a fuzzy variable.

3.1.1 Review of fuzzy logic operations

According to the discussion in Chapter 2, a k-valued logic operation is equivalent to a
conventional fuzzy logic operation when it can be processed as a multi-valued logic.
Firstly a brief summary is given abut basic fuzzy logic inference operations. If E is the

universe of discourse for the fuzzy variable x, X, and X, are two fuzzy sets defined over

E, u(x) denotes an MF grade, then
(1) Fuzzy logic complement is the negation operator “NOT” -, represented by:
A X U (x)=1-u.(x), IxOE. (3.3)

(2) Fuzzy logic union is the disjunction “OR” U, which is usually realized as an S-

norm operator such that:
X UX, o py, (0 =4, ()0, (x), IxOE. (3.4)

(3) Fuzzy logic intersection is the conjunction “AND” (1, which is usually realized as

a T-norm algorithm:

X,NX, 0 oy, (0) =t (0 Opt (x), IXOE. (3.5)
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where "[" and "[" can be chosen as an S-norm operator and a T-norm operator,
respectively. As an example, if 7-norm is chosen as “min” and S-norm is chosen as

“max”, then, Eq. (3.4) and (3.5) become

X UX, 0y, (0 =max(u, (x), 4, (x)), IxOE, (3.6)

X NX,: Myny, () =min(y, (x), 4, (x)), xOE. (3.7)
3.1.2 Review of fuzzy relations

Definition 3.2 [143]: Assume E, is a universe of discourse for a fuzzy variable x,,

i=12,---,k. A fuzzy relation R for all x, over E, i=1,2,---,k, is a fuzzy set on the
Cartesian product space |_|f:l E =E x-.-xE_. Specifically, for each point (x,---,x,)

O |'|‘1 E, , there is an MF grade

/’IR(-xl""’xk)zD{/'Izl(xl)s“"/'lgk (Xk)}, (38)
where x, U E, and My, (x,) is its MF grade, i =1,2,---, k.

In particular, consider two universes of discourse E, and E,. A fuzzy relation R:
E xE, - [0, 1] is defined on the two-dimensional Cartesian product space E, X E, with
"C=min" by

U (x, x,) =min {4, (x), 4, (x,)}, O x UE, x,UE,. (3.9)

In conventional fuzzy theory, the fuzzy relation between two fuzzy variables can be
described by a matrix if both variables are defined on the finite discrete universes of
discourse. For example, given E ={x,,---,x,,} and E, ={x x,,}, the fuzzy relation

In LRI

Rover E X E, can be expressed by
U (X x, ) =min{y, (x,), 4, (x, )}, i=1,..,n) =1, ...,m,

which has the following relation matrix between x, and x,:
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/’lR('xll"xQI) ,UR(X”,XZZ) /'IR('xll’me

M = /JR(XIZ"XZI) ILIR('XI.Z’XZZ) :L[R(xlz’xzm) )

R

/'IR ('xln"xll) /'IR (xln"xZZ) T /’lR ('xln"xZW)

The fuzzy composition operation between two fuzzy relations will be introduced in

the next subsection.

3.1.3 Conventional fuzzy composition operations

If E,E,, E, are three real sets, assume that R, and R, are fuzzy relations defined on
Cartesian product spaces E, X E, and E, xE_, respectively. Then, R, = R o R, is a fuzzy

composition of the relations R and R, on the Cartesian product space E X E, [144],

whose MF grade can be determined by

R, =R oR;: p (x,x,)= .\-ZDDEZ{/JRI (x, x,) 0, (x,,x)}, x UE, x,UE,, (3.10)
where "[" and "[" can be chosen as an S-norm operator and a 7-norm operator,
respectively. For example, if L is chosen as “max” and L is chosen as “min”, then

Hy, (X, x5) :mDaEx{min (Hy, (x5 ), (X, x)) ), X, UE, x, TE,. (3.11)

Specifically, if the universes of discourse for all variables are finite discrete, such as

E1={x117"',x|,,}’ Ezz{lea"'axzm}’ E3={x31"” X }, (312)

2 M3k

then, the corresponding MF grade of the composition relation can be described by:

m

ﬂRg(xli’XKI)z |;1|{/'1R1 (xli’xlj)D/'[Rz(XZj’x3t)}’ i=1’ 2"””1’ t=1’2"”’k‘ (313)

Assume that the two-variable relation matrices of R, R,, and R, are M, , M, , and

M R0 respectively. Then,
M, =M, M,, (3.14)

where the traditional product rule is replaced by a T-norm operation and the traditional

addition rule is replaced by an S-norm operation.
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For example, in a general family, the genetic relations of genes between two adjacent
generations would be similar. For instance, the relation R, between “grandpa and
grandma” and “father and mother” is similar to the relation R, between “father and
mother” and “son and daughter”. The corresponding two-variable relation matrices will

be:

father mother
M, = grandpa {0.8 0.9} , and

grandma 0.7 0.8

son daughter
M = Jather {0.8 0.9}

Ry
mother 0.7 0.8

If L and L are chosen as “max” and “min”, respectively, the two-variable relation

matrix for the genetic relation R, between “grandpa and grandma” and “son and

daughter” can be determined by
M, =M, M,
0.8 091[0.8 0.9
o7 0.8} {0.7 0.8}
[(0.800.8) 0(0.900.7) (0.8J0.9)(0.90.8)
1 (0.70J0.8) 0(0.8 J0.7)  (0.700.9)1J(0.8 00.8)

(0.8 0.8
07 08

3.2 Vector Expression of Fuzzy Variables and Fuzzy Relations

A brief description of vector expressions of fuzzy sets, fuzzy variables and fuzzy

relations will be provided in this section.
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Definition 3.3 (Vector expression of fuzzy sets): Consider a universe of discourse E. By

Definition 3.1, X is a fuzzy set over £ with MF grade 4, (x) =)y, U[0, 1], X can be

expressed by the following vector:

» If E'is a finite discrete set with £ ={x,,---, x,}, then X can be expressed as
V.(X)=(, - y) oo™, (3.15)
where y, = i, (x,) [0, 1] is the MF grade of x, on the fuzzy set X, x, UE, i=1,---,n.

* If E is a continuous set, then, the continuous fuzzy set X over E cannot be expressed

by a finite vector.

Definition 3.4 (Vector expression of fuzzy variables): Consider a fuzzy variable x over

a universe of discourse E and a group of fuzzy sets X,,---, X, over E with its MF grade
,L/X]_(x) gro, 1], xtE, j=1,---,m. A fuzzy variable x[JE can be defined by the

following vector:
V()= - y) oo™, (3.16)

where xUE, y, :,uxl_(x) is the MF grade of x on the fuzzy set X,, j=1,---,m. The

universe of discourse E can be either a discrete or continuous set.

Definition 3.5 (Vector expression of fuzzy relations): Assume that X ,,‘,--~, X [.N’ are N,

1

fuzzy sets defined over a universe of discourse E, , i=1--,n . If V (x)=
(,uX! (x; ),y o, (x,))" is a vector expression of a fuzzy variable x, OE,, i=1,---,n, then

the vector expression of a fuzzy relation R: E x---XE - [0, 1] in Definition 3.2 (Eq.

(3.8)) can be determined by

V

R

(X, %,) =V, () >V, () B>V, (x,) DO, (3.17)

If the MF grade is y/ = t, (%), j=1,2,---,N,, then,

Ve (x,) =Y,y OO0, 21,2, 0.
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Consider an example of n =2,
VX, x,) =VE1(x1) > VEz(xz) = (}/11’“.’ lel)T > (y;” yzNz)T

=0 0v WOV Oy, 10 Oy, 1 Oy, y 02 (3.18)

3.3 Matrix Expression of Multi-Variable Fuzzy Relations

In the traditional fuzzy theory, a matrix expression can only be defined between two
discrete fuzzy variables with finite elements over the Cartesian product space. The matrix
expression of fuzzy relations cannot be used for either multi-dimensional fuzzy variables
or continuous universes of discourse. However, based on the concepts of the multi-
dimensional data and STP algorithms as discussed in Chapter 2, the relation matrix for
multiple fuzzy variables over continuous universes of discourse will be defined as

follows.

Definition 3.6: Assume that X/,---, X" are fuzzy sets defined over a universe of
discourse E, for a fuzzy variable x,, i =1,2,---,n. Separate {1,2,---, n} into two disjoint
partitions {1,2,---,r} and {r+1,r+2,---,n}, r0Z", 1<r<n . A fuzzy relation
R: Ex---xE -0, 1] for (x,x,,---,x,) can be treated as a fuzzy relation R:
(E, x---xE)x(E  x---xE ) - [0, 1] for (x,x,,---,x,) and (x,,,, X

-, X,) , whose

r+2° '
multi-variable fuzzy relation matrix (FRM) can be determined by

M (X, %,) =V (X0 X, 0 X, ) D VRT(xl, X,y X,) s (3.19)
where V, (x,,x,,---,x,) =V, (x)>V, (x,)>-->V, (x,) is the vector expression of a

fuzzy relation R : E Xx---xE - [0, 1], and

Ve, (X005 Xps 05 X,) =V, (X)) V. (x,,,)>-->V, (x,) is the vector expression of a

fuzzy relation R, : E X---XE - [0, 1].
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If the MF grade J/ij :=lux_j(xi) > j=172v"'sN; P then7 VE,-('xi)z(J/il7“'7J/,‘N[))T s
i=1,2,---,n. In particular, for a case with n=5, r=2, n—-r=3, Ve (x5 x,) and

Vi, (X, X,, x;) can be determined by

Vi (x5 x,) =V (x) > Vi ()
= Oy YOy 1 0y, Ly Oy 0 0p, 0 0y
=(a,,a,,---,a,)" , M,=N\N,, (3.20)

and

Ve, (X5, %, %) =V, (x) >V, (x,) >V, (%)
VAR AN AR AR S0 AN AN ARSI AN AN/ AN AN LY AN Al 404
::(lgl’ﬁzv""ﬁMz)T’ Mz :N3N4N5' (3.21)

Thus, the FRM of the fuzzy relation R: E x---xE, - [0, 1] for (x,,x,,---, x,) will

be

Ve(X,, Xy, X5, X, X)) =V (x3,x4,x5)l>VRT(xl,x2)

:(ﬁl’ﬁz)’""ﬁzwz)r D(awaz""’azw,)

ﬁl Dal ﬁ] DOC2 e ﬁl DaMI
_ ﬂZ Dal ﬂz :DOC2 ﬂZ DaMl DD(N3N4N5)X(N1N2) . (322)
ﬂMz Dal ﬂM: lja2 ﬂMz DaMl

3.4 Matrix Expression of Fuzzy Rules and Fuzzy Reasoning

Generally, in a conventional SISO fuzzy system, the fuzzy rule base can be represented
by a two-variable FRM. For fuzzy systems with more than one input variable or more
than one output variable, however, it is difficult to express the fuzzy rule base in a matrix

form according to the traditional fuzzy logic theory. Using the STP of logic matrices and
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the Definition 3.6 proposed in Section 3.3, it is possible to represent a MIMO fuzzy logic
system by an FRM through the following procedures.
Considering an MIMO fuzzy logic model with the rules:

R': IF (x, is X") AND---AND (x, is X™),

THEN (y, is Y') AND---AND (y, is Y'), [=1,2,---,M, (3.23)

m m

where x; is the i-th input variable on the universe of discourse E,; X!,---, X" are fuzzy

sets defined on E,; N, is the number of fuzzy sets, i=1,2,---,n, p, U{l,2,---,N.},

i

n i-1
I=p,+>[(p, =D[]N,1: M =N,N,--N, is the number of fuzzy rules; y, is the j-th
i=2 =l

output variable over the universe of discourse F; Y/,---, Y/.M are fuzzy sets defined on
F, j=12,,m.

In general, a fuzzy model with fuzzy rules in Eq. (3.23) mathematically represents a
fuzzy relation between input and output variables. The construction of matrix expression

of the fuzzy model in Eq. (3.23) is to formulate an FRM between multi-dimensional

fuzzy variables ({x,x,,---,x,} and {y,y,,---,y,}] on the space ﬁEiXﬁFj =
i=1 j=1

(E %X E)% (Fx--xF,).

Definition 3.7: Consider a fuzzy system with rules in Eq. (3.23). A MIMO fuzzy relation
R: (E x---xE )X (F %---xF ) - [0, 1] can be determined by

M (X5, Y500 p,) = 000, (), (x)), DGy (35 iy, (3,0}, (3.24)

where E, and F, are the universes of discourse for x; and y,, respectively, i=1,2,---,n;
Jj=1,2,---,m.

Over the universe of discourse for each input variable x,, there are N, fuzzy sets,
X,',-u,X,,N" , 1=12,---,n. Then, based on Definitions 3.4-3.6, the vector expression of

i

each input variable x, over E; can be represented as V, (x,) :(,ux] (x, )""’:“X_N,- (x. )",
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i=1,2,---,n. The input FRM (or vector expression) for input variables (x,,---, x,) can

be formulated by

V() =V, () BV, (1) BBV, (%) (3.25)

Similarly, over the universe of discourse for the output variable y, , there are M

fuzzy sets, le,---, YJ.M , j=1,2,---,m. The vector expression of each output variable \J

on F, can be described as VFj (y,)= (,uy! (¥;)s7s Ko (yj))T , J=1,2,---,m . Then, the
output FRM (or vector expression) for output variables (y,,---, ¥, ) can be formulated as
Viyiss y,) = VF1 (y)v VF2 (y,) > VF,” (,)- (3.26)

Hence, for an MIMO fuzzy system with fuzzy rules in Eq. (3.23), the FRM for the

multi-variable fuzzy relations R on ﬂ E. x F, can be formulated by:

=1

M (5 x v 3, )= Ve (e 9, B V] (3,00, x,) OO0 0 (3.27)

Specifically, when m =1, Eq. (3.23) becomes a multi-input and single-output (MISO)

fuzzy system with one output variable y.:
R : IF (x, is X") AND---AND (x, is X!), THEN (y, is Y)),
ju{L2,---m}, 1=1,2,---,M . (3.28)

Consider a fuzzy system in Eq. (3.28). Similar to Eq. (3.24), an MISO fuzzy relation
R, : E x---xE xF - [0, 1] can be determined by

/'{Rv(xla""x,,; }’,) = D{ D(ﬂxl (xl)"”’ ,UX"(.X”)), /'ij(yj)}’ (329)

J

where E, and F, are the universes of discourse for x, and y,, respectively, i =1,2,---,n;

j:l’ 2,...’m.
The FRM for M MISO fuzzy relations RJ’. on ﬂE XF, with [ =1,2,---,M can be
i=1

formulated by:
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M (v, xy,)= V, (B V] (@) 0O (3.30)

J

Eq. (3.27) and (3.30) can be used to generate the relation matrix for IF-THEN rules in
Eq. (3.23) and (3.28) without using conventional fuzzy reasoning operations. Some

detailed manipulation will be discussed in Sections 4.4 in Chapter 4.

Given the inputs at one sampling instant x(z) = (x, (), x,(¢),---, x,(¢)) , the vector

expression for outputs y(z) =(y, (¢), y,(¢),---, y, (t)) can be calculated from the FRM and
x(1),i.e.

VF(y1 (t), yz (t)7 Tt y,-,,(t)) = MR > VE(x1 (t), xz (t)a T, .X'n(t)) s (331)
where Vo (x (D), x,(0)) =V, (x, ) >V, (x,() >--->V, (x,(¢)) can be computed from

VE,. (x,' (t)) = (/’txll (x,' (t))a Ty luxim (x,' (t)))Ta i = 1’ 25 e, N

VF/_(yj(t)):(,uy!(yj(t)),---,,uy_M(yj(t)))T , j=1,2,---,m , can be obtained from

V.(y,(t), -+, y, (1)) through the inverse operation of Eq. (3.26). Specifically, when m =1,

Ve y,) =VF1(y1)'

Each output variable y (7) in Eq. (3.28) will be computed by defuzzifying VF, (y,(0),

j=12,---,m, as illustrated in [113]. By defuzzification, the vector expression of the

output in Eq. (3.31) can be converted to real values.

Fuzzy rules
) ux(x(1)) ' ur(¥(0) 0
t
(@ L Fuzzifier > Fuzz?/ »|Defuzzifier——»
reasoning
My
(b) Vi(x(1)) ‘ VrOA2))
x(1) . (1)
—»{ Vg »| Fuzzy STP »|Defuzzifier——»
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Fig. 3.1. Illustration of two fuzzy systems: (a) the traditional fuzzy reasoning system (b) the proposed

FRM reasoning system (to be discussed in Chapter 4).

Based on Definition 3.7, FRM models will be proposed to identify fuzzy systems in
Chapter 4. Fig. 3.1(a) illustrates the structure of the traditional fuzzy system. As
illustrated in Fig. 3.1(b), the FRMs and fuzzy STP system can replace the fuzzy rules and
fuzzy reasoning so that the algebra calculation can be implemented for fuzzy systems.

Moreover, the FRM reasoning can be more suitable for digital implementation based

on precise databases than the classical fuzzy linguistic rules and fuzzy logic inference.

3.5 Concluding Remarks

In this chapter, some concepts and definitions in FRM models are introduced, including
the fundamental representation of the fuzzy sets, fuzzy relations, and fuzzy reasoning
operations, followed by the vector expression and matrix expression of fuzzy variables
and fuzzy relations. Then, the construction of FRM models is discussed for MIMO rules-
based fuzzy systems, which will be used in the following chapters. The related

contribution in this chapter has been published in:

(1) H. Lyu, W. Wang, X. Liu, “Modeling of multi-variable fuzzy systems by semi-tensor
product”, IEEE Transactions on Fuzzy Systems, Vol. 28, No. 2, pp. 228-235, Feb.
2020.
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Chapter 4 Construction of Fuzzy Relation Matrix

Models

Based on the vector and matrix representation of fuzzy logic operation in Chapter 3, a
fuzzy logic relation with multiple fuzzy variables can be expressed by a fuzzy relation
matrix (FRM). Then, with the help of semi-tensor product (STP) operation, matrices in
fuzzy logic reasoning can be formulated such that fuzzy logic can be expressed as an
algebraic equation. In general, the FRM and STP theory assumes that the input-output
FRM is known [113]. However, the relation matrices have to be constructed before
FRMs are applied. To tackle this problem, the objective of this chapter is to propose a
new FRM technique for multi-variable fuzzy system modeling. It is new in the following
aspects: 1) A novel system identification technique is proposed to construct an FRM
model based on the STP algorithms of logic matrices, by using a direct modeling method.
2) An indirect identification method is proposed to identify FRM models for fuzzy
systems.

The rest of this chapter is organized as follows. After a brief overview of the FRM
modeling in Section 4.1, Section 4.2 discusses the direct modeling method, and Section
4.3 presents the indirect identification of an FRM model. The effectiveness of the
proposed FRM modeling techniques will be tested using some simulation tests in Section

44.

4.1 Overview of FRM Modeling

To design a matrix-based fuzzy system, the key step is to construct an FRM model from
the available input and output training data.

Given the following input and output training data pairs

* *

(X, X5 X5 Y, ), p=1, 2, P, j=1, 2.+, m, 4.1)

1p? 2p?
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which represents the relation between the input and the output, and P is the number of
data pairs. Such a relation can be modeled by several mathematical methods, such as
linear regression, neural network, fuzzy logic, and least square estimator (LSE) [145]. In
this chapter, the fuzzy logic STP algorithm will be used to identify a model for the input-
output relation of the training data. Although the traditional fuzzy logic reasoning can be
used to identify the relation, the proposed direct and indirect modeling strategies will
identify the input-output fuzzy relation by using the FRM and STP.

The FRM model in Eq. (3.27) can be constructed using the training data in Eq. (4.1),
but the accuracy of FRM model will depend on accuracy of the training dataset. Hence,
the data in Eq. (4.1) should be selected to cover all possible operating regions in practical
system applications. On the other hand, there exist modeling errors for the FRMs
inevitably, because the output value of a fuzzy system based on FRMs is an
approximation of the actual output variable. Correspondingly, a direct FRM modeling
method will be proposed firstly in the next section for system identification.

In the construction of an FRM model, there are many factors that influence modeling
accuracy of the identified fuzzy system [146]. Each parameter in a fuzzy inference model
will affect its properties and model outputs. Generally, the identification of an FRM
model is a process in defining the numbers of fuzzy sets and their membership functions
(MFs) and selecting a fuzzy rule base [147, 148]. The FRM modeling accuracy depends
on the MFs and the universe of discourse for each fuzzy variable, fuzzy reasoning
operations, etc. The RFM parameters can be adjusted manually or automatically through
training. If the centers of MFs for output variables are unknown, FRM model can be

identified manually, by using a direct modeling method as discussed in the next section.

4.2 Direct FRM Modeling

The direct modeling method will be proposed to construct an FRM model based on the
input-output data in Eq. (4.1), which can replace a traditional fuzzy rule base so as to
simplify the process of fuzzy reasoning.

The direct FRM model can be formulated based on the following procedures:
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1) Specify the universes of discourse for each input variable x, and each output
variable y ; define N, fuzzy sets for x, and M fuzzy sets for y,, which should cover the

whole operating ranges for both x;, and y,. Specify the fuzzy sets for x, and y, as

E ={X!, - X"}, i=12n, 4.2)

X i i

E_\,/_ :{le,...,Y1.M}, M :N1Nz'”N, .

) (4.3)
2) Define a complete set of fuzzy rules such as:

R; : IF (x,is X") AND--- AND (x, is X"), THEN (y,isY)), [ =1,2,---,M , (4.4)

n i-1
where M is the number of fuzzy rule; p, U{l,2,---,N.}, l:pl+2[(pi—1)|_| N.],

i=2 j=1
i:]"2’...,n’ jD{l’zﬂ...,m}'

3) Specify fuzzy inference operations to implement the STP of logic matrices in the
modeling of FRMs. “AND” and “IMPLICATION” can be chosen as a T-norm operator

(e.g., product); “OR” can be chosen as an S-norm operator (e.g., max).

4) Determine vector expressions V, and V, :
i J

VE,- (x,',D,) = (ﬂx; (x,',D,)’ Ty 'uX.Ni ('x,,D;))T s = 1’ 2a e, N, (45)
V, (000 = Gy et G5 4.6)

5) The direct input FRM for the p-th training data is formulated as

1p? ’ np

V(o X =V, () BV, () bV, (x0). 4.7)

As y, is a single output variable in Eq. (4.4), the output FRM for the p-th data can be

determined by
V() =V, () = Gty )5, () (4.8)
6) Construct the p-th FRM model between the p-th input and the p-th output variables:

O O 0o, ,0)— 0 O 0 0
MR,vp(x X “.’xnp’yjp)_vlfj(yjp)DVET(x x2p’.”’x )9

Ip>7"2p> Ip? np
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M, O gt D p=1,2,-- P 4.9)

7) Determine the final FRM model such as:

C~

Mij(xE,,xZDp,n-,xD;y;). (4.10)

np

MRI_(xl s Xy, X yj)::

p=l

Eq. (4.10) can be denoted as R, or M R, for simplicity; U can be chosen as any S-norm

operator, but the “max” operator is used in this work as an example for illustration.
Given an FRM model M %, and its inputs at one sampling instant x,(t), i =1,2,---,n,

the output y. (f) from the fuzzy system can be determined by the FRM inference

operation in Eq. (3.31) and a defuzzification method. Given a pair of training data in Eq.

“4.1), (x

1p?

Xyttt Xs Vigs Yapr s Vo) » P =12, P, a MIMO FRM model can be

constructed based on the direct modeling process. The main difference between a multi-
input and single-output (MISO) FRM model and an MIMO FRM model is that the output
FRM for the p-th training data is

Voo, Y=V () BV () bV, (30), p=1,2,, Pl (411)

4.3 Indirect FRM Modeling

In the direct modeling of an FRM in Section 4.2, the parameters are assumed to be tuned
manually. However, if the centers in output fuzzy sets are unknown or uncertain, they
also can be adjusted automatically by the LSE algorithm, because they appear as linear
parameters in FRM models. Then, an indirect FRM modeling method is proposed for

identification of an FRM in this section.

4.3.1 Estimated output equations from FRM models

Consider the following complete set of fuzzy logic rules for the identified MISO fuzzy

system

R : IF (x is X/") AND--- AND (x, is X!"), THEN (y, is Y'), [ =1,2,---,M , (4.12)
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where x =(x,,x,,---,x,), x; is the i-th input variable on the universe of discourse E ;

X!,-, X" are fuzzy sets defined on E , X" OE, ; N, is the number of fuzzy sets,

i=12,,n, pO{L2- N}, l:pl+§[(pi—l)|ij] : M=|ij is the total
number of rules; y, is the j-th output variable on the universe of discourse F’; Yj.’ are
fuzzy sets definedon F,, Y, OF,[=1,2,---,M, j=1,2,---,m.

Suppose that in each fuzzy rule Eq. (4.12), MFs of the output Hy (y),1=1,2,---\M,

are symmetrical and normal; in addition, each fuzzy set Yj’ , parameters c; are the MF
centers of y.. The center points of the fuzzy sets Yj’ for output variables in the FRM

model can be represented as

C, =(c,,--c)). (4.13)

TN
Given an input value x, =(x,, -, x,,) with fuzzy sets E_={X],---, X"}, i=1,---,n,
similar to the operation of fuzzification, the input vector can be described as
V() =V (x4, X,0) =V (x) >V, (5) B>V, (X)) (4.14)
where V, (x,,) = (,ux} (X,4)s "7, o (x,) . i=1-,n.
Assume the FRM with parameters c_j., [=1,---,M , can be estimated by
M (x, %, %3 ,) =V, () > Vi (%, x,) (4.15)

Then, the estimated output vector can be obtained from Eq. (4.15) and (4.14) such as:

Vo (3) =V, (9,0) = M (x, x,,0,x,5 y,) >V, (x,) DO, (4.16)

According to the definition of VFj (jfjo) , Eq. (4.16) can also be expressed as
Ro(x) =V, (3,0 = (1 ($)s sty B, ) =W Voo VIO s V= M, (B0) s (41T
where the vector VF]_ of the estimated output can be determined by the real-valued FRM

M , with the input x, =(x,,,--, x,,)-
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Based on Eq. (4.17), the output §,, can be estimated by the FRM model in Eq. (4.15),
and can be obtained through defuzzification.

Assume that each output set is a singleton. Since le JEEEN Y/.M are normalized fuzzy sets
with the centers cj., [=1,---,M , using the center-average defuzzifier and VF, ( jfjo) in Eq.

(4.16) and (4.17), we can obtain the real value of 5)/.0 :

M
CR()C, 2O e

s

+
H,, R (x,) iyj yj‘,+...+
=

Jjo

s
! , 4.18
" (4.18)

where
H, =11 - noogr. 4.19)
D = RZ(XO) IxM —_ MN\T Mx1
Denote R, =—————00™ and C, =(c,,---,c}) OO, then,
° H,,R.(x,) S !
$,=R.C,, (4.20)

where C, is a constant vector and FO is the function of input variable x, .

It is seen from Eq. (4.20) that J, can be estimated by the FRM M, input variable

X, » and the output parameters C. .

Example 4.1:
If n=2, N, =2, N,=3, M =6, then the vector expression of x, will be

(i (X)), 1 () Jor i=1

Vi () = (py (600 e, () = . .
| | (1, (), s, (x), w1 (x,)) for i=2.

The input vector of x = (x,,---, x,,--, x,) = (x,, x,) can be determined by

i

Ve(x,x,) =V, (x) >V, (x,)
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(1 00 C ey G, 060 Dt G0t 06 Ct G (6 g G, g 06 Egt G (6 C (1))

=W Cy VLY. vty VVEyv. v Cy v Cy)'.

The vector of y, can be determined by

Vi () = (g (9505 1 (3))'
:(ﬂc}_(yj)’ :uc/z_(yj)"“’ ,Uc?(yj))T
SRR

Then, the FRM of M, (xl, X yj) =V, (y)> V. (x,---,x,) for the rule base will be

M, (5.5 y,) =V, () BV, (x.x,) =

VOV OV vOROy vOROY YOOy YOROE yORDE
pOyOy vOyoy y0y0y yOgoy vOgoy v ooy
YOEDY vOROy 0ROy vORDY vORDE v0x Oy
VOYOy vOROy vOy0y v OR0y vOyoy v oy oy
VOV Oy 0ROy vOROy vOyDy yOy0y v oyoy
YOOy YOYOy YOR0p vORoy vopoy yogpop,

oo,

If the current input variable is (x,,, x,,) , the vectors of x,, and x,, can be represented
as V,, (%) = (4, (5), 1, (%)) and V, (x,0) = (4, (4,), 4, (), 4, (x,,)) - Then, the

vector of inputs x, = (x,,, x,,) can be represented as

10°

VE('XIO’ xzo) = VE, (xlo) > VEz (xzo) :

By the FRM, the vector of the estimated output y, in Eq. (4.16) can be represented

by
RE('xO) = VF/- (j\]jO) = RE('XIO’ 'x20) = MR('xl’ 'xl; yj)D VE ('xl(J’ xZO) 2
and

VFj(j\)jo) = (:uyjl (5)/'0)9 T ,uyjﬁ (j\)jo))T O DGXI .

45



Assume that max S-norm, min 7-norm, singleton fuzzifiers, and center-average

defuzzifier are used. Furthermore, suppose that the membership functions of Yj' are
normal and symmetrical with centers ¢', [ =1,2,---,6. Then, the estimated value of Yio

by the FRM model will be

6
~ l A A
_ R(x)C, _ ;'HY}(ny)Cf _ 'L‘y;(yjo)E; +"'+'uy;>(yj0)cfﬁ'

jo

HoRe ) S 5, MG+ + i, ()
=

H,, =1 1111 H00%,C =(c,,c) 00",

_ R
Let R\_ = £ - (XO)
Y H_R.(x

Ix6"E 0)

0o™, then, $, =R C

i

As an example, assume the FRM M, is obtained as

0.9 07 05 03 0.1 0
0 1 0.8 06 04 02
04 06 09 07 0.5 03
M, = oo®e,

03 05 09 1 0.8 06
02 04 07 09 1 08

0.1 03 05 03 0.1 1

If the input vector of x, = (x,,, x,,) is represented as
V,(x,,%,)=(0.1 02 03 04 05 0.6),

then, through min-max implication, the output vector of J,; in Eq. (4.16) will be
VF_,- (511'0) =M (X, %000, x, yj) >V, (X500, X,0)

[09 07 05 03 01 0 | (0.1
0O 1 08 06 04 02| |02
04 0.6 09 0.7 05 03| |03
03 05 09 1 08 06 0.4
02 04 07 09 1 08 0.5
0.1 03 05 03 0.1 1 0.6
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=03 04 05 0.6 0.6 0.6).
If C =(c),~~,c/)'=(0 1 2 3 4 5)7, where ¢ is the center of Y/, then the

estimated value y,, by the FRM will be

_ RI(x)C, _03%x0+0.4%x1+0.5%2+0.6x3+0.6x4+0.6%5

Yio =2.867.
' H, R, (x,) 0.3+0.4+0.5+0.6+0.6+0.6

4.3.2 Indirect modeling procedure for the FRMs

In Section 4.2, the direct modeling is discussed based on input-output training data under
the condition that all parameters are known for the fuzzy system. If the parameters

C,=(c},---,c)")" are unknown, the FRM system will be identified using matrix models in

Eq. (4.18)-(4.20) by using some appropriate optimization algorithm as discussed below.

Given Q pairs of input-output training data sets:
(xlq’.."an’ yjq)’ q:]".."Q‘ (4'21)
The FRM for inputs for each pair of data will be

V (x

E lg?

X)) =V (i ) >V () >V (X)), (4.22)

Where VE,- (xiq) = (luX’l (x,'q)’ T, 'uX.Ni (xiq))T s = 1, e, n.

After fuzzy reasoning through the STP of logic matrices and defuzzification (e.g.,

center-average), the outputs can be computed from the FRM model in Eq. (4.18)-(4.20):
$5,=R.C.q=1-0, (4.23)

_ R (x
where C, =(c},---,¢;)" 00", R :#DD'XM, H

g =1 1 --- poo™™.
a HIXMRE(xq)

IxM

The model outputs for all data in Eq. (4.21) will be

Y, =RC (4.24)

J X

where ¥, =(9,,,,-- 5,) 00%, R, = (RT,E‘TZ,---,E‘TQ)T 00" ; Q is much larger

x|

than M for FRM modeling adequacy.
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In general, it is difficult to get exact solutions of Eq. (4.24). Therefore, we will search

for C, = Cj by minimizing the following error function
EC)=Y (R C -y y=ce=(R C-Y)RC ~Y 4.25
( j)_;( Xg T J yjq) =€ e_( 5y /') ( X j)’ ( . )

where e = R, G Y, is the error vector, and Y, is defined by

Y = Yo Vi) (4.26)
The function E(C;) in Eq. (4.25) is in a quadratic form, which can be minimized at

C, =C, by the LSE [149]:

min¥, =|R C,-Y,

(4.27)

2

A necessary condition to get éj in Eq. (4.27) is to satisfy the following normal

condition
R;quCj = RTIYJ (4.28)
If ET R{q is nonsingular, C ; 1s unique and can be computed as
C = (R-; R, )" RZ Y. (4.29)

The proof of Eq. (4.29) can be seen in Appendix A.
The above LSE can be generalized to MIMO fuzzy systems with m outputs. If the

output variables are independent of each other, and for y, , the center points
C,=(c},--, ") of fuzzy sets Y/,---,Y", j=1,---,m, can be determined by the LSE

similar to the indirect modeling of the MISO FRM in Eq. (4.21) to (4.29).
4.4 Numerical Simulation Examples

The effectiveness of the proposed direct and indirect FRM modeling techniques will be

examined using some simulation examples.
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Example 4.2:

Suppose a fuzzy system has two inputs (x,, x,), and one output y, =x, +x,. The universe
of discourse for x; is [0, 2], i =1, 2; and the universe of discourse for y, is [0, 4]. Three
MFs for fuzzy sets { X!, X, X'} are assigned for each input x; as illustrated in Fig. 4.1,
and nine triangular MFs for fuzzy sets {¥', Y, ..., ¥’} are assigned for the output
variable y, as shown in Fig. 4.2. AND and OR operators are chosen as min and max
operations. The fuzzy rules will be formulated as follows:

R': IF (x, is Xl') and (x, is Xl), THEN (y, is Yll);

R*:IF (x, is X/) and (x, is X), THEN (y, is Y");

R :IF (x is X') and (x, is X?), THEN (y, is Y).

u(x;)
A X7 X7

Fig. 4.1. The fuzzy sets with membership functions of input variables.

A HOW)
Yi! Y2 Yi3 Y1t Y3 Y0 Yy’ Vi3 Yy°
0 0.5 1 1.5 2 2.5 3 3.5 4 Vi >

Fig. 4.2. The fuzzy sets with membership functions of the output variable.

Consider P = 121 training data pairs (x,,, x, ; y,,), p=1 2,---, 121. The FRM

Ip?

model will be identified for the fuzzy relation between the input and the output. For
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*

example, if (x x;:p; y;kp) =(0.2, 1.3; 1.5), the following vectors can be determined

1p?

according to MFs in Fig. 4.1 and 4.2:

V, (6) = (1, (5,), 1, (), 1, () =08, 02, 0),

#

V, 06, = (U, (5,), 1, (35,), 4, (6,)) =(0, 07, 03,

VaOn) =, (00 Mo (07, o M, (37,))' = (0,0,0,1,0,0,0,0,0)"

The fuzzy relation vector of the inputs from Eq. (4.7) will be

V. (x,, %)=V, (x,)>V, (x,)=(0,0.7,03,0,0.2,0.2, 0,0, 0)".
The fuzzy relation vector of the output from Eq. (4.8) will be
V. (»,)=(0,0,0,1,0,0,0,0,0)" .

The i-th FRM model between inputs and the output from Eq. (4.9) will be

00 000 0000
00 000 0000
00 000 0000
0 07 0300202000
M, (0,30 )=V, ) e VIGI)=[0 0 0 0 0 0 0 0 0
00 00 0 0 000
00 000 0000
00 000 0 000
00 000 0000

If U is chosen as a “max” operator in Eq. (4.10), the resulting FRM model from these

121 training data pairs will be

121

MRI(X.,XZ; n)= HMRIP(XD X, ;y.i)

1p>7"2p
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0.83 0.57 0.16 056 0.55 0.196 0.19 0.19 0.10
0.87 0.77 035 0.78 0.66 035 038 038 0.19
0.75 097 057 099 0.78 055 0.55 055 031
0.65 0.87 0.76 0.87 0.88 0.65 0.78 0.66 0.42
=10.53 0.75 096 0.76 098 0.78 095 0.77 0.55 |-
043 0.63 0.72 0.65 0.87 0.88 0.78 0.86 0.65
0.32 0.54 056 053 076 095 053 097 0.77
0.21 037 037 035 0.67 0.76 0.35 0.75 0.85
0.09 0.15 0.15 0.17 054 057 0.17 057 0.72

Consider an input vector (x,,, x,,) = (0.8 1.35), the vector of the output variable y,

will be
V(D) =V (30) =M, > Vo(x, X)) =M, > (V, (x,) >V, (x)
=(0.325, 0.6, 0.6, 0.325, 0.825, 0.675, 0.325, 0.4, O.4)T.
With the center of MFs { Y' , Y’ , .., Y}, C= (c,c,,c)

=0 05 1 15 2 25 3 35 4)", by center-average defuzzification, the output

can be calculated by

A

Yo =

M Va00)C Z( (ym)

_I—

lx‘) E(x ) Z_:,,Uylj(ym) Z_:ﬂuylf(ylo

_0%0.325+0.5%0.6 +1x0.6 +1.5x0.325+2x0.825+2.5%0.675+3x0.325+3.5%0.4+4x0.4
0.325+0.6+0.6+0.325+0.825+0.675+0.325+0.4+0.4

=87 _joua. (4.30)

4475

Correspondingly, the error between the actual output and the output from the fuzzy
model is 6.05%. If each input variable has 11 fuzzy sets, the output of the fuzzy model in
Eq. (4.30) will be y,, =2.150 with 0.01% error. Based on more simulation tests with

different number of fuzzy sets for input variables, for the fixed 121 training data pairs as
the modeling data base, when the same universe of discourse and similar MF parameters

are chosen, 11 is the optimal number of input fuzzy sets in this fuzzy system.
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Example 4.3:

For Example 4.2, if the center points of MFs for outputs are unknown, the indirect FRM
method can be used for system modeling, using Eq. (4.22) to Eq. (4.29).

Suppose the centers of the fuzzy sets for the output are (¢, ,c,, -, ¢,) . If the

training data pairs are (x,,,x,,; ), p=12,---, 121, then

Vo(x,,%,) =V, (x,)>V, (x,,), p=12- 121

Ip? “"2p
Y =R_C, +e can be expressed as
%

Y*l‘l RX[1 (x*l,l, x*l.l) C*L,l

Y*l,z RXTZ (X*l.z, x#l?) C*I.Z

+e

1

3 T * * %
Y 110 R)c (x 1121, X 2.121) C+|49
’ 121 ’

Using the LSE, the estimated outputs will be

-0.0221
0.9822
., 2.0000
0.9822
I(E‘_TRY)"I?‘_TY = | 2.0000 |, where
3.0178
e, 2.0000
3.0178
4.0221

Y*l.] RXTI (.x*l.l, x*z.l)
Y:iii — RZ (x*l.z, x*z.z)
.1,2 R‘ ) :

* T * *
Yim R"m (X 1121, X 2021)
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(a)

error of output y1

-0.02 - 1

_0-04 1 1 Il Il Il 1
0 1000 2000 3000 4000 5000 6000

tested data

0.05 - -

(b)

error of output y1

x2 X1

Fig. 4.3. Errors between real outputs and FRM model outputs: (a) Errors with respect to tested data;
(b) Errors with respect to the inputs.

With these estimated centers values of output variables, the output y, from the FRM

model can be computed by Eq. (4.29). The errors are illustrated in Fig. 4.3, with an
average error 0.37%. The relationship between input and output variables is illustrated in

Fig. 4.4.

0.5
x2 X1

Fig. 4.4. The relationship between input and output variables.
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Moreover, as the fuzzy systems are generated from the same function y=x;+x,
Comparison results can be obtained between the average error from the indirect modeling
method and the errors obtained by the direct modeling method in Example 4.2. It is
obvious that the simulation results by the indirect modeling method are much better than

the results in direct modeling method by FRM models.

Example 4.4:

Consider Example 4.3. Assume the fuzzy system has two output variables generated by
Y, =x, +x,,y, = xx, and the center points of MFs for output variables are unknown. The
FRM model can be determined using the indirect modeling methods in Eq. (4.21-4.29).

Suppose the centers of y, and y, are (c,,c,,":,¢,) and (¢,,,C,,, ", Cy)
respectively. If 10000 input-output data pairs are selected as (x,.,x,.: . Y,,)-
q=12,---,10000 , the FRM for two input variables can be determined as
Vo (x,,%,) =V, (x) >V, (x,), ¢=12,---,10000.

> V2q lg

For a two-input two-output (TITO) fuzzy system, Y, = I_?x( C,+e, j=1,2, can be

represented as

* T * * *
Y R‘l (X L1, X 2_1) C 11
* T * * *
Y2 R ()C 12, X 2.2) C 12
Y = . = A . |te,and
* T * * *
VY 110000 R (x 21, X 2.10000) C19
*10000
* T * * ¥
Y 2 RY1 ()C L1, X 2,1) C 2l
* T * * %
Va2 R» (X12,X22) C 22
Y, = = s +e,.
. 2
* T * * *
V 2,10000 R ()C Li21, X 2.10000) C 29

X10000

Similar to the calculation in Example 4.3, based on the LSE, the estimated values of

Y =R C+e will be

54



—-1.601
—-1.183
1.761
0.540
2.669
5.476
1.935
2.521
4.846

C 2.1

C 2.2

and CA2 =

C 29

0.159
—-1.144
-2.204
—1.087

1.005

1.982
—-1.708

3.701

6.488

Using the calculated Cl and éz , the output y=(y,,y,) of Eq. (4.23) can be

determined from the FRM model. The mean of the errors between the actual outputs and

modeling outputs is 0.0094 for y; and 0.0137 for y,, respectively, as illustrated in Fig. 4.5.

(a)

(b)

error of y2

error of y1

0.04 T T T

0.02 j

-0.02

-0.04 :

0 1000 2000 3000

0.06 T T .

4000 5000 6000

tested data

7000

8000 9000 10000

0.04

0.02

0

-0.02

-0.04 : : : :

T T

0 1000 2000 3000

4000 5000 6000

tested data

7000 8000 9000

10000

Fig. 4.5. Errors between real outputs and fuzzy model outputs: (a) Errors of y, for tested data; (b)

Errors of y, for tested data.
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Based on these simulation examples, it is seen that the proposed direct and indirect
modeling techniques are efficient in formulating FRM models for fuzzy systems. They

are feasible for MIMO fuzzy system analysis.

4.5 Concluding Remarks

In this chapter, two new FRM modeling techniques have been proposed to transform the
fuzzy logic reasoning based on fuzzy rules into a problem of solving algebraic equations
by fuzzy STP operations. It can be formulated using a direct modeling method with
known parameters for all fuzzy variables or an indirect identification method for fuzzy
systems with unknown parameters in output variables. The effectiveness of the proposed
FRM modeling methods is verified by a series of simulation examples. The related

contribution in this chapter has been published (or accepted for publication) in:

(1) H. Lyu, W. Wang, X. Liu, “Modeling of multi-variable fuzzy systems by semi-tensor
product”, IEEE Transactions on Fuzzy Systems, Vol. 28, No. 2, pp. 228-235, Feb.
2020.
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Chapter 5 Universal Approximation of FRM Models

In fuzzy model approximation, the current literature mainly focused on universal
approximation of MISO Takagi-Sugeno-Kang (TSK) fuzzy systems [150, 151], but not
on general multi-variable fuzzy systems due to the deficiency of proper mathematical
tools [152, 153]. The objective of this chapter is to extend the universal approximation of
fuzzy models to general MIMO FRM models based on the STP. It is novel in the
following aspects: 1) An FRM formulation technique is proposed to approximate
arbitrary nonlinear functions by MIMO fuzzy systems. 2) The fuzzy reasoning operations
can be realized by the fuzzy logic STP in universal approximation of the FRM model.
The rest of this chapter is organized as follows. Firstly, some related FRM
preliminaries are introduced in Section 5.1. Section 5.2 discusses the universal
approximation of FRM systems. The design algorithms of FRM models are discussed in
Section 5.3. The approximation accuracy of FRM models is investigated in Section 5.4;
and the effectiveness of the proposed universal approximation technique is tested by

some simulations in Section 5.5.

5.1 Some Related Preliminaries

In this chapter, the universal approximation of FRM models is extended to multi-variable

fuzzy systems, especially nonlinear functions. Consider a general FRM system with n-
inputs and m-outputs, x =(x,x,,---,x,) and y=(y,,y,,-*~,y,) . The corresponding

fuzzy rule structure will be
R': IF (x, is X") AND---AND (x, is X),

THEN (y, is Y') AND---AND (y, is Y),[=1,2,---,M, (5.1
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where M = N\N,--- N, is the number of fuzzy rules; N, is the number of fuzzy sets,

i =12,---,n; x; is the i-th input variable on the universe of discourse E,; X/,---, X" are
n i-1

fuzzy sets defined on E , p,U{L,2,---,N,}, [ =p, +Z[(pi —l)l_l N;1;5 v, is the k-th
i=2 j=1

output variable on the universe of discourse F,; Y/,---, V"

' are fuzzy sets defined on £,

k=1,2,---,m.
If all of the outputs are independent with each other, Eq. (5.1) is equivalent to m
MISO fuzzy systems. Without loss of generality, consider one MISO FRM with the

following rule set
R, :IF (x,is X") AND--- AND (x, is X""), THEN (y, isY}),
[=,2,-- M, k=12,---,m. (5.2)
1) Based on the FRM modeling in Chapter 4, the input vector is modeled by
Ve (G ) =V () D Vi () B>V (X)) Vi () = (o ()00 o, (3 )"
2) Assume that in each fuzzy rule Eq. (5.2), MFs of the output ,uy[(yk) are
symmetrical and normal (i.e., convex fuzzy sets and MF grade ,uyk,(yk):1, y, OY)).

Suppose that on each fuzzy set Ykl , ¢, is the center of all of values for y,, [=1,2,---,M .
Then, the output vector model can be determined by the output vector
Vi () = (s e (7))

3) Assume that the real-valued FRM model M, =M, (xl I LTI yk) has been
constructed using Eq. (4.1) to Eq. (4.9). Given an input x(¢) = (x, (¢), x,(¢),---, x, (1)), the
vector expression for the corresponding output y, () from the FRM model M, can be

calculated by Eq. (4.16):
R, (x(®), y (1) =M, >V, (x, (@), x, (1), -+, x, (1)) - (5.3)

4) Use an appropriation composition operator (e.g., max-min, max-product), a

singleton output, and the center-average defuzzifier in Eq. (5.2). If C, =(c,,---,¢")",
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according to R, =V, = (,uyl(yk (1), Mo (y,(2))" and Eq. (4.18), the estimated output

v, (2) of the FRM for the MISO fuzzy system in Eq. (5.2) can be determined by

v = f (%), x,(0),,x,(1) =R _(DC,, (5.4)

FRM

where

R

= , |xM:1 1 -~ DOO™. (5.5
H,, R (x(1).y,(1)) ( ) (5.5)

It is seen from Eq. (5.4) that a fuzzy system in Eq. (5.2) with an FRM model is a
nonlinear mapping from x =(x,,---,x,)00" to f  (x)UU, represented by the product

of two matrices. Fig. 5.1 demonstrates fuzzy logic reasoning procedures of a general

MISO FRM model of a fuzzy system by the nonlinear mapping f (x,,---,x,) in Eq.

FRM

(5.4).
Fuzzy STP
X Yk
— V(X1 ., X)) | Srra(X1y ooy Xp) > Vi) ™

Fig. 5.1. The structure of the FRM system.

On the other hand, the MISO FRM model in Eq. (5.2) can be extended to an MIMO

FRM model in Eq. (5.1). Suppose that the output fuzzy sets Y, are symmetrical and
normal with centers c{,, [=1,---M, k=1, 2,---m. Using the above procedure from 1) to

4) and the rule base in Eq. (5.1), if a max-product reasoning operator and a center-

average defuzzifier are used, the output becomes:

¥, (1) flox@®)) (R, (0C,
R,

%@ |_| [, G@) | _| R, (OC,

Yu®) S (x@)) (R, (1)C

m
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R®m 0 0 0 Y
0O R® 0 - 0 |C| -

= A 2| =R@OC, (5.6)
0 0 0 RM)\C

where x(£) = (x,(1), x, (1), -+, x,(1)), C, =(cl,---, ¢y’ OO,

R ()= R (x(1))

=" _[gg*™ H, =11 -- Hoo™,
H,, R, (x(1))

y(@) = (3, (), y,(0), -+, 5, () O0™, k=1,2,---,m,

R®m 0 0 - 0 C

_ 0 R@® 0 -~ 0 C

R()= () N gom~, c=| |oom. (5.7)
0 -+ 0 0 R (0 C

The difference between Eq. (5.4) and Eq. (5.6) is that the fuzzy relation function of

MISO systems is a scalar whereas the fuzzy relation function of MIMO systems is a
column vector, or I_QXA (1) vs. I_Qx(t) ;and C, =(c,,, ", Cy,)" Vs. C= (CIT, CzT,---, CmT)T.
5.2 Universal Approximation by FRM Models

The following theorem could be used to approximate a continuous multi-variable

function by a MISO FRM model.

3

Theorem 5.1 (Universal approximation by a MISO FRM): Suppose that E=T[|E,

i

1

E JU, is a complete set on [1". For a given real-valued continuous function g(x) on

E with x= (x,x,,-+,x,) OF and an arbitrary real number £ >0, there exists an FRM

model f,,,(x) in the form of Eq. (5.4), such that
SUP| fy (¥) = g ()| < €. (5.8)

Such an FRM model f,,, (x) is a universal approximator.
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Proof: The proof is based on the Stone-Weierstrass Theorem [32]. If Fp,, (E) is a set of

fuzzy systems f,,, (x) in the form of Eq. (5.4), it is to verify that F,,,, (E) is an algebra;

FRM

Frey (E) can separate points on E; and F RM (E) vanishes at no point of E .

1) To verify that Fpy,, (E) is an algebra, i.e., Frpu (E) is closed under addition,

multiplication and scalar multiplication.
Given f, (X), [ (¥) O Fppy, (E), then
[+ [y D =R,CLHRIC = (R, ROAC)™ (€)' = R,/C, O Fy, (E),
where R} = (R, R:), C, =((C)" (C)")".
Similarly, f, (¥) [f5, (x) = R.C, [R:C} = (R, C;R})C; O Fy, ().
Givena c00, ¢fh, () =cR.C, = (cR.)C} O Fyy, (E).
Hence, Fp,, (E) is an algebra.

2) To verify that Fp,, (E) can separate points on E , ie., for arbitrary
x'=(x,,x) and x? =(x,2,~--,x:)Dl~? : if x'#x* , then, there exists an
Foo (¥) O Frgyy (E) such that fe, (6) # frpy (5,) -

Choose parameters of f,,,(x) in the form of Eq. (5.4). If x' # x*, there exists at least
one i: 1<i<n and one fuzzy set X/, such that Ky (x)) # Ky, (x7), or V. (x) 2V, (x)).
According to Eq. (4.16)-(4.20), there exist V,(x') =V, (x) >V, (x))>--->V, (x') and
V.(x*) =V, (x) >V, (x])> >V, (x7), then it can verify that Ex;, # Evg , I?X,ka # E\,kzck )
Thus, F,, (E) can separate points on E by the fuzzy system S ().

3) To verify that F,,, (E) vanishes at no point of E , ie. for each

x=(x,x,,-,x)0E, there exists an f,, (x) 0 Fp,, (E) such that f,. (x)#0.
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If M, (x)=0,i=12,---,n,[=12,---, N, for an arbitrary x,, I_ka is zero. However,
if M, (x,) =0, then, R, (x) = Ve (y.()=0 because of R, =M, >V, . Consequently, the

R (x(1))

——+f——— is zero, oOr R\_k does not exist, which is
H,, R, (x(1))

denominator of 1_3\ (=

contradictory to the definition of FRM modeling. Hence, there never exists x =0 to
make f,., (x)=0.

Theorem 5.1 can be extended to vector-valued functions by the following theorem:
Theorem 5.2 (Universal approximation by MIMO FRMs): For a continuous multi-
variable function G(x) = [gl(x) gl (x) - g’"(x)]T 00" on E, x=(x,,x,,---,x)0E,
given &£ >0, there exists a fuzzy system f,,,, (x) in the form of Eq. (5.6), such that

m

max(sup|f,, ()= g' W <. (5.9)

Such a fuzzy system [f| (x), f2 (x),---, f" (x)]" is called a universal approximator.

Proof: According to Theorem 5.1, there exists a fuzzy system fF';M (x), k=1,2,---,m, in

the form of Eq. (5.5), such that

sup|f£, ()= g* ()| <€, k=12, m. (5.10)
A0

Loy (0= 8'(0) R.C -g'(%)

FRM

Thus, Foey () = G(x) = S s ) _ g () = R, Cf A . Eq. (5.9) can be proved.

fr=-g"x) (R C,~g"(x)

5.3 Design of FRMs as Universal Approximators

According to Theorems 5.1 and 5.2, the design of FRM systems will be discussed in this

section.
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5.3.1 Design of FRM systems with two inputs and single output

Assume that g(x) is a continuous function on a set E = E, X E, =|a,, B]x[a,, £,100°.

The following steps are undertaken to formulate a fuzzy system to approximate g(x).
Step 1: Given inputs x;, define N, fuzzy sets X/, X’,---, X" in [a,, 8], which are
normal, consistent, and complete with the corresponding MFs: 4/ , (x;; a,b,c,d), ..

1

) : . . . 2 ; ) I 2
/JXN,_(xi;aiN’,biN',c,N’,diN') , where i = 1, 2, X! <X’<.-<X"¥ g =b =a, and

1

_ _ T
c=dV =B . Let ¢ =a,, " =p, and e¢; 25(191’+c1’); e=a,, el*=p,, and

el I%(sz +cl) for j=2,3,---, N, —1. Fig. 5.2 shows an example with N, =4, N, =3,

a,=a, =0, B, =, =1 with pseudo-trapezoid MFs.

X2
2 efI
X7 o @ ®
2
€2
X2 ® ] @ o
ezl
X! ® 5 L T
e e e €l X1
XI 1 X]z XIS X|4

Fig. 5.2. An example with Ny =4, N, =3, 0, =0, =0, B, =, =1.

Step 2: Construct M = N, XN, fuzzy IF-THEN rules:
R : IF (x, is X!) AND (x, is X?), THEN (y is Y'"?), (5.11)

where ¢ = g(e/',e?) is chosen as the center of the fuzzy sets Y**, i =1,2,---,N,,
i,=12,---,N,.
Step 3: Formulate the FRM for the fuzzy system f,,, (x) of Eq. (5.11) using a max-

product fuzzy operator and a center average defuzzifier:
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fFRM(x):(VEl(xl)DVE;('xz))TIEC“’ilz"“’CINZ’ 7CN1176N12’”'7CN‘N2)T = R;rC :EXC’ (5.12)
z,'l‘:[ Zi;:l (/leil <x1)/'lxgl ('xz )) HlxMI Rx

Where Vgl(xl ) = (/’txll(xl )’ '“”uxl"" ('xl ))T’ VE2 (xz) = (:ule (xz)’ ”"’uxé"l (xz))T’
V.=V, (x) >V, (x), C=(c", - c™, - e ™ M) aOnee,

Since the fuzzy sets X/, X',---, X" are complete, for each x, JE,, i=1,2,---,n,
there exists at least one i and one 7,, such that H (xl),uxéz (x,) #0. Hence, the fuzzy
system is well defined, or the denominator in Eq. (5.12) is not zero.

Step 4: Compute the output of the fuzzy system f,,, (x) and compare it with the values
of g(x) at x=(e,e}) for i, =1,2,---,N,, i, =1,2,---, N,, which is the resulting FRM

system with two inputs and one output f,,,, (x) at x =(e/', e?).

5.3.2 Design of MISO FRM systems

Assume that g(x) is a continuous function on a compact set
E =la,, B1%la,, B,1%---x[a,, B,]. Given inputs x, O[a,, B100, i=1,2,---,n, define
N, fuzzy sets X/, X ,---, X" in [a,, 8], then construct M =N, XN, x---x N fuzzy IF-
THEN rules in the following form:

R': IF (x,is X”") AND --- AND(x, is X}, THEN (y is Y'), [ =1,2,---,M , (5.13)

where M is the number of fuzzy rules; x; is the i-th input variable on the universe of

discourse E;; X/,---, X are fuzzy sets defined on E,; N, is the number of fuzzy sets,

n i-1
i=1,2,---,n, p,0{1,2,---,N,}, [ = p, +Z[(pi—1)|_| N,]; y is the output variable on the
=

=2

universe of discourse F ;Y',---,Y" are fuzzy sets defined on F. ¢’ = g(e, e, -, e)

is chosen as the centers of the fuzzy sets Y'.

By using similar steps as in Section 4.3.2 with two inputs one output FRM systems,

the following FRM for the fuzzy system f,, (x) can be formulated of Eq. (5.13):
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R (x, )C

— 777" =RC, (5.14)
Hy R (x,y)

X

S (X) =

R (x,y)

—_—r :(1 1 1)DD1XM’
HIXMRE(X’ y)

where R, = C=(, -, ™™ oo™, H,,

RE(X’ )’) = (ﬂyl()’)"“aﬂyM()’))T :MR DVE(X)’ VE :VEI('XI)[>VEZ(XZ)D'“DVE"(-X,,)a

VEI('X] ) = (,uxll(xl )a Tt /quNl (X] ))T’ Tt VE"(XH) = (#X’ll(xn)’ ) ’uX,’l"” (xn))T'

M, is the FRM of the fuzzy system in Eq. (5.13). There exists at least a group of

R

{i,6,,---,i,} such that ¢, (x)H ,(x,)---( , (x,)#0. Hence, the fuzzy system is well

xP2

defined.

5.3.3 Design of MIMO FRM systems

Consider a multi-variable function G(x) =[g1(x) gl (x) - g’"(x)]T with continuous

g"(x) on E. The MISO FRM model f*mu(x)0F,,, (E) can be formulated using Eq.

(5.14). The fuzzy universal approximator can then be obtained as

[F .2 @ £ @)

5.4 Approximation Accuracy of the FRM

The approximation accuracy of the f,,, (x) will be investigated in this section.

5.4.1 Approximation accuracy of an FRM with two inputs single output FRM

Theorem 5.3: If f,

oy (X) 18 the fuzzy system as in Eq. (5.12), and g(x) is an unknown

but differentiable functionon E = E, X E, =[a,, 81%X[a,, 5,10 0°, then

dg

Ox

1 fleo

0g

h +
ox, ||

h, (5.15)

| fr () = ()] <
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where the infinite norm ||*||°o stands  for ||a’()c)||°o =suprE|d(x)| , and

]+1

_ il =
ell,i=12.

h; =max,_,_, ,‘e

Proof: Let E" =[e!, e/™]x[e? ,e?“], i =1,2,---,N, -1, and i, =1,2,---, N, —1. Since

la.,B1=le,e1Ule’, e 1U---Ule =1,2, then

(N-1)  (Ny-1)

E=E XE, =[a, p1xla,, B,]1= U JE™.

ih=1
Therefore, given any x, OE, x, JE, , there exists one E™ =E"XE" such that

(x,x,)0E™, x, O[e',e'™], and x, O[e?, e2"].

Because the fuzzy sets X, X,---, X;"" are normal, consistent and complete, at least
one and at most two 4 , (x,) are nonzero for j =1,2,---, N,. According to the definition
X]
of elj‘ , the two possible nonzero MFs for u /.l (x), j,=1,2,---,N,, are U ; (x,) and
Xl Xl

,, are

H i (x,). Similarly, the two possible nonzero MFs for M, (x,), j,=1,2,---,N.
M, (x,) and H (x,). Hence, the fuzzy system f,, (x) of Eq. (5.11) can be simplified
as Eq. (5.16).

| fFRM ()C) _g(x) |=

[(0“'0/&;\(@ ), qum(eml)o...o)T > (0.,.()# (eg),,u H(e; +1)0,..O)T]T(Cll’clz’._.,clNg’”.,CNII’CMZ’._.’CNINE)T
zll_l Zgil(#xtl (xl ):uxéz (xz))

1N, N1 N2 NNz yT

~ (OMOmin(#\_‘“ (ef ),/4){‘:, (ei)), min(yxg, (e} ),#X;,.((»2"1”))0««40min(/4 M.(e,"‘”),/tx‘:. (e1)) min(/tl,;‘,.(F[‘*'),/lxg,,.(egi*‘))0««40) Qe e ™ ™ e™M? e

o minCu g, (). oy (6 ))]

mm(/l (e, /J L (e2)c +mm(/1 (e, ,uY ) i +mm(/1w (e, K L(e2))cime +m1n(/1xll(e'”) ﬂxél‘l(eizﬂ)cunluilﬂ)
DA Iyl [m1n(/1 (x,), H, (Xz))]

=

min 4, (€A, (€2 g (el e?) +min i, (ef).f, . (€2 g el et
>

=iy

) minu,, (el ") (€Nl ) +min . (el p . (€5 g el k™)
M GO T ()

i+l i+

M, (O TH, ()
ED I —_t
N=n nEn Z Zj.,,, /-I 11 (xl)l'lx ( )

e(x) ~ g(e)' e

< max

I=i =i i+

g(x)— g(e1 ,e (5.16)
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Using the mean value theorem [32], Eq. (5.16) becomes:

) d )
|xl - e]jl | + g x2 - 62/2
Ox,

|fFRM (x) = g(x)| < max ( a_g j . (5.17)

=iy iy +H iy =i sip | axl
©

Since (x,, x,) OE™ , it follows that x, O[e!, /"] and x, O[eZ, e:"]. Thus,

— ph i+l i _ i+l
‘xl e ‘s‘e, ey —e; |,

— ph —ph
e,‘ and ‘xz e ‘S

for j =i, i +1and j, =i, i, +1. Thus, Eq. (5.17) becomes
0 i+ i 0 i+ i
180 = Fry O <[22 [ef =€ +[22] e = ek, or
Ox, ox, ||

[0 = fony (O] < 800 = fra ()] = 5uPlg () = fry, ()

0 . s . .
<|2&] max ‘el"” —e[’“+ 281 max |e" —eb
axl 1</, <N, -1 ax2 1<i,<N, -1
0 %)
<284 p +[ 25 p,.
Ox, X,
00

According to Eq. (5.15) in Theorem 5.3, it can be concluded that the fuzzy system Eq.

(5.11) is a universal approximator.

5.4.2 Approximation accuracy of MISO FRM systems

Theorem 5.4: If f,. (x) is a fuzzy system as in Eq. (5.14) and g(x) is unknown but
differentiable on E , then

0g

Ox

0g

Ox

0g
X

n

hz +... 4+

h,, (5.18)

n

||fFRM (x) = g(x)"m s hl +

o © 3

where the infinite norm ||*||w stands  for ||d(x)||w =suprE|d(x)| , and

_ o g . —
h, —maxlSjSNi_l‘ei ell,i=12,---,n.

Its proof is similar to that of Theorem 5.3.
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5.4.3 Approximation accuracy of MIMO FRM systems

Theorem 5.5: If fF';M (x), k=1,2,---,m, are the fuzzy systems as in Eq. (5.14), and an

unknown function G(x) = [¢'(x) g*(x) -+~ g"(x)|  is differentiable on E, then

fry (=8 ()

[ @ =8 ™) _|0G(x)
: | ox,

0G(x)
ox,

0G(x)
Ox,

. (5.19)

)

h +-.-+

2

h +

1

o o

S ()= 8" ()]
where the infinite norm ||*||oo is defined as ||d(x)||m :sup_‘,’_DE,_|d(xl.)| , and

J*_
i

— J * —
h, —maxlsjsN’__l‘e ell,i=12,---,n.
Proof: As

Froy (0 =8'(2)

£l () -g*(x) : .
o . =n}§ix fFRMA(x)_gL(x)w’
£ @)= g" ()|
from Theorem 4.4,
k k
fh =gt < 02 h, + 98" B et 08 b, k=12 m.
FRM *® a'xl - ax2 o x" .
flo(0-g'(x)
> -9’ m k k k
Hence, |[fo (D=8 (0O _ » [ldg" h+ 0g B+t og'| . ).
: <o, || ox, | ox, |
£ =g" @),
m k k k
Because max 08 h + ai hy +---+ ai h,
= axl o X2 o axn

m k

h +| max
1 k=1

0g
ox,

]h2+...+(n}'éx 0

the following inequality is true:
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fl-g'

2 _ 2 m k m k m k
o () = 87() <| max og th, + maxai h, +---+ maxai Lh, -
E k=1 a'xl 00 1 kzla‘xZoo 2 kzla‘xnoo !
£o 0 -g" @),
m k
Since max ai = m ,1=1,2,---,n, it can be verified that
=l o || ox, |
fl (x)-g'(x)
S (X) =87 (%) <96 0 + 0G(x) G et 0G| o
: ox, || ox, |~ ox, | "
fo, (0=-g" ()|

5.5 Numerical Simulations

The effectiveness of the proposed FRM design technique will be examined by simulation
in this section.

Example 5.1:

Suppose a continuous function g(x) =sin(x) is defined on E =[-3,3]; a fuzzy system
with FRM model will be designed to uniformly approximate g(x), with a required

accuracy & =0.2, that is

SuprE|Sin(x) = frru (x)| <€.

Then, since

= ||cos(x)||m = sup |cos x| =1, it follows from Eq. (5.15) that the fuzzy
A0-3,3]

system with 2=0.2 can satisfy the related requirement in Theorem 5.3. Fig. 5.3
illustrates an example with triangular MFs X’ for the input with 31 fuzzy sets,

j=1,2,---,31, which are defined as
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o o o
£ (o] [oe]
T T

membership function value

©
[N}

Fig. 5.3. The membership functions of fuzzy sets for an input variable.

M, (x) =, (x —3,-3,-2.8),
(0= (2 28, 3, 3),
1, ()=, (e el e,
where j=2,3,---,30, ¢/ ==3+0.2(j - 1).
The center of B’ can be selected as ¢’ = g(e’) =sin(e’).

The fuzzy rules are defined as

R':IF x is X', THEN y is Y’, j=1,2,-,31, (5.20)

where Y’ is the fuzzy set of the output y.

Then’ VE(X) = VEl(xl) = (:uxl (X), ,UXZ(X), T :uxal (x))T ’
RE(x) = VFl(y]) = (ﬂyn(}’)’ ,uyz(Y)"”aﬂyu()’))T == MR > VE (x)’

where M, is the FRM of the fuzzy system in Eq. (5.20), H,,, =, 1,---, DUM ,,, and

IxM 13172

C=(c,c,ncy) .

According to Eq. (5.11), the designed fuzzy system is f,,, (x)=R.C , where

— R (x —
R = ﬁf)() The exact estimated output of f,. (x) = R C is plotted in Fig. 5.4 (a). It
x

IxM
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is seen from Fig. 5.4 (a) that f.,, (x) and g(x) are almost identical, with a mean
absolute error of 0.002 (from Fig. 5.4(b)) between the real output and the FRM model

output.

o
o
T

(a)

output varialbe y
o

— REALH
— FRM
error

o
(6,
T

%1073

(b)

error
o
T

Fig. 5.4. (a) The real output and FRM model output. (b) The error between these two outputs.

Example 5.2:

Suppose the continuous function is g(x,, x,) =0.52 +0.1x, +0.28x, —0.06x,x,

|g(xl,x2) —fFRM(xl,xz)” <Eg.

with a required accuracy £ =0.1, or sup ,,

0g

ox, ||

Then, since

4 =[0.1-0.06x,[, = sup 0.1-0.06x,)=0.16 , and
1

a_x x»O-1L1
1l

=[0.28-0.06x, = sup 0.28-0.06x|=0.34 , it follows from Eq. (5.12) that

xO-111

h,=h,=0.2, and
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g (X, %) = frm (., x,)|, £0.16%0.2+0.34%0.2=0.1.

If XI.’ has 11 fuzzy sets defined in [-1, 1], j=1,2,---,11, then the following

11x11=121 fuzzy rules can be defined:

R':IF (x is X*) and (x, is X?), THEN (y is Y*), (5.21)

where X', X2 and Y™ are the fuzzy sets of the respective inputs and outputs,

[=12,---,121, i,i, =1,2,---,11.
If ¢' =g(e",e”)=0.52+0.1e" +0.28¢” —0.06¢"e” is the center of Y', then the
triangular MFs X’ can be determined as:
f (6) = (6 =1,-1,-0.8),
H, (6) = 1, (508,11,
fo(x)=p, (s e, el e,
where ¢/ =-1+0.2(j 1), j=2,3,---,10.

Then, V, (x,) = (u ,(x), o (x), 1, ()5 151 2,V () =V, (x) >V, (x,),
V() =V () =, (3), . (), i ()" =M >V (x)s

where M, is the FRM of the fuzzy system in Eq. (5.21).

In using some sampling data in simulation, by Eq. (5.5) the designed fuzzy system

becomes
fFRM (xp -xg) = E\C

R (x)

where C=(c,,c,,"*,¢c,,)" and R, =m with H,, =, 1,---, h)OM

1x121 *
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It is seen from Fig. 5.5 that f,,, (x,x,) and g(x,, x,) are almost identical and the

image of errors between the real outputs and FRM model outputs that are almost zero

(3.174x107).

From Examples 5.1 and 5.2, the effectiveness of universal approximation can be

verified.

(b)

o o
- O 0 =

9(x, X,)

Fig. 5.5. (a) FRM model outputs; (b) The real outputs.

5.6 Concluding Remarks

Based on FRM modeling, a universal approximator has been proposed in this chapter for
MIMO fuzzy system modeling. The STP of logic matrices is employed to expand fuzzy
reasoning operations and the fuzzy input and output variables are represented vectors.
The analytical proof is provided to theoretically evaluate the design algorithm and
approximation of FRM systems as a universal approximator. The effectiveness of the
proposed FRM approximation technique is verified by some simulation examples. The

related contribution has been published in

(1) H. Lyu, W. Wang, X. Liu, “Universal approximation of multi-variable fuzzy systems
by semi-tensor product”, IEEE Transactions on Fuzzy Systems, Vol. 28, No.11, pp.
2972-2981, Nov. 2020.
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Advanced research will be undertaken in Chapters 6 and 7 to develop a framework to

facilitate the implementation of the proposed MIMO universal approximation theory.
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Chapter 6 Parameters Training of FRM Models

The modeling accuracy depends on the parameters of FRM models, such as the number
of fuzzy variables, fuzzy sets and fuzzy rules, the center points and shapes of membership
functions (MFs). As discussed in Chapter 4, two modeling methods have been proposed
to develop primary FRM models based on the sampling database. In the direct modeling
the parameters are assumed to be tuned manually by trial and error. When the centers in
output fuzzy sets are unknown, they can be adjusted by the LSE algorithm in indirect
FRM modeling. However, other parameters cannot be optimized in both modeling
methods for a fuzzy system based on FRM models. Hence, the objective of this chapter is
to train other parameters in FRM models to improve modeling accuracy of MIMO fuzzy
systems. A new neural-fuzzy (NF) network based on the FRM and fuzzy STP is proposed,
which are then trained using the LSE and the recursive Levenberg-Marquaedt (RLM)
algorithms.

The remainder of this chapter is organized as follows. The preliminaries about MIMO
FRM Systems are introduced in Section 6.1. Section 6.2 discusses the structure
identification of FRMs by using the NF network. The FRM model parameter
identification and training are discussed in Section 6.3. The effectiveness of the proposed

FRM identification technique is tested by simulations in Section 6.4.

6.1 Preliminary

According to the definitions of FRMs in Chapters 3 and the STP of logic matrices
proposed in Chapters 2, a general multi-variable FRM model can be constructed by two
modeling methods using the sampling training data pairs as discussed in Chapter 4. If a
training database can be obtained for the system of interest, the fuzzy relation function

M (%, V)= fran (xl,---,xn;y,,---,ym) will be established based on the FRM system

identification instead of the linguistic reasoning.
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Consider a general n-inputs and m-outputs FRM model with the following fuzzy

rules:
R:IF (x is X") AND---AND (x, is X),
THEN (y, is Y') AND---AND (y, is Y'), (6.1)

where all the parameters are assumed to be the same as in Eq. (5.1), including the centers

L I=1 M, k=1,2,-m.

Given an input x, = (x,, X, -, X,,) » C, =(c;,---,¢;')", and an initial FRM model

M ,(x, y) as constructed using the method in Section 4.3, the estimated output y, can be

computed as
Yio = f,,].jm (xm’ Xags "t xn()) = .\-MCA- > (62)

which can be rewritten as

Yo =S, (X)=R_C,, (6.3)

— R'(x,v,
where x, =(x,,x X — E( 0> Yro) H

RER ”) , R”0 , . :(1 1 --- I)DDIXM ,
” ’ H]xMRE('XO’ka) .

Ck =(C/i7"'9c/iw)T, k:1723'”’m-

However, these previous modeling techniques cannot optimize all parameters
(especially nonlinear parameters) of the FRM model in Eq. (6.1). In next section, the
parameters of both input and output variables will be optimized by a new NF network and

a hybrid training method.

6.2 Architecture Modeling of Neural-Fuzzy Systems based on FRMs

To optimize system parameters in the FRM system, a new NF and STP network approach,
NF-STP in short, will be proposed to identify the FRM model structure and train system
parameters. Fig. 6.1 illustrates the equivalent network architecture. It has five layers to

implement the related FRM and STP operations, as discussed below.
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Layer 1: Layer 2: Layer 3: Layer 4: Layer 5:
Input MFs  Input FRM ~ FRM Model ~ Output FRM  Ouput MFs

X1 V1
Vii(xn) Vi)

. . Vi @ Vi . .
xn ym
VEn(xn) VFm(ym)

Fig. 6.1. The structure of a proposed NF-STP model.

Layer 1: This input layer consists of fuzzy input vectors {x,, x,,---, x,}, which are
fuzzified by the corresponding input vector nodes with MFs E_ ={X,-, X"},

i=1,2,---,n. The MFs can be in the forms of triangle, trapezoid, sigmoid, Gaussian, etc.

The output of each node in this layer is a fuzzy vector expression

VEi(xi)z(//tX,!(xi )’”."ux_Ni(xi ))T’ i=1’ 2a“',n-

Layer 2: The inputs to this layer are fuzzy variable vectors V, (x,), i =1,2,---,n and

the corresponding STP of fuzzy logic matrices. The output of this layer is the vector V.
to be inputted to the FRM, which can be calculated by the fuzzy STP operation
V.= VE (x,-,x,)= VEl (x,)> VEZ(xZ) D> e > VE” (x,).

Layer 3: From the input V,_, the output of this layer is V,, or the output of the FRM,
Ve =V 3,) =V (y) >V (y,) > >V, (y,) . The initial FRM model of the fuzzy
system is formulated by the direct modeling method as discussed in Chapter 4. The
training of the FRM model parameters M ,(x, y) will be discussed in Section 6.3.

Layer 4: With the inputs V., the node output of this layer is the fuzzy variable vector
y. Oy, y,.---,y,} . When the FRM model M ,(x, y) is identified, the output FRM
V.(¥s¥,,-=,y,) can be calculated from the fuzzy STP operation and

Ve ¥y y,) =V (y )> Vo (y )V, (y ).
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Layer 5: Each output value is computed by the STP as the fuzzy reasoning operations

in this layer, and center-average defuzzification based on the vector

VFk(yk) :(luy,‘!(yk)’“.’luy‘M(yk))T’ k :1’ 2’...,m.

From the NF-STP identification operation as discussed above, the formulated FRM
model is functionally equivalent to an FRM model, except that the NF-STP network can
be used to train parameters for the FRM models. On the other hand, the structure here of
the NF-STP model is not unique. For example, layers 2 and 3 can be combined into a

more complex, but functionally equivalent layer.

6.3 Parameters Optimization based on the NF-STP Model

In general, the design of a fuzzy model includes processes of structure identification and
parameter optimization. In this section, in the proposed NF-STP model in Section 6.2, a
hybrid training method will be adopted to train the RFM model parameters. Without loss
of generality, consider the following MIMO TSK FRM model [154]:

R': IF (x, is X") AND---AND (x, is X),

_ ! ! ! _ I I 1
THEN (y,=c),tcx topx, +o000,x,) AND (y, =y + ¢y X + X, +0000),X,)

AND---AND (y, =ct +cl x +c x, +---c x), 1=1,2,-- .M. (6.4)

mn-n

In general, the TSK model in Eq. (6.4) is equivalent to m MISO TSK FRM models
such as:
R : IF (x, is X") AND---AND (x, is X™),
THEN (y,=c,, +tc,x +c,x, +cpx), [=1,2,--- M, k=1,2,---,m. (6.5)

k1771 kn""n

Consider P input-output training data pairs:

(xl(P)axz(P)a""x,,(P);yl(P)a yz(p)a"'a ym(p))’ pzl’ 27""P' (66)

The fuzzy variables in Eq. (6.4) and (6.5) are the same as those in Eq. (6.1) except

that in the /-th rule, the output variable y, is the first-order linear polynomial function of
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inputs, and CL, are the corresponding linear parameters x,, i =0,1,2,---,n, k=1,2,---,m,

[=1,2,---,M.

6.3.1 Linear parameter identification

The linear parameters ci,l. i=0,1,2,---,n,1=1,2,---,M , in the consequent part of the
fuzzy system in Eq. (6.5) can be updated similar to the centers in Eq. (6.2) by using some

classical optimization algorithm such as the LSE [155]. Firstly, based the Eq. (6.2)-(6.3),
the estimated output for the TSK FRM model in Eq. (6.5) can be determined by

V. =C TCX, +Cox, +--C X (6.7)

where each linear coefficient ¢,, i=0,1,2,---,n, [ =1,2,---,M , is estimated by the

following function:

&, = fan (X% x) =R, C, (6.8)

ki

R (x,y,)

where R (1) =——& """
H,,R.(x,y,)

s H v =(L 1, 1 00, Cy = (o)

ki

i=091929"'9n’ RE(-x’yk) :ij(j\)k) ::MR DVE(X),
Vi) =V, (x) >V () > >V, (x,), x=(x, %, x,), k=12, ---,m.

It is seen from Eq. (6.7) that a fuzzy system with an FRM model is a nonlinear
mapping from the input space x[J0" to the output space f. (x)00, represented by
the product of two matrices. In general, it is difficult to find the exact solutions of Eq.
(6.7). Therefore, in implementation, a hybrid algorithm will be proposed in this section to

search for the estimated value ¢, of ¢, , from the following objective function:

min E(c,) =mine’e = min”f;;M - ck,.(p)”? = min|
Cki Cki Cki - Cki

— P __
P —_ . 2
R c,—c "7 = min Z(R_\kcki -c_ ), (6.9)
p=

= R — P 1 P — oo T ¢
where e=R ¢, —c’ is the error vector produced by ¢, and ¢ =(c,,Cps "5C,,) 3

¢, (0) is the initial parameter, i =0,1,2,---,n, k =1,2, ---,m.
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It ETA EA is nonsingular (realized by choosing suitable sampling data pairs), the linear

parameters c,,,---, ¢, in f} (x) can be trained by the recursive LSE [155]. The optimal

estimation value c_(p) can be determined by:

() =c,(p=D+ K, (p)lug =b"(x))c,(p=1D]
K,(p) = P,(p=Db(x))Ib" (x))B,(p = Db(x)) +1]" (6.10)

P.(p)=B,(p=D=F,(p=Db(x)" (x) P, (p=Db(x)) +11"b" (x)) P, (p = D],

where P,(0) =0dl, 0 is alarge constant, and / is an identity matrix.

6.3.2 Nonlinear parameter identification
The nonlinear parameters in V, (x,) of the NF-FRM model (i.e., the MF parameters) can

be trained by using some nonlinear optimization algorithm such as the recursive RLM
[156, 157]. Consider MISO fuzzy systems in Eq. (6.5) with input variables

x=(x,x,,--+,x,). If a Gaussian function is used as the MF of the input fuzzy variable

X. .

i

u,(x) = exp{‘(’“‘;ﬁ’"j, 6.11)
X 20

il
where a, and 0, are the respective center and spread of a Gaussian function,

[=1,2,--- M,i=12,---,n.

6 =(a,,0,a,0,, - a,0c,) 00" is the nonlinear parameter to be updated by

nl 2
using the RLM. As an adaptive optimization algorithm, RLM possesses quadratic
convergence even if the initial estimates are relatively poor. Additionally, the RLM
algorithm has been proven globally convergent in many applications by properly

choosing the step variables [157].

In the implementation, the firing strength @ of the /-th rule of the fuzzy system in Eq.

(6.5) will be:

@ =4, (x) = e e, (6.12)
i=1 i i=1
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where ] can be chosen as a product T-norm operator. From Eq. (6.8), the k-th output

variable of the FRM system will be

Cy = ];iM(x):EvCI\‘:]:l—:

ki Xy ki

, (6.13)

where a“ => ¢,y ; b= @ ; and @ is the firing strength of the /-th fuzzy rule in Eq.

=1 =1
(6.5), 1=1,2,---,M .
The parameters g to be trained in the objective function in Eq. (6.9) can be expanded

by a Tayler series [156]:

G(p+)=6(p)+A (JJ, +nD"J!r,

P p

=6 (p)+AH, T,
=6(p)+d-a)H, Jr, (6.14)

where J 00" is the Jacobin matrix, H, 00" is the modified Hessian matrix,
1,00 is the identity matrix, @, =1-A is the forgetting factor, and 77 is the
learning factor.

The Hessian matrix can be described as

H =a,H, +(1-a)J'J, +n]). (6.15)

4

The RLM algorithm can be derived by incorporating a regularization term in the
Gauss-Newton optimization. In implementation, instead of computing the 2n X 2n matrix

n,I at each step, it considers only one of the diagonal elements of J J  such as:

H =a,H,  +(1-a)J'J, +2nq N), (6.16)

where AOO*™" has only one nonzero element located at p{mod(2n)+1} diagonal

position or
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1, if i=p{mod(2n)+1}, and t>2n
N, = (6.17)
0, otherwise.
Then Eq. (6.16) can be rewritten as
H =aH,_+(1-a)UV'U"), (6.18)

JT 710
where U" = ’ ,and V7' = )
0O - 010 -0 0 2nn,

The inversion of matrix H, in Eq. (6.18) can be computed by using the formula
(A+BCD)"' =A"-A"B(C"+DA"'B)"' DA™, (6.19)

where A=a H B=(1—aﬂ)U,C=V'1,and D=U".

p-17?

If A and (C"'+DA™'B) are nonsingular, from Eq. (6.19) and Eq. (6.14), by some

manipulation [156], the RLM algorithm can be represented as

6[)+1 = 0]’ + q)p‘]prp ?
1 .

q)p ZG—[CDP_I _q)p—lUS 1Y q)p-l] ’ (6.20)
P

S=aV+U'® U,

p-1
where 6, =0; S0 and its inverse matrix are in 2x2 and are easy to be implemented

for real-time applications; ®  is the covariance matrix with initial condition @, = oI

and p is a positive quantity.

6.3.3 Parameter training of the FRM model

From the above analysis, the parameter training procedure is implemented as follows:
Firstly, the MIMO FRM model can be established using the following A-th input-

output training data pair,

{x,(h), x,(h),--, x,(h); y,(h), y,(h),---,y, (W}, h=1,2,---,H . (6.21)
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Secondly, determine the MFs of each input variable with initial values of

6/(0) =(a,(0),0,/(0), a,,(0),0,/(0), -+, a,0),0,00) and (c,0),-,c, (0)) . The FRM

model y,(0) = fi, (x(0)) = R . can be formulated using Eq. (6.13), i =0,1,2,---,n

Thirdly, the linear parameters {c,} and nonlinear parameters {a,, g,} in the FRM

system will be trained by minimizing the following error function:

[yk(h) v, k=12, .m, h=1,2,-H, (6.22)

h

I\JI'—*

where y,(h)=¢,, + ¢, x,(h)+¢,x,(h)+---+¢, x,(h) , ¢, is the estimated linear

ki
parameter in Section 6.3.1, i =0,1,2,---,n, [=1,2,---,M .
The parameter training of the FRM model is implemented using the following steps:
1) Fix the nonlinear MF parameters in antecedents of rules; train the linear parameters
C, e, Choin fi (x) by the recursive LSE algorithm [155] in Eq. (6.10).

ki’ ki FRM

2) Fix the linear parameters in consequents of fuzzy rules; train the nonlinear MF

parameters 6, = (a,,0,,a,.,0,,,a,,d,) using the RLM algorithm [156] by Eq. (6.20).

3) Calculate the outputs of the FRM model: £ (x) = ((h};) , where b(h) = ia), and
=1
dhy =Y (.
1=l

4) Repeat steps 1) - 3) until all of the training data pairs are inputted to the system.

Terminate the training process when the training error e, in Eq. (6.22) is less than a

threshold (e.g., 107 in this case) or the number of training epochs has reached a threshold

(e.g., 200 in this case).

6.4 Numerical Simulation

6.4.1 The FRM prediction model

Some simulation tests will be undertaken in this section to examine the effectiveness of

the proposed STP-based FRM models. The simulation test is to use the FRM model to
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predict the future values of a variable in a data set from Mackey-Glass equation in Eq.

(6.23), which is a benchmark system in this research area [158, 159]:

_02x(t-71)

= ~0.1x(t). 6.23
1+x°(t-71) 0-1x(t) (623)

x(1)

where 7 is a time delay.

Consider a general n-input-m-output FRM model for s-steps-ahead prediction. For an
input horizon {x(k), x(k—s),---, x(k—(n—1)s)}, the output variables at the k-th time
instant are the forecasted values of states {x(k +s), x(k +2s), -+, x(k + ms)} . Each output
variable X(k + js), j=1,2,---,m, can be predicted by the following fuzzy model F,,,

formulated using the STP FRM model:
(R(k +5), &k +25), -+, &(k + ms)) = F,,,, (x(k), x(k =), -, x(k = (n=1)s), (6.24)

where k=1,2,3,---; s=1,2,3,---; m=1,2,3,---.

6.4.2 Direct FRM prediction modeling

There will be two strategies to formulate the MIMO FRM prediction models: direct and
recurrent prediction modeling. In using the direct FRM prediction, each future state of

{X(k +5), X(k +25), ---,X(k+ms)} can be forecasted through the following m MISO
FRM prediction models from {x(k), x(k —s),---, x(k—(n—=1)s)} :

ik+s) = fr, (xk), x(k=s), -, x(k=(n-1)s)),

xX(k+2s)=fr., (x(k), x(k—s), -+, x(k—(n—l)s)),

ik +ms) = fo (x(k), x(k-s), -, x(k—(n—-1)s)). (6.25)

Then the s-steps-ahead FRM prediction model will be F,,,, =[f s frens" "> frmi ] -

After the model parameters are identified by training, the model can be used to predict

future states of {X(k +s), X(k +2s),---, X(k + ms)}.
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6.4.3 The recurrent FRM prediction modeling

In using the recurrent FRM prediction, some of the predicted values will be fed back to
the prediction model as historical information. Different from the direct feedforward

FRM prediction models, the recurrent MIMO FRM model is:

2k +5)= £, (x(k), x(k=s), -, x(k—(n-1)s))
ik +25)= f, (R(k+5), x(k), -, x(k=(n-2)s)) 6.26)

Rk +ms) = £, (R +(m=1)s),-, &(k +5), x(k),-, x(k = (n—m+1)s)).

Eq. (6.26) is a specific prediction model of F,,, in Eq. (6.24) where each FRM

output has the same structure but different input variables. Consequently, only the

parameters in the first prediction model X(k +s) need to be identified, and the following
m—1 values {x(k +2s),---, X(k +ms)} can be recursively predicted using the same FRM
model f,,, -

Without loss of generality, a simulation example with m =2, n=3, s=3,71=6,
will be used for demonstration. Three inputs {x(k —6), x(k—3), x(k)} are used by the
recognized FRM model to predict {x(k +3), x(k +6)} . Comparison will be undertaken

between the direct FRM modeling and the recurrent FRM modeling. The simulation is

undertaken in Matlab R2016a.

6.4.4 Construction of FRM prediction models
The fuzzy model inputs {x,, x,, x,} are the states {x(k—6), x(k—3),x(k)}; the outputs
{x,,x,} are the predicted values of { X(k +3), X(k +6) }. Suppose each input variable has

two fuzzy sets with Sigmoid MFs of Small (S,) and Large ( L,), represented as:

(x) = :
Hs, (X, L+exp(-0,(x, —a,)) ’
1
M, (x)= (6.27)

L+exp(-0,(x;, —a,)) ’
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where a, and g, are the respective centers and spreads of the Sigmoid MFs, i =1, 2, 3, j

=1, 2.

As an example of Eq. (6.4), the first-order TSK fuzzy rules of the FRM prediction

model can be formulated as:
R : IF (xis X])AND (x,is X,) AND (x, is X;),

THEN (x,=b,,y +b,,,x, + b,,,x, + b ;x;) AND (x5 =b,5, + b5, X, +b,5,x, +b,5;x;), (6.28)
where X U{S,,L}, r=12,---,8.

According to the NF-STP construction and FRM optimization algorithms in Sections
6.2 to 6.3, the resulting FRM model will have 64 linear parameters and 12 nonlinear MF
parameters to be updated. If a "product” T-norm operator and a "maximum" S-norm
operator are used, and the fuzzy STP is used for fuzzy implication in FRM, by

defuzzification, the overall output x(k +3) and X(k +6) will be:

8
Z a)r (br40 + br4l'xl + br42'x2 + br43'x3 )

-2. = =l -
2w

r=1

2

rs r5]xl + br52x2 + br53'x3 )
X, =2 5 , (6.29)
2@
=1

,.

8
2 Wby *h
=1

where @ (n = 3) is the firing strength of rule R, r =1,2,---,8.

6.4.5 FRM parameter training

In NF-STP parameter training, the objective function will be formulated as:
Iy, 2 1. >
Ep) = [k -5 + [k -x @], p=1.2, P, (6.30)

The estimated outputs from the FRM prediction model are X, and X, in Eq. (6.29),

and x,and x, are actual outputs. There are 64 linear parameters to be updated by using
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the recursive LSE in Eq. (6.10), and 12 nonlinear parameters to be optimized by using the

RLM algorithm in Eq. (6.20).

6.4.6 Structure and parameter identification
In this simulation, x(0) =1.2 is selected in Eq. (6.23). The learning rate a =0.5 is
chosen (i.e., between 0 and 1). With P =2000 and Q =200, Fig. 6.2 shows the MFs of

these three input variables before and after training.
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Fig. 6.2. MFs in prediction models before and after training: (a) Input variable x,; (b) Input variable

X,; (c) input variable x;.

In implementation, six groups of data pairs are used to train the FRM models. The
mean results of these trained parameters in the six training groups will be used to

recognize the recursive FRM model. After training, the mean errors between the actual

outputs x, and predicted outputs X, are 0.0108 and 0.0043 for the direct prediction and
the recurrent prediction, respectively. The mean errors between x, and X, are 0.0109 and

0.0045 for the direct prediction and the recurrent prediction, respectively. Thus the
recurrent modeling outperforms the direct modeling, due to the use of historical

information.
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Next, the recurrent FRM prediction model will be used for advanced comparison
analysis. Fig. 6.3 shows simulation results of estimated outputs. It is seen that the original
linear fuzzy model before training becomes nonlinear after training, as the FRM applies

nonlinear mapping from the input space to the output space in prediction modeling.

Fig. 6.3. Decision surfaces of proposed recurrent FRM fuzzy prediction models: (a) Before training;

(b) After training.

To further examine the effectiveness of the proposed recurrent FRM modeling,
denoted as NF-STP, two other related techniques will be used for comparison for each
output variable, because the outputs of the MIMO FRM model should be realized
separately in simulation tests.

1) cFRM: the classical FRM technique without training. The cFRM predictor has the
same reasoning structure and initial parameters as in the FRM models in NF-STP, or with
8 fuzzy rules in the 3-inputs and 2-outputs FRM model and 2 MFs for each input variable.
It is used to compare the effectiveness of the training approach in NF-STP.

2) ANFIS: The ANFIS is a well-accepted NF model [159]. For comparison, ANFIS
will have the same first-order TSK reasoning architecture as illustrated in Eq. (6.28). It
has 8 rules, with 64 linear parameters and 12 nonlinear MF parameters, as in the NF-
FRM model. The ANFIS is trained by using the same training algorithms as in the NF-
STP: the nonlinear MF parameters are trained using the RLM algorithm and the

consequent linear parameters are optimized using the recursive LSE. Additionally, both
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the ANFIS and the NF-STP use the same initial parameters and learning rate, as well as
the same training data and training epochs.

Fig. 6.4 shows the comparison results of the related predictors for x, and x, ,
respectively. The root mean square errors for x, are 0.006, 0.021 and 0.069 for the NF-
STP, ANFIS and cFRM, respectively. The root mean square errors for x, are 0.007,
0.023 and 0.073 for the NF-STP, ANFIS and cFRM, respectively.

(@) =
—— Actual output e
|—— FRM output with trained parameters
08 [ —.—- ANFIS output
FRM output without training parameters
07 | | | | |
0 50 100 150 200 250 300
Number of data pair
1.2 T

11 . B T e i

®)
X FES —— Actual output
0.9 R
— — FRM output with trained parameters
0.8 —-—- ANFIS output
- FRM output without training parameters
0.7 T T T 1 1

0 50 100 150 200 250 300
number of data pair

Fig. 6.4. Prediction results of the related predictors: (a) Output variable x,; (b) Output variable xs.

Hence, the proposed NF-STP outperforms the cFRM due to its more efficient system
identification strategy and training operations. The NF-STP performs better than the
classical ANFIS predictor due to its more effective modeling strategy. Therefore, the
proposed NF-STP model can not only keep the merits of fuzzy systems in modeling

transparent and stability, but also possess the adaptive capability in parameter training.
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6.5 Concluding Remarks

Based on fuzzy STP, in this chapter, a new NF-STP technique has been proposed for
FRM system identification and parameter optimization. In fuzzy structure identification,
the fuzzy input-output relationship is modeled in a matrix representation while the fuzzy
reasoning operations are realized by STP operations. Consequently, it can avoid the
complex decomposition of multiple output variables, which still remains a challenge in
the conventional structure identification of MIMO fuzzy systems. An NF-STP framework
has been formulated to train FRM parameters. The effectiveness of the proposed NF-STP
technique is verified by the simulation tests of prediction for the Mackey-Glass time
series. The related contribution in this chapter has resulted in the following publications

(accepted or submitted):

(1) H. Lyu, W. Wang, X. Liu, “Parameter identification and optimization of continuous
MIMO fuzzy control systems by semi-tensor product”, Fuzzy Sets and Systems, ISSN
0165-0114, in press, available online 14 June 2021.

(2) H. Lyu, W. Wang, X. Liu, “Neural-fuzzy model based on hierarchical structure
matrix of MIMO systems via semi-tensor product”, IEEE Transactions on Fuzzy

Systems, submitted in 2021.
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Chapter 7 Development of an Adaptive FRM Control
System

It is well known that adaptive control systems are more suitable for applications in the
plants with uncertainties or unknown parameters than those based on general
mathematical models. Compared with traditional fuzzy control systems, an adaptive
fuzzy system can adjust unknown parameters by some adaptive law. On the other hand,
based on discussions in the previous chapters, the FRM models and fuzzy logic STP can
keep similar properties as the conventional fuzzy logic models, while the matrix
expression can provide advanced analysis of system properties. By this motivation, in this
chapter, a novel adaptive fuzzy controller will be developed based on the FRM models
and fuzzy STP approach for improving the control performance. The main contribution
includes: 1) Formulating the structure of a closed-loop fuzzy control system based on the
FRM and STP operations of logic matrices; 2) Designing an adaptive FRM controller in
which system parameters can be adjusted; 3) Analyzing the stability of the closed-loop
adaptive FRM control system based on Lyapunov methods.

This chapter is organized as follows. In Section 7.1, a closed-loop fuzzy control
system is developed based on the FRM model and STP algorithm. An adaptive fuzzy
control structure is developed based on FRM models in Section 7.2. An indirect adaptive
FRM controller is designed in Section 7.3, while its properties are discussed in Section
7.4. Finally, the effectiveness of the proposed adaptive FRM control system is verified

through simulations in Section 7.5.

7.1 Overview of Fuzzy Control based on the FRM and the STP

As discussed in Introduction, although the fuzzy control has some clear merits over
traditional control methods, it still faces some challenges in applications. For example,
the linguistic fuzzy inference could be difficult to model mathematically, or it lacks

appropriate mathematical tools for advanced analysis. The current research works in this
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field mainly focus on the SISO, two-input and single-output (TISO), and adaptive fuzzy
control systems [160, 161]; in contrast, MIMO fuzzy controllers are seldom considered
because of their complexity in structures and nonlinearity [162]. This section focuses on
the design of a non-adaptive FRM control system.

Consider a classical closed-loop feedback fuzzy control system shown in Fig. 7.1

[163], where the FRM model f

oy 18 @ general MIMO non-adaptive fuzzy controller. If

the setpoint is » and the output of the process is y, the input signal of the FRM controller
is the error variable e =r — y . If the fuzzy control is u = f,,, (¢), mathematically f,, is
used to represent a fuzzy relation between input and output variables:
ExXE x---xE - U xU,x---xU, , which is a nonlinear mapping from e = (e, e,,-:-,e,)
to u=(u,,u,,---,u,). The respective universes of discourse of e =(e,e,,---,e,) and
u=(u,u,--,u,)ae E=EXE x-..xE and U =U xU, %---xU, , where n and m are

the respective numbers of inputs and outputs.

Setpoint

FRM P Outpu‘i
Error | controller rocess

A

Feedback |«

Fig. 7.1. The structure of the closed-loop FRM control system.

The design of a non-adaptive FRM control system is undertaken by using the FRM to
replace the rule-base of a conventional fuzzy controller, and the fuzzy reasoning process
is replaced by a fuzzy STP algorithm. Thus, the construction of the closed-loop FRM
control system will focus on the matrix expression of fuzzy rules and fuzzy logic
reasoning based on FRM models and STP algorithms.

Given a set of input-output training data pairs, the FRM model

M, (e,u)y=M, (e1 S /AN AR um) can be constructed according to the procedure
from Eq. (4.1) to Eq. (4.11) in Section 4.2. Once an FRM model M (e, u) is constructed,

it is placed to the closed-loop system as the fuzzy controller. When the instant error e(r)
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is inputted to the FRM controller, the fuzzy control signal u(f) can be obtained. If
setpoints are given, the actual errors e’ =(e’,e ,---,e,) can be calculated using
measurements from the system outputs. Then, the fuzzy output vector
u’=(u ,u,,---,u, ) can be determined from M ,(e,u) and e" by fuzzy STP operation

(instead of the traditional fuzzy logic rule reasoning):

VU(ul*’u;’“.’um*) :MR DVE(el ’ez*"" € A)7 (71)

>*n

where V, (e ,e, ,---,e ) and V,(u, ,u, ,---,u_) are the fuzzy input vector and output
vector in the FRM controller, respectively. By proper defuzzification, the fuzzy control
output u” = (u, ,u, ,---,u ) can be obtained.

The detailed design for the adaptive FRM control system will be discussed in the

following sections.

7.2 Fundamental Design of the Adaptive FRM Controller

Fig. 7.2 provides an overview of the configuration of a classical adaptive fuzzy control
system. The reference model is used for the fuzzy control system to follow. The plant is
assumed to contain unknown parameters. An adaptive fuzzy controller is constructed
[158], based on a fuzzy system whose parameters & can be adjusted by some adaptive

law such that the plant output y(#) can track the reference model output y, (7).

—— | Reference model

u Plant

Fuzzy controller
(with adjustable -
parameters)

o,

> Adaptive FRM law
6,(0)

A

Fig. 7.2. Configuration of a classical adaptive fuzzy control system.
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In general, adaptive fuzzy controllers can be classified into three categories [164]:
indirect adaptive fuzzy control, direct adaptive fuzzy control, and hybrid (i.e., combined
indirect and direct) adaptive fuzzy control [165]. In the proposed adaptive FRM control
system, the fuzzy controller in Fig. 7.2 will be replaced by an FRM model.
Correspondingly, it has three types FRM controllers: indirect adaptive FRM controller,
direct adaptive FRM controller, and hybrid adaptive FRM controller. Therefore, a novelty
of this work is related to development of an adaptive FRM control based on FRM models
and fuzzy STP operations.

Assume that the plant is an n-th order continuous-time nonlinear system described by:

X, = x,
X, =X,
(7.2)
X, = f(x,x, -, x)+g(x,x,, -+, X )u
y=4x

where f and g are unknown functions, #[JJ and yU[L are the input and output
variables of the plant; x = (x,, x,, -, x,)" =(y, y,---, y")" 0O" is the state vector of the

plant.

In order for Eq. (7.2) to be controllable, it assumes that x is measurable and g(x) >0
for x in its controllability region U_.UU". In the nonlinear control literature [24], this
system is in a normal form and has a relative degree of n.

Firstly, the nonlinear functions f(x) and g(x) in the plant are assumed to be
unknown. The FRM models f‘ (x) and g(x) will be designed to describe the input-output

behaviors of f(x) and g(x), respectively. It is also assumed that some parameters & in

A

f(x) and g(x) can be modified during the online training operation. The control
objective is to design a feedback adaptive fuzzy controller # = u(x|6) and an adaptive

law to adjust parameters 8. The adaptive law can be used to determine an adjusting & so

as to minimize tracking errors and the parameter estimation errors.
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7.3 Design of the Indirect Adaptive Fuzzy Controller

In this section, the details will be discussed for designing an indirect adaptive fuzzy

controller using FRMs.

7.3.1 Construction of an indirect adaptive FRM controller

Suppose that the plant is an n-th order nonlinear system described by Eq. (7.2). The

objective is to design an FRM controller u = u(x| 0) and a fuzzy adaptive law for the
parameter 6 adjustment. Assume that variables x(7), 6(¢), and u = u(x| 0) are uniformly
bounded, or ||x(t)|| SM <o, ||9(t)|| <M, <o, and Hu(x| 9)” <M, <o for t=0, where

M_, M,,and M, are parameters depending on the controlled plant.
Since functions f(x) and g(x) in the plant are unknown nonlinear functions, the

following set of fuzzy rules will be used to describe the system behavior. Specifically

f(x) can be described by:

R/ : IF xis X! and ---and x,is X", THEN fis F", 1, =1,2,-,\M,. (1.3)

;-
g(x) can be characterized by:

R : IF xis X" and ---and x,is X", THEN gisG*, 1, =1,2,--,M_, (7.4

where the state x, is the i-th input of the FRM model; E; ={X;,---,X;V"f} and

8 — 1
EX,. _{X,'g"

n i-1
-',X;V’g} represent the input fuzzy sets; [, :pl+;[(pi—1)|;|N/f] ,
n i-1
p,O{L2, N, }: [, =q,+X[(g-D[IN 1. ¢, 0{2,--,N,}, i=1,2,---,n; F" and
’ i=2 =

G" denote the output fuzzy sets of fand g, respectively.

There are M, =[]_ N, fuzzy rules for FRM models M (x) in Eq. (7.3) and
M, =T1. N, fuzzy rules for FRM M (x) in Eq. (7.4), respectively. Suppose that output

fuzzy sets F " and G* in Egs. (7.3) and (7.4) are normal with the centers c;f and c;;“,
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respectively, [, =1,2,---,M lg =1,2,--.M,. Based on these fuzzy rules and Eq. (4.24),

- f

both f(x) and g(x) can be approximated by the following FRMs:

Mix): foo=f"x)=R6,=6R, (7.5)
Mi(x): g(x):=f""(x)=R,8, =0'R’, (7.6)
My\T Mxl 35 Rf ’ IxM X
where 8, =(c},---,¢;")" 00", R, :ﬁDD "W H,,, =01 - noo™,
1><Mf E

RI(x, /) =V, (f) = M bV, (x), V() =V, (x)>V, (x)5>V, (),

Vi, () = (g ()5, ()75
! if

6 :(Cl""’C[,V[g)TDDMKXI, E, :&DD'XMA', H]XM :(1 1 - I)DDIXMg,
8 8 8 g H Rg .

IxM E

8

R (x.8) =V, () =M? BV, (1), R, (0)=V, (x)>V, (x)b >V, (x,),

VE[g ('xi ) = (ﬂx;{.(x; )""’:ux_"’ig (xi ))T ’ i:1,2,"',l’l.

7.3.2 Design of an indirect adaptive FRM controller

Based on the above matrix expressions, if nonlinear functions f(x) and g(x) are known,
the control u(¢) can be made to cancel the nonlinearity. Specifically, if

e=y,—y, E=(eeé,---,e"") 00", and (7.7)

K=(k,k

n=1?

- k) 00", (7.8)

then, all roots of the polynomial s" +ks"" +---+k, are in the open left-half complex

plane. Then the control law can be selected as

u =

[-f(x)+y,” +K"E]. (7.9)
g(x)

Substituting Eq. (7.9) into Eq. (7.2), the closed-loop system will be governed by
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y(’” _ y(’” =—e" =K'E.

m

And then,

e(n) + KTE = e(/l) + kle(fl‘l) +...4 kne = 0 . (710)

It can be shown that e(r) - 0 as t — . Hence, the plant output y converges to the
ideal output y, . However, since f(x) and g(x) are unknown, it has no ideal controller
recognizable in Eq. (7.9).

Fortunately, the FRMs in Egs. (7.5)-(7.6) can be used to describe the input-output
behaviors of f(x) and g(x). Therefore, the proposed approach is to replace f(x) and
g(x) in Eq. (7.2) by FRMs f (x) and g(x), respectively, which are constructed from the

rules in Egs. (7.3)-(7.4).
If HZ(HfT, g’)" are the free parameters in f(x) and #(x) , 6’fDDMfX1 and

6,00"" . then f(x)=f(x6,) and 3(x) = g(x

¢,) can be employed to denote f(x)
and g(x) with free parameters. Replacing f(x) and g(x) in Eq. (7.2) by the FRM
models f (x‘ 6,) and gf(x‘ 6,) , respectively, the following fuzzy controller can be
obtained

u=u,(46)=1,(46,.6) =+9)[—f"<x\ 8)+y"+K'El,  (11D)

g

which is referred to as an adaptive FRM controller. If f (x)= f(x) and g(x)=g(x),
there exist no uncertainties in f and g, then the controller u,(x| @) will become the ideal

controller u” of Eq. (7.9).

The next task is to design an adaptive law for &, and &, optimization.

7.3.3 Design of an indirect adaptive FRM law

After some manipulations on Eq. (7.2) and Egs. (7.9)-(7.10), the closed-loop dynamics of

the fuzzy system can be obtained:

¢ =-K'E+[f(:{8,)~ f(x)]+[2(x{ 6,)~ g()]u,. (7.12)
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Let

0 1 0 O 0 O 0
0 0 1 0 0 O )
A=| - T T A 0 , (7.13)
0 0 0O 0 0 0 1 .
__ kn _kn—l _kl_
Eq. (7.12) can be rewritten into the following vector form
E=NE+b{[f(x6,)~ f()I+[8(x] 6,) - g(x)]u,}. (7.14)
The optimal parameters can be recognized by
6, = arg min | sup ]A’(x‘ 6,)-fx)|. (7.15)
SfDDMf Pk
6, = arg min [sup Hg(x‘ g,)- g(x)” . (7.16)
6,007 i

Consequently, f (x‘ Hf) and g(x‘ 9;) can be the optimal values of f(x) and g(x),

respectively [158]. Define the following minimum approximation error

w=LF(]8) = FOI+(x 6) = g(0)]u, . (7.17)

Eq. (7.14) can be rewritten as

E=NE+b{[f(x]6)~ (4 &)1 +[8(x

6,)-2(4 6 )lu, +w}. (7.18)

Substituting Eqgs. (7.5)-(7.6) into Eq. (7.18), the following closed-loop dynamic
equation can be obtained to specify the relationship between the tracking error e and the

controller parameters &, and &, :

E=NE+b[(8,-6,)' R/ +(6,-0) R} u, +w]. (7.19)
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The next task is to find an adaptive law to adjust FRM parameters &, and &, , so as to

minimize the tracking error e and the parameter errors e, =6, —H; and e, =6, —H;.

Consider the Lyapunov function

1 1 . o, ;
V=—E'PE+—(6,-6,))"(6,-6))+—(6,-6)"(6,-6)), 7.20
5 2y(f ) (6, -6)) 2y(g ) (0,-6,) (7.20)

f g

where ), >0, y,>0; P is a positive definite matrix that satisfies the following

Lyapunov equation
NP+P'N=-0Q, (7.21)

where QU™ is a positive definite matrix. The time derivative of V along the closed-

loop system trajectory Eq. (7.21) will be

V= —%ETPE + ETwa+yi(9f -8,)" (8, +y,E"PbR)) +yi(6’g -8)" (6, +y,E"PbRu,) .

f g

(7.22)
To minimize V, or equivalently to minimize the tracking error e, V should be

. . 1 T . . . . . .
negative. Since _EE PE is negative, we can choose an adaptive law to minimize the

approximation error w. Without loss of generality, we choose an adaptive law such that

the last two terms in Eq. (7.22) are zero. Hence, the adaptive law will be

6, =-y,E'PbR], (7.23)

0 =-y, ETPbIzTu, , (7.24)

g

which can be considered as a Lyapunov synthesis approach.

7.3.4 Design procedure of indirect adaptive FRM controllers

The procedures to design the indirect adaptive FRM controller are summarized as

follows:

Step 1: Initialization:
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 Specify k,,---,k, , such that all roots of s" +ks"" +---+k, =0 being located in the

open left-half plane.
* Specify a positive definite nXn matrix Q.

* Solve Lyapunov equation Eq. (7.21) to obtain a symmetric positive definite matrix P.

Determine the design constraints of parameters M, M,, M,.
Step 2: Modeling of initial FRM controllers:

* Specify the universe of discourse E = E x---xE_ for the state vector, and define N,

and N, fuzzy sets for X and X , respectively, here, p U{1,2,---,N,} ,

qiD{Lza'”aN,'g}’ i:1,2,"~,n.

* Construct fuzzy rules of f (x‘ 6,) and g(x‘ 6,) in Egs. (7.3)-(7.4), which comprise
N, XN, x---xN _ rules as Eq. (7.3) and N XN, X.--XN _ rules as Eq. (7.4),
respectively. Hence, the primary adaptive FRM controller is generated from Egs.

(7.5)-(7.6).

* (alculate the maximum values of M, and M, - Input them into &,(0) and &,(0), to

get ];(x‘ 6,) and g(x

0,) using Egs. (7.5)-(7.6).
Step 3: Adaptive control processes:

* Import the feedback control law Eq. (7.11) to the plant Eq. (7.2), where f‘ (x‘ «9/) and

...,kl)T.

g(x‘ Hg)are obtained from Egs. (7.5)-(7.6), where K = (k. k,_,,
* Adjust the parameter vectors @, and &, online by the adaptive law Egs. (7.23)-(7.24).

Fig. 7.3 illustrates the above design procedures of the proposed indirect adaptive
fuzzy control system. In general, fuzzy IF-THEN rules in Eqgs. (7.3)-(7.4) can be

combined with the initial parameters &,(0) and 0 ,(0) for modeling of an adaptive FRM

model in the design of f(x{ 8,) and §(x{6),).
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Eq.(7.2)

FRM controller -
Eq.(7.11)
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6.0,

—>»  Indirect fuzzy
67(0), O4(0) adaptive law
Eq.(7.23-24)

A

Fig. 7.3. The proposed indirect adaptive fuzzy control system.

7.4 Property Analysis of Indirect Adaptive FRM Control Systems

Consider the plant in Eqs. (7.3)-(7.4) with the controller u, (x‘ g,,6,) given in Eq. (7.11).
If parameters €, and &, can be adjusted by the adaptive law in Egs. (7.23)-(7.24),
f (x]60,) and g(x|0 ) in Egs. (7.5)-(7.6) can be estimated online for functions f(x) and

g(x) in Eq. (7.2). If f(x) and g(x) are bounded, the closed-loop fuzzy control system

satisfies the following properties:

(1) All variables x(t), €(t) and u = u(x| @) are uniformly bounded, or

1/2
N O A

m X

min

1/2
o] <280, o1 ool 2] b, <o

min

. n-=. 7 . . . .
where 120 ; Y =(y,,,,y,,,,---,y,,,( 1)) ; fU is the supremum; A_ is the minimum

m min

eigenvalue of P; and M,, M, M, are parameters related to the controlled plant.
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(2) If w is squared-integrable, then limhm||e(t)|| =0, which can meet the requirements

in designing a feedback FRM controller u = u(x| 0) and a fuzzy adaptive law for real-

time adjustment of the parameter vector € in Eq. (7.2).
The following remarks are given to summarize the adaptive fuzzy control systems:

Remark 1: The above properties (1) and (2) imply the original control objective, or the

plant output y follows the ideal output y, .

Remark 2: In real-world systems, there exist constraints for the state and control

variables.

Remark 3: A real-world control problem could be much more complex than the plant
model in Eq. (7.2). However, the proposed design strategy in this Chapter for the
adaptive fuzzy control based on the FRM and fuzzy STP can be expanded for general

modeling and control applications.

7.5 Applications and Simulation

The effectiveness of the proposed adaptive FRM control technique will be examined by
some simulation tests in this section. As an example, consider a first-order inverted
pendulum system [166]. The dynamic state equation of the inverted pendulum system

with state variables (x,, x,) can be described as:

X=X
: mlx; cos x, sin x, oS X,
gsinx, —
) m.+m m,+m , (7.25)
X, = 5 —u
/ 4 mcos” x, / 4 mcos” x
3 m.+tm 3 m.tm

where x, is the angle to the pole measured from the equilibrium position shown in Fig.
74; x,=X%; g=9.8m/s’ is the gravity acceleration; m is the mass of pole; m_ is the

mass of cart; 2/ is the length of pole; and u is the applied force.
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mlx: cos x, sin x, oS X,

gsinx, —

+ +
It is seen that both f(x) = m. T nm and g(x) = m, T m
/ 4 _mcos’ x, ] 4 _mcos’ x,
3 m+m 3 m+m

are complex nonlinear functions of state (x;, x2). Then the FRM models f (x) and 2(x)
are constructed so as to implement the proposed adaptive FRM control system.

Before simulation tests, we assume m =0.1 kilogram, m_ =1 kilogram, and

[ =0.5 meters. The control objective is to make the output y =x,, with the objective

sinusoidal signal y (1) = lsin(t) .

m

Fig. 7.4. An inverted pendulum system.

Before the proposed adaptive fuzzy control is applied, the primary offline design in
Section 7.3.1 is used for construction of an indirect adaptive FRM controller. Assume

that the universes of discourse of both x, and x, are [-72,71]. X! is the fuzzy set with

Gaussian MF U, (x,) for the state variable x,, i=1,2,/=1,2,---,5.
Fig. 7.5 shows the corresponding MFs of x,, similar procedures can be undertaken to

2
+7/6
optimize the MFs of x,, where My (x) = exp(— [—%j J,
! T

/J (x):ex —(LMJQ /,[ (x):ex _( xl jz
xp ) = EXP w24 ) | TR T g ) )
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o (x) = ex _(xl—n/lzy (%) = ex _(x,—n/6J2
x )= EP mi24 ) ) TR e ) )

1 AN
7N\ ]
0.8 /o §
o U. / \ 2
g / \ X3
206 \ X3
£ / \ 1
1% x4
204 1
£ 5
§ 0.2 / : \ X1

\\
O I | - -
-1 0.4 0.6 0.8 1

Fig. 7.5. The MFs of state variable of the inverted pendulum system.

According to the ranges of f(x,x,) and g(x,x,), select y,=50; y, =1; the
equilibrium point [x,, x,] =[0,0]" ; and the initial condition [x,(0), x,(0)] =[-77/60,0]" . If

10

k=2,k =1, QZ{O

0 15 5 .
, from Eq. (7.21), P = can be obtained.
10 5 5

Suppose u =0, then f(x,x,) equals the acceleration of angle x, . The following

initial fuzzy rules can be formulated from the given inverted pendulum system:
R: IF x, is X/, and x, is X,,, THEN f(x,x,) is c},

where X;D{X;,Xf,Xf,Xf,Xf} . and ¢, is a singleton output for f, i=1,2,
r=12,---,25.

Similarly, the fuzzy rules and FRM models of g(x,, x,) can be constructed as:
R": IF x is X/, and x, is X,, THEN g(x,x,) is ¢,

where X O{x, X}, X, X',X’} and ¢, is a singleton output for g, =12,
r=12,---,25.
The simulation of the proposed adaptive FRM control system can be run to track the

ideal output y . Figs. 7.6 and 7.7 show the processing results. It is seen from Fig. 7.6
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show that the state trajectory of x, and x,, respectively. The results in Fig. 7.7 show that
that the proposed adaptive FRM control system has the same control performance as the
traditional adaptive fuzzy control (FLC) if the control structures and parameters are
identical. Moreover, compared with non-adaptive control systems such as model
prediction control (MPC), adaptive FRM control system can provide much better

performance.
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Fig. 7.7. Comparison of the state in the inverted pendulum system.

7.6 Concluding Remarks

In this chapter, a novel adaptive fuzzy control system has been developed on the basis of
FRMs and fuzzy logic STP operations. An indirect adaptive FRM control law has been
derived for MIMO nonlinear systems. The design procedures and algorithms of the

indirect, direct and hybrid adaptive FRM control systems are similar. The effectiveness of
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the proposed indirect adaptive FRM control has been verified by simulation tests. The

related contribution in this chapter has been resulted in the following paper:

(1) H. Lyu, W. Wang, X. Liu, “Indirect adaptive fuzzy control of nonlinear systems based
on fuzzy relation matrix and semi-tensor product”, IEEE Transactions on Fuzzy

Systems, under revision, 2021.
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Chapter 8 Conclusions and Future Works

8.1 Research Conclusions

For general multi-variable systems, it is usually difficult to derive precise mathematical
models for MIMO nonlinear systems due to coupled variables, uncertainty, and
unpredictable disturbance, etc. In this dissertation, we have explored new fuzzy
formulation techniques based on the proposed FRM models and fuzzy logic STP
algorithms. This work aims to improve fuzzy rule representation, fuzzy reasoning
processes, fuzzy parameter optimization and adaptive fuzzy control systems, using FRM

matrix expression. The main contributions are summarized as follows:

1) STP of multi-valued logic matrices is proposed for the matrix expression of multi-
variable fuzzy relation based on some preliminaries about conventional STP operations
and multi-dimensional data representation. The fundamental properties of STPs are also

given (in Chapter 2).

2) The theoretical system of matrix expression is proposed for multi-variable fuzzy
systems. The vector expression of fuzzy variables and fuzzy relations and matrix
expression of multi-variable fuzzy relations are proposed. Then, the relation matrix of
multiple fuzzy variables is developed for the MIMO fuzzy rules-based systems based on

STP of logic matrices (in Chapter 3).

3) It is demonstrated that a general fuzzy system with an FRM model is a nonlinear
mapping from input to output variables and it can be represented by the product of two
matrices, after the fuzzy relation matrix (FRM) theory is extended from two-variable
relation matrix to the conventional MIMO fuzzy systems based on matrix expression of
multi-dimensional data and the fuzzy logic STP algorithms, and then, Next, the FRM
models are identified by a direct modeling and an indirect identification strategy using

sampling input-output training data (in Chapter 4).
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4) A universal approximation is proposed for a nonlinear multi-variable function via
FRM models and fuzzy logic STP algorithms. Then, the design algorithms are derived to
model TISO, MISO and MIMO fuzzy systems, and the approximation accuracy is
calculated for these fuzzy systems based on FRM models and fuzzy logic STP algorithms
(in Chapter 5).

5) System identification and parameter training are proposed for FRM models based
on a new neural-fuzzy STP network and fuzzy logic STP operations, where the linear and
nonlinear parameters in FRM models can be updated by a hybrid optimization algorithm.
In addition, the detailed parameter identification methods and training procedures are

summarized (in Chapter 6).

6) A closed-loop fuzzy control system is constructed through FRM models and fuzzy
logic STP. An indirect adaptive fuzzy controller is constructed on basis of FRM models
for a n-order nonlinear system with unknown parameters, and then a feedback adaptive
FRM controller and an adaptation law are designed for adjusting the unknown parameter.
The tracking convergence is investigated by employing a Lyapunov function candidate

(in Chapter 7).

The effectiveness of the related modeling and analysis techniques has been examined
through some numerical simulation examples. Test results show that the proposed FRM
is an efficient modeling technique for multiple-variable fuzzy models. Its identification
approach can realize the matrix expression of the fuzzy systems and train parameters of
MIMO FRM models. Additionally, the simulation results have shown that the fuzzy
systems based on FRMs have better performance than other related modeling and
identification techniques. It has potential to be implemented for real-world engineering

applications in system control, system state prognostics, and pattern classification.

8.2 Future Works

While working on these research areas, we recognized that it is a new theoretical
framework for MIMO fuzzy systems based on FRM models and fuzzy logic STP

operations, so there are several potential topics to be explored in the future, specifically:
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1) The current work mainly addressed the theoretical research about FRM models,
and the tests were based on the numerical simulations. The future research will
implement the FRM STP technology for real-world dynamic systems with noise and
uncertainty, for applications such as system control, system state prognostics, and pattern

classification.

2) The current numerical simulation examples were mainly based on some simple
mathematical models with limited conditions. In the future work, real-world examples
will be applied to investigate the effectiveness of the proposed theories and the potential

for real engineering applications.

3) The FRM models were constructed mainly based on input-output training data
pairs, which would be challenging in accurate and reliable representative data collection
and implementation. Another future research theme will be related to investigate the

complement of sampling database in FRM modeling and processing.

4) An FRM model in the current study is a matrix with each entry normalized within
[0, 1], to fit the fundamental properties of conventional matrices. Advanced studies will
be undertaken to propose new techniques in exploring the operations and properties of

FRMs under quasi-singularity and redundancy conditions.
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Appendix A
The proof of Eq. (4.29) in Section 4.3.2

In Section 4.3.2, the indirect modeling is discussed based on input-output training data in

Eq. (4.21) under the condition that the parameters C, =(c},---,¢]')" are unknown, the

FRM system is identified by using a LSE optimization algorithm in Eq. (4.22)-(4.29).

Given Q pairs of input-output training data sets:

A

C = (1?:11? Y'R'Y.. (4.29)

Xq v J
The proof of Eq. (4.29) is discussed as below.

To optimize Eq. (4.24) using the LSE, a general approach is to derive the derivative

of E(C;) withrespectto C; and set it to zero.
With CJR’Y, =Y/R C,, E(C,) in Eq. (4.25) can be expanded as
E(C)=(C]RT ~¥)XR C,~Y)

:QME

xq

C,=2YR C,+YY,. (A.1)

Taking the partial derivative of E(C;) with respect to C; yields

OE(C)) .~ = _,
IZ=2R'R C,-2R"Y.. (A.2)
acj g %y J xq J
Let
0E(C,
M:O, (A.3)
oC.

J

at C; = Cj . The following normal equation can be obtained:
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A

R'R C,=R"Y,. (A.4)

J xy 7

If ET E is nonsingular, then C‘J. can be solved uniquely as

A

C,=(R'R )'R'Y,. (A.5)

J %, %,

This is the proof of Eq. (4.29) in Chapter 4.
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