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Abstract

Power grids are critical cyber-physical systems that employ advanced Information and

Communication Technologies (ICTs), such as Wide Area Measurement Systems (WAMSs),

to deliver the energy to end users reliably and efficiently. WAMSs are used to collect

real-time data from Phasor Measurement Units (PMUs) to improve the operator’s situ-

ational awareness, as well as to enhance real-time monitoring and control of power sys-

tems. The WAMS, however, is vulnerable to cyber-attacks due to the susceptibility of

its components—such as PMUs and Phasor Data Concentrators (PDCs)—and the lack

of embedded security mechanisms in its communication protocols. Some more-destructive

cyber-attacks, such as malware injection, can propagate themselves into the components of

a WAMS through the communication network. Thus, in such attacks, an attacker can com-

promise a larger number of components, resulting in more-severe consequences. Therefore,

investigating the propagation of cyber-attacks in WAMSs and devising effective counter-

measures for this problem are of paramount importance. On this basis, this thesis initially

develops a model to analyze cyber-attack propagation in WAMS. Then, the impacts of the

attacker’s capability and the network operator’s defensive ability on attack propagation

are investigated in detail. Such a study can elucidate the required security measures and

defensive strategies to prevent the spread of cyber-attacks in WAMSs. Finally, a Learning-

Based Framework (LBF) is developed to estimate the attacker’s capability. Furthermore,

it is imperative to conduct a comprehensive examination of mitigation strategies aimed at

thwarting propagable attacks given their deleterious impact on WAMSs. On this basis,
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this thesis develops another LBF to estimate the required defensive strategy to counter the

propagation of cyber-attacks in WAMSs. Afterwards, through solving a Linear Program-

ming (LP) problem, this thesis develops a mitigation strategy to optimally reconfigure the

communication network and reduce the contamination probability for critical PMUs and

PDCs while maintaining the observability of the grid. The simulation results obtained from

IEEE 6-Bus and 14-Bus test systems corroborate the effectiveness of the proposed model,

LBFs and communication network reconfiguration strategy in analyzing and mitigating

the propagation of cyber-attacks in WAMSs.
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Chapter 1

Introduction

A Smart Grid (SG) is a distributed, intelligent network for delivering electricity that al-

lows for bidirectional power and data flows. The SGs can respond to various situations

and events and provide more efficient power delivery thanks to advanced information tech-

nology. Generally speaking, the SG can adapt its methods based on events that occur

anywhere in the grid, including generation, transmission, distribution, and consumption.

For instance, the SG may automatically alter the power flow and restore power delivery

service in the case of a medium voltage transformer failure incident in the distribution

grid. More precisely, the SG is an electricity system integrating clean energy generation,

transmission, substations, distribution, and consumption with cyber-secure two-way com-

munication technologies and computational intelligence [1]. As stated by the Institute of

Standards and Technology (NIST) [2], there are seven domains in an SG, including gen-
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eration, transmission, distribution, customer, markets, service provider, and operations,

which consists of actors and applications. This model results in a clean, secure, reliable,

resilient, efficient, and sustainable system. The traditional power system has served the

world for many decades, but with the emergence of new technologies, the previously-used

grid has become outdated and almost unable to meet the growing electricity demand. One

of these technologies is WAMS which significantly increase the efficiency and reliability of

power systems.

Due to an increase in power demands that have not been matched by an increase in

generation capacity, the electrical grids are currently operating near their stability limits.

This can be exploited by attackers and become a serious issue as it jeopardizes the opera-

tional security and reliability of the SGs, resulting in costly blackouts and environmental

damage. Large blackouts and outages in recent years, such as the 2003 North American

blackout and the 2015 Ukrainian blackout, have drawn attention to the SG’s flaws. Critical

problems with the system’s stability arise from its inability to perform automated anal-

ysis, its poor response time, and its limited situational awareness. Therefore, managing,

operating, and controlling the grid effectively and safely involves complicated technological

activities that can be carried out at different times and in different locations. On this basis,

WAMSs are used in power networks to improve the situational awareness of the operator,

as well as to facilitate real-time control and protection decisions. In WAMSs, Phasor Data

Concentrator (PDC)s collect time-synchronized data of PMUs through the communication

system, and direct it to the control center to be used in wide-area control and protection
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applications.Due to the dependence of WAMSs on information and communication tech-

nologies, cyber-attacks can target these systems and propagate through them, i.e., infect

a greater number of components by accessing and controlling a few of them [3].

1.1 Smart Grids and their security challenges

This section elaborates on security requirements and security challenges of SGs. The NIST

has established three criteria— i.e., confidentiality, integrity, and availability—for ensuring

the safety of data in the SGs, which are explained as follows [2].

1. Confidentiality

Generally, confidentiality is the maintenance of appropriate limits on the distribution

and use of private information. In other words, the confidentiality criteria necessitate

preventing unauthorized parties from gaining access to or disclosing sensitive infor-

mation. Confidentiality is broken when information is shared without permission [4].

For example, the transmission of sensitive customer data between the customer and

third parties, including the consumption of customer, and billing information, must

be encrypted and secured to prevent unauthorized access, manipulation, or use.

2. Availability

The term ”availability” refers to the fact that information must be retrieved and

used when needed. Loss of availability causes disruption of access to information in
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a SG, hence it is widely regarded as the most important security requirement in the

SG [4]. For instance, the unavailability of information flow due to various reasons

can disrupt the functioning of the control system, thus preventing the network from

being accessible to the system’s operators for control purposes.

3. Integrity

In the context of the SG, data integrity includes preventing unauthorized access, use,

disclosure, modification, or deletion. A breach of integrity occurs when information is

corrupted, changed, or deleted without detection. For example, by manipulating the

PMUs in WAMS, an adversary can conduct a malicious attack on the state estimator

[4].

1.1.1 Security Challenges

In order to implement SGs, a robust information and communication infrastructure must

be built and deployed to facilitate a higher level of situational awareness and more efficient

control. This is essential for the functioning of large-scale applications and systems, such as

those involved in wide-area measurement and management of electricity demand, electricity

storage and transmission, and distribution automation. However, integrating cyber and

physical systems raises several difficulties due to human behavior, commercial interests,

regulatory policy, and even political issues. Here are some of the cyber-security challenges

faced by SGs [5].

4



1. Lack of standardization

One of the most important security challenges in SGs is the lack of standardiza-

tion. Many parties, including utilities, regulators, equipment manufacturers, service

providers, and end users, are involved in SGs. The employment of various tech-

nologies, protocols, and standards by each stakeholder may lead to problems with

interoperability and a higher risk of cyberattacks. For instance, it may be challenging

to establish secure and dependable communication across different SG devices since

they may employ various communication protocols [6].

2. Interconnectedness

Another issue with the security of SGs is their inherent interconnectedness. In or-

der to function properly, SGs rely on a vast infrastructure of interconnected devices,

sensors, and communication infrastructures. Because of this interconnection, cyber-

criminals have more opportunities to find weak points in systems and launch attacks

that might seriously harm the functioning of the grid and the availability of elec-

tricity. The security of SGs is complicated by their interconnected nature. First, as

more devices and systems become grid-connected, the attack surface grows. As a

result, it may be less difficult for malicious actors to identify entry points and launch

attacks. Second, grid complexity is increased through interconnection, making it

more difficult to detect and counteract cyber threats. Finally, a cyber attack on one

area of the grid might spread to other parts and create significant damage due to
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the interconnected nature of the grid. For instance, an entire region’s power may

go out, if a cyberattack targets just one substation. Furthermore, the security of

the entire grid, including access to private information, control systems, and physical

infrastructure, might be compromised by an attack on a single device or sensor [7].

3. Complexity

The system’s complexity is another major obstacle to SG’s security. Generally, several

hardware, software, and communication protocol layers are required to operate an

SG. Due to the complexity of SGs, there are numerous entry points through which

attackers can have access to confidential information and sensitive infrastructures

that disrupt the entire grid. The security of SGs is difficult to ensure because of

the system’s complexity. For instance, with a vast number of sensors and systems,

monitoring the SG and detecting malicious activities is more complex. Furthermore,

SG’s increased vulnerability to cyber-attacks is exacerbated by the fact that different

communication protocols are used [8]

4. Limited security measures

SGs have a huge security issue due to inadequate security measures. While SGs

are intended to be more secure than conventional power grids, keeping up with new

security risks can be challenging due to the complexity and quick evolution of the

technology. As a result, many SG stakeholders may be susceptible to cyber-attacks

due to the lack of robust security mechanisms. It’s possible, for instance, that the
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firewalls and intrusion detection systems utilized by some utilities are insufficient.

It’s also possible that certain manufacturers of electronic gadgets may not use strong

security measures like encryption or secure boot, leaving their products open to hack-

ing. In addition, cybercriminals may use system flaws to steal private information or

sabotage grid operations. Social engineering is another tactic they might use to get

victims to provide sensitive information or even download malicious software [9].

5. Insider threats

SGs face a serious security risk from insiders. An insider threat is a person who has

legitimate access to the system but uses that access to compromise its safety or func-

tionality. Anybody with access to the system qualifies, whether they are employees,

contractors, vendors, or anyone else. Insider attacks provide a serious challenge to

the safety and reliability of SGs. A dissatisfied employee, for instance, may under-

mine the grid’s operations, leak important data, or steal intellectual property. A

similar scenario might occur when an employee makes an inadvertent error or falls

for a phishing email and clicks on the attached link [10].

6. Advanced persistent threats

Another major issue with SG security is Advanced Persistent Threat (APT)s. APTs

refer to sophisticated and targeted cyberattacks that are designed to infiltrate a sys-

tem and remain undetected for an extended period. Nation-states, organized criminal

groups, and other APT actors often target sensitive data, disrupt operations, and
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seize control of crucial infrastructure when launching an APT. In the context of SGs,

APTs can significantly compromise the reliability and safety of the infrastructure. If

an APT attack is successful, it can compromise the entire grid, causing outages and

other problems. Moreover, APT assaults can be difficult to identify and counteract

since they are frequently created to circumvent common defenses [11].

1.2 Wide Area Measurement System

Wide Area Monitoring, Protection, and Control (WAMPAC) system is a cutting-edge tech-

nology to enhance the operation of power grids in real-time, specially when local controllers

and protection relays are ineffective. The WAMS is a critical component of WAMPAC ap-

plications, since it provides them with the data collected from throughout the grid. A

WAMS consists of various components, such as PMUs, PDCs, communication routers and

links, and a Super PDC (SPDC). In fact, a WAMS acquires the data using the measure-

ment system, transmits it through the communication network, and processes it in the

control center before sending it to control and protection applications [12, 13].

1.2.1 WAMS Components

1. Phasor Measurement Units

Over the last decade, PMUs have become increasingly common in the SG transmis-

sion system, as they provide an excellent way to measure the grid’s performance and
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improve its operation. PMUs measure voltage, current, and frequency at specific

points in the grid. PMUs sample measurements hundreds of times per second and

use this data to calculate phasor values, which are complex numbers that represent

the magnitude and phase angle of the waveforms of voltage or current at a specific

point in time. PMUs also include upgraded relay and digital fault recorders, which

capture data during events such as equipment failure or generator tripping [14]. The

term ”synchrophasor” refers to a phasor that has been estimated at a specific instant,

known as the time tag of the synchrophasor. To obtain simultaneous measurements

of phasors across a wide area of the power system, it is necessary to synchronize the

time tags so that all phasor measurements that belong to the same time tag are gen-

uinely simultaneous. Synchrophasors are essentially phasors that are synchronized

to an accurate time source. PMUs are synchronized to Coordinated Universal Time

(UTC), which is an internationally recognized time standard. The UTC time can be

obtained through the Global Positioning System (GPS), which was created by the

U.S. Department of Defense to make navigation easier and broadcast precise time

and location information [15].

2. Communication Infrastructure

Phasor data and other information are transmitted from the PMUs to the control

center and vice versa via a communication architecture in WAMSs. In WAMS, a

mix of wired and wireless networks forms the backbone of the system’s communica-

tion architecture. The PMUs and the control center depend on the communication
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infrastructure to reliably and promptly send and receive phasor data and other infor-

mation. The communication infrastructure must be able to convey the large amounts

of data produced by WAMS without any interruptions or delays [16, 14].

In addition to a communication medium, PMUs require a communication protocol to

transmit synchrophasor measurements to their intended destination, such as a PDC.

The capacity and latency of the communication channel are essential performance-

related features. A variety of protocols have been proposed and continue to evolve,

including BPA/PDCstream, IEEE Std 1344-1995 (which is discouraged), IEEE Std

C37.118-2005, IEEE Std C37.118.2-2011, and IEC 61850-90-5 protocols. The two

most widely used standards at present are the IEEE Std C37.118.2-2011 and the

IEC 61850-90-5 protocols [16]. Safe and reliable operation of the electricity system

also depends on the security of the communication infrastructure. Cyber-attacks and

other risks that could interrupt the power system’s operation must be prevented from

damaging the communication infrastructure.

3. Phasor Data Concentrators (PDCs)

A PDC is a node in a WAMS that processes synchrophasor data from various PMUs

and outputs it as a single stream to higher-level PDCs or applications. The PDC

groups measurements from different PMUs that have the same timestamp into a

buffer that is time-stamped. Once the buffer is full, the PDC sends the measurements

to other PDCs and/or Synchrophasor applications. However, communication delays
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may occur due to intentional cyber attacks or unintentional communication failures,

which could cause the PDC to wait for delayed measurements before forwarding them.

This waiting time may violate the real-time requirements of some applications. To

address this, a modification has been made that includes a timer for each time-

stamped buffer. For example, in one type of waiting time, the timer starts when the

first measurement with a new timestamp arrives at the PDC, and the PDC assigns

a new buffer to this measurement and starts the timer. When the timer goes off, the

PDC forwards the received measurements without waiting for all the measurements

to arrive [17].

4. Control Center

Phasor data and other information from PMUs are gathered, processed, and analyzed

at the control center of a WAMS. As it is responsible for monitoring and controlling

the power system in real-time, the control center plays a crucial role in its smooth op-

eration. Servers, interfaces for communication, databases, and programs to process,

analyze, and display data are all common hardware and software components found

in the control center. It should be noted that, to effectively monitor and control the

power system, the control center must be secure and dependable as well as be able

to handle substantial amounts of data in real-time [18].
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1.2.2 Taxonomy of Cyber-Attacks Against WAMSs

Generally, attacks can exploit the vulnerabilities of WAMSs in SGs for modification, in-

terception, or interruption of data. These vulnerabilities are mainly due to the lack of

physical security, inadequate authentication, improper data protection, insufficient access

control, weak programming practices, and insufficient audit mechanisms [19]. The following

subsections enumerate the major families of attacks against WAMSs in SGs.

1. Physical attacks

WAMSs devices and nodes are subject to physical damages, such as storage re-

moval, firmware manipulation, tampering attacks, or information extraction using

open communication ports [20]. WAMS devices are often able to communicate and

change settings through communication systems. An attacker with access to the in-

put/output ports of a WAMS object can change the parameters of devices and cause

unwanted operations. Moreover, using these ports, cyber-attacks can take control

of devices, manipulate their firmware, and inject codes that cause them to act ma-

liciously or even to be destroyed [21]. The change of firmware might also include a

downgrade to previous versions, where known vulnerabilities exist. In such a condi-

tion, an adversary can benefit from the known vulnerabilities and take the control

of devices. For instance, attackers can remove the storage of a device to extract its

data and also learn about the connections of devices in the network to plan for the

next stages of an attack, or gather information about other devices that communicate
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with the targeted device.

2. Firmware modification attacks

With physical access to a device, an attacker can replace the default firmware of the

device with a malicious one [22]. This intrusion gives attackers the full control of the

device, if they are present physically close to it or remotely through the communi-

cation system. In the latter case, the attack can be categorized as a threat to the

network layer.

3. Device capture/node replication attacks

An attacker can perform a device capture/node replication attack, in which a mali-

cious node is added to an existing network by adapting the ID number of a legitimate

node in the system [23]. With the malicious node camouflaged, the attacker can per-

form malicious activities, such as rerouting or dumping packets. Hence, this type of

attack can compromise the functionality of the entire WAMS [24]. Due to the lack of

sufficient auditing, this type of attack would not be identified easily and the operators

will not notice that a legitimate node has been removed in the first place, since the

power consumption remains almost unchanged. It should be mentioned that even

though the malicious node has the identity of a benign node, there would be a slight

imbalance in energy consumption, which can be detected if there is continuous audit

of power consumption throughout the system.

4. Denial of Service (DoS) attacks

13



DoS attacks can occur in the form of firmware/software, physical, or network damage.

In the case of firmware/software damage, the attack can be categorized as a threat

against the cyber layer, whereas a loss of communication results in an attack on

the network layer of WAMSs. DoS attacks negatively impact service availability,

and occur by disabling the WAMS from performing its duties. It typically happens

because of (i) a flood of requests over the service host, resulting in a full buffer in

the ports of devices (i.e., routers, or servers); (ii) physical removal of a device; and

(iii) interrupting the communication between devices when data transfer is required.

DoS attacks are categorized as either temporary or permanent. Devices with low/no

security update mechanisms may be vulnerable to malicious firmware updates, and

can be used as a bot for sending floods of requests to the network to clog services.

A destructive update can also disable nodes or result in their malfunction, possibly

when the update targets specific parts of the memory [25].

5. Node jamming attacks

This attack happens when an adversary obscures network connection by interfering

signals, such as jamming radio frequency signals. This type of attack disrupts the

availability of WAMSs since target nodes and devices can no longer be reached or con-

trolled [26]. Additionally, node jamming attacks make time-critical data unavailable

[27]. This type of attack can be also performed to disrupt the communication sys-

tem by decreasing the Signal-to-Interference-plus-Noise ratio, which is often greater

than one in normal situations. To perform such an attack, the adversary must have
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knowledge about the frequency and the modulation technique used by the target

device.

6. False Data Injection Attack (FDIA)s

Compromising the integrity of data by deliberate injection of false information is

categorized as an FDIA. Generally speaking, in an FDIA, the data that is gathered

by WAMS devices are manipulated to portray a fake condition in the underlying

system or hide an event. In this attack, an adversary can also take advantage of the

limited error rate tolerance of the system, and gradually raise the effect of false data

such that the attack remains unnoticed. FDIAs in cyber-controlled networks have a

significant effect on the system’s performance, and can result in a system failure [28].

In FDIAs, even a small portion of false data can disrupt the entire WAMS. Thus,

adversaries can optimize their attacks to reach the intended goal with the minimum

adversarial efforts, so keeping the attack stealthy [27].

7. Eavesdropping

In this type of attack, secret information is collected from communication nodes and

devices. Corrupted devices in a WAMS, including compromised nodes, may leak

the systems’ traffic and expose confidential information [29]. Additionally, network

eavesdropping—which is often referred to as network snooping or sniffing—occurs

when attackers exploit insecure or vulnerable networks to access the data transmit-

ted between two devices. This attack is among the most common ones in wireless

15



communication.

8. Side-channel attacks

This type of attack aims to extract private information, such as encryption keys, by

recording and analyzing the Side-channel activities of WAMS devices, such as timing,

power consumption, and electromagnetic radiations [30]. Secret keys, for example,

can be retrieved by the statistical analysis of the timing or power consumption of

cryptographic algorithm executions, or the consequences of incorrect executions. The

data protected in encrypted packets can be exposed by analyzing their length and

processing time. A side-channel attack is fatal when the information is extracted

while a system is operating. For instance, PMU communication infrastructure is

vulnerable to timing side-channel attacks, in which the Hash-based Message Authen-

tication Code (H-MAC) algorithm can be compromised by monitoring its execution

time. This attack can model some security features of the stored key, e.g., its length

and processing time, to decrypt the data [31].

9. Dictionary/brute-force attacks

A dictionary attack is a brute-force technique, in which attackers bombard a de-

vice/software with a set of known credentials to guess passwords. This attack is pos-

sible when authentication mechanisms are weak, and becomes easier when factory-set

credentials are still in place and not updated [22]. Therefore, not updating the users’

credentials [32] and utilizing weak privacy policies [24] can enable an adversary to
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gain high-level access to the system and control it after performing a dictionary at-

tack. Additionally, this attack is effective when log in attempts and user credentials

are not logged, or when there are devices with the same credentials.

10. Code injection

Similar to poor/malicious updates for the physical layer of WAMSs, malign updates

to applications and servers may trigger security problems, such as data leakage, data

loss, and unwanted control. It is worth mentioning that this attack can also target

the physical layer when the adversary physically inserts some malicious codes into a

WAMS device. This can happen, for instance, by attaching a malicious gadget to the

target node and, on occasion, rewriting the target’s operating system. Structured

Query Language (SQL) injection is a type of code injection attack to acquire ad-

ministrator access to databases by exploiting vulnerabilities in the victim’s network

infrastructure.

11. Attacks using viruses and malware

Viruses and Worms can be injected into WAMS applications using, for instance, back-

door methods, which essentially bypass the main authorization system, embedded for

developers or maintenance intentions. Primarily, default passwords and out-of-date

interfaces lead to backdoor exposures [33]. In contrast to computer viruses, which

need a host in order to thrive, computer worms are able to thrive on their own and

propagate more quickly. A viruse can replicate itself and spread from one WAMS de-
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vice to another. It infects each system by embedding itself in a variety of applications

and running the code when a user starts utilizing the infected software. With the aid

of this malicious application, the adversary may steal information, create botnets,

and harm the host machine. A worm, however, spreads over a network by looking for

a vulnerable operating system. It operates on the system to cause damage to their

host networks by, for instance, overloading web servers and occupying the bandwidth

[34].

12. Reverse Engineering

Attackers can gain sensitive information about a system by reverse engineering its

source codes. Using this strategy, attackers can identify sensitive information left by

software programmers, such as hard-coded credentials and defects, and exploit it to

launch attacks. Extracted information can be used to plan future assaults against

the devices or to develop and employ malicious malware for them [35].

13. Man in the Middle attack

The communication between two victim WAMS devices may be intercepted by a

third agent or device that privately hands over messages between the victims without

letting them know they are actually conversing with the agent. This way the agent

can either eavesdrop on the conversation or inject malicious information [36]. This

type of intrusion may occur mostly when there is no or a poor encryption mechanism

in place [20].
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14. Spoofing

Spoofing occurs when an attacker succeeds to pretend itself as a legitimate source

and gains control over a data stream, such as GPS and network time protocol [37].

This attack is carried out by disguising the attacker’s identity and pretending as a

trusted source instead. This type of attack often leads to data leakage, and can be

leveraged to design more sophisticated attacks.

1.2.3 Cyber-attack propagation in WAMS: Literature Review

The pronounced role of WAMPAC systems in improving the reliability and operation of

power grids has persuaded operators to install more PMUs across their grids. For instance,

the U.S. department of energy plans to add thousands of PMUs to the power grid over

the next few years as a part of the SG initiative efforts [38]. The increased number of

PMUs and the larger scale of WAMSs, however, result in a larger attack surface, which

can make it easier for attackers to find vulnerabilities and gain unauthorized access to

critical data and applications. Thus, WAMSs—which were initially developed to enhance

the grid operation in critical situations—can now be exploited by attackers to negatively

impact the integrity and stability of the grid.

In general, a WAMS can be targeted by cyber-attacks that originate from (i) the com-

munication system, (ii) physical devices, (iii) the control center, and (iv) the time synchro-

nization mechanism used by PMUs and PDCs. Given that the existing communication
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protocols for WAMSs lack effective security mechanisms [39], the measurements and com-

munication commands can be targeted by attacks, such as Radio Frequency (RF) jamming,

wireless scrambling, eavesdropping, and FDIAs [40, 41]. In addition to the communication

system, the physical components of WAMSs—such as PMUs, routers, and PDCs—can be

targeted physically, by supply chain attacks, or by compromising the substations where

these devices are installed in [42, 43]. Moreover, an attacker can compromise the WAMS

by intruding into the Local Area Network (LAN) of the control center and accessing the

center’s facilities [44, 45]. This vulnerability has been proven by the attacks that paralyzed

the Ukrainian power system in 2015 and 2016 [46]. Finally, cyber-attacks can compromise

WAMSs by targeting their time-synchronization mechanisms, including (i) space-based,

such as GPS [47], and (ii) network-based, e.g., precision time protocol (PTP) [48]. For

instance, GPS receiver of PMUs can be compromised by spoofing or reply attacks [49],

and PTP time reference can be maliciously altered by launching deception or delay attacks

on broadcasting synchronization messages [49].

Propagable cyber-attacks, such as malware, are a destructive family of intrusions capa-

ble of spreading or propagating themselves across systems (e.g., WAMSs) without requir-

ing manual intervention [50]. For instance, BlackEnergy malware was used by hackers in

December 2015 to compromise the information systems of three energy distribution com-

panies in Ukraine, resulting in disruption of energy to consumers [51]. The vast diversity of

propagable cyber-attacks and their distinct behavior in different networks make defending

against these attacks a challenging task [52]. Thus, it is crucial to investigate the behavior
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of propagable cyber-attacks to prevent and mitigate their spread in WAMSs.

Propagation of cyber-attacks in CPSs has been extensively studied in the literature.

For example, the authors of [53] examine malware injection attacks against power systems.

This study also determine the best attacking time to impose the maximum damage to the

system, while keeping the detection risk low. Attack propagation in the SCADA system

is investigated in [54]. The researchers in this study show that not only does this family

of attacks affect the physical components and authenticity of data, but also it impacts the

power generation capability of SGs. Attack propagation by malware in advanced meter-

ing infrastructures is studied in [55]. This study determines the optimal time of on-site

investigation and monitoring to detect malware. The authors of [56] develop an epidemic

model for attack propagation in wireless sensor networks to investigate the performance of

various control methods (e.g., vaccination and quarantine) on ceasing the spread of mal-

ware. Reference [57] presents an attack propagation model that considers the heterogeneity

of sensor nodes in communication networks. The model also takes into account the con-

cealment of malware and malfunctioning of sensor nodes. This reference also proposes a

malware spread threshold to predict whether malware will continue to proliferate or die out.

The authors of [58] develop an optimization model to prevent the spread of cyber-attacks

in a computer network. This model solves a mixed integer linear programming problem

and identifies which nodes should be disconnected from the network in order to maximize

the number of users who can access the network resources. This optimization problem

keeps the infection probabilities of connected nodes below a specific threshold. Although
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the above-mentioned techniques are effective for Cyber-Physical System (CPS)s for which

they were originally developed, they might not be effective for WAMSs. This inefficacy

is due to the inherent distinctions between WAMSs and above-mentioned CPSs (e.g., the

types of components and communication protocols are different), as well as the concept of

observability in power systems, which must be maintained. Thus, attack propagation in

WAMSs must be modeled by considering the details of this system, and countermeasures

must be developed according to the operational constraints of power grids.

To the best of the authors’ knowledge, there are only two main studies in the literature

that focus on attack propagation in WAMSs. In the first study, i.e., in [59], the authors de-

velop a probabilistic approach to calculate the infection probability of healthy PMUs when

one or more PMUs are infected. This paper also presents an optimization framework to

minimize the propagation of attacks by disconnecting PMUs whose infection probabilities

are high. Although this technique can prevent the spread of cyber-attacks, it negatively

impacts the observability of the system by disconnecting uninfected PMUs. The second

study, i.e., [60], investigates the relationship between communication network routing and

cyber-attack propagation in WAMSs. To barricade the spread of cyber-attacks from PMUs

to PDCs, the authors of this study propose to reroute the communication network and con-

nect the PMUs and PDCs through longer communication trees. This technique, however,

negatively affect the reliability of the communication network. Additionally, this study

does not consider the probability of attack propagation through the communication links

that are not parts of the longer communication trees. Additionally, both of these studies
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develop their countermeasures by assuming that the abilities of adversaries are known from

the beginning of attacks, which is not realistic.

1.3 Research Objectives

Driven by the above-mentioned motivations and research gaps, this dissertation first devel-

ops a mathematical model for attack propagation in WAMSs and studies the impacts of the

attacker’s capability and the network operator’s defense ability on the spread of a cyber-

attack through the system. Additionally, an LBF is developed to estimate an attacker’s

capability, which is crucial for defending effectively against the attack. In addition, this

thesis proves that attack propagation in WAMSs may not be stopped by only recovering

the infected nodes, even if the recovery rate is 100%; yet, the propagation can be stopped

if the attack surface of the recovered node is reduced as well. Afterwards, to address

this problem, this thesis develops another LBF to determine the required defense strategy

(i.e., the minimum recovery and hardening rates) of the operator based on the estimated

capability of attackers. In addition, the thesis studies the impacts of communication net-

work configuration on attack propagation in WAMSs, and presents an attack mitigation

strategy that optimally reconfigures the communication network to minimize the infection

probabilities of critical PMUs and PDCs (i.e., their contamination probabilities) and to

maintain the observability of the system.
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1.4 Dissertation Outline

This dissertation is divided into two main parts: the next two chapters, which concentrate

on the modeling and analysis of cyber-attack propagation in WAMSs as well as estimat-

ing attacker’s capabilities, and the subsequent two chapters, which focus on the defensive

strategies and optimal responses to propagable attacks. The individual chapters are orga-

nized as follows:

Chapter 2 develops a model to analyze cyber-attack propagation in WAMS. Then, the

impacts of the attacker’s capability and the network operator’s defensive ability on attack

propagation are investigated in detail.

Chapter 3 proposes an LBF to estimate the attacker’s capability.

Chapter 4 develops an LBF to estimate the required defensive strategy (i.e., the

minimum recovery and hardening rates) based on the capability of an attacker.

Chapter 5 presents an optimization framework to reconfigure communication net-

work reconfiguration in the presence of propagable attacks. This optimal reconfiguration

plan can be obtained using solving a Linear Programming (LP) problem to mitigate the

propagation of cyber-attacks and maintain the observability of the power system.

Chapter 6 concludes the dissertation, highlights its contributions, and suggests topics

for future research.
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Chapter 2

Modeling and Analysis of

Cyber-Attacks Propagation in

WAMSs

This chapter develops a model to analyze cyber-attack propagation in WAMS. Then, the

impacts of the attacker’s capability and the network operator’s defensive ability on attack

propagation are investigated in detail. Such a study can elucidate the required security

measures and defensive strategies to prevent the spread of cyber-attacks in WAMSs. This

chapter is organized as follows: Section 2.1 discusses attack propagation across WAMSs

and Section 2.2 presents simulation results and discusses them.
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2.1 Attack Propagation in WAMSs

Currently, there are two models in the literature to predict the propagation of cyber-

attack [61], which are based on epidemiological and theoretical control techniques. By

using models based on control theory, cyber-attacks are attempted to be found, and their

propagation is curbed. On the other hand, the computer science community has widely

examined epidemiological models, primarily concerned with the number of compromised

nodes and their distributions[62].

This chapter proposes a modified epidemiological model to investigate attack propaga-

tion in WAMSs. In the proposed model, it is assumed that an infection already exists, and

the aim is to quantify how quickly this infection might propagate. It should be noted that

in order to comprehend the impacts of cyber-attack propagation in WAMSs, each type

of component—i.e., PMUs, routers, PDCs, and SPDCs—is assumed to have a different

propagation rate. In addition, it is also assumed that (i) the network is static, i.e., the

nodes are immobile, (ii) the deployment layout is static and predetermined, and (iii) nodes

are composed of devices with the capability and propensity to be infected by other com-

promised devices. These assumptions have been made to simplify the process of attack

propagation modeling. In reality, however, networks may be dynamic, with nodes and

communication links being added or removed. By assuming that networks are static and

the deployment layout is static, we eliminate the need to update the network topology at

each time step, simplifying attack propagation analysis. Furthermore, in practical scenar-
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ios, some nodes become fully secure after detecting an attack, preventing further infection

and spread. However, for the sake of simplicity, we assume in this study that all nodes are

capable of attack propagation.

2.1.1 Attack Propagation Model

This subsection explains the proposed model for analyzing the dynamics of cyber-attack

propagation in WAMSs. The proposed model in this thesis—which is developed based on

the traditional Susceptible-Infected-Recovered (SIR) epidemic model [63]—categorizes the

total N nodes of the system into four groups, and any node can be in any group at any

time. These groups are as follows:

• Indirectly Susceptible (S): The nodes in this group are not directly connected

to an infected node. However, they are still vulnerable and can be infected.

• Directly Susceptible (S ′): The nodes in this group are more susceptible to cyber-

attacks than indirectly susceptible ones, since there is a direct communication link

between directly susceptible and attacked nodes.

• Infected (I): These nodes are infected and can compromise other nodes as well.

• Recovered (R): The nodes in this state are recovered from the cyber-attack (e.g.,

by using anti-malware and patch management systems).
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Figure 2.1: The state transition diagram of the proposed model.

Fig. 2.1 shows the state transition diagram of the proposed model. The transition of a

node from one state to another happens based on the following rules:

• Rule 1: Cyber-attack can spread from an infected node to its directly suscepti-

ble neighbors with the rate of β, which is defined as cyber-attack propagation rate

through directly susceptible nodes. This rate is different for PMUs, routers, PDCs,

and SPDCs.

• Rule 2: When a node is infected in the network, it can infect other indirectly

susceptible nodes with the rate of β′, which is different for every type of component.

In fact, cyber-attacks can spread from every infected node to indirectly susceptible

nodes, even if they are not neighbors.

• Rule 3: After detecting infected nodes by an Intrusion Detection System (IDS),

these nodes can be recovered with the rate of γ. This recovery action can be done

by taking countermeasures, such as removing the malware or patching the vulnera-

bilities.

• Rule 4: The nodes that are recovered (e.g., only the malware is removed while
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the device is not patched adequately) can become vulnerable to cyber-attack again.

In fact, when an infected node is recovered, it can become directly or indirectly

susceptible with the rate of θ depending on its neighboring nodes.

2.1.2 Model Formulation

In this subsection, a mathematical model is developed to study the dynamics of cyber-

attack propagation in accordance with the pandemic process. This model consists of two

steps: (i) the initial values of S(t), S ′(t), I(t) and R(t) at time t0 are determined, and (ii)

the parameters are updated at each time-step based on the following equations:

S(t+ 1) = S(t)− C(t+ 1)−DPMU(t+ 1)−DPDC(t+ 1)

−DRouter(t+ 1)−DSPDC(t+ 1) ∪ E ′(t+ 1) (2.1)

S ′(t+ 1) = S ′(t) ∪ C(t+ 1)−GPMU(t+ 1)−GPDC(t+ 1)

−GRouter(t+ 1)−GSPDC(t+ 1) ∪ E ′′(t+ 1) (2.2)

I(t+ 1) = I(t) ∪GPMU(t+ 1) ∪GPDC(t+ 1)

∪GRouter(t+ 1) ∪GSPDC(t+ 1) ∪DPMU(t+ 1) ∪DPDC(t+ 1)

∪DRouter(t+ 1) ∪DSPDC(t+ 1)− F (t1) (2.3)

R(t+ 1) = R(t) ∪ F (t+ 1)− E(t+ 1) (2.4)

E(t+ 1) = E ′(t+ 1) ∪ E ′′(t+ 1) (2.5)
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where C(t+1) is the set of nodes that were indirectly susceptible at time t, but are turned

to directly susceptible at time t+ 1; the set G(t+ 1) denotes the nodes that were directly

susceptible at time t, but are infected with the rate of β at time t + 1; the set D(t + 1)

signifies the nodes that were indirectly susceptible at time t, but are infected with the rate

of β′ at time t1; the set F (t + 1) presents the nodes that were infected at time t, but are

recovered with the rate of γ at time t+ 1; and finally, E(t+ 1) is the set of nodes that are

recovered at time t, but become either directly or indirectly susceptible at time t+ 1 with

the rate of θ. The set E is divided into two subsets: (i) E ′, which includes the previously

recovered nodes that have become indirectly susceptible, and (ii) E ′′, which includes the

recovered nodes that have become directly susceptible.

Using the above equations, propagation of cyber-attacks in WAMSs can be analyzed

by determining the transition rates (i.e., β, β′, γ, and θ) as well as the initial values of

each set of components. Among these parameters, β and β′ are unknown and depend on

the type of attacks and the abilities of attackers.

2.2 Simulation Results and Discussion

In this subsection, the performance of the proposed attack propagation model as well as

and the LBF for estimating the average values of β and β′ are evaluated using the IEEE

6-Bus test system shown in Fig. 2.2. PMUs are installed at buses 1, 2, 3, 4, and 6 to

monitor the entire system, as suggested in [59]. These PMUs transmit their measurements
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to a number of clients (i.e., PDCs) using the communication network, which comprises 17

nodes in total, including five PMUs, nine routers, two PDCs, and one SPDC (Fig. 2.2).

More information about this test system can be found in [60]. The main reason for selecting

this case is that the IEEE 6-bus test system is relatively small, and in turn requires less

computational resources and less time to simulate and analyze, making it an ideal power

system for analyzing attack propagation on its WAMS. Additionally, this test case is a

widely recognized and accepted benchmark within the power system research community

in the area of attack propagation in WAMSs.

2.2.1 Dynamical Analysis of the Attack Propagation Model

In this subsection, a set of numerical simulations are performed to verify the dynamical

behavior of the cyber-attack propagation model in a WAMS of the test system. Addi-

tionally, it studies the impacts of different rates on the average number of attacked nodes.

It is assumed that PMU4 is compromised first, and this attack is detected by the IDS.

Therefore, the infected PMU is disconnected. The only neighbor of PMU4, i.e., R1, is thus

a directly susceptible node, and the other nodes are indirectly susceptible. The infection

rates (i.e., β and β′) varies from zero to one for different cyber attacks and depend on

the capability of the conducted propagable attack. The higher amount of transition rates

shows the higher capability of an attacker to spread the infection throughout the network.

According to [59], for a specific propagable attack, it is assumed that this attack propa-

gates to directly susceptible PMUs, routers, PDCs, and the SPDC with rates βP = 0.05,
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Figure 2.2: The 6-bus test system.
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βR = 0.06, βD = 0.04, and βS = 0.0001, respectively. The average value of these β rates is

βav = 0.05. Additionally, the attack spreads to other indirectly susceptible PMUs, routers,

PDCs, and the SPDC with rates β′
P = 0.005, β′

R = 0.006, β′
D = 0.004, and β′

S = 0.00001,

respectively. The average value of these β′ rates is β′
av = 0.005. In this system, it is

assumed that infected nodes are recovered with the rate of γ = 0.1, and recovered nodes

become directly or indirectly susceptible with the rate of θ = 0.05.

Fig. 2.3-(a) shows the average number of attacked, directly susceptible, and recovered

nodes following the initiation of the propagable cyber-attack. Due to the stochastic nature

of the problem, Monte Carlo simulation [64] is utilized to generate 1000 simulated cases, and

Fig. 2.3-(a) shows their average. As this figure illustrates, the average number of attacked,

directly susceptible, and recovered nodes increase, and the number of indirectly susceptible

nodes decreases over time until they reach their steady-state values. Additionally, at

steady-state, the average number of infected nodes is about 3. This means that the attack

always exists in the network. Given that β and β′ are indicators of the attacker’s capability

to infect nodes in a network, these two rates significantly impact the number of infected

nodes. To study the impact of these two rates on the number of infected nodes, Fig. 2.3-(b)

compares the average number of infected nodes when (i) the above-mentioned β and β′

rates are used, and (ii) when these rates are doubled. As this figure shows, the number of

infected nodes increases when β and β′ rates grow. On the other hand, the rates γ and

θ are indicators of the defender’s capability to mitigate the propagation of attacks. Fig.

2.3-(c) shows the impact of γ on the propagation of cyber-attacks in WAMSs. In fact, this
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Figure 2.3: (a) Attack propagation in the test WAMS, (b) the impacts of β and β′ on

attack propagation, (c) the impacts of γ on attack propagation, and (d) The impact of θ

on attack propagation.
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figure compares the average number of infected nodes when (i) the above-mentioned γ rate

(i.e., 0.1) is used, and (ii) when γ is doubled. As this figure shows, the average number

of infected nodes decreases significantly when γ increases. As a result, to mitigate the

propagation of attacks in WAMSs, the operator should have sufficient knowledge about

the ability of the system in cleaning infected nodes. Finally, Fig. 2.3-(d) demonstrates

the effects of θ, which indicates how recovered nodes can be infected again, on the average

number of infected nodes. To obtain this figure, one time the above-mentioned rates are

used, and another time all the rates are kept the same except for θ, which is doubled. As

this figure shows, the higher the θ the larger the number of infected nodes would be. Thus

it is crucial for a network operator to decrease θ by increasing the security of recovered

nodes against propagation of cyber-attacks. Otherwise, an attack can always exist in the

network, or in the worse scenario, it might eventually infect all nodes.

Based on the above results, the system operator must improve γ and θ rates to stop

the propagation of cyber-attacks. However, without having sufficient knowledge about an

attacker’s abilities, i.e., rates β and β′, the effective values of γ and θ are difficult to obtain.
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Chapter 3

Estimation of Attackers’ Capability

This chapter elaborates on the proposed LBF to estimate the attacker’s capabilities based

on the received information from the IDS. In this regard, an LBF will be developed to

estimate β and β′ accurately. On this basis, Section 3.1 estimates the average values of β

and β′, and Section 3.2 presents simulation results and discusses them.

3.1 Estimating the Average values of β and β′

This section elaborates on the proposed LBF for estimating the attackers’ capability in

infecting the nodes of the system, which is modeled by rates β and β′ in the proposed

propagation model. The proposed LBF determines the average values of β and β′ for all

components (i.e., PMUs, PDCs, and SPDCs) based on the number of attacks that the IDS
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Figure 3.1: The architecture of the FNN.

detects at each time interval. Among various Artificial Intelligence (AI) techniques that

can be used for this purpose, Neural Network (NN)s [65] is appropriate due to its simple

structure and high accuracy. Among various types of NN, this thesis leverages a FNN

architecture, which is illustrated in Fig. 3.1. More information about FNN can be found

in [66].

In this architecture, the input features is

x⃗ =

[
I(t1) I(t2) ... I(tm)

]T
(3.1)

This feature vector is used to estimate the outputs of the FNN model, which are β and

β′. To calculate the outputs, the input features are first fed into the model and propagate

forward through the network. In this process, the input vector of each N − 1 hidden layer

is created by computing a weighted linear combination of the previous layer’s outputs, as

follows [67]:

z⃗1 = w⃗T
1 .x⃗+ b⃗1
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z⃗j = w⃗T
j .
⃗̂yj−1 + b⃗j (3.2)

where z⃗1 is the intput vector of hidden layer 1; z⃗j for j ∈ 2, 3, ..., N − 1 is the input of jth

hidden layer; w⃗j and b⃗j, respectively, are the weight and bias vectors of z⃗j; and ⃗̂yj is the

output of layer j, which can be obtained using

⃗̂yj = max(0, z⃗j) for j ∈ {1, 2, . . . , N − 1} (3.3)

The output of the last layer, which is the β and β′ rates, are obtained using the following

linear activation function

⃗̂yN = z⃗N (3.4)

The FNN model is trained for this problem using the backpropagation algorithm [68] to

determine the weight and bias of each node. The objective is to minimize the difference

between the expected and predicted outputs. This minimization is achieved by utilizing a

loss function, which is calculated using the root mean squared error between the predicted

and actual outputs:

J(w, b) =

√
1

C
(y⃗ − ⃗̂yN)T .(y⃗ − ⃗̂yN) (3.5)

where C is the number of training cases, y⃗ ∈ R2 and ⃗̂yN ∈ R2 are the vectors of expected and

predicted outputs. The Bayesian Regularization algorithm [69] is utilized in the proposed

LBF to decrease the computational complexity involved in updating the model parameters.

In this study, the proposed LBF requires the number of detected attacks at the first

and second time-steps to estimate β and β′ (Fig. 3.1). Thus, the FNN model should be

trained based on a set of attack scenarios with various β and β′ values. Once the required
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training data is obtained, grid search algorithm [70] is used to determine the optimal hyper

parameters, i.e., the number of hidden layers and their associated nodes. Finally, the model

is trained using 70% of the data, and tested based on the remaining 30%. The FNN model

is ready to be implemented in the proposed LBF if the testing accuracy is satisfactory. To

increase the accuracy, the number of inputs can be increased if the validation error is high.

The flowchart of training and testing processes is shown in Fig. 3.2.

3.2 Simulation Results and Discussion

This part of the study assesses the effectiveness of the suggested LBF method in determin-

ing the average values of β and β′. The evaluation is conducted on the IEEE 6-Bus test

system, illustrated in Figure 2.2, and PMUs are positioned at buses 1, 2, 3, 4, and 6 to

supervise the entire system, as recommended in [59]. These PMUs use a communication

network consisting of a total of 17 nodes, comprising five PMUs, nine routers, two PDCs,

39



0 10 20 30 40
Epochs

10-4

10-3

10-2

10-1

M
SE

Training
Validation
Testing

Performance = 0.00046
Epochs = 47

Figure 3.3: The best validation performance

and one SPDC, to transmit their measurements to a range of clients (PDCs). Additional

information on this test system is available in [60].

3.2.1 Estimating Parameters β and β′

In this subsection, the performance of the proposed LBF to estimate average rates β and

β′ is evaluated. In this LBF, the FNN model requires a set of features that results in an

accurate estimation of the rates. To this aim, the proposed LBF should be designed and

tailored for each WAMS so that the accuracy of the FNN model is maximized. To this

aim, the training process is carried out off-line before deploying the model online. Once

the model is trained, the estimation phase must be performed based on the information

received from the IDS in the first two time-steps after the initiation of the attack.
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Figure 3.4: Regression analysis for (a) training, (b) validation, and (c) testing phases, as

well as for (d) all data.
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To generate the training database for the FNN model, 1000 random values are selected

for β and β′, and the number of infected nodes at every time-step is obtained for each

case using the proposed attack propagation model. The model is trained using 70% of

the data and tested based on the remaining 30%. An acceptable accuracy is obtained

when the number of features is at least two. For this obtained number of features, the

optimal architecture of the FNN model has two hidden layers with 30 nodes per layer. Fig.

3.3 illustrates the best validation performance for the training and testing phases. The

best Mean Squared Error (MSE) steeply decreases and converges gradually to 0.00046 in

the training and testing phases. Additionally, the regression analysis—i.e., indicating the

correlation between estimated and actual data using the regression coefficient—is shown in

Fig. 3.4. In fact, the higher the regression coefficient, the higher the accuracy of the FNN

model would be. It should be noted that the maximum value of the regression coefficient is

one. As Fig. 3.4 illustrates, the regression coefficient for the proposed LBF for all data is

0.949, which is relatively high. The regression coefficient ranges between 0 and 1, where 1

denotes perfect prediction. Additionally, values more than 0.8 indicate a relatively accurate

regression model, and there is no need to use non-linear models to increase the accuracy

[71]. In addition, the regression coefficient for the training, testing, and validation phases

are 0.952, 0.948, and 0.941, respectively. These results demonstrate that the trained FNN

model can estimate rates β and β′ with acceptable accuracy for an attack in WAMSs using

only the information received from the IDS in the first two time-steps. Apart from being

accurate, the proposed LBF is fast as well. The average estimation time of the proposed
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LBF on a computer with an Intel i7-3470 CPU running at 3.20 GHz and 16 GB of RAM

is 5 ms. Therefore, the time required by the proposed method to estimate an attacker’s

capability is acceptable.

To further corroborate the effectiveness of the proposed framework, the number of

features is increased to 20 (i.e., the number of infected nodes in the first 20 time-steps is

used), and the FNN model is trained and tested based on the new features. The MSE, in

this case, is 0.00038, and the regression rate increases to 0.98. Thus, in comparison to the

previous case (i.e., using only the number of infected nodes in the first two time-steps),

the performance is slightly improved at the expense of sacrificing time for countering the

attack.
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Chapter 4

Determining the Optimal Defense

Strategy to Stop Propagation of

cyber-attack in WAMSs

This chapter proves that attack propagation in WAMSs may not be stopped by only

recovering the infected nodes, even if the recovery rate is 100%; yet, the propagation can

be stopped if the attack surface of the recovered node is reduced as well. Afterwards, this

chapter initially develops a LBF to estimate the required defensive strategy based on the

capability of an attacker. Such a study can elucidate the required security measures and

defense strategies to prevent the spread of cyber-attacks in WAMSs.

This chapter is organized as follows: Section 4.1 introduces the test system that is
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applied in Chapters 4 and 5. Section 4.2 shows the impacts of node hardening on attack

propagation in WAMSs; Section 4.3 discusses the proposed LBF to estimate an optimal

defensive strategy based on the attacker’s capabilities and Section 4.4 presents simulation

results and discusses them.

4.1 Test system

The IEEE 14-Bus test system (Fig. 4.1-(a)) is utilized in chapters 4 and 5 to investigate

propagation of cyber-attacks in WAMSs. Compared to smaller test systems like the IEEE

6-bus, the IEEE 14-bus test system offers a moderate level of complexity. This enables

us to study and analyze a more realistic power system and to test the scalability of the

proposed mitigation methods. The parameters of the physical layer and the specifications

of IEEE 14-bus test system components are provided in [72]. The physical layer consists

of 14 buses, four generators, and seven loads, with a total of 20 transmission lines. This

system is equipped with a WAMS, collecting real-time information throughout the system.

The WAMS of this grid consists of 36 nodes comprising 11 PMUs, 21 routers, three PDCs,

and one SPDC, as illustrated in Figure 4.1-(a). The equivalent graph of this test system is

shown in Fig. 4.1-(b). The PMUs are installed on all buses except for Buses 4, 11, and 12,

to achieve a high level of reliability and observability. To determine the communication

network graph of WAMSs, all components which are connected to the network are identi-

fied, and the communication requirements of the WAMS system, such as its reliability, are
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specified. Afterwards, based on the requirements, the type of topology (e.g., star, mesh,

ring, and hybrid) is selected. In this study, the hybrid topology is selected to develop

the communication network. Additionally, it is assumed that each PMU is connected to

their PDC through at least two valid communication paths. Finally, a network graph is

determined to represent the network including the nodes (PMUs, PDCs, etc.) and the

communication links between them [73].

4.2 Impacts of node hardening on attack propagation

in WAMSs

Through a case study, this subsection demonstrates that it might not be possible to stop

the propagation of an attack by only recovering the infected nodes. In other words, the

values of γ and θ must be selected based on attackers’ capability, i.e., rates β and β′. It

should be noted that the average β and β′ rates can be estimated using the technique

proposed in [74]. Therefore, in the rest of this chapter, it is assumed that the average

values of these two rates are available, and they are assumed to be β=0.15 and β′=0.015.

In the test system, it is assumed that PMU2 is compromised by attackers, and this

intrusion is identified by the IDS. As a result, this PMU is disconnected from the network

for recovery. At this moment, the only indirectly susceptible node is R1, which is the

only neighbor of PMU2, while all other nodes are indirectly susceptible. To consider
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Figure 4.1: (a) The IEEE 14-Bus Test System, and (b) its equivalent communication

network graph.
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Figure 4.2: (a) the impacts of θ on attack propagation, and (b) The impact of γ on attack

propagation.

the stochastic nature of attack propagation in the WAMS, Monte Carlo simulation [64] is

applied to generate 1000 simulated cases for each scenario.

To study the effects of θ—which indicates how recovered nodes can be infected again—

on the average number of infected nodes (i.e., Na), γ is initially set equal to 0.35, and θ

is changed from 0 to 1 with steps of 0.2. Equivalently, hardening rate of recovered nodes,

which equals to θ′ = 1 − θ, is changed from 1 to 0 with steps of -0.2. Fig. 4.2-(a) shows

the average number of infected nodes in each scenario: As the value of θ increases, fewer

nodes will be hardened, and consequently the number of infected nodes will also increase.

On the other hand, Fig. 4.2-(b) shows the impact of γ on propagation of cyber-attacks

in WAMSs. To obtain this figure, θ is set equal to 0.4, and γ is selected as 0.2, 0.4, 0.6,
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propagation.

and 1. As Fig. 4.2-(b) displays, based on these values of γ and θ, the average number of

infected nodes varies between 12 and 3, indicating that attack propagation in the WAMS

cannot be stopped even if all infected nodes are recovered in each time-step (i.e., γ =1).

This happens since a recovered but not hardened node is still prone to the attack, and so

upon recovery it becomes either directly or indirectly susceptible, depending on the status

of its neighboring nodes. Additionally, Fig. 4.3 illustrates the recovery and hardening rates

required to stop the propagation of attack when β and β′ are 0.15 and 0.015, respectively.

As this figure shows, for hardening rates lower than 0.82, attack propagation cannot be

stopped even if all infected nodes are recovered at each time-step. However, hardening

rate of 1 and a very small recovery rate can eventually stop the propagation of the attack.

In fact, as Fig. 4.3 shows, for any β and β′, rates γ and θ should be determined together

based on the operator’s ability to stop the propagation of the attack.
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4.3 Developing an LBF to Determine the required γ

and θ Rates to Stop Attack Propagation in WAMSs

The previous section showed that when a WAMS is attacked, one way to defend against

the attack is to recover the nodes that have been infected and harden them. However,

since the resources and abilities of the operator are limited, it is important to divide them

optimally between these two tasks to stop the propagation of the attack most effectively.

In other words, an operator needs to decide how much of their available resources (such as

time, money, personnel, or technical capabilities) to allocate towards recovering infected

nodes and how much to allocate towards hardening the network against future attacks.

Finding the optimal balance between these two tasks can help the operator stop the attack

more effectively with the limited resources available. The optimal rates of recovery and

hardening, however, depend on the abilities of the attackers, specifically their infection rate

for directly and indirectly susceptible nodes, denoted by β and β′, respectively. Considering

the diverse values of these two rates, determining the optimal recovery and hardening

strategy during an attack becomes a challenging task.

On this basis, this section develops an LBF to determine the optimal defense strategy

that stops propagation of attacks in WAMSs. This LBF determines the optimal hardening

(i.e., θ′) and recovery (i.e., γ) rates based on the attacker’s capabilities, i.e., β and β′ rates,

which can be estimated using the technique proposed in [74]. Among various learning-

based techniques, FNNs [66] seems to be the most suitable one due to its simple structure
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and high accuracy. Fig. 4.4 shows the architecture of a FNN, which processes information

in a forward direction, from the input layer through one or several hidden layers to the

output layer. In this architecture, the input features is

x⃗ =

[
β β′

]T
(4.1)

This feature vector is used to estimate the outputs of the FNN model, which are θ′ and

γ. More detail to calculate the FNN weights and outputs were discussed in chapter 3.

To prepare the training and testing data, a large number of attack scenarios with various

β and β′ rates are generated. Using the model presented in Chapter 2, the optimal set

of θ′ and γ is obtained for each scenario to stop attack propagation. Once the training

data is generated, the grid search algorithm [70] is used to determine the optimal hyper-

parameters, such as the number of hidden layers and their associated nodes. In this method,

all possible combinations of hyper-parameters are selected, and the model is trained for
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each combination. The hyper-parameters that result in the highest accuracy are then

selected. After training the model with a portion of the data, the remaining is used for

testing. The testing accuracy and the regression rate can be used as indicators of the

model’s performance.

4.4 Simulation Results and Discussion

This section evaluates the proposed LBF to estimate the required γ and θ′ based on the

estimated values of β and β′, which can be estimated using the technique elaborated in

Chapter 2. To train and test the LBF model, 1000 cases of random values for β and β′

are generated, and for each case the average number of infected nodes at each time-step

is calculated using the attack propagation model presented in Chapter 2. Afterward, for

each case, the required values of γ and θ′ that prevents the propagation of the attack

are obtained and saved in a database. The FNN model used in the LBF is then trained

using 70% of generated cases, and the remaining 30% is used for testing and validating the

model (i.e., 15% for testing and 15% for validation). To find the best trade-off between the

complexity and accuracy of the model, the grid search algorithm is used, which resulted in

two hidden layers with 30 nodes per layer.

Fig. 4.5 demonstrates the performance of the model during training, testing, and

validation phases. In this figure, the MSE is used as a measure of accuracy, and it is

observed that the MSE of validation and training phases gradually decrease and converges
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phases.

to 0.0064. Regression analysis is also performed to assess the correlation between estimated

and actual data, and the regression coefficient (R) is also used to indicate the accuracy of

the FNN model. The regression coefficient of the proposed LBF for all data is 0.9726 (as

shown in Fig. 4.6). This coefficient for training, testing, and validation phases are 0.974,

0.964 and 0.975, respectively, indicating that the trained FNN model can estimate γ and

θ′ rates with a relatively high accuracy. By running the trained model on a computer with

an Intel i7-3470 CPU running at 3.20 GHz and 16 GB of RAM, it is observed that the

proposed LBF can estimate γ and θ′ rates with an average estimation time of 9 ms.
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well as for (d) all data.
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Chapter 5

Minimizing the Infection Probability

of Critical Nodes in the Presence of

Propagable Attacks

In this chapter, an optimization framework is proposed for mitigating cyber-attack propa-

gation to WAMSs. The proposed framework minimizes the probability of infection to crit-

ical WAMS nodes by reconfiguring its communication network. Critical nodes in WAMS

refer to the PMUs and PDCs that are essential for maintaining the observability of the

power system. Losing even one critical node can damage the observability of the system and

can make it difficult to accurately estimate the states of the power system. In this frame-

work, the communication links that intensify the propagation of cyber-attacks throughout
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the network are disabled while keeping the power system observable. On this basis, first,

using the attack propagation model, the infection probability of nodes in WAMSs is for-

mulated in Section 5.1. Afterwards, Section 5.2 validates the impact of communication

network on attack propagation in WAMSs as well as discusses the proposed optimization

framework; Finally Section 5.3 evaluates the performance of the optimization framework

on mitigating attack propagation.

5.1 Infection Probability of a Node in WAMSs

To safeguard a WAMS from propagable cyber-attacks, it is essential to identify the prob-

ability of infection for its nodes. This is because certain nodes within the system may

be more critical than others and require extra protection. On this basis, this subsection

uses the transition diagram presented in the previous subsection to calculate the infection

probability of a node at a time-step.

Consider a typical WAMS including several nodes (e.g., PMUs, routers, PDCs and

communication links). Assume a propagable attack starts at t = 0 and infect nodes

i ∈ I(t=0). One time-step later, i.e., at t=∆t, the infection probability of node j through

compromised nodes is obtained using the following equation

Pj (aj(∆t)=1)=1− (1− β′
j)

∏
m∈Mi,j

i∈S′

(1− αm
ij )

∏
l∈Mk,j

k∈S

(1− λl
kj) (5.1)

where aj(∆t) is a binary variable which equals 1 if node j is infected at time t=∆t, and 0
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otherwise; Mi,j is the set of all paths between nodes i and j; αm
ij is the probability of attack

propagation from directly susceptible node i ∈ S ′(t=0) to node j through path m ∈ Mi,j,

and is obtained using the following equation

αm
ij = βjβ

Dm
ij

R (5.2)

where βj is the probability of infection for directly susceptible node j, βR is the probability

of infection for routers, and Dm
ij is the number of routers in path m between node i and

node j [59]. Additionally, λl
kj is the probability of attack propagation from indirectly

susceptible node k ∈ S(t=0) to node j through path l ∈ Mk,j, and is obtained using the

following equation

λl
kj = β′

kβjβ
Dl

ij

R (5.3)

where β′
j is the probability of infection for indirectly susceptible node j. One time-step

later, i.e., at t=2∆t, the infection probability of node j is obtained using the law of total

probability, as follows:

Pj (aj(2∆t)=1)=Pj (aj(2∆t)=1|aj(∆t)=1)Pj (aj(∆t)=1)

+Pj(aj(2∆t)=1|aj(∆t)=0)Pj(aj(∆t)=0) (5.4)

Where Pj (aj(2∆t)=1|aj(∆t)=1) is the probability of node j being infected at t = 2∆t

given that it was also infected at t=∆t; and Pj(aj(2∆t)=1|aj(∆t)=0) is the probability

of node j being infected at time t=2∆t given that it was not infected at t=∆t. In (5.4),

Pj(aj(2∆t)=1|aj(∆t)=0) can be written as:

Pj(aj(2∆t)=1|aj(∆t)=0)=1− (1− β′
j)×
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∏
m∈Mi,j

i∈S′

(1− Pi(ai(∆t)=1)αm
ij )

∏
l∈Mk,j

k∈S

(1− Pk(ak(∆t)=1)αl
kj) (5.5)

Similarly, Pj(aj(2∆t)=1|aj(∆t)=1) can be written as:

Pj(aj(2∆t)=1|aj(∆t)=1)=γθPj(aj(2∆t)=1|aj(∆t)=0) (5.6)

Finally, by combining equations (5.1)-(5.6), the probability of infection for node j at t=

2∆t, is obtained as follows:

Pj (aj(2∆t)=1)=

1− (1− β′
j)

∏
m∈Mi,j

i∈S′

(1− Pi(ai(∆t)=1)αm
ij )×

 ∏
l∈Mk,j

k∈S

(1− Pk(ak(∆t)=1)αl
kj)

 [1− Pj(aj(∆t)=1)(1− γθ)] (5.7)

Using induction it can be shown that (5.7) can be expanded for all n ≥ 2, and can be

written in the following general form:

Pj (aj ((n+ 1)∆t)=1)=

1− ∏
m∈Mi,j

i∈S′

(1− Pi(ai(n∆t)=1)αm
ij )

× ∏
l∈Mk,j

k∈S

(1− Pk(ak(n∆t)=1)αl
kj)(1− β′

j)


×[1− Pj(aj(n∆t)=1)(1− γθ)] (5.8)
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This equation quantifies the probability of infection by a propagable cyber-attack at any

time-step, and will be used in the next subsections to minimize the infection probability

of critical nodes.

5.2 Protecting Critical Nodes Using Communication

Network Reconfiguration

This section first investigates the impacts of communication system configuration on attack

propagation in WAMSs, and shows that the propagation of attacks can be slowed down

and possibility of infection for critical components are reduced by reconfiguring the com-

munication network during propagable attacks. Afterwards, it develops an optimization

framework to minimize the infection probability of critical nodes in a WAMS.

5.2.1 Impacts of communication network configuration on attack

propagation in WAMSs

The communication network in WAMS can be reconfigured centrally using cutting edge

technologies, such as software defined networking [75]. Reconfiguration in this context

includes any change in the specifications of the communication network, including adding or

removing devices, changing the routing of data, and increasing or decreasing the bandwidth

of the network. Such changes aim to optimize the communication infrastructure to improve
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connectivity, increase capacity, or reduce latency.

To clearly show the impacts of communication network configuration on the infection

probability of a node, this section assumes that β′ = 0, meaning that only directly sus-

ceptible nodes are infected. This assumption, however, will be revisited in in the next

subsection by including non-zero β′ rates in the formulation of the proposed optimization

framework. Using this assumption, the probability of attack propagates from node i to

node j through all paths is obtained from the following equation

Pij = 1−
Mij∏
m=1

(1− αm
ij ) (5.9)

where (5.9) is the simplified version of (5.1). As equations (5.2) and (5.9) show, the nodal

distance between two nodes increases, the probability of attack propagation from one of

them to another decreases. As a result, communication network reconfiguration can be

used to protect critical PMUs or PDCs by increasing their nodal distances from infected

nodes.

To show this point more clearly by an example, the simple fully-connected mesh com-

munication network shown in Fig. 5.1a is used. In this network, there are three PMUs

that send their measurements to two PDCs through six routers. The probability of infec-

tion for PMUs, PDCs, and routers are assumed to be 0.05, 0.04, and 0.06, respectively

[59]. In this example, it is assumed that PMU2 is compromised, and the goal is to protect

PMUs 1 and 3 from infection. To propagate the attack from PMU2 to PMU1, there are

several paths, the shortest of which is through routers R1 and R2. This shortest path and
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Figure 5.1: (a) A fully-connected mesh communication network, (b) a partially connected

mesh communication network that minimize the likelihood of PMU1 and PMU3 becoming

infected from PMU2.

other longer ones result in P21 = 0.00156. Similarly, the shortest path between PMU2

and PMU3 includes R1 and R4, resulting in P23 = 0.00155. On the other hand, Fig. 5.1b

illustrates the communication network in which the distances between PMU1 and PMU3

are maximized relative to PMU2. This configuration is selected to minimize the likelihood

of PMU1 and PMU3 becoming infected from PMU2. To propagate the attack from PMU2

to PMU1 in this configuration, routers R1, R5, R3, R6, and R2 must be compromised first.

This shortest path and other longer ones result in P21 = 1.00e − 06. The shortest path

between PMU2 and PMU3 includes R1, R5 and R4, resulting in P23 = 9.99e− 06. As this

example showed, it is possible to benefit from communication system reconfiguration to

decrease the likelihood of attack propagation from infected nodes to critical ones during a

propagable cyber-attacks.
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5.2.2 An optimization framework to minimize the infection prob-

ability of critical nodes in WAMSs

As shown in the previous subsection, the configuration of the communication network

significantly impacts propagation of cyber-attacks in WAMSs. In this subsection, a LP

optimization framework is developed to reduce the probability of attack propagation from

infected nodes to critical ones during a propagable cyber-attacks. At each time-step, this

optimization framework uses the status of the nodes in that time-step to determine the

optimal configuration of the communication network for the next time-step. On this basis,

the critical nodes must be identified first. Each operator can determine its critical nodes

based on the specific needs and requirements of their system, as well as the characteristics

of the components and equipment being monitored. As will be discussed in Section 5.3,

this chapter identifies the critical nodes using the method proposed in [76].

To develop the LP optimization framework, and to enable connecting/disconnecting of

communication links through the framework, a set binary decision variables xm
ij are defined

to control the connectivity of the communication links between nodes i and j. This binary

variable is 1 if path m is connected between nodes i and j, and 0 otherwise. Incorporating

these binary decision variables in (5.8) results in the following equation

Pj (aj ((n+ 1)∆t)=1)=

1−∏
m∈Mi,j

i∈S′

(1− Pi(ai(n∆t)=1)αm
ijx

m
ij )
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× ∏
l∈Mk,j

k∈S

(1− Pk(ak(n∆t)=1)αl
kjx

l
kj)(1− β′

j)


×[1− Pj(aj(n∆t)=1)(1− γθ)] (5.10)

Using (5.10), the optimization problem for reducing the infection probability of critical

nodes through reconfiguring the communication network can be formulated as follows:

min
xm
ij ,x

l
kj

∑
j∈C

WjPj (aj ((n+ 1)∆t)=1) (5.11)

where C is the set of critical nodes, and Wj is the weighting factor of critical node j that

signifies the importance of that node. In this study all critical nodes are assumed equally

important, and their weighting factors are considered to be equal. This optimization

problem is subjected to the following constraints:

• Connectivity constraint for directly susceptible nodes: This constraint ensures con-

nection of directly susceptible node i and critical node j through path m, and can be

formulated as shown in the following equation

xm
ij =

∏
u,v∈E,r ̸=x

zij(m)
uv ∀i ∈ S ′,∀j ∈ C (5.12)
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where E is the set of all nodes, and z
ij(m)
uv is defined as follows:

zij(m)
uv =



1 if path m between nodes i and j

involves link (u,v)

0 if path m between nodes i and j

does not involve link (u,v)

(5.13)

• Connectivity constraint for indirectly susceptible nodes: This constraint ensures con-

nection of indirectly susceptible node k and critical node j through path l, and is formulated

as follows

xl
kj =

∏
u,v∈E,u̸=v

zkj(l)uv ∀k ∈ S,∀j ∈ C (5.14)

where z
kj(l)
uv is defined similar to z

kj(m)
uv in (5.13), but m must be replaced with l.

• Connectivity constraint for PMUs and PDCs: This constraint ensures that there

exists at least a valid path between each PMU and its associated PDC(s). A valid path

refers to a path whose communication delay is less than the waiting time of its associated

PDC. This constraint can be formulated as follows:

∑
h∈Mij

xh
ij ≥ 1 (5.15)

in which, xh
ij can be obtained using

xh
ij =

∏
u,v∈E,u̸=v

zij(h)uv ∀i ∈ ΩPMU,∀j ∈ ΩPDC (5.16)
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where, xh
ij is a binary variable, which is one if PMUi is connected to PDCj through valid

path h, and it is zero otherwise.

Since the objective function of (5.11) and its constraints nonlinear, they are reformu-

lated to convert the the problem to an equivalent linear one. This reformulation improves

the accuracy of solution and reduces the computation time. The objective function can be

reformulated using the following equation:

ln(1− kx) = x ln(1− k) (5.17)

which is correct when k is a constant value and x is a binary variable [59]. Using (5.17),

(5.10) becomes

ln

[
1

(1− β′
j)

− Pj(aj((n+ 1)∆t)=1)

(1− Pj(aj (n∆t)=1))(1− γθ)(1− β′
j)

]
=

∑
m∈Mi,j

i∈S′

ln(1− Pi(aj (n∆t)=1)αm
ij )× xm

ij+

∑
l∈Mk,j

k∈S

ln(1− Pk(aj (n∆t)=1)αl
kj)× xl

kj (5.18)

which is a linear equation in terms of xm
ij and xl

kj, which are the decision variables of the

proposed optimization framework. In (5.18) terms (1 − Pj(aj (n∆t)=1))(1 − γθ)(1 − β′
j)

and 1/(1 − β′
j) are constant values. As a result, minimizing Pj(aj((n + 1)∆t) = 1) and

maximizing (5.18) are equivalent. Additionally, constraint (5.12) can become linear by

reformulating it and writing it as two linear equations [77], as follows:

xm
ij ≤ zij(m)

uv ∀i ∈ S ′,∀j ∈ C, ∀(u, v) ∈ Ωm
ij , u ̸= v (5.19)
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xm
ij ≥

∑
u,v∈Ωm

ij ,u̸=v

zij(m)
uv − (Nm

ij − 2) ∀i ∈ S ′, ∀j ∈ C (5.20)

where Ωm
ij is the set of all nodes between nodes i and j, including i and j, through path

m, and Nm
ij is the cardinality of this set. In fact, the first constraint (i.e., (5.19)) ensures

that if any of the binary variables z
ij(m)
uv equals zero, then xm

ij must also be zero. The

second constraint (i.e., (5.20)) ensures that if all z
ij(m)
uv are one, then xm

ij must also be one.

Similar to Constraint (5.12), Constraints (5.14) and (5.16) are also linearized using the

same technique.

5.3 Performance Evaluation

This section evaluates the effectiveness of the proposed optimization framework in recon-

figuring the communication network to minimize the infection rate of critical nodes. All

simulations are performed using MATLAB on the IEEE 14-bus test system introduced in

Chapter 4. Critical nodes are assumed to be all PDCs as well as the PMUs that influence

the observability of the grid the most. To determine such PMUs, the method proposed in

[76] is used, in which a node is critical if losing its measurement degrades the observability of

the grid. To identify such nodes, all possible sets of essential measurements are determined

first. An essential set of measurements is a group of measurements that are necessary for

maintaining observability of the system, and losing any of these measurements results in a

loss of observability. The essential sets of measurements for IEEE 14-bus test system are

shown in Table 5.1. The nodes that are mostly repeated in these sets, i.e., PMU1, PMU2,
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Table 5.1: Essential sets of PMUs to maintain full observability.

Essential
PMU

Essential
PMU

Essential
PMU

set set set

1 1,2,3,8,10,13 5 1,2,3,7,10,14 9 3,5,7,6,9

2 1,2,3,8,10,14 6 1,2,3,7,10,13 10 2,3,5,8,6,9

3 1,2,3,8,6,9 7 1,2,5,8,10,13 11 3,5,7,10,13

4 1,2,3,7,6,9 8 32,,5,8,10,14 12 32,,5,7,10,14

PMU3, PMU8 and PMU10 are identified as critical, and are made bold in Table 5.1.

It is assumed that the system is not attacked and operates normally. At t = 0, the IDS

detects an attack against PMU2. Therefore, this PMU is disconnected from the network,

and the remaining critical PMUs are PMU1, PMU3, PMU8 and PMU10. To minimize the

infection probability of these PMUs, the proposed optimization framework is run. Since in

these critical PMUs are essential for maintaining the observability of the grid, all weighting

factors are set equal to one. All valid communication paths from PMUs to their associated

PDCs are also determined and given to the framework as inputs. In this subsection, three

cases are defined as follows:

• Case 1: β = 0.2, β′ = 0.05

• Case 2: β = 0.4, β′ = 0.05

• Case 3: β = 0.4, β′ = 0.1
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In all three cases, rates γ and θ are set equal to 0.1, and 0.05, respectively.

Fig. 5.2-(a) shows the infection probabilities of critical PMUs and PDCs for Cases 1-3

after targeting PMU2 and without reconfiguring the network. As seen in the figure, the

infection probabilities of critical PMUs and PDCs are low when rates β and β′ are small

(blue bars in 5.2-(a)). In case 2 (green bars in 5.2-(a)), the larger value of β results in

a substantial rise in the infection probability of critical PMUs and PDCs. On the other

hand, the larger value of β′ causes a huge grow in the infection probability of critical PMUs

and PDCs (red bars in 5.2-(a)). The reason is that usually, specially at the beginning of

attacks, the number of indirectly susceptible nodes is larger than directly susceptible ones.

Therefore, the impact of β′ rate is more pronounced at the beginning of attacks.

To minimize the infection probability of critical PMUs and PDCs, the proposed opti-

mization framework is run for all three cases and its impact on each case is investigated.

Fig. 5.3 shows the reconfigured communication network for all three cases. It should be

mentioned that the reason for obtaining a single graph for all three cases is that (i) the

infected and critical nodes are the same in all cases, and (ii) the propagation rates in three

cases are not significantly different. Comparing the obtained graph and the original one

in Fig. 4.1-(b) shows that in addition to PMU2, routers R1 and R12 are also disconnected

in the reconfigured network. Router R1 is the first-hop router of PMU2, which is a di-

rectly susceptible node with a high risk of infection. Since disconnecting this router does

not violate any constraint of the problem, it is removed from the network. Additionally,

Router R12 is directly connected to R1, and connects PMU2 and R1 to several other nodes
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Figure 5.2: Infection probabilities of critical nodes for (a) Cases 1-3 without reconfiguring

the network, as well as for (b) Case 1, (c) Case 2, and (d) Case 3 after reconfiguring the

network.
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in the network. As disconnecting this router increases the nodal distance between critical

nodes and PMU2 and does not violate any of the constraints, R12 is also removed from

the network. Moreover, communication links R1-PMU2, R1-R20, R1-R12, R2-R19, R3-

R12, R4-R14, R5-R14, R7-R15, R9-R15, R10-R18, R11-R15, R12-R19, R12-R13, R13-R17,

R16-R17, R17-R21, R18-R19, and R18-R20 are also removed from the network to minimize

the connections between the nodes. However, as Fig. 5.3 shows, there is still at least one

valid path between each PMU and its associated PDC(s), meaning that no PMU data will

be dropped out in the communication network. As a result of this reconfiguration, the

infection probabilities for critical PMUs and PDCs in all three cases reduce significantly,

as shown in Figs. 5.2-(b)-(d). It is seen in these figures that the larger the values of β and

β′ rates, the more effective the proposed method would be in reducing the infection rates

of critical nodes.

Now assume that in spite of all defensive measures, in the next time step the attack of

Case 3 propagates to PMU8 (i.e., One of critical nodes), resulting in disconnection of this

device from the communication network. This attack changes the set of critical nodes to

PMU1, PMU3, PMU7 and PMU10, as well as all PDCs. Thus, the proposed optimization

framework should be run again to minimize the infection probability of critical nodes

under the new situation. Red bars in Fig. 5.4-(a) show the infection probabilities for

critical nodes after propagates of the attack to PMU8. Comparing this figure with Fig.

5.2-(d) shows that the infection probabilities of Critical nodes increase after infection of

PMU8. By reconfiguring the communication network again, however, these probabilities
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Figure 5.3: The equivalent graph of the communication system for Cases 1-3 after recon-

figuration.

slightly decrease and this reduction is more pronounced for PMU7 since it was newly

added to the list of critical PMUs after disconnecting PMU8. Fig. 5.4-(b) shows the

new configuration of the communication network: compared to the configuration of the

network in the previous time-step (i.e., Fig. 5.3) PMU8 and router R5 are removed from

the network. Moreover, communication links R5-PMU8, R5-R15, R6-R14, and R8-R14 are

also removed from the network, while R4-R14, R9-R15, R10-R18, and R18-R20 are added

to maintain the observability of the network and keeping at least one valid path between

each PMU and its associated PDC(s).
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Figure 5.4: (a) Infection probabilities of critical nodes after infecting PMU8, and (b) the

equivalent graph of the communication network after reconfiguration.
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Chapter 6

Conclusion and Future Works

6.1 Summery

Maintaining the observability of the power system is crucial for the efficient operation

and control of the grid. However, cyber-attacks targeting the PMUs can threaten this

observability. In the first part of this thesis (i.e. chapters 2, and 3), a dynamical model has

been presented for analyzing the propagation of cyber-attack in WAMS. It also studied

the parameters that impact the propagation of cyber-attacks in WAMSs—such as the

capability of attackers and the defensive strategies of operators—and their importance in

mitigating the propagation of cyber-attacks. It was also shown that depending on the

attackers’ and operators’ abilities, an attack may always exist in the network, and it might

eventually infect all nodes. The thesis also proposed an LBF for estimating the capability
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of attackers (i.e., rates β and β′) based on the information received from the IDS in the first

two time-steps after initiation of the attack. This framework, in fact, intelligently learns

the relationship between the number of attacked nodes and the attacker’s capability, and

rationalizes it when a new attack occurs. The numerical results obtained for the 6-bus

test system of this thesis showed that the proposed LBF can estimate the capability of

attackers with an MSE of 0.00046 and regression rate of 0.95. Simulation results show that

the data obtained in two time-steps is enough for estimating the attacker’s capability with

good accuracy.

The second part of this thesis (i.e. chapters 4, and 5) focused on countermeasures

against propagable attacks. It has been demonstrated that only recovering the infected

nodes is not enough for stopping the spread of a propagable attack in WAMSs; yet a

combination of recovering and hardening strategies is required. Thus, it presented an LBF

to determine the required defense strategy (i.e., recovering rate γ and hardening rate θ′)

based on the estimated capability for attackers (rates β and β′) to stop attack propagation.

Afterwards, the thesis demonstrated that the configuration of a communication network

significantly impacts the propagation of cyber-attacks to its nodes. Thus it developed an

LP optimization framework to change the configuration of the communication network

such that the risk of infection for critical nodes is minimized. The performance of the two

frameworks were evaluated on the IEEE 14-bus test system. Simulation results showed that

the proposed LBF can accurately estimate the required defense strategy, and the proposed

optimization framework can effectively protect the critical nodes. Although each technique
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is effective individually, both frameworks together are essential for effective mitigation of

cyber-attack propagation in WAMSs.

The contents of each chapter can be summarized as follows:

Chapter 2 unveiled a dynamical model for analyzing the propagation of cyber-attack

in WAMS. Several rates such as β and β′ as well as γ and θ, which the first two are the

capabilities of an attacker and the second two are the network’s operator abilities were

defined and their impacts on attack propagation were analyzed.

Chapter 3 proposed an LBF to estimate an attacker’s ability using the information

received from IDS. Several input information analyzed and the minimum number of inputs

were identified.

Similar to Chapter 3, Chapter 4 presented an LBF to determine the required defensive

strategy against a propagable attack using NNs (i.e., recovering rate γ and hardening

rate θ′) based on the estimated capability for attackers (rates β and β′) to stop attack

propagation. The proposed LBF could efficiently stop the propagation of attack using the

information of IDS.

Chapter 5 presented an LP optimization framework reconfigure the communication

network of WAMSs such that the probability of infection for critical nodes is minimized.

The proposed model could guarantee the observability of the power system as well.
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6.2 Contributions

The research presented in this dissertation made the following main contributions:

• Modeling and analyzing a mathematical model for attack propagation in

WAMSs: A state-transition diagram was proposed to model and analyze cyber-

attack propagation in WAMS. Then, the impacts of the attacker’s capability and

the network operator’s defensive ability on attack propagation were investigated in

detail.

• Estimating the capability of an attacker using the information received

from the IDS: An LBF was proposed to estimate the attacker’s capability using

NN. This LBF is trained offline using a comprehensive database obtained from the

proposed attack propagation model and is supposed to be used online.

• Estimating the required defensive strategy against a propagable attack:

An LBF was developed to determine the required defense strategy, including recovery

and hardening rates, to stop the propagation of attacks in WAMSs.

• Mitigating the attack propagation using communication network recon-

figuration: First, the probability of infection for critical nodes in WAMSs was ob-

tained. Afterward, an LP problem was solved to minimize the probability of infection

for critical nodes using communication network reconfiguration.
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6.3 Directions for Future Work

Further research on the cyber-security of WAMSs in general, and attack propagation in

particular, may include the topics listed below:

• Considering communication failure and propose a mitigation method under this con-

dition.

• Fixing the vulnerabilities of the clean components after initiating a propagable attack

• Investigating the effect of attack propagation on various WAMPAC applications such

as wide area control
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