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ABSTRACT  
Cornelsen, C. 2023. Modeling the impact of hemlock woolly adelgid under several 

climate change scenarios. 48 pp. 

 

 The hemlock woolly adelgid (Adelges tsugae), or HWA, is a species of insect 

invasive to eastern North America that has caused significant mortality amongst its 

hemlock (Tsuga spp.) hosts. Survivorship and subsequent population expansion of the 

HWA is theorized to be limited primarily by minimum winter temperatures. As climate 

change reduces the severity and cold periods of winter, the potential for a northward 

expansion of the HWA is introduced. This study utilized maximum entropy modeling 

(MaxEnt) in conjunction with an iNaturalist citizen-science occurrence dataset via the 

Global Biodiversity Information Facility (GBIF) and WorldClim (HadGEM3) 

downscaled climate projection data to model habitat suitability for the HWA throughout 

eastern hemlock’s (Tsuga canadensis) range. In addition to a historic conditions 

baseline, species distribution models were generated using SSP 126, SSP 245, and SSP 

585 emissions scenarios for mid-century (2041-2060) and late-century (2081-2100) 

climate change scenarios. The results showed that under a low emissions SSP 126 

scenario, the HWA will be capable of inhabiting almost the entirety of the eastern 

hemlock’s current range by the end of the century. More extreme SSP 245 and SSP 585 

warming scenarios resulted in a more rapid northwards shift in suitable habitat, 

encompassing the entire range of eastern hemlock by the middle of the century. The 

consequences for eastern hemlock are significant, with HWA infestations likely to 

become more widespread and severe due to climate change.  
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INTRODUCTION 
 

 Adelges tsugae Annand, commonly called hemlock woolly adelgid (HWA), is a 

species of invasive insect first introduced to eastern North America from southern Japan 

sometime in the early 1950s (Havill et al. 2016). HWA parasitizes both eastern hemlock 

(Tsuga canadensis (L.) Carrière), which is distributed widely in eastern North America, 

and Carolina hemlock (Tsuga caroliniana Engelmann), which is isolated in the southern 

Appalachian Mountains. The HWA feeds on the ray parenchyma cells of host trees, 

extracting the sap from the host and reducing their available nutrients (Orwig and Foster, 

1998). The feeding activity of HWA is also believed to cause a hypersensitive response 

that restricts water transport through the hosts’ xylem (Havill et al. 2016). Therefore, 

hemlocks infested with the HWA subsequently suffer from decline and mortality four to 

ten years after initial infestation (Orwig et al. 2003).  

 Eastern hemlock is a significant climax species throughout the forests of 

southeastern Canada and the northeastern United States, with a range that extends from 

the Canadian Maritimes in the northeast, west through the Great Lakes – St. Lawrence 

region, and south throughout the Appalachian Mountains to northern Georgia and 

Alabama (McClure et al. 1996). Eastern hemlock is a long-lived species, with some 

individuals reaching more than 800 years old (Ward et al. 2004). The tree is also 

impressively large, reaching heights up to 175ft tall and 6ft in diameter. Eastern hemlock 

also exhibits among the highest shade tolerance of any species in eastern North America 

and can grow in forest ecosystems with as little as 5% full light penetration (Godman 

and Lancaster 1990). This allows hemlock to frequently form pure stands with very 

dense canopies that create cool and shady understories. The tree is of significant value to 



2 
 

wildlife because it provides excellent cover from extreme temperatures to several 

species of birds and mammals, as well as forage for more than 80 species of birds (Ward 

et al. 2004). Eastern hemlock is also a key component of many riparian ecosystems 

where the deep shade created by the thick canopy helps to cool water temperatures. It is 

especially important in riparian areas of southern hardwood forests where as one of the 

few evergreen species it is an important driver of transpiration during winter leaf-off 

(Ford and Vose 2007). Although not as commercially valuable as other softwood 

species, hemlock is still utilized somewhat extensively in the pulp and paper industry, as 

a building material, and has seen particular success as a landscape and ornamental tree 

(Ward et al. 2004; McClure et al. 1996; Godman and Lancaster 1990).  

HWA has spread throughout approximately half the range of eastern hemlock 

(Havill et al. 2016), extending from the Appalachian Mountains in the south (Paradis et 

al. 2008), northwards along the US east coast to the southwestern corner of Nova Scotia, 

where it was identified as established in 2017 (Muise et al. 2020). The impact of HWA 

on hemlock stands has been severe but is not constant across its entire range. Paradis et 

al. (2008) observed that several hemlock had remained uninfected in some northern and 

western regions of Massachusetts despite a 17-year regional infestation. In the southern 

extent of its range, the spread of HWA and subsequent mortality of hemlock trees has 

been most severe due to warm minimum winter temperatures reducing HWA mortality 

(Ford and Vose 2007). Cold winter temperatures are believed to be the primary limiting 

factor in the northern limit of HWA range expansion, and a key regulator of outbreak 

severity (McAvoy et al. 2017). Winter temperatures lower than negative 25 degrees 

Celsius begin to cause increased HWA mortality, with temperatures lower than negative 
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30 to 35 degrees Celsius resulting in near-complete or total mortality (Costa et al. 2004). 

Skinner et al. (2003) found that less than 3 percent of HWA taken from USDA growing 

zones 5a through 6b survived under January and February temperatures lower than 

negative 30 to 35 degrees Celsius. A greater cold tolerance exhibited by HWA taken 

from colder growing zones does, however, indicate the species is adapting a genetically 

increased cold tolerance (Skinner et al. 2003). This was further proven by a common 

garden study from Butin et al. (2005), which determined that the HWA population was 

sufficiently genetically diverse to allow for selection driven mutation towards a greater 

genetic tolerance to cold.  

 Ontario currently lies primarily to the north and west of the current range of 

HWA, although it is increasingly at risk of infestation. The first two infestations of 

HWA in Ontario were detected in Etobicoke in 2012 and Niagara Gorge in 2013, both of 

which had intensive sanitation measures taken to irradicate the infestations (Fidgen et al. 

2014). Several subsequent infestations have been detected in Ontario since 2019, most 

of which have been located throughout the Niagara region around the towns of Niagara 

Falls (2019), Wainfleet (2019), and Pelham (2022); although as of 2022 an infestation 

has been recorded north of Lake Ontario around the community of Grafton (CFIA 

2022). Climate change introduces the potential for the further northward expansion of 

HWA as minimum winter temperatures increase (McAvoy et al. 2017).   

 

OBJECTIVES  

 This thesis will seek to model the growth potential of hemlock woolly adelgid 

populations across the range of eastern hemlock under several climate change scenarios 
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using citizen science data on the current distribution of HWA. This study will explore if 

warming winter temperatures as a result of climate change will allow the HWA to 

spread throughout the range of its eastern hemlock host. This study will also explore 

potential habitat suitability for the HWA throughout the range of eastern hemlock, and 

how this may affect hemlock survivorship in the future using the Maximum Entropy 

(MaxEnt) model and citizen science data from the iNaturalist project. 

 

HYPOTHESIS 

 As minimum winter temperatures rise throughout the northern portions of the 

eastern hemlock’s range, favourable environmental conditions for HWA population 

establishment will be created. It is predicted maximum entropy modeling would reveal 

that 1) climate change allows the northward expansion of HWA, and 2) warmer climate 

scenarios will create the capacity for larger populations of HWA in northern regions of 

the eastern hemlock’s range.   
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LITERATURE REVIEW 

HEMLOCK WOOLLY ADELGID (HWA) 

 The hemlock woolly adelgid (HWA), named Adelges tsugae Annand in binomial 

nomenclature, belongs to the family Adelgidae in the order Hemiptera (Havill and 

Foottit 2007). The HWA is a small ovular insect with a waxy coating that closely 

resembles many species of aphids (CFIA 2021). Adult HWA sistens (Figure 1) are a 

mere 1.41mm long and 1.05mm wide on average. The HWA feeds on the sap of host 

hemlocks with the use of four specialized sucking mouthparts called stylets which are 

arranged in a stylet bundle (Young et al. 1995). The HWA feeds by attaching to the base 

of hemlock needles where the cuticle is thinnest (Figure 2), then penetrating through the 

epidermal tissue of the host with its stylet to access the sap-rich parenchyma cells 

contained in the xylem rays of the underlying vascular tissue (Havill et al. 2016). The 

HWA feeds on the sap of hemlocks throughout every instar stage of its development, 

reinserting its stylet after each time it is forced to molt. This gradually diminishes the 

sugar reserves of the hosts’ parenchyma cells. The native range of HWA encompasses 

the distribution of several species of hemlock (Tsuga spp.) throughout mainland China, 

Taiwan, and Japan, as well as a distinct lineage found in western North America (Havill 

et al. 2016). 

The HWA has a one-year polymorphic lifecycle during which it undergoes four 

distinct instar stages; although the first three stages of instar development are nearly 

indistinguishable from one another (McClure 1989). The lifecycle of the HWA begins in 

early spring, with adult HWA sistens laying a single mass of up to 300 eggs in 

characteristic white woolly structures known as ovisacs (Figure 3) (McClure et al. 
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1996). In the early to mid-spring, two types of HWA hatch from the ovisacs; asexual 

non-winged individuals referred to as progrediens, and less numerous sexual winged 

individuals referred to as sexuparae (Figure 4) (McClure et al. 1996; McClure 1989). 

After rapidly maturing in less than three months, mature progrediens produce 20-75 eggs 

each, which give rise to a longer-lived progeny referred to as sistens (USDA 2005; CFIA 

2021). In early summer the 1st instar nymph sistens (Figure 5) hatch and immediately 

move to the base of available hemlock needles, attach via their stylets, and enter a state 

of dormancy throughout the summer called aestivation (Foley et al. 2022). As 

temperatures cool in the early to mid-fall, the nymphs emerge from their dormancy and 

rapidly mature through the four instars of development throughout the late fall and early 

winter before entering yet another dormancy (McClure et al. 1996; Foley et al. 2022; 

Havill et al. 2011). Adult sistens finally emerge from dormancy in the late winter or 

early spring, complete development if they have not already, and lay asexually produced 

eggs in early spring. The exact timing of the HWA lifecycle is largely dependent on the 

climate in which they are present, with development being more accelerated in cooler 

northern and high-elevation climates, and extended in the more temperate southern 

reaches of its ranges (McClure et al. 1996: Havill et al. 2011).  

Unlike the unwinged progrediens, upon hatching, the generation of winged 

sexuparae immediately disperse in search of alternative spruce (Picea spp.) hosts on 

which they can lay their eggs (Elkinton et al. 2011). In the presence of suitable spruce 

primary hosts, a generation of sistens capable of sexual reproduction is produced (CFIA, 

2021; Havill et al. 2011). Not all spruce are suitable primary hosts, however, and in the 

case of HWA lineages that originated from southern Japan only tigertail spruce (Picea 



7 
 

torano (K. Koch) Koehne) is suitable. HWA populations in western North America have 

been found to lack a suitable Picea spp. host for sexual reproduction, and subsequently 

maintain entirely asexual populations (McClure 1989; Havill et al. 2011; Foley et al. 

2022).  

Within its native range across Japan, China, and western North America, the 

HWA is largely non-problematic and can only build to significant populations on trees 

that are already severely stressed or in decline (McClure et al. 1996). This is attributed 

to the resistance of host trees to the insect, in addition to the presence of natural 

predators such as Leucopis spp. in western North America (CFIA 2021; Motley et al. 

2017).  

  

Figure 1. Adult HWA sisten. Image via Nathan Havill, USDA Forest Service.  
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Figure 2. HWA nymph sistens feeding at the base of hemlock needles. The stylet bundle 
is marked with a white arrow. Image via Nathan Havill, USDA Forest Service.  

Figure 3. HWA ovisac dissected to display the eggs contained within. Image via Lorraine 
Graney, Bartlett Tree Experts.  
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CURRENT IMPACT OF HWA IN NORTH AMERICA 

 Although it is believed to be native to Western North America, the HWA does 

not naturally occur on the eastern side of the continent (McClure and Cheah 1999). 

Introduced HWA was first discovered in eastern North America in 1951, and was 

determined to have originated from the island of Honshu, Japan (Fidgen et al. 2014; 

Figure 4. Adult HWA sexuparae. Image via Michael Montgomery, USDA Forest 
Service, Bugwood.org 

Figure 5. HWA 1st instar nymph sisten. Image via Kelly Oten, North Carolina State 
University, Bugwood.org 



10 
 

McClure and Cheah 1999). The lineage of HWA introduced to North America naturally 

alternates between southern Japanese hemlock (Thuja sieboldii Carrière) and its primary 

host, tigertail spruce (Picea torano (Siebold ex K.Koch) Koehne), (Onken and Reardon 

2011). The introduced HWA has been able to feed successfully on hemlock hosts in 

Eastern North America, but in the absence of tigertail spruce, it is unable to reproduce 

sexually. Therefore, much like the population in Western North America, HWA in 

Eastern North America is entirely reliant on asexual propagation (Onken and Reardon 

2011). 

 The eastern hemlock and Carolina hemlock, both native to eastern North 

America, exhibit virtually no tolerance to feeding damage by the introduced HWA. 

Coupled with the lack of natural predators to control establishment, HWA populations in 

eastern North America are frequently able to build to levels that cause serious 

deleterious effects for host trees (Havill et al. 2016). Extensive HWA feeding not only 

causes the depletion of the host’s energy reserves but has also been linked to a 

hypersensitive response that restricts water transport throughout the host tree’s xylem 

and leads to further decline (Havill et al. 2016). The mortality of eastern hemlocks that 

experience infestation by HWA is therefore very high, and articles published by Natural 

Resources Canada and the United States Department of Agriculture both claim that in 

the eastern US mortality of hemlocks infected with HWA has significantly exceeded 

90% (Fidgen et al. 2014; Ward et al. 2004). Mortality of the host tree takes between four 

and ten years, with climate, host size, and host vigour being the largest factors in 

determining the duration of infestation (Orwig and Foster, 1998).  
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Since its introduction, the HWA has spread rapidly throughout the range of 

hemlocks in eastern North America, with nearly 50% of the eastern hemlock’s range 

now threatened with infestation (Havill et al. 2016; Emilson et al. 2018). The HWA has 

been shown to spread at a rate of between 12.5 and 20.8 km/yr, with the rate of spread 

largely determined by the favourability of the habitat into which the HWA is expanding 

(Evans and Gregoire 2007). Given the inability of winged progeny to successfully 

reproduce in North America the independent movement of HWA is very slow, but wind, 

birds, mammals, and humans have all helped to facilitate the rapid spread of the insect 

(McClure 1990). HWA has now established itself throughout the majority of hemlocks’ 

native ranges in the US, with areas in the extreme west and northeast of eastern 

hemlock’s range being the only notable exception. However, some isolated pockets of 

uninfected refugia still do exist in the southern Appalachian Mountains. HWA was also 

found to have established itself in more than 5 counties in southwestern Nova Scotia as 

of 2017 (Emilson et al. 2018). Ontario, historically to the west and north of HWA’s 

range, has also begun to experience some limited infestations in the extreme southeast of 

the province (Fidgen et al. 2014). Two populations were identified in 2013 and 2014, the 

first of which was in Etobicoke, and the second in Niagara Falls, respectively. Extensive 

eradication efforts were made to control the infestation through the sanitation (burning 

and removal) of all infected trees, and eradication efforts appeared to have been 

successful (Fidgen et al. 2014). However, since 2019, further infestations have been 

reported in the province (CFIA 2022). Most of these infestations are located throughout 

the Niagara region, including 2019 infestations in Niagara Falls and Wainfleet, as well 

as 2021 and 2022 detections in Fort Erie and Pelham, respectively. Notably, a further 
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infestation was also located on the north shore of Lake Ontario around the community of 

Grafton as of 2022 (CFIA 2022).  

 

HWA AND CLIMATE CHANGE  

An increasingly large body of academic literature has established a correlation 

between the survival of HWA in eastern North America and winter temperatures 

(Trotter, III, and Shields 2009; Paradis et al. 2008; Evans and Gregoire 2007; Parker et 

al. 1999). HWA is particularly susceptible to winter mortality, largely as a result of its 

feeding activity occurring in both early and late winter (McAvoy et al. 2017). Across its 

range, winter mortality of the HWA is subsequently higher in the northern components 

of its distribution, where average winter temperatures are coldest (Trotter III and Shields 

2009).  

The ability of HWA to expand its range is reliant on overwintering mortality of 

less than 91%, after which the fecundity of the population is reduced sufficiently to 

result in population decline (Paradis et al. 2008). Minimum winter temperature has been 

correlated with HWA survivorship, with colder temperatures resulting in increased 

mortality (Parker et al. 1999; Skinner et al. 2003). For HWA taken from plant hardiness 

zone 5a, the coldest zone in which HWA is present, temperatures below negative 30 

degrees result in fewer than 3 percent HWA survivorship, with temperatures lower than 

negative 35 resulting in complete mortality of the insect (Skinner et al. 2003; Parker et 

al. 1999). Differences in cold tolerance, however, have been found based on location 

and the time of year. Skinner et al. (2003) found that HWA taken from growing zones 

6a and 6b experienced complete mortality when exposed to temperatures lower than 



13 
 

negative 30 degrees, which is unlike the aforementioned HWA taken from zone 5a. The 

study also found that from January to March the percentage of HWA survivorship 

following exposure to negative 15 degrees Celsius temperatures degraded 50 to 60 

percent for HWA from growing zones 6a and 6b. This was further supported by Parker 

et al. (1999), who found that at negative 25 degrees Celsius the proportion of HWA 

survivorship fell from 14-22 percent in January, to 8-12 percent in February, and just 0-4 

percent in March.  

Negative 25 degrees Celsius was subsequently identified as a significant 

threshold temperature by Skinner et al. (2003), who found that HWA survivorship 

dipped below 10 percent regardless of the time of year or growing zone. This was 

supported by Cheah (2017), who found that minimum winter temperatures of negative 

24 degrees Celsius or below resulted in greater than 90 percent mortality of HWA in 

northwestern Connecticut. This is unlike Parker et al.’s aforementioned findings, which 

still found an overwintering HWA survivorship rate of up to 12 percent following 

negative 25 degree temperatures in February. The amount of time that HWA is exposed 

to cold temperatures is also significant. Paradis et al. (2008) estimated that a mean 

winter temperature of less than negative 5 degrees Celsius, or more than 79 days below 

negative 10 degrees Celsius, is sufficient to reduce HWA survivorship below the 91 

percent minimum required for population expansion. HWA has historically been limited 

to regions no colder than USDA plant hardiness zone 5a (Skinner et al. 2003), where the 

average winter minimum temperature ranges from negative 26.1 to negative 28.9 

degrees Celsius (USDA, 2012). As temperatures warm globally as a result of climate 

change, the impact of HWA is likely to become more severe in infested regions, and its 
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distribution will likely expand into regions previously too cold for population 

establishment (Paradis et al. 2008; McAvoy et al. 2017; Kantola et al. 2019).  

 It is of note that there are observed variances in cold tolerance through the range 

of HWA (Skinner et al. 2003; Cheah 2008). Individuals along the northern extreme of 

the range exhibiting higher colder tolerance indicates the ability of the species to adapt 

to colder winter temperatures (Skinner et al. 2003). Butin et al. (2005) conducted a 

common garden experiment with HWA taken from both the southern and northern 

components of its range to test for adaptation to cold. The study found that despite being 

limited to parthenogenic reproduction, the genetic diversity of the HWA population was 

sufficiently large such that selection and mutation have allowed for the insect to develop 

greater genetic cold tolerance along the northern fringes of its range.  

 

MODELING THE SPREAD OF HWA 

Predicting the spread of invasive forest insects through population modeling has 

become increasingly utilized in the scientific community. Species distribution models, 

which predict geographic habitat suitability for a given species based on biologically 

significant climatic factors, are among the most widely utilized (Jeshchke and Strayer 

2008). Although the potential for predicting population responses to climatic with 

species distribution models has been increasingly recognized (Chiou et al. 2015; Bryn et 

al. 2021), there are fundamental assumptions made by these models that must be 

recognized (Jeshchke and Strayer 2008). One such assumption is that the biotic 

interactions of a species are constant over geographic and temporal scales, and are 
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subsequently not significant in influencing or determining its geographic range. SDMs 

also assume that the genotypic and phenotypic expression of the species is 

geographically and temporally constant, and that there is no variation in habitat 

preference/tolerance within the species. Finally, these models assume that there are no 

biotic or abiotic limitations to the dispersal of the species other than climate (Jeshchke 

and Strayer 2008). 

Maximum entropy modeling, or MaxEnt (Phillips et al. 2006), is a widely used 

species distribution model which predicts the geographic presence of a species based on 

known occurrence points and their relationship with bioclimatic data (Lissovsky and 

Dudov 2021). One of the key features of MaxEnt is that it is able to generate species 

distribution models without the need for absence points, locations in which the species is 

known not to occur. This allows for the utilization of presence-only occurrence datasets 

(Phillips et al. 2006). MaxEnt has been demonstrated as capable of exhibiting a high 

degree of accuracy comparative to other high-performance species distribution models 

(Elith et al. 2006). There are, however, two primary limitations with presence-only 

species distribution modeling; the inability to generate the probability of species 

occurrence, and the increased influence of sample selection bias (Elith et al. 2010). 

Unlike most other presence-absence methods of species distribution modeling, which 

can predict the probability of a species occurrence over a geographic area, presence-only 

MaxEnt modeling is unable to do this and instead generates a map of habitat suitability. 

This can make the intercomparison with the results of other species distribution models 

more difficult. Sample selection bias, where some geographic regions are samples more 

intensely than others, also has a significantly stronger effect on presence-only models 
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than their presence-absence counterparts (Phillips et al. 2009). This source of error can, 

however, be reduced through the elimination of occurrence point aggregations at a scale 

selected based on the resolution of the bioclimatic data being utilized (Lissovsky and 

Dudov 2021). 

 

CLIMATE DATA 

As early as the 1960s and 70s there was an increasingly large body of scientific 

literature that linked human industrial activities with altered climatic conditions; namely 

that global temperatures were warming as a result of greenhouse gas emissions into the 

atmosphere (Peterson et al. 2008). However, agreement amongst the scientific 

community about human-caused warming of global temperatures was far from 

unanimous, and some literature even argued that the increased contribution of 

atmospheric aerosols through industrial activity would result in the Earth cooling rather 

than heating (Rasool and Schneider 1971). Since the controversial claims made by early 

literature on climate change, there has been an increasingly large consensus reached 

amongst the scientific community that anthropogenic actions are exceedingly likely to 

be causing a warming of the global climate (Wuebbles et al. 2017). As of 2021, two 

separate reviews of scientific consensus have concluded that there is a minimum of 99 

percent agreement amongst peer-reviewed literature that global warming is at least 

partially a result of anthropogenic influences (Myers et al. 2021; Lynas et al. 2021).  

 The emission of greenhouse gases through human activities is predicted with 

very high confidence to be the primary cause of current trends in global warming 

(Eyring and Gillet et al. 2021). Numerous climatic models have been developed to both 
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establish the link between climate change and human activity, as well as to predict the 

extent to which future warming will occur (Eyring and Gillet et al. 2021; Wuebbles et 

al. 2017). The construction of climatic models generally requires the input of emissions 

scenarios that predict future greenhouse gas inputs and their cumulative effect on 

radiative forcing (Nakicenovic and Swart 2000). Radiative forcing, for reference, is any 

factor such as greenhouse gases that results in an alteration of the Earth’s radiative 

energy budget and subsequently its climatic processes (Ramaswamy et al. 2018). One 

such set of radiative forcing-based emissions scenarios is the representative 

concentration pathways (RCPs) developed for the 5th Intergovernmental Panel on 

Climate Change (IPCC) (Moss et al. 2010). The RCP scenarios were developed to cover 

the possible range of radiative forcing that could occur by 2100 (measured in W/m2 of 

solar radiation). Based on academic literature chosen by the IPCC, four RCP pathways 

were developed that lead to 2.6, 4.5, 6, and 8.5 W/m2 of radiative forcing by 2100 

respectively (Van Vuuren et al. 2011). The RCP pathways were chosen to represent the 

widest realistic range of radiative forcing presented in the scientific literature (Moss et 

al. 2010; Van Vuuren et al. 2011). RCP8.5 represents very high emissions scenarios 

above the 90th percentile of radiative forcing scenarios, and RCP2.6 represents very low 

radiative forcing established below the 10th percentile of emission mitigation scenarios. 

RCP4.5 and RCP6.0, meanwhile, are designed to represent medium emissions scenarios 

(Moss et al. 2010; Van Vuuren et al. 2011).  

The Shared Socioeconomic Pathways (SSPs) are a series of socioeconomic 

climate change scenarios developed by the climate research community in parallel with 

the RCP radiative forcing scenarios (Riahi et al. 2017). These scenarios predict the 
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impact of climate change on future societal conditions, examining impacts, mitigation, 

and adaptation globally. The scenarios were constructed from the effects of broader 

political, social, demographic, technological, environmental, and economic trends 

(O’Neill et al. 2017). Five such SSP scenarios were developed by O’Neill et al. (2017), 

with narratives constructed to represent a range of reasonable mitigation and adaptation 

possibilities. The scenarios are numbered numerically one to five, with SSP1 

representing a global shift towards environmental sustainability, with low challenges to 

both climate change adaptation and mitigation. SSP2 represents a median scenario in 

which broader economic, social, and technological developments do not stray 

considerably from the trends of the past century. In this scenario, there are moderate 

challenges for both global climate change adaptation and mitigation. The SSP3 scenario 

assumes a negative change to global cooperation on climate change mitigation, with a 

high degree of global challenges to both the adaptation to, and mitigation of, climate 

change. The SSP4 and SSP5 scenarios provide examples of an uneven approach to 

climate change adaptation and mitigation. SSP4 predicted a low level of challenge to 

mitigation, with a high amount of challenges to adaption due to increasing levels of 

economic and technological inequality globally. SSP5 is the inverse, with a high number 

of challenges to climate change mitigation, and a low amount of challenges to adaptation 

as a result of increasing (and more equal) global technological and societal 

advancements, at the cost of increased fossil fuel utilization.   

The Coupled Model Intercomparison Project (CMIP) is an intercomparison 

project that provides a framework for the construction of multiple-model datasets to 

determine the factors affecting past, present, and future climatic changes (Eyring et al. 
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2016). As a component of the Scenario Model Intercomparison Project for CMIP Phase 

6 (CMIP6) multi-model climate projections of future climate change scenarios were 

produced using the SSP socioeconomic and RCP radiative forcing scenarios (O’Neill et 

al. 2016). O’Neill et al. (2016) constructed several key future climate scenarios using 

the SSP scenarios, with radiative forcing values derived from the most appropriate 

corresponding RCP scenario. SSP5-8.5 (SSP585) represents a severe or high-emissions 

climate change scenario, and is a combination of the SSP5 scenario and RCP8.5 

radiative forcing values. SSP2-4.5 (SSP245) represents a median or moderate-emissions 

climate change scenario, and is a combination of the SSP2 scenario and RCP4.5 

radiative forcing values. SSP1-2.6 (SSP126) is a mild or low-emissions climate change 

scenario, and combines the SSP1 scenario with RCP 2.6 radiative forcing values.  

 

CITIZEN SCIENCE DATA 

 Citizen science refers to data that is collected by the general public, which is 

often done voluntarily and by a wide array of individuals, many of whom have little or 

no scientific training (Bonney et al. 2014). The key benefit provided by citizen science 

is that an extensive amount of data can be collected affordably, and can therefore 

provide researchers with a large volume of data that would otherwise be unattainable 

(Tulloch et al. 2013). The usefulness of citizen data to research varies widely depending 

on the type of information that is being collected, how it is gathered, and how it is 

presented (Sullivan et al. 2014). Additionally, concerns have been raised about the 

accuracy of citizen science data (Falk et al. 2019). In some cases, advancements in the 

utilization of technology have allowed for more continuous interaction between experts 
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and the public, as well as the presentation of data in an organized and accessible manner. 

This has greatly increased the potential reliability and scientific application of many 

citizen science projects. One such example cited by Sullivan and his colleagues in 2014 

is eBird, a web application that has fostered the collaboration of expert and amateur bird 

researchers to create an objectively comprehensive and reliable database that contains 

extensive data on the range and abundance of numerous bird species.  

 Several other internet-based citizen science projects have since been developed, 

and these databases have been identified as useful tools by several ecological researchers 

(Wilson et al. 2020). One such online database, iNaturalist, was developed in 2008 by 

Ken-ichi Ueda, Nate Agrin, and Jessica Kline as a master’s project for the University of 

California Berkley’s School of Information (Ueda 2022). The program has since evolved 

to become an initiative of the California Academy of Sciences in 2014, and a joint 

initiative of the National Geographic Society in 2017. iNaturalist allows the public to 

record sightings of fungi, flora, and fauna through the use of an application or website 

(Mugford 2021). Using the iNaturalist program, the public can report the location of 

species sightings, with an option to upload images for verification. These images are 

reviewed by other app users through a voting system that is meant to achieve a higher 

accuracy amongst the citizen data. Additionally, these images give researchers the 

ability to visually verify the identity of the observed species (Wilson et al. 2020). One 

key limitation identified with the iNaturalist system is that it is difficult for researchers 

to identify whether alterations in species abundance are the result of actual ecological 

changes to species abundance or the inconsistency of data collection (Mugford 2021).  
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MATERIALS AND METHODS 

STUDY AREA  

 In this study, climatically suitable habitat for the hemlock woolly adelgid was 

modeled throughout the temperate zone of eastern North America under several 

potential climate change scenarios. The range of the HWA’s only host species native to 

Ontario, the eastern hemlock, is therefore a key consideration when examining the 

potential future range of species. It is predicted that under one or more future climate 

scenarios the climatically suitable range of HWA will likely exceed the current 

distribution of eastern hemlock. Modeling by Natural Resources Canada has shown that 

the ideal climatic range of eastern hemlock will also shift north under several global 

warming scenarios (NRCAN 2022). However, several studies have found that the 

northward migration of species is limited by not only the climate but non-climatic 

factors as well, such as soil composition and existing species composition (Carterton et 

al. 2020; Putnam and Reich 2016; Van Der Veken et al. 2007). Therefore, any potential 

changes in the range of eastern hemlock are difficult to accurately predict. As a result, 

this study will assume that the range of eastern hemlock will remain constant throughout 

the study period until 2100.  

The current range of eastern hemlock is available from several government 

inventories. For this study, a shapefile of Elbert Little’s 1971 map of the preindustrial 

range of eastern hemlock from the Atlas of United States trees volume 1 Conifers and 

important hardwoods (Map 91-E) was utilized. This map was utilized for illustration 

purposes, as well as served as the geographic extent of modeling. As seen in Figure 6, 

Little’s map was combined with a jurisdictional map of North America published by the 
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U.S. Geological Survey as part of the National Atlas of the United States of America, 

1997 – 2014 (INEGI et al. 2004). A shapefile of the North American Great Lakes was 

also accessed from the Great Lakes Commission GIS database for use in the presentation 

of MaxEnt models and Little’s eastern hemlock range map as pictured in Figure 6 (GLC 

2022).  

In addition to Little’s range data, a published range of eastern hemlock is also 

available from Natural Resources Canada’s Trees, insects and diseases of Canada’s 

forests database (NRCAN 2015). Unlike Little’s range map, the NRCAN range map 

focuses only on the northern components of the range of eastern hemlock. Subsequently, 

this study utilized Little’s maps for use in modeling. However, the NRCAN map served 

as a valuable reference to ensure the accuracy of Little’s older range estimations in key 

regions around central and southern Ontario. NRCAN’s map is presented below in 

Figure 7 for reference.    

 

 

 

Figure 6. Range of eastern hemlock in Ontario based on Little’s 1971 range 

maps. The range of eastern hemlock appears in hashed red over USGS 

political boundaries and the GLC Great Lakes shapefile. 
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DATA SOURCE 

 Two primary datasets were utilized for this study, hemlock woolly adelgid 

occurrence data, and bioclimatic data for present and future climatic conditions. An 

occurrence dataset of “research-grade” iNaturalist observations was accessed via the 

Global Biodiversity Information Facility (GBIF) archive (GBIF 2022). This simple 

archive dataset included the date, coordinate location, and occurrence of HWA for each 

observation (datapoint) globally. For this study, which focused on HWA as an invasive 

pest in eastern North America, the dataset was modified to only include occurrences 

within the approximate native range of eastern hemlock. The HWA occurrence dataset 

was also cleaned to avoid selection bias for use in MaxEnt. Aggregated points closer 

than 1 km to each other were removed. This resolution was chosen based on the 30 

Figure 7. The range of eastern hemlock (green) throughout Canada as 

presented by Natural Resources Canada. 



24 
 

second resolution of the climate data, which represents approximately 1 km at the 

equator. 

 Climatic data for this study was accessed via the WorldClim.org website, which 

hosts both historic climate data as well as projected datasets of future climate change 

scenarios (WorldClim 2022a, 2022b). Climate data from the WorldClim database is 

delineated into separate bioclimatic variables which are attained from monthly 

temperature and precipitation values, and represent biologically significant variables that 

are useful in the creation of species distribution models (WorldClim 2022a). Based on 

findings in previous literature, which link minimum winter temperatures to HWA 

mortality and range limitation (Parker et al. 1999; Skinner et al. 2003; Paradis et al. 

2008; Cheah 2017; McAvoy et al. 2017; Kantola et al. 2019), five climatic variables 

were ultimately chosen for this model. These variables were the monthly average 

minimum temperature of January (Tn1), February (Tn2), and March (Tn3), as well as 

the minimum temperature of the coldest month (Bio6) and the mean temperature of the 

coldest quarter (Bio11). WorldClim datasets are available in several spatial resolutions, 

expressed as minutes of a degree of latitude and longitude (WorldClim 2022a).  For this 

study, a 30 second resolution was chosen as it was the highest resolution available, and 

subsequently afforded the highest level of accuracy.  

Climate data is available for a historical (near current) period of 1970 to 2000 

and was developed by Fick and Hijmans for WorldClim version 2.1, which was released 

in January 2020 (Fick and Hijmans, 2017). In addition to its direct use in this study, this 

historical data acts as a baseline for the downscaling, calibration, and bias reduction of 

future climate datasets. The future climate datasets available on WorldClim are 
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downscaled future climate projections from several global climate models generated as 

part of the IPCC’s CMIP6 (O’Neil et al. 2016). For this study, downscaled climate data 

projections from the Met Office Hadley Center HadGEM3-GC31-LL (2016) global 

climatic model were utilized, which, again, were developed as a component of the 

CMIP6 coupled model intercomparison project (Ridley et al. 2019).  

WorldClim projected future climate variables are delineated into 20-year periods 

from 2021 to 2100 (WorldClim 2022b). For this study, 2041 to 2060 and 2081 to 2100 

time periods were used to represent mid-century and late-century climatic effects. 

WorldClim future projection datasets are available for the SSP 126, 245, 370, and 585 

emissions scenarios (WorldClim 2022b). For this study, datasets derived from SSP 126, 

245, and 585 were utilized. These pathways were chosen to represent a wide range of 

potential future emissions pathways, presenting minimal, moderate, and severe global 

warming scenarios. A summary of the selected emissions pathways and time periods 

(Table 1) as well as the selected bioclimatic variables used in this study (Table 2) are 

displayed below.  

 

 

Historical 
(1970-2000) 

Mid Century 
(2041-2060) 

Late Century 
(2081-2100) 

- SSP 126 SSP 126 
- SSP 245 SSP 245 
- SSP 585 SSP 585 

Table 1. Summary of SSP emissions pathways and time periods 
used in this study. 
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DATA ANALYSIS 

 Analysis of HWA’s range under the aforementioned climate change scenarios 

was conducted through the use of entropy modeling. For this purpose, the Maximum 

Entropy (MaxEnt) model version 3.4.4 was chosen (Phillips et al. 2022). DIVA-GIS 

(Hijmans et al. 2022) was used in conjunction with the HWA dataset obtained from 

iNaturalist (GBIF 2022) and Little’s 1971 eastern hemlock range map to prepare a 

cleaned occurrence dataset reduced to the desired extent. The cleaned occurrence dataset 

was then utilized in conjunction with the selected historical WorldClim climate variables 

in MaxEnt to generate a historical species distribution model. To predict changes in 

HWA’s range under future climate scenarios, the selected downscaled HadGEM3 

climate projection datasets were then applied to the aforementioned historical species 

distribution model in MaxEnt. As was previously stated, SSP 126, SSP 245, and SSP 

585 emissions scenarios were generated for both the 2041-2060 and 2081-2100 time 

periods, resulting in a total of 7 species distribution models including the base model 

generated with near-present (historical) climate conditions.  

In the species distribution models (SDMs) a red hue was used to indicate habitat 

suitability. Areas with a darker red to near black hue indicate higher potential suitability 

Climate Variable Definition 
Tn1 Average minimum monthly temperature - January 
Tn2 Average minimum monthly temperature - February 
Tn3 Average minimum monthly temperature - March 
Bio6 Minimum temperature of the coldest month 

Bio11 Mean temperature of the coldest quarter 

Table 2. Summary of climate variables used in this study. 
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(trending towards 100% habitat suitability), whereas areas with a lighter red to near 

white hue indicate a lower potential suitability (trending towards 0% habitat suitability). 

The current range of eastern hemlock is outlined in green. Additionally, occurrence 

points used for model training were highlighted in purple for the present conditions 

SDM. These points are for illustrative purposes only, and several occurrence points 

around the margins of the shapefile, specifically in southern Ontario and Michigan, were 

not visible.  
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RESULTS 

Throughout the species distribution models MaxEnt’s machine learning 

algorithm calculated an area under curve (AUC) value of 0.872. As seen in Table 3, 

when the relative contribution of a variable to the modeling processes was expressed as 

a percent, the most important climatic variable was Bio11, followed by Tn3, Bio6, Tn2, 

and Tn1. These variables had a percent contribution of 44.8, 21.1, 18.6, 11.1, and 4.4 

respectively. When measured by permutation importance, the decrease in model score 

when the values of a variable are shuffled, Bio11 was once again the most significant 

variable with a permutation importance of 54. Tn2 had the second highest permutation 

score of 21.5, followed by Tn3 and Bio6 with scores of 14.8 and 9.8 respectively. Tn1 

once again had the least significant model impact with a permutation score of 0.  

 

 

 

 

Note: Bio6, minimum temperature of the coldest month; Bio11, mean temperature of the coldest quarter; 
Tn1, average minimum temperature of January; Tn2, average minimum temperature of February; Tn3, 
average minimum temperature of March. 

The near-present SDM closely resembled the current northern margins of 

HWA’s range (Figure 8). This included at least marginal habitat suitability throughout 

southwestern Nova Scotia, as well as much of southeastern Ontario (especially the 

Niagara region), and a small area along the north shore of Lake Ontario. The SSP 126 

emissions scenario resulted in a northern expansion in the suitable range of the HWA, as 

well as greater climatic suitability in the present extent of the infestation (Figures 9 and 

Variable Percent contribution Permutation importance 
Bio11 44.8 54.0 
Tn3 21.1 14.8 
Bio6 18.6   9.8 
Tn2 11.1 21.5 
Tn1   4.4 0 

Table 3. Percent contribution and permutation importance of 
climate variable used in the species distribution models. 
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10). From 2041-2060 the entirety of Michigan’s lower peninsula, much of the upper 

peninsula, and most of eastern hemlock’s range in Ontario became highly suitable for 

the HWA (Figure 9). This is with the exception of areas in the Algonquin highlands and 

the easternmost regions of southern Quebec, which retain only limited or marginal 

suitability for the HWA. From 2081-2100, however, almost the entirety of eastern 

hemlock’s range displayed relatively high suitability for the HWA, with the most hostile 

northern areas for HWA population growth, far eastern New Brunswick and the western 

part of Michigan’s upper peninsula, still indicating at least marginal suitability (Figure 

10).  

 

 

 

Figure 8. Species distribution map of the hemlock woolly adelgid based on historic 
(1970-2000) climate data. The range of eastern hemlock is outlined in green. Purple dots 
represent HWA occurrence points used for model training. Dark and light red colours 
indicate high and low habitat suitability for HWA respectively. White colouration 
indicates no predicted suitability for HWA. 
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Figure 10. Future distribution map of the hemlock woolly adelgid in 2081-2100 
based on downscaled climate data from the HadGEM3 SSP 126 emissions scenario. 
The range of eastern hemlock is outlined in green. Dark and light red colours 
indicate high and low habitat suitability for HWA respectively. White colouration 
indicates no predicted suitability for HWA. 

Figure 9. Future distribution map of the hemlock woolly adelgid in 2041-2060 based 
on downscaled climate data from the HadGEM3 SSP 126 scenario. The range of 
eastern hemlock is outlined in green. Dark and light red colours indicate high and low 
habitat suitability for HWA respectively. White colouration indicates no predicted 
suitability for HWA. 
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Compared to the SSP 126 pathway, the higher radiative forcing SSP 245 

emissions scenario SDMs resulted in an accelerated northwards shift in suitable habitat 

for the HWA (Figures 11 and 12). In the 2041-2060 timeframe, nearly the entirety of the 

eastern hemlock’s range is predicted to be highly suitable for the HWA (Figure 11). This 

is once again with exceptions in the far west of Michigan’s upper peninsula, and the 

extreme northeastern coast of New Brunswick, which still displayed moderate 

suitability. In the 2081-2100 time period, the SSP245 SDM predicted high suitability for 

the HWA extending far north of the current range of eastern hemlock (Figure 12). The 

model also predicted at least moderate habitat suitability extending well into 

northeastern Ontario and northwestern Quebec. However, in the southern extent of the 

HWA’s present range, the predicted habitat suitability for the HWA was reduced. This is 

seen in the extreme south of the eastern hemlock’s range, where the model predicts little 

to no suitability for the HWA despite its present existence in the region.  

 

Figure 11. Future distribution map of the hemlock woolly adelgid in 2041-2060 
based on downscaled climate data from the HadGEM3 SSP 245 emissions scenario. 
The range of eastern hemlock is outlined in green. Dark and light red colours indicate 
high and low habitat suitability for HWA respectively. White colouration indicates no 
predicted suitability for HWA. 
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SDMs generated from the highest radiative forcing SSP 585 emissions scenario 

predicted the largest northwards shift in the HWA’s suitable habitat (Figures 13 and 14). 

In the 2041-2060 time period the model predicted high habitat suitability for the HWA 

extending northwards of the current northern limit of the eastern hemlocks range (Figure 

13). Like in the SSP 245 end-of-century model, the habitat suitability of the far southern 

extent of the HWA’s current infestation was significantly reduced. In the 2081-2100 

end-of-century model, the SDM displayed extremely high HWA habitat suitability 

extending well beyond the current range of eastern hemlock (Figure 14). In contrast to 

the northern expansion of HWA, a large part of the HWA’s current range throughout the 

continental United States was predicted to have low or very low habitat suitability 

(Figure 14).  

 

 

Figure 12. Future distribution map of the hemlock woolly adelgid in 2081-2100 
based on downscaled climate data from the HadGEM3 SSP 245 emissions scenario. 
The range of eastern hemlock is outlined in green. Dark and light red colours indicate 
high and low habitat suitability for HWA respectively. White colouration indicates no 
predicted suitability for HWA. 
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Figure 13. Future distribution map of the hemlock woolly adelgid in 2041-2060 
based on downscaled climate data from the HadGEM3 SSP 585 emissions scenario. 
The range of eastern hemlock is outlined in green. Dark and light red colours indicate 
high and low habitat suitability for HWA respectively. White colouration indicates no 
predicted suitability for HWA. 

Figure 14. Future distribution map of the hemlock woolly adelgid in 2081-2100 
based on downscaled climate data from the HadGEM3 SSP 585 emissions scenario. 
The range of eastern hemlock is outlined in green. Dark and light red colours indicate 
high and low habitat suitability for HWA respectively. White colouration indicates no 
predicted suitability for HWA. 



34 
 

DISCUSSION  

The findings of this study indicate that under future climate change scenarios 

there will be a significant northwards shift in the range of the HWA. The SDMs showed 

that even under a low-emissions SSP 126 global warming scenario the majority of 

eastern hemlocks’ current range could become highly suitable for HWA infestation by 

the middle of the century, with the entirety of eastern hemlocks current range placed at 

high risk of infestation by 2100. This trend was amplified in more extreme emissions 

scenarios, with the climatically suitable habitat of the HWA extending far north of the 

current distribution of eastern hemlock by the end of the century in the SSP 245 and 585 

emissions scenarios.  

This study also demonstrates that the mortality of eastern hemlock will be 

significantly increased throughout much of its range currently infested with the HWA. 

The findings of Paradis et al. (2008), Ford and Vose (2007), and McAvoy et al. (2017) 

indicated that as winter temperatures warm and habitat suitability for the HWA 

increases, the rate and extent of eastern hemlock infestations will most likely increase, 

and the duration of infestation until host mortality occurs will be reduced. These 

findings support the conclusions that warmer winter temperatures resulting from climate 

change will facilitate the northward migration of the HWA in eastern North America 

(Kantola et al. 2019). 

The extent to which this will occur varies between publications, and is not 

always consistent with the findings of the models generated in this study. Paradis et al. 

(2008) concluded that by the end of the century under a high-emissions scenario the 

HWA could encompass almost the entirety of the northeastern U.S. This finding is 
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supported by the SDMs in this study, which under a high-emissions end-of-century 

scenario predict high habitat suitability for the HWA throughout almost the entire extent 

of the eastern hemlock’s native range. However, under a low-emissions scenario Paradis 

et al. (2008) concluded that some isolated areas of upper-state New York, Vermont, 

New Hampshire, and the northern half of Maine would likely remain unsuitable for 

HWA infestation. This is not supported by the current study, which indicated that even 

under a low-emissions SSP 126 warming scenario the suitable range of the HWA would 

extend throughout virtually the entirety of the northeastern United States by the end of 

the century. The difference in conclusions between these two studies may be the result 

of several factors. One such factor is that Paradis et al. (2008) did not utilize a SDM for 

their study, and instead identified an average winter temperature of negative five degrees 

Celsius as the threshold for HWA expansion. Subsequently, in conjunction with 

MaxEnt’s machine learning algorithm, recent occurrence points along the northernmost 

margins of the HWA’s range may explain the more pessimistic findings of this study. 

The climatic data utilized by Paradis et al. (2008) was also simulated with the IPCC’s 

older Special Report on Emission Scenarios (SRES), which were originally published in 

the year 2000 (Nakicenovic and Swart 2000). Instead, this study utilized the IPCC’s 

newer SSP scenarios generated for CMIP6 (O’Neill et al. 2016). This newer climate data 

may further account for the difference in conclusions between this study and Paradis et 

al. (2008).  

A more accurate comparison to this study is likely that of Kantola et al. (2019), 

which also utilized MaxEnt to model shifts in HWA suitability under climate change. 

The findings of Kantola et al. (2019) were once again more optimistic than this study, 
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although predicted a larger northwards range shift under a high-emissions end-of-

century scenario than Paradis et al. (2008). Unlike the current study, Kantola et al. 

(2019) chose to utilize a wider range of environmental variables, including climate, 

topography, and soil characteristics. This may explain some of the difference in results, 

as this study constrained HWA dispersion based entirely on climatic variables correlated 

to minimum winter temperature. Kantola et al. (2019) also gathered occurrence data 

from several sources. Some GBIF and iNaturalist occurrence data was included, but the 

study gathered the majority of their research data via scientists and forest managers. This 

is unlike the current study, which accessed occurrence data entirely from the GBIF’s 

iNaturalist dataset. The iNaturalist occurrence data utilized in this study is also more 

recent than that used by Kantola et al. in 2019, but the omission of other datasets in this 

study may have reduced the number of HWA occurrences in some key regions, 

including southern Michigan.   

The use of citizen science data in invasive species modeling highlights many of 

the key benefits, but also limitations of these datasets. One of the most apparent 

advantages of these citizen science datasets is their ease of accessibility. While other 

occurrence datasets are frequently controlled by groups, organizations, or individuals, 

citizen science datasets are most often publicly available and subsequently efficient and 

affordable for researchers to access. Additionally, the ease of addition to citizen science 

databases such as iNaturalist also allows for these datasets to be continuously updated. 

This creates an up-to-date dataset that researchers can access without the need to 

continuously rely on fieldwork or other expensive data collection methods to collect 

relevant data. There are, however, some key limitations to citizen science data. One of 
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which is the potential for mistakes in data collection, including the misidentification of 

species or incorrect recording of locations. Some citizen science datasets such as 

iNaturalist attempt to counteract this through its “research-grade” moniker, which are 

occurrences verified via image by at least one other user, and that have a minimum of 

50% consensus on the species’ identification (Mugford 2021). Despite this, the potential 

for inaccuracies in data collection remains. Another significant drawback of utilizing 

citizen science data for species distribution modeling is the potential for selection bias 

amongst the data. Citizen science data is likely to result in unequal regional sampling, 

with accessible and frequently traveled areas being more intensely sampled than areas 

with remote or difficult terrain. The accuracy of species distribution models is negatively 

impacted by selection bias within data (Elith et al. 2010), and the accuracy of 

occurrence-only models (such as MaxEnt) are particularly sensitive to selection bias 

(Phillips et al. 2009). Corrections can be made during data cleaning, but the potential for 

decreased model accuracy is likely to persist.  

The AUC value generated by MaxEnt’s machine learning algorithm is an 

indication of model quality (Lissovsky and Dudov 2021). An AUC value of 0.5 indicates 

that outputs are completely random, with values closer to one indicating higher model 

performance (Philips et al. 2006). The AUC value of 0.872 generated in this study 

indicates that the models showed relatively high performance, and did not suffer from 

overfitting. During the modeling process, the incorporation of a wider range of 

downscaled climate variables, including values of average annual precipitation and 

maximum monthly temperature, yielded significantly higher AUC values surpassing 0.9. 

However, there is limited literature to support the effect of these climate variables on 
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HWA habitat suitability (Chandler et al. 2022; Mech et al. 2017). As was previously 

referenced, SDMs assume that the population of a target species is limited only by 

climate and no other abiotic or biotic influences (Jeshchke and Strayer 2008). Without a 

sufficient body of literature to support the connection between HWA habitat suitability 

and monthly precipitation or maximum summer temperature, it is difficult to conclude if 

SDM predictions are the result of a positive correlation between habitat suitability and 

these variables, or another environmental variable or selection bias.  

A larger sample set of occurrence data, specifically around the margins of the 

HWA’s expanding range, would also likely help to improve the quality of future models. 

Additionally, the collection of presence-absence datasets would allow for alternative 

SDM approaches to be utilized in conjunction with MaxEnt modeling. This could be an 

effective means of eliminating some of the identified sources of error and further 

increasing model confidence.  

The effect of climatic variables other than minimum winter temperatures on 

HWA survivorship should also be explored further. The SDMs in this study predict that 

under mid and high emissions scenarios by the end of the century habitat suitability in 

the southern extent of the HWA’s current range will be significantly reduced. This is a 

result of the MaxEnt machine learning algorithm and does not necessarily indicate that 

by the end of the century there will be a northwards retraction in the suitable range of the 

HWA. However, research has begun to indicate a correlation between high summer 

temperatures and HWA mortality (Mech et al. 2018), potentially demonstrating a 

climate-change-driven decline in HWA survivorship in the current southern extent of its 

range. Another study by Chandler et al. (2022) identified that high autumn precipitation 
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indirectly resulted in increased mortality of HWA due to elevated growth of fungal 

pathogens. Further studies of the relationship between high temperatures, precipitation, 

and HWA survivorship should be conducted to improve the understanding of the 

HWA’s overall climatic tolerances. Such information is vital for the effective 

management of the HWA, and the preservation of eastern hemlock. 
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CONCLUSION 

 Using iNaturalist citizen-science data from a GBIF occurrence database, MaxEnt 

species distribution modeling of the HWA under several future climate change scenarios 

revealed that the suitable habitat of the species is likely to shift significantly farther 

northwards over the coming century. This will subsequently put nearly the entirety of 

eastern hemlock’s range at risk of infestation. Additionally, greater habitat suitability is 

likely to accelerate the spread and impact of the HWA on its range of hemlock hosts. 

Projects to collect presence-absence data along the northern fringes of the HWA’s 

current range will expand the opportunity for concurrent modeling projects. Moreover, 

further study should be carried out into the relationship between HWA survivorship and 

climatic variables other than minimum winter temperatures, such as maximum summer 

temperature and precipitation. This would allow for further assessment of the potential 

long-term range extent and host impact of the HWA in eastern North America, including 

in the southern portions of its range. As the HWA infestation continues to expand over 

the coming century, further study must be done to give managers and policymakers the 

necessary tools to combat this invasive pest.  
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