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Abstract

ENHANCING MACHINE VISION USING HUMAN COGNITION FROM EEG
ANALYSIS

Visual classification is the perceptible/computational effort of arranging objects and visual
contexts into distinct labels. Humans and machines have mastered this advanced problem in
their own varied contexts. However, certain aspects inherent to the variability of the visual
stimuli present need to be overcome. This thesis analyses the different dimensions of visual
classification using a combination of human cognition and machine vision. Thus, it presents
novel approaches to joint multimodal learning for machine-learnt visual features and features

learnt using brain-visual embeddings via EEG.

First, the thesis proposes a pipeline structure of grayscale image-based encoding of brain-
evoked EEG signals as a spatio-temporal feature for improved data convergence. This en-
coding results in a new benchmark performance of 70% accuracy in multiclass EEG-based
classification (40 classes, a challenging benchmark EEG-ImageNet dataset) due to the inclu-
sion of a stretched spatial space that accommodates all the responses of visual stimuli in a
single visual sample. As a second contribution, it develops a new approach for cross-modal
deep learning based on the concept of model concatenation. This unique model uses a mixed
input of deep features from the image and brain-evoked EEG data encoded with a grayscale
image encoding scheme. This strategy led to the high joint-learning performance in EEG-
Image-based multimode fusion with an accuracy of 95%. Finally, this research found that the
automated visual classifier (visual data represented by the corresponding brain-evoked EEG

responses to stimuli) is enhanced when a stimulus is an actual object in a three-dimensional



space instead of an image of the same object in a two-dimensional space.

Thus, the thesis demonstrates that enhancing the distinction of visual stimuli features using
a joint perception of humans and machines is the way forward to a reliable solution for visual

classification.
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Chapter 1

Introduction

1.1 Overview

The phrase "machine perception" refers to a computer system’s capacity to understand
data comparable to how people use their senses to relate to the world around them 44118
The purpose of machine perception, which is considered a type of artificial intelligence, is
to provide the computer system with the appropriate hardware and software to identify
pictures, sounds, and even touch in a way that improves the interactivity between human
operators and machines. Machine perception advancements encompass online and offline
applications, allowing robots to provide more assistance to operators.

Improved machine perception could be tremendously valuable in a variety of scenarios.
For example, a doctor wants to get the patient’s health history. It may extend beyond the
records of their registered healthcare system to include any health-related data involving
that person found in the old paper-based health information databases that the computer

can digitally scan. As a result, an Al machine with advanced perception and computation

can provide details if the patient was involved in a traffic accident several years ago or was
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treated for a specific illness or injury while traveling, allowing the physician to evaluate the
patient’s current situation more competently.

Machine perception enables the computer to leverage sensory input and traditional com-
putational techniques to acquire information more precisely and display it in a user-friendly
manner. These include computer vision, machine hearing, machine touch, and machine
smelling!'®. The following are the essential categories of machine perception that artificial
intelligence or Al often draws upon several disciplines and is related to but distinct from

general intelligent systems, natural language processing, and neural networks.

e Machine vision. Machine vision studies involve gathering, processing, analyzing, and
comprehending high-dimensional input from the actual environment to generate nu-
merical or symbolic information, such as judgments. Today, various uses of machine/-
computer vision include facial recognition, geographic modeling, and even aesthetic

evaluation®®.

e Machine hearing. Machine hearing is the capacity of a computer or machine to

h155

receive and analyze auditory data, such as music or speec It is also known as

machine listening or computer audition. Some of the various applications of this subject
include voice synthesis, speech recognition, and music recording and compression %
Furthermore, this technology allows the computer to emulate the human brain’s ability
to focus on a specific sound while filtering out background noise and competing stimuli.
This particular talent is known as "Auditory Scene Analysis" which allows the system

154,155

to partition many concurrent streams . Machine hearing is used in many daily

products such as telephones, voice translators, and vehicles.

e Machine touch. A machine or computer processes tactile information in the domain

of machine perception known as "machine touch". Applications include dexterity and
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tactile awareness of surface characteristics, where tactile information can promote quick

reactions and environmental interaction®®.

This chapter focuses on the history and development of the visual perception of machines
(or machine vision) and is organized as follows: The fundamental difference between human
and machine perception is discussed in Section 1.2. To extract human perceptual aware-
ness, we explore several strategies of the brain-computer interface in Section 1.3. Section
1.4 discussed the most popular EEG feature extraction and selection approaches, as these
characteristics are later used for cognitive tasks such as classification and prediction. Section
1.5 then gives an overview of how humans and machines perceive visual information and also
introduces the seed of the thesis by briefly reviewing the underlying studies carried out to
improve automated visual classification using machine learning with temporal and spatial
modalities. Finally, Section 1.6 structurally constructs all the research frameworks designed

in this thesis.

1.2 Human vs. Machine Perception

Given that the dynamics of the human brain has evolved over millions of years, human per-
ception is incredibly sophisticated and intuitive. It is intriguing to note that the human brain
performs better when the task is perceptual rather than computational. Although artificial
intelligence, or machine intelligence, has a far shorter evolutionary period than humans, it
has already outperformed the human brain in computing through math and logic. Hans
Moravec states a well-known Al paradox: "It is comparatively easy for computers to exhibit
adult-level performance on intelligence tests or play checkers, but it is difficult or impossible

to give them the skills of a one-year-old when it comes to perception and mobility" 4. De-
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spite technological advances in computational power that have yielded significant results in

cognitive tasks that require extensive mental effort for human participants, such as advanced

7 7

strategy games!™ or machine translation'”", machine perception continues to evolve at a far

slower rate and struggles to perform perceptual tasks that appear intuitive to humans but
may have ambiguous or ill-defined "ground truth," such as medical image interpretation'37.
Due to a lack of situational knowledge, vast volumes of irrelevant data are processed,

31 As a result,

resulting in the "curse of dimensionality" and computational explosions!
autonomous system designs are not robust, and machine learning approaches remain fragile.
Phoha 3! discussed the technical oversight in the construct of current machine perception,

which lacks context learning and cross-modality fusion.

e Context Learning Over the last decade, many research approaches that enable ma-
chines to derive the current operational context from input data have evolved in various
disciplines. These include developments in image and scene processing, natural lan-
guage processing, and cognitive neuroscience based on physics-based, environmentally
adaptable sensing models. The context is typically fragmented and ambiguous between
modalities and applications. For example, in image processing, it often takes the visual
scene to be the context for object recognition or image classification; in human-machine
interactions, context is generally the verbal semantics via which people communicate
the present command to autonomous systems; and context is frequently modelled using

attention and memory in cognitive sciences.

Blasch et al.!® focused on reducing the impact of context on the feature space in
their study by using statistical detection and classification techniques that are context
invariant. However, feature extraction algorithms frequently do not respond well to

the extremely non-linear and non-stationary influences of the operating environment.
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Formalising this strategy, Phoha et al.'®? proposed a mathematical characterisation
of machine extractable context, applicable to all relevant sensing modalities for an
application, enabling contextual decision-making in dynamic data-driven classification
systems. Further research into merging data-driven and model-based approaches for
context learning, discovering novel contexts that were not labelled during the training
phase, and dynamic modelling of context drift remain promising research areas for

increasing machine perception and learning.

e Cross-modality Fusion Intelligent machines rely on a sensing infrastructure for mea-
surement, communication, and computing to observe the progression of physical dy-

t131. Sensors need to interact with ob-

namic processes in their operating environmen
served phenomena to provide time series data (temperature, pixel intensity, etc.) of the
evolutionary processes generated by physical stimuli*®*. The multivariate information
space formed by these time series is an amorphous computing environment with a high
degree of redundancy. Furthermore, sensors of various modalities exhibit contextually
variable performance in noisy settings. It is vital to fully leverage their heterogene-
ity to extract reliable data from multi-modal sources by combining complementary

information from different modalities!31:53.

The current literature on information fusion makes only a rudimentary use of heteroge-
neous modality®®. Decision-level fusion algorithms often combine the probability dis-
tributions produced independently by each sensor into a single decision. For humans,
this is comparable to incorporating the senses of a blind and a deaf person rather
than coordinating a single person’s visual and auditory sense perceptions. This ap-
proach destroys causal information on feature-level relationships. Machine perception

methods are required to use the multi-modal data at the feature level properly. Auto-
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mated algorithms that leverage cross-sensor interdependence are required, as humans
can effectively coordinate their visual and aural input to distinguish the two scenes

or audio!3?

. These algorithms will use domain-specific non-linear, and non-stationary
phenomena such as phase changes generated by physical stimuli. Addressing the scien-
tific and engineering issues of generating actionable knowledge from multiple sources

of electronic input with varying modalities and contexts is critical to modifying the

behaviours of machine intelligence.

Scientific fields such as vision science have always relied heavily on methods and pro-
cedures of psychophysics, but there is now a growing appreciation for them by machine
learning researchers, sparked by a growing overlap between biological and artificial percep-
tion 60-188,45.142.139 " Nachine perception guided by behavioural measurements, as opposed to
guidance restricted to arbitrarily assigned human labels, has significant potential to fuel

further progress in artificial intelligence 4.

Towards better HCI

Perceptual user interfaces that offer a human-understandable representation of complicated
data sources and improve human-computer interactions (HCI) are another technological
challenge that will accelerate and support advances in machine perception and cognition of
sensed information. In the next section, we will look at a form of HCI called the Brain-
Computer Interface, which sets a new pathway for extracting temporal information from the

human brain that can enable the development of machine perception at a human level.
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1.3 Human perception using BCI

A promising way to provide essential communication abilities to a person affected by locked-
in syndrome is the Brain-Computer Interface (BCI), also known as the Brain-Machine In-
terface (BMI). This technology allows humans to interact with their surroundings without
involving peripheral nerves or muscles. This technology has been used primarily to create
assist devices in the medical industry. Every BCI system comprises five components: brain
activity measurement, pre-processing, feature extraction, classification, and translation into

a command 108,

Branches of BCI Technology

BCI Frameworks can be separated on the basis of three schemes: recording technique, op-
eration method, and dependability, which can be classified as dependent or independent.
Dependent BCIs need some kind of motor control, such as gaze control'® from the user
or healthy subjects. Motor Imagery (MI)-based BCIs are an ideal example and have been
extensively used, whereas independent BCIs do not require any form of motor control by the
user and are suitable for stroke patients or severely impaired patients. A successful inde-
pendent BCI system based on steady-state visual evoked potential (SSVEP) was proposed
in 2016%® to identify two different goals.

5,136 Ty

Using recording methods, BCI can be classified as invasive and non-invasive
vasive BCIs require microelectrode arrays to be implanted inside the skull, unlike those
placed on the scalp in the case of non-invasive BCI. Two common invasive modalities are
intracortical recording and electrocorticography (ECoG). Non-invasive modalities are EEG

(Electroencephalogram), MEG (Magnetoencephalography), PET (positron emission tomog-

raphy), fMRI (functional magnetic resonance imaging) and fNIRS (functional near-infrared
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99,5 Most BCI researchers prefer a non-invasive approach to avoid the risk

spectroscopy )
of surgery. The selection of the measurement method depends on various parameters, for

instance spatial resolution, temporal resolution, invasiveness, measured activity, cost and

portability 3.
Intracortical recording
Invasive —<
ECoG
fMRI
ErrP
Evoked Potential SSEP
P300
BCI Branches EEG
\ Motor Imagery
Non-invasive
Spontaneous Non-Motor
SCP
MEG
PET
fNRIS

Figure 1.1: A flow-diagram to illustrate the BCI types according to recording

Due to its high temporal resolution, inexpensive cost and mobility, EEG is the most
widely used non-invasive modality in BCI to elicit different control signals such as SCP,
SSVEP, MI, ErrP, and P300°. The EEG measures voltage changes caused by the flow of

ionic current in brain neurones during synaptic excitations!.

To acquire brain impulses,
electrodes are placed on the scalp. For various EEG headsets, the electrode number ranges
from 1 to 256. The amplitude of the recorded EEG signal is the voltage differential between

the active and reference electrodes over time. EEG amplitudes typically range from -100
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to +100 microvolts. EEG signals can be divided into different bands, each of which has a
unique biological meaning. Figure 1.1 shows the different types of BCI as their recording
technique.

There can be two modes of operation in BCI systems, synchronous and asynchronous.
In a synchronous system, the user-system interaction is carried out within a certain period
of time. Asynchronous BCI, on the other hand, allows the patient to generate a mental task
to interact with the program at any time. Synchronous BCIs are much easier to design, but

not as user-friendly, compared to synchronous BCIs !4,

EEG control signals

BCI tries to identify the neurophysiological signals of a subject to connect a command to
each of these signals. Some of these control signals are easy to recognise and much easier
to control by the user. Some commonly used EEG control signals include SCP(slow cortical
potential), P300, MI, MRCP (movement-related cortical potential), ErrP (Error-related po-
tential), SSVEP, SSAEP (steady-state auditory evoked potential) and SSSEP (steady-state

) 136

somatosensory evoked potential)*>®. When a person receives a periodic stimulus, such as a

flashing visual or amplitude modulated sound, steady-state evoked potentials (SSEPs) oc-

43,119 " The stimulation frequency or harmonics are equal to the frequencies of the EEG

cur
signal, which is an essential feature of SSEP. Each SSVEP-based BCI requires a set number
of visual stimuli corresponding to specified BCI output instructions. BCI devices based on
P300 are based on sequential flashing stimuli. These stimuli might be used in various BCI
applications, including directing a robot arm, cursor, or mobile robot. P300 is created in

138,98

the parietal regions (Pz) of the brain when the stimulus is given for 300 ms . Even with

less likely stimuli, the response’s peak amplitude has been observed to be substantially big-
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ger. Sensorimotor rhythms (SMR) are generated in the motor regions of the brain by motor
imagery (MI)®. The left and right hands initiate an activity. MI is formed by the central
parts of the brain (C3, C4), whereas Cz generates the image of foot movement. Due to the

proximity of the relevant brain areas, left and right foot motions are nearly challenging to

differentiate in EEG.

EEG-based real-world BCI applications

Human brain impulses can be recognised and converted into device commands to operate
assistive devices using BCI technology. The scope of this technology has expanded beyond

medical applications to include non-medical uses.

BCI Controlled Wheelchair A BCI wheelchair can improve the quality of life and au-
tonomy of patients with motor neuron disorders (MND), such as amyotrophic lateral sclerosis
(ALS). This advancement enables disabled people to manage the wheelchair using their brain
activity, giving them autonomy as they travel through an experimental environment. Four
types of EEG control signals are used to handle BCI wheelchairs, which are MI89172.163
P3001389%8  SSVEP#3119 and hybrid®?°. The feature extraction methods are quite hetero-

geneous. However, common spatial pattern (CSP) is the most commonly used EEG feature

method in BCI wheelchair applications?.

BCI Spellers Farwell and Donchin®® introduced the matrix speller, a P300 speller, in
1988. It was the first BCI speller, with a maximum accuracy of 95% and a speed of 12

1.1%9 also published a Hex-O-Spell that is based on imagined

bits per second. Blankertz et a
movement. The speller outperformed the traditional matrix speller in terms of performance.

Oct-O-Spell, a novel MI-based speller, was introduced, featuring an octagon divided evenly
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into eight sections. These sections comprised a total of 26 letters, characters, numerals, or

symbols?6.

BCI Biometrics Biometrics, such as iris, face, and fingerprint identification, are com-
monly used to prevent security breaches. An EEG system-based biometric has been found
to have the distinct benefit of being nearly difficult to replicate*. Ruiz Blondet et al.!4°

investigated the stability of EEG brain waves in 15 human volunteers.

BCI Emotion Recognition Data collection from brain signals associated with human
emotion is a critical step toward emotional intelligence. Detecting mood changes in EEG
data has recently gained popularity among BCI researchers, who have conducted various

133,178

investigation of emotion recognition during the past 20 years . The average accuracy

and information transfer rate (ITR) obtained were 91.1% and 85.80%, respectively.

BCI Virtual Reality and Gaming Existing BCI-based video game prototypes are based
on three different BCI paradigms: steady-state evoked potential (SSVEP), P300 event-
related potential (ERP), and mental imagery (MI). The authors found a 66% mean accuracy
for Mind Game (specifically, this was the rate at which the correct target was selected out
of 12 possible targets). Other P300-based BCI games have been proposed in the litera-
ture®,%%. An intriguing use of this type was shown at the Cybathlon 2016. Eleven people
with tetraplegia fought each other in a virtual world where their avatars raced through an

obstacle course. The results ranged greatly among the 11 individuals, as predicted.

BCI Robotic Arm Yang C. et al.'®' demonstrated a shared control system for mind

control of a robot manipulator by merging a SSVEP-based BCI with visual servoing (VS)
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technology. Duan et al.*? presented a hybrid BCI system consisting of SSVEP and MI. The

studies conducted by four participants yielded an average accuracy of 85.45%.

1.4 EEG-based feature extraction strategies

Most of the discrete and non-redundant information within the EEG is extracted after the
noise removal phase using different feature extraction techniques. The most notable feature
extraction using EEG-based BCls are those that work in the time-domain, frequency-domain,

and time-frequency domain.

Time Domain Autoregressive modelling (AR), a standard method for extracting fea-
tures from time-domain data, involves regressing the current observation in a series linearly
against one or more preceding observations. The AR model has been used as a feature
extraction method in EEG-based BCI systems in numerous recent articles®%2%  Combi-
nation techniques for feature extraction are also used, where each feature vector comprises
of AR coefficients and rough entropies. Due to their high resolution, softer spectra, and flex-
ibility to apply to brief data segments, researchers favour AR models. Higher model orders
increase noise, whereas lower model orders do a poor job of representing the signal. There-
fore, choosing the proper AR modelling order is still a challenge. A Bayesian information
criterion, a final prediction error, or an Akaike information criterion (AIC) are commonly
used to estimate the modelling.

Unlike any fixed modelling order, Atyabi et al.’® proposed that a sufficient combination
of AR features produced from several AR modelling orders is a representation of the un-
derlying signal. The analysis of respiratory rate variability from EEG®, adaptive Hermite

decomposition!®”, and RR time series'®® has been used to extract characteristics for the
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identification of the state of sleepiness from EEG signals. The Higuchi technique®™ has
been used to extract the feature from the fractal dimension of raw signals in the context of
emotion recognition using an EEG signal. Aydin et al.!! suggested using logarithmic energy
entropy to extract EEG features, which may be used to determine how much randomness is
contained in the signal. Zarei et al.'® developed a hybrid feature extraction technique that
combines PCA (principal component analysis) and the cross-covariance technique to extract

discriminatory information from mental states of EEG.

Frequency Domain Several EEG-based BCIs use features from frequency domain analy-

sis. The fast Fourier transform (FFT)749:2L180 'hower spectral density (PSD)3227:116,130,15,97,121,29,

105,143,82 d117

band power , and spectral centroi are examples of methods based on the frequency
domain. In their work, Rashid et al.'?® observed that FFT and Welch’s technique could be
used to determine the PSD of a signal. In contrast to the FF'T, Welch’s approach minimizes
PSD artifacts but results in sub-par frequency resolution. Local feature scale decomposition
is another frequency-domain-based feature extraction method that can compute the PSD
without using an FFT. This procedure divides the raw data into underlying chunks corre-
sponding to the primary signal’s characteristics. Local characteristic-scale decomposition?
is another frequency domain-based feature extraction method that does not use FFT to
calculate the PSD. This process separates the raw data into constituent parts representing
the characteristics of the primary signal. The signal is broken down into different frequency
components using Fourier analysis, and their relative intensities are calculated. Traditional
spectrum analysis approaches are not appropriate for obtaining significant and crucial in-
formation because of the non-stationarity and non-Gaussianity aspects of the EEG signals.

The most discriminative spectral characteristics are extracted from the PSD of the EEG sig-

nals by the Gursel Ozmen et al.®* frequency domain-based feature extraction method. New
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spectral estimators, the quantile periodogram and the lasso quantile periodogram, based on
quantile regression and Ll-norm regularisation, respectively, were reported by Meziani et

al. 109,

Time-Frequency Domain Sometimes, the lack of temporal features renders the use of
spectral characteristics for feature extraction ineffective. Similarly, time-domain interpreta-
tion can occasionally overlook spectral traits that the classifier might find crucial. Time-
frequency analysis, which leverages both the time domain and the frequency domain, is
thought to be able to overcome the limitations of a single domain that is either time domain
or frequency domain. This strategy is better for the efficacy of EEG-based BCls. In EEG-
based BCls, a variety of time-frequency-based feature extraction techniques have been used.

The most popular techniques are wavelet packet decomposition (WPD) 939175

, continuous
wavelet transform (CWT)208773  discrete wavelet transform (DWT)631440.75.95 " and short-
time Fourier transform (STFT) 513165162 Deep learning techniques have been used to create
spectral images produced by CWT 123194 and STFT?® that can be categorized. Mammone
et al. 1% proposed an EEG-based motor planning exercise in which a time-frequency map
created by beam forming and CW'T is used as input to the CNN. Since there is important in-
formation contained in several EEG bands™, decomposition techniques like DWT and WPD
(wavelet packet decomposition) are effective because they can decompose the brain waves at
multi-resolution and multi-scale®. Additionally, they can extract dynamic features, which is
important for EEG signals because of their non-stationary and non-linear properties™. To
get the highest level of accuracy, Kevric and Subasi™ looked into three different decompo-
sition approaches, namely WPD, EMD (Empirical Mode Decomposition), and DWT. The

decomposed EEG sub-bands have been used to derive higher-order statistics (HOS) features.

When compared to WPD, DW'T coeflicients have a lesser frequency resolution, but HOS can
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make up for wavelet strategy shortcomings.

For the purpose of extracting features, Zhou et al.'®! coupled the use of DWT with the
Hilbert transform (HT). The wavelet envelope of the decomposed sub-bands was generated
using HT after the EEG data was decomposed using DWT. They used both time-series and
envelope information, which helped them get the best accuracy possible. Wavelet packet
analysis (WPA) was suggested by Goksu®® as a method for identifying features in an EEG-
SCP response, looking closely at the WPA sub-images using log energy entropy. Yang et
al. 1™ suggested Fisher wavelet packet decomposition (WPD)-CSP to extract characteristics.
In this method, EEG channels are broken down by WPA | the average power of each sub-band

is computed, and then CSP is applied to the sub-bands that have been chosen.

1.5 Visual perception in humans and machines

Human visual perception is both beautiful and complicated. It started with microscopic
creatures evolving a mutation that made them light-sensitive. There is an abundance of
species on the planet, many of which have incredibly similar visual systems. They consist
of the eyes to capture light, receptors in the brain to access it, and the visual cortex to
analyze it. This visual system has been genetically developed and balanced to help humans
do something as basic as appreciate a sunrise. However, in the last three decades, scientists
have made efforts toward extending visual context to machines. Around 1816, the first form
of photographic camera was constructed, consisting of a small box containing a piece of

% The silver chloride darkened in the light-exposed portions

silver chloride-coated paper
when the shutter was opened. Two hundred years later, we have advanced devices that can
take photographs in digital form®!, allowing machines to precisely mimic how the human eye

perceives light and color, but it is considerably more challenging to understand the context
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of the picture. The fact that the human brain recognizes visual stimuli just by looking at
them is by virtue of a million years’ worth of evolutionary context to help us immediately
understand this. However, a computer does not have that same advantage. A machine
algorithm sees the image as a vast array of integer values representing intensities across
the color spectrum, but without context, only a tremendous amount of data. It turns out
that context is the key to enabling computers to grasp visual information, similar to human
cognition.

Furthermore, machine learning methods enable artificial intelligence to properly teach
the context of a visual, allowing an algorithm to comprehend all the numbers in a particular
pattern. A convolutional neural network (CNN)!?* is a specific form of artificial neural
network that functions by dividing an image into smaller groupings of pixels known as
filters. Each filter is a pixel matrix, and the network performs a series of computations on
these pixels, comparing them to pixels in a pattern the network seeks. It can recognize high-
level patterns, such as rough edges and curves, in the first layer of a CNN. As the network
conducts many convolutions, it can recognize individual things such as faces and animals.
This is achieved by using a large amount of labeled training data. All filter settings, like
weights and biases, are randomized when CNN starts. As a result, its early projections are
illogical. When CNN produces a prediction against labelled data, it compares how close its
forecast was to the image’s actual label using an error function. The CNN modifies its filter
settings and restarts the operation based on this error or loss function. Ideally, each repetition
improves accuracy marginally. Following CNN’s invention, many prominent deep learning
architectures such as VGG16'%5, ResNet%”, MobileNet™, and EfficientNet!%® were built,
with CNN serving as the backbone layer of their design. These models evolved to perform
different computer vision tasks such as object identification, recognition, depth estimation,

and most notably compared performance on digital image classification tasks on ImageNet?37,
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Figure 1.2: Architecture designs of popular state-of-the-art CNN model.

a large-scale picture dataset. Figure 1.2 displays some popular CNN architectures.
Although machine vision has achieved better accuracy in visual perspective tasks, is it

robust enough to compete with the human visual system? Prior studies claim that machines’

visual learning methods are different from how humans infer visual cues®73%10149  Some aca-

demics argue that deep neural networks, such as CNN, cannot achieve human-like intelligence
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because machine vision algorithms cannot bridge the recognition gap of human sensitivity to

1.54

exact feature configurations!®”. Another study by Funke et al.?*, on the contrary, states that

human bias can inhibit the interpretation of visual features such as contours, making machine

1.193 also tested human and machine

intelligence more appropriate for the task. Makino et a
visual perception for detecting soft lesions in breast cancer medical imaging and observed
that both radiologists (human perception) and CNN recognized distinct regions of interest
on low pass filtering. This establishes the practice of independently considering human and
machine visual perception because both contribute relevant, yet isolated, information.

The work in this thesis builds upon prior groundwork, looking for ways to incorporate
human perception into machine learning to optimize machine perception’s robustness. We
can now extract temporal data from the human brain using the BCI outlined in the preceding
section, making it a human prospective-evoked modality input to machine learning models.
We have chosen the visual classification problem as our case study. Through the course of
subsequent chapters in this thesis, experiments involve temporal modality as a form of EEG
signal data and spatial modality as a form of image data to improve the performance of
automated visual classification. In the end, a proposal for a joint representation of cross-
modal fusion (of data from both temporal and spatial domains) is evaluated.

The practical implications of this study are to take a significant leap forward in the collab-
oration of neuroscience and artificial intelligence. We aim to explore a new and direct form
of human-computer interaction (a new vision of the "human-based computation" strategy)
for automated vision tasks.

Integrating the BCI evoked human visual perception will greatly improve the performance
of BCI-based applications and enable a new form of brain-based image automated annota-
tion®! compared to the current state where a lot of manual effort is required to annotate or

label a visual stimulus.
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Second, joint representational learning will especially contribute to imaging systems (e.g.
diagnosis, surveillance, object tracking) as the Al vision system will learn directly and inte-
grate with human observative decisions. It can provide vital suggestions like a new region of
interestMakino et al. 1% that was not perceived by the human eye due to biasFunke et al.?*,
and later can learn to filter out noninteresting regions using temporal and spatial joint learn-

ing.

1.6 Structure of the thesis

There are five chapters in this thesis. The first chapter provides an overview of the problem
statement.

Chapter 2 presents all the classical approaches to classification performed on a two-class
visual dataset. We also study a machine-computed analysis of the spectral findings of the
EEG claimed by Marini et al.°7 here.

Chapter 3 discusses pipeline-based deep learning algorithms for visual classification using
EEG-ImageNet 49127 4 39-class visual dataset. We investigate cross-modal feature extrac-
tion strategies for EEG data to enhance the feature space and improve classification.

Chapter 4 proposes a novel method to perform automatic visual classification using im-
age and EEG data as input for the same visual stimulus. The deep learning frameworks
established in this work are used to reevaluate the claims of the spectral discoveries of EEG
made by Marini et al.'%7.

Chapter 5 concludes our thesis, summarising the contributions of our approaches and the
future scope of this research.

All references used are presented at the end of this thesis.
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The implementation of code, the design of the model, the abbreviations, and the resources

are provided in the Appendix.
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Chapter 2

Visual classification using classical

Machine Learning classifiers

2.1 Introduction

Automation through machines plays a vital role in the era we live in. We continually seek
technology innovation to advance machine perception for real-time decision-making in nu-
merous applications3!. Since machines use binary logic, designing machines to behave and
make decisions like humans is hard. With the invention of many state-of-the-art paradigms
like Human-Computer Interaction (HCI), Brain-Computer Interfaces (BCI), and Artificial
Intelligence (Computer Vision, Natural Language Processing, and Machine Learning), we
now have black box thinking machines. Although there is expanding research to understand
and interpret machine perception and learning!'?, there is still a lot to uncover and tune
additional learning parameters other than the weights and biases employed so far.

On the other hand, humans excel in comprehending complex tasks such as classification,

detection, and intuition, which machines cannot match. Although the recent discovery of
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Deep Learning has resulted in significant improvements in classification performance, their
generalization capabilities are not human. They learn a discriminative feature space that
depends on the training dataset rather than generic principles. Previous studies have also
demonstrated that incorporating human crowdsourcing as part of the training process im-

173 We are interested in one significant component of machine

proves machine performance
perception, i.e., visual perception. By extracting characteristics from single or multiple pic-
tures or a sequence of images, vision algorithms assist machines in comprehending the context
of visual input in areas such as object detection, motion tracking, and gesture recognition
(in a video). As a result, they would provide a meaningful interpretation of the world and
enable actionable decisions.

In the last ten years, deep learning models like Convolution Neural Network (CNN)124
have taken a giant leap in performance, and they have achieved nearly perfect accuracy with
state-of-the-art models. However, the model is generally confined to supervised learning
and a specified training dataset, making it bulkier and more reliant on a large number of
data collections. This constraint can be addressed using self-supervised learning by trans-
ferring human cognitive ability to generalize tasks. Recent advances in image analysis have
effectively used transfer learning in applications such as robot training using simulations!4!.
This research explored one of the methods for establishing transfer learning called the Brain-
Computer Interface (BCI). These systems allow communication between the brain and vari-
ous machines!'™. They operate in three stages: collecting brainwave signals, processing them
with algorithms, and extracting valuable features from the given model based on the brain

signal received. Based on previous development history, the BCI can be segregated into

three types:

e Non-invasive — No exposed brain, only scalp. E.g., Electroencephalogram (EEG)
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e Semi-invasive — Electrodes exposed to the brain partially.

e Invasive — This procedure includes direct implant of the electrode to the cortex to

measure neuron activity.

As per the review from Chapter 1 we established that an electroencephalogram (EEG)
signal is the safest way to collect brainwave data. We propose using various cognition-based
computations with human brain wave input (EEG signals) to improve visual classification.
However, it is vital to understand that, unlike machine vision algorithms, the visual stimuli
of matter for the human brain are not limited to just two-dimensional images but can be

objects in the real world itself. Hence, the visual stimulus can be classified into two forms:
e Real Objects - stimulus as tangible solids that can be interacted with in the real world.

e 2D images - flat displays with inconsistent depth indications. 2D graphics can be
printed, though they are often shown via a monitor or projection screen'#. They can
vary in iconicity or how closely the image matches the real object®, from line drawings

or clipart to copies of actual photographs.

The core objective of this work is to extract features from EEG signals acquired from the
human brain when the user observes the item in three dimensions (real world) and then in two
dimensions through images. The features can then be processed in various ways, including
visual mapping to time and frequency and other heuristic techniques that will be discussed
further in later sections. The information acquired from EEG signals will subsequently
be compared with spatial visual features generated by machine vision extractors for image

classification generalization.
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2.2 Related Work

When it comes to machine learning for visual recognition, the top-performing models are
built on Convolutional Neural Networks (CNN) like the LeNet®®, and its potential has been
proved on well-known datasets like the MNIST®®, and ImageNet3". Development in this
field has stalled for over a decade since these models are data-driven and require much
computational power. The ImageNet classification benchmark was saturated after Tan and
Le %2 introduced Efficient-Net.

The first successful non-invasive BCI work was introduced in 198822, and since then, EEG
data analyses have contributed to many task-based classifications, and pattern recognition
in neuroscience, such as seizure detection!'’. EEG data became popular in machine learning
applications like emotion identification®’, where features extracted from raw EEG time-series
signals such as average band power and power spectral density were used with classifiers like
SVM 185,

Tiirk and Ozerdem 7 developed an intriguing classification method which demonstrated
how an EEG signal can be categorized using a scaleogram image of a signal wave as a
feature and wavelet processing. We attempted to replicate this strategy in our experiment
by producing a scaleogram of an EEG signal from our dataset.

Visual information is rich in stimulation and can be captured /monitored via EEG signals.
Visual stimuli studied through EEG signals revealed fascinating results such as image recon-
struction™ and image tagging®'. Following on with this idea,*® used a Recurrent Neural
Networks (RNN) technique for learning visual stimuli induced EEG data and determining
a more compact and intelligible representation of such data. They proposed a CNN-based
approach for regressing images into the learned EEG representation, allowing for automated

visual classification in a "brain-based visual object manifold."
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1.46 proposed an EEG-based image classification architec-

Another study by Fares et a
ture by merging region-level information with stacked bi-directional LSTMs® as a solution.
The dynamic correlations concealed in EEG data are captured using stacked bi-directional
LSTMs. Both!4946 discovered that the gamma band signal is essential to achieve strong
performance in object classification and plays a crucial role in emotion classification.

According to a neuroscience study!’”, EEG signals demonstrated a transient early occip-
ital negative for actual items. It could be due to 3-D stereoscopic differences, as well as a late
persistent parietal amplitude modulation consistent with an ’old-new’ memory advantage for
real things over photographs. Moreover, a neuroimaging study found different neural repre-
sentations for real, tangible objects versus similar images during hand actions, mainly when
3D cues conveyed important information to grasp®?. These findings show that real-world
items elicit more powerful and long-lasting action-related brain responses than pictures!47.

We aimed to explore whether this approach could be applied to improve visual classification

of machines. The same data set by Marini et al.'%® was used for our experiments.

2.3 Dataset

The dataset used for our experiments was a subset extracted from data provided by Marini

106 "~ The data was collected by capturing the EEG signals of subjects while viewing

et al.
192 trial mixes of kitchen and garage items. The actual objects were displayed in 96 trials,
whereas photographs of the same objects were shown in the other 96 trials as depicted in
figure 2.2. Twenty-four subjects participated in this experiment. Data were recorded with a
128 noninvasive electrode system, as shown in figure 2.1. The sampling rate of 512Hz gave

1434 timepoints of 2800ms (-800 to 2000ms) in total. The stimulus response was recorded

from 0 to 800 ms, and the next 800 ms (800 to 1600 ms) were closed eyes before switching



2.3. DATASET 26

to the next test. Table 2.1 describes the detailed structure of the dataset!®® parameters.
The undesirable artifacts were already removed out of the box, and the processed EEG data
were used for feature extraction. This dataset was initially used by Marini et al. " for their
neuroscience study to distinguish EEG signals recorded for a real object from its image.

Table 2.1: Parametric values of the Marini et al.'% dataset taken for this study

Datasets parameters Values
Stimulus type Real /Physical object | Image of the object | Both Image and Real
Total number of trials 2112 2112 4224
Number of classes 2 (Kitchen and Garage)
Number of subjects 22
Stimuli per subject 96 96 192
Stimuli per class 48 48 96
EEG recording time for each stimulus 800ms/1600ms™*
Sampling rate of EEG recording 512 Hz

*The stimuli was shown to subject in first 800ms and
then subject’s vision was blocked in next 800ms.

@_J
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Figure 2.1: The electrodes highlighted in green are chosen for this study.
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The dataset also contained images (scripts/stimuli folder) of the objects for which the

EEG data were recorded, which we have used to extract features of the image.

Figure 2.2: An example of real versus. image stimuli as shown in the study by Marini
et al. 107

The raw EEG data had some missing information for two subjects (subjects 2 and 7).
Hence, we took data for 22 of the 24 subjects for our experiments. The EEG signals went

through a number of preprocessing batches including normalizing using Z-score and then
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baseline correction in pre-stimulus period (-200 to 0 ms) to obtain zero-centred values with

a unitary standard deviation.

2.4 Methodology

The EEG-based visual classification approach is divided into three components: feature
extraction from EEG signals (recorded for image and real objects) and images corresponding
to the same visual stimuli; second, encoding and processing of feature vectors to reduce
dimensionality; and last, feeding the features along with classes to different classifiers to

measure accuracy. The following sections will go through each of these in-depth.

Feature Extraction

The feature extraction for digital images of stimuli involve binarization and applying the
HOG filter to compare various results. HOG, or Histogram of Oriented Gradients, is a
feature descriptor that reinforces a structure for an image since it computes the features
using both the gradient’s magnitude and angle. It creates histograms for the image areas
based on the magnitude and orientation of the gradient¢. The binarization process was
performed locally by comparing each pixel value with the corresponding threshold®®. A
pixel value more than threshold was marked by 1, while a value less than the threshold was
represented by zero. The threshold for each color image was determined by taking the mean
of the highest and lowest grey values inside the chosen local window. The contrast was the
distinction between the highest and lowest grey values. Finally, the binarized feature vector

was extracted by comparing the contrast value to the threshold. The Otsu’s thresholding

methos!?® was used for binarization.
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We used various feature extraction techniques to obtain temporal features from EEG data
of stimuli. Once the raw signal was obtained from the selected electrodes (in accordance with
the experiments mentioned in Section 2.5), we extracted the following characteristics with

the help of EEGLIB library?*:

e Power Spectral Density (PSD)

Petrosian Fractal Dimension (PFD)

Detrended Fluctuation Analysis (DFA)

Higuchi Fractal Dimension (HFD)

Band power average (including alpha, theta, gamma, beta)
e Synchronisation Likelihood

We segmented the entire EEG signal recording of each subject into data samples based on the
stimulus onset epoch as the total recording period was 2800 ms. After eliminating artifacts
and sequencing delays, the actual stimulus-response length ranged from 0 to 1600 ms. As a
result, those time points were trimmed to produce a new batch of samples for the feature set.
It is also essential to consider the data loss due to low-frequency resolution in small-length

171

signals'™. To manage this issue, we used multi-taper and periodogram spectral analysis!2.

We created custom band power averages for all bands to create a separate feature set for
analysis. We isolated the features for the alpha and beta bands exclusively, as the alpha and

beta frequency ranges show high power impedance for motor imagery reflexes!°7.
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Data Encoding

Since we are working with raw EEG data, it is likely that the feature space is not evenly
distributed or that certain features are more relevant than others. We did some encodings
on the data to improve the feature space. The dataset stated in section 2.3 is treated as a
feature set using the encoding methods described.

Label Encoding: The values in the label set are in a string format. The Label Encoding
method encodes the labels from strings to respective integers. It is easier to feed integer
arrays to classifiers like SVM as they have high time complexity.

PCA encoding: Principal Component Analysis (PCA figure 2.3) technique is used to
see the data spread according to their principal component. It helps to understand the data
variance which can be used for training the model. Using this approach, we can decrease the
sample data’s dimensions, making the model more efficient to train. It also help to tackle
any imbalance in the data. We created encoded train and test feature sets to be used with
various models.

Feature Selection: Sequential feature selection methods are a greedy search technique
to reduce an initial d-dimensional feature space to a k-dimensional feature subspace, where
(k<d)!. The goal of feature selection algorithms is to automatically choose a subset of
features that are most relevant to the problem. We used the Sequential Feature Selection
methods from mlxtend library!3®> with the wrapper method approach. Two ML classifiers -
Decision Tree and Gaussian Naive Bayes were used. The first method returned nearly 20
important features, and the Naive Bayes wrapper gave 50. The important features length

vary for different experiments and are discussed in section 2.5.
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Figure 2.3: Explained Variance VS Number of Components

Classifiers

Our experiment used seven classifiers to classify EEG-based data with raw features, pca
encoded features, and SFS encoded features. The classifiers that we used were Decision Tree,
Random Forest, K-nearest Neighbour, Support Vector Machine, Artificial Neural Network
and Logistic Regression from Sklearn!?®. Furthermore, for image classification, we used CNN
as the classifier.

The details of each classifier are as follows:

K Nearest Neighbours Classifier: KNN is a supervised learning model that applies learn-
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ing based on each query point’s k nearest neighbors, where k is an integer value that the user
specifies. Instead of attempting to build a broad internal model, it merely stores instances
of the training data. The classification is determined by the simple majority vote of each
point’s nearest neighbor'®”. A query point is assigned to the data class that has the most
representatives among that point’s closest neighbors. We took the values of k as five and
performed our experiment. The time complexity for the classifier was average.

SVM: Support Vector Machines are supervised learning models of classification. It works
on linearly separable data and uses the maximum margin to find decision boundaries to
separate them. SVM is also used in time-series modeling to achieve good performance?”. We
used hyper-parameters values as: kernel = 'rbf’, C = 1000, gamma = 0.0001 to get the best
performance.

Decision Tree Classifier: Decision tree is one of the fastest supervised classifiers with
significantly less time complexity, albeit lower accuracy when dealing with large datasets®®.
We have used hyper-parameter, max depth = 7, to obtain the best performance.

Random Forest Classifier: A random forest is a meta estimator that employs averaging
to increase predicted accuracy and control over-fitting by fitting a number of decision tree
classifiers on different sub-samples of the dataset?®. It is a better classifier than Decision
Tree but takes more time to compute because of its model complexity.

Gaussian NB: Naive bayes classifiers are simple classifiers that use probability for clas-
sification®’. It is one of the fastest classifiers for many applications.

Multilayer perceptron Classifier: MLP Classfier used Artificial Neural Network for clas-
sification. It uses the concept of multilayer perceptron backpropagation to update weights

and learns by training!®¢.

We used hyper-parameter, max _iter = 1000, for best model
performance.

Logistic Regression: Logistic Regression is a classification model rather than a regression
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model. A logistic function is used in this classifier to describe the probability, defining the
probable outcomes of a single experiment®?. The model has higher time complexity than
other ML classifiers. We have used hyper-parameter, max_iter = 2000, for best model

performance.

2.5 Experiments and results

We segregated our experiments into three categories to bring our research hypothesis into
action. First, we took images to determine the baseline accuracy of classification using
only spatial image features fed to the traditional ML classifiers. Second, we extracted time
and frequency domain features from raw EEG data and fed them to several ML classifiers
to measure classification accuracy. Furthermore, we created time-frequency map images of
the EEG signals and used image-based classification to see whether the accuracy could be

improved.

Experiment 1: Image classification using classical feature

extraction and ML classification

Figure 2.4 shows the architecture diagram of Experiment 1. Here, we extract spatial features
from the images with two different filters, i.e. binarization of images and application of
histogram of ordered gradient (HOG) filer to the images. Once the image is processed, it is
fed to the different classifiers to observe the classification performance. The classifiers used
in this experiment are Decision Tree, Random Forest, K-Nearest Neighbour, Support Vector
Machine, Multilayer Perceptron, Gaussian Naive Bayes, and Logistic Regression.

Table 2.2 illustrates the performance comparison of the best data processing, encoding,
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Figure 2.4: Architecture diagram of Experiment 1.

Performance comparison of image stimuli data with different classifiers.

Feature Extractor | Feature Encoder | Best-Accuracy | Best Classifier Setup
Binarization No Encoding 0.46 SVM: Kernel as '/RBF"
Binarization PCA 0.41 SVM: Kernel as 'RBF"

HOG No Encoding 0.67 Gaussian Naive Bayes
HOG PCA 0.65 Logistic Regression

and classifier implementation on the image stimuli data.

The image stimulus data was

divided into 80% training and 20% testing using a stratified 5-fold cross-validation split to

determine the accuracy (please refer to appendix A.2 for details). We observed that the

accuracy was higher when the feature space had no encoding than the reduced feature space

using PCA. Interestingly, the image’s HOG features perform better in classification compared

to binarized features. The highest accuracy achieved was 67% when the HOG features are

fed to the Gaussian Naive Bayes classifier model without any encoding.
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Experiment 2: EEG classification using classical feature extraction

and ML classifiers

In this experiment, we used the EEG signal data from Marini et al.'% dataset to analyze
the visual classification performance of various conventional ML classifiers when human-
brain evoked temporal data is fed as a visual feature. We also investigated if the machine
vision algorithms can predict the claims of neuroscience experiments derived from human

perception in Marini et al.'°”. The claims are as follows:

e Claim 1: The event-related potentials (ERP) showed more positive values when occip-

ital and central cluster electrodes were chosen.

e Claim 2: A stronger and more sustained neural signature is invoked of motor prepara-

tion contralateral to the dominant hand of subjects.

e Claim 3: The real object showed better ERP than its 2D image when subjects were

shown a visual stimulus.

Figure 2.5 shows the architecture diagram of Experiment 2. We encoded the raw EEG
signals with many preprocessing steps. As the data provided by Marini et al. % was a raw
EEG signal, we used different feature extraction methods to find meaningful features. The
objective of this experiment was to classify the two classes, i.e., kitchen and garage, by EEG
signal features. We used EEGLIB to create a feature set for the whole length of the signal
with Power Spectral Density (PSD), Petrosian Fractal Dimension (PFD), Detrended Fluc-
tuation Analysis (DFA), Higuchi Fractal Dimension (HFD), Band power average (including
alpha, theta, gamma, and beta) and Synchronisation Likelihood (see section 2.4). We also

created a feature set by trimming only the 1600 ms stimulus-response with the bandpower
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Figure 2.5: Architecture diagram of Experiment 2.

average of the signal using multitaper and periodogram spectrum. Once the feature sets
were ready, they were fed to different classifiers to compare the performance of classification.
The classifiers used in this experiment were Decision Tree, Random Forest, K-nearest Neigh-
bour, Support Vector Machine, Multilayer Perceptron, Gaussian Naive Bayes, and Logistic
Regression. The EEG feature vectors were divided into a subject-wise split of 80% training
and 20% testing set uisng a 5-fold stratified group cross-validation (please refer to Appendix
A.3 for details). By subject-wise spilt, we mean visual stimuli data was stratified for each

subject for both the training and testing set.

Experiment 2a: EEG classification based on electrode selection

Based on the claim 1 findings of the Marini et al.!°7 research, the event-related potentials
showed more positive values when occipital (A22, A23, A24, A25, A14) and central (A1, A2,

A3, B1, B2, D15, D16) cluster electrodes were chosen and they also showed more significant
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(b) Occipital and central elec-
(a) 8 electrode system trode clusters (c) Occipital electrode clusters

Figure 2.6: Different electrode system chosen for Experiment 2a and 3.

differences for visual classification. Hence, in Experiment 2a, we investigated the perfor-
mance of our machine classifiers based on different electrode groups. At first, we took eight
electrodes (A5, A15, A28, A32, B22, B26, D19, and D23) from the occipital and parietal
lobes, which we consider eminent for visual stimulation. The position mapping of electrodes
is displayed in figure 2.6a. Secondly, we considered the occipital and central electrode clus-

1.197 shown in figure 2.6b. In the end, we ran the same set of

ters as taken by Marini et a
classification experiments considering all 128 electrodes.

The performance comparison of all our experiments using different groups of electrode
systems is displayed in table 2.3 and 2.4. We observed that, for an 8-electrode system, the
accuracy of the classifier does not seem to improve when we extract all the time and frequency
domain features. Furthermore, using sequential feature selection, we found that the band
power average features revealed to have the highest contributing factor to classification.

Consequently, there was an improvement in accuracy when we took only band power average

as features using the periodogram spectrum, and the SFS encoder that returned alpha and
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Table 2.3: Performance comparison of 8 electrode EEG data with different classifiers.

Feature Extractor Feature Encoder | Best-Accuracy | Best Classifier Setup
Power Spectral Density (PSD) cnclg((fl)in 0.51 Random Forest
Petrosian Fractal Dimension (PFD) &
Detrended Fluctuation Analysis (DFA) .
Higuchi Fractal Dimension (HFD) cncsfdsin 0-5 Multilayer Perceptron
Band power average (including alpha, theta, &
amma, beta .
g nchr%)nization Lik)elihoo d PCA 0.5 Multilayer Perceptron
Y encoding
-, 1 =4 1]« <,
Band power average (including alpha, theta, No esllbi%dlng 00;2 Ilzl_lﬁzlil?;esrt 1;\?:12;3;?)1;
gamma, beta) using Multitaper Spectrum PCA 051 Multilayer Perceptron
Band power average (including alpha, theta, No e;l}j(i%dmg 00'553 Ilz{lﬁtel;?:z; I;C}zegpﬁg(;r;
gamma, beta) using Periodogram Spectrum PCA 052 Multilayer Perceptron

Table 2.4: Performance comparison of occipital, central and all electrode EEG data with
different classifiers.

Number of electrodes taken Feature Extractor Feature Encoder | Best-Accuracy | Best Classifier Setup
Occipital and central Band power average of alpha and beta No encoding 0-51 l\'lult?layer Perceptron
electrode clusters band using Periodogram Spectrum SES 0.5 Multilayer Perceptron
’ O Smg e s pect PCA 0.51 Random Forest
) . R ) No encoding 0.53 Logistic Regression
All 128 electrodes B(;)l;i(ll)?::;]r d;li?fgooisllg}gl :(I‘lt(iuli;td SFS 0.51 K-nearest Neighbor
Smg e s pect PCA 0.51 Multilayer Perceptron

beta frequency bands as the most potent features. Following this result, we decided to use
only the band power average of alpha and beta band frequencies using the periodogram
spectrum for all further experiments.

Later, we compared the accuracy of our ML classifiers with a set of occipital-central
electrode clusters and another set considering all electrodes, as shown in table 2.4. Through
the analysis of results, we discovered that machine algorithms perform better when data

from all electrodes was used with no encoding.
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(a) Electrode clusters of left hemisphere (b) Electrode clusters of right hemisphere

Figure 2.7: Hemispherical electrode system chosen for Experiment 2b.

Experiment 2b: EEG classification based on hemispherical brain region

This experiment was carried out to measure the performance of machine visual classification
based on claim 2 of Marini et al.'%” neuroscience study. According to the authors!?”, a
higher ERP in the motor-cortex hemispherical area was contralateral to the dominant hand.
All the subjects in their study were right handed and hence, they reported a stronger ERP
difference in the left hemispherical regions of the brain than in the right.

To replicate this experiment in machine-learned visual classification, we selected a group
of 12 electrodes around left (C3) and right (C4) motor cortex electrodes as hemispherical
regions, as shown in figure 2.7. Table 2.5 lists the results of all classifiers used in this
experiment. The classification only showed any improvement in the left motor cortex region

thﬁ

compared to the right for the dataset ", making our conclusion unclear.
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Table 2.5: Performance comparison of EEG data based on the hemispherical regions of the
brain.

Feature Extractor Classifier Acc (Left-hem-cluster) Acc (Right-hem-cluster)
K-nearest Neighbor 0.49 0.52
SVM: Kernel as '/RBF" 0.5 0.48
Band power average of alpha and beta Decision Tree 0.51 0.51
band using Periodogram Spectrum Random Forest 0.49 0-51
Gaussian Naive Bayes 0.53 0.5
Multilayer Perceptron 0.5 0.49
Logistic Regression 0.48 0.53

Experiment 2c: EEG classification based on real object versus image stimuli

The dataset used for this study had two different types of EEG recording trials for each
visual stimulus; one when subjects observed the physical object of the real world and the
other when they viewed the planar 2D images of the same object (see section 2.3, table 2.1).
The goal of this experiment was to estimate claim 3 from the study Marini et al. %", which
stated that visual classification could improve when visual stimuli for humans are real objects
rather than images of the same stimuli. The visual stimulus feature set was divided into 96
real-object EEG recording trials and 96 2D image EEG recording trials instead of a single
feature set of 192 trials. We performed classification using all combinations of electrode
system pipelines and ML classifiers as shown in table2.6.

At first, it appears that there is no significant difference in classification performance of
the traditional machine learning approach when comparing real-object stimuli with image
stimuli. However, when we compared the results using color coding (as shown in the figure
2.6), we discovered that classifiers performed marginally better with the feature set of real-

object stimuli.
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Table 2.6: Performance comparison of EEG data based on real-object and planar image
stimuli.

Number of electrodes taken Classifier Acc (Image stimuli) | Acc (Real Stimuli)
K-nearest Neighbor 0.49 0.52
SVM: Kernel as '/RBF" | 0.5 0.52
Decision Tree 0.49 0.5
All 128 electrodes Random Forest 0.51 0.54
Gaussian Naive Bayes | 0.5 0.5
Multilayer Perceptron | 0.51 0.51
Logistic Regression 0.51 0.52
K-nearest Neighbor 0.49 0.53
SVM: Kernel as 'RBF" | 0.49 0.5
.. Decision Tree 0.5 0.5
OZT;EéEileIﬁuZiggal Random Forest 0.52 0.53
Gaussian Naive Bayes | 0.49 0.5
Multilayer Perceptron | 0.49 0.49
Logistic Regression 0.49 0.52
K-nearest Neighbor 0.5 0.51
SVM: Kernel as 'RBF" | 0.5 0.5
Left hemisphere Decision Tree 0.49 0.5
electrode clusters Random Forest 0.46 0.48
Gaussian Naive Bayes | 0.52 0.53
Multilayer Perceptron | 0.48 0.5
Logistic Regression 0.5 0.47
K-nearest Neighbor 0.52 0.48
SVM: Kernel as '/RBF" | 0.5 0.5
Right hemisphere Decision Tree 0.51 0.49
cloctrode clusters Random Forest 0.53 0.54
Gaussian Naive Bayes | 0.5 0.53
Multilayer Perceptron | 0.51 0.5
Logistic Regression 0.53 0.52
Mean accuracy 0.5 0.51

Experiment 3:EEG Classification using Scaleogram

Figure 2.8 shows the architecture diagram of Experiment 3. In this approach, we generated
the time-frequency map images from raw EEG data. Scaleogram images were created using
wavelet transformation, as these images could provide distinctive features for classifying time-
series signals 7. Initially, the signal from 0 to 800 ms was extracted from the original signal

to capture the subject’s response to the presented stimuli. We took the electrode signal
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Experiment 3

EEG Classification using

Scaleogram
Input : Extracted Features .
EEG as Output and evaluation
Scaleogram > —>
temporal data Neural Network Predicted class
of stimulus
Classifier
Feature Extractor

Figure 2.8: Architecture diagram of Experiment 3.

"O1" and the clusters of occipital electrodes (A22, A23, A24, A25 Al4: see figure2.6¢)
for this experiment. The parameters used to form the scaleogram were specific. We took
the Morlet wavelet for transformation with a scale of 255 and used the continuous wavelet

transformation (CWT) from the Pywavelet libraries.

EEG_Kitchen: scaleogram with linear period EEG_Kitchen2: scaleogram with linear period

Ao o ONT

-----

Time Time

Figure 2.9: An example of scaleogram images from EEG data for the kitchen category.

The scaleogram patterns of class ‘Garage’ seemed to differ from those of class ‘Kitchen’
based on the initial observation taken from the recording of the Subject 1, ‘O1’ channel. Fig-
ures 2.9 and 2.10 show a few example scaleograms of the two classes. The EEG scaleograms
as images were fed as input to a neural network classifier (see table 2.7 for network design)
to obtain a baseline classification using only one channel (O1) as a feature.

The 96 trials for the ‘O1’ channel EEG image stimuli were insufficient to obtain a reason-
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EEG_garage2: scaleogram with linear period

Figure 2.10: An example of scaleogram images from EEG data for the garage category.

Table 2.7: Performance comparison of EEG data based on the Scaleogram image extraction

Electrodes taken | Feature Extractor Classifier Accuracy
01 0.37

Occipital cluster 0.41

*Neutral Network setup:

Input layer,

Flattening Layer,

Dense Neuron Layer(No. of neurons: 300),

Dense Neuron Layer(No. of neurons: 100),

Dense Neuron Layer(No. of neurons: 2, Activation: Softmax)

CWT (scaleogram) | Neutral Network™*

able accuracy. We then took the averaged value of the EEG signals in the occipital cluster
for all subjects as input to the scaleogram encoding and provided the accuracy results in
Table 2.7. The accuracy returned from the classifier was not up to the mark for a binary

classification (less than 50%).

2.6 Discussion

In this work, we used classic machine learning classifiers to assess the effectiveness of binary
classification for two types of visual stimulus feature sets. These feature sets include spatial
data of digital images and temporal data of human brain-evoked EEG signals while viewing

the real object and its 2D life-sized photographs. We also used a time-frequency domain
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encoder called a scaleogram to convert EEG data into a spectral image.

After a batch of experiments, we found the following findings. Binary classification
requires a large amount of image data to categorize the two classes only on the basis of
spatial features. Enhancing the training set and using edge feature extractors such as HOG
may help improve performance to some extent if the dataset is small. Features such as
band power average, PSD, and time-frequency map do not aid in improving EEG-based
classification if the signal is recorded at less than the minimum required frequency resolution
of the desired band. In our case, the total length of the signal was 2.8 s, of which only
1600 ms can be counted for the actual stimulus response. Even though the difference is
visible at the minute level of observation, the machine could not train itself with such a
low resolution. The conventional ML classifiers used in this study could not adequately
simulate the differential findings claimed by neuroimaging analysis Marini et al.'?" - the
occipital, central and one hemispherical side (contralateral to the dominant hand) of the
motor cortex regions contribute and perceive more to visual classification. However, the
visual classification of a visual stimulus as a tangible object versus a 2D image showed some,

although marginal, similarity to the original finding'°.

Summary of the key contributions in this chapter:

The following points describe the snapshot of this chapter when we used traditional machine

learning approaches for visual classification of Marini et al. 1% dataset:

e The best visual classification performance for Marini et al. [107| dataset is 67%, which

was obtained by spatial data (setup: HOG features from images when fed to Gaussian

NB classifier).
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e EEG alpha and beta band averages are the best features for classifying temporal EEG

data.

e EEG data classification is best performed when all 128 electrodes are selected with no

encoding (like PCA) with an accuracy of 53%.

e Hemispherical region Region-based classification of EEG data did not show any ob-

servable difference with ML classifiers

e Visual stimulus as real objects showed a marginal improvement over 2D planner images.

In the next chapter 3, we introduce deep learning approaches and propose to improve
visual feature vectors. Later, we evaluated visual classification performance through vari-
ous pipeline approaches from the deep learning architecture for a 40-class benchmark EEG
dataset called EEG-ImageNet. Moreover, we re-evaluated all the claims by Marini et al. !°7 in
chapter 4 with classical and deep learning approaches performed in this chapter and in chap-
ter 3. We also propose a cross-modal fusion approach to achieve state-of-the-art performance

in automated visual classification.



Chapter 3

Deep learning approaches for visual

classification

This chapter is based on the accepted conference paper: The International Conference
on Intelligent Data Science Technologies and Applications (IEEE - IDSTA 2022), San
Antonio, TX, US.

e Mishra , A., Raj, N., & Bajwa, G. (2022). EEG-based Image Feature Extraction
for Visual Classification using Deep Learning (Mishra et al. 112).

While capable of segregating visual data, humans take time to examine a single piece,
let alone thousands or millions of samples. The deep learning models efficiently process
sizeable information with the help of modern-day computing. However, their question-
able decision-making process has raised considerable concerns. Recent studies have
identified a new approach to extract image features from EEG signals and combine
them with standard image features. These approaches make deep learning models more
interpretable and also enables faster converging of models with fewer samples. Inspired
by recent studies, we developed an efficient way of encoding FEG signals as images
to facilitate a more subtle understanding of brain signals with deep learning models.
Using two variations in such encoding methods, we classified the encoded FEG signals
corresponding to 39 image classes with a benchmark accuracy of 70% on the layered
dataset of six subjects, which is significantly higher than the existing work.
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3.1 Introduction

Nowadays, digital data consists mainly of visual content such as images or videos. Visual clas-
sification is advancing our civilization through applications ranging from facial recognition
to improved product discoverability. Humans have evolved to be natural and accurate classi-
fiers, but our ability to categorize objects or create new categories is occasionally limited. We
classify a scene using intuition and experience, but only if the distinctive patterns are visi-
ble!%2, Machine perception can capture critical classifications and detect small patterns that
the human mind ignores. Although deep learning models such as CNN provide good perfor-
mance, they lack clear explanations due to a black-box decision-making approach!®®, time
consuming and computationally expensive for prediction and classification improvement?!.

Recently, Kaneshiro et al. identified a new approach to visual classification with machine
learning using EEG signals from the human brain™. It attempts to map human perception
to picture data collected from machine classifiers for visual classification tasks.

Previous studies have also used EEG signals as images, encoding them in the space-

166 Tn this way, we can leverage the EEG

time domain'® and the time-frequency domain
cognitive features to aid in further classification of images by using techniques discussed
in our methodology section. Representing these EEG signals in multidimensional encoded
image space via a single sample provides rich data for classification. As deep learning models
require a large amount of data to learn and extract features efficiently, these encodings enable
us to do the same.

In the following sections, we briefly describe the previous work, our initiatives, and the

results with comparisons of various methodologies. The main focused approaches are as

follows:

1. Visual classification using only images
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2. Visual classification using only EEG data

3. Visual classification using two-dimensional grayscale EEG encoded image data

3.2 Contributions

We found that EEG-ImageNet!?” is one of the challenging benchmark datasets with 40
classes, which is a high number with EEG classification. Thus, it can be used to improve
and achieve a robust classification of EEG and image data. Our specific contribution was
to employ this dataset with an approach to encode EEG data!®* in an 8-bit grayscale image

with 128 channels per trial. Using it with CNN + SVM pipeline-based transfer learning, we

outperformed state-of-the-art models for EEG-ImageNet dataset classification.

3.3 Related Work

We reviewed previous studies and approaches for EEG classification and visual classification
that use an EEG dataset.

EEG data consists of multiple channels of time-series signals per sample or trial. Over
the years, many studies and state-of-the-art approaches have contributed to improve EEG
data classifications. SyncNet? and EEGNet®, used for benchmarking classes in the EEG
datasets, are notable mentions of deep learning models of high performance.

Li et al.?3 built the SyncNet that used structured 1D convolution layers to extract power
from both time and frequency domains and classified the data based on joint modeling of 1D
CNNs. Lawhern et al.8 used 2D CNNs along different dimensions of EEG data to create
EEGNet. The first set learned frequency information via temporal convolution and then

learned spatial features of specific frequency using a depth-wise set of CNNs.
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One of the necessities in the standard EEG processing pipeline is feature engineering®?.
Traditional feature extraction provides only certain aspects of EEG, such as frequency or
temporal domain content. A time-frequency resolution of the EEG data can achieve a two-
dimensional representation of the EEG. Therefore, signals can be converted to a spectrogram

)166,161

image using STFT (short-time Fourier transform or to a scaleogram image using

167

CWT (continuous wavelet transform)'®’. Thus, it can leverage the performance of the pre-

trained deep learning models using transfer learning. The earlier efforts by Raghu et al.!3*
have shown success in EEG classification using spectrogram encoded images instead of raw
EEG signals. Hence, we explored efficient ways to use the image-transformed features from
EEG-ImageNet data in one of our classification experiments using CNN-based deep learning
models without losing any channel or frequency information.

Zhang et al.'® followed a unique classification approach based on an EEG dataset!?.
They used 8-bit heatmap scaling to convert the raw EEG signals into images. Later, they
used pre-trained MobileNet to extract deep features from these images. In the end, they
used an SVM classifier and obtained good classification performance.

Multi-modal fusion of diverse data has been emerging research to automate visual clas-
sification problems. Spampinato et al.'*” presented the first automated visual classification
method driven by human brain signals using a CNN-based regression on the EEG manifold.
Visual image stimuli evoked EEG data were learned with an RNN and then used to classify
images into a learned EEG representation. Their promising results paved the way for human
brain processes involved in effectively decoding visual recognition for further inclusion in
automated methods.

Li et al.%! claimed that the results reported by Spampinato et al.'%® depended on a block

design, and a rapid-event design process cannot replicate the results. The block design and

training/test set splits were such that every trial in each test set came from a block with many
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Table 3.1: Performance comparison of previous approaches on EEG-ImageNet 27 dataset.

Model performances with correctly filtered EEG-ImageNet
Classifier models Accuracy on ([14-70] Hz) | Accuracy on ([5-95] Hz)
Stacked LSTMs 9127 NA 0.22
SyncNet ™ 0.24 0.27
EEGNet 3 0.34 0.32
EEG-ChannelNet 127 0.41 0.36
GRUGate Transformer % 0.48 0.46

attempts in the corresponding training set. Li et al.”! also claimed that the wrong block
design approach led to a high classification accuracy of long-term brain activity associated
with a block rather than the perception of class stimuli.

Palazzo et al.!'?® defended their previous research'*® by counter analyzing the claims
made by Li et al.®! while admitting the faults in data pre-processing. As a result, the clas-
sification performance was lower than the previously claimed average accuracy of around
83%149. According to their latest work!??, the reduced accuracy was attributable to EEG
drift because the earlier work mistakenly used unfiltered EEG data. The authors'®® achieved
nearly 20% accuracy with correctly filtered data (high-frequency gamma-band); EEGNet 8
reported about 30% accuracy, and EEG-Channel Net!?” obtained approximately 50% ac-

199 data was

curacy. However, in their experimental finding, the temporal correlation in
nominal, and the block design was suitable for classification studies after pre-processing.
Consequently, they corrected for the publicly available data with proper filtering.
Following this revelation, the performance of the models developed by Fares et al.*7,
Mukherjee et al.''®, Kavasidis et al.” and Zheng et al.'® cannot be compared as they are

based on the unfiltered EEG data from Spampinato et al.'* and the filtered dataset was

published in 20201%7.
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Tao et al.'®% used the filtered data provided by Palazzo et al.'?” with different frequency
sets of [55-95] Hz, [14-70] Hz, and [5-95] Hz to compare all state-of-the-art models. Their
proposed model for EEG classification was based on the GRUGate Transformer. They
achieved 61% accuracy on the high gamma band filtered data but reached only 49% with all
band frequency data ([5-95] Hz). Table 3.1 compared the performance of all previous studies

that used the correctly filtered EEG ImageNet dataset.

3.4 Dataset

For this study, we have used the updated filtered dataset published in 2020149127 Tt is
the first EEG dataset for ImageNet visual classification’s multi-class subset. For future
convenience, we will refer to this dataset as EEG-ImageNet.

EEG signals were recorded from six subjects viewing a subset of the ImageNet dataset
with 40 classes, each containing 50 images. The EEG sequence was collected from 128
electrodes with a sampling rate of 1000 Hz and 500 ms in duration. According to Kaneshiro
et al.”™®, the first 500 ms of single-trial EEG responses are informative for the categories and
characteristics of visual objects in this investigation. They also found that as little as 80 ms
of response from a single electrode is enough to classify EEG signals.

The number of trials found in the dataset is 11,964, after removing 36 low-quality samples
from 12000 recordings. It is also worth mentioning that we discovered 11 missing trials for
one class (mushrooms, labeled 33 in the dataset) for subject 1. We deleted all data with
label 33 from both the Image and EEG datasets, resulting in a 39-class dataset with 11,682
samples. Table 3.2 shows the details of the parameter of the dataset we discussed.

Many versions of the dataset were constructed with different bandpass filters, ranging

from [5-95] Hz to [14-70] Hz for various experiments. For our research, we used both forms
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Table 3.2: Parametric values of EEG-ImageNet 27 dataset taken for this study

Datasets parameters Values
Total number of trials 11,682
Stimulus type Image
Number of classes 39
Number of subjects 6
Stimuli per subject 1947
Stimuli per class 50*
EEG recording time for each stimulus 500ms
Sampling rate 1000 Hz

*There are approximately 50 images for each class.

of filtered data to utilize various brain signal bands (theta, alpha, beta, and gamma) in-
formation captured during visual stimulation. Data were also adjusted using a z-score per

channel to provide zero-centered values with a unitary standard deviation!?’.

3.5 Methodology

LSTM-based EEG Model

The EEG data is a time series signal, so LSTM models are a reasonable choice to extract fea-
tures for this application®*7. They can successfully learn on data with long-range temporal
dependencies considering the time lag between inputs and their corresponding outputs.

We used a mix of common stacked Bi-LSTMs and LSTMs to measure the baseline ac-
curacy of our EEG data for image classification. Previous studies also showed comparable
performance using stacked LSTMs!4? and stacked bi-directional LSTMs*” for EEG-ImageNet
data. Figure 3.1 shows the design of our LSTM-based EEG model, and we explain the pa-

rameters in our experiments (see Section 3.6)
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Figure 3.1: Design architecture of LSTM-based EEG Model (LEM)

CNN-based Image Model

Convolutional neural networks are the most effective deep learning models to extract detailed
features from images. With the support of ImageNet dataset®” and deep learning models such
as AlexNet, VGG ResidualNet5”, MobileNet™, and EfficientNet!®®, image classification
has improved immensely and almost achieved its peak performance. However, the depth and

parameters of these models necessitate a considerable resource for training with the ImageNet
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Figure 3.2: Design architecture of CNN-based Image Model (CIM)

dataset. We can utilize these models on the go because they are already pre-trained using
ImageNet weights. We took these pre-trained models and added a fully connected layer to
fine-tune the model concerning our dataset, as our image data are a subset of ImageNet.
We conducted experiments to extract spatial features from images using these models; for
example, we classified the image data from the EEG-ImageNet dataset using the CNN-based
Image Model with ResNet50 as the functional model (see architecture in figure 3.2). The

parameters of these models were explained in our experiments (see section 3.6).

EEG-to-Image-based model

Although deep learning models such as LSTM and CNN can extract features from raw time
series data directly, it is crucial to account for noise and volatility in stochastic signals such
as EEG. Additionally, before training the model with a sample, a pipeline technique should

be determined to treat the raw EEG data as a feature consistent with the model’s design.
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Figure 3.3: The process of encoding EEG trials to images for EEG-to-Image-based models.

Grayscale Image encoding - A unique approach to encode EEG signals data to

2D spatial Grayscale Image sample

We designed a feature extractor method to transform the EEG signals into an 8-bit grayscale

heatmap image!8*. We applied this encoding in 2 ways.

Creating a 3 channel grayscale Image-encoded EEG data sample to replicate
RGB channels of Image data. In the first method, we created a grayscale heat map of
the EEG signals for each subject for each test (40 trials / images per class). The process

involved normalizing the signals with a min-max scalar to transform values in the range of
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(0,1). The normalized signals were then converted to 8-bit grayscale heatmap images using
an encoding scheme described by Zhang et al.'®4(see figure 3.3). However, we used a factor
of four instead of 32 to increase pixel values to incorporate data from all 128 electrodes of a
single trial. After this, we vertically layered each electrode’s (4, 440) grayscale image to create
an image of size (512, 440) corresponding to all 128 channels. In the end, each EEG trial’s
grayscale image was cloned three times (512x440x3) and resized to (224x224x3) to match

the input shape of the pre-trained models such as MobileNet, Resnet, and EfficientNet.

Creating a six channel grayscale Image-encoded EEG data sample that includes
trials of the six subjects viewing the same image stimulus. We designed to group
all subjects” EEG signals corresponding to the same image stimulus in the second method.
As a result, the dimension of our EEG encoded image changed from (512x440x3) having
11,682 trials to (512x440x6) with 1947 trials. Instead of replicating the grayscale image data
three times, we used the trials of six subjects for the same image as channels. The inference
is that this will improve the efficiency of data input processing. The coded algorithm for
this encoding method is shown in appendix A.1.

Having the flexibility to adjust the size of the signal image, we combined the EEG
representations from all the 128 electrodes of a single trial. Thus, we created a unique
signature for each sample without exhausting computational resources. This strategy allows
integration of structural and textural analysis methods such as pixel variance, morphological
gradient calculations, normalization, and enhancement algorithms to improve classification
accuracy. It also allows the application of feature extraction methods that characterize the
many forms, textures, and structures of each image, such as the Gray Level Co-occurrence
Matrix (GLCM)®%, Hu’s Moments™, and Local Binary Patterns'??. Figure 3.3 illustrates

the extraction of features through 8-bit grayscale image encoding with a stretch of 4 for the
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128 channels of a trial and our classification model to assist the grayscale image encoder.

3.6 Experiments and Results

The length of an EEG sequence in the filtered EEG-ImageNet dataset was 500 ms. We
selected 440 time points (20 - 460 ms) from 500 ms data, since the precise duration of each

signal can vary'?7,

Therefore, we excluded the beginning and final 20 samples (20 ms) to
prevent interference in adjacent signal recordings.

We used only 1947 out of the 1996 image samples in the ImageNet subset after removing
the label 33 (mushrooms) associated with missing trials. Hence, the new size of the EEG-
ImageNet dataset had 11,682 recordings (1947x6) with 39 class labels. We split the data into
70% train, 15% validation, and 15% test sets. The reason for choosing this [70/15/15] split

156,149,127 using this

instead of [80/10/10] (which was standard split opted by previous studies
dataset.) was based on observing consistent accuracy in the cross validation scheme across
all the runs. We stratified the data by image samples and labels, implying that each data
split included trials from all subjects with the same visual stimulus in the same group. This
type of stratification eliminated any bias in the split and avoided overfitting during training.
The code implementation of the stratified group split is described in Appendix A.2.

Furthermore, we processed our EEG-ImageNet data based on the following experiments

using the models explained in Section 3.5.

Deep learning approaches for visual classification of images

The EEG-ImageNet dataset contains visual stimuli as a subset of the ImageNet dataset (1947
images from 39 classes). To measure the benchmark classification performance of this subset

of ImageNet, we performed image classification experiments using different CNN-based pre-
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trained models such as AlexNet, VGG16, Resnet50, and MobileNet. We did not choose any
model with high depth or parameters, as it would increase the complexity of the model.
Unlike Palazzo et al.'?”, we did not perform any image augmentation because we chose these
models as image feature extractors for our future multi-modal implementations.

Parameters: This model architecture consisted of an input layer of shape (224x224x3),
followed by a functional model layer that fits CNN-based pre-trained models, a dense layer
of 128 neurons and a softmax class layer as classifiers. We used a stochastic gradient descent
optimizer to train the data. The code implementation for this model is illustrated in the
Appendix A.5.

Results: We found that the ResNetb0 model performed better than other CNN-based
models with a test accuracy of 84% because it converges faster for the small number of

samples per class'®.

Deep learning approaches for visual classification of EEG data

In this section, we describe our classification experiments performed with EEG-ImageNet

data.

Raw EFEG data with LSTM-based EEG Model

We directly used raw time-series EEG signals from all subjects in this experiment. The
shape of each input EEG data sample is (440x128), where 440 is the number of time points
and 128 is the number of channels for each trial.

Parameters: The LSTM-based EEG Model was built with an input layer with the same
shape as each EEG sample. It was connected to 50 stacked bidirectional LSTMs, followed by

two stacks (128 and 50) of common LSTMs, and finally, a dense layer of 128 neurons. We used
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the adam optimizer to train the model with a softmax classifier. The code implementation

for this model is shown in appendix A.4.

Results: We observed that the performance of our LSTM-based EEG Model followed

93:84,127.156 15ing only the raw

a similar trend (Table 3.4) as previous state-of-the-art models
EEG signals. The beta-gamma-filtered data [14-70] Hz showed somewhat better performance

than all data from the frequency band [5-95] Hz.

FEEG data encoded as 2D vectors with EEG-to-Image-based model

We performed two types of processing in the EEG-ImageNet dataset for EEG signal-to-
image models with the help of Grayscale Image encoding described previously (see
Section 3.5).

Parameters: We leveraged a pipeline framework for transfer learning to train our models
with EEG-encoded image data. We extracted the deep features from 8-bit grayscale images of
each EEG trial using CNN-based image models such as MobileNet, ResNet, and EfficientNet.
These deep features were then input into various machine learning classifiers, including SVM
(RBF kernel), K Nearest Neighbor, Random Forest, Decision Tree, and Logistic Regression,
to assess our classification performance.

Table 3.3: Classification accuracy of different CNN (3 channels) + ML classifier models on
grayscale EEG encoded image data for [14-70] Hz data.

CNN Extractor -+ classifier I(I;lfzg; 423;3 Irrzggzé‘ze;;z)ed
MobileNet + SVM(rbf) 0.42 0.36
MobileNet + kNN 0.41 0.36
ResNet + SVM(rbf) 0.5 0.43
ResNet + kNN 0.49 0.41
EfficientNet + SVM(rbf) 0.51 0.41
EfficientNet + kNN 0.5 0.41
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Results:

Table 3.4: Performance comparison of classification models with varying cut-off frequencies
in bandpass filters on the EEG-ImageNet data.

EEG data Encoding Classifier models Accuracy on beta-gamma | Accuracy on All freq.
(with data split) filtered data ([14-70] Hz) data ([5-95] Hz)

Raw EEG data* Stacked LSTMs 9127 NA 0.22

Raw EEG data* SyncNet” 0.24 0.27

Raw EEG data* EEGNet8! 0.34 0.32

Raw EEG data* EEG-ChannelNet 2 0.41 0.36

Raw EEG data* GRUGate Transformer!*® 0.48 0.46

Raw EEG data** LSTM based Model (3.5,3.6) 0.28 0.26
Grayscale image encoded EEG data** (3.5,3.6) | EfficientNet + SVM(rbf) 0.51 0.64
Grayscale image encoded EEG data , _ . . .

with subjocts B e s (Gix)** | (35:36) | BfficientNet + SVM(rbf) 0.68 0.70

*Previous study models mentioned in this tabel have used (80% train, 10% validation and 10% test) data
spit for EEG-ImageNet dataset.
**The models designed by our study have used (70% train, 15% validation and 15% test) group - stratified
spilt for EEG-ImageNet dataset.

We tested the accuracy of all top pipeline combinations using [14-70| Hz EEG-ImageNet
data encoded as grayscale images, shown in Table 3.3. We noticed information loss from
the encoded images when the image size reduced from (512x440) to (224x224). We also
found that the EfficientNet feature extractor with SVM classifier outperformed other model
combinations. Hence, we choose to run this model setup for all available frequency data (i.e.,
[5-95] Hz EEG-ImageNet data).

Ultimately, we compared the performance of state-of-the-art EEG classifiers with the
classifier we designed in Table 3.4. The comparison shows the classification accuracy for
both data types available for the EEG-ImageNet dataset. Our grayscale EEG encoded image
approach trained with EfficientNet + SVM (RBF kernel) classifier achieved approximately
21% higher accuracy than other approaches using the all frequency dataset [5-95] Hz. Tt is

worth mentioning that our other approaches also performed well with the filtered data.
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3.7 Discussion

LSTM?® and CNN-based 1D models!?” generally work well with time series data, including
many EEG datasets!™!". However, this typical strategy of using LSTM with EEGs did not
yield a high classification accuracy with the EEG-ImageNet dataset. The low performance
of the EEG-ImageNet dataset can be attributed to its complexity, as it is one of the most
extensive EEG datasets available in terms of containing an unusually high number of classes
(39)2, thus a harder EEG classification problem.

2D CNNs can extract deep features from the data very effectively compared to LSTMs
and 1D CNNs. Similarly, EEG signals can be encoded into 2D time-frequency image repre-
sentations (spectrograms/scaleograms) with methods like STFT and CWT to leverage the

(67153). However, more resources

deep feature extraction capability of pre-trained CNNs
are required for computation as we need a separate time-frequency map of each of the 128
channels, increasing sample sizes and adding enormous complexity to the data processing.
In addition to the complexity, the STEF'T and CWT methods lose feature information when

161 166 chose a

resizing the images produced from the encoding. Therefore, previous studies
selected number of channels for each trial instead of all EEG electrodes.

On the other hand, our method of encoding the EEG signals to grayscaled image vectors
outperforms the current state-of-the-art methods significantly (21%), as seen in Table 3.4.
The reason is that we accommodate the two-dimensional feature information from all the
128 channels in a single image by stretching the feature space of each channel instead of
compressing it.

In a different approach, we consider the six subjects as six separate channels of an im-

age, because CNN can accommodate more than three channels. This strategy reduces the

redundancy of the six different readings from the subjects but preserves the essential visual
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stimulus information (all the subjects are watching the same image).

We also observe that the EEG data consisting of all frequencies, i.e., from 5 Hz to 95 Hz,
performs better than the dataset filtered with beta and gamma bands, i.e., 14 Hz to 70 Hz
when encoded with two-dimensional image representations. This higher performance shows
that EEG data has definitive classifying information in alpha frequency and can be helpful
when we encode the dataset into deeper dimensions.

Based on the performance of all visual classification techniques described in our study,
we conclude that the strategically encoding of EEG data into a two-dimensional feature
space provides more exploratory information than raw EEG signals. Furthermore, we learn
that the EEG data, presented as an input image to deep learning models, the data from
low-frequency EEG bands such as alpha are more accessible and contribute significantly to
visual classification.

Thus, our attempt to classify the EEG data using all trials of the subjects as channels

improved the convergence and efficiency of the model.

Summary of the key contributions in this chapter:

The following points describe the snapshot of this chapter when we used Deep learning

approaches for visual classification of EEG-ImageNet 27 dataset:

e The best visual classification performance for the EEG-ImageNet dataset was 85%,

which was obtained using spatial data (setup: CNN-based Image Model).

e For EEG (temporal) data, a Grayscale EEG encoded image approach trained with
EfficientNet + SVM (RBF kernel) classifier achieved 70% accuracy, which is approx-
imately 21% higher than current state-of-the-art approaches using the all frequency
dataset [5-95] Hz.
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e Grayscale image encoding of EEG data is efficient as it accommodates the two-dimensional
feature information from all the 128 channels in a single image. It also uses the subjects

as a 4th-dimensional channel.

e EEG data consisting of all frequencies [5-95] Hz performs better than [14-70] Hz data

when encoded with 2D image representation.

In the next chapter 4, we will explore additional techniques to efficiently encode EEG
data for classification and enhance the multi-modal fusion approaches of EEG and Image

data.



Chapter 4

Multimode fusion approaches for visual

classification

This chapter is based on the accepted conference paper: 17th International Symposium
on Visual Computing (Springer - ISVC 2022), San Diego, CA, US.

e Mishra , A. & Bajwa, G. (2022). A New Approach to Visual Classification Using
Concatenated Deep Learning for Multimode Fusion of EEG and Image Data (Mishra
and Bajwa!ll)

In this work, we explore various approaches for automated visual classification of mul-
timodal inputs such as FEG and Image data for the same item, focusing on finding
an optimal solution. Our new technique examines the fusion of EEG and Image data
using a concatenation of deep learning models for classification, where the EEG feature
space is encoded with 8-bit-grayscale images. This concatenated-based model achieves
a 95% accuracy for the 39 class EEG-ImageNet dataset, setting a new benchmark and
surpassing all prior work. Furthermore, we show that it is computationally effective
in multimodal classification when human subjects are presented with visual stimuli of
objects in three-dimensional real-world space rather than images of the same. This
discovery will improve machines’ visual perception and bring it closer to the learned
human vision.
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4.1 Introduction

When we think about classification problems, the first thing that comes to mind is the search
for similar patterns. The human mind learns to classify things on the go in a semi-supervised
approach. It is fascinating to observe that one half of the human brain searches for similar
patterns, while the other labels are based on intuition. On the contrary, machines employ
binary logic to discover patterns in a supervised environment'3'. They lack the intuition
that the human mind possesses.

The same applies in the case of visual classification, where humans can easily classify
whether the object’s high-level pattern is visible to the naked human eye'%? and the prediction
is almost accurate most of the time. However, the distinctive micro-pattern can sometimes
make a classification task difficult for humans, whereas machines outperform in finding that
pattern.

As a result, given that humans and machines perceive visual cues in different ways (which
we also discussed previously in chapter 1.5), our aim is to find the best approach to combine
human cognition with machine perception for better visual classification.

Recent research®!¢ has revealed that our thoughts can be decoded using brain wave
signals. Methods such as fMRI, MEG, and EEG were used to capture brain signals. The
activity of every neuron in the brain must be carefully monitored to replicate the human-
level neural representations that can adequately capture a visual process. The neuroscience
community uses EEG recordings for their portability and ease of use.

1.197 showed through an event-related potential analysis of EEG data recorded

Marini et a
from the human brain that human perception improves when seeing a visual object in real
life compared to its image.

Our study represents a new approach based on model concatenation to improve visual
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classification tasks with the help of human protective brain response data collected through
EEG recording and spatial features extracted from machines for visual stimuli.

This merger can be achieved through multimodal deep learning. The concept of multi-
modal deep learning was introduced by Ngiam et al.'?*, Sohn et al.'*® and can be defined
as a technique to relate similar information from multiple input sources, called modalities.
These methods allow the deep learning model to learn the common contextual patterns of
different input sources jointly and to create a shared representational meaning of the data.
Multimodal learning can be categorised in two ways, intra-modal learning, where the modal-
ities have the same feature representation (e.g. images of the same bird with two different
angles), and cross-modal learning, where modalities have different feature representations
(e.g. image and sound of the same bird). We are interested in cross-modal learning for
visual classification.

In the next section, we will discuss relevant studies proposed to improve and automate

visual classification using EEG brainwave data and multimodal learning.

4.2 Related work

The visual classification task using EEG data was first performed by Kaneshiro et al.”™® in
2015, who proposed a representational similarity-based linear discriminant analysis frame-
work to classify 12 different object categories and obtained an accuracy of 28.87% in their
proposed data set, known as the object category-EEG data set.

Zhang et al. 18

also proposed a unique approach to visual classification using an EEG
dataset!”. They used 8-bit heatmap scaling to convert raw EEG signals into images. Later,
pre-trained MobileNet was used to extract deep features from these images. In the end, they

used an SVM classifier and obtained a classification performance of 95.33%.
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In their research, Marini et al.'°" found that EEG signals demonstrated a transient string
ERP for actual items, possibly due to 3-D stereoscopic differences, in addition to a late per-
sistent parietal amplitude modulation consistent with an ’old-new’ memory advantage for
actual objects over images. They also discovered that the regional motor cortex side has pro-
portionally higher event-related desynchronisation compared to the contralateral dominant
hand. Marini et al.'%7 provided the EEG dataset used in their experiments.

Ilievski et al.™, and Guillaumin et al.%? showed robust performance for visual classifica-
tion using multimodal learning with text and image as cross-modal input. Similarly, Owens
et al.'?® and Arandjelovic et al.? performed visual classification using shared visual and
auditory space modalities.

Spampinato et al.'%’ introduced multimodal visual classification using EEG and Image
data. They used the feature regression method in which visual image stimuli evoked EEG
data were learnt with the help of stacked LSTMs and then used to classify images into a
learnt EEG representation. The classification performance showed outstanding results until
later when it was revealed that the EEG data were not correctly filtered, which added bias
to the data. This revelation voided the results of this approach and all other derived works
that have used unfiltered data.

Palazzo et al.'?7 corrected the dataset used by'*? and later published the filtered EEG-
ImageNet dataset which we have used in this study. The joint learning approach of the
Siamese network for multimodal visual classification achieved an accuracy of 90.5% with a
pre-trained ResNet classifier for Images and 1D CNNs architecture for EEG data.

In the following sections, we discuss all the settings, methods, and experiment results

of our approach to multimodal visual classification on the datasets provided by Marini et

106 1 127

al.*"*. and Palazzo et a
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4.3 Datasets

Visual classification with multimodal image and EEG data learning has been an emerging

study since 2017149,

As a result, there are only a limited number of publicly available
databases, so collecting additional data was not a priority of our research. This research

focused on two existing multimodal datasets for visual classification tests, as detailed in the

following.
Table 4.1: Parameters of the two publicly available datasets.
Datasets Trials Stimulus | Classes | Subjects Stimuli | Stimuli per class | Rec. per stimulus | Sampling rate
EEG-TmageNet?” | 11,682 | Image 39 6 1947 50* 440ms 1000 Hz
- 5 Image 2 22 96 48 800ms/1600ms 512 Hz
) 106
Marini et al. 424 Rl 2 2 96 I 800ms,/1600ms 512 Hz

*There are approximately 50 images for each class.

EEG-ImageNet

EEG-ImageNet dataset was published by Spampinato et al.'4’ and later updated!?” due to
filtering issues and signal bias caused by EEG drift, which we have discussed in chapter
3(section 3.3). We used the recently updated dataset, commonly known as EEG-ImageNet.
It was created by recording EEG signals from six subjects using a 128-channel actiCAP
electrode system. The recordings included each subject viewing 2000 images (50 images per
class with 40 classes from a subset of ImageNet dataset®”. The signals were recorded for 500
ms for each trial at a sampling rate of 1000 Hz. The total number of trials was 12,000 for
40 classes; however, due to low-quality samples and some missing trials in the dataset, we
used 11,682 trials for 39 classes, approximately 50 images for each class. All data from class,
mushrooms (labelled 33 in the dataset) were excluded, and some classes did not have all 50

images and the corresponding EEG recordings tagged.
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The original authors'?”

already normalised the data with a z-score and a corrected base-
line per channel. Two filtered formats were available in the band pass ranges [5-95|Hz and
[14-70]Hz. We followed the processing by Pallazzo et al.'?” and trimmed the first and last
20 ms from each trial to make all signal lengths 440 ms. We used the variant [5-95] Hz
of the data set for this study as it performed comparatively better than [14-70] Hz for the
classification of EEG data!?"12%, All parameters used for the EEG-ImageNet dataset are

shown in Table 4.1.

Visual stimuli EEG dataset: real-world 3D objects and

corresponding 2D image stimuli

1.196 introduced an EEG dataset with two distinct but similar visual stimuli. It

Marini et a
consisted of 24 subjects viewing three-dimensional real-world kitchen and garage objects and
their corresponding images while recording EEG signals. Each subject’s data had 192 trials,
96 of which were real-world objects, and the other 96 were exact-size photographs of the
same items. A 128-electrode set-up was used to record the signal data at a 512 Hz sampling
rate. The entire length of each raw signal was 2800 ms (-800 to 2000ms), of which 800 ms
(0 to 800 ms) was the actual response of subjects observing the stimulus, and the next 800
ms (800 to 1600 ms) were with their eyes closed before switching to the subsequent trial.
Images (found in the scripts/stimuli) are also provided in the dataset.

We discovered that this dataset is a unique seed in multimodal visual classification re-
search, allowing us to evaluate the performance of state-of-the-art machine learning classi-
fiers and multimodal deep learning architectures based on EEG such as EEG-ChannelNet 127

and our proposed model discussed in Section 4.5. As discussed previously, neuroscience

research!%® determined that when a real-world object is used as a stimulus, event-related
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desynchronisation is more dominant than simulated pictures of the same thing used. In
this work, our objective was to examine whether we could use these findings to improve
classification accuracy.

The unwanted artifacts of the original data were removed. However, the raw EEG signals
were not processed for ERP analysis. We used various processing techniques, including
normalising the data using z-score and then baseline correcting the signal in the prestimulus

period (-200 to 0 ms) to give zero-centred values with a unitary standard deviation.

7z=2F (4.1)

o
Equation (4.1) represents the z-score of a signal, where ‘x’ is the original signal, ‘x’ and
‘o’ are the mean and standard deviation of the signal, respectively.
We used data from 22 participants, since two of them (two and seven) had fragmentary
data. For optimisation, we clipped the signal data to 800 ms (0 to 800 ms) for deep learning

models and 1600 ms (0 to 1600 ms) for conventional machine classifiers.

4.4 Data Encoding and Processing

It is vital to process and encode the data as input relevant to the model configuration for
optimal performance. We used various feature extraction and data encoding techniques to

optimise the feature space and process the data.

Classical Feature Extraction for EEG data

The EEG visual stimuli datasets usually have more categorical information in the alpha,

beta, and gamma frequency bands of the signal, as observed by previous studies!4947:156
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We performed a periodogram spectral analysis to use the relative band power average of all
signals as a feature in each trial. This analysis is best suited for low-frequency resolution in
small-length signals in the datasets we used3. These feature sets are later fed to the machine
learning classifiers discussed in Section 4.5 with different mixed PCA pipelines and feature

selection encoding.

Histogram of Ordered Gradient(HOG) for Image Feature

Extraction

HOG, or Histogram of Oriented Gradients, is a feature descriptor applied as a feature extrac-
tor for various computer vision applications - notably, object recognition and classification.
The HOG descriptor reinforces a structure for an image since it computes the features using
both the gradient’s magnitude and angle. Histograms are created for the areas of the image
based on the magnitude and orientation of the gradient®. We used the HOG filter on the
image data to produce a one-dimensional feature vector that can be fed into classifiers to

assess the baseline accuracy.

Principal Component Analysis (PCA) Encoding

PCA is a statistical encoder for converting high- to low-dimensional data by picking the
main components that capture the most relevant data about the dataset. The features are
chosen on the basis of the variance they produce in the output. It is vital to note that the
primary components do not have a relationship with each other.

We used PCA encoders to compress the feature dimension of both images and EEG data
to evaluate the differences in classification results using only the main components with 99

percent variance.
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Feature Selection Encoding

We followed the Sequential Feature Selection (SFS) encoder to identify the best features
from the relative power average of the alpha, beta and gamma band feature sets. We
noticed that most of the essential features selected were from the averages of the alpha
and beta bands, with only a few potent features from the gamma band. Ironically, this
finding differs from previous findings by Spampinato et al.'*°, Fares et al.*” who had used
unfiltered EEE-ImageNet data for classification, implying that the results of these studies
cannot be considered. We used alpha- and beta-band power averages as features in our

baseline classification investigations.

Grayscale-image Encoding for EEG data

We used the grayscale-image encoder from chapter 3 that was designed as a feature extractor
to convert the values of an EEG signal to an 8-bit grayscale heatmap image. This encoding
method was first introduced by Zhang et al.'8* for EEG classification. This strategy allows
integration of structural and textural analysis methods, such as pixel variance, morphological
gradient calculations, normalisation, and enhancement algorithms, to improve classification
accuracy.

As shown in table 4.4 grayscale encoding showed significant performance in the classi-
fication of both Marini et al.!%® and EEG-ImageNet!'?” data. Consequently, we used this
encoder for further experiments in this study.

We then stretched the pixels to a factor of 4 and incorporated the data from all 128
electrodes in a single test. After this, we vertically layered each electrode’s (4, 440) grayscale
image to create an image of size (512, 440) corresponding to all 128 channels. The data were

processed using two strategies with the grayscale image encoder. In the first method, the
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grayscale image of each EEG trial was cloned three times (512x440x3) to match the input
shape of the CNN-based models.

The shape of the input data with our first method for EEG-ImageNet was (11682x512x440x3)
and the Marini et al. dataset was (4224x512x440x3).

In the second method, we stacked all the subjects’ EEG signals corresponding to the
same stimulus trial as represented in figure 3.3 in Chapter 3. Thus, unlike the first method
of replicating the same image three times, the images for all subjects will be stacked as
channels. This processing approach turned out to be more efficient than the first one, as it
uses different subjects as separate dimensions.

The shape of the input data with our second method for EEG-ImageNet was (1947x512x440x6),
and the Marini et al. dataset was (192x512x440x22), given six subjects and 22 subjects in

the respective datasets.

4.5 Methods and Model Implementation

Conventional Machine Learning Classifiers

We employed Decision Tree, Random Forest, K-nearest Neighbor, Support Vector Machine
(SVM), Multilayer Perceptron, and Logistic Regression as traditional machine learning clas-
sifiers in our evaluation. These model setups are default configurations from the sklearn
library 2 and were used in the chapter 2. For our experiments, we modified the SVM kernel
to RBF. The accuracy of the baseline classification using the one-dimensional feature vectors

collected in Section 4.4 was determined using these classifiers.
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LSTM-based EEG Model (LEM)

The LSTM-based EEG Model, as used in chapter 3 has an input layer with the same shape as
each sample of raw EEG data. It was first linked to 50 stacked bidirectional LSTMs® . then
to two stacks of common LSTMs (128 and 50), and lastly to a dense layer of 128 neurons.
To train the model with a softmax classifier, we employed the Adam optimiser. Each input
EEG data sample has the shape (ts, ch), where “ts” represents the number of time points,

and “ch” represents the number of channels for each trial.

CNN-based Image Model (CIM)

This model also follows the CIM architecture mentioned in chapter 3, including an input
layer representing the shape of the image data that would be supplied to the model, a
functional model layer that fits CNN-based pre-trained models, a 128-neuron dense layer,
and a softmax classification layer. For training, we applied a stochastic gradient descent
optimizer.

Pre-trained models such as ResNet%”, VGG16'45, MobileNet ™, and EfficientNet '®® were

used as functional models for several experiments mentioned in Section 4.6.

Grayscale-image Encoded EEG Model(GEM)

The architecture of the GEM consists of a pipeline framework where, at first, the raw EEG
data signal data is converted to an image feature set using the Greyscale image encoder
mentioned in section 4.4. This image feature set is fed to a CIM where the functional
model layer is EfficientNet for classification. EfficientNet has previously shown the best
performance for grayscale image-encoded EEG data!8t. Figure 4.1 illustrates the design of

the GEM model.
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Figure 4.1: Design of the Grayscale-image Encoded EEG Model (GEM)

Regression-based model'#4?

The regression-based approach, similar to Spampinato et al. 14?128 consisted of a bi-directional
LSTM to extract features from EEG signals and a CNN to extract features of the image
for training. As a regressor, we employed a fully connected single-layer model to regress the
image features derived from a pre-trained CNN model with EEG features acquired by the
BiLSTM model. For simplicity, we set the feature dimension of both the image and EEG
features at 128. To match the number of EEG samples with the image samples (1947), we
averaged the EEG signals between the six subjects for each stimulus of the image. For the
test dataset, the regressor predicted or mapped the image features to the EEG features as-
sociated with the test images before using them in the classification model. In other words,
the regressed image features were learnt through EEG, and these predicted features were
then used to classify the images of the test set. The approach of the regression-based model

is shown in figure 4.2.
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Figure 4.2: The process used to build a Regression-based model.

Vertical Stacking model

In this strategy, we construct a new expanded feature dataset by vertically stacking the
features extracted from the EEG and image datasets and then assessing the general classifi-
cation accuracy using different classifier models (Figure 4.3). The combined features contain
the deep features retrieved from the baseline models (LSTM-based EEG and CNN-based
Image models). We could append this data due to the dimensionality match in the EEG
and image deep features (128). The goal is to augment the number of features from diverse

data inputs with comparable properties.
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Figure 4.3: The Vertical Stacking model obtained with stacked features from baseline models.

Concatenation-based Models

A concatenation-based technique often combines the data obtained from two or more ma-
chine learning models and then labels those features. To predict the different classes in our
datasets, we integrate the models’ penultimate levels, i.e. fully connected layers, immedi-
ately before the classification layer and then form a softmax layer. Concatenated models are
popular multimodal deep learning models due to their fast convergence and generalisation,
since different modalities do not lose any feature value during joint learning, which aids final
classification.

We have concatenated LEM and GEM (which take EEG data as input) with the CIM
Model (which takes stimuli images as input) to perform multimodal joint learning visual

classification experiments, as shown in Figures 4.4a and 5.1c.
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Figure 4.4: Concatenation model design used for multimodal deep learning visual classifica-
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4.6 Experiments and Results

t127 and Marini

In this section, we investigated the performance of the EEG-ImageNet datase
et al.'% using various combinations of encoding mentioned in Section 4.4 and classification
models mentioned in section 4.5. Please note that we have used the same stratified 5-fold
cross-validation split for Image data and stratified group 5-fold validation split for EEG
data as described in chapter 2 for Marini et al. 1% dataset and in chapter 3 for the EEG-

ImageNet 127 dataset (please refer to Appendices A.2 and A.3 for details).

Baseline Visual Classification for EEG and Image data

In the first set of experiments, we obtained the baseline performance of the two data, the
EEG data, and the corresponding image stimulus data. The goal was to find the extent of
distinct visual information present in the classical features of the data.

The classical features of the image stimuli data were extracted using the HOG filter and
then fed to the traditional machine learning classifiers mentioned in Section 4.5. We also ran
the same test by encoding the HOG-extracted features with PCA for efficiency comparison.
Table 4.2a shows the baseline accuracy performance of the best data processing, encoding,
and classifier implementation on the Image data from both the EEG-ImageNet and Marini
et al. datasets. We observed a slight drop in accuracy when the feature space was reduced
using PCA.

To evaluate the baseline accuracy of the EEG data, we used 1600 ms(0 to 1600 ms) of
the EEG sequence for the Marini et al. dataset and 440 ms for EEG-ImageNet. The raw
EEG signal is processed to extract the power average of the alpha and beta band as a set
of features using the periodogram method mentioned in Section 4.4. Table 4.2b shows the

best baseline performance for each dataset.
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Table 4.2: Baseline performance for EEG and Image data

(a) Baseline accuracy performance for Image stimuli in datasets

Image Dataset | # of classes | Accuracy Best Classifier Setup
Marini et al. 2 0.67 HOG - Gaussian Naive Bayes
Marini et al. 2 0.65 HOG+PCA - Logistic Regression

EEG-ImageNet 39 0.05 HOG - SVM

EEG-ImageNet 39 0.04 HOG+PCA - Gaussian Naive Bayes

(b) Baseline accuracy performance for EEG data in datasets

EEG Dataset | # of classes | Accuracy Best Classifier
EEG-ImageNet 39 0.15 Multilayer perceptron
Marini et al. 2 0.53 Logistic Regression

Visual Classification using Deep Learning Models

The last experiment tested visual and brain features using traditional machine learning
techniques. In this section, we continue to evaluate the depth of classification individually
for EEG and Image stimuli features using various state-of-the-art deep learning classifier
models. We evaluated the performance of our CIM for Image Stimuli data, LEM and GEM
models for EEG data with our chosen datasets.

Table 4.3: CIM performance on Image stimuli data

DL Classifier Model | EEG-ImageNet Acc | Marini et al. Acc
ResNet 0.85 0.81
VGG 16 0.63 0.72
MobileNet 0.33 0.63
AlexNet 0.2 0.54

To classify images, we have used different CNN-based Image Models mentioned in Section
4.5. Images from the stimuli data sample were first resized (224x224x3) to be correctly fed
to CIM models. Table 4.3 shows both datasets’ classification results for the Image stimulus

data. We discovered that the ResNet model provided the best overall accuracy.
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Table 4.4: Performance comparison of EEG data on our deep learning classification model
with other SOTA models.

Marini et al. dataset
EEG data Encoding Classifier models Marini et al.'% Acc
Raw EEG data LSTM based Model 0.5
Grayscale image encoded EEG data EfficientNet + SVM(rbf) 0.52
Grayscale image encoded EEG data with all 22 subjects as channel | EfficientNet + SVM(rbf) 0.73
EEG-ImageNet (with dataset split comparision))
EEG data Encoding Classifier models EEG-ImageNet -Acc
Raw EEG data* Stacked LSTMs!% 0.22
Raw EEG data* SyncNet? 0.27
Raw EEG data*® EEGNet® 0.32
Raw EEG data* EEG-ChannelNet 127 0.36
Raw EEG data* GRUGate Transformer 16 0.46
Raw EEG data** LSTM based Model (LEM) 0.26
Grayscale image encoded EEG data** EfficientNet -+ SVM(rbf) 0.64
Grayscale image encoded EEG data with all 6 subjects as channel** | EfficientNet + SVM(rbf) 0.70

*Previous study models mentioned in this tabel have used (80% train, 10% validation and 10% test) data
spit for EEG-ImageNet dataset.
**The models designed by our study have used (70% train, 15% validation and 15% test) group - stratified
spilt for EEG-ImageNet dataset.

For the LEM classifier, the EEG data were used as is from the dataset. However, for
the GEM classifier, we applied image-encoded EEG data, as described in Section 4.4. The
classification performance of the EEG signal data in each dataset is represented in Table 4.4.
Marini et al. and the EEG ImageNet datasets obtained better classification when the EEG
signals were grayscale encoded, while GEM performs best when all subjects of the visual

stimulus are stacked as a distinct channel dimension.

Hemispherical Brain Region Classification Comparison

In this experiment, our objective was to estimate the categorisation potency of EEG signal

data based on the left and right hemispherical regions of the brain with various traditional

107

and deep learning classifiers used in our experiments 4.2 and 4.6. Marini et al."”" and Fares

1'47

et al.*’ claimed that the left hemisphere of the brain processes the classification task better

than the right hemisphere and showed robust findings in their experiments.
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Table 4.5: Visual classification performance of EEG data based on the hemispherical regions
of the brain

Exp. Implementation approach Classifier Model Used Dataset Acc (Left-hem) | Acc (Right-hem)
1 Alpha and beta band average as features Decision Tree Marini et al. 0.51 0.51
2 Alpha and beta band average as features Gaussian Naive Bayes Marini et al. 0.53 0.5
3 Grayscale image-encoded EEG data Model (GEM) EfficientNet Marini et al. 0.52 0.51
4 Alpha and beta band average as features Random Forest EEG-ImageNet 0.05 0.05
5 Alpha and beta band average as features Multilayer Perceptron | EEG-ImageNet 0.06 0.07
6 Grayscale image-encoded EEG data Model (GEM) EfficientNet EEG-ImageNet 0.13 0.28

We selected a cluster of 12 electrodes around left (C3) and right (C4) motor-cortex
electrodes as the hemispherical regions. Table 4.5 lists the results of the best traditional
and deep learning classifiers for both datasets. The classification was marginally improved
in the left motor cortex region than in the right for the Marini et al. dataset. However, it is
interesting to note that the right hemispherical region provided better visual classification

accuracy for the EEG-ImageNet dataset.

Visual Classification using Multimodal Deep Learning

The previous experiments were carried out to separately evaluate the classification perfor-
mance of EEG and Image stimuli data. The isolation of these modality inputs on different
classifiers gave us an understanding of the accuracy of the benchmark.

In this section, we tested various joint learning experiments. The model architecture
accepts multimodal input, EEG, and image feature data and predicts the label of the visual
stimulus. As discussed in Section 4.2, multimodal deep learning architectures have provided
state-of-the-art performance when mixed data input is fed.

We proposed the concatenation-based mentioned and vertical stacking models in Section
4.5 for multimodal visual classification using deep learning. For our analysis, we evaluated

the concatenation-based approach; an LEM model concatenated with the CIM model and
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Table 4.6: Performance of the multimodal deep learning classification approach for EEG-
ImageNet.

Exp. Implementation approach Model Used Dataset 27 Accuracy
1 LSTM-based EEG Model (LEM)** Stacked (BiLSTM -+ LSTMs) and 128 FC EEG 0.28
2 Grayscale image-encoded EEG data Model (GEM)** EfficientNet + SVM(rbf) EEG 0.70
3 CNN-based Image Model (CIM)** ResNet pretrained with FC 128 Tmage 0.84
4 Regression-based Model 7% LEM feature regressed with CIM Image + EEG 0.03
5 Siamese network 27* Joint learning with 1D CNN and ResNet | Image + EEG 0.91
6 Vertical Stacking™* ResNet pretrained and LEM (end to end) | Image + EEG 0.70
7 LEM - based Concatenation Model** LEM concatenated with CIM Image + EEG 0.82
8 GEM - based Concatenation Model** GEM concatenated with CIM Image + EEG 0.95

*Previous study models mentioned in this tabel have used (80% train, 10% validation and 10% test) data
spit for EEG-ImageNet dataset.
**The models designed by our study have used (70% train, 15% validation and 15% test) group - stratified
spilt for EEG-ImageNet dataset.

Table 4.7: Comparison of visual classification based on real object and planner image stimuli
(Marini et al. dataset).

Exp. Implementation approach Model Used Dataset Marini et al. | Acc (Image stimuli) Acc (Real Stimuli)
1 Baseline classification Model ML classifiers EEG 0.48 0.5
2 LSTM-based EEG Model (LEM) Stacked (BiLSTM + LSTMs) and 128 FC EEG 0.51 0.51
3 Grayscale image-encoded EEG data Model (GEM) EfficientNet EEG 0.49 0.52
4 GEM - based Concatenation Model GEM concatenated with CIM Image + EEG 0.72 0.78

another GEM model concatenated with CIM. Moreover, in another experiment, we vertically
stacked deep features extracted from LEM and CIM models and added a Random Forest
classifier for output.

Table 4.6 illustrates the performance comparison of all state-of-the-art multimodal (Im-
age and EEG data as input) visual classification approaches with our implementation. The
results indicate that our GEM-based concatenation model outperformed the other architec-
tures and reached 95% accuracy for the EEG-ImageNet data. The vertical feature stacking

method achieved modest performance with an accuracy of 70%.
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Classification Performance for Real Object versus Image Stimuli

As discussed in Section 4.1, the Marini et al. dataset had two different kinds of EEG
recording trials for each visual stimulus data; one when the subject observed the real-world
object and the other when they viewed the planar images of the same object.

The objective of this experiment was to observe if machine-learning classification improves
when visual stimuli are real objects instead of images. We merely found any significant
difference in classification performance using the traditional machine learning approach when
comparing real stimuli with image stimuli. In this analysis, we applied all the best deep
learning approaches proposed for visual classification to dive into our investigation.

Table 4.7 shows the performance results of our best-proposed classifiers. The GEM-
based concatenation classifier provided a 6% increase in accuracy when visual stimuli were

real compared to planar image stimuli.

4.7 Discussion

The datasets used in this work are resourceful but challenging. With 39 classes (a significantly
high number in EEG studies), the EEG-ImageNet dataset is one of the benchmark datasets
for the overall EEG classification problem. The Marini et al. dataset, however, only has
two classes, and it is worth noting that there are only 192 total visual stimuli trials, of
which 96 are for real-world object stimuli, and the remaining 96 are for image stimuli. This
makes it harder to classify using deep learning models as they require a large number of
samples to train perfectly from scratch. We chose these two datasets to evaluate the optimal
performance of our proposed visual classification models.

The baseline classification experiments provided the seed results to compare the stretch of
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improvement that we achieved while designing more complex classifier architectures. While
experimenting with many deep learning architectures for visual classification, we found that
the Grayscale image-encoded EEG Model (GEM) was best suited for visual classification

t127 and Marini et al.'°”. It performed better, as

of challenging datasets like EEG-ImageNe
we accommodated the two-dimensional feature information from all 128 channels in a single
image by stretching rather than compressing each channel’s feature space.

We obtained mixed and inconclusive results for the experiments based on the hemisphere
mentioned in table 4.5. The Marini et al. dataset showed almost no improvement in accuracy
when the classification task was evaluated in the left hemispherical motor-cortex region
compared to the right one. The results for the EEG-ImageNet dataset provided better
classification accuracy results in the right hemisphere region compared to the left, which
contradicts Fares et al.*". As stated by Marini et al.'%7 the stronger ERP in the hemispherical
region of the motor cortex is contralateral to the dominant hand, and all subjects in the
Marini et al. data set are right handed. Unfortunately, we do not have information on the
dominant hands of subjects who participated in the EEG-ImageNet dataset.

We also compared different multimodal deep learning approaches to our datasets. Unlike
other modalities tagged with images such as text and audio, it is harder for machines to clas-
sify patterns from EEG signals as they are more volatile and louder!?”. The concatenation-
based approach with grayscale encoding of the EEG data allowed us to accommodate all
the data (such as electrodes and the entire set of features for all modalities), unlike other
approaches where we had to select the best electrodes!9:161:134 to reduce complexity or se-
lect partial information for each modality!4%12%7  The GEM-based concatenation model

also helped discover that machine perception can be enhanced if we use real-world objects

as stimuli instead of images.
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Summary of the key contributions in this chapter:

The following points describe the snapshot of this chapter when we used multimode fusion

t 127 1 106

learning approaches for visual classification of the EEG-ImageNe and Marini et a

dataset:

The best visual classification performance for the EEG-ImageNet dataset was 95%,
which was obtained by multimodal fusion of temporal (EEG) and spatial (image) data

(setup: GEM concatenated with CIM).

e Grayscale image-encoded EEG Model (GEM) was best suited for visual classification

of challenging EEG datasets such as the EEG-ImageNet 2" and Marini et al. %,

e The neuroscience claim of a better visual classification based on hemispherical regions
of EEG data contralateral to the dominant hand is inconclusive, as no information was
provided on the dominant hands of subjects who participated in the EEG-ImageNet

dataset.

e The GEM-based concatenation model also helped discover that machine vision can be

enhanced by using real-world objects as stimuli instead of images.
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Chapter 5

Conclusion and Future scope

To conclude this thesis, we initially introduced machine perception and how the fundamental
construct of machine perception differs from that of humans. We then navigated through
the factors where machine and human perceptual systems work in different ways and how to
computationally integrate human brain-evoked temporal information into machine-readable
data via brain-computer interfaces using EEG. Furthermore, we narrowed our research to vi-
sual perception, where we compared machine vision with human visual perception and learnt
that humans and machines extract essential visual context and have their own strengths and
weaknesses 57:33:101,49,54,169,103 - Cionsequently, we developed the seed of our study by leverag-
ing the generalisation and sensitivity of human visual perception (using EEG recordings) and
also keeping the high computational efficiency and robustness of machine algorithms to re-
duce the space and time complexity. Therefore, we chose the visual classification task as the
case study in this thesis. We designed an automated visual system that learns from a join-
t/shared representation for both human brain-evoked temporal data and machine learning
algorithms-evoked spatial data.

Various approaches to visual classification were applied, referring to several feature



CHAPTER 5. CONCLUSION AND FUTURE SCOPE 88

modalities of human and machine perception. The first strategy demonstrated in chapter 2
was based on a typical classification paradigm in which visual representational characteris-
tics were retrieved from spatial (images) and temporal (EEG) data using classical methods
and given to conventional classifiers for classification. Performance was trivial due to the
rudimentary feature vectors and the versatile nature of the data. This analysis is critical for
our study, as it determined the efficacy of the features through the progression of machine
learning and perception in each isolated modality. As a result, a baseline performance was
established for the data used in this work.

This study progressed to deep learning methodologies to assess the visual classification
of both types of visual data as examined in Chapter 3. A pipeline architecture based on
transfer learning was used to extract deep features from the raw data as input (both the
picture and the EEG separately) and then fed to multiple machine classifiers. A state-of-
the-art method was also shown to extract deep features from EEG data as Grayscale Image
encoded data. Consequently, the highest performing model had a 70% accuracy in training
after grayscale encoding. Deep learning approaches demonstrated a considerable increase
over baseline performance in general.

The last chapter of this thesis (Chapter 4) explored the joint representation of visual
features of images and EEG data by multimodal fusion of deep learning models implemented
in Chapter 3.

The key takeaways from this work are as follows:

(a) A new state-of-the-art approach called Grayscale image encoding of EEG data is effi-
cient as it accommodates the two-dimensional feature information from all the 128 channels
i a single image. It also allows for the flexibility of using subjects as a fourth-dimensional
channel, increasing the efficiency of the dataset.

(b) We used the above encoding to design "Grayscale image-encoded EEG Model (GEM)"
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Figure 5.1: The key take ways of this thesis work (shown in the order of points laid out.)

for wvisual classification. This model provided a new benchmark accuracy performance of
70% in EEG- based visual classification with a challenging 39-class dataset such as EEG-
ImageNet and later obtained an accuracy of 95% using concatenation-based multimodal deep
learning classification tasks when features of both modalities (EEG and image data) were
used as cross-modal input.

(¢c) We also discovered that automated visual classification could be improved for mul-
timodal inputs of EEG and image data when the visual stimulus shown to subjects while
recording EEG is a real-world object instead of an image.

The motivation for this study was to encourage greater collaboration between artificial
intelligence and neuroscience. It is crucial to improve the efficiency and precision with
which machine perception processes contextual information while learning more about visual
representational data patterns and matching human interpretation standards. This research
will be expanded in the future to seek better alternative multimodal feature fusion algorithms
to improve automatic visual classification and to produce a new multimodal EEG-image
dataset with real-world items from the picture given as visual stimulus.

These and other machine perception breakthroughs are critical for unlocking the promise

of a dynamic data-rich environment via multi-sensor, multi-level, data-to-decision techniques.
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Traditional applications such as surveillance, object categorisation, target tracking, pattern
discovery, machine learning, and data mining will benefit from new degrees of trustworthy
autonomy. Furthermore, they will enable new developments in cyber-physical systems that
will improve our quality of life in remote health care, emergency response, traffic flow man-
agement, power generation and delivery, condition monitoring and diagnostics of machinery,

geospatial analysis, social networks, and other areas.
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The Python programming language was used to implement all the experiments in this thesis.
Libraries like scikit-learn, numpy, pandas, and scipy were mostly used for data processing.

The deep learning models were built using the TensorFlow framework. The complete code-

1

10

11

base can be found in the repository referenced in Appendix C.

A.1 Key algorithms

Code A.1: Code implementation of Grayscale Image-encoding of EEG data

method to convert signals to gray scale
def convert to grayscale(eeg signal):
"
This function converts the EEG signal to grayscale image

arguments

eeg signal : a numpy array of one EEG signal
returns
grayscale image : a numpy array of 8 bit grayscale image strecthed in 4 wunits

"o

‘min mar scalar mormalization

x = (x — np.min(x)) / (np.max(x) — np.min(x))
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12 canvas = |[]

13 #stretching the gray scale to 4 wunits

14 for i in range(4):

15 canvas .append (x)

16 canvas = np.array (canvas)

17 #return the gray scale image with 8 bit (0—255) pizel wvalues
18 return np.uint8 (canvas*255)

19

20 #method to stack signals wvertically

21 def stack signals(set of signals):

22 mimn

23 This function accect a EEG data with shape (length, channels) and returns a stacked

image with shape (4+cannels, length)

24 arguments

25 set _of signals : a numpy array of EEG signals with shape (length, channels)

26 returns

27 stacked image : a numpy array of stacked grayscale image with shape (4*cannels, length)
28 i

29 #swap the azes to get the shape (channels, length)

30 set _of signals = np.swapaxes(set of signals, 0, 1)

31

32 i=0

33 #iterate over the channels and convert each signal to grayscale image, then stack them

vertically

34 for signal in set of signals:

35 signal = convert to grayscale(signal)

36 if i = 0:

37 canvas = signal

38 else:

39 canvas = np.vstack ((canvas, signal))
40 i4=1

41 return canvas

42

43 #print shape of original eeg data and then grayscale image—encoded data
44 print ("Shape of original EEG data: ", EEG data[0].shape)
45 print ("Shape of grayscale image—encoded EEG data: ", stack signals(EEG_ data[0]) .shape)

46 #sample output
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47 #Shape of original EEG data: (420, 128)

48 #Shape of grayscale image—encoded EEG data: (512, 420)

Note: The Python code below shows the 5-fold stratified cross-validation split of image
data and the 5-fold stratified group cross-validation split of EEG data. The grouping was
based on stimulus ID to ensure that there would be no bias in the training and testing set
because each visual stimulus has one image feature but multiple EEG features (according to
the number of subjects viewing the stimulus). For traditional ML classifiers, all five splits
were run simultaneously. However, for deep learning classifiers, they were run separately to

account for limited memory resources.

Code A.2: Code implementation of 5-fold cross validation split for EEG and image data

1 #cross walidation modules

2 from sklearn.model selection import StratifiedGroupKFold, StratifiedKFold

3

4 #methof to split eeg data into train and test sets with 5 stratified groups

5 def group kfold cv(feature, label, groups, k=5):

6 e

7 This function accepts the input data and labels and performs a stratifed group k—fold

cross wvalidation

8 arugments

9 feature : input data

10 label : input labels

11 groups : groups of data with same visual stimulus
12 k : number of folds

13 returns

14 list of cross walidation splits for the data

15 e

16 #define group kfold

17 group kfold = StratifiedGroupKFold (

18 n_splits=k, shuffle=True, random state=130)
19 #split data into train and test

20 split_grp = []

21 for train index, test index in group kfold.split(feature, label, groups):
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22 train data = [X[train index]|, y[train index]]
23 test data = [X[test index], y[test index]|]|

24 split _grp.append ([train data, test data])

25 return split grp

26

27

28 #split data into train and test sets for eeg data with cross validation groups
29 split _grp img = group kfold cv(X eeg, y eeg, stimulus id)

30

31 print("Shape of features and labels for eeg data:", X eeg.shape, y eeg.shape)
32

33 for i in range(len(split grp img)):

34 print (’Fold :’, i+1)

35 print (’Train set :’, split grp img[i]|[0][0].shape, split grp img[i][0][1].shape)
36 print (’Test set :’, split grp img[i]|[1][0].shape, split grp img[i]|[1][1].shape)
37

38 #ouput looks like this
39 # Shape of features and labels for eeg data: (4224, 830, 128) (422/,)
40 # Fold : 1

41 # Train set : (3383, 830, 128) (3383,)

42

S

Test set : (841, 830, 128) (841,)

43 # Fold : 2

44 # Train set : (8383, 830, 128) (3383,)

45 # Test set : (841, 830, 128) (841,)......

46

47 #method to split image data into train and test sets with stratified 5—fold cv splits

48 def kfold cv(feature, label, k=5):

49 e

50 This function accepts the input data and labels and performs a stratifed k—fold cross
validation

51 arugments

52 feature : input data

53 label : input labels

54 k : number of folds

55 returns

56 list of cross walidation splits for the data

57 mimn
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58 #define kfold
59 kfold = StratifiedKFold (n_splits=k, shuffle=True, random state=130)
60 #split data into train and test
61 split _img = []
62 for train index, test index in kfold.split (feature, label):
63 train data = [X[train index]|, y[train index]]
64 test data = [X[test index], y[test index]]|
65 split_img.append ([train data, test datal])
66 return split img
67
68 #split data into train and test sets for image data
69 split img = kfold c¢v (X img, y img)
70
71 print ("Shape of features and labels for image data:", X img.shape, y img.shape)
72
73 for i in range(len(split img)):
74 print (’Fold :’, i+1)
75 print (’Train set :’, split img[i][0][0].shape, split img[i][0][1].shape)
76 print (’Test set :’, split img[i][1][0].shape, split_img[i]|[1][1].shape)
7
78 #ouput looks like this
79 # Shape of features and labels for image data: (96, 224, 22/, 3) (96,)
80 # Fold : 1
81 # Train set : (76, 224, 22/, 3) (76,)
82 # Test set : (20, 224, 224, 3) (20,)
83 # Fold : 2
84 # Train set : (76, 224, 224, 3) (76,)
85 # Test set : (20, 224, 224, 3) (20,)........
Code A.3: Code implementation of subject-wise split of EEG data
1 #convert train eeg data to numpy array
2 def convert to numpy (eeg d):
3 e
4 this conwverts list a temnsor to numpy array
5 i
6 train_eeg data np = []
7 for tensor in eeg d:
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tensor np = tensor.numpy ()

#swap azes

tensor np = np.swapaxes(tensor _np, 0, 1)

train _eeg data np.append(tensor np)
train _eeg data np = np.array (train eeg data_ np)

return train_ eeg data np

# funtion to append all subjects to 4D array of
# (samples, time, channels, subjects)
def make 2d_eeg data(eeg data):

nmn

this function Converts list of eeg data with n samples to numpy array
wnn
eeg data 2d = []
for sub in eeg data:
sun_np = convert to numpy (sub)
eeg data 2d.append(sun_np)
eeg data 2d = np.array (eeg data_ 2d)
#move azxis to the end

return np.moveaxis(eeg data 2d, 0, —1)

#function to spilt the data according to the subjects
def split subjects(eeg dict):
I
this function splits the data according to the subjects
arguments :
eeg dict : a list of dictionaries with keys ’eeg tensor’, ’image’, ’label’
returns:
eeg data : a list of eeg features(4D) list per subjest with labels
.
#sort data according to subjects
data dict = sorted(eeg dict, key=itemgetter(’subject’))
#group data according to subjects and convert to list
feature list = []
label list = []
for sub_id, eeg data in groupby(data dict, key=itemgetter (’subject’)):

sub_list = [[data[’eeg’][:, 20:460], data[’label’]] for data in eceg data]

123
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feature list.append([dta[0] for dta in sub list])
label list.append([dta[l] for dta in sub list])

return make 2d eeg data(feature list), label list[0]

#print 1st element of the test dictionary and length of the dictionary
print ("Length of the egg sample:", len(eeg dict))

print ("keys of each egg sample:", eeg dict[0].keys())

#subject wise split

subwise eeg data, subwise label = split subjects (eeg dict)

#prinn shape of the subject wise data

print ("Shape of the subject wise data", subwise eeg data.shape)

#ouput :
# Length of the egg sample: 11682
# keys of each egg sample: dict keys ([’ eeg’, ’image’, ’label’, ’subject ’])

# Shape of the subject wise data and label: (1947, 440, 128, 6)
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A.2 Model design

This section contains the Python code implementation for the deep learning models described
in Chapters 3 and 4. This is an excerpt of code; the complete code can be found in the

repository referenced in Appendix C.

Code A.4: Code implementation of LSTM-based EEG Model (LEM)

# make model function
def build model(n timesteps=440, n features=128, n classes=39, lr=0.001):
"""This function accepts the input shape of EEG data and number of classes and returns a
compiled model

arugments

n_timesteps : number of timesteps in the input data

n_ features : number of electrode channels in the input data
n_ classes : number of classes in the output data

lr : intial learning rate for the model

returns
model : a compiled LSTM model
define model as sequential
model = Sequential ()
4 LSTM and dropout layers stack
model.add(Bidirectional (LSTM(units =50, return_ sequences=True) ,input shape=(n_timesteps,
n_features)))
model . add (Dropout (0.2))
model . add (LSTM( units =128, return sequences=True,))
model . add (Dropout (0.2))
model . add (LSTM( units =50, return sequences=True))
model . add (Dropout (0.2))
# flatten layer
model.add (Flatten ())
# dense layer with 128 neurons and relu activation
model.add (Dense (128, activation="relu’))
model . add (Dropout (0.5))
# output layer with softmaz activation

model.add (Dense(n_classes, activation=’softmax’))
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# build and compile model with adam optimizer and categorical crossentropy loss

model . build (input shape=(n_timesteps, n_features))

model . compile(optimizer="adam’,loss="categorical crossentropy’, metrics=["accuracy’])

model . summary ()

return model

# set hyperparameters for model training (reduced learning rate and early stopping)

126

relr = tf.keras.callbacks.ReduceLROnPlateau(monitor="val accuracy’, factor=0.1, patience=2,
min_Ir=le—5)

earlystop = tf.keras.callbacks.EarlyStopping (monitor="val accuracy’, patience=5,
restore best weights= True )

callbacks = [relr, earlystop]

# instantiating model

LSTM model = build model(n_ timesteps=440, n features=128, n_ classes=2, lr=0.001)

Code A.5: Code implementation of CNN-based Image Model (CIM)

#make model function
def build model(input shape, num classes, base 1r=0.001):
nnn
This function accepts the input shape of image data and number of classes, returmns
compiled model
arguments :
input shape: shape of input image
num_ classes: number of classes
base lr: initial learning rate
returns :
model: compiled CNN model
o
#setting base model as ResNet with imagenet weights
base model = tf.keras.applications.ResNet50(weights="imagenet’, include top=False)
base model. trainable = True
#setting input layer with input shape
image imput = tf.keras.Input(shape=input shape, name=’image input’)
#passing the input layer through base model
x = base model (image imput)

#global average pooling layer to reduce the mnumber of parameters

a
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x = tf.keras.layers.GlobalAveragePooling2D () (x)

#dropout layer to

reduce

overfi

tting

x = tf.keras.layers.Dropout(0.2) (x)

#dense layer with

128

neu

rons a

nd re

lu activation

127

function

x = tf.keras.layers.Dense (128, activation="relu", name="deep feature")(x)

x = tf.keras.layers.Dropout (0.2) (x)

#softmax activation la

output = tf.keras.layers.Dense(num classes,

#creating model

yer

with

numbe

r of classes

activation='softmax

as output

', name=’output’) (x)

model = tf.keras.Model(inputs=image imput, outputs=output)

#settign up the model

optimizer

sgd = tf.keras.optimizers.SGD(lr=base Ir, momentum=0.9, nesterov=True)

#compile model wi

model.compile(optimizer=sgd,

model . summary ()
#return model

return model

# set hyperparameters for model training (reduced

th loss function,

optimizer and

metrics

loss=’categorical crossentropy’,metrics=[’accuracy’])

learning rate and early stopping)

reduce Ir = tf.keras.callbacks.ReduceLROnPlateau(monitor=’"val loss’, factor=0.1, patience=3,
min_1r=0.00001)
early stopping = tf.keras.callbacks.EarlyStopping(monitor="val loss’, patience=10,

restore best weights=True)

callbacks = [reduce lr, early stopping|

# instantiating model

CNN_model = build_model (img_input_shape, num _classes)

Code A.6: Code implementation of GEM-based Concatenated model

#make model function

def build model(eeg input shape, img input shape, num classes, base lr=0.001):

"nimn

This function accepts

number of cla
arguments:
eeg nput shape:

tmg_input_ shape:

sses

shape

shape

the

and

of
of

input

shap

returns a

EEG data

Image

data

e of stimuli

concatenated

data (both EEG and Image) and the

model.
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num_ classes: number of classes

base Ir:

returns :

model :

"nn

#eeg

compiled

base

initial

model

learning

rate

concatenated

with

2d

model

convolutions take

Grayscale

image—encoded EEG data
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eeg base model = tf.keras.applications.EfficientNetB2(weights=’'imagenet’, include top=

False)
eeg base model. trainable = True
#image base model with 2d conwvolutions

take RGB image

data as input

img base _model = tf.keras.applications.vggl6.VGG16(include top=False, weights='imagenet’

img base model. trainable = False

#create

input

eeg input

img _input

Zimage

model

layers for EEG and Image

data

, input_shape=(224, 224, 3), classes=num _classes)

= tf.keras.Input(shape=eeg input shape, name=’eeg input’)

= tf.keras.Input(shape=img input shape, name=’img input’)

layers

img res = (224, 224)

#Testze

imgl
imgl
imgl
imgl
imgl

imgl

#dense

imgl

FEeeq

Zadjusting

dense filter = tf.keras.layers.Conv2D (3, 3, padding="same")(eeg input)

eegl
eegl

eegl

image

tf.keras.layers .Lambda(lambda x:

data

to

224x224 for

VGG16

img base model(imgl(img input))

tf.
tf.
tf.
tf.

keras

keras

keras.

keras.

layer to

tf

.keras.

.layers.

.layers.

extract

model layers

the

imput

layers.

layers.

layer

spatial

to

Dense (512,

layers.Dense (128,

take

Dropout (0.4) (imgl)

GlobalAveragePooling2D () (imgl)

tf.image.resize (x, img res))
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Dropout (0.4) (imgl)
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activation="relu
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#dense layer to extract temporal features from EEG data
eegl = tf.keras.layers.Dense(128, activation="relu", name="eeg deep feature")(eegl)
#concatenate the two feature modalities
x = tf.keras.layers.concatenate ([eegl, imgl])
#softmaxr activation layer model output
model output = tf.keras.layers.Dense(num classes, activation=’softmax’, name='output’) (x
)
#create model
model = tf.keras.Model(inputs=[eeg input, img input|, outputs=model output)
#settign up the model optimizer, loss function and metrics
adam = tf.keras.optimizers.Adam(lr=base Ir, beta 1=0.9, beta 2=0.999, epsilon=None,
decay=0.0, amsgrad=False)
losses = {’output’: ’categorical crossentropy’}
metrics = {’output’: ’accuracy’}
#compile model
model.compile(optimizer=adam, loss=losses, metrics=metrics)
model . summary ()
return model
set hyperparameters for model training (reduced learning rate and early stopping)
reduce Ir = tf.keras.callbacks.ReduceLROnPlateau(monitor=’"val loss’, factor=0.1, patience=3,
min_1r=0.00001)
early stopping = tf.keras.callbacks.EarlyStopping(monitor="val loss’, patience=10,

restore best weights=True)

callbacks = [reduce lr, early stopping]

instantiating the concatenated model from both EEG and Image data

Concat _model = build model(eeg_input_shape, img_input_shape, num_ classes)
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Appendix B

Abbreviations
Abbreviation Description
actiCAP actiCAP an instrument to measure EEG
AIC Akaike Information Criterion
ALS Amyotrophic Lateral Sclerosis
Al Artificial Intelligence
AR Autoregressive
Bi-LSTM Bidirectional Long-short term memory
BCI Brain—Computer Interface
Cz (like C3 or C4) Central Electrodes
CNN (convolutional neural network) based
CIM Image model
CSp Common Spatial Pattern
CWT Continuous wavelet transform
CNN Convolutional Neural Network
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DFA Detrended Fluctuation Analysis

DWT Discrete Wavelet Transform

ECoG Electrocorticography

EEG Electroencephalogram

EMD Empirical Mode Decomposition

ErrP Error Related Potential

ERP Event Related Potential

FFT Fast Fourier Transform

fMRI functional Magnetic Resonance Imaging

fNIRS Functional near-infrared spectroscopy

GRU Gated Recurrent Unit

GLCM Gray-Level Co-occurrence Matrix
Grayscale-image Encoded EEG (Electroen-

GEM cephalogram) model

Hz Hertz

HOS Higher-Order Statistic

HFD Higuchi Fractal Dimension

HT Hilbert transform

HOG Histogram of Gradients

HCI Human-Computer Interactions

ITR Information Transfer Rate

KNN K Nearest Neighbours

LSTM Long-short term memory
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LSTM (long-short term memory) based EEG
LEM (Electroencephalogram) model
ML Machine Learning
MEG Magnetoencephalography
ms millisecond
Modified National Institute of Standards and
MNIST Technology
MI Motor Imagery
MND Motor Neuron Disorders
MRCP Movement-Related Cortical Potential
MLP Multilayer Perceptron
1D one dimensional
PFD Petrosian Fractal Dimension
PET Positron Emission Tomography
PSD Power Spectral Density
PCA Principal component analysis
RBF Radial basis function
RNN Recurrent Neural Network
ResNET Residual Neural Network
SMR Sensorimotor rhythms
SES Sequential Feature Selection
STET Short-time Fourier transforms
SCP Slow Cortical Potential
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SSVEP Steady state visually evoked potential
SSAEP Steady-State Auditory Evoked Potential
SSEPs Steady-State Evoked Potentials
Steady-State Somatosensory Evoked Poten-
SSSEP tial
Stimulus is given for 300 ms in parietal re-
P300 )
gions
SVM Support Vector Machines
The time elapsed between two successive R-
RR time waves of the QRS signal on the electrocar-
diogram
3D/3-D Three dimensional
2D Two dimensional
VGG Variable Geometry Group
WPA Wavelet packet analysis
WPD Wavelet Packet Decomposition

133



134

Appendix C

Resources

Description Link

A Tibrary for Python that provides tools to
analyse electroencephalography (EEG) sig-
nals. This library is mainly a feature extrac- | https://github.com/Xiul109/
tion tool that includes many frequently used | eeglib

algorithms in EEG processing using a sliding

window approach

A python based tutorial to compute the av-
erage power of a signal in a specific frequency | https://raphaelvallat.com/

range, using spectral estimation methods | bandpower.html

such as periodogram, Welch and multitaper.


https://github.com/Xiul109/eeglib
https://github.com/Xiul109/eeglib
https://raphaelvallat.com/bandpower.html
https://raphaelvallat.com/bandpower.html
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A Github repository of all the code im-
plementations for experiments performed in | Github  link: https://github.
Chapters 2,3 and 4. Please note: the repos- | com/alankritmishra/Enhanced_
itory is private until the work presented in | Computervision_via_EEG

the thesis is published.
A clone of Github repository is provided

Gdrive  link: http://tiny.cc/
through the Google Drive link for now and
Alankrit_CV_thesis_repo
is available upon request.

The flow diagrams and model configurations

used throughout this thesis are designed us- https://github.com/jgraph/drawio

ing a web tool called drawio.

The high GPU memory model training for
https://colab.research.google.
this work was performed on the Python note-
com
book known as "Google colab."



https://github.com/alankritmishra/Enhanced_Computervision_via_EEG
https://github.com/alankritmishra/Enhanced_Computervision_via_EEG
https://github.com/alankritmishra/Enhanced_Computervision_via_EEG
http://tiny.cc/Alankrit_CV_thesis_repo
http://tiny.cc/Alankrit_CV_thesis_repo
https://github.com/jgraph/drawio
https://colab.research.google.com
https://colab.research.google.com
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