
Lakehead University

Attitude Control of

a Quadrotor UAV:

Experimental Implementation

by

Biwen Tang

Under the Supervision of Dr. Abdelhamid Tayebi

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Control Engineering

Lakehead University, Thunder Bay, Ontario, Canada

September 2022

Abstract

Unmanned aerial vehicles (UAVs) are becoming ubiquitous due to their potential benefits
in many civilian and military applications. UAVs are designed to accomplish complex
tasks safely and effectively, such as search and rescue missions, package delivery, building
inspections, film making...etc. The attitude controller is one of the most important and
fundamental components that allows the UAV to balance itself in the air.

In this thesis, a PX4-based quadrotor experimental platform has been built and used to test
the attitude control algorithms. MATLAB/Simulink R2021a with the UAV Toolbox Support
Package for PX4 Autopilots is used to program the control algorithms. A nonlinear attitude
estimator and three PID-type attitude controllers have been successfully implemented on
the quadrotor.

A discussion about the performance of the obtained experimental results for the three
different attitude control schemes is provided.

Acknowledgments

I would like to express my deepest appreciation to my supervisor, Dr. Abdelhamid Tayebi
during my graduate studies at Lakehead University. He has proven to be an excellent
supervisor and a role model in life who is always happy to share his considerable experience
and knowledge. I sincerely thank him for his patience, support, and guidance, and for
instilling in me a genuine passion for control engineering.

I would also like to thank our doctoral students Mouaad Boughellaba, Ishak Cheniouni, and
Zeke Sedor for their friendship, insights, and kind help whenever it is needed. A special
thanks to our postdoctoral fellow Miaomiao Wang for his support, knowledge, and efforts in
assisting me during my studies. Additional thanks to Mr. Daniel Vasiliu for his assistance
in fixing an issue I was facing with my motors after a crash, and my friend Keiran Smith for
his assistance with the full-stick flight tests.

Finally, I am deeply grateful to my parents and my grandfather for their unconditional
support, appreciation, encouragement, and keen interest in my academic achievements
throughout my study and life.

Biwen Tang

Contents

1 Introduction 2

1.1 Overview of Quadrotor UAV Control Approaches 3

1.1.1 Attitude Estimation . 3

1.1.2 Attitude Control . 4

1.2 Thesis Contribution . 5

1.3 Thesis Outline . 6

2 Attitude Representation 7

2.1 Euler Angles Representation . 8

2.2 Rotation Matrix Representation . 8

2.3 Unit Quaternion Representation . 9

2.4 Comparison of Attitude Representations . 10

3 Mathematical Model 12

3.1 Quadrotor Motion Description . 12

3.2 Model Identification . 15

3.2.1 Mass . 15

3.2.2 Propeller Aerodynamics . 15

3.2.3 Moment of Inertia . 16

3.2.4 Other Parameters . 19

2

Contents 3

4 Attitude Estimation 20

4.1 Attitude Estimation . 20

4.1.1 Observer Design . 20

4.1.2 Quaternion Representation . 21

4.2 Sensors Calibration . 21

4.3 Experimental Results . 24

5 Experimental Platform 26

5.1 General Overview of the Hardware Platform 27

5.1.1 Flight Controller . 28

5.1.2 Communication . 31

5.1.3 Power Module and Actuators . 33

5.2 Overview of the Software Configuration . 34

5.2.1 QGroundControl . 35

5.2.2 UAV Toolbox Support Package for PX4 Autopilots 36

5.3 Overview of the Quadrotor Implementation Phases 44

6 Attitude Control 46

6.1 PD-Like Controller . 46

6.1.1 Experimental Results . 48

6.2 PID-Like Controller . 52

6.2.1 Experimental Results . 52

6.3 Nested PID-like Controller . 56

6.3.1 Experimental Results . 57

6.4 Comparison . 61

7 Conclusion 65

List of Figures

2.1 Configuration of the inertial frame I and the body frame B 7

3.1 Quadrotor orientation and airframe diagram 12

3.2 T-motor propeller test report . 16

3.3 The bifilar pendulum principle model . 17

3.4 The experimental setup of bifilar pendulums for moments of inertia measure-
ments . 18

4.1 Magnetometer calibration results . 24

4.2 Real-time estimation for static attitude . 25

5.1 Platform architecture . 26

5.2 Hardware platform . 27

5.3 Overview of the quadrotor hardware . 28

5.4 Overview of the quadrotor hardware 1 . 28

5.5 BMI055 technical data 2 . 30

5.6 M8N GPS with the tri-colored LED indicator 31

5.7 Turnigy 9XR transmitter (left) and ORX R910 DSM2 receiver (right) . . . 31

5.8 Radio serial 1 module (left) and radio USB module (right) 33

5.9 BLHeli 4-in-1 ESC and T-motor brushless motors and propellers 33

1https://blog.csdn.net/SimuArch
2https://www.bosch-sensortec.com/media/boschsensortec/downloads/product flyer/bst-bmi055-fl000.pdf

4

https://blog.csdn.net/SimuArch
https://www.bosch-sensortec.com/media/boschsensortec/downloads/product \protect \relax $\@@underline {\hbox {f}}\mathsurround \z@ $\relax lyer/bst-bmi055-fl000.pdf

List of Figures 5

5.10 Motor and propellers performance report 34

5.11 Block diagram of the attitude control scheme 34

5.12 QGC vehicle setup summary page . 35

5.13 Supported Simulink blocks interface with the general PX4 architecture3 modules 36

5.14 Low-pass filter cutoff frequency tuning (left) and verification (right) 38

5.15 Configure the model for Pixhawk hardware 38

5.16 Serial transmit and serial receive models with the block configurations . . . 39

5.17 IUM model for reading the IMU data from Pixhawk 4 40

5.18 PX4 sensor accel uORB Read block (left) and BusSelector parameter block
(right) . 41

5.19 PX4 sensor accel uORB Read Parameter block (left) and a select-able mes-
sage list (right) . 41

5.20 PX4 sensor accel uORB Read block (top) and the block details (bottom) . 42

5.21 Open the Simulation Data Inspector in Simulink (top) and Simulation Data
Inspector (bottom) . 43

5.22 The quadrotor implementation phases . 44

6.1 Simulink model for the PD-like controller 48

6.2 Real-time flight performance for attitude stabilization using PD-like controller 50

6.3 Real-time flight performance for attitude tracking using PD-like controller . 51

6.4 Simulink model for the PID-like controller 53

6.5 Real-time flight performance for attitude stabilization using PID-like controller 54

6.6 Real-time flight performance for attitude tracking using PID-like controller 55

6.7 Control scheme for the nested PID-like controller 56

6.8 Simulink model for the nested PID like controller 57

6.9 Real-time flight performance for attitude stabilization using nested PID-like
controller . 58

3https://docs.px4.io/main/en/concept/architecture.html

https://docs.px4.io/main/en/concept/architecture.html

List of Figures 6

6.10 Real-time flight performance for attitude tracking using nested PID-like
controller . 60

6.11 Real-time flight performance with orientation commands for the PD-like
controller . 62

6.12 Real-time flight performance with orientation commands for the PID-like
controller . 63

6.13 Real-time flight performance with orientation commands for the nested PID-
like controller . 64

List of Tables

2.1 Comparison of attitude representations . 10

3.1 Propeller thrust parameters . 15

3.2 Natural frequencies got from experiments 17

3.3 Quadrotor system parameters . 19

5.1 RC channels parameters . 32

5.2 Supported Simulink blocks interface with the PX4 modules 37

6.1 Comparison of the flight performance with the three controllers 61

7

List of Tables 1

List of Abbreviations

UAV – Unmanned Aerial Vehicle.

SVD – Singular Value Decomposition.

QUEST – Quaternion Estimation.

KF – Kalman Filter.

EKF – Extended Kalman Filter.

MEKF – Multiplicative Extended Kalman Filter.

AEKF – Additive Extended Kalman Filter.

GPS – Global Positioning System.

PID – Proportional Integral Derivative.

PD – Proportional Derivative.

LQR – Linear-Quadratic Regulator.

SE(3) – Special Euclidean group of dimension 3.

SO(3) – Special Orthogonal group of dimension 3.

FFT – Fast Fourier Transform.

DCM – Direction Cosine Matrix.

APM – ArduPilot Mega.

ADC – Analog-to-Digital Converter.

SPI – Serial Peripheral Interface.

I2C – Inter-Integrated Circuit.

PWM – Pulse Width Modulation.

PPM – Pulse Position Modulation.

ESC – Electronic Speed Controller.

DC – Direct Current.

AC – Alternating Current.

EMF – Electro-Motive Force.

IGRF – International Geomagnetic Reference Field.

WMM – World Magnetic Model.

IMU – Inertial Measurement Unit.

DLPF – Digital Low Pass Filter.

LIPO – Lithium Polymer.

Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are flying robotic vehicles
without human operators on board. Quadrotors were originally developed for military
missions, then their uses were expanded to many non-military applications, due to their
powerful capabilities, such as vertical take-off and landing (VTOL), hover capability, high
maneuverability, and agility. In response to this disruptive innovation in the drone industry
and the associated growth in civilian applications, research and development in UAV
technology have become increasingly important. Embedded systems are commonly used to
control UAVs, where C code is written, then compiled and loaded into the drone firmware to
operate. By using the available open-source hardware and software platform, researchers and
developers are enabled to implement their new control strategy and verify the performance
and effectiveness. A survey of the publicly available open-source drone platforms that can
be used for research and development can be found in this paper [1].

However, writing C code manually is complex and time-consuming, and it also requires
relatively high software programming skills from developers. As a result, a significant number
of developers have only modified the control structure and tweaked the control parameters
based on the original open-source framework. Moreover, the use of C code makes it more
difficult to visualize the control architecture and more challenging to understand how changes
impact the whole system.

For rapid prototyping, it is interesting to use Matlab/Simulink environment for real-time
implementation and control algorithms. In fact, a Simulink UAV toolbox for PX4 autopilots
is available. With this method, flight controllers can be developed in Simulink by using block
diagrams. From the Simulink models, C code is automatically generated, compiled, and
uploaded onto the autopilot hardware. This mitigates the cost and challenges of quadrotor
development as it enables users to devote more time to their control algorithm rather than to
the details of programming. However, there is no free open-source autopilot system available,
which uses a block-diagram-based design that requires little or no reliance on third-party
software.

In this thesis, a MATLAB/Simulink-based software platform is built to develop and imple-

2

1.1. Overview of Quadrotor UAV Control Approaches 3

ment the attitude controllers for our quadrotor UAV. Three different PID-type attitude
controllers are implemented and compared.

1.1 Overview of Quadrotor UAV Control Approaches

Developing an autonomous quadrotor aerial robot involves two main tasks: attitude estima-
tion and attitude control. In order to control a quadrotor UAV, it is necessary to determine
its orientation which is then used in the attitude control law. An overview of attitude
estimation algorithms and attitude controllers is briefly discussed in the remainder of this
section.

1.1.1 Attitude Estimation

Attitude cannot be measured directly, and it must be calculated (or estimated) from a set
of measurements. In this case, the development of reliable attitude estimation algorithms
that can run on low-cost computational hardware and low-cost sensing systems is the key to
successful quadrotor UAV development. A number of attitude estimation/filtering techniques
have been discussed in the literature [2, 3].

Angular velocity measurements provided by gyroscopes can be used to integrate rigid
body attitude kinematics equations theoretically. However, the gyroscope’s measurements
may be biased and noise may diverge beyond a few hundred milliseconds. Alternatively,
inertial measurements can be used to construct the attitude algebraically [4]. Multiple
attempts have been proposed to solve the attitude reconstruction problem from inertial vector
measurements as an optimization problem, known as Wahba’s problem, such as QUEST
algorithm [5], Singular Value Decomposition (SVD) [6] and their extensions. However,
significant errors may be generated from imperfect measurements provided by accelerometers
and magnetometers, and/or imprecise knowledge of the considered inertial vectors.

The Kalman Filter (EK) theory and its advantages in real-time applications led to the
development of many attitude filtering methods for aircraft systems. In Kalman filtering,
two steps are performed: the first involves predicting the current state variables based on
the previous estimated variables; the second involves updating the estimated state variables
based on the weighted predicted states and noisy sensor measurements. In [7–9], extensions
of the Kalman filter to nonlinear systems, known as the Extended Kalman Filter (EKF),
have been proposed since attitude dynamics are nonlinear and the Kalman filter is originally
designed for linear systems. Nevertheless, poor performances or even divergence arising from
the real-time linearization in the EKF have led to the development of Multiplicative EKF
(MEKF) [10] and Additive EKF (AEKF) [11]. Various versions of the Kalman filter have
proven their effectiveness in real-time applications. In spite of this, it is difficult to prove
closed-loop stability due to their computational complexity.

In recent decades, a class of new and powerful techniques relying on nonlinear observers have
brought new hopes for the attitude estimation problem [12–22]. Compared to Kalman-like

1.1. Overview of Quadrotor UAV Control Approaches 4

filtering techniques, nonlinear observers have some significant advantages, such as rigorous
stability proofs and strong mathematical arguments. Moreover, some of the nonlinear
attitude observers have been successfully implemented on low-cost microprocessors using
the rotation matrix representation [14,17,18], and unit quaternion representation [16,21,22].
It is commonly assumed that the accelerometer measures the gravity vector in the body
frame when designing the attitude observers by using inertial vector measurements under
near-hover operations (i.e., low translational accelerations) (see, for example, [14,17,19]).
The attitude estimators are not guaranteed to provide reliable estimated attitudes under
relatively high translational acceleration, because the accelerometer measurements are not
equal to gravity any longer. To overcome this problem, an alternative attitude observer,
known as the velocity-aided observer, relying on some additional measurements (such as the
linear velocity obtained from a GPS) has been proposed in the literature (e.g., [21]). Attitude
estimation with gyro bias has been discussed in the literature [14, 17, 19, 22]. In practical
applications, the magnetometer reading can also be affected by the magnetic fields generated
by motors and other electrical equipment in the environment. To solve this problem, a vector
decoupling strategy has been proposed in [19] and [23] to locally remove the disturbances of
the magnetometers from the estimation dynamics of the roll and pitch. In [22], the authors
extended the results to global vector decoupling and fully tested the estimation algorithm in
real-time applications. This modification shows that the global vector decoupling estimation
algorithm improved the overall quality of the nonlinear attitude estimators. However, only
almost-global stability and local exponential stability have been achieved. The issue of
global stability for attitude nonlinear estimation algorithms has remained unsolved in the
literature until the work in [24] which relies on hybrid feedback techniques.

1.1.2 Attitude Control

Developing efficient attitude stabilization and/or attitude tracking schemes is one of the
most critical aspects of autonomous quadrotor UAV control. A number of control techniques
have been proposed in the literature, for instance [25–27] and their references.

One of the widely used methods known as the Proportional-Integral-Derivative (PID)
controller has been implemented in [28] and [29]. However, the PID controller, as well
as other linear controllers such as LQR [30], fail to work while dealing with aggressive
maneuvers or large attitude errors, since the stability of these methods is only guaranteed in
a restricted domain. Another approach has been proposed by introducing a decomposition
of the quadrotor system into an outer-loop for attitude control and an inner-loop for body
rate control [31]. The main advantage of this approach is that the process of the controller
design is simplified. Similarly, it is not easy to show the stability of the overall system.

A variety of nonlinear control methods have been proposed in the literature [32–36], including
feedback linearization, backstepping, and sliding mode control. The study, however, was
limited to ideal dynamics without considering aerodynamic effects or sensor measurements,
and only simulation results were presented. In [37–39], some practical nonlinear controllers
with experimental results have been proposed. For example, a nonlinear PID-like controller
designed directly on SE(3) for quadrotor UAV was tested [38]. In [37], the authors proposed

1.2. Thesis Contribution 5

a nonlinear control scheme based on Euler angles using a backstepping-like linearization
method. However, in order to cancel the nonlinear terms in the time derivative of the
Lyapunov function candidate, the control law requires information on model parameters like
the moment of inertia. In [39], a new quaternion-based PD-like feedback control scheme
was introduced for quadrotor stabilization. The PD feedback structure involves vector
quaternion and angular velocity without any system model parameters, which is known as a
model-independent controller. The proposed PD-like controller guarantees almost global
asymptotic stability.

The attitude control problem, with full state feedback (i.e., attitude and angular velocity) is
well understood in the literature. Another performance and implementation-cost optimization
issue that arises is the design of an attitude controller without angular velocity. Several
attempts have been made by introducing an observer-like passive system to reconstruct the
angular velocity in [40–43]. Although the angular velocity is not directly involved in these
control algorithms, it is still required to construct the attitude in the attitude estimation
algorithms. In [44], a true velocity-free attitude controller was first proposed based on
inertial measurements and the unwinding phenomenon was avoided. The authors in [45–47]
improved the result by introducing a modified observer-like passive system based on inertial
measurements, which reduces the set of unstable equilibria.

1.2 Thesis Contribution

The thesis contributions are as follows:

• Obtained the moments of inertia parameters by using the bifilar pendulum principle
with the attitude estimation algorithm proposed in [22] to collect the oscillation data
around the roll, pitch, and yaw axes, respectively. The Fast Fourier Transform (FFT)
has been applied to find the natural frequencies.

• Built a PX4-based quadrotor experimental platform (hardware and software) equipped
with a Pixhawk 4 flight controller. Used MATLAB/Simulink and the UAV Toolbox
Support Package for PX4 Autopilots to implement the attitude control schemes.

• Implemented a PD-like unit quaternion-based nonlinear attitude controller (proposed
in [39]) in Chapter 6. The orientation of the quadrotor was estimated by a nonlinear
attitude estimation algorithm proposed in [22]. Indoor flying results of the quadrotor
UAV have been presented.

• Improved the flight performance of the PD-like controller, by introducing and imple-
menting a PID-like controller and a nested PID-like controller.

1.3. Thesis Outline 6

1.3 Thesis Outline

This thesis is divided into 7 chapters. Chapter 1 provides an introduction to quadrotor
UAVs, attitude estimation, and attitude control.

Chapter 2 provides a review of attitude representation. Chapter 3 presents the mathematical
model of the quadrotor used in this thesis. An attitude estimator is introduced and imple-
mented in Chapter 4, with the sensor calibration techniques used. Chapter 5 gives a detailed
description of the quadrotor hardware and software setup, parameter identification, and
related calibration and settings. Three PID-type unit quaternion-based attitude controllers
have been implemented and compared in Chapter 6, with a non-linear attitude estimation
algorithm.

Finally, Chapter 7 summarizes the work in this thesis and provides some suggestions for
future possible research work.

Chapter 2

Attitude Representation

An attitude representation is a set of coordinates that describes the orientation of a given
reference frame with respect to a second reference frame which more generally is a reference
frame attached to the Earth, the Sun, or other stars. As shown in Fig. 2.1, let I denote
the inertial (fixed) frame which is commonly attached to the Earth with the unit vector ẑI
orthogonal to the ground and the unit vector x̂I pointing to the North direction, and B
denote the body-attached frame which is attached to the quadrotor with the unit vector ẑB
orthogonal to the platform and the unit vector x̂B pointing to the forward direction.

Figure 2.1: Configuration of the inertial frame I and the body frame B

There are numerous attitude representations and three methods will be covered in this
section to describe the rotational motion of a quadrotor in three-dimensional space: (1)
Euler angles representation, (2) rotation matrix representation, and (3) unit quaternion
representation. The attitude will be described as the orientation of the body-attached frame
(B) with respect to a fixed inertial frame (I) (see [48] for more details).

7

2.1. Euler Angles Representation 8

2.1 Euler Angles Representation

The Euler angles, introduced by Leonard Euler, describe the attitude of a reference frame
relative to an inertial frame by three successive rotations about the body fixed axes. The
orientation of a rigid body in a three dimensional Euclidean space is given by

(ϕ, θ, ψ) (rad) (2.1)

where, the three parameters (ϕ, θ, ψ) are known as roll, pitch, and yaw, respectively.

Euler angles are easy to visualize because of their clear physical definitions. However, there
exists an inherent problem in the Euler angles representation known as the singularity problem.
The Euler angles encounter singularity for θ = ±kπ, where k is any integer (k = 1, 2, · · ·).
This geometric singularity further induces the singularity in the corresponding Euler angles
kinematic differential equations [49].

2.2 Rotation Matrix Representation

The rotation matrix, also known as the Direction Cosine Matrix (DCM), is the most popular
representation of the attitude of a rigid body. Consider the orientation of frame B with
respect to the inertial frame I. It can be described by three vectors:

IX̂B =

x̂B · x̂I
ŷB · x̂I
ẑB · x̂I

 I ŶB =

x̂B · ŷI
ŷB · ŷI
ẑB · ŷI

 IẐB =

x̂B · ẑI
ŷB · ẑI
ẑB · ẑI


where, x̂I , ŷI and ẑI are the coordinate vectors of frame I, x̂B, ŷB and ẑB are the coordinate
vectors of frame B, and IX̂B,

I ŶB and IẐB are unit vectors corresponding to the orthogonal
projection of the coordinate vectors of frame B onto the coordinate vectors of frame I. Note
that u · v = ∥u∥∥v∥ cosϑ represents the dot product and ϑ is the angle between the vectors
u and v. The rotation matrix of frame B with respect to frame I is defined as

I
BR =

[IX̂⊤
B

I Ŷ ⊤
B

IẐ⊤
B
]
=

x̂B · x̂I ŷB · x̂I ẑB · x̂I
x̂B · ŷI ŷB · ŷI ẑB · ŷI
x̂B · ẑI ŷB · ẑI ẑB · ẑI


The rotation matrix belongs to the special orthogonal group of dimension three SO(3). Let
R ∈ SO(3) be a rotation matrix, then one has

R⊤R = RR⊤ = I3 det(R) = 1

where, I3 is the 3× 3 identity matrix. We restrict our analysis to det(R) = 1, since rotation
matrices for which det(R) = −1 are not rigid-body transformations [50]. Assume that R
denotes a rotation from the inertial frame I to the body-attached frame B. Let vI ∈ R3

be the coordinates of a vector in frame I, then the coordinates of this vector expressed in
frame B are given by

vB = R⊤vI

where vB ∈ R3. The rotation matrix allows for easy computation of multiple rotations
through simple matrix multiplication.

2.3. Unit Quaternion Representation 9

2.3 Unit Quaternion Representation

Another representation of the attitude of a rigid body is the unit quaternion, which is defined
as

Q =

[
η
q

]
, (η2 + q⊤q = 1) (2.2)

where, η ∈ R and q ∈ R3 are the scalar part and the vector part of the quaternion, respectively.
The unit quaternion can also be written as

Q =

[
cos(φ/2)

sin(φ/2)k̂

]
(2.3)

which represents a rotation by an angle φ about an arbitrary unit vector k̂. The unit
quaternion belongs to the set of unit quaternions given by

Q = {Q ∈ R4 | |Q| = 1} (2.4)

Define two unit quaternions Q1 and Q2 as:

Q1 =

[
η1
qv1

]
Q2 =

[
η2
qv2

]
Then, the quaternion multiplication is given by

Q1 ⊙Q2 =

[
η1η2 − q⊤v1qv2

η1qv2 + η2qv1 + qv1 × qv2

]
(2.5)

where, ⊙ denotes the quaternion product and × denotes the vector cross product. The unit
quaternion multiplication is non-commutative since the cross product is non-commutative.
The inverse of a unit quaternion Q is given by

Q−1 =

[
η
−q

]
(2.6)

and one has

Q⊙Q−1 = Q−1 ⊙Q = QI =


1
0
0
0

 (2.7)

where QI is the identity quaternion, which can be viewed as a rotation by a zero angle about
an arbitrary unit vector. The unit quaternion multiplication can also be used to transform a
vector from one reference frame to another. Let vI ∈ R3 be a vector in the inertial frame I
and vB ∈ R3 be a vector projection of vI in the body-attached frame B . Then[

0
vB

]
= Q−1 ⊙

[
0
vI

]
⊙Q (2.8)

where Q represents the attitude of the body frame. The quaternion representation has
some advantages over the other attitude representations. Its reduced number of parameters

2.4. Comparison of Attitude Representations 10

makes it more suitable for real-time implementations. The main drawback of the quaternion
representation is its non-uniqueness. In particular, this is a twofold covering map, where
there exist a pair of antipodal unit quaternions ±Q ∈ Q for each attitude R ∈ SO(3).
Without careful designing, quaternion-based controllers may cause undesirable phenomena
such as unwinding [51].

2.4 Comparison of Attitude Representations

From the above discussion, we can conclude that each attitude representation has its own
pros and cons. The comparison of the above attitude representations is given by Table 2.1
(see [26] for more details).

Euler Angles Unit Quaternion Rotation Matrix

Pros Easy to visualize No singularities, simplicity No singularities

Cons
Singularity
problem

Non-unique,
no intuitive physical meanings

Computationally expensive

Global

Unique

Para 3 parameters 4 × 1 unit vector (4) 3 × 3 matrix (9)

Table 2.1: Comparison of attitude representations

In practical applications, different attitude representations can be combined for specific
requirements. Some useful equalities used in the remainder of the thesis are presented as
follows:

• Unit Quaternion and Euler Angles
The unit-quaternion can be obtained from the Euler angles as follows:

Q =

[
η
q

]
=


c(ϕ/2)c(θ/2)c(ψ/2) + s(ϕ/2)s(θ/2)s(ψ/2)
s(ϕ/2)c(θ/2)c(ψ/2)− c(ϕ/2)s(θ/2)s(ψ/2)
c(ϕ/2)s(θ/2)c(ψ/2) + s(ϕ/2)c(θ/2)s(ψ/2)
c(ϕ/2)c(θ/2)s(ψ/2)− s(ϕ/2)s(θ/2)c(ψ/2)

 (2.9)

with c and s denoting the cosine and sine operators. The quaternion can also be
converted to Euler angles as follows:ϕθ

ψ

 =

atan2(2(ηq1 + q2q3), 1− 2(q21 + q22))
arcsin(2(ηq2 − q3q1))

atan2(2(ηq3 + q1q2), 1− 2(q22 + q23))

 (2.10)

where, atan2(·) : R × R → (−π, π] denotes the four-quadrant inverse tangent. It is
easy to check that Q = QI for ϕ = 0, θ = 0 and ψ = 0.

• Rotation Matrix and Euler Angles
The function that maps a vector of Euler angles to its rotation matrix from (x− y− z)

2.4. Comparison of Attitude Representations 11

is given by

R = Rx(ϕ)Ry(θ)Rz(ψ) =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (2.11)

where Rx(ϕ), Ry(θ) and Rz(ψ) denote rotations around the x, y and z axes by angles
ϕ, θ and ψ, respectively.

Rx(ϕ) =

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 Ry(θ) =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1


where, it is easy to check that R = Rx(0)Ry(0)Rz(0) = I3

• Unit Quaternion and Rotation Matrix
The rotation matrix is related to the unit-quaternion through the Rodriguez formula
R = R(Q) [48]. The mapping R : Q → SO(3) is given by

R(Q) = I3 + 2ηS(q) + 2S(q)2 = (η2 − q⊤q)I3 + 2qq⊤ + 2ηS(q) (2.12)

where, S : R3 → so(3), and

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


with x = [x1, x2, x3]

⊤, and so(3) = {S ∈ R3×3 | S⊤ = −S} denotes the set of 3 × 3
skew symmetric matrices. Given a rotation matrix R and two vectors x, y ∈ R3, we
have the following useful properties: S(x)y = −S(y)x = x× y, S(x)x = 0, S(x)S(y) =
yx⊤−(x⊤y)I3, S(S(x)y) = S(x)S(y)−S(y)S(x) = yx⊤−xy⊤ and S(Rx) = RS(x)R⊤.
The rotation matrix (2.12) can be further expanded in a matrix form as

R(Q) =

1− 2(q22 + q23) 2(q1q2 − ηq3) 2(ηq2 + q1q3)
2(q1q2 + ηq3) 1− 2(q21 + q23) 2(q2q3 − ηq1)
2(q1q3 − ηq2) 2(ηq1 + q2q3) 1− 2(q21 + q22)


where, it is easy to check that R(QI) = I3.

Note that the mapping from SO(3) to Q is not a one-to-one mapping. The two unit
quaternions Q and −Q represent the same rotation matrix R.

Chapter 3

Mathematical Model

3.1 Quadrotor Motion Description

The quadrotor aircraft under consideration consists of a rigid cross frame equipped with four
motors as shown in Fig.3.1. The up (down) motion is achieved by increasing (decreasing) the
total thrust while maintaining an equal individual thrust. The roll, pitch, and yaw motions
are achieved through a differential control strategy of the thrust generated by each motor. In
order to avoid the yaw drift due to the reactive torques, the quadrotor aircraft is configured
such that the set of motors (motor 1 and 2) rotates clockwise and the set of motors (motor
3 and 4) rotates counterclockwise. There is no change in the direction of rotation of the
motors (i.e.,, ωi ≥ 0, i ∈ {1, 2, 3, 4}). If a yaw motion is desired, one has to reduce the
thrust of one set of motors and increase the thrust of the other set while maintaining the
same total thrust to avoid an up–down motion. Hence, the yaw motion is then realized
in the direction of the induced reactive torque. On the other hand, forward (backward)
motion is achieved by pitching in the desired direction by increasing the rear (front) motors
thrust and decreasing the front (rear) motors thrust to maintain the total thrust. Finally, a
sideways motion is achieved by rolling in the desired direction by increasing the left (right)
motors thrust and decreasing the right (left) motors thrust to maintain the total thrust.

Figure 3.1: Quadrotor orientation and airframe diagram

12

3.1. Quadrotor Motion Description 13

The general motion of a quadrotor UAV in space is a combination of translational and
rotational motions. The translational dynamics are given by ṗ = v

v̇ = ge3 −
1

m
T Re3

(3.1)

where, e3 := [0, 0, 1]⊤ ∈ R3, and p and v are respectively the position and the linear velocity
of the origin of the airframe (frame B) with respect to the frame I. The mass of the quadrotor
is denoted m, and T denotes the total thrust generated by the four motors, R ∈ SO(3) is
the orientation of the airframe with respect to the frame I. The rotational dynamics of the
rigid body are given by  Q̇ =

1

2

[
−q⊤

S(q) + q0I

]
ω

If ω̇ = − ω × Ifω + τ

(3.2)

where, Q := [η, q]⊤ is the unit quaternion representation of the quadrotor orientation, ω is
the rigid body angular velocity expressed in frame B, If ∈ R3×3 is the symmetric positive-
definite constant inertia matrix around the center of mass expressed in frame B, and τ ∈ R3

is the airframe torque generated by the four motors.

The total thrust T generated by the four motors is given by

T =
4∑
i=1

|fi| = b
4∑
i=1

ϖ2
i (3.3)

where, b is a positive coefficient and ϖi ∈ R is the angular velocity of motor i, and the
reactive torque Qi generated by the motor i due to rotor drag is given by

Qi := −κϖ2
i

where, κ is a positive coefficient. By following the configuration shown in Fig.3.1, we can
easily get the airframe torques τ = [τϕ, τθ, τψ]

⊤ and total thrust T as

τϕ =
db√
2
(−ϖ2

1 +ϖ2
2 +ϖ2

3 −ϖ2
4) (3.4)

τθ =
db√
2
(ϖ2

1 −ϖ2
2 +ϖ2

3 −ϖ2
4) (3.5)

τψ = κ(ϖ2
1 +ϖ2

2 −ϖ2
3 −ϖ2

4) (3.6)

T = b(ϖ2
1 +ϖ2

2 +ϖ2
3 +ϖ2

4) (3.7)

where, b is a positive coefficient and d is the distance between the rotor and the center mass
of the quadrotor aircraft. The coefficients κ and b are dependent on the density of air, size,
and shape of blades, as well as other factors (see [52] and [27] for more details). These two
parameters will be identified in Section 3.2.

3.1. Quadrotor Motion Description 14

The complete dynamical model of a quadrotor described in [53] and [39] is given by

ṗ = v (3.8)

v̇ = ge3 −
1

m
T Re3 (3.9)

Ṙ = RS(ω) (3.10)

If ω̇ = −ω × Ifω + τ (3.11)

Irϖ̇i = τi −Qi, i ∈ {1, 2, 3, 4} (3.12)

where

p ∈ R3: position of the origin of the airframe (frame B) with respect to the frame I,

v ∈ R3: linear velocity of the quadrotor expressed in frame I,

m ∈ R: mass of the quadrotor,

g ∈ R: acceleration due to gravity,

e3 := [0, 0, 1]⊤ ∈ R3: unit vector expressed in frame I,

T ∈ R: total thrust generated by the four motors,

R ∈ SO(3): orientation of the airframe,

ω ∈ R3: angular velocity of quadrotor expressed in the body-fixed frame B,

If ∈ R3×3: symmetric positive-definite constant inertial matrix around the center of
mass expressed in frame B,

τ ∈ R3: airframe torque generated by the rotors,

ϖi ∈ R: angular velocity of the motor i,

τi ∈ R: torque produced by the motor i,

Ir ∈ R: the moment of inertia of the motor i.

The rotational dynamics can also be written in terms of the Euler angles representation [54]
as

ϕ̇ = ω1 + ω2 sinϕ tan θ + ω3 cosϕ tan θ

θ̇ = ω2 cosϕ− ω3 sinϕ

ψ̇ = ω2 sinϕ sec θ + ω3 cosϕ sec θ

ω̇1 =
(Iθ − Iψ)

Iϕ
ω2ω3 +

1

Iϕ
τϕ

ω̇2 =
(Iψ − Iϕ)

Iθ
ω1ω3 +

1

Iθ
τθ

ω̇3 =
(Iϕ − Iθ)

Iψ
ω1ω2 +

1

Iψ
τψ (3.13)

where, the inertia matrix If = diag(Iϕ, Iθ, Iψ), angular velocity ω = [ω1, ω2, ω3]
⊤, and control

torque τ = [τϕ, τθ, τψ]
⊤.

3.2. Model Identification 15

3.2 Model Identification

3.2.1 Mass

The mass of the quadrotor is measured by using a digital scale, the mass is found to be
1.3913 kg.

3.2.2 Propeller Aerodynamics

Based on the aerodynamics model, the steady-state thrust generated by the propeller while
hovering (i.e., a rotor that is not translating horizontally or vertically) in free air can be
modeled using momentum theory (see [55] and Section 2.2.6 in [56] for more details) as

T = CTρn
2D4 = bϖ2 (3.14)

where, CT is the coefficient of thrust dependent on the propeller geometry and aerodynamics
characteristics, ρ is the density of air, n is the speed revolutions per sec, D is the diameter
of the propeller, ϖ is the angular velocity of the motor, and b denotes the thrust factor.

The propeller reactive torque is generated by the propeller motion as follows

Q = CQρn
2D5 = κϖ2 (3.15)

where, CQ = CP /2π and CP are the power coefficients of the propeller dependent on the
propeller geometry and aerodynamics characteristics, and κ denotes the torque coefficient.

Name Parameter Value Units

Steady-state Thrust T 0.527 kg
Reactive Torque Q 0.08 N ·m
RPM (53.5℃) − 6620 revolution/min(rpm)
Angular Velocity ϖ 693.2448 rad/s

Table 3.1: Propeller thrust parameters

The propellers used in our experiments are the T-motor T1045 propellers with a 10-inch
diameter and a pitch of 4.5-inch per revolution. The propeller test report is given in Fig.3.2
with the optimum RPM within a range between 6000 to 7000 rpm. Thus we take the
performance of a 55% throttle and get the corresponding steady-state thrust T and reactive
torque Q and write them down in Table 3.1. From (3.14) and (3.15), and the parameters
provided in Table 3.1, one can obtain the thrust coefficient b and torque coefficient κ as

b =
T
ϖ2

= 1.0757e−5 N · s2/rad2 (3.16)

κ =
Q

ϖ2
= 1.6646e−7 N ·m · ss/rad2 (3.17)

3.2. Model Identification 16

Figure 3.2: T-motor propeller test report

3.2.3 Moment of Inertia

The moments of inertia of an aircraft are important in understanding its aerodynamic
properties and thus its translational and rotational motion during flight. In our case, they
can be determined with the bifilar pendulum method [57] and [58]. As shown in Fig.3.3, a
bifilar pendulum consists of suspending an airframe from two parallel wires, or filars, that
allow it to rotate freely about a given axis to measure the moments of inertia for the axis of
rotation parallel to the filars.

As shown in Fig.3.4, three small moments are applied to the airframe respectively along
the xB, yB, and zB axis to obtain the natural frequencies of the oscillations for roll pitch
and yaw, denoted by fn,ϕ, fn,θ, and fn,ψ, by using the Fast Fourier Transform (FFT) in
MATLAB. The moment of inertia can be obtained as

Ii =
d2 ·mg

16π2 · l · fn,i2
(3.18)

where

d: distance between the strings (m),

m: mass of the test object (kg),

3.2. Model Identification 17

Figure 3.3: The bifilar pendulum principle model

l: length of the strings suspending the object (m),

fn,i: the natural frequency of the oscillation (sec−1).

Tests are applied respectively for the roll, pitch, and yaw three times each, and the natural
frequencies have been shown in Table 3.2

Test 1 Test 2 Test 3

Natural frequency of roll 1.06673 1.06732 1.06589
Natural frequency of pitch 1.00344 1.00102 1.00339
Natural frequency of yaw 1.28866 1.28874 1.28623

Table 3.2: Natural frequencies got from experiments

Taking the average values from the table, the natural frequencies can be obtained as follows:

fn,ϕ = 1.06665 sec−1 fn,θ = 1.00262 sec−1 fn,ψ = 1.28788 sec−1 (3.19)

Substituting these natural frequencies in (3.18) with m = 1.3913kg, l = 0.540m, d = 0.285m
(for the pitch and roll) and d = 0.430m (for the yaw), we have the following moment of
inertia around the roll, pitch and yaw axes respectively:

Iϕ = 0.0114 kg ·m2 Iθ = 0.0129 kg ·m2 Iψ = 0.0178 kg ·m2 (3.20)

3.2. Model Identification 18

Figure 3.4: The experimental setup of bifilar pendulums for moments of inertia measurements

3.2. Model Identification 19

3.2.4 Other Parameters

From (3.4)-(3.7), the distances from the center mass of the quadrotor to the center of each
motor are required to find the actual torque applied to the quadrotor. Assuming careful
design, the center of gravity can be considered as the intersection point of the four arms. So
we measured the distance between a pair of motors and divided it by two. The distance d is
given by 0.200 m.

Finally, the model parameters involved in our quadrotor model are given in Table 3.3.

Parameter Description Value Units

Iϕ Roll Inertia 0.0114 kg ·m2

Iθ Pitch Inertia 0.0129 kg ·m2

Iψ Yaw Inertia 0.0178 kg ·m2

b Thrust coefficient 1.0757e-05 N · s2/rad2
κ Torque coefficient 1.6646e-07 N ·m · ss/rad2
d Distance 0.200 m
m Mass 1.3913 kg
g Gravity Constant 9.81 m/s2

Table 3.3: Quadrotor system parameters

Chapter 4

Attitude Estimation

In the absence of direct attitude measurement, the development of a robust and reliable
attitude estimator is key to a successful implementation of an efficient attitude control
scheme. Theoretically, it is possible to estimate the attitude by integrating the rigid-body
attitude kinematics using the angular velocity measurements or reconstructing algebraically
the orientation using the inertial measurements (at least two noncollinear inertial vector
measurements). However, in practice where the measurements are affected by noise, dynamic
estimation algorithms relying on angular velocity and inertial vector measurements are used.
These estimation algorithms usually rely on the inertial measurement unit (IMU), typically
including a gyroscope, an accelerometer, and a magnetometer. The nonlinear attitude
estimator proposed in [22] will be implemented to estimate the attitude of the quadrotor.

4.1 Attitude Estimation

4.1.1 Observer Design

Let us make the approximation that aB ≈ −gR⊤e3 for the case of hovering, and define the
following vectors [22]:

uI := e3, vI :=
πuImI

∥πuImI∥

uB := −aB
g
, vB :=

πuBmB
∥πuBmB∥

(4.1)

where ∥x∥ is the norm of vector x, and πx := ∥x∥2I3 − xx⊤,∀x ∈ R3 denotes the orthogonal
projection on the plane orthogonal to x. It is obvious that uB = R⊤uI , and using the facts

R⊤πuImI = R⊤(∥uI∥2I3 − uIu
⊤
I)mI

= (R⊤ −R⊤uIu
⊤
I)RR

⊤mI

= (I3 − uBu
⊤
B)mB

= πuBmB

20

4.2. Sensors Calibration 21

and
∥πuBmB∥2 = (πuBmB)

⊤(πuBmB) = (πuImI)
⊤RR⊤(πuImI) = ∥πuImI∥2

one has vB = R⊤vI . Define the estimates of the vectors uB and vB as

ûB := R̂⊤uI , v̂B := R̂⊤vI (4.2)

where, R̂ is the estimate of the actual attitude R, and the update laws are given by [22]:

˙̂
R = R̂(ωB − b̂+ σR)× (4.3)

˙̂
b = −kbb̂+ kbsat∆(b̂) + σb (4.4)

σR := k1uB × ûB + k2ûBû
⊤
B (vB × v̂B) (4.5)

σb := −k3uB × ûB − k4vB × v̂B (4.6)

where b̂ is the estimate of the unknown bias bg with ∥b̂(0)∥ < ∆ and ∆ denoting positive
constant, k1, k2, k3, k4 and kb denote positive constants with k3 > k4, and the saturation
function is defined by sat∆(x) := xmin(1,∆/∥x∥),∆ > 0. This estimator guarantees that,
for almost all initial conditions, the trajectory of (R̂(t), b̂(t)) converges to the trajectory of
(R(t), b(t)) asymptotically (see Theorem 1 in [22]).

4.1.2 Quaternion Representation

It is computationally expensive to compute the observer (4.3-4.6) mentioned above using
rotation matrix representation since the rotation matrix has nine variables. However, as
discussed earlier, the unit-quaternion representation presents some advantages with respect
to the rotation matrix representation in terms of computational efficiency.

We can rewrite the observer given in (4.3-4.4) in terms of unit quaternion representation as
follows:

˙̂
Q =

1

2
A(Ω̂)Q̂ (4.7)

˙̂
b = −kbb̂+ kbsat∆(b̂) + σb (4.8)

where, Ω̂ = [ω̂1, ω̂2, ω̂3]
⊤ := ωB − b̂+ σR, Q̂ = [η̂ q̂]⊤, and

A(ω̂) :=

[
0 −ω̂⊤

ω̂ −ω̂×

]
=


0 −ω̂1 −ω̂2 −ω̂3

ω̂1 0 ω̂3 −ω̂2

ω̂2 −ω̂3 0 ω̂1

ω̂3 ω̂2 −ω̂1 0



4.2 Sensors Calibration

The sensors used in our quadrotor, for example, the gyroscope, the accelerometer, and the
magnetometer are prone to have biases in the measurements. Since the changes in these

4.2. Sensors Calibration 22

biases during one flight are negligible, this allows us to estimate them once at the beginning
of a mission and then keep them constant. For the sensors’ calibration, we assume that the
noise in the measurements has zero mean. The details of the sensors’ calibration are as
follows:

• Gyroscope Calibration: The gyroscopes measure the angular velocity of the quadrotor
relative to the inertial frame expressed in the body-fixed frame B.

ωB = ω + bg + ng (4.9)

where bg is a constant (or slowly time-varying) gyro bias, ng denotes the additive
measurement noise, and ω is the actual angular velocity expressed in the body-fixed
frame. We can average the gyroscope measurements over N samples at the beginning
(before take-off i.e., ω = 0) to estimate the gyroscope measurement bias bg, which is
given by

b̂g =
1

N

N∑
k=1

ωB(k)

• Accelerometer Calibration: The accelerometers measure the instantaneous linear
acceleration of the quadrotor expressed in body-fixed frame B.

aB = R⊤(a− ge3) + ba + na (4.10)

where, R is the rotation matrix, ba is a bias term, na denotes the additive measurement
noise, and a is the derivative of the linear velocity expressed in the inertial frame.
Similarly, the accelerometer measurements can also be averaged over N samples before
take-off i.e., R = I3 given by

b̂a =
1

N

N∑
k=1

aB(k) + g

When performing the sensor biases calibration, we sampled the IMU reading over a 6s
period, which is enough to provide accurate estimates of the biases. The accelerometers
and gyroscopes are highly susceptible to vibrations, therefore, they are mounted on
foam tape or gel to reduce the noise in the sensor measurements. Moreover, a Digital
Low Pass Filter (DLPF) has also been implemented to further clean the sensor signals.

• Magnetometer Calibration: The magnetometers provide measurements of the ambient
magnetic field, which is defined by

mB = DR⊤mI + bm + nm (4.11)

where, D is the distortion, mI denotes the Earth’s magnetic field vector (expressed in
the inertial frame), bm is a body-fixed frame expression for the local magnetic field,
and nm denotes the measurement noise. The noise nm is usually low for magnetometer
reading; however, the local magnetic field bm can be significant, especially if the sensor
is placed near the power wires and/or the motors.

4.2. Sensors Calibration 23

The compensation approach proposed in [59] and [60] has been implemented in our
quadrotor system. Define

D =

 ϵx 0 0
ϵy sin δx ϵy cos δx 0

ϵz sin δy cos δz ϵz sin δz ϵz cos δy cos δz

 bm =

ϱxϱy
ϱz


with (ϵx, ϵy, ϵz) are the total scale errors, (δx, δy, δz) are the sensor misalignment angles,
and (ϱx, ϱy, ϱz) are the sensor offsets. In the absence of noise, one can solve the (4.11)
for R⊤mI as

R⊤mI = D−1(mB − bm) (4.12)

Using the fact that mB = [mBx ,mBy ,mBz]
⊤, and taking the norm of (4.12) on both

sides, one has

C1m
2
Bx

+ C2mBxmBy + C3mBxmBz + C4m
2
By

+ C5mBymBz

+ C6m
2
Bz

+ C7mBx + C8mBy + C9mBz = C10 (4.13)

where, the coefficients Ck, 1 ≤ k ≤ 10 are the functions of the 10 parameters
ϵi, δi, ϱi, i ∈ {x, y, z} and ∥mI∥. The value of ∥mI∥ can be found from the local
magnetic field, and the best estimates of Ck in a least-square sense can be found by
restructuring (4.13), putting it in matrix form with N samples

XC = W (4.14)

where

X =


m2

Bx1
mBx1mBy1 · · · mBz1

m2
Bx2

mBx2mBy2 · · · mBz2

...
...

. . .
...

m2
BxN

mBxN
mByN

· · · mBzN


︸ ︷︷ ︸

N×9

C =


C1/C10

C2/C10
...

C9/C10


︸ ︷︷ ︸

9×1

W =


1
1
...
1


︸︷︷︸
N×1

where the magnetometer data set {mB} consisting of N data points (at least 1000
samples) are collected by rotating the quadrotor along all the axes and recorded them
using the serial communication. Finally, Cest, a least-squares best fit estimate for C,
can be generated as

Cest = (X⊤X)−1X⊤W (4.15)

Now the estimates of C have been found, solutions for ϵi, δi, ϱi, i ∈ {x, y, z} can
be obtained by solving nine nonlinear equations with nine unknowns. In this case,
MATLAB is used to solve for the parameters from the measured data.

The nine parameters involved in our test are solved and given by

ϵ =

0.72150.6998
0.8479

 δ =

−0.0438
−0.0106
0.0065

 ϱ =

−0.0033
−0.0350
0.0393

 (4.16)

Fig. 4.1 shows the calibration results. The calibrated 3-axis magnetometer measure-
ments trace out a sphere centered at the origin since the magnitude of the magnetic

4.3. Experimental Results 24

vector is constant. The uncalibrated magnetometer measurements appear ellipti-
cal instead of spherical. With the estimated distortion D and local magnetic field
measurements bm, the magnetometer measurements can be corrected as follows:

m̂B = D−1(mB − bm) (4.17)

Note that the magnetometer measurements need to be calibrated again once the
environment is changed.

Figure 4.1: Magnetometer calibration results

4.3 Experimental Results

In order to explore the real-time performance of the attitude estimator (4.3 - 4.4) with unit
quaternion representation (4.7), the experiment is performed on our quadrotor platform
mentioned in Chapter 5. The implementation is carried out for the following scenario:
an IMU is fixed to the center of a quadrotor UAV to measure the inertial vectors. The
inertial vectors expressed in the inertial frame I are taken based on the local actual values
as aI = [0, 0,−9.81]⊤ and mI = [0.158177, −0.010346, 0.537342]⊤.

The gains and parameters involved in the nonlinear observer are chosen as

k1 = 0.8, k2 = 0.3, k3 = 0.025, k4 = 0.01, kb = 30, ∆ = 0.1 (4.18)

The P-gain k1 is chosen larger than k2 due to the fact that the measurements of the gravity
direction are more reliable than the measurements of the geomagnetic field. Small values of
k3 and k4 are chosen in order to reduce the integral wind-up effects. A large value of kb is
chosen to obtain a fast desaturation rate of the bias estimation.

In this implementation, two discrete low-pass filters are applied respectively to reduce the
noise for the accelerometer and magnetometer measurements with the cut-off frequencies at
40Hz and 10Hz. The initial estimated Euler angles are chosen as ϕ̂(0) = −30 deg, θ̂(0) =

4.3. Experimental Results 25

−30 deg and ψ̂(0) = −30 deg, and the actual angles are considered constants for all time,
i.e., ϕ(t) = 0 deg, θ(t) = 0 deg, and ψ(t) = 0 deg. The initial estimated gyro-bias is taken
as b̂(0) = [−0.0015; 0.0007;−0.0002]⊤ (deg /s).

Figure 4.2: Real-time estimation for static attitude

The experimental results are reported in Fig. 4.2 which shows the performance of the
nonlinear observer. The estimated attitude is converted into the roll, pitch, and yaw angles
for visualization. One can see a very fast convergence of the estimated variables to the actual
values, and the quasi-absence of overshoot of the estimated attitude despite the use of the
large initial estimation errors. Regarding the estimation of the yaw angles in Fig. 4.2, the
presence of visible estimation errors may be explained by the fact that the inertial magnetic
field vector might be slightly perturbed by the electrical equipment in the lab. However, it
can also be seen that the presence of magnetic disturbance does not degrade the estimation
performance of the roll and pitch, as well as their convergence to the actual values.

Chapter 5

Experimental Platform

Autopilot is a well-known flight control system for drones and other unmanned vehicles. It
consists of flight stack software running on vehicle controller (flight controller) hardware.
PX4 [61], the autopilot flight stack, supports a professional open-source autopilot system,
which powers a variety of vehicles and allows users to customize the algorithms to meet their
own needs. Our experimental platform is a PX4-based quadrotor equipped with a Pixhawk
4 [62] flight controller and other electronic components. MATLAB/Simulink R2021a with
the UAV Toolbox Support Package for PX4 Autopilots [63] is used to program the control
algorithms. An overview of the platform architecture is shown in Fig. 5.1.

Figure 5.1: Platform architecture

26

5.1. General Overview of the Hardware Platform 27

The hardware consists of:

• Flight controller, running the PX4 flight stack, including microprocessors, internal
IMUs, a compass, and a barometer.

• External GPS connected via I2C/SPI.

• RC radio transmitter and receiver for manual control.

• Telemetry radios for communicating between the ground base station computer and
the quadrotor UAV.

• ESC and motors connected to the PWM outputs.

The left-hand side of the diagram shows the software stack, horizontally aligned with the
hardware parts.

• The ground station computer runs QGroundControl [64] and MATLAB/Simulink.

• The PX4 flight stack running on the flight controller includes Simulink modules
(estimator and controllers), middleware, and drivers.

5.1 General Overview of the Hardware Platform

Figure 5.2: Hardware platform

As shown in Fig. 5.2, the quadrotor is a cross airframe type made with full lightweight
and robust carbon fiber twill, which consists of 4 motors attached to the end of each arm,
a GPS mast, a stereo-camera mount, a damping flight controller plate, top, and bottom
carrier plates, and a square landing gear. The hardware includes a flight controller, a
GPS, an onboard computer, a power management board (PM board), a 4-in-1 electronic
speed controller (ESC), and other necessary components. All the parts and accessories are
affordable, widely available, and easy to assemble and to be replaced. The remainder of this
section will go through the individual components in detail. An overview of the experimental
hardware is presented in Fig. 5.3.

5.1. General Overview of the Hardware Platform 28

Figure 5.3: Overview of the quadrotor hardware

5.1.1 Flight Controller

Figure 5.4: Overview of the quadrotor hardware 1

The Pixhawk 4® (shown in Fig. 5.4) is the flight controller used in our quadrotor UAV based
on the Pixhawk FMUv5 Open Standard and the Pixhawk Autopilot Bus Standard. It is a
low-cost system, features the latest advanced processor technology from STMicroelectronics®,
sensor technology from Bosch® and InvenSense®, and a NuttX real-time operating system
which makes the system ready-to-fly capable. Pixhawk 4’s main FMU Processor has 2MB
of Flash memory and 512KB of RAM running at up to 216MHz, and its IO Processor is a
32-bit microprocessor running at up to 24MHz. The FMUv5 open standard includes two
high-performance, low-noise IMUs on board providing double redundancy. Further details
are listed below:

1https://blog.csdn.net/SimuArch

https://blog.csdn.net/SimuArch

5.1. General Overview of the Hardware Platform 29

• Main FMU Processor: STM32F765 2

32 Bit Arm® Cortex®-M7, 216MHz, 2MB memory, 512KB RAM

The main FMU Processor STM32F765 is of very high-performance MCUs based
on the 32-bit Arm® Cortex®-M7 core, with DPFPU, ART AcceleratorTM and L1-
cache: 16 Kbytes I/D cache, allowing 0-wait state execution from embedded Flash
and external memories, running up to 216MHz while reaching low static power
consumption. ST’s 90nm process, ART Accelerator, and dynamic power scaling enable
the power consumption in Run mode and executing from Flash memory to be at 7
CoreMark/mW at 1.8V . In Stop mode, power consumption is typically 100µA. The
graphics accelerator performs content creation twice as fast as the core alone. As well
as efficient 2−D raw data copy, additional functions are supported by the Chrom-ART
Accelerator such as image format conversion or image blending (image mixing with
some transparency). As a result, the Chrom-ART Accelerator boosts graphics content
creation and saves the processing bandwidth of the MCU core for the rest of the
application. For more details, please refer to [65].

• IO Processor: STM32F100 3

32 Bit Arm® Cortex®-M3, 24MHz, 8KB SRAM

The STM32F100 IO processor incorporates the high-performance ARM® Cortex®-M3
32-bit RISC core operating at a 24MHz frequency, high-speed embedded memories
(flash memory up to 128Kbytes and SRAM up to 8Kbytes), and an extensive range
of enhanced peripherals and I/Os connected to two APB buses. It offers standard
communication interfaces (up to two I2Cs, two SPIs, one HDMI CEC, and up to
three USARTs), one 12-bit ADC, two 12-bit DACs, up to six general-purpose 16-bit
timers, and an advanced-control PWM timer. It operates in the –40 to 85℃ and –40
to 105℃ temperature ranges, from a 2.0 to 3.6V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications. These features make
these microcontrollers suitable for a wide range of applications. Further details are
provided in [66].

• Accel/Gyro: ICM-20689

The ICM-20689 is a device that combines a 3-axis gyroscope, a 3-axis accelerometer,
and a Digital Motion ProcessorTM (DMP) in a small 4x4x0.9 mm (24-pin QFN)
package. It also features a 4 Kbyte FIFO that can lower the traffic on the serial bus
interface, and reduce power consumption by allowing the system processor to burst
read sensor data and then go into a low-power mode. ICM-20689, with its 6-axis
integration, on-chip DMP, and run-time calibration firmware, enables manufacturers to
eliminate the costly and complex selection, qualification, and system-level integration
of discrete devices, guaranteeing optimal motion performance.

The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000
degrees/sec. The accelerometer has a userprogrammable accelerometer full-scale range
of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors
reduces production-line calibration requirements. More details can be found in [67].

2https://www.st.com/en/microcontrollers-microprocessors/stm32f7x5.html
3https://www.st.com/en/microcontrollers-microprocessors/stm32f100rb.html

https://www.st.com/en/microcontrollers-microprocessors/stm32f7x5.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f100rb.html

5.1. General Overview of the Hardware Platform 30

• Accel/Gyro: BMI055

The BMI055 is an ultra-small, 6-axis inertial measurement unit (IMU) consisting of a
digital, tri-axial 12-bit acceleration sensor and a triaxial 16-bit gyroscope. This sensor
is unique in the class of high-stability IMUs measuring angular rates and accelerations
in three perpendicular axes. This inertial sensor integrates a multitude of features
that especially facilitate motion detection applications such as device orientation
measurement, gaming, HMI, and menu browser control. See Fig. 5.5 and [68] for more
details.

Figure 5.5: BMI055 technical data 4

• Mag: IST8310

iSentek IST8310 is a 3-axis digital magnetometer with 3.0×3.0×1.0 mm3, 16-pin LGA
package. It is an integrated chip with 3-axis magnetic sensors, digital control logic, a
built-in temperature compensation circuit, and a self-test function. IST8310 provides
an I2C digital output with fast mode up to 400kHz. The high output data rate,
ultra-low hysteresis, excellent temperature drift, and low noise performance feathers
make it a perfect candidate for high-accuracy applications. See [69] for more details.

• Holybro M8N GPS Module

GPS + Compass + Safety Switch + Buzzer + LED

The M8N GPS, shown in Fig. 5.6, has a UBLOX M8N module, IST8310 compass,
tri-colored LED indicator which indicates the current readiness for the flight status of
our vehicle [61], and a safety switch which makes the connection more convenient and
simple. There are 3 different connector options for different purposes. More details
can be found in [70].

4https://www.bosch-sensortec.com/media/boschsensortec/downloads/product flyer/bst-bmi055-fl000.pdf

https://www.bosch-sensortec.com/media/boschsensortec/downloads/product \protect \relax $\@@underline {\hbox {f}}\mathsurround \z@ $\relax lyer/bst-bmi055-fl000.pdf

5.1. General Overview of the Hardware Platform 31

Figure 5.6: M8N GPS with the tri-colored LED indicator

5.1.2 Communication

RC Channels

The RC radio transmitter (Turnigy 9XR 5) and the RC radio receiver (ORX R910 DSM2
receiver) set work in pairs, which are used for radio communication in our quadrotor platform
as shown in Fig. 5.7. It is a 2.4 GHz system with 8 channels and 5 channels that have been
used in our quadrotor system for sending the commands (PPM signals) of the roll, pitch,
yaw, throttle, and mode switch.

Figure 5.7: Turnigy 9XR transmitter (left) and ORX R910 DSM2 receiver (right)

The throttle stick does not return to the middle position when the finger is removed, while the
roll and pitch control sticks do return to the center. The PPM signals from the transmitter
vary while changing the position of the control sticks having a value between 900-2200. The
maximum and minimum throttle values vary slightly and must be recorded in order to
properly generate the desired thrust. The PPM values of the pitch and yaw at the center
are set as zero angles since the pitch and roll sticks can return to the center automatically.
In order to properly generate the desired roll and pitch angles, the PPM values at the center
must be recorded. The yaw command is a little different from the roll/pitch. The position
of the yaw stick provides the yaw rates.

5https://www.rcworld.co.za/downloads/T9XR.pdf

https://www.rcworld.co.za/downloads/T9XR.pdf

5.1. General Overview of the Hardware Platform 32

• RC Channels Calibration

The RC transmitter/receiver, shown in Fig. 5.7, requires some simple calibration to
ensure proper operation. The calibration of RC channels is a straightforward process
– simply move each of the enabled sticks through their full range and record the
maximum, minimum, and trim values for each RC channel. By moving the control
sticks to their limits of travel, one has the channel parameters presented in Table 5.1.

Channel Minimum Trim Maximum Function

1 955 1500 2045 Pitch

2 968 1513 2062 Roll

3 971 971 2062 Throttle

4 968 1516 2062 Yaw

Table 5.1: RC channels parameters

The desired thrust of the quadrotor at the period k can be generated as

Td(k) = 4b

(
PT ,r(k)− PT ,min
PT ,max − PT ,min

ϖmax

)2

(5.1)

where, b is the thrust coefficient defined in Section 3.2.2, PT ,min and PT ,max are the
minimum and maximum throttle values respectively, PT ,r is the throttle PPM value
received from the transmitter, and ϖmax is the maximum angular velocity of the motor
defined in Section 5.1.3.

The desired roll, pitch, and yaw angles at the period k are given by

ϕd(k) =
Pϕ,r(k)− Pϕ,trim

Sf
(5.2)

θd(k) =
Pθ,r(k)− Pθ,trim

Sf
(5.3)

ψd(k) = ψd(k − 1) +
Pψ,r(k)− Pψ,trim

Sy
(5.4)

where, Pϕ,r, Pθ,r and Pψ,r denote the PPM values of the roll, pitch, and yaw commands
respectively, Pϕ,trim, Pθ,trim and Pψ,trim are the recorded trim PPM values of the roll,
pitch, and yaw respectively. The parameter Sf denotes the stick factor for the roll
and pitch converting the PPM values to Euler angles. The choice of this stick factor is
1/20 providing a maximum desired angle of about 25 degrees for the roll and pitch.
The parameter Sy determines the sensitivity of the yaw rate, which is set as 1000.

Electronic speed controllers are responsible for spinning the motors at the speed
requested by the autopilot. ESCs calibration is also important since the ESCs need to
know the minimum and maximum PWM values that the flight controller will send. A
complete process of ESC calibration using the ground station (QGC) can be found
in [71]. After successfully calibrating, the mapping from the motor speed to the PWM
value of motor i is given by

Pi = PT ,min +
ϖi

ϖmax
∗ (PT ,max − PT ,min) (5.5)

5.1. General Overview of the Hardware Platform 33

where, ϖi denotes the speed of motor i and ϖmax denotes the maximum motor speed,
and PT ,max and PT ,min are the maximum and minimum throttle PWM values.

Telemetry Radio

The wireless serial connectivity is provided to make communication between the ground
base station computer and the quadrotor UAV. The Holybro SiK Telemetry Radio serial
communication system operates at 915MHz With one module connected to Pixhawk to send
data and the other module connected to the computer (see Fig. 5.8). Experimental data,
for example, the sensor measurements, are sent to the ground station for analysis. The baud
rate of the serial communication has been set as 57600bps in our quadrotor system.

Figure 5.8: Radio serial 1 module (left) and radio USB module (right)

5.1.3 Power Module and Actuators

The entire platform is powered by a 4200mAh 4-cell lithium polymer battery. The battery
voltage when fully charged is 16.8V, and 14.8V when discharged. The brushless motor and
4-in-1 electronic speed controller (ESC), as shown in Fig. 5.9, serve as actuators for the
quadrotor.

Figure 5.9: BLHeli 4-in-1 ESC and T-motor brushless motors and propellers

The 4-in-1 ESC is driven by the PWM signals of the desired motor speeds sent from the
Pixhawk4. The ESC converts the DC voltage provided by the battery to a 3-phase AC

5.2. Overview of the Software Configuration 34

current to drive the motor to work at the desired speed. Since the speed of the motor is
controlled by the ESC, feedback from the motor is embedded. Earlier speed controllers
employed Hall effect sensors but more recent ones measure the back-EMF generated in the
un-driven coils. The motor (AIR2216) used in our quadrotor is an outrunner brushless
motor. Its specifications provided by the manufacturer are given in Fig. 5.10.

Figure 5.10: Motor and propellers performance report

5.2 Overview of the Software Configuration

PX4, supported by the Dronecode Project [72], is a core part of a broader drone platform that
includes the ground control station, Pixhawk hardware, and MAVSDK for integration with
companion computers (e.g. NVIDIA Jetson NANO), cameras, and other hardware using the
MAVLink [73] protocol. PX4 consists of two main layers: the flight stack (shown in Fig. 5.11)
is an estimation and flight control system, and the middleware is a general robotics layer that
can support any type of autonomous robot, providing internal/external communications and
hardware integration. PX4 middleware includes PX4 internal communication mechanisms
(uORB [74]), and between PX4 and offboard systems like the ground control station (e.g.
MAVLink). For more details, please refer to [75] written by the founder of PX4.

Figure 5.11: Block diagram of the attitude control scheme

The ground control station (GCS) is a very important part of the entire UAV system, which
is a channel for ground operators to directly interact with the UAV. It integrates control,

5.2. Overview of the Software Configuration 35

communication, real-time monitoring, and data processing capabilities, which makes it the
command and control center for the entire UAV system.

5.2.1 QGroundControl

The Dronecode ground control station is called QGroundControl (QGC) which provides full
flight control and vehicle setup for PX4-powered vehicles. It can be used to load (flash) the
PX4 with the flight controller, set up the vehicle, change or upload different parameters, get
real-time flight information, and create and execute fully autonomous missions. The vehicle
setup page is shown in Fig. 5.12. Further details are provided in [64].

Figure 5.12: QGC vehicle setup summary page

Our preliminary testing has been done using QGC by following the subsequent sequence of
uploading firmware to the Pixhawk board, choosing the vehicle configuration (airframe), cali-
brating onboard sensors and power system (the battery and ESC), establishing a connection
between the radio transmitter and receiver, and modifying the parameters (e.g. by modifying
the IMU ACCEL CUTOFF to change the cutoff frequency of the internal accelerometer).
QGC provides a fundamental understanding of the concepts used to develop the UAV flight
control system, which gives us the benefits of getting familiar with the whole system within
a short time, as well as verifying our hardware and all components are working properly
and in good condition. This is an important step before moving on to the development and
implementation of the controllers by using Simulink.

5.2. Overview of the Software Configuration 36

5.2.2 UAV Toolbox Support Package for PX4 Autopilots

MATLAB® and Simulink® can also be used as the ground control station. With the UAV
Toolbox Support Package for PX4® Autopilots 6, users are enabled to design estimators,
controllers, and navigators in Simulink, and deploy to PX4 Autopilot boards. The Embedded
Coder® enables Simulink models to be automatically generated into C++ code, and by using
the PX4 toolchain, algorithms are built and deployed tailored for Pixhawk flight controllers,
all while incorporating onboard sensor data and other PX4-specific services.

Figure 5.13: Supported Simulink blocks interface with the general PX4 architecture7 modules

The support package provides interfaces for some of the components in the PX4 architecture
by using Simulink blocks. These blocks can be used as input and output for the algorithms
in the Simulink model. As shown in Fig. 5.13, the high-level software architecture of PX4
includes modules for storage, external connectivity, drivers, uORB publish-subscribe message
bus, and flight control components. Modules in the general PX4 architecture can be replaced
with user-defined Controller algorithms by using UAV Toolbox Support Package for PX4
Autopilots, presented in Table 5.2. For more details, please refer to [63].

6https://www.mathworks.com/help/supportpkg/px4
7https://docs.px4.io/main/en/concept/architecture.html

https://www.mathworks.com/help/supportpkg/px4
https://docs.px4.io/main/en/concept/architecture.html

5.2. Overview of the Software Configuration 37

Component in PX4 Architecture Simulink Block in the Support Package

Parameters Read Parameter

uORB Message Bus
PX4 uORB Read
PX4 uORB Write
PX4 uORB Message

RC Input Radio Control Transmitter

Sensors Hub
Accelerometer
Gyroscope
Magnetometer

GPS GPS

Output Driver PX4 PWM Output

External Serial Communication
Serial Receive
Serial Transmit

Table 5.2: Supported Simulink blocks interface with the PX4 modules

MAVLink

MAVLink, the Micro Aerial Vehicle link, is a very lightweight messaging protocol that has
been designed for the drone ecosystem. PX4 uses MAVLink to communicate with ground
control stations, and as the integration mechanism for connecting to drone components
outside of the flight controller: companion computers, MAVLink-enabled cameras, etc. The
protocol defines a number of standard messages and microservices for exchanging data [76].
MAVLink developer guide is provided in [73], and the MAVLink messaging tutorial can be
found in [76].

• Enable MAVLink Protocol to Tune Sensor Parameters in QGC

PX4 behaviour can be configured or tuned by parameters, such as the low-pass
filter cutoff frequency for the accelerometer and gyroscope. The QGC Parameters
screen allows users to find and modify any of the parameters associated with the
vehicle [77]. QGC communicates over MAVLink to the PX4 Autopilot, by enabling
MAVLink protocol, parameters can be read from Simulink and be modified and updated
from QGC. We tuned the low-pass filter cutoff frequency for the accelerometer and
gyroscope, and achieved the best sensor performance at 30Hz, then verified the values
in Simulink, which is shown in Fig. 5.14. In QGC Parameters list, the modified values
are red-colored while the default ones are white-colored.

• External Serial Communication via MAVLink

Telemetry Radios via MAVLink connection can provide wireless serial communication
between Simulink and the quadrotor UAV. This makes it possible to inspect telemetry
in real-time and log the detailed sensor data while a drone is in flight, then analyze
the performance and make improvements for the next flight. Two Simulink programs,
a serial transmit program, and a serial receive program, are working in pairs to realize
this wireless communication. To enable the settings required for using the related

5.2. Overview of the Software Configuration 38

Figure 5.14: Low-pass filter cutoff frequency tuning (left) and verification (right)

blocks, some model configurations need to be done by following these steps as shown
in Fig. 5.15:

Figure 5.15: Configure the model for Pixhawk hardware

1. In the Modeling tab, click Model Settings.

2. In the Configuration Parameters dialog box, navigate to the Hardware
Implementation pane, and set the Hardware board to Pixhawk 4.

3. In the Target Hardware Resources section: open the MAVLink pane, and
select Enable MAVLink on /dev/ttyACM0;

4. Open the /dev/ttyS1 pane.

5. To know or verify the mapping between the serial ports, click View port map.

6. Set the Baud rate to 57600 (for TELE1 port), Parity to None, and Stop
bits to 1.

7. Click Apply, and then OK to close the dialog box.

5.2. Overview of the Software Configuration 39

Figure 5.16: Serial transmit and serial receive models with the block configurations

The serial transmit and serial receive models that we use for logging the real-time
flight data are shown in Fig. 5.16.

In the serial transmit model, the TELE1 PX4 Serial Transmit block is connected
to the signals we are interested in and sends the chosen data to the ground station
computer. By double-clicking this block, we can verify that the Port we are accessing
is the /dev/ttyS1 which is the same as we can find in the port map. The header and
terminator are set to be [13 11 11 11] and [13 10 10 10] respectively, which will be
used in the serial receive block configuration to build a link between the two models.

In the serial receive model, the Serial Configuration block and the Serial Receive block
work in pairs to receive the data sent from the quadrotor. By checking the USB Serial
Port in Device Manager on Windows, we can figure out the correct port to use for
both of the blocks. The Baud rate is set to 57600 when using the TELE1 port with
telemetry radios. This serial receive model can run in real time and log the chosen
data while doing the flight test.

5.2. Overview of the Software Configuration 40

uORB

The uORB, a micro (symbolized as u) sized Object Request Broker, provides a data structure
for data distribution [75]. PX4 uses it as an asynchronous publish/subscribe messaging API
for inter-thread/inter-process communication. UORB works like a librarian who keeps track
of information while communicating with people. Customers have a notion of ”Topic” as
the book they are writing or reading from. But only the librarian can actually touch, write,
and read the book. Therefore customers never actually get to interact with the physical
book itself [78, 79]. In Simulink, the device driver block (for example, PX4 uORB Read
block) requests sensor data over uORB from the IO server built into the Pixhawk hardware.
In our Simulink program, we get IUM data by using the Accelerometer, Gyroscope, and
Magnetometer blocks provided in the UAV Toolbox Support Package for PX4 Autopilots,
shown in Fig. 5.17. Each of the blocks is a PX4 uORB Read block, which can be checked
by clicking the arrow at the bottom left corner of the PX4 Accelerometer block, see in Fig.
5.18.

Figure 5.17: IUM model for reading the IMU data from Pixhawk 4

UORB has four main concepts: message, topic, module, and publish/subscribe. The PX4
Accelemeter block, as shown in Fig. 5.17, is taken as an example to explain these four
concepts.

• Message defines the basic information format with a name and internal values, like lan-
guage grammar. A message describing the accelerometer could be named sensor accel,
and store information such as timestamp, device ID, reference frames, temperature,
and the number of raw samples, etc. The timestamp is mandatory for all messages
which tells when the message was published and is used by subscribers to determine
the age of the message. A uORB message is represented as a bus signal in Simulink,

5.2. Overview of the Software Configuration 41

and the PX4 sensor accel uORB Read block, shown in Fig. 5.18, outputs a Simulink
bus signal corresponding to its defined uORB message.

Figure 5.18: PX4 sensor accel uORB Read block (left) and BusSelector parameter block
(right)

• Topic is a communication funnel where the message gets sent and received. Different
topics are separated from each other, and a message can be used nested in other
messages. New uORB topics can be added either within the main PX4/PX4-Autopilot
repository or can be added in out-of-tree message definitions. Message files can not
be used directly in the code, so these message files are analyzed and converted into
a C/C ++ struct during the build time to make it possible for the codebase to use
the message. The build system by default automatically registers the topics with an
identical name as the message, this way the topic name can always be used as the name
of the message since it is always registered. By double-clicking the PX4 sensor accel
uORB Read block in Fig. 5.18, the message subscribed to this topic can be changed,
shown in Fig. 5.19. And a list of messages can be found by clicking the select button
in the PX4 sensor accel uORB Read Parameter block.

Figure 5.19: PX4 sensor accel uORB Read Parameter block (left) and a select-able message
list (right)

• Modules use uORB topics to communicate with each other. Our Simulink module,

5.2. Overview of the Software Configuration 42

shown in Fig. 5.17, reads the onboard sensors values and publishes data using the
corresponding uORB topics over uORB message bus.

• Publish/Subscribe: Sending out messages on a topic is called publishing, and listening
to a topic is called subscribing. Every topic, therefore, has at least one publisher and
subscriber. The PX4 uORB Read block is a subscriber that receives the message sent
to the topic, which can be checked by clicking the arrow at the bottom left corner
of the PX4 sensor accel uORB Read block, details are provided in Fig. 5.20. The
selected signals on the top right of Fig. 5.20 are extracted from the subscribed message.
As a result, the accelerometer data can be read from Pixhawk 4.

Figure 5.20: PX4 sensor accel uORB Read block (top) and the block details (bottom)

The most basic and essential concept in uORB is the topic. Topics are at the heart of all
the interfaces to uORB. For more details, please refer to [74, 78,79].

Simulation Data Inspector

The Simulation Data Inspector (SDI) is used to visualize the flight performance and record
the data in our flight testing, shown in Fig. 5.21. It integrates with data logging in Simulink
models, works well for visualizing many signals throughout a model, and manages incoming
simulation data using the archive. By default, the previous run moves to the archive when a
new simulation is started. Signals from the archive can be plotted, and runs of interest can
be dragged back into the work area [80,81].

5.2. Overview of the Software Configuration 43

Figure 5.21: Open the Simulation Data Inspector in Simulink (top) and Simulation Data
Inspector (bottom)

The Simulation Data Inspector supports:

• Viewing signals during simulation

• Logging, importing, and exporting data, the imported data from the workspace or a
MAT-file will be seen in the second highlight area in Fig. 5.21

• Configurable subplot layouts and visualization settings

• Viewing data using multiple visualization options, including maps and XY plots

• Post-processing and data analysis using comparisons with tolerance values

• Saving plots and data to share or archive results

There are three ways to open the Simulation Data Inspector:

• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.

• Select the signal in the model, then click the logging budge. When the logging badge
appears above the signal marked for logging, as shown in the first highlight area in
Fig. 5.21, signal-click it.

• MATLAB command prompt: Enter Simulink.sdi.view.

5.3. Overview of the Quadrotor Implementation Phases 44

5.3 Overview of the Quadrotor Implementation Phases

The quadrotor implementation includes the following three phases, as shown in Fig. 5.22:

Figure 5.22: The quadrotor implementation phases

• Testing the attitude estimation with hardware in the loop

The estimator’s efficiency and accuracy are tested and verified in this phase. The IMU
is calibrated using the method in section 4.2 and a rough gain tuning of the estimator
is done after. In this phase, the Pixhawk 4 is connected to the host computer using
a USB cable, the IMU data are read from the Pixhawk board, and the estimation
program is running on the host computer. To run the program in the simulation mode,
we click Run in the Simulink Toolstrip on the Simulation tab.

• Implementation of the complete program

This phase is the core of our whole testing, where the configuration of each component
and the majority of the parameter tuning are performed. In this phase, the complete
Simulink program is used. Two independent models are included in this Simulink
program, a flight controller model and a serial communication model. The former is
used to conduct the test in this phase, while the latter is built and set up to accomplish
real-time wireless data logging for the indoor flight test in the following phase. During
the test, the battery is connected and the propellers are detached from the motors,
which are capable of rotating when a command is given. Pixhawk 4 is connected to
the host computer using a USB cable and the Monitor & Tune mode is used. By
clicking Monitor & Tune from the Run on Hardware section of the Hardware tab in
the Simulink Toolstrip, the C code will be generated for the controller model and
automatically deployed to the Pixhawk board. Pixhawk 4 communicates with the host
computer over Monitor & Tune mode, which allows tuning parameters in real time on
Pixhawk and logging real-time signals in Simulink.

1. RC setups and configurations:

5.3. Overview of the Quadrotor Implementation Phases 45

(a) Specify the channels to which the transmitter sticks (for roll, pitch, yaw, and
throttle) are mapped;

(b) Calibrate the minimum, maximum, trim, and reverse settings for all trans-
mitter channels by using the method in Section 5.1.2;

(c) Set a safety switch, an arming gesture, and a trigger that resets the orientation
of the drone once it has been armed or disarmed.

2. Fine-tune the estimator by adjusting the cutoff frequencies of the hardware and
the software low-pass filters until the desired attitude performance is achieved.

3. Test the control algorithms in Chapter 6 and check the real-time performance
from the Simulink Data Inspector (SDI). With the battery connected and the
RC orientation set to zero, lift the drone with hands and apply orientations to
test the motor feedback and the control logic. Rough-tune the control gains until
achieving satisfactory plots from the SDI. This group of gains will be used as a
starting point for the indoor flight test.

4. Build and set up a serial wireless communication system (see 5.1.2) to realize
real-time wireless data logging (see 5.2.2) for the indoor flight test.

The implementation is done in the monitor and tune implementation mode which
enables real-time parameter tuning. As soon as the parameter values change in
the Simulink model, the modified values are communicated to the target hardware
immediately. In addition, compared to the simulation mode, this testing can help to
identify issues related to the communication channels and the magnetic field error
caused by battery current. This phase facilitates an efficient parameter tuning process
and serves as appropriate safety preparation for the real flight test.

• Indoor flight test

In this phase, the flight controller model is built, deployed, and run on Pixhawk 4
to fly the drone. By clicking Build, Deploy, & Start from the Deploy section of the
Hardware tab in the Simulink Toolstrip, MATLAB generates C-code from the model.
The generated C-code is then deployed on Pixhawk 4 and starts execution. The serial
communication model is run on the host computer during the test to log the real-time
flight data via telemetry radios. The flight data are saved and plotted in order to
analyze the flight performance. Control gains are fine-tuned until satisfactory flight
performance is achieved.

Chapter 6

Attitude Control

Attitude control for quadrotors has evolved from several different classes of controllers over
the past decades; linear controllers have been proven to be sufficient for obtaining stable
flights. The concept of PID control with its simplicity has been explored extensively as a
classical approach to yielding reliable and consistent tracking performance. A number of
research groups have adopted PID controllers specifically for quadrotor systems and due to
their efforts, PID controllers are now widely used for commercial quadrotors. Three different
PID-type controllers are introduced in this chapter, which have already been successfully
implemented on the PX4 autopilot system. The experimental results are presented and the
flight performance are compared.

6.1 PD-Like Controller

Let Qd be the desired attitude to be tracked, generated by

Q̇d =

[
−q⊤d

ηdI3 + S(qd)

]
ωd (6.1)

where Qd := [ηd, qd]
⊤. The attitude tracking error is represented by Re := R⊤

d R, which
corresponds to the unit quaternion Qe := Q−1

d ⊙Q and is defined as

Qe =

[
ηe
qe

]
=

[
ηdη + q⊤qd

ηdq − ηqd − qd × q

]
(6.2)

Differentiating both sides of equation Qd ⊙Qe = Q with respect to time, one has

Q̇d ⊙Qe +Qd ⊙ Q̇e = Q̇ (6.3)

46

6.1. PD-Like Controller 47

Then the time derivative of Qe can be derived as follows:

Q̇e = Q−1
d ⊙ Q̇−Q−1

d ⊙ Q̇d ⊙Qe

=
1

2
Q−1
d ⊙Q⊙Qω − 1

2
Q−1
d ⊙Qd ⊙Qωd

⊙Qe

=
1

2
Qe ⊙Qω − 1

2
Qωd

⊙Qe

=
1

2
Qe ⊙Qω − 1

2
Qe ⊙Q−1

e ⊙Qωd
⊙Qe

=
1

2
Qe ⊙Qω − 1

2
Qe ⊙Qω̃d

=
1

2
Qe ⊙Qωe (6.4)

Using the fact that Q−1
e ⊙Qωd

⊙Qe = Qω̃d
where ω̃d = R⊤

e ωd and ωe = ω− ω̃d, and assuming
that Qd is constant (or slowly varying), i.e., ωd ≈ 0, the attitude error dynamics can be
rewritten as

Q̇e =

[
−1

2q
⊤
e ω

1
2(ηeI3 + S(qe))ω

]
(6.5)

using the fact ωd = 0 and ωe = ω. The PD-like attitude stabilization control law is given
by [39]

τ = −αqe − Γ1ω (6.6)

Under the proposed control law (6.6), the closed loop dynamics are given by

q̇e =
1

2
(ηeI3 + S(qe))ω

If ω̇ = −ω × Ifω − αqe − Γ1ω (6.7)

Theorem 6.1. [39] Consider (3.11) under the control law (6.6). Then, the equilibrium point
(ηe = 1, qe = 0, ω = 0) is almost globally asymptotically stable.

Proof. The time derivative of the following Lyapunov function candidate:

V = αq⊤e qe + α(1− ηe)
2 +

1

2
ω⊤Ifω (6.8)

can be written as follows

V̇ = 2αq⊤e q̇e + 2α(ηe − 1)η̇e + ω⊤If ω̇

= αq⊤e ((ηeI3 + S(qe))ω)− α(ηe − 1)
(
q⊤e ω

)
+ ω⊤ (τ − S(ω)Ifω)

= αηeq
⊤
e ω − αω⊤S(qe)qe − αηeq

⊤
e ω + αq⊤e ω − αω⊤qe − ω⊤Γ1ω − ω⊤S(ω)Ifω

= −ω⊤Γ1ω (6.9)

which implies that ω(t), qe(t) and ηe are bounded. Applying the LaSalle’s invariance theorem,
for V̇ = 0 one can get ω = 0, which implies ω̇ = 0. Consequently, in view of the second
equation in (6.7), one has qe(t) = 0. Using the fact that η2e + q⊤e qe = 1, one can easily
show that ηe = ±1. One can also show that the equilibrium point (qe = 0, ηe = 1, ω = 0)
is an attractor while the equilibrium point (qe = 0, ηe = −1, ω = 0) is a repeller (i.e.,
unstable).

6.1. PD-Like Controller 48

Remark 1. Since the attitude of the quadrotor can not be directly measured. The real
attitude Q will be replaced by the estimated attitude Q̂ as discussed in the previous section.
On the other hand, the angular velocity measurements can be corrected using the estimated
gyro bias b̂. Therefore, the PD-like control law (6.6) can be modified using the estimated
attitude and gyro bias as:

τ = −αq̂e − Γ1(ωB − b̂) (6.10)

where, Q̂e := [η̂e q̂e]
⊤ = Q−1

d ⊙ Q̂. This modified controller will be implemented in our
real-time experimental tests.

6.1.1 Experimental Results

In this experiment, two tests have been performed, a test for attitude stabilization and a test
for attitude tracking. The quadrotor is taken off the ground, and its attitude is stabilized
to R = I3 (i.e., ϕ = 0deg, θ = 0deg and ψ = 0deg) during the hover time. In the case of
hovering, only the thrust commands are applied to the motors, and no orientation commands
from the remote are introduced into the system. The experiment is performed with the
attitude estimator (4.7-4.8), and the attitude control law (6.10). The Simulink program is
given in Fig. 6.1.

Figure 6.1: Simulink model for the PD-like controller

The gains involved in the controller are chosen as follows by trial and error:

α = 4.5 Γ1 = diag([0.375, 0.375, 0.375]) (6.11)

The real-time attitude stabilization performance is shown in Fig. 6.2, and the attitude
tracking performance for the roll, pitch, and yaw respectively are shown in Fig. 6.3. Fig.

6.1. PD-Like Controller 49

6.3 shows that the PD-like controller has the ability to control the orientation and track the
reference commands closely. In Fig. 6.2, with a flight of 10 seconds, one can see that the
PD-like controller has the ability to stabilize the orientation, where the roll is maintained
between ±3 deg, the pitch between ±5 deg, and the yaw between ±2 deg. One can also
notice that a small command has been given to the pitch during the hover time to adjust
for the quadrotor drift. To enhance the flight performance an integral action is added to
this PD-like controller.

6.1. PD-Like Controller 50

Figure 6.2: Real-time flight performance for attitude stabilization using PD-like controller

6.1. PD-Like Controller 51

Figure 6.3: Real-time flight performance for attitude tracking using PD-like controller

6.2. PID-Like Controller 52

6.2 PID-Like Controller

The PID-like attitude stabilization control law is given by

τ = −αqe − Γ1ω − k1

∫ t

0
ωdt− k2

∫ t

0
qedt (6.12)

Considering the fact that the attitude of the quadrotor can not be directly measured. The
real attitude Q will be replaced by the estimated attitude Q̂ as discussed in the previous
section. On the other hand, the angular velocity measurements can be corrected using the
estimated gyro bias b̂. Therefore, the PID-like control law (6.12) can be modified using the
estimated attitude and gyro bias as:

τ = −αq̂e − Γ1(ωB − b̂)− k1

∫ t

0
(ωB − b̂)dt− k2

∫ t

0
q̂edt (6.13)

where, Q̂e := [η̂e q̂e]
⊤ = Q−1

d ⊙ Q̂. This modified controller will be implemented in our
real-time experimental tests.

6.2.1 Experimental Results

In this experiment, two tests have been performed, a test for attitude stabilization and a test
for attitude tracking. The quadrotor is taken off the ground, and its attitude is stabilized
to R = I3 (i.e., ϕ = 0deg, θ = 0deg and ψ = 0deg) during the hover time. In the case of
hovering, only the thrust commands are applied to the motors, and no orientation commands
from the remote are introduced into the system. The Simulink program is given in Fig. 6.4.

The gains involved in the controller are chosen as follows by trial and error:

α = 4.5 Γ1 = diag([0.375, 0.375, 0.375]) k1 = 0.6 k2 = 1.5 (6.14)

The real-time attitude stabilization performance is shown in Fig. 6.5, and the attitude
tracking performance is shown in Fig. 6.6. Fig. 6.6 shows that the PID-like controller has
the ability to control the orientation and track the reference commands closely. In Fig. 6.5,
with a flight of 10 seconds, one can see that the PID-like controller has the ability to stabilize
the quadrotor and maintain the roll between ±3 deg, the pitch between ±2 deg, and the
yaw between ±2 deg. A small command has been given to the roll during the hover time to
adjust for the quadrotor drift. Compared to the PD-like controller, the steady-state error is
smaller, which provides a better tracking performance as well as better stabilization.

6.2. PID-Like Controller 53

Figure 6.4: Simulink model for the PID-like controller

6.2. PID-Like Controller 54

Figure 6.5: Real-time flight performance for attitude stabilization using PID-like controller

6.2. PID-Like Controller 55

Figure 6.6: Real-time flight performance for attitude tracking using PID-like controller

6.3. Nested PID-like Controller 56

6.3 Nested PID-like Controller

Aiming at improving the previous two attitude control schemes, we introduce a PID-like
controller with two nested loops. The control scheme is shown in Fig. 6.7.

Figure 6.7: Control scheme for the nested PID-like controller

The attitude error dynamics can be rewritten as

Q̇e =

[
η̇e
q̇e

]
=

[
−1

2q
⊤
e (ω + dω)

1
2(ηeI3 + S(qe))(ω + dω)

]
(6.15)

where ω is the angular velocity, dω is constant gyro bias. The attitude control law is given
by

ω = −ηeKqe − θ̂ (6.16)

with
˙̂
θ = Γηeqe, K = KT > 0 and Γ = ΓT > 0. Consider the following Lyapunov function

candidate:

V = q⊤e qe +
1

2
θ̃⊤Γ−1θ̃ (6.17)

where θ̃ = θ̂ − dω. The time derivative of V can be written as follows:

V̇ = 2q⊤e q̇e + θ̃⊤Γ−1 ˙̃θ

= q⊤e [(ηeI3 + S(qe))(ωd + dω)] + θ̃⊤Γ−1 ˙̂θ

= q⊤e ηe(ωd + dω) + θ̃⊤Γ−1 ˙̂θ

= q⊤e ηe(−ηeKqe − θ̂ + dω) + θ̃⊤Γ−1 ˙̂θ

= −η2eq⊤e Kqe (6.18)

which implies that θ̃(t), qe(t) and ηe are bounded. As per LaSalle’s invariance theorem,
setting V̇ = 0 implies either ηe = 0 or qe = 0. One can show that the (undesired) equilibrium
characterized by ηe = 0 is unstable while the desired equilibrium characterized by qe = 0 is
asymptotically stable.

Remark 2. Since the attitude of the quadrotor can not be directly measured. The real
attitude Q will be replaced by the estimated attitude Q̂ as discussed in the previous section.

6.3. Nested PID-like Controller 57

On the other hand, the angular velocity measurements can be corrected using the estimated
gyro bias b̂. Therefore, the attitude control law (6.16) can be modified using the estimated
attitude and gyro bias as:

ω = −η̂eKq̂e − Γ

∫ t

0
η̂eq̂e dt (6.19)

where, Q̂e := [η̂e q̂e]
⊤ = Q−1

d ⊙ Q̂. And the angular rate controller which is the inner loop
PD controller is given by

τ = Kp[ω − (ωB − b̂)] +Kd
d[ω − (ωB − b̂)]

dt
(6.20)

This modified attitude controller will be implemented in our real-time experimental tests.

6.3.1 Experimental Results

In this experiment, two tests have been performed, a test for attitude stabilization and a test
for attitude tracking. The quadrotor is taken off the ground, and its attitude is stabilized
to R = I3 (i.e., ϕ = 0deg, θ = 0deg and ψ = 0deg) during the hover time. In the case of
hovering, only the thrust commands are applied to the motors, and no orientation commands
from the remote are introduced into the system. The Simulink program is given in Fig. 6.8.

Figure 6.8: Simulink model for the nested PID like controller

The gains involved in the controller are chosen as follows by trial and error:

K = 18 Γ = 2.5 Kp = 0.2 Kd = 0.001 (6.21)

6.3. Nested PID-like Controller 58

Figure 6.9: Real-time flight performance for attitude stabilization using nested PID-like
controller

6.3. Nested PID-like Controller 59

The real-time attitude stabilization performance is shown in Fig. 6.9, and the attitude
tracking performance is shown in Fig. 6.10. Fig. 6.10 shows that the nested PID-like
controller has the ability to control the orientation and track the reference commands closely.
In Fig. 6.9, with a flight of 10 seconds, one can see that the nested PID-like controller
has the ability to stabilize the quadrotor and maintain the roll between ±5 deg, the pitch
between ±2 deg, and the yaw between ±3 deg. No orientation commands have been given to
the system to adjust the position within the 10 seconds. Moreover, compared to the PD-like
and PID-like controllers, the motion achieved with this controller is relatively smoother and
less aggressive.

6.3. Nested PID-like Controller 60

Figure 6.10: Real-time flight performance for attitude tracking using nested PID-like
controller

6.4. Comparison 61

6.4 Comparison

Due to the unavailability of sensors that directly measure the attitude, a suitable attitude
observer is used to reconstruct the attitude from the angular velocity and inertial vector
measurements provided by the IMU. Three different PID-type controllers are implemented
and proved to have the ability to control the orientation of the quadrotor with satisfactory
performance. To compare the performance of the three controllers a group of flight tests of
roughly 30-50 seconds is conducted.

The comparison of the flight performance is presented in table. 6.1, and shown in Fig.
6.11-6.13.

PD
Pros Responsive
Cons Steady state error, shaking aggressively during takeoff

PID
Pros Stable performance, precise
Cons Little aggressive responses, needs extra attention to fly

Nested PID
Pros Stable, easy to fly with smooth performance
Cons Over-correction occurs when hovering for too long,

sometimes causes shaking or small oscillation when this happens

Table 6.1: Comparison of the flight performance with the three controllers

6.4. Comparison 62

Figure 6.11: Real-time flight performance with orientation commands for the PD-like
controller

6.4. Comparison 63

Figure 6.12: Real-time flight performance with orientation commands for the PID-like
controller

6.4. Comparison 64

Figure 6.13: Real-time flight performance with orientation commands for the nested PID-like
controller

Chapter 7

Conclusion

A rapid-prototyping experimental platform (hardware and software), using Pixhawk 4 and
Matlab-Simulink environment, has been developed for the real-time implementation of
attitude estimation and control algorithms for quadrotor UAVs. The estimation and control
algorithms can be easily implemented using Simulink blocks from which the real-time code is
automatically generated and uploaded onto the PX4 autopilot hardware. This mitigates the
cost and challenges of quadrotor development as it enables users to devote more time to their
control algorithm rather than to the details of programming. A nonlinear attitude estimation
algorithm as well as different attitude controllers have been successfully implemented and
evaluated.

As future work, we are interested in developing and experimentally validating an attitude
control scheme that uses directly the vector measurements without attitude estimation, as
well as an attitude control scheme that relies on a single vector measurement.

65

Bibliography

[1] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz, “A survey of open-
source uav flight controllers and flight simulators,” Microprocessors and Microsystems,
vol. 61, pp. 11–20, 2018.

[2] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude estimation
methods,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 12–28, 2007.

[3] M. Zamani, J. Trumpf, and R. Mahony, “Nonlinear attitude filtering: A comparison
study,” arXiv preprint arXiv:1502.03990, 2015.

[4] G. Wahba, “A least squares estimate of satellite attitude,” SIAM review, vol. 7, no. 3,
pp. 409–409, 1965.

[5] M. D. Shuster and S. Oh, “Three-axis attitude determination from vector observations,”
Journal of Guidance, Control, and Dynamics, vol. 4, no. 1, pp. 70–77, 1981.

[6] F. L. Markley, “Attitude determination using vector observations and the singular value
decomposition,” The Journal of the Astronautical Sciences, vol. 36, no. 3, pp. 245–258,
1988.

[7] S. F. Schmidt, “The Kalman filter - Its recognition and development for aerospace
applications,” Journal of Guidance, Control, and Dynamics, vol. 4, no. 1, pp. 4–7, 1981.

[8] J. L. Farrell, “Attitude determination by Kalman filtering,” Automatica, vol. 6, no. 3,
pp. 419–430, 1970.

[9] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering for spacecraft attitude
estimation,” Journal of Guidance, Control, and Dynamics, vol. 5, no. 5, pp. 417–429,
1982.

[10] F. L. Markley, “Attitude error representations for kalman filtering,” Journal of guidance,
control, and dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[11] I. Bar-Itzhack and Y. Oshman, “Attitude determination from vector observations:
quaternion estimation,” Aerospace and Electronic Systems, IEEE Transactions on,
vol. 321, no. 1, pp. 128–136, 1985.

[12] S. Salcudean, “A globally convergent angular velocity observer for rigid body motion,”
Automatic Control, IEEE Transactions on, vol. 36, no. 12, pp. 1493–1497, 1991.

66

Bibliography 67

[13] N. Metni, J.-M. Pflimlin, T. Hamel, and P. Souères, “Attitude and gyro bias estimation
for a flying uav,” in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, pp. 1114–1120, IEEE, 2005.

[14] T. Hamel and R. Mahony, “Attitude estimation on SO(3) based on direct inertial
measurements,” in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pp. 2170–2175, IEEE, 2006.

[15] N. Metni, J.-M. Pflimlin, T. Hamel, and P. Souères, “Attitude and gyro bias estimation
for a VTOL UAV,” Control Engineering Practice, vol. 14, no. 12, pp. 1511–1520, 2006.

[16] A. Tayebi, S. McGilvray, A. Roberts, and M. Moallem, “Attitude estimation and
stabilization of a rigid body using low-cost sensors,” in Decision and Control, 2007 46th
IEEE Conference on, pp. 6424–6429, IEEE, 2007.

[17] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on the
special orthogonal group,” Automatic Control, IEEE Transactions on, vol. 53, no. 5,
pp. 1203–1218, 2008.

[18] R. Mahony, T. Hamel, J. Trumpf, and C. Lageman, “Nonlinear attitude observers
on SO(3) for complementary and compatible measurements: A theoretical study,” in
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pp. 6407–6412, IEEE,
2009.

[19] P. Martin and E. Salaün, “Design and implementation of a low-cost observer-based
attitude and heading reference system,” Control Engineering Practice, vol. 18, no. 7,
pp. 712–722, 2010.

[20] A. Tayebi, A. Roberts, and A. Benallegue, “Inertial measurements based dynamic
attitude estimation and velocity-free attitude stabilization,” in American Control
Conference (ACC), 2011, pp. 1027–1032, IEEE, 2011.

[21] A. Roberts and A. Tayebi, “On the attitude estimation of accelerating rigid-bodies
using GPS and IMU measurements,” in Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on, pp. 8088–8093, IEEE, 2011.

[22] M.-D. Hua, G. Ducard, T. Hamel, R. Mahony, and K. Rudin, “Implementation of a
nonlinear attitude estimator for aerial robotic vehicles,” Control Systems Technology,
IEEE Transactions on, vol. 22, no. 1, pp. 201–213, 2014.

[23] M.-D. Hua, K. Rudin, G. Ducard, T. Hamel, and R. Mahony, “Nonlinear attitude
estimation with measurement decoupling and anti-windup gyro-bias compensation,” in
IFAC World Congress, pp. 2972–2978, 2011.

[24] S. Berkane, A. Abdessameud, and A. Tayebi, “Hybrid attitude and gyro-bias observer
design on so(3),” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 6044–
6050, 2017.

[25] J.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” Automatic Control,
IEEE Transactions on, vol. 36, no. 10, pp. 1148–1162, 1991.

Bibliography 68

[26] N. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body attitude control,”
Control Systems Magazine, IEEE, vol. 31, no. 3, pp. 30–51, 2011.

[27] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation,
and control of quadrotor,” IEEE Robotics and Automation Magazine, no. 19, pp. 20–32,
2012.

[28] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control techniques applied
to an indoor micro quadrotor,” in Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3, pp. 2451–2456, IEEE,
2004.

[29] J. Li and Y. Li, “Dynamic analysis and PID control for a quadrotor,” in Mechatronics
and Automation (ICMA), 2011 International Conference on, pp. 573–578, IEEE, 2011.

[30] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and J. Guichard, “LQR
control for a quadrotor using unit quaternions: Modeling and simulation,” in Electronics,
Communications and Computing (CONIELECOMP), 2013 International Conference
on, pp. 172–178, IEEE, 2013.

[31] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D’Andrea,
“A platform for aerial robotics research and demonstration: The flying machine arena,”
Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[32] A. Benallegue, A. Mokhtari, and L. Fridman, “Feedback linearization and high order
sliding mode observer for a quadrotor UAV,” in Variable Structure Systems, 2006.
VSS’06. International Workshop on, pp. 365–372, IEEE, 2006.

[33] I. Voos, “Nonlinear control of a quadrotor micro-UAV using feedback-linearization,”
in Mechatronics, 2009. ICM 2009. IEEE International Conference on, pp. 1–6, IEEE,
2009.

[34] D. Lee, H. J. Kim, and S. Sastry, “Feedback linearization vs. adaptive sliding mode
control for a quadrotor helicopter,” International Journal of control, Automation and
systems, vol. 7, no. 3, pp. 419–428, 2009.

[35] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques applied to
an indoor micro quadrotor,” in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pp. 2247–2252, IEEE, 2005.

[36] T. Madani and A. Benallegue, “Backstepping control for a quadrotor helicopter,” in
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 3255–
3260, IEEE, 2006.

[37] Y.-C. Choi and H.-S. Ahn, “Nonlinear control of quadrotor for point tracking: Actual
implementation and experimental tests,” Mechatronics, IEEE/ASME Transactions on,
vol. 20, no. 3, pp. 1179–1192, 2015.

[38] F. Goodarzi, D. Lee, and T. Lee, “Geometric nonlinear PID control of a quadrotor UAV
on SE(3),” in Control Conference (ECC), 2013 European, pp. 3845–3850, IEEE, 2013.

Bibliography 69

[39] A. Tayebi and S. McGilvray, “Attitude stabilization of a VTOL quadrotor aircraft,”
Control Systems Technology, IEEE Transactions on, vol. 14, no. 3, pp. 562–571, 2006.

[40] F. Lizarralde and J. T. Wen, “Attitude control without angular velocity measurement:
A passivity approach,” Automatic Control, IEEE Transactions on, vol. 41, no. 3,
pp. 468–472, 1996.

[41] P. Tsiotras, “Further passivity results for the attitude control problem,” IEEE Trans-
actions on Automatic Control, vol. 43, no. 11, pp. 1597–1600, 1998.

[42] M. R. Akella, “Rigid body attitude tracking without angular velocity feedback,” Systems
& Control Letters, vol. 42, no. 4, pp. 321–326, 2001.

[43] A. Tayebi, “Unit quaternion-based output feedback for the attitude tracking problem,”
Automatic Control, IEEE Transactions on, vol. 53, no. 6, pp. 1516–1520, 2008.

[44] A. Tayebi, A. Roberts, and A. Benallegue, “Inertial vector measurements based velocity-
free attitude stabilization,” Automatic Control, IEEE Transactions on, vol. 58, no. 11,
pp. 2893–2898, 2013.

[45] D. Thakur and M. R. Akella, “Gyro-free rigid-body attitude stabilization using only
vector measurements,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 4,
pp. 811–818, 2014.

[46] L. Benziane, A. Benallegue, and A. Tayebi, “Attitude stabilization without angular
velocity measurements,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pp. 3116–3121, IEEE, 2014.

[47] L. Benziane, A. Benallegue, Y. Chitour, and A. Tayebi, “Velocity-free attitude stabiliza-
tion with inertial vector measurements,” International Journal of Robust and Nonlinear
Control, in press, 2015.

[48] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8, no. 9, pp. 439–
517, 1993.

[49] P. Singla, D. Mortari, and J. L. Junkins, “How to avoid singularity for Euler angle set?,”
in Proceedings of the AAS Space Flight Mechanics Conference, Hawaii, 2004.

[50] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
Matrix, vol. 58, pp. 15–16, 2006.

[51] S. P. Bhat and D. S. Bernstein, “A topological obstruction to continuous global
stabilization of rotational motion and the unwinding phenomenon,” Systems & Control
Letters, vol. 39, no. 1, pp. 63–70, 2000.

[52] R. Mahony and T. Hamel, “Adaptive compensation of aerodynamic effects during
takeoff and landing manoeuvres for a scale model autonomous helicopter,” European
Journal of Control, vol. 7, no. 1, pp. 43–57, 2001.

[53] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic modeling and config-
uration stabilization for an X4-flyer,” Proceedings of the 15th IFAC World Congress,
vol. 15, no. 1, pp. 846–846, 2002.

Bibliography 70

[54] P. E. Crouch, “Spacecraft attitude control and stabilization: Applications of geometric
control theory to rigid body models,” Automatic Control, IEEE Transactions on, vol. 29,
no. 4, pp. 321–331, 1984.

[55] B. Mccormick, Aerodynamics, Aeronautics, and Flight Mechanics. Wiley, Second
Edition, 1995.

[56] J. G. Leishman, Principles of Helicopter Aerodynamics with CD Extra. Cambridge,
U.K: Cambridge Univ. Press., 2006.

[57] M. Krznar, D. Kotarski, P. Piljek, and D. Pavković, “On-line inertia measurement of
unmanned aerial vehicles using on board sensors and bifilar pendulum,” Interdisciplinary
Description of Complex Systems, vol. 16, pp. 149–161, 01 2018.

[58] A. Shaheen and M. S. Anwar, “A doubly suspended pendulum,” 2017.

[59] C. C. Foster and G. H. Elkaim, “Extension of a two-step calibration methodology to in-
clude nonorthogonal sensor axes,” Aerospace and Electronic Systems, IEEE Transactions
on, vol. 44, no. 3, pp. 1070–1078, 2008.

[60] M. Barczyk, Nonlinear state estimation and modeling of a helicopter UAV. PhD thesis,
University of Alberta, 2012.

[61] [PX4 User Guide]. https://docs.px4.io/master/en/.

[62] [Pixhawk4 User Guide]. https://docs.px4.io/master/en/flight controller/pixhawk4.html.

[63] [UAV Toolbox User Guide]. https://www.mathworks.com/help/pdf doc/supportpkg/px4/px4 ug.pdf.

[64] [QGroundControl Developer Guide]. http://qgroundcontrol.com/.

[65] [FMU Processer STM32F765 Datasheet]. https://www.mouser.ca/datasheet/2/389/stm32f765bi-
2956130.pdf.

[66] [IO Processor STM32F100 Datasheet]. https://www.st.com/en/microcontrollers-
microprocessors/stm32f100rb.html.

[67] [Accel/Gyro ICM-20689 Datasheet]. https://www.ic-components.hk/files/db/ICM-
20689.pdf.

[68] [Accel/Gyro BMI055 Datasheet]. https://www.bosch-sensortec.com/products/motion-
sensors/imus/bmi055/.

[69] [Mag IST8310 Datasheet]. https://intofpv.com/attachment.php?aid=8104.

[70] [GPS User Guide]. http://www.holybro.com/manual/Pixhawk4-GPS-Quick-Start-
Guide.pdf.

[71] [ESC Calibration Process]. http://copter.ardupilot.com/wiki/esc-calibration/.

[72] [Dronecode User Guide]. https://www.dronecode.org/.

[73] [MAVLink Developer Guide]. https://mavlink.io/en/.

Bibliography 71

[74] [uORB Developer Guide]. https://docs.px4.io/main/en/middleware/uorb.html.

[75] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6235–6240, 2015.

[76] [MAVLink Messaging Tutorial]. https://docs.px4.io/main/en/middleware/mavlink.html.

[77] [QGC Parameter List]. https://docs.px4.io/main/en/advanced config/parameters.html#parameter-
not-in-firmware.

[78] [uORB Tutorial Part1]. https://px4.io/px4-uorb-explained-part-2/.

[79] [uORB Tutorial Part2]. https://px4.io/px4-uorb-explained-part-1/.

[80] [SDI User Guide Part1]. https://www.mathworks.com/help/simulink/slref/simulationdatainspector.html.

[81] [SDI User Guide Part2]. https://www.mathworks.com/help/simulink/ug/viewing-
output-trajectories.html.

	Introduction
	Overview of Quadrotor UAV Control Approaches
	Attitude Estimation
	Attitude Control

	Thesis Contribution
	Thesis Outline

	Attitude Representation
	Euler Angles Representation
	Rotation Matrix Representation
	Unit Quaternion Representation
	Comparison of Attitude Representations

	Mathematical Model
	Quadrotor Motion Description
	Model Identification
	Mass
	Propeller Aerodynamics
	Moment of Inertia
	Other Parameters

	Attitude Estimation
	Attitude Estimation
	Observer Design
	Quaternion Representation

	Sensors Calibration
	Experimental Results

	Experimental Platform
	General Overview of the Hardware Platform
	Flight Controller
	Communication
	Power Module and Actuators

	Overview of the Software Configuration
	QGroundControl
	UAV Toolbox Support Package for PX4 Autopilots

	Overview of the Quadrotor Implementation Phases

	Attitude Control
	PD-Like Controller
	Experimental Results

	PID-Like Controller
	Experimental Results

	Nested PID-like Controller
	Experimental Results

	Comparison

	Conclusion

