

IDENTIFICATION OF CRACKS IN PIPELINES BASED ON MACHINE

LEARNING AND DEEP LEARNING

BY

JINCHEN HE

A THESIS

PRESENTED TO LAKEHEAD UNIVERSITY

 IN FULFILLMENT OF THE

THEIS REQUIREMENT FOR THE DEGREE OF

MASTER OF MECHANICAL ENGINEERING

Lakehead University, Faculty of Mechanical Engineering

Thunder Bay, Ontario, CANADA, January 2022

© Jinchen He, January 2022.

All rights reserved.

This thesis by Jinchen He is accepted in its present form by the Mechanical Engineering

Department of Lakehead University as satisfying the thesis requirements for the degree of

Bachelor of Engineering

APPROVED BY

SUPERVISOR

Dr. Hao Bai

Name Signature Date

EXAMINER

Dr. Wilson Wang

Name Signature Date

EXAMINER

Dr. Jian Deng

Name Signature Date

Declaration

I certify that I am the author of this project and that any assistance I received in its

preparation is fully acknowledged and disclosed in the project. I have also cited any source from

which I used data, ideas, or words, either quoted or directly paraphrased. I also certify that this

current study was prepared by me specifically for this course.

No portion of the work referred to in this study has been submitted in support of an application

for another degree or qualification to this or any other university or institution of learning

Jinchen He January, 2022

Student Name Signature Date

Abstract

Pipelines are important long-distance transportation structures in modern industry, and because

many are buried deep underground, pipeline health monitoring is critical to industry; however,

inspecting underground pipelines can be quite challenging due to the large financial and human

resources required. For decades, different methods have been used to assess pipeline cracks.

Ultrasonic quantitative nondestructive testing (QNDT) is one of the frequently used methods in

pipeline health monitoring. In the current study, the coefficients of the reflected and transmitted

waves due to different incident waves were first generated by using a semi-analytical finite

element method based on classical elasticity theory. In that study, different types of pipes,

including different geometries and materials, were considered. Then four different regression

machine learning algorithms and three deep learning algorithms were used to identify crack

features. In this study, the prediction accuracy was compared between the different algorithms

and different datasets. The objective was to find the algorithm with the highest prediction rate

and to select a suitable dataset for prediction. It was found that the extremely randomized tree

(ERT) algorithm was the best in identifying cracks in the pipeline. The prediction accuracy will

be improved by selecting different data sets. In addition, all algorithms performed better in

predicting the radial crack depth (CDRD) than predicting the circumferential crack width

(CWCD).

Keywords: Non-Destructive Testing, Ultrasonic, Wave Response Coefficient, Machine Learning,

Deep Learning

Acknowledgments

My utmost gratitude goes to my thesis supervisor Dr. H. Bai, whose unlimited guidance and

dedication have provided a lot of support. It is his continuous encouragement enabled me to

complete my thesis research during the epidemic period. He taught me how to carry on the

research as clearly as possible, and it was a great privilege to work and learn with him.

Meanwhile, I would like to express my deep gratitude to Dr. Wilson Wang and Dr.Jian Deng for

their valuable suggestions on my research topic.

Finally, I would like to thank all the people who gave me support during the epidemic, especially

my parents, whose unconditional love and care become my strength to facilitate my thesis

completion.

Jinchen He

Lakehead University

January 2022

TABLE OF CONTENTS

List of Table .. 9

List of Figure... 10

List of Abbreviations ... 11

Chapter I Introduction ... 12

1.1 Literature Review .. 13

1.1.1 Applications in Mechanical Engineering ... 13

1.1.2 Applications in Bioengineering ... 15

1.1.3 Applications in Medical Science.. 15

1.1.4 Applications in Physics ... 16

1.1.5 Applications in Other Domain ... 16

1.2 Outline of the Thesis .. 17

1.3 Contributions ... 18

Chapter II Methodology .. 19

2.1 The Fundamentals of Waves in a Cylinder ... 19

2.1.1 Equations of Motion .. 19

2.1.2 Semi Analytical Finite Element ... 21

2.2 Selection of Data Characteristics .. 24

2.3 Combination of Machine Learning ... 25

2.3.1 Determination of Machine Learning Algorithm ... 25

2.3.2 Principles of Machine Learning Algorithms .. 25

2.3.2.1 Support Vector Machine (SVM) Algorithm ... 25

2.3.2.2 Random Forest Algorithm ... 26

2.3.2.3 Extremely Randomized Tree Algorithm .. 27

2.3.2.4 K-Nearest Neighbors Algorithm .. 27

2.3.3 Selection of Hyperparameters in Machine Learning Code .. 28

2.3.3.1 Support Vector Machines (SVM) .. 28

2.3.3.2 K-Nearest Neighbors (KNN) ... 29

2.3.3.3 Random Forest & Extremely Randomized Tree Algorithm 29

2.4 Combination of Deep Learning .. 30

2.4.1 Determination of Deep Learning Algorithm .. 30

2.4.2 Principles of Deep Learning Algorithms .. 31

2.4.2.1 Recurrent Neural Network (RNN) Algorithm Principles 31

2.4.2.2 Principle of Long Short-Term Memory (LSTM) .. 32

2.4.2.3 Principle of Gated Recurrent Unit (GRU) .. 35

2.5 Selection of Hyperparameters for Deep Learning Code .. 36

Chapter III Process and Results ... 38

3.1 Pre-Setting of Hyperparameters and Pipeline Parameters.. 38

3.1.1 Settings of Pipeline Parameters ... 38

3.1.2 Settings of the Machine Learning Hyperparameters ... 39

3.1.3 Settings of Deep Learning Hyperparameters .. 41

3.2 Assessment Criteria ... 42

3.2.1 Mean Absolute Error ... 42

3.2.2 Coefficient of Determination ... 42

3.2.3 Root Mean Square Error .. 43

3.3 Prediction of Pipeline Crack Information ... 43

3.3.1 Prediction Results of Crack Depth in Radial Direction (CDRD)... 45

3.3.2 Prediction Results of Crack Width in Circumferential Direction (CWCD) 47

3.3.3 Results Comparison of CDRD and CWCD .. 49

3.3.4 Comparison of Machine Learning and Deep Learning ... 52

3.4 Results & Discussion ... 55

Chapter IV Conclusion .. 56

Chapter V Future Works .. 58

Reference .. 59

Appendices.. 62

Appendix A: Control group file about CDRD .. 62

Appendix B: Control group file about CWCD .. 64

Appendix C: CDRD prediction codes in Extremely Randomized Tree ... 66

Appendix D: Part of the CDRD prediction codes in Gated Recurrent Unit .. 67

9

List of Table

Fig. 1 Cylindrical Coordinates ... 19

Fig. 2 Semi Analytical Finite Element in Cylinder.. 21

Fig. 3 Fortran Process .. 24

Fig. 4 Support Vector Classifier (left) and Support Vector Regression (right) 26

Fig. 5 Random Forest Structure Diagram ... 27

Fig. 6 K-Nearest Neighbors ... 28

Fig. 7 Example of Recurrent Neural Network (RNN) ... 31

Fig. 8 Basic structure of a standard recurrent neural network (RNN) .. 32

Fig. 9 Principle of Long-Short Term Memory (LSTM)... 33

Fig. 10 Inner structure of a Long Short-Term Memory (LSTM) ... 34

Fig. 11 Neural Network Figure of Long-Short Term Memory (LSTM) ... 35

Fig. 12 GRU cell.. 36

Fig. 13 CDRD Prediction Histogram .. 47

Fig. 14 CWCD Prediction Histogram ... 48

Fig. 15 Performance comparison histogram of CDRD and CWCD in Control Group 49

Fig. 16 Performance comparison histogram of CDRD and CWCD in CFP Group 50

Fig. 17 Performance comparison histogram of CDRD and CWCD in TOMR Group 50

Fig. 18 Performance comparison histogram of CDRD and CWCD in ICWN Group 51

Fig. 19 Performance comparison histogram of CDRD and CWCD in PM Group 51

Fig. 20 Performance comparison histogram of CDRD and CWCD in Total Group 52

Fig. 21 R2 comparison histogram ... 53

Fig. 22 R2 comparison histogram ... 54

Fig. 23 GRU loss curve in CDRD prediction .. 54

Fig. 24 GRU loss curve in CWCD prediction ... 55

10

List of Figure

Table 1 Setting Information about Fortran Code ... 39

Table 2 Hyperparameters of Machine Learning Algorithms.. 40

Table 3 Hyperparameters of Deep Learning Algorithms ... 41

Table 4 Training Data Case .. 44

Table 5 Using different data types and different algorithms to predict CDRD 45

Table 6 Standard Deviation of Different CDRD Data Types ... 46

Table 7 Using different data types and different algorithms to predict CWCD 47

Table 8 Standard Deviation of different CWCD data types ... 48

Table 9 Control group file about CDRD ... 62

Table 10 Control group file about CWCD .. 64

11

List of Abbreviations

Abbreviations Meaning

CDRD Crack Depth in the Radial Direction

CWCD Crack Width in the Circumferential Direction

TOMR Thickness Over Mean Radius

ICWN Input Circumferential Wave Number

CFP Circular Frequency in Pipeline

PM Pipeline Materials

SVM Support Vector Machine

KNN K-Nearest Neighbors

RF Random Forest

ERT Extremely Randomized Tree

SRNN Simple Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

MAE Mean Absolute Error

R2 Coefficient of Determination

CT Computed Tomography

UT Ultrasonic Testing

CCTV Closed-Circuit Television Testing

HMM Hidden Markov Model

NDT Non-Destructive Testing

NN Neural Network

NIR Near-Infrared Spectroscopy

PCA Principal Component Analysis

DCNN Deep Convolution Neural Network

ANN Artificial Neural Network

CNN Convolutional Neural Networks

12

Chapter I Introduction

The rapid development of cities and industries relies heavily on the network of pipelines

including multiple applications such as oil pipelines, natural gas transportation, and urban

sewage pipeline system. A long-distance natural gas or crude oil pipeline can spread out

typically more than 2,000 kilometers, causing a high probability of deterioration/damage

occurring to the structure due to either natural disasters or human intervention. In particular, the

lifetime of oil pipeline is a crucial part of a few countries’ economies, and a ruptured pipeline not

only causes significant damage to the economy but also can destroy the ecosystem and

environment. For instance, the largest marine oil spill in human history occurred in the Gulf of

Mexico on April 20, 2010, resulted in the loss of 11 human lives and $1 billion to the British

Petroleum Company. It negatively impacted the fishing economy of Louisiana in the United

States. In addition, crude oil pollution caused serious damage to the ecological systems, led by

some vulnerable species in extinction.

Therefore, the operation process of such long-distance and large-diameter-based pipelines

requires to conduct regular health monitoring in order to safeguard pipelines from incurred

damages, namely corrosion and rust, stress deformation, and welding defects. This article

primarily outlines the optimization of crack/defect detection methods for pipelines. Among them,

methods such as radio-graphic flaw detection, Computed Tomography (CT), Ultrasonic Testing

(UT) technology, and Closed-Circuit Television Testing (CCTV) methods are commonly used.

However, deep buried pipelines consisting of oil or liquid water are hard to be inspected, for

instance, Closed-Circuit Television Testing (CCTV) is particularly inconvenient in such cases

due to the limitation of a robotic car not to enter inside the pipeline and take pictures. Conversely,

the use of ultrasonic testing technology can meet most testing needs in practice. The principle of

ultrasonic detection technology mainly uses the characteristics of ultrasonic waves propagating

along the pipeline, which are reflected back from the edge of the crack interface. This

information is used to detect and inspect pipeline defects, but this technology relies on

specialized equipment such as transducers and proficient experts to classify and judge the images

generated by the instrument. Relying on humans to qualitatively evaluate images is undoubtedly

very inefficient compared to using neural networks. Many neural networks primarily utilize the

whole image or values generated by the ultrasound machine as the basis for neural network

13

training. However, there is not sufficient data for training. The error in the classification of

defects or prediction results is relatively large in this instance. Therefore, in this work, the wave

response coefficients generated by Fortran software as a dataset are used and combined with a

variety of machine learning and deep learning algorithms for comparison and discussion. This

strategy can generate a large amount of data while reducing labor costs.

1.1 Literature Review

1.1.1 Applications in Mechanical Engineering

In 2008, M. Wolff [1] conducted a health examination using the acoustic structure of the

components of an aircraft. The aluminum plates and B-CFRP plates with cracks were arranged

into two groups i.e., A and B for experimental comparison. The transducer on the aluminum

plate and B-CFRP plate were arranged in a circular form and matrix form, respectively. A

Hidden Markov Model (HMM) and Support Vector Machine (SVM) model were used as

statistical classifiers to classify the plates with or without cracks. They observed that a statistical

classifier cannot accurately locate the crack position, while a high degree of accuracy in the

classification of crack is achieved. In terms of classification accuracy, the support vector

machine (SVM) model was higher than the Hidden Markov Model (HMM), and its classification

accuracy of isotropic materials was higher than that of composites.

In 2008, Chengjun Jiang [2] reported detection technologies of pipelines including radiographic

inspection, Ultrasonic Testing (UT), metal magnetic test, etc., and explained that Ultrasonic

Testing (UT) technology was better than other technologies in detecting plane defects in any

direction of the material. which was this study’s basis for choosing Ultrasonic Testing in

combination with machine learning.

In 2008, Carvalho [3] used radiography, manual detection, and automatic acoustic technology to

classify three types of industrial piping defects, namely lack of penetration, lack of fusion, and

undercut. Among them, the radiographic inspection technology adopted γ-ray and X-ray, while

automatic scanning was performed by an inspection vehicle with magnetic wheels. By using

scanned data, the defect size was estimated by detecting the discontinuity of the weld combining

MATLAB. The results showed that Ultrasonic Testing (UT) technology had obvious advantages

14

over other technologies. The Carvalho group attempted to utilize Artificial Neural Network

(ANN) method to classify defects. After the ultrasonic signal was preprocessed and smoothed, it

was used as a featured input. Results showed that Artificial Neural Network (ANN) cannot

classify different types of defects but could examine the existence of defects.

In 2009, Caiping Zhao [4] developed a diagnostic system for detecting defects using pipeline

ultrasonic guided wave test data. This system selected the eigenvalues such as the amplitude of

the reflected signal to demonstrate the features and defects of the pipeline structure in the

detection diagram. Fifteen classes of defects were classified by the Back Propagation (BP)

algorithm, and the recognition rate of elbows and welding joints were the highest and reached

more than 90%, which proved that the recognition rate of the neural network was high with

stable results.

In 2019, Roberto [5] used Ultrasonic Testing (UT) flaw tracker to collect multiple sets of

ultrasonic data including the length, depth, and location of cracks. After professionals classified

and trained the data using machine learning, resulted in pinpoint accuracy of Support Vector

Machine (SVM) to classify various classes of defects.

In 2019, Tripathi [6] classified microdamage using a piezoelectric ceramics sample. In general, it

is difficult for experts to classify the damaged value in material with smaller than 100 µm cracks

in depth. Through machine learning and deep learning, the K-Nearest Neighbor (KNN) of

machine learning was very suitable to classify micro-damaged ceramic plates in the counterpart

of Convolutional Neural Networks (CNN) deep learning. Therefore, the deep learning techniques

cannot offer specific advantages over simple machine learning algorithms. In terms of data

feature selection, the features of frequency domain were found better than that in time domain.

In 2020, A. Mardanshahi [7] proposed a new model to automatically detect and classify the crack

density of composite materials using guided wave propagation and artificial intelligence. They

used Non-Destructive Testing (NDT) program via the antisymmetric Lamb wave to test samples

with different crack densities, and then extracted information such as the amplitude and wave

speed of the Lamb wave from the collected signals. After training the set, the classification

accuracy of the Support Vector Machine (SVM) showed the highest performance of 91.7%,

while the classification accuracy of the Neural Network (NN) reached a maximum of 88%.

15

1.1.2 Applications in Bioengineering

Wort is the liquid extracted from the mashing process during the brewing of liquor. In 2019, Fan

Zhang [8] determined the wort production quality of beer by combining Non-Destructive Testing

(NDT) technology with machine learning. Since the production data was high-dimensional, a

dimensionality reduction method to obtain a concise latent space was adapted, which was further

used for data analysis to control the wort production quality. In this experiment, Near-Infrared

Spectroscopy (NIR) technology was used primarily to collect production data, and the obtained

data was combined with machine learning methods such as Principal Component Analysis (PCA)

to analyses wort production quality. This group successfully demonstrated the use of low-

dimensional data to represent high-dimensional data.

In 2020, Te Ma [9] used near-infrared hyperspectral imaging combined with deep learning to

predict seed viability. The experimental data were related to the internal molecular vibration

information (chemical composition difference) and spatial distribution of seeds. The Principal

Component Analysis (PCA) method and Support Vector Machine (SVM) method were used for

training. The results showed that even the naturally aged seed test set could produce about 90%

accuracy in classification as compared to the normal seed test set with a classification accuracy

of nearly 95%, which proved the reliability of these two methods for predicting seed viability.

1.1.3 Applications in Medical Science

In 2017, Burlina [10] used ultrasound imaging combined with machine learning and deep learning

for the diagnosis of muscle inflammation. Eighty subjects in this experiment were divided into

three groups of patients with different muscle inflammation and one group of healthy individuals

was considered for reference. In terms of machine learning methods, the echo intensity of muscle

and fat was used as the characteristics for training by using the random forest method.

Meanwhile, Deep Convolution Neural Network (DCNN) used to train ultrasound images. The

results indicated that predictions performance made by Deep Convolution Neural Network

(DCNN) method was higher than machine learning method random forests.

16

In 2020, Zhengsi Xiong [11] performed an Non-Destructive Testing (NDT) of liver cancer with a

combination of machine learning methods. The experiment was designed to collect breath data

from healthy subjects and liver cancer patients, and dimensionality reduction processing on the

generated data was performed. Data such as sensor temperature and relative humidity were

selected as features, and then machine learning, the Support Vector Machine (SVM) algorithm,

was applied to classify the data. The Support Vector Machine (SVM) algorithm with a linear

kernel function showed the best classification effect.

1.1.4 Applications in Physics

In 2018, William Sorteberg [12] research group created a data set to simulate wave motion using

the Long Short-Term Memory (LSTM) method in order to build a predictive deep neural

network with three main modules. After testing the test set, the structural similarity index

decreased during longer-term predictions, and the neural network can predict the future

information up to 80-time steps only.

In 2019, Rautela M [13] used high-frequency tone-burst signals as the excitation waveguide in the

experiment and the time domain as the spatial feature input in the deep learning framework.

They used Convolution Neuron Network (CNN), Recurrent Neural Network (RNN), and Long

Short-Term Memory (LSTM) to detect the signal to simulate cracks in the waveguide. This

article supports the evidence that a deep learning framework can provide perfect binary

classification. The significance of this study highlights the fact that deep learning algorithms are

promising tool for learning guided wave data sets.

In 2019, Yohei [14] combined Convolution Neuron Network (CNN) with sensors to create a new

wave-front sensor. The principle was that the image receiver used the deep learning method to

estimate directly the Zernike coefficient by preprocessing the measured value of the intensity of

a single light source, indicated that data preprocessing can improve the accuracy of the

wavefront prediction through deep learning. Furthermore, Zernike polynomials were used to

describe the properties of the wavefront.

1.1.5 Applications in Other Domain

17

In 2017, Pingping Zhu [15] used deep learning to recognize and classify targets in underwater

sonar images and utilized Convolution Neuron Network (CNN) to extract image features, and

then a Support Vector Machine (SVM) was used for classification after extraction. They

confirmed that the combination of Support Vector Machine (SVM) with Convolution Neuron

Network (CNN) showed the best effect on the classification of underwater sonar images as

compared to the combination of Support Vector Machine (SVM) with local binary pattern and

Support Vector Machine (SVM) with the histogram of oriented gradients.

In 2018, Tomasz [16] developed a hybrid Computed Tomography (CT) scanner with special

sensors for designing humidity analysis. The scanner was used to generate data for training,

which combined with the neural network method to create the wall humidity images, leading to

reflect the humidity inside the wall. They demonstrated that the estimation of wall humidity in

combination with neural networks is better than traditional least angle regression or ElasticNet

methods.

1.2 Outline of the Thesis

(1) Generate datasets using Fortran program based on the theory of elasticity

(2) Use Machine Learning and Deep Learning to predict crack information.

• Machine Learning Algorithms:

o Support Vector Machine (SVM)

o K-Nearest Neighbors (KNN)

o Random Forest (RF)

o Extremely Randomized Tree (ERF)

• Deep Learning Algorithms:

o Simple Recurrent Neural Network (SRNN)

o Long-Short Term Memory (LSTM)

o Gated Recurrent Unit (GRU)

18

(3) Introduce different data types and compare the training results

(4) Create a table of results to reflect the predictive performance between different method.

(5) Compare the prediction performance of Machine Learning and Deep Learning.

(6) Analysis and discuss the output results.

1.3 Contributions

Firstly, the current study identified a suitable algorithm for predicting crack defects in pipelines,

that is because many conclusions on the ideal prediction method is not uniform, to discover an

algorithm that is optimal for pipeline crack prediction was the goal of this study.

Secondly, the wave response coefficients are used as features to predict pipelines’ cracks. The

coefficients be got are differ from the features about wave velocity or wave form amplitude, that

is because the wave response coefficients are frequency domain signals which transferred form

time domain signals by Fourier transform.

Thirdly, the using of the suggested data type and features of prediction cracks is reliable and

accurate. Because varies data sets can be departed into different data types, and each data set has

different prediction performance, that is also the same as features. Thus, to improve the

prediction accuracy, finding an optimal data type and feature are needed.

19

Chapter II Methodology

2.1 The Fundamentals of Waves in a Cylinder

This chapter will briefly cover wave propagation in a cylinder using the formula and theory

described by Datta and Shah [17]. First, the fundamental equations of wave propagation in a

cylinder are reviewed. After obtaining the wave solution via the semi-finite element approach,

the wave solution is used to solve the wave reflection and transmission problems.

2.1.1 Equations of Motion

Fig. 1 Cylindrical Coordinates

Cylindrical coordinates are used to solve the wave propagation problem with each point of three

displacement components:

① ur displacement component in the radial direction.

② uθ displacement component in the circumferential direction.

③ uz displacement component along the vertical axis.

The equations of motion expressed in terms of stresses are:

 ∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = ρür

(2.1)

20

 ∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = ρüθ (2.2)

 ∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = ρüz

(2.3)

Here σij is the stress components, i, j = r, θ, z. ρ is mass density. Double dots represent the partial

derivative with respect to time. The relationship between strain and displacement is given by:

 e = (Lr + Lθ + Lz)u (2.4)

Here, u = (ur, uθ, uz)T is displacement vector and Lr, Lθ, and Lz represent the partial derivatives

of r, θ, and z, respectively, and are given by:

Lr =

[

∂

∂r
0 0

1

r
0 0

0 0 0
0 0 0

0 0
∂

∂r

0
∂

∂r
−
1

r
0]

 Lθ =

[

0 0 0

0
1

r

∂

∂θ
0

0 0 0

0 0
1

r

∂

∂θ
0 0 0
1

r

∂

∂θ
0 0]

, Lz =

[

0 0 0
0 0 0

0 0
∂

∂z

0
∂

∂z
0

∂

∂z
0 0

0 0 0]

(2.5)

According to Hooke's law, the relation expression is listed as follow:

{

σrr
σθθ
σzz
σθz
σzr
σrθ}

=

[

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
sym c55 c56

c66]

{

err
eθθ
ezz
γθz
γzr
γrθ}

(2.6)

Here, eii is the normal strain components, i = r, θ, z. and γij is the engineering shear strain

component. i, j = r, θ, z, i ≠ j. The vector on the left side of the equation represents six distinct

stress components, whereas six distinct strain components are represented in the vector on the

right.

The boundary conditions are that the inner and outer surfaces are traction free.

21

2.1.2 Semi Analytical Finite Element

As shown in Figure 2, the section of pipeline is divided into N parts. The black circles are one of

the finite elements, Rk is the inner diameter of the ring, Rk+1 refers to the outer diameter of the

ring, hk stands for the thickness of the ring, H is the thickness of the entire pipeline, kth sublayer

refers to the kth ring.

Fig. 2 Semi Analytical Finite Element in Cylinder

Divide the composite cylinder into several coaxial cylinders and used a quadratic polynomial

interpolation function to represent the displacement distribution on the thickness of the sublayer

in the radial direction. In the kth sublayer, the displacement component of a certain point is as

follows:

 {U} = [N(r)]{q} (2.7)

where,

 {U} = 〈ũ ṽ w̃〉T

{q} = <u
~

k
b v
~

k
b w
~

k
b u
~

k
m v
~

k
m w

~

k
m u
~

k
f v
~

k
f w
~

k
f>T

(2.8)

{q} represents the displacement of three nodes in a unit, each with three component vectors, for

a total of 9 vectors in {q}. Here b, m, and f describe the first, middle, and last points, respectively.

22

u
~

, v
~

 , w
~

 indicate the three displacement components, r indicates radius. [N(r)] represents the

function of the interpolation matrix. The interpolation polynomials ni (i=1,2,3) are quadratic

functions of the radial variable defined as:

 n1 = 1 − 3η + 2η
2

n2 = 4η − 4η
2

n3 = −η + 2η
2

(2.9)

Where η = (r−rk)

hk
 , hk being the thickness of the sublayer, and rk being the radial coordinate of the

inner surface of the kth sublayer.

The final finite element equation has the form:

 (−k2[K1] − ik[K2] − [K3] + ω
2[M]){Q0} = 0 (2.10)

Here, K1, K2, and K3 are all stiffness matrices; M is the mass matrix; the node displacement

vector Q has the wave form solutio0n as:

 {Q} = {Q0}e
i(mθ+kz−ωt) (2.11)

Here, {Q0}is the amplitude of the wave solution; m is circumferential wave number, m= 0, ±1,

±2 …; k is axial wave number.

The matrices [M], [K1], [K2], and [K3] are defined below.

[M] = ∫ ρ

H

0

[N]T[N]rdr

[K1] = ∫ [b]T
H

0

[C][b]rdr

[K2] = ∫ [b]T
H

0

[C][a] − [a][C][b]rdr

[K2] = ∫ [a]T
H

0

[C][a]rdr

(2.12)

The nonzero elements of the 6 × 9 matrix [a] are as follows:

23

a(1,1) =

dn1
dr

, a(1,4) =
dn2
dr

, a(1,7) =
dn3
dr

a(2,1) =
n1
r
, a(2,2) = im

n1
r
, a(2,4) =

n2
r

a(2,5) = im
n2
r
, a(2,7) =

n3
r
, a(2,8) = im

n3
r

a(4,3) = im
n1
r
, a(4,6) = im

n2
r
, a(4,9) = im

n3
r

a(5,3) =
dn1
dr

, a(5,6) =
dn2
dr

, a(5,9) =
dn3
dr

a(6,1) = im
n1
r
, a(6,2) =

dn1
dr

−
n1
r
, a(6,4) = im

n2
r

a(6,5) =
dn2
dr

−
n2
r
, a(6,7) = im

n3
r
, a(6,8) =

dn3
dr

−
n3
r

(2.13)

The nonzero elements of [b] are:

 b(3,3) = b(4,2) = b(5,1) = n1

b(3,6) = b(4,5) = b(5,4) = n2

b(3,9) = b(4,8) = b(5,7) = n3

(2.14)

It is noted that [K1] and [M] are real and symmetric, [K2] is skew-Hermitian, and [K3] is

Hermitian.

The solutions of equation (2.10) give the wave number and the corresponding wave modes. For a

given incident wave, the wave coefficients of the response will be determined via superposition

of wave modes. The method is depicted in Figure 3 below:

24

Fig. 3 Fortran Process

2.2 Selection of Data Characteristics

The reported studies used structural response data (for example, velocity and acceleration)

collected from experiments as the training data to train the neural networks in pipeline

nondestructive testing; however, to the best knowledge of the author, there are no published

literatures for directly using wave coefficients in the study. Additionally, the amount of

experimental data is limited, which significantly impacts the classification results' correctness.

The distinction between this study and others is that this study use wave response coefficients as

the primary features of the data, which are used for training in machine learning and deep

learning, and making a prediction on the studied pipeline’s crack parameters. After training the

model, the fracture information may be predicted using the input measurement's wave response

coefficient.

Here is a summarization of the features will be used in the study:

• Transmission Coefficient

• Reflection Coefficient

• Circular Frequency

• Circumferential Wave Number

• Thickness Over Mean Radius

• Materials

25

2.3 Combination of Machine Learning

Machine learning is a subfield of artificial intelligence and computer science that focuses on

replicating how humans learn and steadily improving their accuracy via data and algorithms. It is

not a computer-specific algorithm but a collective name for various algorithms, of which Deep

Learning is one. Machine Learning's fundamental strategy is to solve real-world problems by

abstracting them into mathematical models and utilizing machines to solve these mathematical

problems, ultimately resolving the real-world problem. In this study’s example, by utilizing a

Machine Learning method, this study extracted information about pipeline breaks from a variety

of datasets.

2.3.1 Determination of Machine Learning Algorithm

Since the current study involves anticipating pipeline fracture information, a machine learning

technique with a regression model was required. According to Nerseen's analysis of machine

learning models for time series prediction [18], the machine learning methods for regression

models are Support Vector Machine (SVM), Random Forest (RF), Extremely Randomized Tree

(ERT), and K-Nearest Neighbors (KNN).

2.3.2 Principles of Machine Learning Algorithms

2.3.2.1 Support Vector Machine (SVM) Algorithm

Support Vector Machine (SVM) can be classified into two types: the Support Vector

Classification (SVC) algorithm, which is appropriate for classification issues and datasets, and

the Support Vector Regression (SVR) algorithm, which is appropriate for regression problems

and datasets (shown in Figure 4). SVC denotes the capacity to maximize the distance between

the nearest sample points in the hyperplane; SVR, on the other hand, denotes the ability to

minimize the distance between the farthest sample points in the hyperplane. In this experiment,

the Support Vector Regression is employed, the red and blue points represent the data set used.

26

Fig. 4 Support Vector Classifier (left) and Support Vector Regression (right)

Here, w · x + b = ±1 and w · x + b = ±ε are boundary lines on both sides of SVC and SVR,

respectively. w · x + b = 0 represents the hyperplane. 2
|w|

 is the distance between the two dashed

lines. w is the normal vector which decide the direction of hyperplane, and b is the intercept

decide the distance between hyperplane and the origin. This study are using (w, b) to represent

this hyperplane. ε is the element of relaxation. The greater the value of ε, the more closely the

sample point approaches the hyperplane.

The prediction function of SVR is to make the loss of all data points within the margin boundary

equals to 0, and the points outside the margin boundary are the support vectors of SVR. All this

study needs to do is to ignore the points within the boundary lines and regress the remaining

points. Due to the high dimension of this study’s data sets, utilizing the kernel function to

transfer these samples to a higher dimension before doing regression is needed.

2.3.2.2 Random Forest Algorithm

Random Forest (RF) is built of several decision trees. Besides, there is no connection between

the various decision trees. Random Forest (RF) is a kind of random sampling or random

27

selection of features that may help avoid overfitting. When this study feed data sets into Random

Forest (RF), each decision tree is predicting independently. Each decision tree will give a

prediction value. The final prediction result is calculated as the mean of all those decision tree’s

predictions.

Fig. 5 Random Forest Structure Diagram

2.3.2.3 Extremely Randomized Tree Algorithm

In contrast to the conventional Random Forest (RF), which selects the best segmentation, an

Extremely Randomized Tree (ERF) is a version of the Random Forest (RF) algorithm that

randomly selects the segmentation. This results in a higher degree of generalization and a shorter

calculation time when compared to Random Forest (RF). As a result, Extremely Randomized

Tree (ERF) frequently outperforms Random Forest (RF) in prediction accuracy.

2.3.2.4 K-Nearest Neighbors Algorithm

The value of the anticipated point is determined in Figure 6 by averaging the values of the K

points nearest to it. In this case, the "closest distance" could be the Euclidean or another distance.

For instance, suppose K equals three, and the point value in this study wish to predict is

dependent on the three nearest red points. Each red point in the graphic corresponds to a

particular set of data sets this study used, while the green dots correspond to the anticipated

values. When the KNN solves a regression model problem, the average algorithm is typically

employed, which means that the regression prediction value is calculated using the average value

of the sample output from the nearest K samples.

28

Fig. 6 K-Nearest Neighbors

2.3.3 Selection of Hyperparameters in Machine Learning Code

Numerous parameters must be modified in machine learning programs. These parameters affect

the algorithm's prediction performance. The optimal parameter combination for the relevant

algorithm can be determined through repeated training datasets.

2.3.3.1 Support Vector Machines (SVM)

The Support Vector Machine (SVM) code mainly uses parameters C and gamma in this

experiment:

• C: the penalty coefficient; the higher the value of C is, the easier it is to overfit the data.

Conversely, underfitting can occur with smaller values of C.

• Gamma: a default parameter when the RBF function is chosen as the kernel. After

mapping to the new feature space, it implicitly defines the data distribution. The greater

the gamma value, the fewer support vectors there are; the smaller the gamma value, the

more support vectors there are. The number of support vectors has an effect on the

training and prediction speeds.

29

2.3.3.2 K-Nearest Neighbors (KNN)

There are three commonly used hyperparameters for KNN, which are as follows:

• K: indicates the number of 'neighbors,' the default value is three, which means sending

the three closest samples. In brief, a low K number implies that the entire model is

complex and prone to overfitting; on the other side, a high K value shows that the error is

large and the prediction accuracy is low.

• Weight: Mainly used to return results. The default setting is uniform.

• p: indicates the variable in Minkowski distance formula. Minkowski Distance is a

generalization of Euclidean distance, which is a general expression of multiple distance

measurement formulas. When p = 2, this study obtain the Euclidean distance.

2.3.3.3 Random Forest & Extremely Randomized Tree Algorithm

Random Forest and Extremely Randomized Tree parameters need to be adjusted to ensure

consistency. The parameters that must be altered are divided into two sections. The first section

contains parameters for the Bagging framework, while the second section contains the CART

Decision Tree parameters.

Partial parameters of Bagging framework:

• n_estimators: indicates the maximum number of iterations of the weak learner. If the

value of N_ESTIMators is small, underfitting is likely to occur. Conversely, if the

n_ESTIMators value is high and easy to overfit, the default value is 100.

• oob_score: indicates whether to choose to use out-of-bag samples to evaluate the quality

of the model. Its default value is False.

Partial parameters of the CART Decision Tree:

• max_features: represents the maximum number of features in the random forest after

partitioning. The default option is "None," which implies that all feature numbers are

30

evaluated when dividing. The total number of features to consider is indicated by

specifying this feature as an integer. The value of max features must be increased because

the wave response coefficient generates a significant number of reflected and transmitted

waves (more than 50).

• min_samples_split: specifies the minimal number of samples required to subdivide

internal nodes. This parameter limits the conditions under which the subtree may

continue to be divided, and the default value is 2.

2.4 Combination of Deep Learning

2.4.1 Determination of Deep Learning Algorithm

Deep learning emerged as a technique for optimizing artificial neural networks using

backpropagation. It was first primarily represented by a Multilayer Perceptron. However, due to

the issue of vanishing or exploding gradient during the training phase, no significant advances in

neural network research have been made. Deep learning has advanced significantly in recent

years, owing to the availability and utilization of large amounts of data and the rapid increase in

the computational power of computers. In comparison to Convolutional Neural Networks (CNN),

Artificial Neural Networks (ANN), and other methods, Recurrent Neural Networks (RNN) are

better at dealing with time series problems and emphasizing sequence order, whereas CNN is

better at processing spatial windows. ANNs are a collection of multi-layer neurons, usually

referred to as feedforward neural networks, that are primarily used to solve tabular, text, and

picture data problems. A cyclic neural network is generated to manage sequential processing jobs

such as time-series data, literal expressions, etc. An RNN's structure includes a memory function,

which enables it to analyze sequential input with dependencies and has demonstrated exceptional

performance in various natural language processing applications. In 2018, I. Jahan and S. Z.

Sajal [19] forecasted the stock price using RNN. Long Short-Term Memory (LSTM) is an RNN

version that outperforms the normal RNN in many applications. F. Altché [20] employed LSTM

in 2017 to forecast the trajectory of highway traffic. The LSTM algorithm avoids the vanishing

gradient and has a more significant memory, but the recirculating network is effectively. The

31

Gated Recurrent Unit (GRU) is a newer generation of RNN, and it is also pretty similar to LSTM,

because of GRU has less operations, so that it is little speedier than LSTM.

Determining Simple Recurrent Neuron Network (RNN), Long-Short Term Memory (LSTM),

and Gaited Recurrent Unit (GRU) as deep learning algorithms.

2.4.2 Principles of Deep Learning Algorithms

2.4.2.1 Recurrent Neural Network (RNN) Algorithm Principles

Human reading habits are comparable to recurrent neural networks (RNN). The RNN

accumulates information after reading using the state vector ht, just like the brain does each time

a human reads a word. It is distinct from the typical neural network model in that it has recurrent

connection between previous output to current input. Figure 7 illustrates the structure of an RNN.

Fig. 7 Example of Recurrent Neural Network (RNN)

Here, the figures' circles indicate neurons, while the various colors reflect various time. As can

be seen, the RNN's hidden layer at time T contains information from the preceding time T-1.

32

The primary distinction between RNN and other algorithms such as Artificial Neural Network

(ANN) or Convolutional Neural Network (CNN) is that the weight connections between the

neurons in the layers are established in such a way that the output at each moment is related to

the current input and the previous output. The following diagram illustrates structure of RNN:

Fig. 8 Basic structure of a standard recurrent neural network (RNN)

Data will be preprocessed into vector xt first, then input into the hidden layer S to update the

state vector through the parameter matrix W, and finally output ht to store the state information.

In this process, the parameter matrix W of the whole RNN chain remains constant. The hidden

layer state St of the current time node is related to the current time t input xt and the hidden layer

state St-1 of the previous time.

 st = φ(Wxt + Ust − 1) (2.11)

Here U and V are weight matrices, φ is a logical S-shaped function or hyperbolic tangent

function, and W is the circulant weight matrix of state transition.

It is worth noting that Figure 8 does not mean that the RNN has only three neural networks, but it

means that the same neural network is used three times at three different time points.

2.4.2.2 Principle of Long Short-Term Memory (LSTM)

33

The long short-term memory (LSTM) model was developed by Hochreiter and Schmidhuber [21].

It is a variant of the recurrent neural network. Proposed in 1997, the LSTM may be used to

analyze data with distant nodes in a time series and efficiently capture information about

significant time nodes in previous time series to make more precise inferences about the current

moment's content. Compared to the more straightforward cyclic design, which is more reliable

for long-term learning, the LSTM has demonstrated superior performance in Automatic Speech

Recognition (ASR), machine translation, image description creation, and other applications.

LSTM solves problems with the disappearing gradient and exploding gradient of standard RNNs

in various tasks. LSTM networks converge more easily than RNN networks, which has allowed

them to gradually supplant RNN as the favored model for sequential task processing. Figure 9

illustrates its interior structure.

Fig. 9 Principle of Long-Short Term Memory (LSTM)

The fundamental concept of LSTM is to interact with the Cell State via "three gates" and modify

the information held by the Cell, which are the Input Gate, Forget Gate, and Output Gate. A Cell

State is analogous to a conveyor belt that runs parallel to the chain, with very tiny interactions

34

that allow information to flow freely. Additionally, LSTM can add or delete the Cell States,

which is regulated by a gate structure and is a mechanism to allow information to pass through

selectively. They are composed of a layer of Sigmoid neural networks and a multiplication

operation at the element level. The output values of the sigmoid layer determine whether the

corresponding portion of the information is passed. Three gates protect and govern the Cell State

in an LSTM. Thus, the LSTM has four inputs that ultimately result in a single output. Its internal

structural diagram, depicted in Figure 10, can be simplified.

Fig. 10 Inner structure of a Long Short-Term Memory (LSTM)

The black dot denotes the elementwise multiplication of two vectors, while f denotes the sigmoid

activation function, which regulates the value between 0 and 1. Its value indicates the state of the

gate's opening. By definition, when the value is 0, the gate is closed. Notably, the Hyperbolic

Tangent Function is used as the activation function in g and h. Z is an external input, and the

35

inputs of the three gates are represented by Zi, Zf, and Zo. The c in the middle is short for the

memory cell and the output is represented by a. The whole process is input Z and Zi, which are

transformed into f(zi) and g(z) through the activation function, and g(z)f(zi) is obtained after

elementwise multiplication. Meanwhile, f(zf) is obtained through the activation function, and

cf(zf) is obtained by multiplying the c value previously stored by f(zf). By addition, the updated

memory cell value c′ can be expressed as follows:

 c′ = g(z)f(zi) + cf(zf) (2.15)

h(c′) is then obtained through activation function h. It is then multiplied by f(zo), generated by

the output gate to obtain the output a. The formula of a is as follows:

 a = h(c′)f(zo) (2.16)

In neural networks, a neuron is represented by an LSTM. In general, multiple LSTMS are used.

Only two LSTMS are shown here in Figure 11.

Fig. 11 Neural Network Figure of Long-Short Term Memory (LSTM)

2.4.2.3 Principle of Gated Recurrent Unit (GRU)

36

In fact, the Gated Recurrent Unit (GRU) model is a variant of the LSTM model. Figure 12 shows

the GRU hidden layer cell.

Fig. 12 GRU cell

According to Jeffrey [22], here, ht-1 is previous output, xt and ht is current input and output. ‘×’, ‘+’

and ‘-1’ are logical operator, means multiply, plus and minus one.

Compared to the LSTM, the structure of GRU doesn’t has cell state, which means GRU has less

operations. GRU has 2 gates here, a reset gate and an update gate. The update gate acts similar to

forget gate and input gate of LSTM, it decides what information to throw away and what new

information to add. The reset gate is a gate used to decide how much pass information to forget.

2.5 Selection of Hyperparameters for Deep Learning Code

Although LSTM is a version of RNN and GRU is a derivative of LSTM, they all use the same

hyperparameters. The following table summarizes the information required for this experiment's

hyper-parameters:

37

• num_epochs: The number of epochs. An epoch is the number of times that all data is

trained once, and the number represented by epoch is the total number of training rounds.

The length of the epoch is proportional to the diversity of the dataset. The more

diversification there is, the longer the epoch should be.

• Batch_size: indicates how frequently a subset of the data is supplied to the network for

training. The optimal batch size range is mostly determined by the convergence rate and

stochastic gradient noise.

• INIT_LR: represents the Learning Rate, a hyperparameter used to update the weight

throughout the gradient descent process. The learning rate's magnitude dictates whether

and when the objective function can converge to the local minimum.

• num_ Layer: specifies the size of the RNN's hidden layer. By selecting an appropriate

hidden layer, problems such as gradient explosion can be avoided. By selecting a suitable

hidden layer, gradient explosion and other issues can be avoided.

• hidden_ Size: indicates the number of neurons in each hidden layer of the RNN.

38

Chapter III Process and Results

3.1 Pre-Setting of Hyperparameters and Pipeline Parameters

Hyperparameters control the solving rate, the solution's reliability, and the optimization problem

is the learning effect. A fine hyperparameter can assist in rapidly identifying the optimal solution

to the minimization problem and force the model to match the data better through effective

generalization.

3.1.1 Settings of Pipeline Parameters

When the pipeline is divided into 40 layers, the results converge. The pipeline is separated into

40 levels to calculate the number of flaws. As a result, there are 81 points on the section line

along the pipeline's radius. According to formula 2.7, this study must first provide the

appropriate point's interpolation [N(r)], after which the point's displacement component value

can be determined.

The majority of Pipeline Material (PM) quantities are set to one. Among them are five widely

used isotropic materials: iron, copper, magnesium, titanium, and aluminum, in addition to an

anisotropic composite.

Thickness Over Mean Radius (TOMD) is typically between 0 and 2. On the other hand, a low

TOMR suggests that the pipeline is extremely thin; a solid cylinder has an TOMR of 2. In this

experiment, TOMR values were set between 0.1 and 0.4 to avoid exceeding 0.4, which would

have resulted in a loss of application value in real-world engineering projects.

The circular Frequency of the Pipeline (CFP) is the incident wave's frequency. In general, the

greater the frequency, the more waves propagate, requiring more calculation. On the other hand,

the lower the frequency, the fewer waves may be received. Additionally, when the frequency

exceeds a particular threshold, it results in a cliff decline in phase velocity, detrimental to data

analysis. As a result, frequency selection significantly impacts data creation and training.

39

The Number of Crack Defects is proportional to the number of planned layers. Since the wave

response coefficient was first computed using the semi-finite element approach, the crack's

thickness is proportional to the thickness of each pipeline layer divided by the finite element

method.

The Input Circumferential Wave Number (ICWN) value affects the wave propagation curve

selection, and different curves are acceptable for different frequency sizes.

The Crack Length in the Radial Direction (CDRD) is proportional to the layer count, and the

depth of each layer is equal to the reciprocal of the overall layer count. This characteristic

primarily indicates the depth of the cylinder's crack.

Crack Width in the Circumferential Direction (CWCD) has a value range of [0.025,1], classified

into 41 groups. The value of CWCD denotes the radian, which primarily indicates the

circumferential length of the cylindrical fracture.

Table 1 Setting Information about Fortran Code

Setting Options Setting Values Unit

Total Number of Element 40 1

Number of the Materials [1,6] 1

Thickness Over Mean Radius [0.1,0.4] 0.1

Circular Frequency [1,4] 1

Crack Number 41 1

Circumferential Wave Number [-11,11] 1

Crack Depth in Radial Direction [0.025,1] 0.025

Crack Width in Circumferential Direction [0.025,1] 0.025

3.1.2 Settings of the Machine Learning Hyperparameters

40

The three most often used approaches for hyperparameter optimization are manual, machine-

assisted, and algorithm-based. Practicality is the primary factor guiding hyperparameter

optimization. The hyperparameter with the best performance is chosen by comparing it to the

model's anticipated performance. The hyperparameter settings were discovered after multiple

tests and are listed in Table 2.

Table 2 Hyperparameters of Machine Learning Algorithms

Algorithms Hyperparameters Value

Support Vector

Machine

Penalty Coefficient (C) 1

gamma 0.1

K-Nearest

Neighbors

K 5

Feature Weight (w) Distance

Distance Metric (p) 1

Random Forest

and

Extremely Randomized

Tree Algorithm

The number of Largest Weak Learners

(n_estimators)

100

Out of Bag

(oob_score)

false

Maximum Number of Features

(max_features)

200

Minimum Number of Samples Required for

Subdividing Internal Nodes

(min_samples_split)

10

Minimum Number of Samples for Leaf Nodes

(min_samples_leaf)

3

41

3.1.3 Settings of Deep Learning Hyperparameters

The learning rate is a critical hyperparameter in deep learning. A high or low learning rate may

result in an extremely slow or even non-existent model learning speed. The learning rate must be

chosen while keeping an eye on the loss function's score. The most likely outcome is that the

score fluctuates, but the overall trend is downward. Although the score fluctuated, the overall

trend of deterioration was the most logical conclusion. The hyper-parameter parameters provided

in Table 3 are determined after multiple tests.

Table 3 Hyperparameters of Deep Learning Algorithms

Algorithms Hyperparameters Value

Recurrent Neural Network

Number of Eochs (num_epochs) 200

Batch size (batch_size) 6

Learning Rate (INIT_LR) 0.001

Number of Layer (num_layer) 3

Hidden Size (hidden_size) 20

Long-Short Term Memory

Number of Eochs (num_epochs) 100

Batch size (batch_size) 4

Learning Rate (INIT_LR) 0.001

Number of Layer (num_layer) 3

Hidden Size (hidden_size) 40

Number of Eochs (num_epochs) 200

Batch size (batch_size) 20

Learning Rate (INIT_LR) 0.0001

42

Gated Recurrent Unit Number of Layer (num_layer) 3

Hidden Size (hidden_size) 40

3.2 Assessment Criteria

Two assessment metrics, Mean Absolute Error (MAE) and Coefficient of Determination (R2),

were used to compare the performance of machine learning and deep learning. The Root Mean

Square Error (RMSE) was chosen as the loss function's y value.

3.2.1 Mean Absolute Error

The Mean Absolute Error (MAE) is a frequently used loss function in regression models. It

quantifies the average modulus length of the projected value error without considering direction.

It has a data range of 0 to infinity. The following is the calculating formula:

MAE =

1

n
∑|yi − y

^

i|

n

i=1

(3.1)

Here, yi represents the true observed value and y
^

i represents the predicted value. In the same

prediction target, the smaller MAE value indicates a better prediction of the model. Conversely,

a larger MAE value indicates a worse prediction.

3.2.2 Coefficient of Determination

The Coefficient of Determination (R2) is a statistical indicator used to represent the regression

model and explain the change in the dependent variable's dependability. R2 is a numerical feature

used to define the relationship between two random variables. This assessment criteria index is

the most accurate representation of the linear regression approach, and it is calculated as follows:

R2 = 1 −

∑
(yi − ŷi)

2

ni

∑
(yi − y̅)

2

ni

(3.2)

43

Here, y2 indicates the average value of the true observations, the denominator refers to the

variance, and the numerator refers to the Root Mean Squares Error (RMSE). Generally, the

higher the R2, the better the prediction result. When R2 is 1, the predicted value and the true

value in the sample are completely equal without any errors. If R2 is 0, each predicted value of

the sample is equal to the average value.

3.2.3 Root Mean Square Error

The Root Mean Square Error (RMSE) is frequently used to quantify the average size of an error;

its value is equal to the square root of the average squared difference between the predicted and

observed values. The following is the formula:

RMSE = √

∑ (ŷi − yi)2
n
i=1

n

(3.3)

In comparison to MAE, RMSE is a more accurate representation of the sample's outliers. On the

contrary, MAE is robust and considers outliers to be damaged data. Generally, the MAE has a

smaller expected value than the RMSE.

3.3 Prediction of Pipeline Crack Information

Numerous training sets are used, and the various types of data created by change input variables

have varying implications on the prediction outcomes. The data type Control Group serves as the

fundamental reference. Case A through Case D all adjust the data type of a particular data

variable in the case of control variables. Table 4 contains examples of these data types.

44

Table 4 Training Data Case

 CFP ICWN TOMR PM

Control Group 1 0 0.1 Composite

Case A [1, 4] 0 0.1 Composite

Case B 1 [-10,0) ∪ (0,10] 0.1 Composite

Case C 1 0 [0.1, 0.4] Composite

Case D 1 0 0.1 Isotropic

The table's abbreviations relate to the List of Abbreviations, and to eliminate variations in the

amount of data that could affect prediction accuracy, all cases have the same number of data sets,

1640 group sets.

CDRD values are fixed between [0, 1] in the Control Group. The CDRDs are evenly distributed

into 41 groups, with a variation of 0.025 between each set. Each CDRD corresponds to one of

the 41 CWCD groups. Similarly, CWCD is divided into 41 equal groups and falls inside the

interval [0, 1]. The purpose of establishing the Control Group is to enable a more direct

comparison of the effect of data modifications on the accuracy of the pipeline crack prediction.

After establishing the Control Group, the goal of Case A was to investigate the effect of CFP

(Circular Frequency in Pipeline) modifications on prediction accuracy. The CFP-based data type

is separated into two files, one for CDRD prediction and one for CWCD prediction. The first file

sets the CWCD to a constant value of 0.5. Similarly, the CDRD value is set to 0.5 in the second

file.

Case B is based on data sets containing ICWN (Input Circumferential Wave Number) values.

Creating data Case B aims to investigate the effect of changing the ICWN on prediction accuracy.

Additionally, Case B is broken into two files for training purposes.

45

In Case C, a change in TOMR (Thickness Over Mean Radius) indicates a change in the pipe's

thickness. Since an overly large TOMR value has no engineering significance, the value is

limited to [0.1, 0.4].

Case D considers a material change to the pipeline, substituting composite materials with

isotropic materials, intending to examine the effect of different materials on prediction accuracy.

It is composed of five different materials, including steel, copper, aluminum, magnesium, and

titanium.

3.3.1 Prediction Results of Crack Depth in Radial Direction (CDRD)

Crack Depth in Radial Direction (CDRD) is predicted using four machine learning methods and

three deep learning algorithms. Table 5 shows the following outcomes when MAE and R2 are

used as assessment criteria:

Table 5 Using different data types and different algorithms to predict CDRD

 Control Group CFP HR ICWN PM

 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

SVM 0.08963 0.91167 0.12323 0.82835 0.08436 0.92784 0.11651 0.85249 0.10009 0.88513

KNN 0.06043 0.95926 0.06533 0.95127 0.03542 0.98689 0.06601 0.94776 0.06215 0.95394

RF 0.07341 0.93986 0.06210 0.95444 0.02656 0.99171 0.03507 0.98584 0.05301 0.96886

ERT 0.06710 0.94938 0.04199 0.98072 0.01492 0.99741 0.03361 0.98605 0.03992 0.98159

SRNN 0.09248 0.90741 0.11976 0.89705 0.08856 0.95226 0.04125 0.97623 0.08452 0.92206

LSTM 0.10784 0.88266 0.07862 0.94328 0.03464 0.98109 0.04124 0.97629 0.06754 0.94254

GRU 0.07884 0.92901 0.05962 0.96312 0.04462 0.97483 0.03754 0.98282 0.06141 0.95585

46

The table clearly indicates that the Extremely Randomized Tree (ERT) method has the highest

prediction accuracy in machine learning, while the Gated Recurrent Unit algorithm has the

highest prediction accuracy in deep learning (GRU). The algorithm has the highest assessment

score across all data categories for prediction results.

The CDRD Prediction Histogram depicted in Figure 13 visually represents the prediction

performance. While both MAE and R2 might reflect prediction performance, a lower MAE

number indicates better performance, whereas a higher R2 value indicates better prediction

performance. As a result, Figure 13 simply compares the R2 approach. After calculations, Table

6 is generated, indicating that the dataset based on Thickness Over Mean Radius (TOMD) has

the lowest standard deviation. This suggests that data sets derived from human resources are the

most stable when used to predict CDRD.

Table 6 Standard Deviation of Different CDRD Data Types

 Control Group CFP HR ICWN PM

Standard

Deviation
0.02473 0.04826 0.02291 0.04491 0.0228

As illustrated in Figure 13, after altering the data type, the accuracy of all forecasts is greater

than the Control Group's score. This demonstrates that altering the data format has an effect on

the accuracy of the CDRD prediction.

47

Fig. 13 CDRD Prediction Histogram

3.3.2 Prediction Results of Crack Width in Circumferential Direction (CWCD)

To predict the Crack Width in Circumferential Direction (CWCD), the MAE and R2 obtained by

all algorithms are recorded in Table 7 below.

Table 7 Using different data types and different algorithms to predict CWCD

 Control Group CFP HR ICWN PM

 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

SVM 0.14369 0.74237 0.18478 0.61271 0.18089 0.63239 0.14428 0.7608 0.13541 0.76878

KNN 0.05255 0.96818 0.09881 0.87956 0.10823 0.8613 0.05964 0.95549 0.0623 0.95641

RF 0.06952 0.94467 0.05342 0.96713 0.04513 0.97804 0.07264 0.94013 0.05063 0.97251

ERT 0.05736 0.96506 0.02071 0.99506 0.02905 0.99079 0.05013 0.97182 0.02713 0.9913

SRNN 0.11124 0.81812 0.09114 0.88614 0.15421 0.75134 0.18421 0.60874 0.09451 0.89012

LSTM 0.10545 0.87654 0.06457 0.93751 0.09974 0.88054 0.11246 0.82275 0.03144 0.98325

GRU 0.07451 0.93961 0.05974 0.9493 0.09424 0.88835 0.08475 0.87642 0.02147 0.99524

48

As shown in Table 7, the ERT algorithm has the most robust prediction performance in most

data situations. The best machine learning algorithm is still ERT, while GRU is the best deep

learning approach.

The standard deviation of the scores associated with each data type's prediction outcomes is

calculated, as shown in Table 8.

Table 8 Standard Deviation of different CWCD data types

 Control Group CFP HR ICWN PM

Standard

Deviation
0.07951 0.11939 0.11691 0.12052 0.07617

The distinction from forecasting CDRD is that when Pipeline Materials (PM) data is used to

forecast CWCD, it has a better level of stability and predictive performance. The comparison

histogram of the CWCD R2 is shown in Figure 14.

Fig. 14 CWCD Prediction Histogram

49

The CWCD score graph demonstrates that some algorithms perform worse than the CDRD

prediction histogram when predicting CWCD.

Although the Control Group outperformed most of the data types in terms of score stability,

Figure 14 shows that when the RF and ERT algorithms are utilized, the diverse data types still

have higher scores than the Control Group's prediction results. The majority of methods

outperform the Control Group, particularly when PM-based data is used, demonstrating that

changing the data type enhanced the CWCD's prediction ability.

3.3.3 Results Comparison of CDRD and CWCD

The R2 of the CDRD and the CWCD are compared in Figure 15. It is discovered that, in most

circumstances, the predictive performance of the CDRD and CWCD are comparable, but the

CDRD forecast is more consistent than the CWCD forecast.

Fig. 15 Performance comparison histogram of CDRD and CWCD in Control Group

In most cases, the CDRD outperforms the CWCD in Figure 16. However, in some algorithms,

the result score for CWCD prediction is greater than for CDRD prediction. This could be

because the algorithm randomly selects a subset of the data as the test set. For those results

50

which CWCD has a higher score, the score of CDRD prediction may exceed CWCD prediction

after some repeated calculations.

Fig. 16 Performance comparison histogram of CDRD and CWCD in CFP Group

Figure 17 compares the R2 under the condition of TOMR based data set. Under this data type, the

prediction performance of various algorithms for CDRD is better than that for the CWCD.

Fig. 17 Performance comparison histogram of CDRD and CWCD in TOMR Group

51

In Fig.18, the R2 score for all algorithms that predict CDRD is greater than the R2 score for

algorithms that predict CWCD. Notably, the scores of deep learning algorithms are poor when

predicting CWCD, indicating that deep learning methods are not suitable for predicting CWCD

utilizing ICWN-based data types.

Fig. 18 Performance comparison histogram of CDRD and CWCD in ICWN Group

Fig. 19 Performance comparison histogram of CDRD and CWCD in PM Group

52

As illustrated in Figure 19, the CWCD prediction result score for most algorithms is more than

the CDRD prediction result score, and the majority of approaches have an R2 greater than 0.9.

One could argue that the PM-based data type is more suited to forecasting the CWCD.

3.3.4 Comparison of Machine Learning and Deep Learning

"TOTAL" indicates that pooled all the data sets, thereby increasing the sample size. This study

collected all data types and utilized seven algorithms to predict CDRD and CWCD. Figure 20

depicts R2 score histogram comparisons. All the data types in Figure 20 used to share the same

data volume, 8200. Compared to the Control Group data type, the decrease of CWCD prediction

can be seen clearly, Since the "TOTAL" data sets which provided had different feature

distributions, which increases the challenge of training, and increasing the quantity of data did

not affect the prediction performance of any method for CWCD. Additionally, all algorithms'

prediction performance for the CDRD is superior to CWCD.

Fig. 20 Performance comparison histogram of CDRD and CWCD in Total Group

53

To compare the prediction performance of deep learning and machine learning algorithms for the

depth and width of pipeline cracks, this study chose the GRU with the highest prediction

performance in the deep learning algorithm and the ERT with the highest prediction performance

in the machine learning algorithm.

Figures 21 and 22 illustrate different comparisons of the prediction performance of the GRU and

ERT algorithms. As seen in the figures, the GRU performs similarly to the ERT algorithm when

predicting the CDRD but outperforms the ERT method only when predicting the CWCD.

Fig. 21 R2 comparison histogram

54

Fig. 22 R2 comparison histogram

Due to the fact that several hyperparameters were changed during prediction to ensure that no

overfitting or underfitting occurred, a loss curve was constructed, as illustrated in Figures 23 and

24. The RMSE was used as the assessment criterion to compare data with aberrant values.

Fig. 23 GRU loss curve in CDRD prediction

55

Fig. 24 GRU loss curve in CWCD prediction

As illustrated in Figures 23 and 24, the drop curve exhibits the features of a good fit, indicating

no over-or under-fitting in this experiment.

By combining the comparison scores in Figures 21 and 22, it is possible to deduce that when the

amount of data is sufficient, the GRU method can approach the prediction performance of the

ERT algorithm. Because the predictive performance of a deep learning algorithm depends on the

number of datasets and the settings of hyperparameters, one may argue that the GRU can

outperform ERT methods in terms of predictive performance.

3.4 Results & Discussion

Throughout Section 3.3, it was discovered that altering the type of datasets affected the

algorithms' prediction performance. For example, TOMR data is better suited to forecasting the

CDRD, while PM data is better suited to predicting the CWCD. Additionally, increasing the

number of datasets improves deep learning algorithms' prediction performance to a certain level.

However, the pipeline's TOMR and PM values are constant in more realistic situations, making it

extremely difficult to gather sufficient datasets by varying the TOMR and PM. Additionally, it is

56

not straightforward to expand the number of datasets used to train deep learning systems to

improve their prediction performance. As a result, the outcome score achieved by modifying the

CFP and ICWN data types is critical.

By combining Figures 15, 16, and 18, it is found that when the data type is changed, the

algorithms' prediction performance improves, and the algorithms’ prediction performance about

CDRD is superior to that of CWCD.

From a technical standpoint, when the data types are varied and the number of datasets is not

fixed, the ERT retains an excellent predictive performance. As a result, the machine learning

ERT technique is unquestionably the most reliable.

However, from the perspective of developing a pipeline trainer, collecting sufficient datasets

based on TOMR or PM would aid in predicting the CDRD and CWCD. However, it is difficult

to collect large field data sets, and it is also vital to ensure that these data sets contain just

changes in pipeline thickness or material.

Chapter IV Conclusion

This chapter employs seven neural network methods suitable for regression issues, four of which

are Machine Learning methods and three of which are Deep Learning algorithms. The

combination of machine learning and deep learning with 4 types of data which generated by

Fortran software could predict two types of pipeline cracks, including Crack Depth in the Radial

Direction (CDRD) and Crack Width in the Circumferential Direction (CWCD). Through

histogram comparison, it was shown that the machine learning algorithm Extreme Randomized

Tree (ERT) has the best prediction performance. Changing the type of training dataset enhances

some algorithms' prediction performance. Choosing data types based on the Circular Frequency

in Pipeline (CFP) and the Input Circumferential Wave Number (ICWN) can help enhance

prediction performance under realistic settings. In theory, if sufficient data types pertaining to

Pipeline Materials (PM) can be gathered, it would be advantageous to forecast the outcome of

the CWCD. Gated Recurrent Units (GRU) are the optimal algorithm for deep learning.

Increasing the amount of training data and adjusting the hyperparameter settings can assist

enhance the prediction performance of a deep learning algorithm. However, the outcomes score

57

corroborates Tripathi et al. [6].'s assertion that deep learning is not always more favorable than

machine learning.

Nonetheless, after adjusting the hyperparameters and increasing the amount of data, the

prediction accuracy of the deep learning algorithm for pipeline cracks dramatically improved

compared to other data sets with fewer data points. Theoretically, it demonstrates that when

sufficient data and a better-matched hyperparameter configuration are available, the prediction

accuracy of the deep learning algorithm can exceed that of the machine learning Extremely

Randomized Tree (ERT). Collecting massive amounts of data is time-consuming, but it is

necessary for developing a more reliable and accurate pipeline crack prediction trainer.

58

Chapter V Future Works

The Crack Depth in Radial Direction (CDRD) and the Crack Width in Circumferential Direction

(CWCD) has been predicted in this study. Thus, it is possible that the Crack Thickness in Axial

Direction (CTAD) of the pipeline cracks may still be anticipated, allowing for the establishment

of three-dimensional space through the technology. The prediction of 3D crack may be proposed

in the future, which could more intuitively describe the characteristics of the cracks.

On the other hand, field data is important, so in the follow-up work, it is worth to collect field

data and test them. Because in practical cases, response signals may be polluted or overwhelmed

by signal noise, it will decrease the accuracy of prediction. So, filtering techniques may need to

be used in subsequent work.

What’s more, to obtain a better accuracy, deep Learning usually requires huge data sets to train.

The data sets collected, however, are not enough for us to reveal the high-performance of deep

learning, so, collecting more data sets might be considered in the future works.

59

Reference

[1] C. Tschope, E. Schulze, H. Neunubel, M. Wolff, R. Schubert and R. Hoffmann,

"Experiments in acoustic structural health monitoring of airplane parts," 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing, 2008, pp. 2037-2040, doi:

10.1109/ICASSP.2008.4518040.

[2] Jiang Chengjun, Ju Ximin. The Development and Actuality of Oil& Gas Pipeline Testing [J].

Inner Mongolia Petrochemical Industry, 2008(3): 83-86.

[3] A.A. Carvalho, J.M.A. Rebello, M.P.V. Souza, L.V.S. Sagrilo, S.D. Soares, Reliability of

non-destructive test techniques in the inspection of pipelines used in the oil industry,

International Journal of Pressure Vessels and Piping, Volume 85, Issue 11, 2008, Pages 745-751,

ISSN 0308-0161, https://doi.org/10.1016/j.ijpvp.2008.05.001.

[4] Zhao Caiping. Pipeline ultrasonic guided wave inspection data analysis and defect diagnosis

system development. (Doctoral dissertation, Beijing University of Technology).

[5] Herrera, Roberto & Christensen,

 Paul & Elvers, Adrianus. (2019). Machine Learning in Pipeline Inspection: Applications of

supervised learning in non-destructive evaluation.

[6] Tripathi, G.; Anowarul, H.; Agarwal, K.; Prasad, D.K. Classification of Micro-Damage in

Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals. Sensors 2019, 19, 4216.

https://doi.org/10.3390/s19194216

[7] A. Mardanshahi, V. Nasir, S. Kazemirad, M.M. Shokrieh, Detection and classification of

matrix cracking in laminated composites using guided wave propagation and artificial neural

networks, Composite Structures, Volume 246, 2020, 112403, ISSN 0263-8223,

[8] F. Zhang, K. Pinkal, P. Wefing, F. Conradi, J. Schneider and O. Niggemann, "Quality

Control of Continuous Wort Production through Production Data Analysis in Latent Space,"

2019 IEEE International Conference on Industrial Technology (ICIT), 2019, pp. 1323-1328, doi:

10.1109/ICIT.2019.8755111.

60

[9] Te Ma, Satoru Tsuchikawa, Tetsuya Inagaki, Rapid and non-destructive seed viability

prediction using near-infrared hyperspectral imaging coupled with a deep learning approach,

computers and Electronics in Agriculture, Volume 177, 2020, 105683, ISSN 0168-1699,

https://doi.org/10.1016/j.compag.2020.105683.

[10] Burlina P, Billings S, Joshi N, Albayda J (2017) Automated diagnosis of myositis from

muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS

ONE 12(8): e0184059. https://doi.org/10.1371/journal.pone.0184059

[11] Xiong Zhengsi, Huang Gang, Hao Lijun, etc. Research on non-invasive detection of liver

cancer based on machine learning [J]. Beijing Biomedical Engineering, 2020, 39(1): 74-79.

[12] William Sorteberg, Stef Garasto, Alison Pouplin, Chris Cantwell, and Anil A. Bharath.

Approximating the Solution to Wave Propagation using Deep Neural Networks. In NeurIPS

Workshop on Modeling the Physical World: Perception, Learning, and Control, December 2018.

[13] Rautela M. and Gopalakrishnan S. Deep Learning frameworks for wave propagation-based

damage detection in 1D-waveguides, 11th International Symposium on NDT in Aerospace, Paris.

Nov.2019.

[14] Yohei Nishizaki, Matias Valdivia, Ryoichi Horisaki, Katsuhisa Kitaguchi, Mamoru Saito,

Jun Tanida, and Esteban Vera, "Deep learning wavefront sensing," Opt. Express 27, 240-251

(2019)

[15] P. Zhu, J. Isaacs, B. Fu and S. Ferrari, "Deep learning feature extraction for target

recognition and classification in underwater sonar images," 2017 IEEE 56th Annual Conference

on Decision and Control (CDC), 2017, pp. 2724-2731, doi: 10.1109/CDC.2017.8264055.

[16] Rymarczyk T, Kłosowski G, Kozłowski E. A Non-Destructive System Based on Electrical

Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors (Basel).

2018;18(7):2285. Published 2018 Jul 14. doi:10.3390/s18072285

[17] Datta, S.K., & Shah, A.H. (2009). Elastic Waves in Composite Media and Structures: With

Applications to Ultrasonic Nondestructive Evaluation (1st ed.). CRC Press.

https://doi.org/10.1201/9780429136696

61

[18] Nesreen K. Ahmed, Amir F. Atiya, Neamat El Gayar & Hisham El-Shishiny (2010) An

Empirical Comparison of Machine Learning Models for Time Series Forecasting, Econometric

Reviews, 29:5-6, 594-621, DOI: 10.1080/07474938.2010.481556

[19] I. Jahan and S. Z. Sajal, Stock Price Prediction using Recurrent Neural Network Algorithm

on Time-Series Data, the Midwest Instruction and Computing Symposium 2018, April 6-7, 2018

Duluth MN, USA.

[20] F. Altché and A. de La Fortelle, "An LSTM network for highway trajectory prediction,"

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017,

pp. 353-359, doi: 10.1109/ITSC.2017.8317913.

[21] Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural computation, 1997, 9 (8):

1735-1780.

[22] J.L.Elman, Finding structure in time, Cogn. Sci. 14(1990)179-211.

62

Appendices

Appendix A: Control group file about CDRD

Table 9 Control group file about CDRD

CDRD CWCD trscoe1 trscoe2 trscoe3 trscoe4 … trscoe46 refcoe1 refcoe2 refcoe3 refcoe4 … refcoe46

0 0.05 1 0 0 0 … 0 0 0 0 0 … 0

0.025 0.05 1.000273 0.000153 0.000272 0.00003 … 0.000251 0.000274 0.000155 0.000271 0.00003 … 0.000249

0.05 0.05 1.006377 0.005495 0.010225 0.001167 … 0.009747 0.00954 0.005116 0.009429 0.001094 … 0.009062

0.075 0.05 1.000742 0.000482 0.000966 0.000093 … 0.000854 0.00078 0.000455 0.000771 0.000081 … 0.000684

0.1 0.05 1.001104 0.000719 0.001529 0.000139 … 0.001336 0.001216 0.000675 0.001203 0.000119 … 0.001048

0.125 0.05 1.001149 0.000806 0.001872 0.00016 … 0.001622 0.001286 0.000689 0.001272 0.000119 … 0.001086

0.15 0.05 1.001236 0.000985 0.002336 0.000195 … 0.002022 0.001342 0.000755 0.001328 0.000124 … 0.001116

0.175 0.05 1.001567 0.001415 0.003252 0.000271 … 0.002817 0.00169 0.001065 0.001673 0.000163 … 0.001407

0.2 0.05 1.003369 0.002398 0.004569 0.000428 … 0.00408 0.001811 0.000226 0.0018 0.000046 … 0.001314

0.225 0.05 1.002482 0.002206 0.004917 0.000408 … 0.004285 0.002077 0.001192 0.002063 0.000165 … 0.001616

0.25 0.05 1.002465 0.002438 0.005407 0.000446 … 0.004722 0.001981 0.001292 0.00197 0.000172 … 0.001513

0.275 0.05 1.002624 0.002752 0.006083 0.000496 … 0.005318 0.002128 0.001447 0.002118 0.000185 … 0.001594

0.3 0.05 1.002871 0.00312 0.006905 0.000553 … 0.006037 0.002432 0.00164 0.002421 0.000202 … 0.001795

0.325 0.05 1.002996 0.003411 0.00755 0.000599 … 0.006612 0.002572 0.001796 0.00256 0.000218 … 0.001869

0.35 0.05 1.002989 0.003639 0.008026 0.000635 … 0.007051 0.002524 0.001977 0.002511 0.000242 … 0.001808

0.375 0.05 1.002663 0.004117 0.008725 0.000701 … 0.007703 0.002576 0.002832 0.002559 0.000342 … 0.001981

0.4 0.05 1.003597 0.003931 0.008879 0.00069 … 0.007827 0.002544 0.001434 0.002533 0.000197 … 0.001654

0.425 0.05 1.003535 0.004182 0.009505 0.000734 … 0.008391 0.002609 0.001866 0.002601 0.000252 … 0.001706

0.45 0.05 1.003537 0.0043 0.00993 0.00076 … 0.008777 0.002646 0.00203 0.002642 0.000281 … 0.001729

0.475 0.05 1.003581 0.00425 0.010127 0.000777 … 0.008966 0.002458 0.002034 0.002462 0.0003 … 0.001558

63

0.5 0.05 1.004379 0.005747 0.011275 0.000932 … 0.010269 0.001215 0.001967 0.001233 0.000377 … 0.000176

0.525 0.05 1.002148 0.005103 0.010174 0.000833 … 0.008993 0.002795 0.004555 0.002786 0.000492 … 0.002406

0.55 0.05 1.002077 0.005229 0.011923 0.000974 … 0.010628 0.003123 0.004374 0.003108 0.00052 … 0.002562

0.575 0.05 1.001651 0.005928 0.013533 0.001127 … 0.012089 0.00377 0.005597 0.003751 0.000603 … 0.003197

0.6 0.05 1.003924 0.008697 0.015491 0.001289 … 0.014297 0.002971 0.002185 0.002989 0.00035 … 0.001605

0.625 0.05 1.001686 0.003603 0.011701 0.000534 … 0.009617 0.008683 0.009844 0.008604 0.000671 … 0.007919

0.65 0.05 1.001536 0.007309 0.018405 0.001554 … 0.016768 0.003927 0.004383 0.003928 0.000622 … 0.002904

0.675 0.05 1.002722 0.009873 0.020605 0.001811 … 0.019096 0.00281 0.002405 0.002836 0.000646 … 0.001458

0.7 0.05 1.004137 0.017238 0.024002 0.00231 … 0.022931 0.001882 0.006533 0.001877 0.001004 … 0.001944

0.725 0.05 1.007573 0.021213 0.024564 0.002335 … 0.023889 0.005957 0.010871 0.005887 0.00108 … 0.0061

0.75 0.05 1.008552 0.025715 0.014066 0.001041 … 0.013717 0.016837 0.029928 0.016641 0.001835 … 0.016784

0.775 0.05 0.999071 0.008017 0.024199 0.002214 … 0.022411 0.003267 0.007543 0.003265 0.001206 … 0.002566

0.8 0.05 1.000905 0.012962 0.02716 0.002625 … 0.02577 0.000262 0.002757 0.000286 0.001376 … 0.001292

0.825 0.05 1.003825 0.023203 0.03204 0.003364 … 0.031205 0.005789 0.007398 0.005635 0.001968 … 0.007113

0.85 0.05 1.009373 0.026781 0.032686 0.003426 … 0.032414 0.010014 0.013802 0.009804 0.00196 … 0.011212

0.875 0.05 1.004986 0.02444 0.012433 0.000603 … 0.011827 0.015836 0.036766 0.015711 0.002028 … 0.015791

0.9 0.05 0.997405 0.011603 0.03207 0.003445 … 0.030645 0.007483 0.007577 0.00727 0.002735 … 0.007828

0.925 0.05 0.999319 0.014209 0.035421 0.003997 … 0.034306 0.011179 0.004375 0.010891 0.003196 … 0.011681

0.95 0.05 1.014179 0.031886 0.038319 0.004417 … 0.038834 0.016213 0.021792 0.016002 0.002677 … 0.01834

0.975 0.05 1.004876 0.015964 0.029404 0.002465 … 0.02906 0.00732 0.021236 0.007185 0.00151 … 0.00879

1 0.05 0.99927 0.006975 0.038837 0.004801 … 0 0 0 0 0 … 0

… … … … … … … … … … … … … …

64

Appendix B: Control group file about CWCD

Table 10 Control group file about CWCD

CWCD CDRD trscoe1 trscoe2 trscoe3 trscoe4 … trscoe46 refcoe1 refcoe2 refcoe3 refcoe4 … refcoe46

0 0.05 1 0 0 0 … 0 0 0 0 0 … 0

0.025 0.05 1.004379 0.005747 0.011275 0.000932 … 0.010269 0.001215 0.001967 0.001233 0.000377 … 0.000176

0.05 0.05 1.001169 0.003077 0.016093 0.000736 … 0.009721 0.011757 0.002905 0.011673 0.000114 … 0.00625

0.075 0.05 0.999528 0.003942 0.022684 0.000697 … 0.008741 0.018545 0.004928 0.018288 0.000585 … 0.00459

0.1 0.05 0.993939 0.005214 0.029408 0.00092 … 0.007889 0.030004 0.008709 0.029247 0.001232 … 0.015079

0.125 0.05 0.994274 0.007145 0.040975 0.001278 … 0.010192 0.033827 0.006532 0.032866 0.001013 … 0.004718

0.15 0.05 0.991237 0.007157 0.047383 0.00152 … 0.011431 0.040072 0.007909 0.038609 0.000682 … 0.006023

0.175 0.05 0.990471 0.007806 0.052923 0.001105 … 0.010454 0.046543 0.01008 0.044184 0.001537 … 0.00501

0.2 0.05 0.989817 0.011325 0.064116 0.000307 … 0.010658 0.053125 0.010546 0.049636 0.002729 … 0.002275

0.225 0.05 0.985638 0.01136 0.06996 0.002118 … 0.012126 0.062135 0.01225 0.057029 0.001769 … 0.005941

0.25 0.05 0.983165 0.011584 0.074986 0.002228 … 0.013526 0.068303 0.013405 0.061684 0.001261 … 0.005738

0.275 0.05 0.979251 0.015881 0.084481 0.003783 … 0.009975 0.068797 0.012554 0.061584 0.007209 … 0.023109

0.3 0.05 0.981644 0.015442 0.087945 0.00096 … 0.011154 0.082242 0.016263 0.070612 0.003841 … 0.003696

0.325 0.05 0.978132 0.015771 0.092306 0.003063 … 0.014368 0.090277 0.017724 0.075508 0.001981 … 0.006962

0.35 0.05 0.97589 0.0161 0.095606 0.002559 … 0.016331 0.096985 0.019076 0.078866 0.002067 … 0.006447

0.375 0.05 0.977282 0.019142 0.100817 0.003827 … 0.011416 0.100617 0.018801 0.080327 0.0059 … 0.008018

0.4 0.05 0.974737 0.019887 0.104007 0.000794 … 0.01352 0.11053 0.021652 0.083914 0.004874 … 0.00522

0.425 0.05 0.971958 0.020374 0.105944 0.003205 … 0.017103 0.118605 0.023031 0.086596 0.002385 … 0.007456

0.45 0.05 0.962419 0.025171 0.108637 0.00201 … 0.02234 0.119983 0.02212 0.086857 0.005986 … 0.038071

0.475 0.05 0.972587 0.024007 0.10925 0.008472 … 0.015318 0.129428 0.024142 0.088664 0.008519 … 0.00449

0.5 0.05 0.969347 0.024548 0.11038 0.005038 … 0.017564 0.137971 0.02681 0.088597 0.008859 … 0.005498

65

0.525 0.05 0.966401 0.024891 0.110188 0.002794 … 0.020918 0.146943 0.02857 0.088542 0.006826 … 0.007198

0.55 0.05 0.966836 0.028126 0.108811 0.000613 … 0.01051 0.149875 0.027227 0.088635 0.004456 … 0.012186

0.575 0.05 0.966973 0.028227 0.10726 0.003986 … 0.013008 0.158609 0.029987 0.087543 0.000869 … 0.00389

0.6 0.05 0.965569 0.029169 0.105328 0.003263 … 0.018153 0.166594 0.031934 0.085398 0.002448 … 0.00871

0.625 0.05 0.957648 0.029972 0.104673 0.005943 … 0.032564 0.176499 0.034761 0.08141 0.010427 … 0.027957

0.65 0.05 0.963602 0.032881 0.098807 0.001169 … 0.010585 0.178506 0.0327 0.08098 0.003427 … 0.007792

0.675 0.05 0.963209 0.032829 0.095346 0.002941 … 0.014029 0.186322 0.035105 0.077515 0.001437 … 0.006074

0.7 0.05 0.962728 0.033755 0.091419 0.002379 … 0.020511 0.194738 0.037166 0.072876 0.002069 … 0.0085

0.725 0.05 0.96337 0.040355 0.081756 0.006886 … 0.012393 0.196099 0.032954 0.072516 0.005732 … 0.024377

0.75 0.05 0.961257 0.037233 0.079373 0.001229 … 0.010424 0.206733 0.038201 0.065095 0.002399 … 0.004188

0.775 0.05 0.961126 0.03752 0.074665 0.002307 … 0.015657 0.214097 0.039919 0.059936 0.001122 … 0.00763

0.8 0.05 0.952582 0.039044 0.072143 0.005129 … 0.038905 0.226221 0.043707 0.052131 0.005043 … 0.031682

0.825 0.05 0.961391 0.042386 0.058223 0.001407 … 0.008969 0.226992 0.041149 0.049442 0.001868 … 0.009334

0.85 0.05 0.959739 0.04177 0.052657 0.001027 … 0.010474 0.234647 0.043169 0.0428 0.001409 … 0.004281

0.875 0.05 0.960432 0.042157 0.047833 0.001352 … 0.017018 0.241897 0.044768 0.0365 0.000963 … 0.007502

0.9 0.05 0.96417 0.045747 0.036264 0.001139 … 0.011453 0.247093 0.044824 0.031485 0.000683 … 0.01241

0.925 0.05 0.960393 0.04637 0.027416 0.000564 … 0.006491 0.255581 0.046764 0.023075 0.000766 … 0.002896

0.95 0.05 0.959423 0.046296 0.022042 0.000482 … 0.010714 0.262032 0.04759 0.016808 0.000676 … 0.006539

0.975 0.05 0.963705 0.046935 0.012189 0.000556 … 0.007296 0.262046 0.049494 0.017328 0.000908 … 0.013368

1 0.05 0.95682 0.049832 0 0 … 0 0.278287 0.050428 0 0 … 0

… … … … … … … … … … … … … …

66

Appendix C: CDRD prediction codes in Extremely Randomized Tree
from sklearn import datasets # Create the environment

from sklearn import metrics

from sklearn.metrics import r2_score

from sklearn.model_selection import train_test_split

from sklearn.ensemble import ExtraTreesRegressor

from sklearn.preprocessing import StandardScaler # Preprocessing function

from numpy import *

pipeline_test= pd.read_csv(r"C:\Users\admin\data\CDRD\CDRD.csv")

x=pipeline_test.drop('CDRD',axis=1)

y=pipeline_test['CDRD']

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2) # f(x) = (x - means) / standard deviation

scaler = StandardScaler()

scaler.fit(x_train)

x_train = scaler.transform(x_train) # Standardization

x_test = scaler.transform(x_test)

etr = ExtraTreesRegressor(n_estimators=10, max_features=200,
min_samples_split=10)

Build Extremely Randomized Tree model

etr.fit(x_train,y_train)

y_predict = etr.predict(x_test)

print(np.sqrt(metrics.mean_squared_error(y_test, y_predict))) # MAE

print(svr.score(x_test, y_test)) # R2 Score

67

Appendix D: Part of the CDRD prediction codes in Gated Recurrent Unit
xlsfile=pd.read_csv('CDRD TOTAL.csv',header=None) # Read data

data=np.array(xlsfile)

n=np.random.randint(0,data.shape[0],data.shape[0]) # Random array used to scramble the data set

train_data = data[n[0:6500],2:] # Divide data features into training set, validation set and test set

valid_data = data[n[6500:7500],2:]

test_data = data[n[7500:],2:]

train_label = data[n[0:6500],0:2] # Obtain the corresponding labels of the training set, validation set and test set, column
0-1 in the table

valid_label = data[n[6500:7500],0:2]

test_label = data[n[7500:],0:2]

tf.set_random_seed(100)

num_epochs = 200 # Training related hyperparameters

batch_size = 2

alpha = 0.0001

hidden_nodes = 40

input_features = 222

sequence_len = 1

output_class = 2 # Regression 8 input with 4 output

X = tf.placeholder("float", [None, sequence_len, input_features]) # Input placeholder

Y = tf.placeholder("float", [None, sequence_len, output_class])

68

weights = {

 'out': tf.Variable(tf.random_normal([hidden_nodes, output_class]))

}

Define weights, gaussian distribution

biases = {

 'out': tf.Variable(tf.random_normal([output_class]))

}

 # Define the GRU network

def GRU(x): # Reshape input tensor into batch x sequence length x # of features

x = tf.reshape(x , [-1, sequence_len, input_features])

gru_cell1 = tf.nn.rnn_cell.GRUCell(num_units=hidden_nodes) # 3 GRU with hidden number of nodes each layer

gru_cell2 = tf.nn.rnn_cell.GRUCell(num_units=hidden_nodes)

gru_cell3 = tf.nn.rnn_cell.GRUCell(num_units=hidden_nodes)

gru_cell = tf.nn.rnn_cell.MultiRNNCell([gru_cell1, gru_cell2, gru_cell3]) # Stack of those layers

init_state = gru_cell.zero_state(tf.shape(x)[0], dtype=tf.float32) # Initialize state

outputs, _ = tf.nn.dynamic_rnn(gru_cell, x, dtype=tf.float32, initial_state=init_state) # Get the output of each state

output_sequence = tf.matmul(tf.reshape(outputs, [-1, hidden_nodes]), weights['out']) + biases['out']

return tf.reshape(output_sequence, [-1, sequence_len, output_class])

This page is intentionally left blank.

