
Advances in Operations Research Models Used in 

the Gold Mining Industry 

by 

Suliman Emdini Gliwan 

A Dissertation Submitted in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy in Faculty of  

Natural Resources Management at Lakehead University 

January 2023



1 

DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 

thesis, including any required revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

In presenting this thesis in partial fulfillment of the requirements for the PhD degree 

at Lakehead University in Thunder Bay, I agree that the University will make it 

freely available for inspection.  

This thesis is made available by my authority solely for the purpose of private study 

and research and may not be copied or reproduced in whole or in part (except as 

permitted by the Copyright Laws) without my written authority.  

Name: Suliman Emdimi Gliwan 

Signature:  

Date: 18 January 2023 



2 
 

 

A CAUTION TO THE READER  

This PhD thesis has been through a formal process of review and comment by three 

faculty members and an external examiner. It is made available for loan by the 

Faculty of Natural Resources Management for the purpose of advancing the practice 

of professional and scientific forestry.  

The reader should be aware that opinions and conclusions expressed in this 

document are those of the student and do not necessarily reflect the opinions of the 

thesis supervisor, the faculty or Lakehead University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3 
 

 

EXAMINING COMMITTEE MEMBERSHIP 

 

The following served on the Examining Committee for this thesis. The decision of the 

Examining Committee is by majority vote. 

 

External Examiner:  

Professor Ahmed Azab 

Faculty of Engineering 

University of Windsor, Windsor, Ontario, Canada  

 

Internal Members: Prof. Eltayeb Mohamedelhassan 

Professor, Faculty of Engineering 

Lakehead University, Thunder Bay, Ontario, Canada 

 

Internal Member: Dr. Nuri Hmidi 

Adjunct Professor, Faculty of Engineering, 

Lakehead University, Thunder Bay, Ontario, Canada 

 

Supervisor:  Prof. Kevin Crowe 

Associate Professor, Faculty of Natural Resources Management, 

 Lakehead University, Thunder Bay, Ontario, Canada 

 

 

 
  



4 
 

DEDICATION 

 

I dedicate this dissertation to the souls of my beloved late parents. 

Your unconditional love has always been my inspiration. 

To you, I dedicate this work. 

May ALLAH bless your souls and grant you the highest state in Jannah. 

I love and miss you. 

 

 

 

 

 

 

 

  



5 
 

 
ACKNOWLEDGMENTS 

First and foremost, I dedicate all laud, praise and thanks to Allah for helping me complete 

this work. I could never have finished this thesis without his help and guidance. 

I would like to express my sincere gratitude to my supervisor, Prof. Kevin Crowe, for his 

patience, motivation, and immense knowledge. Over the last few years, he has been more than a 

teacher and a supervisor – he has been more like a big brother and mentor. I would never have 

accomplished such success without his unlimited and unconditional help and support. I also wish 

to express my appreciation and thanks to Prof. Jian Wang, Prof. Chander Shahi, and Prof. Ulf 

Runessonm, Dean of Natural Resources Management, for their valuable guidance and continual 

support. Their insightful advice was crucial to my academic success and to my development as a 

researcher. 

At this time, I also want to express my gratitude to Professor Dzhamal Amishev and Dr. 

Nuri Ellhamidi for serving on my thesis committee and providing constructive comments that 

helped me to improve and complete my thesis. Additionally, I appreciate Prof. Reino Pulkki, who 

was a member of the comprehensive exam committees and thank Prof. Jian Wang for his 

management of the comprehensive exam. In addition, I want to thank all the faculty members in 

the Department of Natural Resources Management and all my colleagues at Lakehead University. 

Also, I can't forget to say thank you so much to Prof. Qing-Lai Dang, the faculty member in the 

Department of Natural Resources Management and he is the new (Ph.D.) coordinator. 

Also, I would like to thank and appreciate MITACS and our industrial partner for funding 

and sharing info and datasets, especially to the Managers of Operations, Planning and Production 



6 
 

departments and others at Red Lake Gold Mines (RLGM), owned by Newmont Goldcorp Inc., 

Ontario, Canada for helping us and made a special effort at an in-depth understanding of problems 

and providing us the operational data. Special thanks to my friends, Dr. Yussef Awin at Maschine 

University-USA and Dr. Mohannad Al-Mousa, for their assistance. Thanks also to Dr. Bassam Al-

Shraah for his support, encouragement, and his invaluable feedback throughout the entire process 

of completing this research. 

Finally, I would like to express my gratitude and appreciation to my family. My deepest 

appreciation to my dear deceased parents for their vital role in my life and their numerous sacrifices 

for me and for our family. As well, a heartfelt thank you to my wife, Ahlam, and wonderful 

children Otman, Enas, Lamis, Rayan, and Wasem, for their unending love, support, and 

understanding throughout my study period. Thank you all for believing in me and for your patience 

– this accomplishment would not have been possible without you. Also, many thanks to my 

brothers and sister for their love, support, and constant encouragement. 

 

 

 

 

 

  



7 
 

 
ABSTRACT 

The topic addressed in this dissertation is a set of economically important operational 

problems in the gold mining industry that are solved using mathematical models of operations 

research. More specifically, the main objective of this thesis is to formulate and evaluate decision 

support models for three important diverse challenges which were found to exist at an underground 

gold mine in Northwestern Ontario: Newmont Goldcorp’s Red Lake Gold Mine.  The challenges 

discovered at Red Lake Gold Mine are not peculiar to that location but are economically relevant 

to the underground gold mining industry in as whole. The mine at Red Lake provided a deeper 

understanding of the problems and data sets.   

The challenges modeled and solved in this dissertation are: i. minimizing freshwater used in the 

processing of gold ore; ii. optimizing ore-waste material flow in an underground gold mine; and 

iii. optimal dispatching of trucks and shovels in an underground gold mine.  Each of the three 

problems was treated with a formulation of the model which is innovative and the evaluation of 

the results of each case study showed that improved decisions can result when these models are 

used.    

This dissertation shows that, for a single gold mine, problems of major economic importance can 

be found, innovatively modeled, and solved using the methods of operations research.   In addition, 

since these problems are not peculiar to one gold mine, but are found in other gold mines, the 

innovation of this dissertation is relevant to the underground gold mining industry as a whole and 

therefore constitutes a minor but important advance in the practical knowledge in this industry. 

Keywords: underground gold mine, operations research, optimization models. 
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Chapter 1: General Introduction 

 

1.1 Introduction 
 

At the time of this writing, the U.S. Geological Survey estimates that the average 

American-born citizen will need millions of pounds of fuels, minerals, and other extracted 

resources in his or her lifetime (Maus et al. 2022). Mining is a critical global industry, spanning 

all but one continent (Antarctica), with the highest-producing countries being China, the United 

States, Russia, Australia, and India (Dutta et al. 2016).  Increasingly, this demand is driving mining 

companies to explore and pursue deeper mineral deposits as near-surface deposits deplete. 

Correspondingly, there has been a significant rise in industry interest in applying operations 

research techniques to improve underground mine planning (Newman et al. 2010).  

The mining industry in Canada has been and remains a major component of the national 

economy, but this industry has historically created many challenges for the sustainability of the 

environment. This is confirmed by Hilson and Murck (2000), who provided some guidelines for 

mining companies seeking to operate more sustainably, and this is a series of actions that mine 

planners should take to enhance their operations' sustainability..  Their work is specifically focused 

on improved planning processes that contribute to sustainable development at the scale of the 

whole mining enterprise in Canada. 

In order to remain competitive in a global marketplace, improvements in the efficiency of 

strategic, tactical, and operational decisions in the mining industry must continue to advance.  

Innovation in operations research models is one means that can assist advancements in this 
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hierarchy of decisions in the mining industry (Newman et al. 2010). It is the overarching objective 

of this thesis to contribute to this advancement in innovative decision support models required in 

the mining industry.    

To meet this general objective, we have formed a partnership with Newmont Goldcorp Inc. 

at the Red Lake Gold Mine, in Northwestern Ontario.  At this mine, we identified three major 

operational problems that were in need of innovative operations research models.  Each of these 

problems is treated as a stand-alone chapter in this thesis.  These problems, and our modeling 

approach, will now briefly be introduced. 

 

1.2 Problem 1: Minimizing the Use of Freshwater in the Processing of Gold Ore 

At the Red Lake gold mine, we were informed that a new policy had been agreed upon 

whereby the amount of freshwater used in the processing of ore was to be reduced.  This policy 

was to satisfy the environmental objectives the company had agreed to meet.   

Freshwater is used intensively in the processing of gold ore.  The gold mine delivers gold 

ore and waste rock to the above-ground processing facility, after which the ore is separated from 

the rock; i.e., it is purified through multiple stages of processing.  Many of these stages use large 

volumes freshwater from the nearby lake.  One strategy by which the reduction in the use of 

freshwater can be achieved is by replacing fresh-water with recycled water, wherever feasible, 

within the processing stages. 

To explore the feasibility and benefits of this approach, a linear programming model of the 

optimal water allocation model was developed for use within the above-ground gold ore processing 

plant.  The objective of the model is to minimize the use of fresh-water in ore processing, subject 
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to maintaining the chemical feasibility of the recycled water used at each processing stage by 

satisfying constraints on pollutant concentration permissible at each stage.   

The optimal water allocation problem had not been applied to the gold processing problem 

before.  Perhaps this is because the environmental objectives had not previously existed to warrant 

it in the gold processing industry.  The results of applying this new model to the problem instance 

at the Red Lake Mine showed a reduction in daily freshwater usage by 25.7% versus the current 

usage.  

The research in Chapter 1 is significant for two major reasons.  First, it is the first 

optimization model to be used in implementing the new environmental policy for gold mines in 

Canada to drastically reduce the quantity of freshwater used in their operations.  Second, the 

solution of the model is practical because it shows exactly where, in the processing stages of gold 

ore, the use of recycled water can be most effectively used to reduce consumption of freshwater 

sources. 

   

1.3 Problem 2: Truck and Shovel Dispatching Problem Used in Underground Gold Mine 

Truck haulage is one of the largest operating costs in both above- and below-ground mining 

(Ercelebi 2009).  Our partners at Red Lake Gold Mine were interested in our ability to formulate 

an optimization model that could help them reduce this major cost.  At present, their planners are 

using spreadsheets to dispatch trucks and shovels. This is not surprising, although this general 

problem has been researched exhaustively for above-ground mines, it has received only 

occasional, case-specific treatments for underground mines, and no treatment in underground gold 

mines.   
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Hence, we formulated and evaluated an optimal truck dispatching model specifically tailored for 

the constraints and objectives of an underground gold mine.  

The problem of assigning truck-trips in an underground gold mine, at the beginning of a 

shift, requires assigning a set of truck-trips and shovels to a set of mining levels.  Each level has: 

i) a fixed supply of gold-ore available to be loaded in a given shift; ii) different grades of gold ore; 

and iii) different transportation costs arising from different slopes and distances to be covered by 

the trucks.  The solution requires that multiple objectives be met: i) removing the greatest mass of 

gold (in ounces) possible in a shift; ii) minimizing total transportation costs; iii) minimizing the 

total number of shovels required; and iv) selecting the lowest cost set of truck types and truck-

capacities required.  

Given that this problem has multiple conflicting objectives, it was formulated as a goal 

programming model.  This model allows the decision-maker to prioritize goals and to explore 

trade-offs in order to arrive at the optimal ‘satisficing’ solution.  The model was applied to a data 

set provided by Red Lake Gold Mine and the results were compared to a single objective 

formulation of this model in which gold removed was to be maximized subject to the same 

constraints as the multiple objective models.  The results show, among other things, that the 

multiple objective models produced a solution with a 14.8% reduction in transportation costs 

versus the single objective model.   

To our knowledge, a goal programming model has not been formulated for the truck and 

shovel dispatching problem in underground mines and therefore constitutes an innovation in the 

field of operations research models for below-ground mines.  Our research on this problem is 

significant for two major reasons.  First, it presents and evaluates a solution method for the truck 

dispatching problem that is peculiar to the underground gold mine problem.  The peculiarity of 
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this problem is the variance in ore grade dispersed across the mine and the tremendous economic 

differences implicit in this variance. The trade-off between transportation costs, shovels used, and 

truck capacities selected is a difficult one.  Second, the work has practical significance, for the 

model is quite easy to build and solutions can be generated in less than one minute, thus allowing 

planners to revise their dispatching plans in the middle of the shift should machines break down 

or other stochastic events require revision of an optimal dispatching solution immediately. 

 

1.4 Problem 2: A Network Flow Model of Optimal Ore and Waste Movement in an 

Underground Gold Mine 

The Red Lake Gold mine in Red Lake, Ontario is 70 years old, and its planners have 

inherited a myopically developed set of vertical and horizontal transportation corridors.  The 

vertical corridors, or shafts, are each designated for either gold ore or waste.  There is not capacity 

constraint on these shafts and the material is moved by gravity.  The horizontal corridors require 

mining equipment’s to move the ore or waste.  The horizontal corridors have a limit on the capacity 

of material movement per day (in tonnes).   These daily capacities on horizontal movement 

constitute bottlenecks on the flow of material through the mine.  As a result, the weekly selection 

of blocks in which to operate (i.e., remove ore and waste) is constrained by the bottlenecks on the 

transportation of material that are dispersed through the mine. At present, the planners at Red Lake 

mine are using a heuristic method and spreadsheets to produce their weekly schedule of levels and 

blocks on which to operate within the constraints of their tactical plan.   To solve this weekly 

scheduling problem, we formulated a new mixed-integer network flow model of the problem of 

weekly allocating mining operations in an underground gold mine such that the total gold mined 

(in ounces) was maximized subject to the transportation capacity constraints on ore and waste.  
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The results were compared to those of two greedy heuristic models that were designed to represent 

the decision-making heuristics that are currently used at the mine.  It was found that the new model 

yielded solutions that improved upon the two greedy heuristics by 14.7% and 6.0%, respectively.  

The research conducted is significant for two main reasons.  First, it shows how a valuable 

problem in the underground gold mine can be solved using an operations research model with 

meaningful improvements over the current decision-making method.  Second, the research in this 

problem shows how the overall productivity of the mine can be improved.  Overall improvement 

in the mine’s productivity occurs because the operational execution of the strategic and tactical 

plans of the mine can greatly constrain the productivity of the mine. The model minimizes a major 

operational bottleneck on productivity caused by the transportation capacity of the mine.    

  

1.5 List of Publications: 
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Use in the Gold Processing Industry", European Scientific Journal November 2019 edition Vol.15, 

No.33 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431.  

Doi:10.19044/esj.2019.v15n33p22 URL:http://dx.doi.org/10.19044/esj.2019.v15n33p22 
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Chapter 2 
Fresh-water Problem Used in the Gold Processing Industry 

via Linear Programming 

2.1 Introduction  

Gold mines deliver gold ore to processing facility and waste rock to surface, after which 

the ore is separated from the rock through an 11-stage process (see Figure 2.1). The stages of ore 

processing require large quantities of fresh-water, which is drawn from nearby lakes or rivers. 

Given the greater importance placed on environmental sustainability, gold producers have become 

increasingly interested in reducing the amount of fresh-water required to process their ore. One 

strategy by which this can be achieved is by replacing fresh-water with recycled water, wherever 

feasible, within the 11 processing stages. 

The objective of this research is to develop and apply an optimization model by which the 

gold processing industry can reduce its use of fresh-water by identifying, within the processing 

stages, where and up to how much recycled water can replace fresh-water. To achieve this 

objective, a linear programming model of this optimal water allocation problem was developed to 

minimize the use of fresh-water in ore processing, subject to maintaining the feasibility of the 

processing stages by satisfying constraints on pollutant concentrations. The model was applied to 

the RLGM gold processing facility, as a case study. The results show that the optimal solution 

generated by the model required 51 metric tons/hr of fresh-water versus the current use of 68.6 

metric tons/hr - a 25.7% reduction in fresh-water use. This research is innovative insofar as an 

optimization model aimed at minimizing fresh-water usage, which has not been applied to the gold 

processing problem by prior researchers.  



20 
 

2.2 Literature Review 

Fresh water is a basic natural resource used in many industries processes, especially in gold 

processing and other chemical processes. Hence, the increase in fresh-water consumption and the 

resulting pollutants from contaminated waste-water has become a major concern for those 

industries. Therefore, the government has mitigated these issues by imposing stricter 

environmental restrictions. We must highlight these important points in reviews by dividing them 

into two parts according to the evolution of tactical water allocation models that are used in gold 

processing: water system strategy, and the constraints imposed in the gold processing operations, 

as the following:  

2.2.1 Optimization of a Water System Strategy: 

Environmental policy-makers have repeatedly stressed the urgent need to improve 

planning methods on the use of fresh-water, Ridoutt et al. (2010) and Mekonnen et al. (2016). 

Process industries that intensively use fresh-water are therefore pursuing innovative methods to 

reduce their total use of this critical natural resource, Gleick and Palaniappan (2010) and  Koppola 

et al. (2004). One promising strategy by which the use of fresh-water can be reduced in process 

industries is that of mathematical optimization models Izquierdo et al. (2004), Molle et al. (2008), 

and Khan et al. (2018). In the same way, Bagajewicza et al. (2000), Bagajewicza & Savelski et al. 

(2001), and Saeedi et al. (2006) confirmed that access to an investigation of water system strategy 

will be beneficial to mitigate the environmental constraints imposed on chemical processing 

operations, and others, to reduce fresh-water usage as well as to contribute to increasing used-

water consumption in their processes. Therefore, some studies and research have addressed the 

water system strategy in gold processing or chemical units. Wang, et al. (1994b) confirmed that 

the treatment of fresh-water after use in the gold processing, as well as the contamination resulting 



21 
 

in their processes, are important factors to reach an optimal water system strategy and reduce 

environmental restrictions. Koppola et al. (2004) discovered many benefits from implementing a 

water system strategy into processing operations, especially those that involve chemical processes. 

They indicated that a water system strategy reduces environmental constraints by using recycled 

water instead of fresh-water. Zaman et al. (2015) presented an important review about the benefits 

and challenges of water management system strategies and asserted that the concept has been 

implemented generally in different phases of processing operations and used-water management 

systems. Hence, a water system strategy and contaminated water policy outlining ways to take 

advantage of recycling used-water in the processes would be a beneficial strategic organizational 

goal and would assist decision-makers to improve their company’s strategy to implement a water 

policy for output of their processes. In addition, Pietzsch et al. (2017) presented valuable literature 

reviews on the subject of “zero waste water” in their study of 102 published articles on this topic. 

They all recommended that there are financial, economic, and environmental benefits, as well as 

advantages to industrial processes by implementing a water management policy and making it a 

strategic goal. 

2.2.2 Optimization Programs Model: 

In this part, we focused on the reviews related to optimization models used to solve the 

water allocation system problem in the processing operations of chemical industries, which has 

been intensively researched. Since the 1970s, many industries suffered from a water management 

problem that involved increased water consumption, as well as seeking an efficient way to take 

advantage of recycling used-water in the processes. Several researchers, e.g., Schultz et al. (1974), 

Hospondarec et al. (1974), Anderson (1977), and Sane et al. (1977) have developed optimization 

formulation models to solve the fresh-water problem used within the processing stages and 
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manufacturing industries. They identified where, and up to how much, recycled water can replace 

fresh-water consumption during processing stages. They explained the importance of using 

mathematical programming models to solve water allocation management problems and to 

increase the contribution of recycled used-water throughout manufacturing processes as an 

alternative during cleanup and processing processes. They also discussed the influence of the 

concentration of pollutants on inlet and outlet in each process to minimize water consumption in 

petroleum industries and chemical processes. Research carried out by Bagajewicz et al. (2000, 

2001 and 2002), Karuppiah et al. (2006), Saeedi and Hosseinzadeh (2006), Klemes et al. (2010) 

on particular water-intensive industries has also been carried out, e.g., in petroleum refining.  

Takama et al. (1980) and Alva-Argaez (2007) studied aluminum processing. Deng et al. (2009) 

conducted research on pulp and paper production, as did Lovelady et al. (2007). To the best of our 

knowledge, the gold processing industry has not been evaluated by the application of a 

mathematical optimization model formulated to minimize its use of fresh-water. This gap is 

significant, for the gold processing industry is water-intensive as confirmed by Mudd, et al. (2007). 

Joe & Pickett (1974) and Turcotte et al. (1986) reiterated that the recycling of used-water in 

Canadian gold mines helped tremendously in purifying the contaminants such as Cyanide, 

Uranium, Zinc, Sulfur, Carbon, Nickel, and Magnesium, which cause extreme damage to the 

environment. Jezowski et al. (2010) presented a comprehensive review on the development of 

fundamental optimization models, abstracted from the particular constraints of a given type of 

industrial process.  

Based on the above, it can be said that a water system strategy has become a prime target 

for gold mining industries. Hence, reaching an optimal fresh-water consumption used in gold 
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mining processes and replacing it with the used-water is a strategic objective, and is being treated 

as a genuine goal for all gold mining companies. 

2.3 Methods  

In the Methods section, we first present the problem definition and the case study 

parameters; secondly, we describe the mathematical formulation of the model used to solve the 

problem. 

2.3.1 Formulation of The Model 

The model used in this problem is categorized as an optimal water allocation model. 

Several such models have been formulated for this problem by researchers working on 

fundamental issues in the process industries (e.g., Bagajewicz et al. 2000, and Koppol et al. 2004); 

the model presented below is derived from this previous work. Therefore, the innovation in this 

work is not in the formulation of the model, but in its application to the gold ore processing 

problem, and the results thereof. The mathematical formulation is presented below: 

Indices and Sets 

j, J = index and set of processes. 

h, H = index and set of processes in which pollutant are added. 

k, K    = index and set of mass load pollutant processes.  

Pj  = set of antecedent processes whose output flow is a direct input to process j.  

Rj  = set of receiver processes whose input flow is a direct output from process j.   

Parameters 

Lhj, = contaminant mass load of pollutant h into the process j (kg per hour). 

Cj,in
max   = maximum allowable concentration of pollutants input to process j (ppm). 

Cj,out
max   = maximum allowable concentration of pollutants output from process j (ppm). 

Ĥ  = % contaminant head at the processes using wastewater (kg per hour). 
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Decision Variables 

Fj w  = flow of the fresh-water input to process j (metric tons/hr). 

Fi,j = flow of contaminated water from process i to process j (metric tons/hr). 

Objective function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (Z) =  ∑ 𝐹𝑗
𝑤

𝑗 ∈𝐽

                                                                                                                   [1] 

Subject to: 

𝐹𝑗
𝑤  +  ∑  𝐹𝑗 

 𝒊∈𝑹𝑱

=    ∑  𝐹𝑖,𝑗 

 𝒊∈𝑹𝒊

                  ∀𝑗  ∈ 𝐽                                                                   [2] 

 𝐹ℎ
𝑤 −  

𝐿ℎ

𝐶ℎ 𝑜𝑢𝑡
𝑚𝑎𝑥 = 0                  ∀ℎ ∈ 𝐻                                                                                                          [3]  

 ∑  𝐹𝑖,𝑗 

𝑖

 (𝐶𝑖,𝑜𝑢𝑡
𝑚𝑎𝑥   − 𝐶𝑗,𝑖𝑛

𝑚𝑎𝑥) − 𝐹𝑗 
𝑤 .  𝐶𝑗,𝑖𝑛

𝑚𝑎𝑥  ≤ 0                    ∀𝑗  ∈ 𝐻̅     𝑖 ∈ 𝑃𝑖                                [4] 

∑  𝐹𝑖,𝑗 

𝑖

 (𝐶𝑖,𝑜𝑢𝑡
𝑚𝑎𝑥   −  𝐶𝑗,𝑖𝑛

𝑚𝑎𝑥) −  𝐹𝑗 
𝑤 .  𝐶𝑗,𝑖𝑛

𝑚𝑎𝑥 + 𝐿ℎ ≤ 0           ∀𝑗  ∈ 𝐻̅     𝑖 ∈ 𝑃𝑖                                 [5] 

 𝐶𝑗 ≤ 𝐶𝑗
𝑚𝑎𝑥                                                                                    ∀𝑗  ∈ 𝐻̅                                                 [6] 

𝐶𝑖 ≤ 𝐶𝑖
𝑚𝑎𝑥                                                                                     ∀𝑖  ∈ 𝑃𝑖                                                [7] 

Fj w  ≥  0                                   ∀𝑗  ∈ 𝐽                                                                   [8] 

Fi,j ≥  0    ∀𝑖 ∈ 𝐼      ∀𝑗  ∈ 𝐽                                                                      [9] 

 

The objective function of this model, as shown in Equation [1], is to minimize the total 

fresh-water input into all gold processing stages. Hence, each process uses water flow (fresh-water 

or used-water, or both) in process i to process j, which includes contaminant mass load Lh and the 

maximum concentration rate of inlet (Cin) process and outlet (Cout) process (as the constraints of 

concentration rates). Equation [2] is a flow balance equation it ensures that, for each process, the 
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total water flow in (metric tons/hr) equals the flow out. Therefore, this constraint described for a 

water process flow has two requirements: a water flow rate in the process i to process j, and a 

concentration rate. Equation [3] ensures that the mass load pollutants, Lh (kg.h-1) contained in the 

flow of water out of each process does not exceed its limit Cout max. Therefore, before calculating 

this Equation [3], we need to be aware of the water weight and pollutants outflow in each process 

Lh (kg.h-1) because the concentration of mass load pollutants impacts the amounts of freshwater 

consumption (mg/L = ppm = g/ton). Here, we note that, in this model, the mass load is calculated 

using the following equation: 

Mass load of polluants (Lh) = 𝑊𝑎𝑡𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡∗(1000𝐿∗1 𝑘𝑔) ∗ 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑜𝑢𝑡𝑙𝑒𝑡𝑚𝑔∗(1𝑔)

hr.∗ ( 1000g)        ∗               L∗(1000mg)
      [8] 

Hence, it is determined that for mass load Lh (kg.h-1), which represents the number of pollutants 

concentration used for k in process j, it is volume that affects the inlet and outlet to process h, 

where each process ∀h belongs to 𝐻̅ (all sat processes that use reused water and sends a 

contaminant mass load to the next process). Equation [4] ensures that the mass load Lh (kg.h-1) of 

pollutants contained in the flow of water out of each process does not exceed its limit, Cout
max.  

This constraint is used in processes that are fed only by fresh-water H (tons/hr). When 

implementing this constraint using the optimization programming model, it calculates the 

difference between the maximum concentration outlet (Cout
max) in water process i, and the 

maximum concentration inlet in water process used (Cin
max). ∑  𝐹𝑖,𝑗 𝑖  (𝐶𝑖,𝑜𝑢𝑡

𝑚𝑎𝑥   −  𝐶𝑗,𝑖𝑛
𝑚𝑎𝑥) −

 𝐹𝑗 
𝑤 .  𝐶𝑗,𝑖𝑛

𝑚𝑎𝑥  ≤ 0 , for each process i to j. Where each process h belongs to H (a set of contaminants 

head (k.h-1) at the processes that used fresh-water (tons/hr); and where the process i belongs to Pj 

(all set processes which post fresh-water and waste-water to process j). Therefore, the optimal 

design problem can be addressed in this constraint for processes that used fresh-water. Equation 



26 
 

[5] ensures that the mass load Lh (kg.h-1) of pollutants contained in the flow of water out of each 

process does not exceed its limit, Cout
max.  This equation differs from Equation [4] in that it is used 

only for processes that are fed by recycled water or a mixture of fresh-water and used water. 

Therefore, when implementing this constraint, it calculates the difference between the maximum 

concentration outlet (Cout
max) in water process i, and the maximum concentration inlet in water 

process i (Cin
max), plus contaminant mass load Lj, because it contains pollutants concentration flow. 

Where each process h belongs to 𝐻̅ (a set of contaminants head at the processes used wastewater 

(k.h-1); and where process i belongs to Pj (all sat processes that post fresh-water and waste water 

to process j). It is noticed that the fifth constraint in Equation 5 is important because it is related to 

the contaminant of mass load pollutants (Lh) in each to 𝐻̅ process set. 

2.3.2 Case Study Problem  

Figure 2.1 illustrates the 11-stage process by which gold is extracted from the ore that has 

been mined. The parameters are from our case study. 

Reports published in 2013, 2015 and 2017 refer to Newmont Goldcorp Inc., in addition to 

recent data obtained through site visits and interviews with RLGM employees in the water system 

department regarding the data and information about the 11 stages in the case study. The average 

output of ore material gold production capacity during their gold processing stages is 1800 tons 

per day from ore material in order to produce between 800 to 1200 ounces of gold (1 ounce = 31.1 

grams). In the case study, the current water allocation system did not allow them to control water 

allocation management in all their processes. Where the calculated water quantity in most 

processes is based on a density rate in each process, this ratio is often dependent on estimates of 

water used. Hence, the estimated total amount of water used in their processes (fresh-water + used-
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water) is estimated at 102.6 metric tons/hr. The total usage to produce the gold was 68.6 metric 

tons/hr of fresh-water (Fw- 67%), and 34 metric tons/hr of used-water (Uw - 33%), as shown in 

Figure 1.1.  

This chapter's goal is to create and put into practice a strategy for a gold processor to use 

less freshwater by figuring out where and how much-recycled water can substitute freshwater 

during the various stages of processing gold ore. In order to limit the amount of fresh- water needed 

in the processing of gold ore, while maintaining the feasibility and viability of the various phases 

of the gold processing. To achieve this objective, we will utilize a linear programming model to 

arrive at the best solution for the water allocation problem in the case study at (RLGM). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: The 11-stage process by which gold is extracted from ore material.  
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In Figure 2.1, one can observe that two sources of water can be used at each processing 

stage: either (i) fresh-water (Fw), or (ii) partially recycled water (Uw). In Figure 2.1, the recycled 

water comes from a tank (T). Figure 2.1 also shows the parameters of fresh-water and recycled 

water currently used at this facility (the values in Figure 2.1 represent the flow of water in metric 

tons per hour). These water flow parameters are not mathematically optimal because they were 

decided upon at a time before when the emergence of fresh-water conservation was becoming an 

environmental objective. Nonetheless, the parameters outlined in Figure 2.1 are feasible, i.e., they 

restrict the total concentration (in parts per million) of pollutants that are allowed to enter a given 

processing stage (Cin
max) or exit a given processing stage (Cout

max) such that the processing that 

occurs at each stage is feasible. The parameters used at this facility are presented in Table 2.1.  

Table 2.1: Water use and pollutant parameters currently existing in the 11 stages of  

                      ore processing at the facility used in this case study. 

No.  
Proc. Processes 

Capacity 
Cin

max 
(ppm) 

Cput
max 

(ppm) 
Water 

m. tons/hr Solid 
m.tons/hr 

Total 
m.tons/hr Fw Uw FFlow 

P1 Crushing 3 2 0 80 85 30 65 
P2 Grinding 5 2 7 80 92 546 1068 
P3 Floatation 0 10 12 80 102 253 751 
P4 Thickener 0 0 15 76 91 460 1127 
P5 Autoclave 30 5 7 4 46 6256 27211 
P6 Carbon in Leach (CIL) 5 5 15 4 29 720 2743 
P7 Leaching 5 0 30 80 115 875 1522 
P8 Carbon in Pulp (CIP) 10.6 5 35 80 130 843 1540 
P9 Detox 0 0 50 80 130 663 1326 

P10 Paste Backfill 10 5 10 70 95 487 1393 
P11 Waste Treatment 0 0 45 10 55 382 1278 
T Used-water Tank      507 1081 

 Total 68.6 34  
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Table 2.1 shows that the facility currently uses 68.6 metric tons of fresh-water per hour and 

34 metrics tons per hour of recycled water. The pollutant constraints at each stage of processing 

are also listed, as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

Figure 2.2: Fresh-water consumption rate and used-water in the existing situation processes, 
which uses one tank of used. Goldcorp Inc.’s reports (2015, 2017 & 2019). 
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Table 2.2:  Mass load of pollutants at each stage of the ore processing problem. 
 

No. of 

Process 
Process 

Contaminant 

Mass load 

(Lh) (kg/h) 

Max. inlet of pollutant 

concentration Cin
max 

(ppm) 

Max. outlet of 

pollutant concentration 

Cout
max (ppm) 

P1 Crushing 0.33 30 65 

P2 Grinding 12.8 546 1068 

P3 Floatation 16.5 253 751 

P4 Thickener 16.9 460 1127 

P5 Autoclave 1006.8 6256 27211 

P6 Carbon in Leach (CIL) 68.6 720 2743 

P7 Leaching 53.3 875 1522 

P8 Carbon in Pulp (CIP) 77.9 843 1540 

P9 Detox 66.3 663 1326 

P10 Paste Backfill 34.8 487 1393 

P11 Waste Treatment 57.5 382 1278 

T1 Used-water Tank  507 1081 
 Total 1410.83 12022 41105 

 

The solution to be investigated in this water allocation problem should be regarded as an 

exploration of the first step toward the reduction of fresh-water usage in this facility. This first step 

could be implemented at minimal cost (; although the capacity for water recycling water may need 

to be expanded, no additional water recycling technology would be required). Hence, this problem 

is one replacing a currently feasible solution with an optimal solution that would require minimal 

infrastructure investment.  

2.4 Results  

The results of applying the optimal water allocation model to the case study are presented 

in Figure 1.3. Hence, the optimal allocation of the quantity water consumption flow in their 11-



31 
 

stage processes, as shown in Figures 2.3 and 2.4, is summarized and compared with the current 

allocation of fresh-water in Table 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Comparison between the actual water consumption flow and the optimal solution in 
case study (RLGM) processes. 
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The above results show that reductions in fresh-water input occurred at processes 1, 2, 3, 

6, 7, 8, and 10 while, on the other hand, increased fresh-water input occurred at process 5. The 

results also reveal that the total fresh-water used decreased from 68.6 metric tons per hour to 51 

metric tons per hour – a reduction of 25.7%. In addition, the use of recycled water increased from 

34 to 51.6 metric tons per hour – an increase of 51.8%. Hence, the use of the optimal water 

allocation model facilitated a major reduction in the current use of fresh-water in this case study. 

Table 2.3: Comparison of the current versus optimal allocation of fresh-water in the 11-stage  

                  ore gold processing problem. 

 

No. 
Proc Processes 

Capacity 
Actual water flow 

metric tons/hr 
Actual water 

flow % 
Optimal water flow 

metric tons/hr 
Optimal water 

flow % 
Fw Uw FFlow Fw Uw Fw Uw FFlow Fw Uw 

P1 Crushing 3 2 0 2.9 1.9 0.3 4.7 0 0.3 4.7 

P2 Grinding 5 2 7 4.9 1.9 0 7 7 0 6.7 

P3 Floatation 0 10 12 0 9.8 10 0 12 9.7 0 

P4 Thickener 0 0 15 0 0 0 0 15 0 0 

P5 Autoclave 30 5 7 29.2 4.9 35 0 7 34.1 0 

P6 
Carbon in Leach 

(CIL) 
5 5 15 4.9 4.9 0 10 15 0 9.8 

P7 Leaching 5 0 30 4.9 0 2 3 23 1.9 2.9 

P8 
Carbon in Pulp 

(CIP) 
10.6 5 35 10.3 4.9 3.7 11.9 35 3.6 11.7 

P9 Detox 0 0 50 0 0 0 0 50.6 0 14.6 

P10 Paste Backfill 10 5 10 9.7 4.9 0 15 10 0 0 

P11 Waste Treatment 0 0 45 0 0 0 0 40.6 0 0 

T Used-water Tank    0 0 0 0 0 0 0 

 Total 68.6 34  67% 33% 51 51.6  49.6% 50.4% 
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Figure 2.4: Results comparison. 
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The second point of discussion concerns evaluating the feasibility of the solution. The 

results show that the decrease in total fresh-water usage came at the cost of increasing recycled 

water usage by 51.5%. Hence, the current capacity of the processing facility’s ability to recycle 

water must be expanded to implement this solution. Goldcorp has recently placed the efficient use 

of water as a top strategic goal for the corporation. Hence, the practical feasibility of this solution 

appears promising. 

A final point of discussion concerns further useful applications of the optimal water 

allocation model to the ore processing problem. As noted earlier, this problem presents only the 

first step that can be taken to reduce the total fresh-water used in the 11-stage ore gold 

processing. Further steps would involve evaluating investments in water recycling infrastructure 

that is designed specifically for earlier and less polluted stages of the ore processing problem. At 

present, the recycling technology used at this facility treats all recycled water, from the most to 

the least contaminated, using the same technology. Therefore, the model used in this problem 

can be used to evaluate the benefits of using less intensive recycling technologies at earlier 

stages in the ore processing stages. 

2.6 Conclusion  

In this chapter, we presented the application of an optimal water allocation model to the 

problem of minimizing fresh-water use in the 11-stage gold-ore processing problem as the case 

study. The innovation of this work was not in the formulation of the model, but in its application 

to the gold ore processing problem. Although the results showed that a major reduction (25%) in 

the use of fresh-water is feasible, it comes at the cost of expanding the current recycling capacity 

of RLGM’s facility by 51.5%. Hence, this study indicates that steps can be taken towards a 
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sustainable future, which requires the efficient use of fresh-water, by allocating fresh-water more 

efficiently in the gold processing industry. 
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Chapter 3 

  A Goal Programming Model for Dispatching Trucks in an 
Underground Gold Mine 

 
 

3.1 Introduction  

The movement of mined ore in an underground mine typically represents between 50 to 60 

percent of a mine’s total operating costs (Newman et al., 2010; Fadin et al., 2017). Therefore, the 

dispatching of trucks in an underground mine is a daily decision of major economic consequence 

and warrants the use of a decision support model. In dispatching problem addressed in this paper, 

a set of trucks must be assigned to a set of trips and to a set of mining levels with each containing 

different grades of ore. The assignment of trucks must be made in such a way that four objectives 

are met: transportation costs are minimized, the ounces of gold retrieved are maximized, the 

number of shovels used is minimized, and the total number of trucks required is minimized for a 

given shift. Given that this problem has multiple conflicting objectives, a goal programming model 

is developed and tested in this paper. The objective of this paper is therefore to formulate and 

evaluate a goal programming model of the truck-dispatching problem for underground gold mines.  

The chapter is structured as follows: first, a review of the literature relating to this 

dispatching problem is given.  Second, the problem modeled is defined.  Third, the mathematical 

formulation of the model is presented.  Fourth, a description of the case study on which the model 

is to be evaluated, the Red Lake gold mine in Ontario, Canada, is presented.  Finally, the results 

of the model are presented, and the merits of the model are observed and evaluated in the 

discussion. 
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3.2 Literature Review  

The truck dispatching problem in the mining industry has received minor but consistent 

attention by researchers who specializes in optimization models. The problem has received wider 

attention for above-ground mines than for below-ground mines. Indeed, there are few studies that 

have been made for truck-dispatching in underground ground mines (Mahdi et al., 2014). Newman 

et al. (2010), in their review paper on operations research models used in mining, observed that 

rather than one universal dispatching model for the mining industry, there exists a great diversity 

of models for this problem. This is because the different types of mine structures require different 

objective functions and different constraints.  Hence, there is no universal model of the truck 

dispatching problem (in either above- or below-ground mining) given the great diversity of mines 

structures (Newman et al., 2010). In this review, we will examine the diversity of optimization 

models that have been recently formulated for the truck dispatching problem in both above ground 

and underground mines.  

  Ercelebi et al. (2009) used a linear programming model to improve the truck-to-shovel 

dispatching system and established a method of accurately determining the optimal number of 

trucks. They also applied the single objective model to an open-pit coal mine in Turkey.  Nehring 

et al. (2010) formulated a mixed integer programming model and applied it to a transportation 

system that used trucks and shovels in an underground mine in order to maximize net revenue 

within a shift. Song et al. (2013) formulated a linear programming model to solve the truck and 

shovel dispatch problem in an open-pit mine. This paper focuses on maximizing the total 

transportation (in tonnes) of ore and waste material in a given shift.  Zhang et al. (2015) presented 

a new model of the truck dispatching problem in an open-pit iron mine by using integer 
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programming to represent the optimal number of discrete trips for trucks to make between loading 

sites and dumping sites in one shift. However, their results showed reduced transportation 

operating costs of 15%. Schulze and Zimmerman (2017) used a mixed integer programming model 

to optimize the objective function of maximizing the total material moved by a set of loader-trucks 

in an underground potash mine. 

Simulation-based optimization was recently used by Ozdemir et al. (2019) to optimize a 

truck/shovel dispatching problem in an open-pit mine. The objective function of the optimization 

model was to maximize the total material moved in a shift. Wang et al. (2020) recently used a 

Genetic Algorithms Model to solve a model of the truck dispatching problem for an underground 

mine in China in which the objective function was to maximize production at the shift level (tonnes 

moved per shift)  subject to constraints on the number of loading locations available, the capacity 

of the trucks, the material quantities available in each level, and the distance between loading 

levels. The results showed that the optimization model improved operational productivity by 8%.    

Based on the literature review, we can identify the following trends: a) many researchers 

have shown that the use of a truck dispatching optimization model has improved the shift-level 

productivity in their mines; b) no researchers have (to our knowledge) formulated a goal 

programming model for this problem in underground gold mines. Hence, the research presented 

in this paper is an innovation on a problem of major economic consequence in underground gold 

mines. 
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3.3 Methods  

The method in this chapter has three parts.  First, the problem modeled is defined and 

illustrated with a conceptual figure.  Second, the new mathematical formulation of the goal 

programming model for dispatching trucks in an underground gold mine is presented.  Third, the 

case study, that portion of Red Lake’s underground gold mine, which requires the dispatching of 

trucks, is described. 

3.3.1 Definition of the Problem Modeled 

     Figure 3.1 (below) is a conceptual figure of the problem modeled, with a solution presented for 

one shift.  First, observe that there are six levels. These represent different levels in the 

underground gold mine, and each level supplies gold ore of a different grade (in grams per tonne) 

and a fixed number of tonnes of ore are available per shift.  Second, the elevator is the point of 

demand for gold ore.  It carries gold ore to the surface where there is a target-demand in ounces of 

gold per day.  The elevator also has a capacity constraint on the number of tonnes of gold ore it 

can move in one shift.  Third, observe the distances between the six levels and the elevator.  The 

distance and the slope of the path between each supply point and the elevator determines the 

transportation cost—all of which are different for each level.  Fourth, observe that levels 1 and 3 

have a shovel assigned.  This assignment entails that, in the solution illustrated in Figure 3.1, levels 

1 and 3 have been selected as supply points to meet the shift’s demand. If a level has been selected, 

then it is assigned a shovel. There is a constraint on and cost for the number of shovels that can be 

used for any given shift.  Finally, Figure 3.1 shows that, for each level selected, there is also a 

truck assigned.  Trucks assigned to a level may be of different sizes and each size can move a fixed 

number of tonnes per trip.    
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Figure 3.1: Conceptual figure of the problem modeled. 

 

Hence, the problem to be solved is to assign a number of truck-trips (for each truck size) such that 

the following four goals can be met in a shift: 

1. the gold goal (ounces per shift) be met.; 

2. the goal for transportation cost ($) be met.; 

3. the goal for the number of shovels used be met.; and 

4. the goal for the number of trucks used be met. 

 

Since these four goals can conflict with one another, and since the availability of trucks and shovels 

can fluctuate from shift to shift (owing to maintenance requirements on these machines), the 

problem is modeled as a goal programming model.  The model is used not only to find the 

optimally satisfying solution for the decision-maker, but also to explore and quantify trade-offs to 

support the decision made. 
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 3.3.2 Mathematical Formulation Model 

The mathematical formulation of the goal programming model for dispatching trucks in an 

underground gold mine is presented below. 

Indices and Sets: 

i, I  = index and set of levels within the mine. 

j, J = index and set of truck-types, by capacity.   

Parameters: 

aij = fraction of total shift time (C) required for one complete truck-trip assigned to level i using 
truck type j. 

bj = number of minutes required to load truck type j. 

C = total number minutes in a shift. 

M = arbitrarily large number. 

ej = capacity of truck type j (tons). 

D = total demand for gold ore per shift at the elevator (tons). 

Si = supply of gold ore at level i, during the shift (tons).   

cij = cost of trip needed for transporting one truckload of gold ore from level i using truck j.  

qi = grams per ton of gold ore at level i. 

G_ta = goal value for transportation cost ($) 

G_tk = goal value for number of trucks required. 

G_s = goal value for number of shovels required. 

G_g = goal value for mass of gold removed (grams) 

p_ta = percent deviation factor for transportation goal variable = 1/ G_ta.  

p_tk = percent deviation factor for truck goal variable = 1/ G_tk. 

p_s = percent deviation factor for shovel goal variable = 1/ G_s.   

p_g = percent deviation factor for transportation goal variable =  1/ G_g. 

w_ta = penalty weight for transportation goal variable.  

w_tk = penalty weight for truck goal variable.  

w_s = penalty weight for shovel goal variable.  

w_g = penalty weight for gold goal variable.  
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Decision Variables 

xij = number of trips assigned to level i using truck type j. 

yj = total number of trucks of type j required. 

zi = 1 if shovel at level i is used, 0 otherwise. 

s = total number of shovels required in a shift. 

t = total number of trucks required in a shift. 

Goal Variables: 

g_ta+,  g_ta- = positive and negative deviations, respectively, from transportation goal ($). 

g_tk+,  g_tk- = positive and negative deviations, respectively, from truck goal (number). 

g_g+,  g_g- = positive and negative deviations, respectively, from gold goal (grams). 

g_s+,  g_s- = positive and negative deviations, respectively, from shovel goal (number). 

 

Objective Function 

Minimize the total weighted percent deviations from all four goals. 

(w_ta  * p_ta * g_ta+)+ (w_tk  * p_tk * g_tk+)+  (w_s  * p_s * g_s+)+ (w_g  * p_g * g_g- ) [1] 

Subject to 

The total number trucks required, of each type, is a function of the trucks assigned to all levels. 
 

 ∑  aij xij =  yj         for each  j∈ J                                                                [2]  
 i ∈ I 
 

 ∑  yj = t            [3]  
 j ∈ J 

 
If a level is assigned a truck, then it is also assigned a shovel. 
 

∑   xij  ≤  M zi      for each i ∈ I         [4] 
j ∈ J 

The total number of shovels required in a shift is the sum of all shovels assigned to all levels. 

∑   zi  ≤  s                [5] 
i ∈ I 
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There is a limit on the number of trucks that can be assigned to each level, based on the total 
time required to load all assigned trucks within the period of one shift. 
 

∑  bj xij  ≤  C      for each i ∈ I         [6] 
j ∈ J 

 
The total number of truck-trips is limited by the total demand per shift, in tonnes, at the elevator.  
 

∑    ∑   ej xij  ≤  D               [7] 
i ∈ I     j ∈ J 

The total number of truck-trips, assigned to each level, is limited by the total gold ore available 
at each level. 
 

∑   ej xij  ≤  Si      for each i ∈ I         [8] 
j ∈ J 

 
The deviation from the goal in transportation-cost is a function of the total number of truck-trips 
assigned, the cost of each trip, and the chosen goal for transportation cost. 
 

∑   ∑   cij xij  +  g_ta- -  g_ta+   =  G_ta            [9] 
i ∈ I    j ∈ J 

 
The deviation from the goal for the number of trucks assigned is based on the total trucks 
assigned, t. 
t  +  g_tk- -  g_tk+   =  G_tk              [10] 

 
The deviation from the goal for the number of shovels assigned is based on the total shovels 
assigned, s. 
s  +  g_s- -  g_s+   =  G_s              [11] 

The deviation from the goal for total gold removed is a function of the truck-trips assigned to 
each level and the grade at each level. 
 

∑   ∑   qj xij  +  g_g- -  g_g+   =  G_g            [12] 
i ∈ I    j ∈ J 

Constraints on decision variables. 

xij  ≥ 0 and integer          [13] 

yj  ≥ 0            [14] 

zi ∈  {0, 1}           [15] 
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The objective function [1] is used to minimize the total weighted percent deviation from 

all goal variables. By default, all weights are valued at 1, unless otherwise stated. Equation [2] 

defines the number of trucks required per shift, for each truck-type, based on the assignment of 

trucks to levels. The total number of trucks required, t, is defined in Equation [3]. Equation [4] 

defines whether or not a shovel is used at a given level. Since the use of a shovel (zi) is triggered 

by the dispatching of a truck to that level (xij), the variable representing the use of a shovel (zi) 

must be binary for this equation to work--see Equation [15]. Equation [5] defines the total number 

of shovels used in a shift. Equation [6] limits the maximum number of shovels required at each 

level to be 1. This constraint is based on the reasoning that the total number of minutes that a 

shovel may be used in loading trucks may not be more than the number of minutes in a shift. 

Equation [7] limits the total ore removed during the shift from exceeding the total demand for the 

shift. Equation [8] limits the ore removed by dispatched trucks, of varying capacities, from 

exceeding the supply of ore at each level. Equation [9] defines the goal variables for transportation. 

Each trip dispatched is a round-trip, from the demand point (the elevator) to the supply-point, the 

shovel at a given level. Of key importance here is the parameter cij, which varies for each level, 

depending on the distance travelled and slope at which a truck is required to travel, both empty 

and full. Equations [10] and [11] define the goal variables for trucks and shovels. Equation [12] 

defines the goal variables for gold. It should be noted that the goal for gold (by historical 

convention) is in ounces, and that this goal is based on the estimated grams of gold per ton of gold 

ore, which varies from level to level. Equation [13] ensures that the number of trips dispatched to 

each level is integer. Equation [14] constrains the number of each truck type required to be non-

negative. The variable, yj , for the work in this chapter, is not constrained to be integer.  This is 

because an integer constraint required excessive computing time and the variable only needed to 
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be rounded up in order to interpret the number of trucks of each type required by the dispatching 

solution. Equation [15] ensures that the variable representing whether a shovel is used at a given 

level or not be binary.  

 

3.3.3 Case Study  

The underground gold mine in Red Lake, Ontario is greater than 50 years. Fifty years of 

continuous underground mining operations have history resulted in 52 levels reaching a depth of 

up to 2.4 km. Figure 3.2 (below) illustrates that the first 38 levels are connected to a main shaft 

into which mined material is dumped.  At the bottom of level 38 is an elevator which carries the 

mined material to the surface.  Figure 3.2 also illustrates that, below level 38, there are 14 levels 

which are not connected to the main shaft.  Material mined from these levels (levels 39 to 52) must 

be transported by trucks to the elevator at level 38.  In general, the deeper the location of each 

level, e more costly is the transportation required to service it.  The problem in this case study is 

the dispatching of trucks, per shift, to these 14 levels such that the multiple objectives are optimally 

satisfied. 
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Figure 3.2: Underground transportation network for trucks at Red Lake Mine (RLGM). 

 

At present, there is no optimization model used for dispatching trucks at the Red Lake 

mine. Decisions are supported using analysis of data on spreadsheets.  The managers of Red Lake 

mine expressed interest in the development of an optimal dispatching model because of the cost 

of trucking materials in the underground mine is a major one.   The managers wanted a model that 

addresses several objectives.  First, they wanted a model that optimizes the movement of gold 

(measured in ounces) for each scheduled 12-hour shift.  Second, the decision-makers at Red Lake 

wanted to minimize their transportations costs.  Third, the decision-makers wanted to a model to 

support their decision on what size of truck should be assigned to move material from each level.  

Finally, since the assignment of each level for loading a truck also requires a shovel and an 

operator, the managers also wished to use a model to explore costs versus benefits of reducing the 

assignment of shovels for each shift.  Given these four objectives the analysts and decision-makers 
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at Red Lake wanted a model that could enlighten decisions on the trade-offs involved between 

competing objectives.  For these reasons, a goal programming model was, therefore formulated 

and evaluated to address these concerns at the Red Lake mine.     

 

3.4 Results  

Since the decision-makers at the Red Lake mine were interested in quantifying the trade-

offs among the competing objectives in this problem, a pre-emptive method was used in applying 

the goal programming model.   In the pre-emptive method (Eschenbach et al. 2001), goals are 

ordered according to priorities, and the values assigned to each goal are determined by executing 

a sequence of scenarios. For example, in the results shown in Table 3.1 (below), the first scenario 

was run with gold as the top priority. Gold, therefore, was the only goal used in the model’s 

objective function in scenario 1. The achieved value for gold, in scenario 1, was then used as gold’s 

goal-value in scenario 2. This sequential method was used for directing the assignment of all goal 

values.  

The priorities underlying the pre-emptive method were selected in consultation with the 

decision-makers at Red-Lake. The priorities of the objectives were ranked as follows:  

1. Gold removed  

2. Transport cost   

3. Shovels used   

4. Trucks used.  

The results of the four scenarios are shown in Table 3.1 (Note: the values in square brackets are 

achieved values of goals that were not optimized in the objective function but resulted from the 

optimal solution).  
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Table 3.1: Results for four scenarios using pre-emptive method. 

 

Scenario 
Goals in 

Objective 
Function 

Goal Values Achieved Values 
Gold 
(g.) 

Transport 
($) #Shovels #Trucks Gold 

(g.) 
Transport 

($) #Shovels #Trucks 

1 Gold 10,000    7,570 [5,848] [10] [11] 

2 Gold + 
Transportation 7,570 5,000   7,553 4,984 [11] [8] 

3 
Gold + 

Transportation 
+ Shovels 

7,570 5,000 9  7,509 5,007 9 [6] 

4 
Gold + 

Transportation 
+ Shovels + 

Trucks 
7,570 5,000 9 4 7,425 5,024 9 4 

 

 

 

The results in Table 3.1 yield several noteworthy observations.  First, in scenario 2, one 

can observe the trade-off between gold removed and transportation costs by comparing the 

achieved values for these goals in scenarios 1 and 2.  Here we observe that, by adding 

transportation cost as a goal in scenario 2, transportation costs were reduced from $5,848 per shift 

to $4,984 — a reduction of 14.8% — achieved by lowering the total gold removed by less than 

1% (from 7,563 g to 7,553 g). The improved solution of scenario 2 shows the benefit of dispatching 

trucks for both gold and transportation costs simultaneously using this model.  

Second, scenario 2 also shows that the reduction in transportation costs resulted in an 

increase in the number of shovels used (from 10 to 11). Why did this happen? By comparing the 

solution of scenario 1 with scenario 2 (in Table 3.2, below) we observe two things. First, that when 

the goal was only for gold, the solution was easy to form — simply send the smaller trucks to the 

levels with the richest deposits, regardless of cost. Smaller trucks were sent because carrying 
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smaller discrete volumes of ore is makes it easier to remove, as closely as possible, the total 

discrete volume of ore supplied at the ore-rich levels than if one dispatched a discrete set of larger 

trucks. Second, Table 3.2 also shows that different levels (in scenario 1 versus 2) were accessed in 

order to reduce transportation costs. Recalling that the depth of a level influences its transportation 

cost, we can observe that scenario 2 added the less costly levels 44 and 46 and removed the more 

costly level 50.  Hence, scenario 2 showed an unintended consequence of adding the objective to 

reduce transportation costs; namely, that in order to reduce transportation costs and to meet the 

gold goal, an extra level was added to the solution, requiring an extra shovel.  This unintended 

consequence shows the need for adding shovels as an objective in a goal programming model of 

this dispatching problem. 
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Table 3.2: Solutions for four scenarios. (Note: the values in the scenario columns represent the  
       number of trips dispatched to each level, for each truck type). 
 

Level 
Truck Capacity 

(tons) 

Scenario 

1 2 3 4 

39 17 5 5 5 1 

40 17 5 1 5 1 

41 17 6 1 5 1 

42 17 4 0 2 0 

43 17 4 1 1 0 

44 17 0 1 0 3 

45 17 5 0 2 2 

46 17 0 1 0 0 

47 17 4 0 0 3 

48 17 0 0 0 0 

49 17 0 0 0 0 

50 17 1 0 0 0 

51 17 3 1 0 0 

52 17 4 0 0 0 

39 30 0 0 0 2 

40 30 0 2 0 2 

41 30 0 3 0 3 

42 30 0 2 1 0 

43 30 0 1 1 2 

44 30 0 0 2 1 

45 30 0 3 2 2 

46 30 0 0 1 0 

47 30 0 2 2 1 

48 30 0 0 0 0 

49 30 0 0 0 0 

50 30 0 0 0 0 

51 30 0 2 1 2 

52 30 0 2 2 2 

 

Thirdly, scenario 3 shows that, by adding an objective of 9 shovels to the model’s objective 

function, we were able to meet this objective and improve upon the solution in scenario 2, which 

entailed 11 shovels — a reduction in shovel cost of 18.2%.  This improvement came with a small 

trade-off: a reduction in gold removed in scenario 3 versus scenario 2 (less than 0.1%) and a slight 
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increase in transportation cost (less than 0.1%).  Table 3.2 also shows that the solution for scenario 

3 is radically different from that of scenario 2.  These results show that, with a slight trade-off for 

two objectives, it is possible to achieve a major improvement in a third objective.  Hence, the 

solution to scenario 3 illustrates well how the dispatching problem is suitable for multiple objective 

optimization through goal programming.    

 Finally, scenario 4 (see Table 3.1) shows that by adding a fourth objective, i.e., the number 

of trucks required, the overall solution was further refined.  Comparing scenarios 3 and 4, we 

observe that the number of trucks was reduced from 6 to 4 (33.3% reduction).  This came with a 

trade-off of reducing the gold removed by 1% and of increasing the transportation cost by less than 

1%. The number of shovels used remained the same. Table 3.2 shows that the solutions of 

scenarios 3 and 4 differ in a predictable manner; namely, the number of trips assigned to the larger 

capacity trucks was greatly increased in scenarios 4 in order to meet the targets with fewer trucks.  

The use of this model for addressing the problem of selecting the optimal number and size of trucks 

could, of course, be further refined; but scenario 4 illustrates its capacity to engage in the 

exploration of meaningful trade-offs.   

 The results of this chapter also incudes a trade-off analysis of of competing objectives.  

Figure 3.2 (below) illustrates the trade-off between transportation costs and total gold removed in 

a shift.  
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Figure 3.3: Solutions showing trade-off between transportation costs and gold removed. 

 

The results in Figure 3.3 show that the increased returns in gold resulting from increased 

expenditures on transportation begin when transportation costs reach $4,000 per shift and that any 

spending beyond $5,000 yields very little improvements in terms of gold removed. They also 

illustrate the cost  of reducing  the budget on transportation costs per shift in terms of reduced gold. 

Figure 3.3 shows the effect on gold removed when assigning different numbers of trucks to the 

problem instance 
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Figure 3.4: Solutions showing trade-off between trucks assigned and gold removed. 

Figure 3.4 shows the effect on gold removed when assigning different numbers of trucks to the 

problem instance. It is interesting to note that diminishing returns set in rapidly after two trucks, 

and that small gains in gold removed persists up to the maximum amount of gold removable, 

requiring 11 trucks (same as scenario 1). This is possible for the reasons given above; namely, that 

in the solution with 11 small (17-ton) trucks.  Smaller trucks were dispatched because carrying 

discrete volumes of ore is easier to remove, as closely as possible, the total volume of ore supplied 

at rich levels than if one dispatched a discrete set of larger trucks.   

 

3.5 Discussion  

The results show that the goal programming model presented in this chapter may be useful 

to decision-makers in two respects. Firstly, the model is (i) well-suited to the problem; and 

secondly, the model is (ii) feasible for operational planning. Each of these model attributes are 

evaluated below.  
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In the classic formulation of the optimization model of the truck dispatching problem in 

mines, trucks are dispatched to shovels in such a way that the productivity of trucks and shovels 

is maximized while maintaining target grades (Elbrond, et al. 1987).  The new goal programming 

model introduced in this work does not essentially depart from this representation of the problem, 

but rather adds another quality to the solution: it provides the best satisficing solution under a 

varying amount of resources and priorities of the goals.  For example, instead of “locking” the 

gold target as a constraint, as the classic formulation entails, the goal programming model allows 

one to find an optimal, feasible quantity of removable gold given a set of other objectives.  Table 

3.1 shows how the optimal achievable level of removable gold changes as other objectives (in 

scenarios 1-4) are added to the problem.  In other words, rather than set a hard constraint, a priori, 

on the economically most important objective of the problem (i.e., gold), the goal programming 

model finds an optimal feasible value for removable gold. Therefore, the long-term economic 

benefit of dispatching trucks to shovels with such a high objective of the problem optimized is 

worthy of consideration. In addition, the goal programming model provides the decision-maker 

with insight into trade-offs and diminishing returns, thus allowing a deeper insight and confidence 

in the desirability of the solution selected. 

Second, the model presented in this work is suitable to the practice of daily operational 

planning for several reasons. 1) The availability of resources, such as trucks or shovels, may 

fluctuate due to breakdowns and consequent repair times. The consequences of fluctuating 

resource availability can be quantified directly in terms of lost gold production, thereby adding the 

proportionate degree of urgency to allocating resources for repair.  2) The model itself is quite easy 

to build and solve in Microsoft Excel (the model was solved in Excel in in less than two minutes 

of execution-time on an Intel Core i7). For this reason, it can be easily adopted by an analyst 
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working for a mining firm and re-run in the middle of a shift should any equipment failure require 

a new dispatching solution.  In this way, stochastic events inherent the dispatching problem can be 

addressed in this by using this model. Such an opportunity can facilitate improved decision-

making, with minimal effort, especially for underground mining firms that are not using 

optimization software for the dispatching problem. Unlike the above-ground dispatching problem, 

for which commercial software optimization models exist, the underground mining dispatching 

problem does not have a selection of commercially-available software packages to choose from. 

The practical implementation and execution of this model on Excel therefore makes the 

development of this model truly practicable for underground mine managers in the gold industry. 

 

3.6 Conclusion  

In this chapter, a new formulation of the truck dispatching model for an underground gold 

mine has been presented.  The model was formulated as a goal programming model and applied 

to Red Lake’s gold mine in Ontario, Canada.  The results showed that major reductions in 

transportation costs, shovels used, and trucks required can be achieved with a minimal decrease 

(less than 0.1%) in the maximum quantity of gold that can removed in a shift.  Given the scale of 

these reduced costs, this model will be a valuable addition to the decision-makers seeking to 

increase the efficiency of their dispatching operations in an underground gold mine.  

Future research on the problem of modeling this dispatching problem would be in exploring 

the applicability of a goal programming as a useful approach for modeling the dispatching problem 

in different types of underground mines; i.e., to determine whether its benefits can be expanded to 

mines other than gold mines.   
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Chapter 4 

 

  A Network Flow Model of Ore and Waste for Daily Operations in an 
Underground Gold Mine 

 

 

4.1 Introduction  

In underground mines, the problem of scheduling the weekly locations of mining 

operations has a major impact on the productivity of the entire mining operation (Yun 1990).  The 

objective of the weekly schedule is to maximize production within the constraints of the mine’s 

strategic and tactical plans.  The weekly schedule is difficult to optimize for two reasons.   First, 

the solution (i.e., the optimal locations selected to mine over the next weekly period) is constrained 

by the feasibility of transporting the mined material from the selected locations, through the 

capacity-constrained transportation network, to the surface. The transportation network in an 

underground mine has strict capacity constraints on the mass of material that can move, per unit 

time, through many links within its transportation network. The second reason this problem is 

difficult to solve optimally is that commercial software is currently not available for such a 

planning problem in underground gold mines.  There is no general-purpose software package that 

has been designed to represent realistically the diversity of constraints peculiar to the many 

underground mine types-- including underground gold mines.  As a result, planners are forced to 

resort to using ‘rules of thumb’ to solve this problem.  

 In underground gold mines in particular, the operational planning problem of scheduling 

the weekly locations of mining operations, subject to transportation constraints, has, to our 
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knowledge, not been formulated as an optimization model at the operational scale of planning.  

The problem has therefore been solved using ‘rules of thumb’ (i.e., heuristics) typically executed 

on a spreadsheet.  Finding an optimal rather than a heuristic solution to this problem is important 

for two reasons.  First, the difference between an optimal and a heuristic solution may have major 

differences in the objective function value of the problem’s solution; i.e., the mine’s operational 

productivity, measured in ounces of gold delivered to the surface per day.  This is because, in a 

gold mine, the grade of the gold-ore (measured in g/tonne) varies from location to location. In 

other words, the value of the locations selected for mining can vary greatly because of the variance 

of grade across space, in an underground gold mine. Hence, if this were, for example, a coal mine 

(e.g., Brzychczy 2014), the difference between the solutions generated using “rule of thumb” 

method versus an optimization model may not be great, because the value of the grades at each 

selected location differ less significantly in a coal mine than in a gold mine. Since this is a gold 

mine, the value of the optimal feasible solution is highly sensitive to slight differences in the 

locations selected for mining.  Therefore, the difference between an optimal and a heuristic 

solution to this problem may be quite important economically. A second reason for the importance 

of using an optimization model on this problem is that the above-ground processing facilities are 

constrained, in their daily productivity, by the value of the gold-ore that is delivered to the surface 

each day.  Since the value of the gold ore delivered to the surface each day is the objective function 

of this operational problem’s optimization model, the solution to this problem has a direct impact 

on the productivity of the above-ground processing facilities.  In other words, the solution to this 

problem, when seen in a broader context, can be seen to act as a constraint on the economic 

productivity of the entire mining facility itself.  



58 
 

The objective of this chapter is to formulate and evaluate a new operational planning model 

for the underground gold mining problem of scheduling the weekly and optimal location of mining 

operations, subject to transportation constraints on the flow of material. The formulation will be 

of a mixed-integer, network-flow model.  This model will be applied to a case study at the Red 

Lake Gold Mine in Ontario, Canada.  The model will be evaluated by comparing its solution to 

that of a greedy heuristic currently used.  In this way, we will evaluate a larger question:  whether 

the benefit of using a specific operational planning model, for constraints peculiar to underground 

gold mine, is of any economic consequence. 

The outline of this work is as follows: first, a Literature Review is presented; second, the 

formulation of the new model and the heuristic algorithm are presented in the Methods; third, the 

Case Study, Red Lake Gold Mine, is described; fourth, the Results are presented, in which the 

optimal solution is compared to the heuristic solution; and finally, a Discussion of the paper’s 

results and their significance is evaluated.  

 

4.2 Literature Review  

Literature reviews on the use of operations research in mining in general (e.g., Newman et 

al. 2010; Bjorndall et al. 2011; Kozan and Liu, 2011), and underground mining in particular 

(Chowdu et al. 2022), indicate that: while there is a wealth of research in the development of 

optimization models for strategic and tactical problems in mining, published work on scheduling 

models used at the operational scale have been much more scarce.  The literature to be reviewed 

on this problem is therefore brief and shows a great diversity of models formulated for operational 

production planning. For this reason, the review is presented chronologically, not thematically.  
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Nehring, et al. (2010) developed a model for a sub-level stoping mine, which was used to 

solve the problem of scheduling and allocating machines for the transportation of extracted ore 

from the draw-points, via intermediate storage, to a haulage shaft. The model also included 

decisions on a second-stage movement of ore; i.e., transporting ore from an ore-pass to a crusher. 

The problem was formulated as a mixed integer programming (MIP) model to allocate machines 

to different draw-points, on a shift basis, over a period of 2 months. The objective function of the 

model was to minimize the deviation from production targets subject to constraints on machines 

and crew.  The model’s solutions were evaluated on a simulated mine. 

Martinez and Newman (2010) developed a comprehensive operational scheduling and 

allocation model for an iron ore mine in Northern Sweden.  The model minimized deviations from 

monthly production targets subject to a host of operational constraints, many of which were 

peculiar to sub-level caving. The MIP model was solved on a real-world dataset, using a heuristic 

algorithm, to within 5% of production targets.   

Howes and Forrest (2012) described an approach to improving operational decision-

making at a mine in Bulgaria. A key strategy introduced in this work was short interval control.  

This involves the use of real-time production information to provide a central monitoring and 

control room with the real-time status of all tasks in the mine.  This comprehensive 

communications infrastructure was designed to support key frontline decision-making on 

operational resource allocation achieves the maximum efficiency for each shift.  At present, the 

decisions are made by management in the central control room, but the development of operations 

research models to support management decisions in this environment is the next step in the 

evolution of this ambitious project, and therefore a fruitful field of future research on operational 

scheduling in mining.   



60 
 

Nehring et al. (2012) addressed the task of integrating short- and medium-term production 

plans.  Their method was to combine the short-term objective of minimizing deviation from 

targeted mill feed grade with the medium-term objective of maximizing net present value (NPV) 

into a single mathematical optimization model.  Their short-term problem was not constrained by 

capacities on the transportation network but.  Their resulting solution was a global optimum of the 

two planning problems.   

Little, Knights, and Topal (2013) evaluated the advantage of simultaneously integrating 

decisions on both stope layout and production scheduling into one model.  They found that the 

solutions generated by the integrated model were superior to those using different models 

sequentially. The benefits of integrating separate but interdependent models, as demonstrated by 

these authors, are promising.  

Schulze et al. (2016) scheduled a mobile production fleet in an underground, room-and-

pillar, potash mine. The objective of the model was to minimize the make-span, i.e., to create the 

shortest logical project schedule, by efficiently using project resources and adding the lowest 

number of additional resources to each sub-task.  The problem was formulated as an MIP model 

and solved using a commercial solver.  The authors continued to explore the room and pillar-

scheduling problem by developing a heuristic solution method in Schulze and Zimmermann 

(2017).    

Campeau and Gamache (2019) presented an optimization model for short-term scheduling 

of excavation, hauling, and backfilling activities at a cut-and-fill gold mine in Canada. The 

objective function was to maximize total discounted tonnage extracted over an eighteen week 

planning horizon, subject to resource and sequencing constraints.  The authors observe that the 
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real value of their solutions rests heavily on the quality of the tactical plan’s selected sequence of 

blocks, on which their model acts.   

Manriquez et al. (2020) developed a simulation-optimization model to generate short-term 

production schedules for improving the schedule adherence using an iterative approach. In each 

iteration of this framework, a short-term schedule was generated using a mixed-integer linear 

programming model that is simulated later using a discrete-event simulation model.  The model 

was not subject to capacity constraints on the transportation network. 

From this review of the literature, one can draw two observations. First, that the problems 

modeled for operational planning in underground mines are not generic but quite diverse and 

specific to mine types.  The models formulated were often custom-built for the particular extraction 

method of the mine and its design.  It is perhaps for this reason that there exists no commercial 

optimization software that is universally employable for operational scheduling in all underground 

mines, as there is for tactical planning of underground mines (Newman 2010).  A second 

observation that can be drawn from the literature review is that the particular problem addressed 

in this paper (i.e., the optimal operational-scale scheduling of gold ore and waste flow, in an 

underground gold mine) has not been addressed within prior research.  

 

4.3 Methods  

The Method is divided into 4 parts.  First, a description of the problem, with a conceptual 

figure, is given; second, the mathematical formulation of the optimization model is presented; 

third, the heuristic algorithm used in this paper, to represent the current decision-making procedure 

at the mine, is given.  Finally, the case study and data used are described.  
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4.3.1 Description of Modeled Problem: 

A conceptual figure of the problem is presented in Figure 4.1. Here we observe a simplified 

representation of an underground gold mine.  First, observe that there are 9 levels.  Each level may 

be regarded as a source-node, having a different: i) grade of ore (g/tonne); ii) mass of ore that may 

be removed daily (tonnes/day); and iii) mass of waste that must be removed if ore is removed 

(tonnes/day). These are the network’s source nodes. Second, observe that there are two types of 

shafts for downward movement of mined material: ore and waste shafts.   

 

 

Figure 4.1: Conceptual figure of the modeled problem.  
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There are no capacity constraints on these shafts.  Third, observe that, at the bottom each 

shaft, horizontal transportation of both materials occurs.  This horizontal transportation has a daily 

capacity constraint.  The shafts and horizontal transportation arcs are the network’s trans-shipment 

arcs. Fourth, observe that, at the end of the network, there is a capacity-constrained elevator to the 

surface.  This is the network’s terminal node where there is a daily demand for ore and a daily 

demand for the mass of waste resulting from the mining of the ore.  Hence, the problem may be 

summarized as: select a set of levels for daily operation such that the mass of gold removed (in 

ounces) is maximized, subject to: i) capacity constraints on ore transportation (tonnes per shift); 

ii) daily ore targets at the above-ground processing facility (in tonnes) is met; and iii) the waste 

material accompanying ore removal is removed.  The problem is formulated as a network flow 

model where each level is a supply node and the elevator is the demand node.  Constraints on the 

flow of material occur at transition nodes.  Unless these transportation capacity constraints are 

used in planning, the movement of both ore and waste through the mine could be stopped during 

a shift because a transportation corridor may become backed-up from crews trying to move too 

much ore through a corridor, with too little capacity for such a quantity, within the planned period.  

In addition, the selection of a level must be represented by a binary decision variable because, if 

real numbers were used, a solution with tiny, fractional mining of levels could occur. This is not 

feasible in practice because the fractions might be very small and therefore a solution could be 

produced where it is not worth sending machines and a crew to mine a level with a tiny, fractional 

amount of ore. Finally, the daily schedule of production is to be found for a planning horizon of 7 

days. 
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This problem is difficult to solve, for it is a combinatorial optimization problem that may 

be reduced to the famous knapsack problem.  In the knapsack problem, one is given a set of items, 

each with a weight and a value, and one must select a set of items to include in a knapsack such 

that; i) the total weight is less than or equal to a given limit; and ii) the total value of the contents 

of the knapsack is as large as possible (Salkin and Kluyver 1975).  The operational mining problem 

described above can be reduced, in terms of it computational complexity.  This is because, apart 

from the transportation constraints, the problem is the same: namely, selecting a set of levels (i.e., 

items) so that the total mass of ore selected is less than or equal to the limit (i.e., upper bound) set 

by the elevator’s capacity and the objective is that the total value of the gold (i.e., value of selected 

items) from the levels selected discretely for mining be as valuable as possible. The reduction of 

this problem to the knapsack problem also implies that, in its computational complexity, the 

problem’s model is NP-hard, as is the knapsack problem (Salkin and Kluyver 1975).   

4.3.2 Formulation of the New Model: 

The mathematical formulation of the model is presented below. 

Indices and Sets 

n, N = index and set of levels in the mine. 

t, T = index and set of planning periods. 

m, M = index and set of materials moved through the network (i.e., ore or waste material). 

i, j, J = index and set of nodes in the network. 

B = set of intermediate (transshipment) nodes. 

C = set of arcs with capacity constraints. 

Dij = capacity on arc i-j (tonnes per day). 

On = set of arcs flowing out from node on level n. 

In = set of arcs flowing into node on level n. 

F = the set of arcs flowing into the network’s terminal node (a set of 1). 
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Parameters 

smn = mass of material type, m, available for removal at level n of the mine (tonnes). 

gn = estimated mass of gold ore available at level n of the mine (grams). 

Decision Variables 

ynt = 1 if material is removed from level n in period t, 0 otherwise. 

xijmt = flow of material, m, through arc i-j, in period t (tonnes). 

Objective Function: 

Maximize total mass of gold removed (in grams) over all periods 
 

 ∑  ∑  ynt gn         [1]   
n∈N     t∈T 

 

Subject to: 

Mine each level not more than once. 

∑  ynt ≤ 1         for each  n∈ N        [2]  
t∈T   
   

If a level is mined, it is a source of ore and waste material flow. 

  ∑  xijmt  -    ∑xijmt       = ynt smn                     for each  n∈ N, m∈ M, t∈ T     [3] 
    (i,j)∈On            (i,j)∈ In              
 

- Transition nodes defined. 

  ∑  xijmt  -    ∑xijmt       = 0                     for each  n∈ N, m∈ M, t∈ T     [4] 
   (i,j)∈On             (i,j)∈ In              

 
 

- Terminal node defined. 

  ∑  xijmt  -    ∑xijmt       = ∑ ynt smn             for each m∈ M, t∈ T     [5] 
  (i,j)∈F               (i,j)∈ F            n∈ N                      
 

- Capacity constraints. 
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 ∑  xijmt  ≤      Dij                   for each ij∈ C, t∈ T       [6] 
  m∈M                                 
 

Binary and non-negativity constraints. 

ynt  ∈  {0,1}   for each  n ∈ N, t ∈ T     [7] 

xijmt  ≥  0   for each ij ∈  J, m ∈ M, t ∈ T    [8] 

 

The objective function [1] of the model is to maximize the total mass of gold removed (in 

ounces) during the daily shift.  The mass of gold is based on the tactical plan’s estimated grade of 

each block at each level (measured in grams per tonne) and the total mass of gold ore and waste 

(measured in tonnes) that is currently available to be mined at a given level.  The first constraint 

[2] ensures that no level may be mined more than once over the planning horizon. The second 

constraint [3] defines the potential sources of flow through the network.  This constraint ensures 

that, if a given level, n, is mined in period t, then each material type, m, will flow out of the node 

on this level and into the network.  Note that the flow of each material type (ore and waste) is 

tracked separately from each source. Constraint [4] is a standard flow balance equation for 

transition nodes in a network model.  Equation [5] defines the terminal node and the mass of each 

material type demanded at the terminal node.  Note that the total mass of each material type refers 

to the total mass of each material type that was mined during each period.  There is an upper bound 

on this value implicit in the capacity constraint on the arc connected to the terminal node.  Equation 

[6] defines the capacity constraints on the flow of material types imposed on the set of arcs with 

capacity constraints. Equation [7] ensures that the decision variable, ynt, is binary.  This variable 

is binary for two reasons.  First, the mass of material removed from each level must be discrete; 

otherwise, the model might produce solutions that are operationally infeasible (e.g., tiny masses 

of material to be scheduled for removal from a level).  Second, the binary decision variable is 
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needed to trigger the flow in equation [3].  Equation [8] ensures that a negative flow value is not 

possible. 

The above model was solved, in this study, using the branch and bound algorithm of Gurobi. ©  

4.3.3 Description of Heuristic Algorithm: 

Given the absence of an optimization model to solve this operational problem, our 

industrial partner had been using a heuristic method (i.e., rules of thumb).  This method will now 

be described, for its results will be compared with the results of the new optimization model in 

order to evaluate the latter.   

Given that the objective function of the model is maximize the gold ounces removed over 

the planning horizon, subject to capacity constraints, a greedy search was used.  A greedy search 

heuristic has been used quite successfully on many versions of the knapsack model (Ackay et al. 

2007).  In this greedy search, the levels were sorted from highest to lowest grade, and selection 

proceeds from highest to lowest, subject to whether the addition of a level to the schedule violates 

the transportation capacity constraints of in the mine (see equation [6] above).  An algorithmic 

flowchart of the greedy search is presented in Figure 4.2 (below). Here, the search is repeated at 

the start each of the 7 days, and all candidate levels are rendered eligible for inclusion in the 

schedule at the start of each day. 



68 
 

 

Figure 4.2: Algorithmic flowchart of greedy heuristic. 

In the greedy heuristic described above, there is a demand limit on two types of materials 

mined: gold ore and waste. In addition, a second heuristic is used in the paper, called heuristic 2. 

Heuristic 2 places a demand limit only on the ore and allows the mass of waste to exceed its target.  

Heuristic 2, therefore, allows for greater opportunity to maximize the value of the objective 

function while running the risk of mining a slight excess of waste.  Heuristic 2 is sometimes used 

by the planners at Red Lake.  Hence, the trade-off involved in using heuristic 1 versus heuristic 2 

is a practical one for decision makers to explore and use.   In this paper, both heuristic 1 and 
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heuristic 2 are used and their results are presented and compared with the results of the new 

optimization model. 

 

4.3.4 Case Study  

The case study is the Red Lake underground gold mine, located in Red Lake, Ontario, 

Canada.  The mine is approximately 50 years old and is currently under the management of 

Newmont-Goldcorp Corporation, our industrial partner. The levels of production are shown in 

Figure 4.3 (below).  Each level contains discrete masses of both ore and waste material.  Based on 

data shared with us by our industrial partner, the mass of each block, in each level ranges from 

3,500- 5,000 tonnes.  Each block has been scheduled, in the tactical plan, for mining within the 

calendar-year. The objective of this model is to transform the annual tactical plan into an optimal 

weekly operational plan of production. There are 19 levels currently eligible for production, based 

on the tactical plan.  

The levels scheduled for tactical operation at the Red Lake gold mine are presented in 

Figure 4.3 (below). First, observe that there are three sets of levels.  Second, observe that, at the 

bottom of the ore and waste shafts of each level, horizontal transportation of material is required, 

and there is a daily haulage capacity constraint on this.  Third, observe that, at the bottom of the 

mine, there is an elevator to the surface with a daily capacity of 3,000 tonnes/day.  The daily 

demand at the surface is for 2,000 tonnes of gold ore and 1,000 tonnes of waste to be sent to the 

surface daily.   
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Figure 4.3: Ore and waste flow in underground mine at Red Lake, Ontario, Canada.  

 
 
 

Each block at each level at Red Lake differs by: i) the grade of the ore (g/tonne); ii) the 

mass of ore that can be removed in one day (tonnes/day); and iii) the mass of waste that must be 

removed in one day (tonnes/day), if ore is removed.  The values for these parameters are presented 
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in Table 4.1.  It should be noted that parameters in Table 4.1 for the grade of ore are not real.  Our 

industrial partner, understandably, wished to keep these values on grade private.  The parameters 

for the grade of ore were therefore generated using a random number generator such that each level 

was randomly assigned (with equal probability) a grade between 5 and 15 grams of gold per tonne 

of ore.  This range of grades is realistic for a typical gold mine; and the fact that the values assigned 

are not real does not compromise the evaluation of our optimization model. 

Table 4.1: Ore and waste values at each level of the case study at (RLGM). 

Level Gold Ore 
(tonnes/day) 

Grade 
(g/tonne) 

Gold 
(ounces/day) 

Waste 
(tonnes/day) 

16 174 7.1 43.7 120 
17 291 5.6 57.4 126 
18 208 10.0 73.4 142 
19 318 11.7 130.9 155 
20 258 10.6 96.3 134 
21 291 14.1 145.3 133 
22 277 11.3 110.5 145 
24 168 6.5 38.9 112 
26 259 8.9 81.6 119 
27 215 11.6 87.6 201 
28 251 9.9 87.5 152 
29 264 13.7 127.3 187 
31 226 8.5 67.5 111 
32 171 9.0 54.6 86 
33 205 9.7 70.2 129 
34 245 13.2 114.3 116 
35 185 5.6 36.4 179 
36 179 6.3 40.1 83 
37 260 5.4 49.4 184 

 

The optimization model was built using MPL® software and solved using the branch and 

bound algorithm of CPLEX® 12.0 on a Windows 10 operating system using an Intel CORE i7 

CPU with 16 gigabytes of RAM.  The model had 133 binary decision variables and 226 continuous 

flow variables.  All instances were solved in less than 30 seconds.     
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4.4 Results 

The objective function values resulting from the application of the optimization and greedy 

heuristic models to the case study are presented in Table 4.2 (below). 

Table 4.2: Results of the optimization and greedy heuristic models compared.    

 

Gold 

(ounces/day) 

Ore 

(tonnes/day) 

Waste 

(tonnes/day) 

Total 

(tonnes/day) 

Optimization Model 774.8 1,993 993 2,986 

Greedy Heuristic 1 675.6 1,292 921 2,213 

Greedy Heuristic 2 731.1 1,708 1,007 2,715 

 

Table 4.2 yields several observations.  First, the objective function (i.e., maximize gold 

ounces mined per day) of the optimization model is greater than the objective functions of both 

greedy heuristics: it is 14.7% higher than greedy heuristic 1 and 6.0% higher than greedy heuristic 

2. These results indicate the benefit of formulating and using an optimization model for solving 

this problem versus using the current greedy heuristic.  Second, Table 4.2 also shows that greedy 

heuristic 2 achieved a higher objective function than greedy heuristic 1 by exceeding its waste 

limit (of 1,000 tonnes/day) by 7 tonnes per day; and that, even after exceeding its waste limit, the 

objective function of greedy heuristic 2 was 6% lower than that of the optimization model.  These 

results therefore show that the value of a solution to this problem depends not only on the optimal 

removal of gold ore alone; but also, on the optimal removal of ore and waste simultaneously.   

Third, Table 4.2 also shows that the solution of the optimization model came closest to maximizing 

the capacity of network’s final node (i.e., 3,000 tonne/day capacity of the elevator carrying material 

to the surface).  This can be seen by the values under the total tonnes removed per day where the 

optimization model’s solution used 96.5% of the capacity, while greedy heuristic 1 used only 

73.8% and greedy heuristic 2 used 90.3%.   These differences in capacities used shows the 
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importance, in this problem, of packing the elevator to the surface as closely to its capacity as is 

possible by using an optimization model based on the knapsack model. 

The solutions of the optimization model and greedy heuristics are presented in Table 4.3. 

Table 4.3:  The solutions of the optimization model and greedy heuristics. 

Level Optimization 
Model 

Greedy 
Heuristic 1 

Greedy Heuristic 
2 

Grade 
(g/ton) 

16       7.1 
17     5.6 
18     10.0 
19 x x x 11.7 
20     10.6 
21 x x x 14.1 
22 x    11.3 
24     6.5 
26 x    8.9 
27  x x 11.6 
28     9.9 
29   x x 13.7 
31 x    8.5 
32 x   x 9.0 
33 x x x 9.7 
34 x x x 13.2 
35     5.6 
36     6.3 
37       5.4 

 

Table 4.3 presents the locations of the levels selected for mining in each day.  Note that the 

selected blocks at each level did not change over the days of scheduling because of their great 

magnitude (in tonnes) relative to magnitude (in tonnes) of material removed daily. Table 4.3 yields 

3 observations worthy of note.  First, one can observe the effect of the first flow constraint 

(between levels 29 and 31 as shown in Figure 4.3), of 1,800 tonnes of total material flow per day, 

on the three different solutions. Given the parameters on ore and waste material at each level (in 
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Table 4.1), one can see that the solution of the optimization model in Table.4.3 moved 1,606 tonnes 

of material and 491 ounces of gold from level 29 to 31; and the solution of the greedy heuristic 

moved 1,689 tonnes of material and 468 ounces of gold. Hence, the capacities between levels 29 

and 31 was more closely met by the greedy heuristic than by the optimization model.  This 

difference indicates that the optimal solution does not need to maximize the flow of material or 

gold through this capacity constraint (between levels 29 and 31) as it does through the final 

capacity constraint (after level 37).  Hence, in this model of the problem, the final capacity 

constraint alone functions as a knapsack constraint, i.e., a constraint by which as much gold as 

possible must flow subject to a capacity limit on total flow of material (tonnes/day).    

Second, Table 4.3 shows that the optimal solution contains levels of a lower grade of ore 

than the solutions of the greedy heuristics.  The average grade of ore for the levels selected in the 

optimal is 10.8 g/tonne; while the average grade per level for the solutions of greedy 1 and greedy 

2 were 12.3 and 11.9 g/tonne, respectively.  The lower grade selected in the optimal solution was 

facilitated by more closely packing the total material capacity constraint of 3,000 tonnes/day, thus 

enabling the movement of more material and therefore more total gold per day than the greedy 

heuristics.  Hence, the results in Table 4.3 illustrate how the optimal solution represents a more 

successful resolution of the trade-off implicit in this problem; viz., the problem of packing as much 

gold as possible into the terminal node of the network subject to capacity constraints in the 

transportation network.    

Third, from Table 4.3 one can observe that the optimal solution contained 8 levels for 

operations while the solutions to the heuristic models required only 7 levels for operations. The 

extra level of operation contained in the optimal solution entails a higher operational cost and the 

decision-maker must evaluate whether the additional cost of operations is worth the additional 
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flow of gold accompanying this solution.  In this case, the trade-off between the optimal solution 

and the solutions of heuristic 1 and 2 implies that: an increase in gold moved to the surface, by 

14.7%, requires an extra 2 levels of operation compared to heuristic 1; and an increase in gold 

mined, by 6.0%, requires an extra one level operation compared to heuristic 2 (which are also has 

excess waste mined). 

   

4.5 Discussion  

From the results, we find several points deserving discussion: first, the merit of the greedy 

heuristic used in this paper; second, the practical benefits of using this model; and finally, some 

thoughts on the benefits of developing an operational-scale optimization model for underground 

mining.    

First, an evaluation of the greedy heuristic versus the optimization model is required.  To 

do this, it should first be noted that a greedy heuristic has been used, for many decades, to solve 

multiple versions of the knapsack model (Pisinger 1999) and has produced useful results with 

quick computational times (Akcay et al. 2007).  In other words, by using the greedy heuristic 

method to provide results with which to compare and evaluate our optimization model, we have 

not selected a weak and insignificant method.  Greedy heuristics have been used, in practice, to 

solve large instances of the knapsack problem (Ferdosian 2016).  The operational mine-level 

scheduling problem modeled in this paper is not likely ever to have a problem instance so large 

that it will require a greedy heuristic to solve it.  This is because the binary decision variable, used 

in this model, represents a mine’s level; and there would need to be in excess of 5,000 mine levels 

for a problem instance to be computationally infeasible for an optimization model which is NP-
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hard.  Hence, it unlikely that the benefits of using an optimization model instead of a greedy 

heuristic, to solve the model in this paper, will ever become computationally infeasible. 

Second, it should be observed that the results illustrate two practical benefits of using the 

optimization model instead of the greedy heuristic. The first benefit is the increased value of the 

objective function.  The objective function of the optimization model was 14.7% and 6.0% higher 

than the objective function of greedy heuristics 1 and 2, respectively.  The practical benefit of this 

is an increase in the mine’s economic productivity.  The second benefit is an improved scheduling 

of waste removal.  The results produced by the greedy heuristics show the awkward predicament 

that arises when a greedy heuristic is used to schedule the removal of both ore and waste; i.e., 

either underutilization or overutilization of the mine’s transportation capacity occurs, when 

compared to the solution for the optimization model.  For example, Table 4.2 shows that heuristic 

1 underutilized the mine’s transportation capacity because it was forced to stop adding levels to be 

mined when the waste to be moved reached 921 tonnes (i.e. 92% capacity) and this meant that 

total material (i.e., ore + waste) to be moved reached only 2, 213 tonnes (i.e., 74% of capacity).  

Table 4.2 also shows that, for heuristic 2, the mine’s capacity to remove waste was slightly 

exceeded.  In practice, the excess waste is placed in temporary underground storage and when the 

capacity of this underground storage is exceeded, then the scheduled flow of ore through the 

system must be interrupted so that the excess waste can be removed.  These intermittent 

interruptions of the movement of ore to the surface have the effect of intermittently under-utilizing 

the ore-processing facilities at the surface of the mine.  Hence, an additional practical advantage 

of using the optimization model is not only that it maximizes the mine’s capacity to move material, 

but that it does so without intermittent interruptions caused by the stockpiles of waste. 



77 
 

Finally, the results illustrate the benefits of developing an operational-scale model for an 

underground mine. The reason operational-scale optimization models have not been widely used 

in the underground mining industry is because operational problems in underground mines are less 

generic than tactical models.  That is, different types of mines have constraints or objectives that 

are peculiar to that mine type, and an optimization model would therefore need to be tailor-made 

for that type of mine in order to plan for operations as a result, the development and use of 

operational-scale models has not been broadly used and heuristic approaches have relied upon to 

generate solutions (Chowdu et al. 2021). The results in this paper illustrate the scale of the 

economic benefits that can be gained by developing and using an operational scale model versus 

the heuristics.      

 

4.6 Conclusion  

It is an especially difficult task to choose the best places for operations inside an 

underground gold mine. It cannot be resolved by only selecting the levels with the highest grade 

of ore because the underground mine's ore transport network has a range of capacity limitations 

that may prohibit the immediate mining of all the levels with the highest grade.  To address this 

problem, a new optimization model was developed and evaluated in this paper.  The optimization 

model was applied to a gold mine in Red Lake, Ontario, Canada.  Its results were compared to 

heuristic decision-making rules currently used in the case study. The results illustrate that an 

increase in daily productivity between 6% and 14.7 % resulted from using the optimization model 

versus the currently used heuristic method. These results indicate that the development of new 

optimization models for underground mining problems can be a field of study with important 

economic consequences.   
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Chapter 5 

 

 Contributions and Future Work 
5.1 Contributions: 

This work provides modeling advance innovation in the operations research methods for 

solving major outstanding problems in the gold mining industry and highlights the main 

motivations and impacts of solving these problems in order to improve strategic planning in that 

critical industry. This dissertation applies certain aspects not covered in previous studies to the 

case study. Thus, this research will contribute to treating three major problems, each outlined in a 

separate chapter in this thesis, as well as the application of these models in the case study at Red 

Lake Gold Mines owned by Newmont Goldcorp Inc. It is our hope that, in collaboration with our 

industrial partner, the work of this thesis will not only be of academic merit but will also have 

practical value to the industrial partners, as well as to the gold mining industry in general. 

Therefore, our new contribution in this research will be as follows: 

Problem 1: Solving the problem of fresh-water usage during the gold processing stages: 

- Addressing environment sustainability constraints. 

- Using an optimization model, which had never been applied in a gold mine, as the case 

study. 

- Reducing fresh-water consumption costs. 

Problem 2: Solving the truck and shovel dispatch scheduling problem, to maximize quantities 

value for gold that is transferred > optimal transportation costs > shovels used > trucks used and 

determine their direction (what level the trucks should proceed to) as goal variables integer: 
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- Linking short-term scheduling with the trucking operations with the quantities of gold 

transported, precedence transporting, and operating costs in specific ore extraction levels 

(between levels 39 and52), at a depth of up to 2.4 km. 

- Designing and applying a special optimization model using a mathematical integer 

programming model, depending on real data for gold production in the first quarters of 

2019, at an underground gold mine as the case study, which has never been applied. 

Problem 3: Solving the short-term production scheduling problem of ore-waste material flow 

used in underground gold mines operations: 

- Linking the short-term scheduling of ore material flow operations, between different 

levels of ore extract with the longer-term tactical plan.  

- Designing a special model for the problem, given that there exists no commercial 

optimization software that is universally employable in all underground mines for 

optimizing production scheduling. 

5.2 Future Work: 

The gold mining industry in Canada was, and is still, an important component of the 

country’s national economy. Remaining competitive in a global marketplace requires continual 

development into the innovation of optimization models; moreover, improvements in software 

(i.e., faster and better technology). There are many complex and dangerous activities and 

operational-economic constraints which have caused problems in its manufacturing and 

operational systems, as well as a scarcity of optimization models applied in the gold mines and 

gold processing stages, as we indicated in the literature reviews. 
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The models applied in the chapters have provided the goals of this thesis by solving four different 

and important problems in Newmont Goldcorp Inc. at Red Lake Gold Mines (RLGM) in 

Northwestern Ontario, as the case study, by using O.R. methods. However, there are still several 

issues related to them, which may be subject to future research, as follows: 

- Emphasis on the use of O.R. methods and applying them in order to optimize gold mines 

operations and their processing stages. Due to the scarcity of similar data, we chose the 

Red Lake Gold Mines (RLGM), owned by Newmont Goldcorp Ltd. as a realistic case 

study. 

- An increased emphasis on sustainability and finding the best ways to reuse spent water in 

gold processing operations. 

- Focus on the optimization of the short- and long-term planning models, especially in 

underground operational processes, to help the future vision, and to improve optimizing 

productivity and achieve sustainability. 

- The crushing stage at Red Lake Gold Mine has suffered an operating power consumption 

issue during the liberation of ore gold material from waste, which is required for gold 

processing operations.  We attempted to solve this problem in this study, but given the 

absence of data, our limited understanding of the issue, and the repeated lack of response 

to the visit request. Thus, future studies can follow up research on the operational time of 

power consumption problem used in the crushing stage during gold ore processing 
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