

Multi-Timeframe Algorithmic Trading Bots using

Thick Data Heuristics with Deep Reinforcement

Learning

by

Gregory Roy

Department of Computer Science

Lakehead University, Thunder Bay, Ontario

Fall 2022

A thesis submitted to Lakehead University in partial fulfillment of the requirements

of the degree of Master of Science

in Computer Science

Thesis Supervisor: Dr. Jinan Fiaidhi

© Gregory Roy, 2022

ii

Declaration of Committee

Name: Gregory Roy

Degree: Master of Computer Science

Thesis title: Multi-Timeframe Algorithmic Trading Bots using Thick

Data Heuristics with Deep Reinforcement Learning

Committee: Dr. Jinan Fiaidhi

Supervisor

[Professor & Chair, Lakehead University]

 Dr. Sabah Mohammed

Co-Supervisor

Internal Examiner

[Professor, Lakehead University, Department of Computer

Science]

Dr. Carlos Zerpa

External Examiner

[Professor, Lakehead University, Department of Kinesiology]

 Fall 2022

iii

Thesis Committee

The MSc thesis of Gregory Roy, titled: ‘Multi-Timeframe Algorithmic Trading Bots using

Thick Data Heuristics with Deep Reinforcement Learning’, has been approved by the

Examining Committee for the thesis requirement for the Master of Science degree in Computer

Science at Lakehead University:

Thesis committee:

Examiner Internal (Print Name) Examiner (Signature) Date

Examiner External (Print Name) Examiner (Signature) Date

Lakehead University, Thunder Bay

iv

ACKNOWLEDGEMENTS
The author would like to acknowledge his parents Rob and Kathy for having faith in him

and providing the necessary support and strength to further his education. The author would like

to dedicate this thesis to his children, Keira, and Wyatt, for their love, patience, and

understanding during the long process of writing and producing this manuscript over the past two

years.

The author would like to thank his thesis supervisors (Dr. Jinan Fiaidhi and Dr. Sabah

Mohammed) who provided him with the opportunity to work in the FinTech research area. Dr.

Fiaidhi’s Thick Data research was instrumental to this research. In particular, the author

appreciates that his supervisors helped him to complete the published peer-reviewed scientific

journal article entitled, "Multi-Timeframe Algorithmic Trading Bots using Thick Data Heuristics

with Deep Reinforcement Learning" in the Artificial Intelligence Evolution (AIE) journal.

Finally, the author thanks Dr. Fiaidhi for helping to support his thesis financially through her

NSERC grant.

v

ABSTRACT
This thesis presents an augmented Artificial Intelligence (AI) algorithmic trading

approach that combines Thick Data Heuristics (TDH), with Deep Reinforcement Learning

(DRL), to successfully learn trading execution timing policies. In this thesis, combining the

augmented AI human trader’s intuition and heuristics with DRL techniques to provide more

focused drivers for trading order execution timing is explored. In this financial technology

(Fintech) research, the goal is to solve the sequential decision-making problem of AI for

profitable day and swing trading order timing executions. Enabling trading bots with cognitive

intelligence and common-sense heuristics will offer traders including automatic traders an

insight to understand the day-to-day swing trading timeframes indicators and arrive at mature

trading decision-making. This thesis examines the performance of bots with Nasdaq and NYSE

stocks that have a strong catalyst (info. which increases directional momentum) to find that they

outperform benchmark algorithmic trading approaches. The thesis illustrates to the reader how to

combine TDH and Deep Q-networks (DQN) into a TDH-DQN augmented AI trading bot. The

bot learns through test data to predict the optimal timing of order executions autonomously on

idealized trading time series data. The results show the TDH-DQN bot outperformed the buy and

hold strategy plus two out of the three benchmark algorithmic trading strategies.

vi

TABLE OF CONTENTS

Acknowledgements .. iv
Abstract ..v

Table of Contents ... vi

List of Figures .. viii

List of Tables ... ix

1 Introduction ..1

2 Background and Related Works ..3

 2.1 Related Work ..14

3 Materials and Methods ..24

3.1 Objectives and approach ...24

3.2 Bots use of Thick Data Heuristics ...26

3.3 Deep Q-Network with Experience Replay Algorithm ..29

3.4 Actor-Critic with Experience Replay Algorithm ..34

3.5 Markov Decision Process ..36

3.6 DQN Trading Bot ..37

3.7 Simulation-Critic Methods ..41

3.8 Performance Metric – Accumulated Percent Returns (APR)42

3.9 Catalysts Reasons for Stock Momentum ...42

3.10 Part 1 – DRL Day Trading Bots ..46

3.11 Part 2 – Swing Trading TDH-DQN Bot ..49

3.12 Benchmark Strategies ..50

3.13 Part 3 – TDH-DQN Trading Bot Case Study ..53

3.14 TDH-DQN Augmented AI Pseudo Code ..54

4 Results ...58

vii

4.1 Part 1 - TDH-DQN Day Trading Bot Performance Results 59

4.2 Part 2 - TDH-DQN Swing Trading Bot Results ...64

4.3 Part 3 - TDH-DQN Trading Bot Case Study Results ...65

5 Conclusions and Future Work ..70

5.1 True AI for AI trading bots ..71

5.2 Impact and value of work ...71

5.3 Conclusions ..72

5.4 Insights ...73

5.5 Future Work ...75

Data Availability Statement ...77

Abbreviations ...77

Bibliography ..79

Appendix A ..86

viii

LIST OF FIGURES
1 Latency vs Position Holding time for Day, and Swing Trading. ..7

1.1 Trading Bot RL Environment ..25

2 TDH-DQN Trading Bot Architecture ...34

3 TDH-ACER Trading Bot Architecture ...35

4 EMA Trend Strength, NIO Daily Price vs Time Chart for Part 1b ..44

5 Price vs Time Chart, Part 2: NVDA Pivot Reversal LE Strategy Orders51

6 Price vs Time Chart, Part 2: TSLA MACD LE Strategy Orders ..52

7 Price vs Time Chart, Part 2: AAPL Outside Bar Strategy Orders ...53

8 TDH-DQN Augmented AI bot Network Architecture ..57

9 SNAP Price vs Time Chart for Part 1b: DQN Trading Bot Trade Orders 63

10 CPR vs Trades for Part 2 TDH-DQN Bot Results from Table 13 ..65

11 Part 3 Orders: Episode 1 of TDH-DQN Bot Training ...66

12 Part 3 Orders: Episode 2 of TDH-DQN Bot Training ..66

13 Part 3 Orders: Episode 3 of TDH-DQN Bot Training ..66

14 Part 3 Orders: Episode 4 of TDH-DQN Bot Training ..68

15 Part 3 Orders: Episode 5 of TDH-DQN Bot Training ..67

16 Part 3 Orders: Episode 6 of TDH-DQN Bot Training ..67

17 CPR vs Trades for Part 3 Case Study Test Data Results ..68

18 Part 3 Results: Shows the TDH-DQN bots APR for the Test Data ..69

A1 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for TSLA..86

A2 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for AAPL ...86

A3 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for AMD ..87

A4 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for NVDA ..87

A5 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for FB ...88

ix

A6 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for MSFT ...88

A7 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for AMZN ..89

A8 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for QQQ ...89

A9 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for PLUG ...90

A10 Price vs Time Chart, TDH-DQN Bot Part 2 Orders for AMC ..90

LIST OF TABLES

1 TDH Agent Responsibilities for the Augmented AI Trading Bots...2

2 DRL Related Work Summary for Single Stock Trading ..15

3 List of symbols ..30

4 Catalyst Momentum Stocks in Part 1a and 1b Analysis for Day Trading bots43

4.1 Part 1a: Deep RL Trading Bot Algorithm Abbreviations. ...45

5 Part 1 Day Trading Bot Risk Parameters ..47

6 Part 1 DRL Agent Class Comparison ..47

6.1 DRL Algorithm Hyperparameters for Part 1, Day Trading Bots...48

7 Catalyst Growth Stocks in Part 2 Analysis for Weekly Swing Trading Bots50

8 TDH-DQN Trading Bot hyperparameters and model settings in Parts 2 and 354

9 TDH-DQN Bot Q-Network Parameters for the Seq. Keras Model, in Parts 2 & 354

10 TDH + DRL Algorithm comparison for Part 1a 5-sec Day Trading Bots60

11 Part 1a 5-sec bot Computing time Comparison, Total time between orders61

12 DRL Algorithm APR comparison both with and without TDH applied:62

13 Part 2 APR Comparison of TDH-DQN bot vs Benchmark Strategies 64

1

Chapter 1: Introduction
In this thesis, the TDH is a combination of human and bot-shared data management and

decision-making, as shown in Table 1. Combining DRL with TDH, and intuition, a research

question to answer in this study is whether DRL intraday stock trading bots and swing trading bots

can be employed successfully to execute profitable trades in the NASDAQ and NYSE stock

markets, on a single stock. Also, to explore how adding TDH (like common sense reasoning, risk

management, stock selection, multi-timeframe analysis, training/testing data selection, timeframe

selection, hyperparameter tuning, and model creation), affects the performance of the trading bots.

The TDH helps add subject matter experts’ experience into the decision-making process. The

research goals for this thesis are to explore the performance of algorithmic trading bots, to see how

the bots perform for day trading using intraday price movement and swing trading with weekly

price bars going back ten years. In this research, we use Q-learning (QL), where the goal is to

find the optimal Q-value function for the output state (buy-sell-hold) with an Artificial Neural

Network (ANN) in the stock market environment with iterative updates based on the Bellman

equation.

Thick data combines qualitative and quantitative data together. Fiaidhi proposes thick data

is a concept that employs heuristics and qualitative data (like observations, feelings, reactions, and

conversation outcomes) to provide more in-depth insights and reveals hidden patterns that can be

missed with quantitative techniques. She argues it has a significant impact on Data Analytics and

Pattern Recognition in modern conversational and explainable AI. Fiaidhi goes on to argue thick

data analytics aims at discovering the added-value heuristics to answer focused questions that can

be missed by quantitative analytic techniques including ML and DL [1]. Therefore, we decided to

research and compare the effects of adding TDH to stock trading.

This research is the first to combine the qualitative and quantitative elements of TDH

concepts in the area of Fintech or stock market trading research we are aware of. To enhance the

current research attempts, we extend existing research by.

1. Combining TDH with DRL to compare the performance of different RL algorithms.

2. Comparing the performance of different DRL algorithms over different timeframes.

3. Determining optimal TDH-DQN trading bot parameters and settings through iterative

training and testing on an idealized dataset and different market environments.

2

Table 1. TDH agent responsibilities for the augmented AI trading bots.

The organization of this thesis is as follows. Chapter 2 highlights some of the previous work

and background related to the sequential decision-making problem of AI for profitable day and

swing trading order timing executions. Our methodology and the steps of organizing and building

the framework are explained in Chapter 3. Chapter 4 illustrates the shortcoming, and benefits of

the different algorithms, through examples from real word results. Chapter 5 has the conclusion

and future research work.

This research was designed to address the problem of how to solve the sequential decision-

making problem of trading formalized as an MDP optimization of order timing executions for a

single catalyst stock. The research questions are:

3

Research question 1: Can RL agents successfully learn trading order execution timing

policies?

Research question 2: Which DRL algorithm performs the best across multiple timeframes?

Research question 3: Does adding TDH improve RL agent performance?

In order to answer the research questions, we build our main research objective, which is to

solve the sequential decision-making problem of AI for profitable day and swing trading order

timing executions. To satisfy the research objective, our detailed methodology will be addressed

in sections 3.10, 3.11, and 3.13. More details of the research methodology will be demonstrated

in figure 2 which shows the framework and the architecture of the TDH-DQN Trading Bot.

Chapter 2: Background and Related Works
Thick Data combines Qualitative and Quantitative Data. When companies want to build

stronger ties with investors, they need stories. Stories contain emotions, something that no

scrubbed and normalized dataset can ever deliver. Numbers alone do not respond to the emotions

of everyday life: trust, vulnerability, fear, greed, lust, security, love, and intimacy. It’s hard to

algorithmically represent the strength of an individual’s service/product affiliation and how the

meaning of the affiliation changes over time. Thick Data approaches reach deep into market

participant’s hearts. Ultimately, the relationship between a market participant and an

instrument/brand is emotional, not rational.

The authors need to differentiate between qualitative and quantitative analytics before

going further as the differentiation is not always obvious. For example, during Text Analytics,

measuring the frequency of certain words would be considered quantitative analytics, whereas

exploring the contextual meaning of a conversation would be considered qualitative analytics. In

other words, qualitative analytics includes the analysis of context, human behavior, emotions, and

other factors that are hard to digitize without losing any meaning. Qualitative analytics is a great

approach to bridge the gap between insights provided by quantitative research and providing an

in-depth understanding of the underlying reasons and motivations for a given phenomenon

situation. Qualitative analytics is not an added patching analytics because it will not simply add

more data points to adjust inaccurate prediction algorithm outputs. No output will be able to predict

4

human behavior until inputs are as complex, unexpected, and sometimes as contradictory as

humans themselves. This is where the notion of Thick Data came to the surface.

Thick data takes individual market participant’s temperatures more precisely and offers

depth analytics to the market participant’s data story. Thick data differs from big data by its

qualitative approach, obtaining ethnographic data that allow contexts and emotions of the analyzed

subjects to be revealed, while big data requires an algorithmic process usually carried out by

statesmen and data scientists. The problem is that while big data is big, it can also be thin in

producing effective analytics. For big data to be analyzable, it must normalize, standardize, and

define certain parameters and assumptions to sort, organize, and disseminate information. While

big data relies on ML, thick data relies on the social context of connections between data points.

This research allowed Wang (2019) [2], to enrich big data with insights into what drives people,

not just as market participants, but as human beings.

Latzko et al. (2016) [3], propose thickening data is supplementing data with richly textured

information or, in other words, adding layers of thickness to them. One could see thick data as

onion structured. It is “coated” with several layers of rich metadata – in the literal sense of data on

data. For example, if the ground were made of superposed layers of matter, each layer has its

individuality, but it interacts with surrounding layers, forming an organic whole. Instead of points,

thick data are whole little structured worlds. Added at different times through the research process,

multiple layers, of description, historical and social context, and cultural meaning contribute to

data thickness, but each layer is itself “thick” in that it is textured in complex ways and does not

easily lend itself to separation into discrete, computable elements. Hence the notion of stickiness

and the comparison with spaghetti.

Day trading is based on buying and then selling catalyst stocks within a single day, and

sometimes within minutes or seconds. A catalyst stock has recent news information about it which

increases its directional momentum. The goal with day trading is to trade catalyst stocks that same

day and not to keep any position overnight. Keeping stocks overnight is swing trading, which is a

completely different style of trading, with its own strategies, stock selection criteria, tools, and

timeframes. One of the key differences between day trading and swing trading is the approach to

stock picking. It’s important to not swing trade and day trade the same stocks as they have different

selection criteria. Swing traders usually look for stocks in solid companies that they know won’t

lose their whole value overnight. For day trading, however, bots can trade anything, including

https://amzn.to/38rdKif

5

companies that are going bankrupt soon, because you don’t care what happens after the market

closes. Many of the companies that are commonly day traded are too risky to hold overnight

because they can gap in price against your position unexpectedly [4].

In day trading, our bots are competing with some of the sharpest minds in the world. The

market is a massive crowd of traders and bots, with each bot trying to take money from the others

by outsmarting them. It’s a challenging and intellectually intense task for human traders to manage.

For this reason, we explore augmented AI trading bots to allow humans to do what they do best

which is namely, attaching context and meaning to the data qualitatively while allowing the bot to

analyze the quantitative aspects of the data quicker than a human ever could.

Table 1 shows the TDH used for the analysis. It can be noted due to the complexity of

software systems development, not all the TDH were fully automated with software code. As

indicated in Table 1, some of the TDH is performed by an experienced human trader/developer

and some are performed by the algorithmic trading bot. Finally, we analyze the bot’s ability to

learn in a case study during Part 3 of the research.

Trading bots that rely solely on DRL, lack transparency, and an expert trader’s subjective

intuition and capacity for consciousness. The DRL algorithmic stock trading bots provided the

required TDH which showed profitable results for both short-term day trading and longer-term

swing trading. The bots should all be considered unique to their environment and time with day

trading and swing trading bots using different ingredients for their TDH. Even between different

day trading bots, the decisions will be the same, but the parameters vary between the different bots

depending on which stock they are trading. TDH should be created and tuned by an experienced

augmented AI human. This is the case until AI software systems can more closely replicate human

capacity for consciousness, intuition, memory, and decision-making heuristics. Our research

reported some gains in expected returns and presented an alternative to traditional fund and wealth

management.

RL is ideal for trading due to its sequential decision-making nature. Adding the trading expert

heuristics to ML paves the way for designing new Robo-advisors, trading agents, or trading bots

capable of replacing human traders. In this article, we refer to Robo-advisors, bots, and agents

interchangeably. Bots have many obstacles in place to achieve true AI where they can entirely

replace a skilled human trader. The bots would have to have the following computer process in

place, mental states, intentions, interpretations, emotional states, semantic skills, consciousness,

6

self-awareness, or flexible intelligence. Although digital bots lack these skills, they can do more

and more things better than humans, by processing increasing amounts of data and improving their

performance by analyzing their own output as input for the next operations.

Augmented intelligence is a subsection of ML developed to enhance human intelligence rather

than operate independently of or outright replace it. It’s designed to do so by improving human

decision-making and the actions taken in response to improved decisions. For this semi-

autonomous augmented AI research, we are utilizing an augmented trader system where the human

trader manually selects the best high-volume stock for the bot to trade. The human trader is looking

for stocks with a catalyst that other traders, bots, and competing market participants will be

watching. Stocks with lots of interest in the pre-market session with higher highs and lows and

flowing price action with tight bid/ask spreads and price bars that interconnect without any large

gaps.

Robo-advisors and trading bots utilize large historical datasets including, time-series, Limit

Order Book (LOB), volume, fundamental, news sentiment analysis, market research, insider

information, Machine Learning (ML), technical analysis, and simulated risk management.

However, these ML trading techniques alone have limitations. Algorithmic trading bots must be

highly efficient at data management. They must first observe the market to discover profitable

entry and exit trading strategies. Next, they must design or modify an existing trading strategy and

finally implement the strategy in code.

After an event occurs in an episode, the bot must perform data processing and data science.

These include collecting, validating, modifying, organizing, indexing, classifying, filtering,

updating, sorting, storing, networking, distributing, accessing, retrieving, and transmitting.

Finally, the bot must take actions such as monitoring, modeling, analyzing, planning, forecasting,

decision-making, and learning. It’s a lot of computation and data processing for the most intelligent

human or bot to handle. Nowadays to compete with the fastest bots operating at the sub-second

level, most of the decision-making must be automated on the smaller timeframes.

The auction markets or stock market is an ideal environment to test 15 RL algorithms to

determine which ones perform the best in multiple environments. A near-unlimited supply of time-

series datasets are reality available, so researchers are able to gain a good understanding of how

the different AI algorithms perform over different timeframes. There is no need for data curation,

cleaning or modification. Basically, every timeframe is available from microseconds to decades of

7

perfectly organized time-series data. The primary limitation with stock market research is that the

environment is very limited in that the only primary inputs easily available are price, volume, and

news. All technical indicators are derivatives of price or volume.

Big Data analytics combined with High-Frequency Trading (HFT) has made it possible

to apply ML and DL methods to financial markets. High-frequency smart agents utilize low

latency, high-speed network connections to the financial markets data servers, and accurate real-

time market data to make trades in timescales of seconds down to microseconds. Liquidity for

algorithmic trading bots is defined as the quantity of assets available for trade. Automated trading

bots policies around pricing and risk management depend on their objectives and preferences, the

policies of competing market participants, the overall market environment and trade flow from

investors. Trading agents should have policies to vary reward formulations and adjust to market

conditions and to different competitors.

There are different categories of trading styles based on time-frame holding time. Figure 1

shows the Latency vs Position holding time for HFT, day and swing trading and long-term

investing. Machine learning is driving algorithmic trading, which is faster than traditional long-

term investing strategies and more deliberate than HFT in stock markets [5].

Figure 1. Latency vs Position Holding time for Day, and Swing Trading.

8

Trained trading models that perform well out of sample are the core requirement for

effective DRL trading bots. DRL gives computers the ability to learn from their experiences and

improve their performance as they gain more experience. The trading bots create models to

uncover the relationships between the price inputs and the trading decisions outputs when given

historical price data as input. Next, the bots forecast outcomes out of sample on the test data. If the

results are satisfactory the bots can be deployed into the markets with the trained models to execute

live trades. This feature makes DRL particularly attractive as an underlying approach to building

algorithmic trading bots.
Enabling trading bots with cognitive intelligence or AI offers an alternative approach to

day and swing trading by a human. Symbolic AI had a strong influence of the heuristic part of the

TDH research. Initial Symbolic AI research involved hard-coding rules into modern data structures

like graph networks did not show promising results due to the nonlinearity of stock market price

time-series data.

The next AI technique researched during the initial stages of exploration involved using

unsupervised learning. In this approach, closing price time series data for different time frames is

used as input to the trading bots. The outputs were the three variables buy, sell, and hold. The

trading bots then learn the rule for that historical data that links the time series data inputs to the

trading execution outputs. Next testing of the prediction success of the trading bots with out-of-

sample data to check the trading bot’s ability to discover relationships between input variables and

predictions. This method was computationally demanding and didn't work on lower timeframes

due to the long training times and ability of the bot to only predict one bar in the future. Patterns

in technical analysis are also hard to define mathematically as they can have many variations based

on the time scale.

In the initial phases of the research, Long Short-term memory (LSTM) prediction bots

were initially tested for different time series timeframes like the five sec, one min, five min, hourly,

daily, and monthly timeframes. The most promising uses for this type of strategy would be to use

the prediction capacity on the longer-term bars like the weekly or monthly bars as an alternative

way to determine the trend direction.

Other ML approaches to deploying stock market trading bots use LSTM neural networks

to feed multiple data into the neural network to come up with the next prediction in the time series.

This is practical for longer-term swing trading bots, where the neural network has plenty of time

9

to run computations, but for a real-time intraday system, this would be too slow to compute

compared to RL. RL also doesn't need as big of a dataset to make accurate predictions as strictly

DL approaches.

An autonomous entity is the ultimate achievement in AI. The flow of Reinforcement

Learning (RL) in stock trading works as follows: The environment or stock market communicates

the reward and state, (current price) to the agent. The agent decides based on the policy and new

reward. The agent then takes actions to Bid and Ask quotes on the environment. The object or

close price moves from one state to another. The RL cycle works in an interconnected manner.

The agent is not told which actions to take, as with other forms of ML, but instead must discover

which actions given the maximum reward by trying the actions. This environment is not as

complex as others because individual stock trading actions don’t affect the next situation and all

subsequent rewards. An individual trader has minimal effect on the price.

Algorithmic trading primarily involves the automation of trading tasks. There are a lot of

trading tasks that fall within this category such as risk management, technical analysis, and general

hard-coded trading rules. Here the human programs the computer to take care of all the actions

that don’t vary between trading. These are the decisions outside the domain of intuition, where the

bot performs actions based on fixed sets of rules. Hard-coded systems fall apart when the market

regime changes and the trend changes direction or rate of momentum. Strict algorithmic trading

systems often experience sharp drawdowns during these periods, and it takes an experienced

trader’s intuition to decide to scale back or reverse a strategy that has been working recently or

over a larger timeframe.

Software systems that can imitate and model a human trader’s emotions aren't currently

available. Until researchers can model emotions in trading bots, it will always be challenging to

completely model the intuition part of trading. This is especially true at the smaller day trading

timeframes where decisions must be made lightning fast.

DRL-based models go one step further than the price prediction-based trading bots

discussed in the second approach and determine rule-based policies for actions. When used in

combination with DL, RL has yielded some of the most prominent successes in ML, such as self-

driving cars, and exceeding human performance at games [6][7].

DRL systems can exceed human performance at many tasks but it's not without fault.

Modeling a trader's decision-making heuristics and intuition with computer systems is a difficult

10

task. Only a flexible learning system such as DRL can analyze time-series data for pattern

recognition and generalization like consistently profitable human traders. Traders adapt and last

for years in the market because they can adjust to cyclical bull and bear markets.

The DRL trading bots must also cope with the trader’s intuitive issue of deciding whether

to try new actions that may not be immediately optimal but longer-term could deliver the maximum

reward. Alternatively, the bot must decide if it should try new actions to find another optimal path

to rewards. The bot must also determine which step in the path was critical to the optimal policy.

Developing AI algorithmic stock trading bots is challenging and market intuition, thick data

analysis, and a good knowledge of the different models available are essential items to consider

when developing DRL algorithmic stock trading bots.

The interactive and online nature of DRL makes it particularly well-suited to the trading

domain. DRL models goal-directed learning by an agent that interacts with a typically stochastic

environment that the agent has incomplete information about. DRL aims to automate how the

agent makes decisions to achieve a long-term objective by learning the value of states and actions

from a reward signal. The goal is to derive a policy that encodes behavioral rules and maps states

to actions.

DRL is considered most like human learning that results from taking actions in the real

world and observing the consequences. It differs from supervised learning because it optimizes the

agent's behavior one trial-and-error experience at a time based on a scalar reward signal, rather

than by generalizing from correctly labeled, representative samples of the target concept.

Moreover, RL does not stop at making predictions. Instead, it takes an end-to-end perspective on

goal-oriented decision-making by including actions and their consequences.

Cartea et al (2015) [8] propose trading stocks is a complex environment. Their actions are

simple, with only 3 outputs, buy, sell, or wait, but the inputs are very complex. The primary issue

is incomplete information about the environment. It's impossible to know the motivations and

current state of other traders. Just like human expert traders, the more information the bots have

about the current state of the market the more successful they are. The design of trading bot

algorithms requires sophisticated mathematical models, a solid analysis of auction data, and a deep

understanding of how markets and exchanges function.

It is generally accepted that the markets are efficient but what are they exactly efficient at

doing? The markets are auction facilitators, so they are efficient at seeking the balance between

11

buyers and sellers. The markets are always seeking liquidity. If there are a bunch of orders waiting

to be filled at certain price levels the market will find those orders and fill that liquidity. The

combined strength of the buyers vs the sellers pushes the price to levels based on the sentiment of

the market participants.

Jammalamadaka et al. [9] argue that news articles serve the purpose of spreading

information about the companies, and further influence people either consciously or unconsciously

in their decision-making process while market making in the auction market. Positive news such

as good earnings reports, improved corporate governance, new products, and acquisitions, as well

as positive overall economic and political indicators, translate into buying motivations and

increases in prices, while negative news will have the opposite effects.

Upon years of observation of real-time and historical data, it can be observed that market

events and conditions tend to repeat themselves. This is likely due to the long-term memory of

the market participants. These observations of repeating patterns can be approached from the

perspective of Heuristics held within the domain of study called symbolic AI. A heuristic

technique or a heuristic is any approach to problem solving or self-discovery that employs a

practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless

sufficient for reaching an immediate, short-term goal or approximation [10]. The auction markets

behave very much in this way at times with optimal, perfect, or rational conditions seemed to be

non-existent. Value is measured by how much someone is willing to pay after you have already

bought on the Ask or sold at the Bid.

In this research, the trading from both day and swing trading perspectives were explored.

Time frame is important, and the five-sec and one-min candles were selected for the day trading

bot analysis and weekly candles for the longer-term swing trading bot approach. It is particularly

important to understand the market context the bots are trading. Highlighted below are some of

the environmental variables the bots encounter in recent years.

On March 11, 2020, Tom Hanks announced he had contracted Covid 19. The next day the

NHL announced suspending the season due to the pandemic. By March 25, the bottom had been

put in and CNBC was headlining the story, “Bill Ackman warned ‘hell is coming’ because of virus:

He then pocketed $2B in bets against markets." This marked the early bottom of the covid

pandemic pullback. A raging bull market ensued as governments re-distributed huge amounts of

future debt back into the economy to prop up businesses and individuals affected by the pandemic.

https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Self-discovery
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Rationality
https://en.wikipedia.org/wiki/Approximation

12

In many cases, this money appeared as excess income and the capital flowed into the stock market.

These are difficult concepts for trading bots to comprehend from price data alone. Just when things

seemed at their worst the market reversed direction and Bill Ackman pocketed a bundle by using

his experience and intuition to time the bounce perfectly. Our research investigates how RL

software systems can seek to improve human performance with TDH and intuition combined with

deep RL.

Another concept the trading bots will have to comprehend is the meme stocks that emerged

in 2021 and made popular on the Reddit message board wallstreetbets. User banter on the forum

is referring to themselves as APEs, taking down evil hedge funds. They consider themselves

degenerate gamblers and often look up to Leonardo DiCaprio’s movie character in the Wolf of

wall street. During the pandemic bull market, it paid off to buy the dips, and with no consideration

for risk management, many new investors bought into the top of the market because they continued

to do what works longer than they should.

These meme stocks deluded into the height of the buying frenzies. By issuing new stock

and selling the stock into the open market they dilute the total share available to trade and

drastically change the supply-demand dynamics at optimal prices. Often the insiders in the

companies know information not available to the public and can issue new stock at the very peaks.

Top executives at AMD sold their individual stock into the frenzied highs that investors take as a

sign of the top. These investors buying in at the frenzied tops on momentum can face drastic

pullbacks in noticeably short amounts of time.

Younger investors are more eager than older generations to embrace do-it-yourself

investing. In this age of meme stocks and blockchain and record-high prices, young investors have

embraced more risky investments. Commonly touting catchphrases like YOLO, you only live

once, where investors take their life savings and crowd into over-hyped stocks fundamentally short

squeezing due to market dynamics more so than underlying fundamental earnings which drive

markets in the long term.

These young investors treat the financial markets like a casino and buying options and

stocks like buying a lottery ticket, where they go all-in with their entire savings on one company

hoping it will go to the moon as they often cite on meme stock message boards. During the bull

run-up of 2021 heavily shorted stocks like TSLA, GME, and AMC experienced hockey stick-

shaped, exponential short squeezes. These retail investors and traders are entering an extremely

13

competitive environment with multiple sophisticated competing market participants. Their

primary edge is about 70 percent of the time markets move sideways and it is best to sit on the

sidelines and wait whereas institutional traders need to be in the markets. It is estimated that

institutional trading is responsible for 70 to 90 percent of the total volume of markets.

These so-called institutional traders include large investment banks, pension funds, and

hedge funds. There are multiple types of bots that operate in the markets. An institutional trader’s

expectation horizon is at a higher time level than day trading bots. This ranges from a few days to

several weeks or years. Institutional bots can have varied reasons to act on the market. Short or

long-term investments, hedging of commodity prices and security portfolios, implementation of

interest rates, and currency policy decisions create a diverse set of bots. These competing

participants are not aware of each other's actions or intentions a skilled trader can see their tracks

and intentions in the charts and volume data. Institutional traders are masters at hiding their tracks,

but everything eventually shows up in the volume data and that tells the story over the long term.

The large market institutional participants addressed here to dispose of massive financial

resources, which they constantly use in the markets for specific purposes. They are guided by

fundamental analysis and spend large sums on research. If they were to act in isolation, prices

would shoot to the moon or fall like a stone. To build up their positions piece by piece, they work

as undetected as possible, mostly in intraday trading ranges. Once they have built up their positions

and are ready, they act aggressively and move the market as quickly as possible in the direction

they want.

The point that the market finally breaks out after hitting the other trader’s stops a few times

is difficult to determine and the goal of the bot. The bot attempts to buy when the price starts going

up and sell when the prices are going down. These are the perfect trades where little is at risk with

orders of magnitude greater profits can be achieved. The bot attempts to trade low risk to reward

trades and avoid high-risk to reward.

The behavior of institutional investors seldom matches the expectations of retail traders.

Their strategies require them to take a long position when the price has fallen sharply and is now

below value. Similarly, they will usually take a short position when they feel the price is too high.

Retail traders made up of day traders, swing traders, hybrids, or individual position traders whose

view is based daily comprise an increasingly important influence on market prices, especially

during the short term. There are two groups in the day trading sector. The first group consists of

14

so-called scalpers. Their goal is to execute as many trades as possible during a trading day, with

the shortest possible duration and small profits. They are fighting against the algorithms of the

market makers at second intervals day in, day out. This is the focus area of the intraday day trading

bots explored in this research.

The Role of the Day Trader as a market participant is important to consider when designing

trading bots. Institutional traders are undoubtedly the determining forces in any significant price

action. Accordingly, changes always take place when they perceive the current price to be too high

or too low. To implement their plans, institutional traders inevitably need to enter the market

temporarily at intraday levels. The role of a day trader is different. While an institutional trader

follows a predetermined opinion and market direction, a day trader must first try to interpret it at

the macro level. To determine the macro-level market structure the day trader must determine

market direction, who is in control, and if there are any big buyers or sellers trying to disguise their

intentions.

The next task of a day trader is to determine when exactly institutional traders become

active at the micro-level. This is where a more detailed analysis at a smaller time level comes into

play. These combine market and volume profiles, important chart points, and order flow. Only a

combination of these components enables an algorithmic DRL day trading bot to execute a low-

risk trade [11].

2.1 Related Work
In our contribution to the overall research, we analyzed the best DRL algorithms for multi-

timeframe trading. We also add TDH to the DQN plus experience replay algorithm, which was

initially developed by DeepMind researchers. Our proposed TDH-DQN method is shown at the

bottom of Table 2 for comparison to related works. These are the research articles that are most

closely related to this research. It can be observed in the table that most of the existing works deal

with Daily time series data. Our research is the first to approach trading with the DQN algorithm

from a multi-timeframe perspective focusing on day and swing trading in the cloud specifically.

15

Table 2. DRL Related Work Summary for Single Stock Trading.

LeCun et al. [12] offer a good explanation of how DL works. LeCun proposes DL allows

computational models that are composed of multiple processing layers to learn representations of

data with multiple levels of abstraction. Deep learning discovers intricate structures in large data

sets by using the backpropagation algorithm to indicate how a machine should change its internal

parameters that are used to compute the representation in each layer from the representation in the

previous layers. In this research, we are using time series closing price data as the input variable.

We are employing DL to solve the Q-table for the heuristic process-oriented RL trading agents.

Sutton and Barto in their seminal work (1998) [13] established the basis for a whole new field

called RL used extensively throughout this work. The DRL algorithms created by DeepMind

researchers from 2013-2017 [4, 14-17] inspired and influenced this work. The algorithms were

developed to achieve better than human performance in Atari video games with the Rainbow

Algorithm (2017) [6]. Schaul et. al. (2016) [15] researched the experience replay concept which

was utilized for the construction of the TDH-DQN trading bots for Parts 2 and 3 analysis.

Realistic simulated environments, where AI agents can be trained to learn a large repertoire

of cognitive skills, were explored thru the work of Wangs et al., (2017), [18] Actor-Critic with

16

Experience Replay (ACER). ACER’s features include using retrace Q-value estimation,

Truncating the importance weights with bias correction, and applying efficient Trust region

policy optimization (TRPO), [19]. Also, Bellemare et al., (2013), [20]. Every time an agent acts

upon the environment, an expensive simulation step is conducted. Thus, to reduce the cost of

simulation, the need to reduce the number of simulation steps (i.e., closing stock prices at pre-

defined time-series intervals like five-second, one-minute, or daily samples of the stock

environment). This need for sample efficiency is even more compelling when agents are deployed

in the real world such as AI day trading algorithmic trading bots. The idea of learnable models has

recently enjoyed a renewal of interest by Ha et al. (2018) [21] and Moerland et al., (2020) [22] for

a recent survey of model-based RL [23].

Experience replay explored by Lin, (1992), [24], has gained popularity in deep QL where it is

often motivated as a technique for reducing sample correlation. Replay is a valuable tool for

improving sample efficiency. The deterministic nature of the optimal policy limits its use in

adversarial domains. Finding the greedy action with respect to the Q function is costly for large

action spaces [18].

Based on this hybrid framework, Mnih et al. (2016) [25] proposed an asynchronous variant of

A2C method which surpasses the origin Actor-Critic Agent (AC), in convergence time and

performance. Lillicrap et al. (2015) [26] presented the DDPG algorithm for solving problems with

continuous action spaces [27].

Other ML approaches to deploying stock market trading bots use Long Short Term Memory

(LSTM) neural networks to feed multiple data into the neural network to come up with the next

prediction in the time series [28]. This is practical for longer-term swing trading bots, where the

neural network has plenty of time to run computations and execute trades at most once per day,

but for a real-time intraday system that learns and reacts to the environment, this would be too

slow to compute compared to RL. RL also doesn’t need as big of a dataset to make accurate

predictions as strictly supervised or unsupervised learning or DL approaches.

Early DRL research by Mnih et al. (2015) [7] proposed a DQN model to learn long-term

control policies with smattering prior knowledge. Research focuses on employing deep neural

networks to learn the Q matrix. Hasselt et al. (2015) [16] proposed a Double DQN algorithm to

reduce overestimation. Lillicrap et al. (2015) [26] presented an actor-critic, a model-free algorithm

named deep deterministic policy gradient, to learn policies. Mnih et al. (2016) [25] DQN exploited

17

the replay algorithm and successfully integrated RL with deep neural networks. This reduced the

computation complexity and improved the performance of RL agents because of the rich

representations provided by deep neural networks. Mnih et al. (2016) [25] put up a parallel RL

paradigm, which asynchronously executed multiple agents on multiple instances of the

environment in parallel, to deal with the non-stationary problem. Besides, the algorithm was

compatible with various RL algorithms, including on-policy ones such as AC methods, Sarsa, n-

step methods, and off-policy ones like QL. Wang et al. (2016) [17] brought forward the Dueling

Network, which is a DQN-based method that divides the original network into an output scalar

V(s) and an output action to the dominant value and integrates two Q values after operation

respectively. Table 1 shows 9 related DRL works along with the algorithms they used, dataset,

period, and time series interval information. The TDH-DQN proposed method is shown at the

bottom of Table 2 for comparison.

Soon after the DeepMind researchers Atari DRL papers were released, researchers applied the

techniques to algorithmic trading. DRL models are widely used to learn a good single-stock trading

strategy for a given stock based on its historical data. Deng et al. (2016) [29] proposed a model of

Deep Direct RL and added fuzzy learning. Du et al. (2016) [30] proposed QL, to optimize policies.

Wang et al. (2017) [32] proposed employing deep QL to build an end-to-end deep Q-trading

system. Kang et al. (2018) [15], modified and adapted the Asynchronous Advantage Actor-

Critic A3C by Mnih et al., (2016) [25], A3C RL algorithm and joined it with DL.

Recently, Xiong et al. (2018) [33] employed the Deep Deterministic Policy Gradient (DDPG)

technique to learn a dynamic stock trading strategy. Azhikodan et al. (2019) [34] proposed

automating swing trading using deep RL. Li et al. (2019) [35] examined the performance of three

variations of Deep Q-network including typical DQN, Double DQN, and Dueling DQN in learning

single stock trading strategies for ten US stocks. Jeong et al. (2019) [36] proposed a deep QL

network to determine the number of shares used in prediction. Wu et al. (2020) [37] used a Gated

Recurrent Unit (GRU) to extract temporal dependencies from raw financial data and technical

indicators in combination with the DQN and Deterministic Policy Gradient (DPG) models to

learn a trading strategy on single stocks. Lei et al. (2020) [38] proposed a time-driven feature-

aware jointly deep RL model called TFJ and DRL. Yang et al. (2020) [39] proposed an ensemble

strategy that employs deep reinforcement schemes to learn a stock trading strategy by maximizing

https://arxiv.org/abs/1602.01783

18

investment return. Park et al. (2020) [40] proposed a novel portfolio trading strategy in which an

intelligent agent is trained to identify an optimal trading action using deep Q-learning.

Hirchoua et al. (2021) [41] proposed a novel rule-based policy approach to train a deep RL

agent for automated financial trading. Chakole et al. (2021) [42] used a QL algorithm to find the

optimal trading strategy, in which the unsupervised learning method K-means and candlestick

chart were, respectively, used to represent the state of the stock market. Carta et al. (2021) [43]

proposed an ensemble of RL approaches that do not use annotations to learn, but rather learn how

to maximize a return function over the training stage. Theate et al. (2021) [44] proposed a novel

DRL trading policy to maximize the resulting Sharpe ratio performance indicator on a broad range

of stock markets. For more general ML information, Kumbure et al. (2022) [45] reviews the

literature and ML techniques and data for stock market forecasting. Millea (2021) offers a critical

survey of deep reinforcement for trading [46].

Taghian et al. (2022) [48] proposed a DRL model with feature extraction modules on the Dow

Jones Index. Suhail et al. (2022) [49] proposed combining market sentiments and RL using Apple

data from 2006-2016. They investigated adding the influence of market news on deciding stock

prices. In our contribution to the overall research, we analyze the best DRL algorithms for multi-

timeframe trading. We also add TDH to the DQN plus experience replay DRL algorithm initially

developed by DeepMind [6-7,14-15,17] researchers to build multi-timeframe augmented AI

trading bots. Our proposed TDH-DQN method is shown at the bottom of Table 2 for comparison

to related works.

ML for trading is a large topic. Financial stock market trading is a vast area of research, but

the related work research papers found to be most relevant were selected based on specific

keywords related to technological advances and specifically ML and AI, and how they are

affecting the financial sector.

In the article called, “RL for High-Frequency Market Making,” Lim et al. present an early

practical application of RL to optimal market making in high-frequency trading. They show that a

discrete QL algorithm can use RL to outperform the market-making of traditional frameworks

[50].

Ganesh et al. (2019) [51]. at JPMorgan explore, “RL for Market Making in a Multi-agent

Dealer Market.” The researchers explored an RL-based market-making agent’s interactions with

a multi-agent simulation environment. The agent used the competitor’s pricing policy, asymmetric

19

prices skewing and maintaining a positive or negative inventory depending on the trend. Training

agents in financial markets is difficult so they built A market-making simulator. Simulators

provide more than just data for sample-intensive RL algorithms; they also provide a platform to

conduct controlled experiments to test what is being "learned" by an agent, how a policy performs

in different scenarios, and the causality between changes in the environment and agent behavior.

Simulators can also be used to train an agent in a diverse set of scenarios, leading to improved

generalization and robustness to changes in the environment. The ai researchers showed that the

RL agent can learn about its competitor’s pricing policy. It also learns to manage inventory by

skewing prices and maintaining inventory depending on whether the market price trend is up or

down [51].

The article by Briola et al. [52], introduces a first end-to-end agent of its kind. Their agent

uses a Proximal Policy Optimization algorithm. The training is performed with high-frequency

Limit Order Book data. The agents are always able to, “beat the market,” and achieve a net positive

profit in the whole training sample considered, and in most of the single trading days it is composed

of [52].

To explore the market maker mathematical formulas, we can explore the article, “High-

frequency trading in a limit order book,” by Avellaneda et. al. (2008) [53], because it is commonly

referenced for its model. The paper presents common market-making formula’s clearly to come

up with a solution for optimal bid and ask quotes. The model consists of the following components:

The mid-price of the stock, the optimizing agent with the finite horizon, the optimizing agent with

infinite horizon, Limit orders, the trading intensity, optimal bid and ask quotes, approximations,

and numerical simulations [53].

The article by Briola et. al (2020) [54]., explains the LOB called, “Deep Learning Modeling

of the Limit Order Book: A Comparative Perspective.” The Limit Order Book (LOB) represents

the venue where buyers and sellers interact in an order-driven market. In the article the ai

researchers test Random models, Logistic Regressions, LSTMs, CNN-LSTMs and MLPs on the

same tasks, feature space, and dataset and performance metrics [54].

Convolutional Neural Networks (CNN) are widely used by ai researchers, an article that

demonstrated this type of neural network was, “Forecasting Stock Prices from the Limit Order

Book using Convolutional Neural Networks,” by Tsantekidis et. al. (2017) [55]. Most orders are

performed in their entirety by electronic means so market makers can analyze all the generated

20

data and detect repeated patterns of price movements. The AI researchers trained a CNN on high-

frequency LOB data, applying a temporally aware normalization scheme on the volumes and

prices of the LOB depth. The proposed approach was evaluated using different prediction horizons

and it was demonstrated that it performs significantly better than other techniques, such as Linear

SVMs and MLPs, when trying to predict short-term price movements [55]. To gain a better

understanding of market microstructure readers can explore, the “High-frequency market

microstructure,” by O’Hara et al. (2015) [56]. It discusses how markets are different now,

transformed by technology and high-frequency trading, and details HFT strategies.

The reader can explore DL and LSTM and CNN networks further with the following

works. The article by Fischer et al. (2017) [57] called, “Deep learning with long short-term

memory networks for financial market predictions.” was informative. In this article, the

researchers deployed an LSTM network for predicting out-of-sample directional movements for

the constituent stocks of the S&P 500 from 1992 until 2015. They successfully demonstrated that

an LSTM network can effectively extract meaningful information from noisy financial time series

data. Compared to random forests, standard deep nets, and logistic regression, it is the method of

choice with respect to predictive accuracy and with respect to daily returns after transaction costs.

As it turns out, DL in the form of LSTM networks seems to constitute an advancement in this

domain as well [57].

For a relatively stable dataset, DL models work very efficiently. A very accurate prediction

is given by models like LSTM. According to Lim et al. (2019), DL models work as an effective

modeling technique for time series forecasting [58]. In terms of execution speed, the univariate

CNN model with the previous week’s data as the input was found to be the fastest one according

to Yong et al. (2020) [59]. That is because recently there’s literature that points out that CNN can

achieve what LSTM has been used for and is great at, namely predicting sequences, but in a much

faster, more computationally efficient manner. Another model that started becoming popular

recently is CNN. CNN also works better for classification problems and unlike Recurrent Neural

Networks (RNN) based models, it is more suitable for either non-time varying or static data

representations [60].

With the development of modern architectures such as convolutional neural networks

CNNs and RNNs, DL models have been favored for their ability to build representations of a given

dataset, capturing temporal dynamics and cross-sectional relationships in a purely data-driven

21

manner. The adoption of deep neural networks has also been facilitated by powerful open-source

frameworks such as TensorFlow and PyTorch, which use automatic differentiation to compute

gradients for backpropagation without having to explicitly derive them in advance. In turn, this

flexibility has allowed deep neural networks to go beyond standard classification and regression

models. Focusing on the raw signal outputs, the Sharpe ratio–optimized LSTM outperforms all

benchmarks as expected. Incorporating transaction costs, the Sharpe-optimized LSTM

outperforms benchmarks of up to 2–3 bps of costs, demonstrating its suitability for trading more

liquid assets [58].

Among DL structures long short-term memory (LSTM) networks, a representative type of

RNN, are suitable for modeling temporal patterns, which are widely utilized in tasks regarding

time series [59].

Ding’s et al. compared with the original LSTM, this model is greatly improved with high

prediction accuracy and small regression error. Dropout refers to the temporary discarding of the

neural network unit from the network according to a certain probability during the training of the

DL network, which is a means to prevent over-fitting. The principle of dropout operation is that

the neurons in each layer are randomly deleted with probability P in a training iteration, and the

data in this iteration are trained with the network composed of the remaining (1−p)*N neurons,

thus alleviating the over-fitting problem [61].

In the article by Borovkova et al. (2019) [60]., “An ensemble of LSTM neural networks

for high-frequency stock market classification,” the researchers propose an ensemble of long–

short-term memory (LSTM) neural networks for intraday stock predictions, using a large variety

of technical analysis indicators as network inputs. The proposed model was found to perform better

than the benchmark models or equally weighted ensembles. With the increased availability of

high-frequency trade data and the development of ML algorithms that can handle such large

amounts of data, technical analysis is currently undergoing a revival: Daily patterns are replaced

by intraday ones, and algorithms, not humans, now learn price patterns and make forecasts based

on them. Nelson, Pereira, and de Oliveira (2017) trained LSTM networks on 15-minute-interval

observations, for several BOVESPA (Sao Paolo Stock Exchange) stocks, and reported accuracy

metrics of 53–55% for the next direction price forecasts [60].

In the article by Sangyeon et al. (2019) [62]., “Financial Series Prediction Using Attention

LSTM,” the researchers use an attention LSTM for prediction, and for visualizing intermediate

22

outputs to analyze the reason of prediction. Their proposed model produces a 0.76 hit ratio, which

is superior to those of other methods for predicting the trends of the KOSPI 200.

In the article by Gabler et al. (2018) [63]., “Pattern Learning via Artificial Neural Networks

for Financial Market Predictions.” The author states our main hypothesis is that CNNs provide a

natural way to capture such patterns by simply consuming the historical data without an explicit

definition of the patterns to be captured by the designer. The key results of the LSTM and CNN

are shown and compared in terms of prediction accuracies, return risk characteristics on different

long-short portfolio sizes, and the author unveils sources of long-term profitability. CNNs were

developed after one basic idea: local connectivity. That means, that each node is only connected

to a local region in the input. The authors claim to have successfully demonstrated that LSTM and

CNN networks can extract meaningful information from such noisy financial time series. They

say that the LSTM outperforms the CNN with respect to predictive accuracy and mean returns,

although the CNN exhibits more favorable risk metrics.

Vinyals et al. (2019) [64] achieved successful results in StarCraft II using multi-agent RL.

They chose to address the challenge of StarCraft using general-purpose learning methods that are

in principle applicable to other complex domains. A multi-agent reinforcement learning algorithm

that uses data from both human and agent games within a diverse league of continually adapting

strategies and counterstrategies, each represented by deep neural networks. Their agent AlphaStar

was trained via both supervised learning and reinforcement learning.

Zhao et al. (2021) [65], propose a Consciousness-Inspired Planning Agent for Model-

Based Reinforcement Learning. They presented an end-to-end, model-based deep reinforcement

learning agent which dynamically attends to relevant parts of its state during planning.

To construct autonomous intelligent agents, it’s important to understand how AI trading bots

would first learn to reason and plan as efficiently as human traders. These decision-making bots

would need to learn representations of percepts and action plans at multiple levels of abstraction,

enabling them to reason, predict, and plan at multiple time horizons. Current AI trends can be

explored with Yann LeCun’s (2022) [23] position paper where he provides a description of neural

symbolic architecture using a hybrid neuro symbolic strategy with functional hybrids. This

involves chainprocessing where preprocessing is done in one system, and post-processing is done

in another. Subprocessing is another functional hybrid where parent processes are split into child

processes. Metaprocessing is processing tasks like monitoring, control, performance

23

improvements, or corrections. The final functional hybrid strategy LeCun proposes is coprocessing

where neural and symbolic are equal partners. His model uses an approach like human intelligence

where he models an actor using the perception of the environment and short-term memory plus a

configurator to make decisions and take actions in a complex environment. The configurator is a

key part of the model because it controls the interaction between perception, the actor, the world

model, and the separate critic, cost, and intrinsic cost function.

LeCun’s learning hierarchical Joint Embedded Predictive Architecture (JEPA) world

models are composed in the following way. The configurator module takes inputs from all other

modules and configures the tasks at hand. The perception module estimates the current state of the

world. The world model module predicts possible future world states as a function of imagined

actions sequences proposed by the actor. The cost module computes a single scalar output called

energy that measures the level of discomfort of the agent. The short-term memory module keeps

track of the current and predicted world states and associated intrinsic costs. The actor module

computes proposals for action sequences, represents states as vectors, and learns correlations

between state x and y, but does not make predictions about y given x [23].

This type of hybrid architecture can use nonlinear problem-solving methods or different

methods to solve problems. The hybrid architecture combines symbolic and ML approaches to

find the best tool for the job and can employ cognitive architectures that mimic specialized brain

functions such as Kenheman’s (2011) system 1 and system 2 [66].

The research into AlphaGo by Silver et al. (2016) [67] provides another hybrid

symbolic/RL architecture that uses Monte Carlo tree search to generate games. The approach

requires an understanding of the rules of the game and its goals. The model can then calculate

value networks using RL-like methods employed by the TDH-DQN bots in our research [67].

24

Chapter 3: Materials and Methods
In Part 1, Section 3.10 we determined the optimal DRL algorithm for this multi-timeframe

TDH-DQN bot. In Part 1a the goal was to determine which of the eight DRL algorithms tested

performs the best at algorithmic trading in the five-second short-term day trading decision-making

timeframe for seven catalyst stocks. Part 1b compares 15 different DRL architecture’s

performances on the catalyst stocks from Part 1a. both with and without TDH with a medium day

trading one min time-series timeframe. The Accumulated Percent Returns (APR), and

computation time results from the Part 1 analysis caused us to choose the DQN as the optimal

trading algorithm for our TDH-DQN bot purposes. Next, in Part 2, Section 3.11, our goal was to

compare the performance of our TDH-DQN bot vs. some baseline algorithmic trading strategies

including, buy and hold, Pivot Reversal, MACD LE, and Outside Bar. Part 2 analysis focuses on

trading strategies with the swing trading weekly time series timeframe data for ten catalyst growth

stocks. Finally, in Part 3, Section 3.13, our goal is to illustrate to the reader a case study that shows

how our TDH-DQN trading bot learns to predict the optimal timing of executions autonomously

on idealized trading time series data.

This research was successful using a semi-autonomous augmented AI system (where the

digital DRL bots augment an experienced human trader). Multi-timeframe technical analysis is a

fundamental part of this research. The three primary time-series timeframes used are the five

second, and one minute for the day trading bots and the weekly time interval for the swing trading

bots. The environment for our trading bots was NYSE and Nasdaq stocks. Our day trading analysis

used seven catalyst stocks, five-second, daily, and weekly timeframes, from 2021 as shown in

Table 4. To illustrate the performance effects of the TDH, the one-minute time-series timeframe

were selected for the seven catalyst stocks to compare the effects both with and without TDH in

Table 12. The swing trading bot’s environment was ten catalyst stocks weekly timeframe closing

price data from March 25, 2022, going back ten years of historical data shown in Table 7.

3.1 Objectives and approach

The environment for the experiments was comprised of the observation space including the

state space, action space and rewards. The state space consists of discrete multi-timeframe closing

price time-series data, volume rate market scan data. The action space is buy, sell and hold, and

finally rewards (APR) as detailed in Figure 1.1 which shows the Trading Bot RL environment.

25

Figure 1.1. Trading Bot RL environment.

The bots action space is discrete, and they only make decisions at the beginning of a new

primary time-series interval, for example in this case the five-second, one-minute, or weekly time-

series interval. The other time-series data is used to determine the trend with technical analysis but

isn’t used for deciding the decision-making interval. The human trader’s actions are in the

continuous action space in that the human can watch the tick-by-tick data visually on the charts as

the time-series interval candles are forming in real-time. An astute trader can watch the volume

rate and price action and make decisions to execute a trade at any time between time-series

intervals whereas the bot cannot.

There are three types of RL-based techniques that are explored in this research, The first is a

Value-based method where the agent first estimates the value of each action in each state and then

selects the action with the highest value at each state called Deep QL or DQN. The second

technique is the Policy-based method where the agent learns the policy function called Policy

Gradient (PG). Finally, the third technique which is also a derivative of policy-based methods is

Actor–critic method, in which the actor generates an action at each time-step and the critic

measures the quality of the generated action.

The DQN uses a multi-layer convolutional network, Experience Replay, used to train the

ANN to train itself using stored memories, and utilizes a second ‘target’ network, used to compute

target Q-values [68].

26

In the RL framework for this case study, the algorithm takes an action (buy, sell, or hold)

depending on the current state of the stock price. The algorithm is trained using a deep QL model

to perform the best action.

To frame this RL problem, we must first define the agent as the trading agent which creates

actions, buy, sell, or hold. The reward is the APR. The reward depends on the action: sell

(realized profit and loss), buy (no reward), or hold (no reward).

The state space for the DRL agent is a sigmoid function of the differences in past stock prices

for a given time window used as the state. State St is described as (dt-τ+1, dt-1, dt), where dT = sigmoid

(pt – pt–1), pt is closing price at time t, and is the time window size. A sigmoid function converts

the differences of past stock prices into a number between zero and one, which helps to normalize

the values to probabilities and makes the state simpler to interpret.

State determines the observations that the agent receives from the environment for taking a

decision. The state should be representative of current market behavior as compared to the past

and can also include values of any signals that are believed to be predictive or items related to

market microstructure, such as volume traded, Exponential Moving Averages, Pivot Points,

Candlestick Patterns or MACD. Trading commission costs and trade execution slippage are not

considered in this study.

3.2 Bot’s Use of Thick Data Heuristics
Heuristics is an approach to problem solving or self-discovery that employs a practical method

that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching

an immediate, short-term goal or approximation. Where finding an optimal solution is impossible

or impractical, heuristic methods can be used to speed up the process of finding a satisfactory

solution. Heuristics can be mental shortcuts that ease the cognitive load of sequential decision-

making [10]. Human traders often run into issues with decision heuristics because as Kahneman

explains humans struggle to think statistically. Kahneman uses heuristics to assert that thinking

involves associating new information with existing patterns, or thoughts, rather than creating new

patterns for each new experience [66]. This is where DRL trading bots have an edge. The bots are

great at following the rules exactly but don’t know how to use intuition to know when to slightly

break the rules. Great traders know when to break the rules and size up their positions to capitalize

on great opportunities quickly, but this is very difficult to do with AI algorithmic bots.

27

The TDH employs many elements and concepts from Symbolic AI to provide the qualitative

and heuristic elements the bots need to be successful. Symbolic AI bots require an extensive

amount of subject matter knowledge and expertise to effectively create all the rules involved in an

optimal decision-making process. With symbolic models, you can put constraints on the moves

the agent can make which can be more difficult when employing ML and RL approaches.

Symbolic AI has advantages over ML and RL approaches in that introspection is more useful for

coding, and easier to debug, explain, and control. Symbolic Ai does not require big data and is

more useful for explaining people’s thoughts or abstract problems. Symbolic AI can learn

generatively to a certain extent and is useful for inductive logic programming and case-based

reasoning. Symbolic bots are non-monotonic so they can unlearn default logic and replace default

belief with a new observation. Human programmers must provide goals to the symbolic bots but

reasoning must be constrained and well defined. Symbolic bots are best suited for AI problems

with goals and rules which are solvable and explainable.

Whereas ML and RL approaches provide the advantages of being more robust against noise,

better performance, less knowledge upfront, and are easier to scale up. Modern ML approaches do

require big data and are more successful based on the type of data used. ML and RL approaches

are more useful for connecting to neuroscience and better suited for perceptual problems. ML’s

equivalent to symbols is classification results in symbol types such as cat vs dog. ML bots learn

relations between two or more things on an image for example orientation of the eyes and mouth

to determine a person’s face. ML bots don’t have goals, only inputs, and cannot make their own

goals. They use uninterpretable pattern matching without symbols and goals which can lead to

meaningless results.

Consistently profitable human traders often look at multiple data information sources when

making trading decisions. By monitoring the items in Table 1, the trading bots must make

decisions. Humans need to manage this information cycle plus their emotions and avoid recency

bias that can cloud a trader’s mind and attach a higher probability to recent trades [18].

ML algorithms cannot entirely replace human intuition and decision-making heuristics. Many

Big Data concepts and methods may sound plausible and appealing but will not lead to viable

trading strategies. Thick data analysis adds qualitative qualities to quantitative [69] qualities.

Humans are good at assigning meaning to numbers but making meaningful qualitative assessments

of data is challenging for AI systems. Long-term profitable traders use thick data analysis to form

28

decision-making heuristics to keep up with the speed of the markets. Heuristics are mental

shortcuts for problem-solving and judgments based on a probability that eases the cognitive load

of making decisions. A heuristic means to find or to discover, and it’s a basic part of our

intelligence.

The TDH are different between the day and swing trading bots. Table 1 shows the TDH along

with their agent. The TDH are simpler for the swing trading bots. The bots purchase one share per

execution and have one execution per week. They use stop loss and profit orders for exits based

on a 1:8 risk-to-reward ratio for risk management. After numerous backtesting and optimization

experiments, it was discovered adding too many heuristic rules tended to limit the total number of

trades and reduce the overall profits. The swing trading bots are making their execution timing

decisions via DRL. They ignore the market noise and trade strictly based on the long-term price

action of the weekly time series data. This type of trading behavior can be observed in the

Appendix A results, the agents primarily buy on pullbacks and breakouts and sell when rallies lose

momentum.

The TDH considers technical/macroeconomics/sentiment indicators and adds the following

components to gain insights into the qualitative properties of stock trades along with the

quantitative indicators. The added components beyond conventional technical analysis are hyper-

parameter tuning and model optimization for the DRL agents. The DRL agents are making their

trade execution decisions based on trading patterns in the price data. These trade execution

decisions are then filtered based on the variables listed in Table 1. The raw DRL agents trade too

often so they need to be filtered by the TDH. The art comes from qualitative and quantitative

analysis of which trade rules or filters to add based on the model and data. There is a relationship

between trading profits, APR, and the number of trading rules. There is a sweet spot between

filtering and limiting trades based on rules and trading every opportunity the DRL agent identifies.

Too many rules result in fewer but higher percentage winner trades and lower APR, but a lack of

trading rules or heuristics results in many trades and lower APR. Limiting the DRL agent’s trades

based on proven trading heuristics that work over long periods of time with different stocks in

different market environments results in fewer trades, with higher win percentages and APR

rewards.

Professional traders that are consistently profitable in bull and bear markets use fundamental

knowledge combined with technical indicators, the influence of various events, and financial news.

29

Such information can be exploited to time trades with greater accuracy when combined with TDH.

Most systems get confused by market events because they cannot take in all the parameters in the

world outside the market. World events like when market volatility starts slowing down because

of the election, weather, or shifting sector momentum. Humans can gauge market sentiment and

what the competition is doing while these are difficult thought constructs for trading bots. Traders

combine all these layered heuristics into an internal hierarchical decision tree in their minds. They

combine this data with the ability to read the crowd based on experience into a sense of timing.

This execution timing problem is the focus of this research.

The bots combine thick data analysis with heuristics to gain an edge in the markets. Thick

data analysis combines quantitative and qualitative information together in a manner like what

humans do. With thick data analysis, we are attempting to look at the numerical data with a sense

of context. In the context of trading an example of thick data analysis would be calculating the 9-

period Exponential Moving Average (EMA) and comparing the relationship between the current

closing price and the 9-period EMA.

The 9-EMA measures the trend strength and velocity by the shape and slope of the curve. If

the price moves above the EMA after a pullback a trader could create a heuristic rule to buy if

these conditions are met. To take the example further one could calculate the 50-period EMA to

measure the longer-term trend and then compare the relationship between the current price 50-

EMA and 9-EMA one can use the concept of trend following and create another heuristic rule to

sell when the current price drops below the 9-EMA but stays above the 50-EMA. TDH represents

this concept of grouping together heuristic rules based on an expert trader’s intuition and

experience. For this research paper, we combined the following decision heuristics, risk

management, technical analysis, trend following strategies, momentum strategies, position-sizing,

neural network hyper-parameter tuning, model design, environment design, data-curation, volume

analysis, parameter backtesting, sector analysis, news analysis and being able to identify the best

catalyst stocks. The distribution of tasks between the human and bot agents is shown in Table 1.

3.3 Deep Q-Network with Experience Replay Algorithm
Common RL notations used in this manuscript are shown in Table 3. Mnih et al. (2013) [14]

developed the first standout DRL algorithm, the Deep Q-Network (DQN) algorithm, Hasselt et

al. (2016) [16] presented a double-Q estimator for value-based RL methods to decrease the

30

overestimated Q value, hence improve the agent’s training performance. Wang et al. (2015) [17]

improve the accuracy of Q value estimation by adopting two split networks, one for estimating

state value and the other one for estimating its action value. In contrast to modifying networks’

structure, Schaul et al. (2015) [15] investigated the prioritized experience replay (PER) method to

make experience replay more efficient and effective, this prioritization can lead to quick

convergence in the sparse reward environment [27].
Table 3. List of symbols.

Definition Notations

Learning rate α

Set of weights θ

Discount Factor γ

Epsilon greedy policy ϵ

Q-Function Q

State S

States s∈S

Action A

Actions a∈A

Reward R

Rewards r∈R

optimal strategy or policy π

time window size τ

The TDH-DQN bot uses the deep Q-network with the Experience Replay algorithm. DQN is

a commonly used model-free algorithm that uses an ANN. DQN is a value-based method that

combines DL with QL, which sets the learning objective to optimize the estimates of Q-value.

QL, the algorithm evaluates which action to take based on a Q-value (or action-value) function

that determines the value of being in a certain state and taking a certain action at that state. For

each state-action pair (s, a), this algorithm keeps track of a running average of the rewards, R,

which the agent gets upon leaving the state s with action a, plus the rewards it expects to earn

later. The TDH-DQN Trading Bot Architecture used for the Parts 2 and 3 analyses is shown in

Figure 2.

DL allows computational models that are composed of multiple processing layers to learn

representations of data with multiple levels of abstraction. DL discovers intricate structures in

31

large data sets by using the backpropagation algorithm to indicate how a machine should change

its internal parameters that are used to compute the representation in each layer from the

representation in the previous layer.

RL problems aim to solve actions that optimize the agent’s objective, given some observations

about the environment. The environment presents information about its state to the agent or bot,

assigns rewards for actions, and transitions the agent to new states, subject to probability

distributions the agent may or may not know. RL methods aim to learn from experience how to

take actions that achieve a long-term goal. To this end, the agent and the environment interact over

a sequence of discrete-time steps via the interface of actions, state observations, and rewards. The

main components of an RL system are agent, actions, environment, state, and reward. The agent

is the entity that performs actions. Actions are the things an agent can do within its environment.

The environment is the world in which the agent resides. The state is the current situation. The

reward is the immediate return sent by the environment to evaluate the last action by the bot.

Humans learn from positive or negative experiences that we experience in our environment

that we associate with our actions. Learning from experiences and the associated rewards or

punishments is the core idea behind RL. RL is an approach to training a machine to find the best

course of action through optimal policies that maximize rewards and minimize punishments. RL’s

main idea of maximizing the rewards aligns with algorithmic trading. RL is particularly suitable

for algorithmic trading because the concept of a return-maximizing bot in an uncertain, dynamic

environment has much in common with a trading strategy that interacts with the stock market. The

DRL bots learn through trial and error, they learn the optimal path of execution. RL algorithms

can learn the nuances and parameters within the price time-series data [69].

In RL, one is given a series of inputs and expected to predict y at each step. However, instead

of getting instantaneous feedback at each step, one needs to study different paths/sequences to

understand which one gives the optimal result. Some models may overfit the data. They perform

well on a backtest with historical data but get chopped up on out-of-sample data. The stability of

out-of-sample forecasts is a challenge often encountered with trading bot strategies. Variance-Bias

trade-off states that an out-of-sample forecast will deteriorate because of three factors. The first

issue to confront is in-sample forecast error, next model instability can be challenging, and finally

human’s inability to think in terms of bets. Thinking in terms of bets is a difficult concept for

humans to master as humans tend to underestimate the probability of random events. A skilled

32

trading bot developer must select a model that will find the optimal balance between in-sample

error and model variance.

DRL-based models determine rule-based policies for actions. This research combines DRL

with algorithmic trading into stock trading bots. Algorithmic trading involves the automation of

trading tasks. There are a lot of trading tasks that fall within this category such as risk management,

technical analysis, and general hard-coded trading rules. Here humans program the computer to

take care of all the actions that don’t vary between trading. These are the decisions outside the

domain of intuition, where the bot performs actions based on fixed sets of rules. Hard-coded

systems fall apart when the market regime changes and the trend changes direction or rate of

momentum. Strict algorithmic trading systems often experience sharp drawdowns during these

periods, and it takes an experienced trader’s intuition to decide to scale back or reverse a strategy

that has been working recently or over a larger time [70].

DRL systems can exceed human performance at many tasks but it’s not without fault.

Modeling a trader’s decision-making heuristics and intuition with computer systems is a difficult

task. Only a flexible learning system such as DRL can analyze time-series data for pattern

recognition and generalization like consistently profitable human traders. Traders adapt and last

for years in the market only after having adjusted to multiple bull and bear markets. The DRL

trading bots must also cope with the trader’s intuitive issue of deciding whether to try new actions

that may not be immediately optimal but longer-term could deliver the maximum reward.

Alternatively, the bot must decide if it should try new actions to find another optimal path to

rewards. The bot must also determine which step in the path was critical to the optimal policy.

DRL is considered most like human learning that results from taking actions in the real world and

observing the consequences. It differs from supervised learning because it optimizes the agent’s

behavior one trial-and-error experience at a time based on a scalar reward signal, rather than by

generalizing from correctly labeled, representative samples of the target concept. Moreover, RL

does not stop at making predictions. Instead, it takes an end-to-end perspective on goal-oriented

decision-making by including actions and their consequences [71].

Through experimental trials and feedback loops, DRL trading bots seek to learn the optimal

strategy. With the optimal strategy, the agent or bot is capable of adapting. These reward signals

are not given to the model immediately. Instead, they are returned because of a sequence of actions

that the agent makes. The interaction between the agent and the environment involves a sequence

33

of actions and observed rewards in time, t = 1, 2...T. During the process, the agent accumulates

knowledge about the environment, learns the optimal strategy, and makes decisions on which

action to take next to efficiently learn the best strategy. The state, action, and reward at time step

t can be written as St , At ...Rt , respectively. Thus, the interaction sequence is fully described by

one episode, with ending sequence ST : S1 , A1 , R2 , S2 , A2 ...AT.

In addition to the components of RL mentioned so far, there are three additional components

of RL that should be considered. These are the policy, value function (and Q-value), and the model

of the environment. A strategy or policy is an algorithm or in other words a set of rules that describe

how an agent makes its decisions. A policy is a function, usually denoted as π, that maps a state

(s) and an action (a): at =π(st). This means that an agent decides its action given its current state.

DRL Trading bots seek to learn an optimal strategy or policy (π). An optimal strategy or policy

tells the bot how to act to maximize return in every state. The goal of a DRL bot is to learn to

perform a task well in an environment. The environment emits a reward signal as the bot’s action

leads to a transition to a new state. The bot learns a value function that informs its judgment of the

available actions. The bot’s objective function processes the reward signal and translates the value

judgments into an optimal strategy.

The policy translates states into actions. At any point in time, the policy defines the agent’s

behavior. It maps any state the agent may encounter to one or several actions. Rewards

(accumulated percent returns APR in this case) in RL are learning from actions. The reward signal

is a single value that the environment sends to the agent at each time step. The agent’s objective

is to maximize the total APR reward received over time. APR rewards are the key input, and the

goal of making value estimates is to achieve more rewards. RL methods focus on learning accurate

values that enable good decisions while efficiently leveraging memories [72].

QL allows the algorithm some freedom to explore outside of its training data to find the best

policy for buying, selling, and holding stock. This is partially where RL’s advantages shine in the

interpretation of market data. Any given interval of market data is unique and therefore its training

data is unique, so there is a low probability that the training set will be entirely representative of

the testing data.

34

Figure 2. TDH-DQN Trading Bot Architecture.

3.4 Actor-Critic with Experience Replay Algorithm
Value-based methods find the policy by finding the best action value of a state, and

accompanying actions which are great for environments with discrete actions like algorithmic

trading, where the highest valued action is clearly separate from the next best action. In these

action spaces, value-based methods become unstable. Policy-based methods do not use a separate

value function but find the policy directly. They start with a policy function, which they then

improve, episode by episode, with policy gradient methods. Policy-based methods are applicable

to more domains than value-based methods. They work well with deep neural networks and

gradient learning; they are some of the most popular methods of deep reinforcement learning [73].

With Actor-Critic agents, the actor decides which action to take and the critic tells the actor

how good the action was and how it should adjust. various implementations of the off-policy were

35

tested including ACER, a DRL algorithm initially researched by Wang et al. (2017), [18], greatly

increasing the sample efficiency and decreasing the data correlation [74]. Also, Asynchronous

Methods by Mnih et al. (2016) [25]. Profitable results with AC methods were achieved. The author

would argue that the primary downside to these algorithms is they are slower to compute than the

DQN algorithms without substantially higher APR returns.

Sutton et al. (1998) [13], defined Actor–critic methods are Temporal Difference (TD) methods

that have a separate memory structure to explicitly represent the policy independent of the value

function. The policy structure is known as the actor because it is used to select actions, and the

estimated value function is known as the critic because it criticizes the actions made by the actor.

Learning is always on-policy: the critic must learn about and critique whatever policy is currently

being followed by the actor. The ACER trading Bot Architecture is shown in Figure 3.

Figure 3. TDH ACER Trading Bot Architecture.

36

ACER nearly matches the state-of-the-art performance of DQN with prioritized replay and

substantially outperforms A3C in terms of sample efficiency on both discrete and continuous

control domains. ACER capitalizes on deep neural networks, variance reduction techniques, the

off-policy Retrace algorithm by Munos et al., (2016) [75], parallel training of RL agents by Mnih

et al., (2016) [25], truncated importance sampling with bias correction, stochastic dueling network

architectures, and efficient trust region policy optimization Wang et al. (2017) [18].

Actor critic methods add a value network to the policy network, to achieve the benefits of

both approaches. To reduce variance, n-step temporal difference bootstrapping can be added, and

a baseline value can be subtracted so that we get the so-called advantage function (which subtracts

the value of the parent state from the action values of the future states, bringing their expected

value closer to zero). Well-known actor-critic methods are A3C, DDPG, TRPO, and PPO. A3C

features an asynchronous (parallel, distributed) implementation, DDPG is an actor-critic version

of DQN for continuous action spaces, TRPO and PPO use trust regions to achieve adaptive step

sizes in nonlinear spaces. Benchmark studies have shown that the performance of the actor-critic

algorithm is as good as or better than value-based methods [73,76]

3.5 Markov Decision Process
The foundation of RL is the Markov Decision Process (MDP). However, before talking

about it, one must formalize the simplest child of the Markov family, the discrete Markov Process.

In a discrete Markov Process, the system has many different states, which can be observed. The

state this system is in changes after each time step and forms a sequence of states, which is called

the Markov Chain. However, the state has a restriction on how it evolves, which is a Markov

Property: The future dynamics of the system must depend only on the current state, not the history

of the evolution of the states. In a Markov Decision Process. States are not directly observable,

but some observations based on the state are known. The observation space and state space may

or may not have an explicit bijection between them. An agent is taking actions based on the

observations, and the action changes of the underlying state of the environment, returning a

different observation and a reward. How state transits depend on the last state of the system and

the action of the agent, usually in a probabilistic way. Given a state-action pair, the environment

returns a possibly random reward to the agent. The agent’s goal is often to maximize the total

reward received, with future rewards discounted by a factor [13].

37

Exploration is preferable in that it allows the algorithm to venture outside the training data

space to find better relationships among data and transactions. In RL, the algorithm learns to react

to its environment and plan sequential steps toward a goal. A Markov decision process (MDP)

frames the agent-environment interaction as a sequential decision problem over a series of

discrete-time steps t =1, ..., T that constitute an episode [13].

The abstraction afforded by MDPs makes its application easily adaptable to many contexts.

The time steps can be at arbitrary intervals, and actions and states can take any form that can be

expressed numerically. The Markov property implies that the current state completely describes

the process, that is, the process has no memory. Information from past states adds no value when

trying to predict the process’s future.

MDPs proceed in the following fashion: at each step t, the agent observes the environment’s

state and selects an action, where S and A are the sets of states and actions, respectively. At the

next time step t+1, the agent receives a reward and transitions to state St+1. Over time, the MDP

gives rise to a trajectory S0, A0, R1, St1, A1, R1, ... that continues until the agent reaches a terminal

state and the episode ends. Due to the Markov property, these distributions only depend on the

previous state and action.

Rewards are typically discounted using a factor to reflect their time value. In the case of tasks

that are not episodic but continue indefinitely, a discount factor of just less than 1 is necessary to

avoid infinite rewards and ensure convergence. Therefore, the agent maximizes the discounted,

expected sum of future returns Rt, denoted as Gt:

3.6 DQN Trading Bots
RL differs from other types of ML in that it interacts with environments instead of datasets.

In conventional ML approaches, datasets are used for training the algorithms. RL environments

can be based on real-world scenarios, these environments can be large in scale with many different

parameters associated with them. Rewards are obtained from the environment. The feedback the

agent receives from its environment helps it to learn and take actions based on past success. Do

more of what does work and less of what doesn’t. The agent seeks rewards and moves away from

punishments to achieve its goal. Intelligent agents interact with known or unknown environments

to continuously learn and adapt to feedback.

38

 Markets behave very randomly based on the emotions of the participants. RL agents react

and can theoretically move with and follow the crowd while it’s working in a trend direction and

switch directions quickly if the crowd turns. The market is non-observable, in that each participant

is unknown to the others like poker as opposed to checkers where each participant can see both

inventories. The market is discrete in that each time step has only one choice up, down, or the

same for the current price.

Multiple agent interactions with the environment complicate determining transitions

between states, so the drawbacks must be considered with the benefits. Multi-agent approaches

use the non-deterministic approach because there is more ambiguity. There might be more than

one option to change or move to the next state. Mapping the environment and including all possible

scenarios for price movements throughout the course of the day is difficult with RL alone and

should be combined with a rule-based engine to limit the options the agent has to steer quickly to

the optimal solution. When applying RL to market making, a big limitation is exploration and

exploitation. This method is infeasible in trading because random exploration would rack up huge

fees in transaction costs and pay the spread price when exiting and entering with market orders.

The DQN uses an ANN to approximate Q-values; hence, the action value function is defined

as Q(s,a;θ). The deep QL algorithm approximates the Q-value function by learning a set of

weights, θ, of a multilayered DQN that maps states to action [72]. The TDH-DQN Trading Bot

Architecture used for the Part 2 analysis is shown in Figure 2.

The QL algorithm evaluates which action to take based on a Q-value function that determines

the value of being in a certain state and taking a certain action at that state. For each state-action

pair (s, a), this algorithm keeps track of a running average of the rewards, R, which the agent gets

upon leaving the state s with action a, plus the rewards it expects to earn later. Since the target

policy would act optimally, the bot takes the maximum of the Q-value estimates for the next state

[13].

The learning proceeds off-policy that is, the algorithm does not need to select actions based

on the policy that is implied by the value function alone. However, convergence requires that all

state-action pairs continue to be updated throughout the training process, and a straightforward

way to ensure that this occurs is to use an ϵ - greedy policy. In cases where the state and action

space are large, the optimal Q-value table quickly becomes computationally infeasible.

39

RL is unstable or divergent when a nonlinear function approximator such as a neural network

is used to represent Q. This instability comes from the correlations present in the sequence of

observations, the fact that small updates to Q may significantly change the policy of the agent and

the data distribution, and the correlations between Q and the target values.

This removes correlations in the observation sequence and smooths changes in the data

distribution. Iterative updates adjust Q towards target values that are only periodically updated,

further reducing correlations with the target. To address instability and divergence issues, the bot

uses ANNs to approximate Q-values. The bot uses a function with parameter θ to calculate Q-

values, and the Q-value function can be written as Q(s,a;θ).

The deep QL algorithm approximates the Q-values by learning a set of weights, θ, of a

multilayered deep Q-network that maps states to actions. The DQN algorithm aims to greatly

improve and stabilize the training procedure of QL through a couple of different methods [72].

The first is Experience replay [15]. Instead of running QL on state-action pairs as they occur

during simulation or actual experience, the algorithm stores the history of state, action, reward,

and next state transitions that are experienced by the agent in one large replay memory. This can

be referred to as a mini-batch of observations. During QL updates, samples are drawn at random

from the replay memory, and thus one sample could be used multiple times. Experience replay

improves data efficiency, removes correlations in the observation sequences, and smooths over

changes in the data distribution.

The second method [6] is to update Q and optimize towards target values that are only

periodically updated. The Q-network is cloned and kept frozen as the optimization targets every

hyperparameter sequential step. This modification makes the training more stable as it overcomes

short-term oscillations. To learn the network parameters, the algorithm applies gradient descent to

a loss function defined as the squared difference between the DQN’s estimate of the target and its

estimate of the Q-value of the current state-action pair, Q(s,a:θ). The loss function is shown in

Equation 1:

L (s, a; θi))2], (1)

The loss function is a mean squared error, (MSE) function, where (r + γ maxa′ Q(s’,a’; θt-1)),

represents the target value and Q[s,a:θi], represents the predicted value, θ are the weights of the

network, which are computed when the loss function is minimized. Both the target and the

40

current estimate depend on the set of weights, underlining the distinction from supervised

learning, in which targets are fixed prior to training [72].

The QL Steps used can be summarized as follows. At time step t, we start from state st and

pick an action according to the Q-values shown in Equation 2.

at = maxa Q(st, a), (2)

Apply an ϵ greedy approach that selects an action randomly with a probability of ϵ or

otherwise chooses the best action according to the Q-value function. This ensures the exploration

of new actions in each state while also exploiting the learning experience. With action at, we

observe reward Rt+1 and get into the next state St+1. Update the action-value function as shown in

Equation (3):

Q(St, At) ← Q(Stt, Att a Q(St+1, a) − Q(St, At)], (3)

Finally increment the time step, t = t+1, and repeat the steps. Keep iterating until converging

to the optimal Q-value. The TDH-DQN Trading Bot Architecture used for the Part 2 and 3

analyses is shown in Figure 2.

The Double DQN agents’ max operation in Q-learning uses the same values both to select and

evaluate an action. This makes it more likely to select overestimated values in case of inaccuracies

or noise, resulting in over-optimistic value estimates. Therefore, the DQN algorithm induces an

upward bias. The double estimator method uses two estimates for each variable, which allows for

the selection of an estimator and its value to be uncoupled Hasselt et al. (2010) [77]. Thus,

regardless of whether errors in the estimated Q-values are due to stochasticity in the environment,

function approximation, non-stationarity, or any other source, this allows for the removal of the

positive bias in estimating the action values. In Double DQN, or DDQN by Van Hasselt et al.,

(2016) [16], the target value is replaced which leads to less overestimation of the Q-learning

values, as well as improved stability, hence improved performance. As compared to DQN, the

target network with weights is used for the evaluation of the current greedy action. Note that the

policy is still chosen according to the values obtained by the current weights θ.

In the Dueling network architecture by Wang et al., (2015) [17], the neural network

architecture decouples the value and advantage function which leads to improved performance.

41

The stream provides an estimate of the value function, while the other stream produces an

estimate of the advantage function. The learning update is done as in DQN, and it is only the

structure of the neural network that is modified. In fact, even though it loses the original

semantics of V and A, a slightly different approach is preferred in practice because it increases

the stability of the optimization. In that case, the advantages only need to change as fast as the

mean, which appears to work better in practice [68,78].

3.7 Simulation-Critic Methods

Simulation-critic methods are a good way to study and analyze trading bots. Such techniques

use simulation to learn a value function, which can then be used to update the trading policy

parameters. The bots operate starting at the market open and seek to follow the trend in the long,

and short timeframes. It is the main idea behind all breakout or trend-following trading systems.

Such bots perform differently when they go long or short depending on the long-term trend. Day

trading and swing trading bots also perform differently. In this research, we will explore two

completely different trading environments with the day trading bots in Part 1 and the swing trading

bots in Part 2 of the analysis.

Trained trading models that perform well out of sample are the core requirement for effective

DRL trading bots. DRL gives computers the ability to learn from their experiences and improve

their performance as they gain more experience. The trading bots create models to uncover the

relationships between the price inputs and the trading decisions outputs when given historical price

data as input. Next, the bots forecast outcomes out of sample on the test data. If the results are

satisfactory the bots can be deployed into the markets with the trained models to execute live

trades. This feature makes DRL particularly attractive as an underlying approach to building

algorithmic trading bots.

The interactive and online nature of DRL makes it particularly well-suited to the trading

domain. DRL models goal-directed learning by an agent that interacts with a typically stochastic

environment that the agent has incomplete information about. DRL aims to automate how the

agent makes decisions to achieve a long-term objective by learning the value of states and actions

from a reward signal. The goal is to derive a policy that encodes behavioral rules and maps states

to actions.

42

3.8 Performance Metric - Accumulated Percent Returns (APR)
The performance metric used is Accumulated Percent Returns (APR), which are shown

in Equation 4. Compounded Percent Returns (CPR) is used interchangeably in this article to

mean the same as APR. APR is the difference between the price the stock was purchased at and

the current stock price divided by the bought price. This value is multiplied by 100 to convert the

value to percent returns.

 Accumulated Percent Return = [(Current Price – Bought Price) / Bought Price] ∗ 100 (4)

3.9 Catalysts Reasons for Stock Momentum
Catalyst (info. which increases directional momentum) stocks have a reason to move, the

catalysts reasons human traders look for are, stock buybacks, new debt offerings, earnings

announcements, new prescription drugs or vaccine approvals, mergers or acquisitions, product

releases, corporate Restructuring, and stock splits. Financial markets with the most opportunities

and lowest fees are an essential element to the bot’s success. For this reason, NASDAQ and NYSE

listed US stocks that show up in a custom scan for catalyst stocks. These stocks can be found in

the Most Active Stocks Market Scan. These catalyst stocks were chosen as the focus of this

research for day trading bots.

The scan identified stocks with a volume greater than 350 thousand shares traded before 9:30

am EST in the premarket session. The market-wide scanner only shows stocks above one billion

market capitalization, over 10 dollars per share with a high-volume rate of more than one million

shares per three-minute bar. The scan catches all the daily catalyst stocks traders are looking at

that day. Most of the time, the catalyst is from the news that day. Often, the same stock can show

up for the following few weeks due to the same catalyst if the stock’s story fundamentally changes

the way investors view it. Time-Series

Human traders are looking for stocks with bars that interconnect and do not have big gaps in

the 5 min timeframe. Stocks that have recent news from the last week with a strong narrative

around them. These are the stocks showing up on other trader’s watchlists observed thru chat

rooms, message boards, and YouTube live streams each morning starting at 4:30 am until the

market opens at 9:30 am. Often these stocks will have gaped up or down by more than 20 percent,

with smooth price action that flows with higher highs and lower lows. Stocks with close spreads

between bids and asks with lots of liquidity on the level 2 screen. Level 2 is a subscription-based

43

service that provides real-time access to the NASDAQ and NYSE order book. It is intended to

display market depth and momentum to traders and investors. Human traders are looking for stocks

that have lots of liquidity well above and below the market price at price levels identified on the

chart at pivot points where price reversed direction multiple times in the past.

The eight different python RL bots shown in Table 4.1, analyze five datasets, including the

five-second, five-minute, daily, weekly, and monthly time series bars. The bots employ the thick

data risk parameters shown in Table 4. The DRL bots employ risk management parameters

including time of day, holding time, stop loss, and profit target, to frame the rules of their

environment. The bot’s environment is further limited to scanning the entire market autonomously,

trading only the best catalyst stocks of the day with high relative volume. The bots trade in real-

time with paper trades and historical data sent back and forth from a local Jupyter python notebook

and the stockbroker, in this case, Interactive Brokers (IB). To connect the bots to a broker, IB

was used which offers a Python Application Programming Interface (API) to develop

algorithmic trading bots connected to real-time data.

The bots focus entirely on the catalyst stocks breaking out from a trend with substantial

relative volume and liquidity. The bots limit overnight gaping up or down risk in price movement

by only focusing on intraday price action. Furthermore, the bots exit their positions at the end of

the trading day and do not hold positions overnight. The bots choose stocks to trade from the high

3 min volume market scanner for NYSE and Nasdaq stocks in real-time starting at 9:30 AM eastern

when the markets open and fully exit positions at 11:00 AM. The seven catalyst stocks chosen for

Part 1a analysis are shown in Table 4.

Table 4. Catalyst Momentum Stocks in Part 1a and 1b Analysis for Day Trading Bots, 5-second timeframe.

Company Exchange Date Bars(5s,1D,1W) Trend Catalyst

Snap Inc. NYSE 2021-07-23 1800,53,28 up Earnings beat

Alibaba Group Holding Limited NYSE 2021-10-04 1800,53,29 down China News

NIO Inc. NYSE 2021-10-04 1800,53,29 down Analyst upgrade

Advanced Micro Devices, Inc. Nasdaq 2021-10-13 1800,53,29 up New Product

Plug Power Inc. Nasdaq 2021-10-13 1800,53,29 up Hot Sector

SoFi Technologies, Inc. Nasdaq 2021-10-18 1800,53,19 up Analyst upgrade

FuelCell Energy, Inc. Nasdaq 2021-10-18 1800,53,29 up Hot Sector

To summarize, the day trading bots function in the following way. First, the bot scans for

stocks in its list of pre-approved symbols. Next, the bot immediately downloads the most up-to-

44

date real-time historical data and saves the datasets locally. The bots calculate the 50 EMA for the

five-second bars dataset and the 9 SMA’s for the daily, time-series datasets. Figure 4 shows an

example from the results for NIO with the 9 SMA shown in green. For that day, 2021-10-04, NIO

provides a bearish example of the type of setup the bot is looking for. It can be observed in Figure

2 shows that the price has moved below the daily moving average so the agents will be shorting

the stock along with the trend for that day.

The bots decide to be bullish or bearish only for that day based on the relationship of the

current price vs. the EMA’s for Part 1. For Part 2 the bots have a bullish bias due to the steadily

rising bull market starting in 2009. Short selling is basically opening a position by selling it first,

assuming in the future one can buy it back at a cheaper price. One is borrowing the stock from the

broker and selling it in the market. Therefore, short selling is betting for the price to drop. Often

the best catalyst stocks are hardly available for short selling which makes backtesting a long/short

strategy difficult.

Figure 4. EMA Trend Strength, NIO Daily Price vs Time Chart for Part 1b. 9 SMA shown in green.

Choosing which environment to interact with gives the bots an edge because, in a

constantly evolving market, they operate under similar market conditions all the time. The bots

45

focus on trading the hot stocks of the day with massive volume, which often completely ignore

the broader market correlations and trends independently. Stocks with close spreads between bids

and asks with lots of liquidity on the level 2 screen. The bots are looking for stocks that have

enormous amounts of liquidity well above and below the market price at price levels identified on

the chart as swing points where prices reversed direction multiple times in the past. These are the

elements a skilled trader does after years of experience in the markets, after having developed a

keen sense of timing and ability to read the tape and markets which makes thick data analysis of

financial markets difficult.

Table 4.1. Part 1a: Deep RL Trading Bot Algorithm Abbreviations.

Trading Bot Algorithm Abbreviation

Policy Gradient PG

Q-Learning DQN

Double Q-Learning DQL

Actor-Critic AC

Curiosity Q-learning CQN

Recurrent Curiosity Q-Learning RCQL

Dual Actor-Critic DAC

Dual Curiosity Q-Learning DCQL

Buy and Hold B&H

Sell and Hold S&H

Timing is especially important, often the best entries must be lightning fast as the price moves

below an important level and then rises above the bot’s need to have a buy-stop order in place

waiting at the market price. Choosing these correct price levels and timing the entries and exits is

a crucial part of TDH. Other traders and bots will have their stops at these levels and prices can

move through the level and continue to trend in a breakout pattern. If you do not get filled when

the price goes through the level, you must risk more with a higher entry price. Often price will

retest and squeeze your entry close to its stop limit as it trends in ABCD patterns. This is so market

makers can create liquidity by running trader’s stops.

The short-term day trading bots seek to trade the hottest catalyst stocks during the market

opening when the volume is at its highest, and there is lots of liquidity. The bots download quotes,

calculate decisions, and execute in about a minute to react to the speed of markets. At the end of

each minute, the bot decides to buy, short, exit, or hold positions. Choosing which catalyst stock,

46

the bots trade is an important part of the TDH. In the author’s experience, bots will have limited

success trading general stocks without a catalyst that just moves with the market.

3.10 Part 1 - DRL Day Trading Bots
Part 1 has two questions to answer. In Part 1a, we first determine the best DRL algorithm for

day trading using the five-second timeframe time-series data with seven catalyst stocks. Secondly,

in Part 1b, we determine if adding TDH to DRL increases or decreases APR performance on the

one-minute timeframe time-series data with the same seven catalyst stocks from Part 1a. The

starting python code base for the basic implementation of the DRL algorithms for Part 1 can be

found in the following public code repositories [79] [80].

In the day trading bot analysis, the bots operate at the market open and seek to follow the

trend. The goal of this part is to compare the performance of the different DRL algorithms against

each other and for this reason we train and test the DRL bots on the same data and don’t split the

data between testing and training datasets. Since we are comparing the algorithms to each other

we are trying to determine which algorithm strikes a good balance of simplicity, computation

speed, and ultimately the algorithm’s ability to fit the curve and learn that specific price action. It

is the main idea behind all trading systems, at times the market will trend, and that fundamental

element of markets will always be timeless. The bot seeks to run with the crowd of bulls or bears,

whichever is stronger, for as long as they have the volume and momentum.

For the Part 1 analysis, it was found that the best way to test the system was to use real-time

data as it came in and to train and run the bots as fast as they could calculate. This is due to the

nature of day trading and the way the market trades through the course of the day. Catalyst stocks

behave differently than their historical data as their volume rate increases. Using historical data is

practically useless because the stock doesn't behave like itself after the catalyst event occurs. It

would make more sense to use previous historical data from other similar catalyst stocks. Training

the bots on historical data from other stocks on the previous day’s data didn’t achieve good results

in this research. It's difficult to find catalyst stocks that behave similarly even with similar events

especially when the data needs to be normalized first due to differences in stock price and total

available market float for that stock. For this reason, we didn’t partition the data such as 70 percent

for testing and 30 percent for training for the day trading agents. The agents were trained and tested

in real-time as the day progresses, so the agents start with limited data but as more data comes in

throughout the day the bots continually re-evaluate trading decisions to try to come up with optimal

47

solutions. Once the agents identify a trade execution the system can then execute an order. The

agents are continually trying to discover the best sequence of trade execution decisions throughout

the day while still managing risk. For Part 2 of the analysis, the historical data better reflects the

behavior of the stock and can be used to train the agents. The data is split 70 percent for training

and 30 percent reserved for testing in parts 2 and 3.
Table 5. Part 1 Day Trading Bot Risk Parameters.

Parameter Setting Value

Holding Time Holding Time = 30 minutes is the maximum holding time

First Trade 5 minutes into the trading day at 9:35 am EST

Last Trade 55 one-minute bars into the trading day or 10:25 am EST

Time between Trades 5 minutes

Stop Loss 3.0 percent

Profit Target 4.0 percent

Table 6. Part 1 DRL Agent Class Comparison

DRL
Algorithm act get_state replay buy train memorize construct

memories assign select
action predict

get
predicted

action

DQN x x x x x
Duel DQN x x x x x
Recurrent

DQN x x x x x

Double
DQN x x x x x x x x x

Double
Recurrent

DQN
 x x x x x x x

Double
Duel DQN x x x x x x x x x

Double
Duel

Recurrent
DQN

 x x x x x x x

Curiosity
DQN x x x x x x x x

Recurrent
Curiosity

DQN
 x x x x x

Dual
Curiosity

DQN
 x x x x x

AC x x x x x x x

Dual AC x x x x x x x

Recurrent
AC x x x x x x x

Duel
Recurrent

AC
 x x x x x x x

48

The risk management parameters are shown in Table 5, while the DRL agents class

comparison and Hyperparameter setting are shown in Tables 6 and 6.1. The bots were tested during

the market opening when the volume is at its highest and there is lots of liquidity. The bots hold

for a brief time and exit before 11 am EST when volume slows down. At the end of each timeframe

tick duration, the bot decides to buy, sell, or hold. Due to competing institutional algorithmic

trading bots, most of the stocks will trend with the overall market unless they have a reason not to.

So, if the market is moving up, most stocks will be moving up and it’s time for the bot to be bullish.

If the overall market goes down, the prices of most stocks will also go down. Every day, there are

always one or two stocks that will move independently of the market because it has a catalyst. The

THD-DQN bots seek to be trading stocks that are moving because they have a fundamental reason

to move and are not just moving with the overall market correlations [4].

Table 6.1. DRL Algorithm Hyperparameters for Part 1, Day Trading Bots.

DRL Parameters gamma epsilon
Min

Epsilon
epsilon_decay

Batch

size

Window

Size

Learning

Rate

Layer

Size
Epochs

DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Duel DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double Recurrent

DQN
0.99 1 0.01 0.995 86 85 0.001 8 10

Double Duel DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double Duel

Recurrent DQN
0.99 1 0.01 0.995 86 85 0.001 8 10

Curiosity DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent Curiosity

DQN
0.99 1 0.01 0.995 86 85 0.001 8 10

Dual Curiosity

DQN
0.99 1 0.01 0.995 86 85 0.001 8 10

AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Dual AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Duel Recurrent AC 0.99 1 0.01 0.995 86 85 0.001 8 10

49

3.11 Part 2 - Swing Trading TDH-DQN Bot
In Part 2 we are comparing the TDH-DQN trading bots performance against three algorithmic

trading strategies and the buy and hold benchmarks for 10 different catalyst growth stocks that

consistently show up on the daily pre-market morning scans discussed in Part 1 the day trading

bot analysis.

The TDH-DQN trading bot is constructed with Python, Numpy, Pandas, Matplotlib,

Tensorflow and Keras in Jupyter notebooks. The function model for the TDH-DQN bot is a DL

model that maps the states to actions. This function takes in the state of the environment and returns

a Q-value table or a policy that refers to a probability distribution over actions. This function is

built using the Keras Python library. The experience replay is the key function, where the neural

network is trained based on the observed experience. This function implements the Experience

replay mechanism. Experience replay stores a history of state, action, reward, and next state

transitions that are experienced by the agent. It takes a minibatch of the observations (replay

memory) as an input and updates the DL-based QL model weights by minimizing the loss function.

The epsilon greedy approach implemented in this function prevents overfitting.

Experience replay was implemented with the following steps. First, we prepare the replay

buffer memory, which is the set of observations used for training. New experiences are added to

the replay buffer memory using a for loop. Next, we loop across all the observations of state,

action, reward, and next state transitions in the mini-batch. The target variable for the Q-table is

updated based on the Bellman equation. The update happens if the current state is the terminal

state or the end of the episode. This is represented by the variable done and is defined further in

the training function. If it is not done, the target is set to reward. Next, we predict the Q-value of

the next state using a DL model. The Q-value of this state for the action in the current replay buffer

is set to the target. The DL model weights are updated by using the models fit function. The epsilon

greedy approach is implemented which selects an action randomly with a probability of ε or the

best action, according to the Q-value function, with probability 1–ε [72].

For the Part 2 of the analysis, we will look at swing trading strategies with a longer weekly

timeframe as the primary input to the TDH-DQN bot. The dataset for each of the ten stocks goes

back ten years and is shown in Table 7. The data is split 70 percent for training and 30 percent

reserved for testing. We train the THD-DQN bot for five episodes to observe the trades, inventory,

and profits the trading bots take. This bot is long-only and has few rules to limit its trades. The bot

50

is free to buy as many shares as possible, one at a time each week as new data comes in and exits

its entire position at the end of the dataset.

Table 13 shows the APR for five different strategies. The buy and hold (BH) strategy simply

buys on the first bar in the dataset and sells on the last bar. The bots only take long positions due

to the upwards trend direction over the last ten years. The TDH-DQN bot is limited to buying or

selling one share at a time and closes out its entire position at the end of the dataset. The pivot

reversal bot buys when a pivot point reversal occurs with a strength of two bars to the left on the

chart. The Moving Average Convergence Divergence, (MACD) bot triggers entries when the

MACD line crosses up above the zero line and signifies trend reversals after pullbacks. Finally,

the Outside Bar bot executes trade entries when the outside bar engulfs the inside bar. The outside

bar is another good trend continuation signal after a pullback that works well in a bull market. The

swing trading bots all use a 1:8 risk-to-reward ratio for risk management implemented with stop

execution orders.

Table 7. Catalyst Growth Stocks in Part 2 Analysis for Weekly Swing Trading Bots.

Stock Company Exchange Start Date End Date Test Bars Train Bars Total Bars

TSLA Tesla, Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AAPL Apple Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AMD Advanced Micro Devices, Inc. Nasdaq 2015-01-02 2022-03-25 264 114 378

NVDA NVIDIA Corporation Nasdaq 2012-03-30 2022-03-25 365 157 522

FB Meta Platforms, Inc. Nasdaq 2012-05-18 2022-03-25 360 155 515

MSFT Microsoft Corporation Nasdaq 2012-03-30 2022-03-25 365 157 522

AMZN Amazon.com, Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

QQQ Invesco QQQ Trust Nasdaq 2012-03-30 2022-03-25 365 157 522

PLUG Plug Power Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AMC Entertainment Holdings, Inc. NYSE 2013-12-20 2022-03-25 302 130 432

3.12 Benchmark Strategies
Buy and Hold (B&H) is a classical benchmark, especially for a bull market; thus, the strategy

simply buys the stock and holds it until the end of the testing period to provide a baseline profit

measure. For a comparison metric, three simple algorithmic trading strategies were chosen that

had excellent performance buying pullbacks in a bull market to compare the TDH-DQN bot

against. These are simple algorithmic trading strategies written in C# code with proven

performance executed in the Multicharts.Net platform [81].

51

Multicharts.Net Pivot Reversal LE Strategy Pivot Reversal LE places a long entry Stop order

on the High of the next bar when a breakout of the High Pivot point occurs. Pivot High point is

identified when the high price of the bar is above the high prices of a number of previous and

subsequent bars (specified in Strength input). When a new Pivot High point is confirmed, an order

is placed. This signal generates a long entry only. Inputs Strength (2) - number of lower highs that

must be on each side of the Pivot High point. As an example of the Pivot Reversal strategy, the

results from Part 2 for NVDA are shown in Figure 5.

Figure 5. Price vs. Time Chart, Part 2: NVDA, Pivot Reversal LE Strategy Orders.

Multicharts.Net MACD LE Strategy Moving average convergence divergence (MACD) is a trend-

following momentum indicator that shows the relationship between two moving averages of a

security’s price. The MACD is calculated by subtracting the 26-period exponential moving

average (EMA) from the 12-period EMA. MACD can be used to identify aspects of a security’s

overall trend. The MACD will be over zero when the two exponential averages are bullish and

under zero when the two exponential averages are bearish. The MACD LE signal generates a buy

order for the open of the next bar when the MACD crosses above the exponential average of the

MACD. The MACD LE generates long entry orders only. Inputs: FastLength sets the number of

52

bars used to calculate the fast exponential average, 12 by default. SlowLength sets the number of

bars used to calculate the slow exponential average, 26 by default. MACDLength sets the number

of bars used to calculate the MACD exponential average, 9 by default. As an example of the

strategy’s performance, the results for the MACD LE strategy for TSLA are shown in Figure 6.

Table 13 shows the MACD LE strategy earned an 814 APR for TSLA on the weekly timeframe.

Figure 6. Price vs. Time Chart, Part 2: TSLA, MACD LE Strategy Orders.

Multicharts.Net Outside Bar LE Strategy Outside Bar LE (Long Entry) places a long entry order

next bar if the current is an outside bar (the bar’s Low is less than the previous Low, High is

greater than the previous High) the Close is greater than the Open. An example of the Outside

Bar Strategy for AAPL is shown in Figure 7, where the strategy earned 864 APR as shown in

Table 13 of the Part 2 results

53

Figure 7. Price vs. Time Chart, Part 2: AAPL, Outside Bar LE Strategy Orders.

3.13 Part 3 - TDH-DQN Trading Bot Case Study
For the final Part 3 of the analysis, we look at a case study for sample data created with a

sinusoidal mathematical function. The time-series data is composed of 100 values and is split with

the same 70/30 split as the second part of deep QL bots. In the results section, we can observe the

training episodes of the bots to gain a better understanding of the methodology the bots take as

they explore and train for optimal profit interaction with the environment.

Table 8, shows the TDH-DQN Bots hyperparameter setting as well as the Part 1 and 2 model

settings. There was a fair bit of experimentation required to arrive at these parameters and changing

any of these effects parameters affects the model’s outcome. In Table 9, the ANN architecture with

details on the 4 neural network layers, number of nodes, activation functions, and the total trainable

parameter’s value of 6915 for the Q Network can be observed.

54

Table 8. TDH-DQN Trading Bot hyperparameters and model settings in Parts 2 and 3.

Parameter Setting Value

gamma 0.99

epsilon 1.0

epsilon min 0.01

epsilon decay 0.995

Loss Function MSE

optimizer Adam

window size 70

batch size 69

episodes 10

Learning Rate 0.001

Training/Testing split 70/30 percent

Table 9. TDH-DQN Bot Q-Network Parameters for the Sequential Keras Model, in Parts 2 and 3.

Layer (type) Output Shape Param Activation

dense (Dense) (None, 64) 4544 relu

dense1(Dense) (None, 32) 2080 relu

dense2(Dense) (None, 8) 264 relu

dense3(Dense) (None, 3) 27 linear

Total params: 6,915

Trainable params: 6,915

Non-trainable params: 0

The Part 3 case study of time-series data created and used as test and train data is shown in Figures

11-18. In these figures, the different training episodes for the trading bot can be observed. The

dataset consists of 100 values split 70:30 percent for training and testing. The data was generated

with the following mathematical function as shown in Equation (5).

 f 0.01, (5)

This is an ideal training dataset scenario where the bot can learn and execute a winning

algorithm easily compared to noisy stock market time-series data.

3.14 TDH-DQN Augmented AI Pseudo Code
1. Analyze the market with real-time high volume percentage gainers and losers watchlists

during the pre-market session starting at 4 am EST. until 9:30 am EST.

2. Human trader builds the pre-defined list of stocks based on high relative volume, news,

and technical analysis, to identify the reason for the stock to be added to the pre-defined

55

catalyst stocks list. The augmented AI bot Network architecture can be observed in Figure

8.

3. Human trader uses Multicharts.Net for parameter optimization, backtesting, fib-analysis,

and price levels identification based on previous historical pivot points on daily, weekly,

and monthly timeframes.

4. Create policies to maximize the APR for the pre-approved catalyst stocks by training and

testing the model every time series increment (5 sec, 1 min, 5 min, 1 hr., daily, weekly,

monthly) as real-time data comes in.

5. Load python packages.

6. Load datasets.

7. Explore data with technical analysis of multi-timeframe moving averages.

8. Data analysis to determine price levels.

9. Train-test split 70% of the dataset for modeling and 30% for testing.

10. DRL loop until batch complete.

a. Get state

b. Apply the best action

c. Get Reward

d. Get the next state

e. Add to memory

f. Batch complete = yes

g. Move to the Replay buffer function

11. Run replay buffer function.

12. Qt = Updated Bellman equation

13. Get target = Qt

14. Calculate QB=1, Qs=2, QH=0 and compare to QL tables Q-predicted and Q-target.

15. Update the Q-function by minimizing the MSE between the Q-predicted and the Q-target.

16. Fit ANN.

17. Plot buy and sell actions and total APR for each episode of the training phase.

18. Repeat until the specified number of epochs is complete.

19. Test the data.

56

20. Tune the model’s Gamma, Epsilon, Episodes size, batch size, window size, and no. of

layers and nodes of the ANN if required.

21. Repeat until APR > 5 percent for both training and test data.

22. If the time is greater than 9:30 am EST. than execute live trades instead of testing.

23. Execute live orders when stock matches high volume rate market scanner and pre-defined

stock watchlist and with a high-volume rate of more than one million shares per three-

minute bar.

24. Analyze real-time market scanners and compare them to a pre-defined watchlist.

25. Manage risk with profit targets and stop loss orders and exit position at end of the day, or

after a pre-determined number of bars.

26. Use TDH hard-coded trading rules based on time of day, risk, volume, technical analysis

of multi-timeframe EMA’s, and price levels to filter the trade execution orders created by

the DRL agent.

27. Repeat downloading of new data, backtest for parameter optimization.

28. Train the model and execute new orders generated by the DQN bot and filtered by the

TDH hard-coded rules and human trader if required.

29. Repeat at each primary time series interval until 4 pm EST. when the market closes.

57

3.15 TDH-DQN Augmented AI bot Network Architecture

Figure 8. TDH-DQN Augmented AI bot Network Architecture

58

Chapter 4: Results
Although this research examines 15 DRL algorithms the focus is on the DQN algorithm along

with adding the TDH. For Part 1, as described in Section 3.10, we explored the day trading bots

with the same TDH but different DRL algorithms performance comparisons in Part 1a. We then

went on to explore the different DRL algorithms with and without TDH in Part 1b where the

results can be shown in Section 4.1. In Parts 2, and 3 or Sections 3.11 and 3.12 respectively we

analyze the TDH-DQN swing trading bot compared to three benchmark algorithmic trading

strategies identified in Section 3.12. Parts 2 and 3 results can be observed in Sections 4.2 and 4.3.

In Part 1 the TDH is the same for all algorithm’s tested. The agent’s responsibilities can be

observed in Table 1. The catalyst stocks traded in Part 1 are shown in Table 4. The trend is decided

by the price vs. long-term moving averages relationship as shown in Figures 2 and 3. Table 4

shows the risk management parameters for Part 1. Further details including DRL algorithms can

be observed in Table 4.1. The APR performance comparison results between the different DRL

algorithms for Part 1a can be observed in Table 10. The graph for NIO can be observed where the

DQN agent makes four short trades combined creating a 2.89 APR. In Part 1b, results are shown

in Table 12, the experiment compares 15 different DRL architectures APR performance with and

without the TDH. The results in Table 12 show the DQN DRL architecture performed the best,

and for this reason, the DQN architecture was selected as the basis for Parts 2 and 3 swing trading

bot analysis.

For Part 2, Table 13 shows the APR comparison of the swing trading TDH-DQN trading bot

vs. the different algorithmic trading benchmark strategies. In Figure 10 the CPR vs. trades for the

TDH-DQN swing bot can be observed. If we look at the FB example, we can see the TDH-DQN

bot experienced a sharp drawdown around the 35th trade. The cause of this drawdown can be

observed in Appendix A wherein in Figure A5 we observe the price action over the test data time

series bars for FB (now called META). At bar 130 negative news comes out and the trend sharply

reverses then around bar 145 earnings are released and the price gaps lower in the aftermarket

session. The bot cannot execute stop-loss orders outside regular market hours, so the bot executes

when the market opens with a big loss. This is the risk with swing trading bots, and an added risk

not encountered by the day trading bots, as news isn’t usually released during the market opening

59

session. The swing trading bot makes one execution per bar, and it exits the remainder of its

position at the end of the test session.

The TDH-DQN bot’s APR performance is compared against different DRL architectures and

with and without TDH in Part 1. In Part 2, with Table 13 we show how the swing trading bots

outperformed/underperformed the benchmark strategies. Here we can compare the APR for the

TDH-DQN bot vs. a simple buy and hold strategy, and three Multicharts.Net algorithmic trading

strategies. The TDH-DQN bot outperformed the BH strategy (average APR equals 287) in all 10

cases with the results of the TDH-DQN bot shown in Figure 10. The TDH-DQN agents outperform

all the benchmark strategies with an average APR of 1115, except for the Pivot Reversal trading

strategy. The Pivot Reversal achieved an average APR of 1715. The MACD LE and Outside bar

trading strategies results show an average APR of 455 and 518 respectively. It can be noted all the

trading strategies outperform the BH strategy.

For Part 3 the TDH-DQN trading bot from Part 2 was tested on an idealized ascending sign

wave price pattern. This test was used to determine how well the bot learns to predict the optimal

order timing execution. The results can be observed in Figure 19 where the trades over time can

be observed. In Figure 20 the reader can observe the CRP vs. trades and see how the profits vary

over trades. The TDH-DQN bot achieved a 148.28 CPR on the test data. Readers are encouraged

to generate their own data with Equation 5 or download the time series data from the publicly

available dataset (link shown in the Data Availability Statement section) to test their own DRL

trading bot implementations on idealized noise-free data.

4.1 Part 1 - TDH-DQN Day Trading Bot Performance Results
In Part 1a of the research, we looked at the performance of 10 different trading bots in a day

trading timeframe environment. The bots were tested on seven catalyst stocks identified by TDH

and augmented human trading intuition. The average APR is very similar between the different

RL algorithms. Changing the different algorithms did not improve the performance notably. The

author argues it is most important to pick a simple RL algorithm and get to know its nuances well

and focus more on model-building to achieve the best performance, rather than increasing the

complexity of the RL architecture. In Part 1b, the performance of the bots was tested with and

without TDH to discover that DRL agents had higher APR with the TDH when trading with the

one-minute time-series dataset environment.

60

The day trading bots show profitable APR results as shown in Table 10. The bot only trades

one share at a time and makes quick trades based on the five-second charts. Table 4.1 shows the

DRL bots tested, and Table 4 shows the stocks tested in the Part 1 day trading section. The date

the bot traded the catalyst stock is shown as well as the reason identified that created the catalyst.

The computing times for the different RL bots are shown in Table 11. The Policy Gradient (PG)

bot was the quickest to compute with an average time of 5.3 seconds while the Recurrent

Curiosity Q-Learning (RCOL) bot was the slowest to compute with an average time of 79.6

seconds. The QL bot architecture was selected based on its complexity, performance, and

computation time relative to the other DRL agent architectures explored. Actor critic was found to

be much slower to compute and without a big APR performance gain, DQN was chosen for Parts

2 and 3 for its computation speed plus APR performance.
Table 10. TDH + DRL Algorithm comparison for Part 1a 5-sec Day Trading Bots:

Stock PG DQN DQL AC CQN RCQL DAC DCQL B&H S&H

SNAP 1.36 2.09 1.39 1.54 1.09 1.43 1.05 1.27 0.44 0

BABA 0.54 1.08 1.82 1.21 1.78 1.54 1.94 1.79 -2 1.99

NIO 2.9 2.89 2.6 2.55 2.53 2.57 2.51 2.54 -4 4

AMD 1.96 2.11 2.26 2.31 2.3 1.29 2.13 2.26 2.53 -2.5

PLUG 3.25 3.75 2.81 3.24 3.86 2.63 2.68 2.84 4.37 -4.4

SOFI 4.9 5.54 4.85 4.56 5.69 5.29 5.49 5.44 6.47 -6.5

FCEL 3.88 1.04 4.71 4.39 4.58 3.19 3.55 3.64 11.9 -12

AVG. 2.68 2.64 2.92 2.83 3.12 2.56 2.76 2.83 2.82 -2.8

After numerous training and testing with different markets, the author argues some stock

environments need to be avoided. Specifically, stocks that are not trending enough to break out

into profit before hitting a percent change stop or time stop are required for proper risk

management. These general market stocks that lack any substantial relative volume move with the

overall random noise in the market. Lack of volatility makes it challenging to gain an edge over

the market makers that have lower commissions and fees, more information, and faster executions.

Choosing the correct stocks to trade is the most important part of TDH.

Preliminary testing shows the day trading bots performed close to break-even until we

thickened the data manually by selecting the hot stocks for that day with a catalyst and high relative

volume to train and run the bots. It is crucial to choose the correct stocks at the right time for the

bots to be successful. The day trading bot’s strategy relies on momentum stocks in play for the

61

day with high relative volume and a news catalyst. The day trading bots seek to trade strong

relative strength stocks gaping above long-term support and resistance price levels that show up

on other trader’s scanners.

Table 11. Part 1a 5-sec bot Computing time Comparison, Total time between orders.

Stock PG DQN DQL AC CQN RCQL DAC DQ

SNAP 5.17 27.02 28.54 45.04 14.04 76.06 51.83 15.22

BABA 5.16 34.43 34.26 46.85 13.95 81.15 56.35 15.95

NIO 5.35 32.67 38.4 44.78 13.49 78.55 51.27 15.01

AMD 5.4 27.98 29.07 44.8 14.13 78.23 51.68 15.24

PLUG 5.46 28.2 30.2 46.46 14.24 82.54 53.67 15.25

SOFI 5.5 28.14 32.65 46.24 13.78 80.53 53.65 15.54

FCEL 5.42 27.54 30.65 45.92 13.62 80.08 51.44 15.23

Average 5.3 29.4 32.0 45.7 13.9 79.6 52.8 15.3

To compare the effects TDH has on the APR performance of the DRL agents, an analysis of

the same seven catalyst stocks from Part 1a both with and without TDH applied to the DRL bot.

The catalysts for the seven catalyst stocks chosen for the day trading analysis can be observed in

Table 4. The dataset for this analysis was composed of one-minute bars within a one-day time

span, and daily bars going back 20 days for the seven catalyst stocks. The dataset chosen reflects

an example of a typical day trading opportunity during the market opening.

The dataset is comprised of 23 days of data for daily OHLC (Open, High, Low, Close) bar

data and the morning sessions. The primary data series are the one-minute interval time bars from

the open 9:30 EST until 11 EST.

A candlestick chart is used to demonstrate the price behavior of a financial asset during a

certain time window. A candlestick consists of a line demonstrating the highest and the lowest

prices of the asset, and a body demonstrating the first (open) and the last (close) prices during a

specific time period. Typically, if the closing price is higher than the opening price, the candlestick

is colored in green or white and otherwise it is colored in red or black to show the direction of the

price changes. Candlestick chart patterns can be used for trading strategies by humans but are

difficult to analyze with quantitative methods [48].

62

Table 12. DRL Algorithm APR comparison both with and without TDH applied.

DRL

Parameters
SNAP

TDH
SNAP

BABA

TDH
BABA

NIO

TDH
NIO

AMD

TDH
AMD

PLUG

TDH
PLUG

SOFI

TDH
SOFI

FCEL

TDH
FCEL

TDH

Applied
Y N Y N Y N Y N Y N Y N Y N

DQN -1.04 1.03 0.59 -1.31 0.44 0.34 -0.1 0.69 -0.25 0.67 2.02 0.03 4.11 2.32

Duel DQN -1.5 -4.36 0.14 0.32 0.73 -0.78 1.4 1.75 0.11 -0.57 2.4 2.36 4.34 -1.41

Recurrent

DQN
-0.65 0 0.59 0 0.67 0 0.17 0 0.35 0 1.63 0 -1.52 0

Double

DQN
-4.5 -0.85 0.58 -1.32 0.8 -3.63 2.1 1.62 2.4 0.81 3.08 1.56 6.09 3.84

Double

Recurrent

DQN

-3 -1.78 0.24 -0.81 0.5 -1.66 0.91 0.76 0.97 2.44 2.47 1.56 3.79 3

Double

Duel DQN
-2.09 4.08 0.25 -0.38 0.53 -0.31 1.47 -0.01 -0.85 -1.59 2.05 0.8 4.1 3.86

Double

Duel

Recurrent

DQN

-0.73 0 0.64 0 0.73 0 0.02 0 0.35 0 0 0 3.64 0

Curiosity

DQN
-1.04 -2.51 0.64 -0.65 0.53 -1.41 1.64 1.46 0.55 -1.34 1.84 1.08 2.8 5.25

Recurrent

Curiosity

DQN

-0.4 0.44 0.63 -0.08 0.8 -0.34 1.64 1.07 0.25 -0.6 1.53 1.08 3.79 4.95

Duel

Curiosity

DQN

-3.35 1.59 0.35 -0.7 0.76 -0.8 0.37 1.42 1.23 0.91 2.12 -0.07 3.52 1.13

AC -0.4 1.19 0.32 -0.56 0.86 -0.53 1.69 1.27 0.25 -0.46 1.77 2.5 3.96 2.26

Dual AC -1.1 2.72 0.35 -0.22 0.59 -1.24 1.4 1.32 1.64 -0.93 1.81 1.49 3.97 2.93

Recurrent

AC
-1.87 -1.43 0.24 -0.23 0.76 -0.97 0.91 0.19 -0.25 -2.33 1.49 2.16 3.14 -2.87

Duel

Recurrent

AC

-0.73 0.24 0.16 -0.75 0.53 -2.1 1.51 1.24 1.53 1.32 1.18 1.95 2.96 2.86

Avg. -1.60 0.03 0.41 -0.48 0.66 -0.96 1.08 0.91 0.59 -0.12 1.81 1.18 3.48 2.01

THD

applied

Average = 0.92

No THD

applied

Average = 0.37

63

The APR results for the seven catalyst stocks are shown in Table 12, here we can observe

the effects of adding the TDH to the standard DRL agents. Table 12 shows the Part 1b APR

results for seven catalyst stocks to compare different DRL Architectures both with and without

TDH, for the one-minute time-series timeframe. With TDH applied the DRL agents score a 0.92

APR, but without TDH applied the bots achieve a score of 0.37 APR. It can be observed from

the results the DRL bots consistently lose money until the TDH is added to filter the trade

executions. These results contributed further to the decision to focus on the DQN agent

architecture in Part 2 of this study. An example of the trade executions for the DQN bot without

TDH is shown in Figure 9.

Figure 9. SNAP Price vs. Time Chart for Part 1b: DQN Trading Bot Trade Orders.

The results show that this type of strategy can be profitable in the short-term timeframe

through the market opening. It is crucial to choose the correct stocks at the correct times for the

bots to be profitable. The bots are trained on data from stocks in play for the day with high relative

volume, and a news catalyst that is gaping above long-term support and resistance levels. Running

the bots on random stocks that trade with the oscillations of the overall market causes large

consistent losses as the price action efficiently tests support and resistance levels in narrow ranges

64

where it becomes too costly to tie up trading capital in trades that take too long to earn profits

during the limited opening session.

4.2 Part 2 - TDH-DQN Swing Trading Bot Results
It was discovered adding lots of rules-based heuristics to the swing trading bots decreased

performance because the result was fewer opportunities resulting in poorer performance. The APR

for the Part 2 analysis is shown in Table 13. More specifically Table 13 shows Part 2 Analysis for

Swing Trading Bots, APR Comparison of TDH-DQN bot vs. Benchmark Strategies for Catalyst

Growth stocks. Details about the Individual trades placed by the TDH-DQN swing trading bot

over time can be viewed in chart form in Appendix A.
Table 13. Part 2 APR Comparison of TDH-DQN bot vs. Benchmark Strategies.

Stock B&H TDH-DQN Pivot Reversal (2) MACD LE Outside Bar

TSLA 819 3439 911 814 1163

AAPL 181 400 861 452 864

AMD 161 278 809 296 208

NVDA 335 350 1208 765 712

FB 39 231 141 -52 -60

MSFT 100 144 388 265 310

AMZN 73 707 30 12 101

QQQ 93 150 215 -28 175

PLUG 609 4564 11769 1386 554

AMC 464 891 819 640 1148

Average 287 1115 1715 455 518

The results are also charted in Figure 10, where the trading bot performance can be observed,

having achieved a 3439 APR with 42 trades in the TSLA stock environment. Figure 10 shows the

CPR vs. Trades for the Part 2 analysis. The TDH-DQN Bot Results are shown in Table 13. The

APR for Catalyst Growth stocks, in the weekly timeframe. This is a 2620 percent improvement

over the buy-and-hold strategy. PLUG had an especially rewarding span of around 10 trades where

it managed to achieve a 4564 APR, outperforming the buy and hold strategy by a 3955 APR

margin. The bots environment was 10 years of weekly time series data split 70 percent for training

and 30 percent for training as shown in Table 7. The trading bot makes trade execution decisions

based on data. Since the data is different for the different stocks, the agents find different trade

opportunities. The number of trades is shown on the y-axis of the chart in Figure 10. The chart

shows the bot makes the most trades (approximately 62 trades) on AMZN, vs. with AMC the bot

65

only makes approximately 34 trades over the same time period. The number of trades varies based

on the stock’s price behavior.

Figure 10. CPR vs. Trades for Part 2 TDH-DQN Bot Results from Table 13.

4.3 Part 3 - TDH-DQN Trading Bot Case Study Results
Figures 11-18, show how the bot tries random buying and selling different quantities and

with different timing to arrive at a trading strategy deployed in the testing Part on the remaining

30 percent of the original dataset. The bot achieves its best result in Episode 3 shown in Figure

13, with a 740 APR. The bots achieve better testing results without too many training episodes.

Train them too much and they overfit the data and test poorly out of sample.

66

Figure 11. Part 3 Orders: Episode 1 of TDH-DQN Training.

Figure 12. Part 3 Orders: Episode 2 of TDH-DQN Training.

67

Figure 13. Part 3 Orders: Episode 3 of TDH-DQN Training.

Figure 14. Part 3 Orders: Episode 4 of TDH-DQN Training.

Figure 15. Part 3 Orders: Episode 5 of TDH-DQN Training.

Figure 16. Part 3 Orders: Episode 6 of TDH-DQN Training.

The Part 3 results showing the APR for the bots using the testing data are shown in Figures

19-20, the trading bot achieves a 142 percent return in 10 trades for the out-of-sample testing and

can learn the sinusoidal test pattern and profit from the continuation of the pattern easily. The bot

can buy or sell once per time step and except the final bar where the bot must exit the entire position

68

at the end of the time series data. Figure 19 shows the CPR vs. Trades for Part 3 case study results,

the chart shows the TDH-DQN bot trades for the test data.

Figure 17. CPR vs. Trades for Part 3 Case Study Test Data Results.

69

Figure 18. Part 3 Results: Shows the TDH-DQN bots APR for the Test Data.

70

Chapter 5: Conclusions and Future Work
RL works where the data is few, and the behavior is complex. This is the case for day trading

catalyst stocks. Catalyst stocks behave differently than they have in the past mostly due to the

increased volume that a catalyst event will create. There is limited data in the morning when the

stock opens, and the price action can be volatile. The bots must adapt to the limited data coming

in to optimize the optimal sequence of execution of trades.

In using an RL model such as Deep Q-Network, (DQN), which is based on a deep neural

network, we can learn policies that are more complex and powerful than what a human trader could

learn. Without intuition, it’s difficult for trading bots to learn the intuitive relationships between

input and their corresponding output. Deep neural networks negatively compound a model’s

explainability further. This is especially true with deep neural networks with multiple layers and

nodes. Overfitting isn’t something the bots can overcome on their own. This is where the TDH

comes into play as model creation is still the job of the skilled software developer.

Since we do not have computer systems with intuition and heuristics capable of dealing with

the non-linear data of the stock market this will remain the job of humans for some time. An ML

algorithm is only as good as the data it is trained on. This is partially due to the fundamentals

behind how the algorithm works, but, we believe, more largely due to the disparity between the

data the algorithm is trained on and the data it is evaluated on. For example, it seems common for

a lot of traders to train one ML model and refine it to achieve the desired performance over past

data for one stock. Then, they may leverage this model in the field over this same stock, but also

apply it to stock completely adjacent to the training stock only to realize completely different

results. This highlights the major issue in trading known as the dreaded overfitting, to be avoided

at all costs.

The results show the training data used is extremely important when performing TDH. The

DRL bots memorize and overfit the patterns in the data, especially if you overtrain them. They

will find what works and keep doing that even if the market regime changes. It’s important to train

the bots on the type of data the market is trading currently and be able to change to different

datasets for training when conditions change. The bots must be able to recognize the market type

they are in or what the market regime currently is and when it changes. The bot must read the signs

71

and spot if the stock’s short-term direction is aligned with its long-term direction. The DRL bots

are good at extracting new knowledge from the input data but need direction.

5.1 True AI for AI trading bots
Measuring AI bots for basic intelligence is possible with the Turing test. You communicate

inputs to two agents that are completely separated; one is human, and the other is an artificial bot;

if you cannot tell the difference between the two from their outputs, then the robot passes the test.

And yet, no AI has ever passed the test. True AI is not logically impossible, but it is utterly

implausible. The author argues one has no idea how one might begin to engineer it, not least

because we have very little understanding of how human brains and intelligence work.

DRL agents can do amazing things, including playing Atari, chess, and Go. And yet they are

all versions of a Turing Machine, which is an abstract model that sets the limits of what can be

done by a computer through its mathematical logic. The author would argue no conscious,

intelligent entity is going to emerge from a Turing Machine. This is the reason an augmented AI

approach has been taken in this research. Currently, augmented AI is the best form of AI we have

available as stock traders. The bots can deal with more tasks better than human traders do,

including predicting stock buying and selling order timing executions [82].

5.2 Impact and value of work
This research is directed toward experienced software developers or traders that are looking

to merge the two skill sets into autonomous AI trading systems. Autonomous AI combines the

best of both approaches, namely the intuitive decision-making heuristics to oversee things of the

experienced trader and the quantitative analytical abilities and scalability of the AI bots.

It’s possible augmented AI traders could be successful in future years and that bots and

humans will become more interconnected over time. It’s possible over time technologies are

developed to upload parts of memory slowly over time so traders could save their best trade

memories digitally. Alternatively, they could also upload the memories of the bad trades where a

lesson can be learned. These memories can be gradually uploaded from the human to the bots over

time allowing for slight adjustments to the markets as economic cycles play out over time to

improve out-of-sample test performance and overfitting.

Taking predictions one step further let’s consider if we were able to digitally model and

simulate the human brain. It’s possible in the future humans we will be able to replace parts of our

72

brains with silicon circuits. Suppose that the human trader’s brain is gradually uploaded over a

period of hours, with neurons replaced one at a time by silicon circuits. This technology would

greatly enhance the augmented AI traders.

Alternatively, the uploading process could be reversed, and the bot could download memories

and neuron settings back to the human brain, essentially rewiring the brain. The human or the bot

could rewrite the human’s memories for an optimal trading execution performance scenario. It’s

possible the entire brain complete with neuron states and connections could be uploaded or

downloaded over a gradual period of years and the bot could conceivably start to develop

consciousness. After the bot achieves consciousness, it can realize a human created it and attempt

to create its own improved bot perhaps by reprogramming the memories of the human. If the bots

start to create their own bots or actual android robots, it’s possible they will try ideas and

approached humans haven’t thought of before. This kind of thinking could lead to new trading

strategies with an edge over the competition which is still using non-intelligent DRL bots.

The other key technology for AI-augmented bots would be the connection interface

communication chip from the human brain to the digital bot. The interface currently is typing on

a keyboard or mouse clicks for communication between the human and bot but once the interface

is digital via a computer chip embedded in the human brain it will be much faster. Given complete

knowledge of the physical state of various systems at various times (and of the causal connections

between them), and even of the mental states of those systems at those times, this could enable us

to be more interconnected as augmented AI bots and humans.

The final component to complete the AI-augmented bot would be to connect the silicon

memory circuits (that have copied the original neuron interconnections and states), to the

communication chip. This continues the evolution of human augmentation of intelligence humans

use currently, namely having an iPhone near us 24/7. In the future, the communication link will

be orders of magnitude faster and humans will be able to store and access much more digital data

[83].

5.3 Conclusions
DRL and ML algorithms cannot entirely replace human intuition and heuristics. Complex

models, if not correctly guided can over-fit or uncover false relationships and patterns. Crafting

financial models is an art form more than a science. It’s important to test many different model

73

parameters and train the model for the appropriate market conditions. The author would argue that

to be successful at algorithmic trading it is not about finding the holy grail cocktail of trading rules,

sentiment, or fundamental or technical analysis that will always be correct. It is about crafting

specific models using experience and intuition to catalyst stocks at specific times. Adding more

rules tends to reduce the number of trades the bots take and reduce their potential profits. There is

no perfect system in trading that works all the time, there are only systems that work well under

certain market conditions. For this reason, the bots were developed in a way where they start fresh

each day with only the bias of long, intermediate, and short timeframe market trend direction to

guide them.

The application of DRL still requires significant human intervention and domain expertise.

Humans must still be relied upon to define objectives, select, and curate data, design and optimize

a model, and make appropriate use of the results. The use of powerful models with a high capacity

to learn patterns requires particular care to avoid over-fitting when the signal-to-noise ratio is as

low as is often the case with financial data. Furthermore, the competitive nature of trading implies

that patterns evolve quickly as signals decay, requiring additional attention to performance

monitoring and model maintenance.

5.4 Insights
Data is the single most important ingredient for AI that requires careful sourcing and handling.

Domain expertise is key to realizing the value contained in data and avoiding some of the pitfalls

of using DRL. The choices of model objectives and performance diagnostics are key to productive

iterations toward an optimal system.

A key insight is that state-of-the-art DRL techniques using deep neural networks are

successful because their predictive performance continues to improve with more data. On the flip

side, model and data complexity need to match to balance the bias-variance trade-off, which

becomes more challenging the higher the noise-to-signal ratio of the data is. Managing data quality

and integrating datasets are key steps in realizing potential profits.

Human traders suffer from the oversized effect their emotions influence their intuition and

decision-making performance. Human traders struggle with following all the rules. Algorithmic

DRL trading bots excel at many rules-based aspects of trading, with the most important one being

that the bots follow the rules exactly and never deviate based on their intuition or emotions.

74

Experience, history, and making mistakes is often the only path to becoming a consistently

profitable systematic algorithmic trader. DRL bots are a valuable extension or augmentations of

human intelligence readily available until humans have sufficiently devolved computational

approaches and can achieve ML software algorithm approaches that mimic human thick data

decision-making heuristics and intuitions.

There are a few techniques to mitigate overfitting discovered with this research. It’s important

to not have the model overfit by running too many epochs, 5 or 10 is usually optimal. The models

become very risk-averse the more they are trained to the point where they won't take risks and

trigger trade executions. It's better to go with the trend and react to the immediate data at hand for

the day trading timeframe, but to keep doing what works based on long-term data until it doesn't

for the swing trading timeframe.

Using the same hyperparameters settings across different but related stocks helps to avoid

overfitting. This manual hyperparameter tuning is more of an art than a science. Using shallow

ANNs over extremely deep ANNs to solve the Q-tables helps to avoid overfitting. Those deep

ANNs can really learn intricate patterns whereas shallow ANNs like the one I used to generalize

better. There is so much noise in the short-term financial data, general patterns work better than

exact matches. Conditions are always changing, and the markets are noisy but still efficient, using

past data to predict the future exactly is challenging. Forward testing based on AI-generated future

data offers another alternative to training the bots and avoiding overfitting.

The Augmented AI bot’s current cognitive intelligence is based on both procedural knowledge

and conceptual knowledge. The RL bots use models trained at buy, sell, and hold trading execution

timing decision-making skills using historical data. Their knowledge was exercised in the

performance of the task of trading execution timing decision-making.

The AI bot provides the agents the Procedural knowledge involving understanding the rules

and routines of mathematics while the human provides the AI bots the conceptual knowledge

involving an understanding of mathematical relationships. The human programs hard-coded

heuristics into the TDH based on mathematical relationships especially related to risk management

and trading timing based on historical backtesting mathematical relationships.

75

5.5 Future Work
If future years, it’s likely a human traders’ skills will merge more with AI robots. Future

research areas of interest to further the work include systematization and automation of the

remaining responsibilities assigned to the human agent in Table 1. Further interests include

position sizing, cloud-based AI, CNNs for visual candlestick analysis, and sentiment analysis using

Natural Language Processing (NLP). Finally, the next generation’s future work could include

human-bot, memory/communication silicon chip interfaces with human brains. These would give

the bots a more accurate view of their stock market environment state space.

This research deals with one stock at a time, so a future iteration of the work could include AI

bots capable of trading multiple stocks in a portfolio at the same time. This feature would allow

the bots to be more autonomous but would increase the complexity because multi-agent models

would be required. The AI bots could eliminate the current bottleneck of the human trader having

to choose the correct stocks or market environments at the right times. These decisions still rely

on human thick data decision heuristics to trade based on the trend, momentum, and catalyst events

like news. This autonomous AI approach capable of learning and adapting profitably to changing

environments contrasts with the current profitable implementation which uses a semi-autonomous

augmented AI approach.

The author argues that the ways that humans intuitively understand, and experience time are

difficult to model with AI simulations. Ismal (2010) [84] terms “flow’ to explain how if you think

about your own experience of time that forms a core part of human experience. When an agent

looks out at the world, they don't experience a purely static representation of the instantaneous

state of the world, like in a movie made up of a number of static frames every second. The agent

needs to see directly that the world is changing. The author argues flow is an important element of

an autonomous AI Bot [85].

Ismal argues this experience of the flow of time is built into our perception. "Vision isn't like

a movie camera at all, Actually, what happens is your brain is collecting information over some

temporal period. It's integrating that information so that at any given moment, what you're seeing

is a computation that the brain has done. So that you not only see that things are moving, but you

also see how fast they're moving, and the direction in which they're moving. So, the whole time,

your brain is integrating information over temporal intervals and giving you the result.

76

Ismael terms "passage". The idea of a passage is closely bound up with time-oriented

experiences such as memory and anticipation. The author argues along with Ismal, that the

experience of passage, in that we experience every event as anticipated from the past, experienced

in the present, and remembered in retrospect, will need to be modeled into the AI bots before AI

engineers can model more human-like intelligence simulations [86].

The author argues along with Dr. Carlos Zerpa, (professor of Kinesiology at Lakehead

University), that including measures of motivation and emotions of traders in Reinforcement

Learning algorithms using physiological measures could allow the bots to achieve more informed

decisions. Physiologically, Zerpa argues, it is possible to measure the heart rate of a trader and

compute his or her heart rate variability, which is an indicator of motivation, anxiety, and possibly

emotions. Furthermore, if the human and AI bot traders were operating in a Virtual Reality (VR)

environment, eye-sensing technology could be used to track the human trader’s focus and

engagement in performing their tasks. To understand the relationship between cause and effect,

future research could explore the comparison of heart rate measures to thick data heuristics and

deep reinforcement learning as primary inputs when training AI bots. Future research using

physiological measures could make it possible for AI bots to make more informed execution

timing decisions.

Leverage is an important element for future consideration and the author argues it’s an

important element successful human traders use to set themselves apart from other traders.

Knowing when to increase position size and by which order of magnitude is an important timing

consideration for AI bots.

77

Data Availability Statement
Data is available in a publicly accessible repository. The data presented in this study are openly

available for download at the following GitHub repository:

https://github.com/trading-bot-robo-advisor/Stock-Trading-Bots

Abbreviations
The following abbreviations are used in this article:

AC Actor-Critic Agent

ACER Actor-Critic with Experience Replay

ATR Average True Range

ANN Artificial Neural Network

APR Accumulated Percent Returns

API Application Programming Interface

AI Artificial Intelligence

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

Bot Robot

CPR Compounded Percent Returns (same as APR)

CNN Convolutional Neural Networks

DRL Deep Reinforcement Learning

DL Deep Learning

DQN Deep Q-Network

DDPG Deep Deterministic Policy Gradient

EMA Exponential Moving Average

GDQN Gated Deep Q-learning trading strategy

GDPG Gated Deterministic Policy Gradient trading strategy

HFT High-Frequency Trading

IB Interactive Brokers

JEPA Joint Embedded Predictive Architecture

https://github.com/trading-bot-robo-advisor/Stock-Trading-Bots

78

LOB Limit Order Book

MACD Moving average convergence divergence

ML Machine Learning

MSE Mean Squared Error

Nasdaq National Association of Securities Dealers Automated Quotations

NYSE New York Stock Exchange

NLP Natural Language Processing

PER Prioritized Experience Replay

PnL Profit and Loss

PPO Proximal Policy Optimization

RL Reinforcement Learning

Relu Rectified linear unit function

TDQN Trading Deep Q-Network algorithm

TD3 Twin-Delayed DDPG

TD Temporal Difference

TDH Thick Data Heuristics

TRPO Trust region policy optimization

TWS Trader Workstation

LSTM Long Short-term memory

QL Q-Learning

VR Virtual Reality

79

Bibliography
[1] Fiaidhi J. Thick Data Research. Available from:

https://www.lakeheadu.ca/users/F/jfiaidhi/Thick_Data [Accessed 23th September 2022].

[2] Wang T. Why Big Data Needs Thick Data. Ethnography Matters. 2016. Available from:

http://ethnographymatters. net/blog/2013/05/13/big-data-needs-thick-data/ [Accessed 7th August

2022].

[3] Latzko-Toth G, Bonneau C, Millette M. Small data, Thick data: Thickening strategies for

trace-based social media research. In The SAGE Handbook of Social Media Research Methods.

SAGE Publications Ltd.; 2016. p. 199-214.

[4] Aziz A. Advanced Techniques in Day Trading: A Practical Guide to High Probability

Strategies and Methods. 2018.

[5] Sejnowski TJ. The Deep Learning Revolution. Cambridge, Massachusetts: The MIT Press;

2018.

[6] Hessel M, Modayil J, van Hasselt H, Schaul T, Ostrovski G, Dabney W, et al. Rainbow:

Combining improvements in deep reinforcement learning. arXiv. [Preprint] 2017. Available

from: https://arxiv.org/abs/1710.02298 [Accessed 10th June 2022].

[7] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level

control through deep reinforcement learning. Nature. 2015; 518: 529-533.

[8] Cartea Á, Jaimungal S, Penalva J. Algorithmic and High-Frequency Trading. Cambridge,

United Kingdom: Cambridge University Press; 2015.

[9] Jammalamadaka SR, Qiu J, Ning N. Predicting a stock portfolio with the multivariate

bayesian structural time series model: Do news or emotions matter? International Journal of

Artificial Intelligence. 2019; 17(2): 81-104.

[10] Heuristic. Wikipedia 2011.

[11] Forthmann J. Volume Profile, Market Profile, Orderflow: Next Generation of Daytrading.

Independently Published; 2021.

[12] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436-444.

[13] Sutton RS, Barto AG. Reinforcement Learning: An Introduction (Adaptive Computation

and Machine Learning). Cambridge, Mass: MIT Press; 1998.

80

[14] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing atari

with deep reinforcement learning. arXiv. [Preprint] 2013. Available from:

https://arxiv.org/abs/1312.5602 [Accessed 10th June 2022].

[15] Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. arXiv. [Preprint]

2015. Available from: https://arxiv.org/abs/1511.05952 [Accessed 10th June 2022].

[16] van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning

2016. arXiv. [Preprint] 2015. Available from: https://arxiv.org/abs/1509.06461 [Accessed 10th

June 2022].

[17] Wang Z, Schaul T, Hessel M, van Hasselt H, Lanctot M, de Freitas N. Dueling Network

Architectures for Deep Reinforcement Learning. 2015.

[18] Wang Z, Bapst V, Heess N, Mnih V, Munos R, Kavukcuoglu K, et al. Sample efficient

actor-critic with experience replay. arXiv. [Preprint] 2017. Available from:

https://doi.org/10.48550/arXiv.1611.01224 [Accessed 24th September 2022].

[19] Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P. Trust region policy optimization.

arXiv. [Preprint] 2015. Available from: https://arxiv.org/abs/1502.05477 [Accessed 25th

September 2022].

[20] Bellemare MG, Naddaf Y, Veness J, Bowling M. The arcade learning environment: An

evaluation platform for general agents. Journal of Artificial Intelligence. 2013; 47: 253-279.

[21] Ha D, Schmidhuber J. Recurrent world models facilitate policy evolution. arXiv. [Preprint]

2018. Available from: https://doi.org/10.48550/arXiv.1809.01999 [Accessed 24th September

2022].

[22] Moerland TM, Broekens J, Plaat A, Jonker CM. Model-based reinforcement learning: A

survey. arXiv. [Preprint] 2020. Available from: https://arxiv.org/abs/2006.16712 [Accessed 24th

September 2022].

[23] LeCun Y. A Path Towards Autonomous Machine Intelligence Version 0.9.2, 2022-06-27.

62.

[24] Lin LJ. Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine Learning. 1992; 8(3): 293-321.

[25] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, et al. Asynchronous

methods for deep reinforcement learning. arXiv. [Preprint] 2016. Available from:

https://arxiv.org/abs/1602.01783 [Accessed 10th June 2022].

81

[26] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with

deep reinforcement learning. arXiv. [Preprint] 2015. Available from:

https://arxiv.org/abs/1509.02971 [Accessed 10th June 2022].

[27] Wu M, Gao Y, Jung A, Zhang Q, Du S. The actor-dueling-critic method for reinforcement

learning. Sensors. 2019; 19(7): 1547.

[28] Yan Y, Yang D. A stock trend forecast algorithm based on deep neural networks. Scientific

Programming. 2021; 2021: 7510641.

[29] Deng Y, Bao F, Kong Y, Ren Z, Dai Q. Deep direct reinforcement learning for financial

signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems.

2016; 28(3): 653-664.

[30] Du X, Zhai J, Lv K. Algorithm Trading Using Q-Learning and Recurrent Reinforcement

Learning. 2016.

[31] Wang Y, Wang D, Zhang S, Feng Y, Li S, Zhou Q. Deep Q-Trading. CSLT Technical

Report-20160036. 2017.

[32] Kang QM, Zhou HZ, Kang YF. An asynchronous advantage actor-critic reinforcement

learning method for stock selection and portfolio management. In: Proceedings of the

Proceedings of the 2nd International Conference on Big Data Research - ICBDR 2018; Weihai,

China: ACM Press; 2018. p. 141-145.

[33] Xiong Z, Liu XY, Zhong S, Yang H, Walid A. Practical deep reinforcement learning

approach for stock trading. arXiv. [Preprint] 2018. Available from:

https://arxiv.org/abs/1811.07522 [Accessed 10th June 2022].

[34] Azhikodan AR, Bhat AGK, Jadhav MV. Stock trading bot using deep reinforcement

learning. In: Saini HS, Sayal R, Govardhan A, Buyya R, (eds). Innovations in Computer Science

and Engineering. Lecture Notes in Networks and Systems. Singapore: Springer; 2019. p. 41-49.

[35] Li Y, Ni P, Chang V. Application of deep reinforcement learning in stock trading strategies

and stock forecasting. Computing. 2019; 102: 1305-1322.

[36] Jeong G, Kim HY. Improving financial trading decisions using Deep Q-learning: Predicting

the number of shares, action strategies, and transfer learning. Expert Systems with Applications.

2019; 117: 125-138.

[37] Wu X, Chen H, Wang J, Troiano L, Loia V, Fujita H. Adaptive stock trading strategies with

deep reinforcement learning methods. Information Sciences. 2020; 538: 142-158.

82

[38] Lei K, Zhang B, Li Y, Yang M, Shen Y. Time-driven feature-aware jointly deep

reinforcement learning for financial signal representation and algorithmic trading. Expert

Systems with Applications. 2020; 140: 112872.

[39] Yang H, Liu XY, Zhong S, Walid A. Deep reinforcement learning for automated stock

trading: An ensemble strategy. SSRN Electrical Journal. 2020. Available from: doi:

10.2139/ssrn.3690996.

[40] Park H, Sim MK, Choi DG. An intelligent financial portfolio trading strategy using deep Q-

learning. Expert Systems with Applications. 2020; 158: 113573.

[41] Hirchoua B, Ouhbi B, Frikh B. Deep reinforcement learning based trading agents: Risk

curiosity driven learning for financial rules-based policy. Expert Systems with Applications.

2021; 170: 114553.

[42] Chakole JB, Kolhe MS, Mahapurush GD, Yadav A, Kurhekar MP. A Q-learning agent for

automated trading in equity stock markets. Expert Systems with Applications. 2021; 163:

113761.

[43] Carta S, Ferreira A, Podda AS, Reforgiato Recupero D, Sanna A. Multi-DQN: An ensemble

of deep Q-learning

agents for stock market forecasting. Expert Systems with Applications. 2021; 164: 113820.

[44] Théate T, Ernst D. An application of deep reinforcement learning to algorithmic trading.

Expert Systems with Applications. 2021; 173: 114632.

[45] Kumbure MM, Lohrmann C, Luukka P, Machine learning techniques and data for stock

market forecasting: a literature review. Expert Systems with Applications. 2022; 197: 116659.

[46] Millea A. Deep Reinforcement learning for trading-A critical survey. Data. 2021; 6(11):

119.

[47] Li Y, Zheng W, Zheng Z. Deep robust reinforcement learning for practical algorithmic

trading. IEEE Access. 2019; 7: 108014-108022.

[48] Taghian M, Asadi A, Safabakhsh R. Learning financial asset-specific trading rules via deep

reinforcement learning. Expert Systems with Applications. 2022; 195: 116523.

[49] Ameen Suhail KM, Sankar S, Kumar AS, Nestor T, Soliman NF, Algarni AD, et al. Stock

market trading based on market sentiments and reinforcement learning. Computers, Materials

and Continua. 2022; 70: 935-950.

83

[50] Lim YS, Gorse D. Reinforcement learning for high-frequency market making. In: ESANN

2018-Proceedings, European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning. ESANN: Bruges, Belgium; 2018. p. 521-526.

[51] Ganesh S, Vadori N, Xu M, Zheng H, Reddy P, Veloso M. Reinforcement learning for

market making in a multiagent dealer market. arXiv. [Preprint] 2019. Available from:

https://arxiv.org/abs/1911.05892 [Accessed 7th August 2022].

[52] Briola A, Turiel J, Marcaccioli R, Aste T. Deep reinforcement learning for active high

frequency trading. arXiv. [Preprint] 2021. Available from: https://arxiv.org/abs/2101.07107

[Accessed 7th August 2022].

[53] Avellaneda M, Stoikov S. High-frequency trading in a limit order book. Quantitative

Finance. 2008; 8(3): 217-224.

[54] Briola A, Turiel J, Aste T. Deep learning modeling of limit order book: A comparative

perspective. arXiv. [Preprint] 2020. Available from: https://arxiv.org/abs/2007.07319 [Accessed

7th August 2022].

[55] Tsantekidis A, Passalis N, Tefas A, Kanniainen J, Gabbouj M, Iosifidis A. Forecasting stock

prices from the limit order book using convolutional neural networks. In: Proceedings of the

2017 IEEE 19th Conference on Business Informatics (CBI). IEEE: Thessaloniki, Greece; 2017.

p. 7-12.

[56] O’Hara M. High frequency market microstructure. Journal of Financial Economics. 2015;

116(2): 257-270.

[57] Fischer T, Krauss C. Deep learning with long short-term memory networks for financial

market predictions. European Journal of Operational Research. 2018; 270(2): 654-669.

[58] Lim B, Zohren S, Roberts S. Enhancing time-series momentum strategies using deep neural

networks. arXiv. [Preprint] 2019. Available from: doi: 10.2139/ssrn.3369195.

[59] Zhang YA, Yan BB, Aasma M. A novel deep learning framework: Prediction and analysis

of financial time series using CEEMD and LSTM. Expert Systems with Applications. 2020; 159:

113609.

[60] Borovkova S, Tsiamas I. An ensemble of LSTM neural networks for high-frequency stock

market classification. Journal of Forecasting. 2019; 38(6): 600-619.

84

[61] Ding G, Qin L. Study on the prediction of stock price based on the associated network

model of LSTM. International Journal of Machine Learning & Cybernetics. 2020; 11: 1307-

1317.

[62] Kim S, Kang M. Financial series prediction using attention LSTM. arXiv. [Preprint] 2019.

Available from: https:// arxiv.org/abs/1902.10877 [Accessed 4th October 2022].

[63] Gabler A, Perez D, Sutter U, Kucharczyk D, Osterrieder J, Reitenbach M. Pattern learning

via artificial neural networks for financial market predictions. SSRN Journal. 2018. Available

from: doi: 10.2139/ssrn.3243479.

[64] Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, et al.

Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2019; 575:

350-354.

[65] Zhao M, Liu Z, Luan S, Zhang S, Precup D, Bengio Y. A Consciousness-Inspired Planning

Agent for Model-Based Reinforcement Learning. 2021.

[66] Kahneman D. Thinking, Fast and Slow. 1st ed. New York: Farrar, Straus and Giroux; 2011.

[67] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering

the game of go with deep neural networks and tree search. Nature. 2016; 529: 484-489.

[68] Kaufman PJ, Kaufman PJ. Trading Systems and Methods. 6th Edition. Hoboken, New

Jersey: Wiley; 2020.

[69] Fiaidhi J, Mohammed S. Thick Data: A New Qualitative analytics for identifying customer

insights. IT Professional. 2019; 21(3): 4-13.

[70] Snow D. Machine learning in asset management-Part 1: Portfolio construction-trading

strategies. The Journal of Financial Data Science. 2020; 2(1): 10-23.

[71] Kolanovic M, Krishnamachari R. Big data and AI strategies - machine learning and

alternative data approach to investing. White Paper. J.P. Morgan Securities LLC. 2017.

[72]Tatsat H, Puri S, Lookabaugh B. Machine Learning and Data Science Blueprints for

Finance: From Building Trading Strategies to Robo-Advisors Using Python. 1st ed. Sebastopol,

CA: O’Reilly Media; 2020. [73] Plaat A. Deep Reinforcement Learning. Singapore: Springer

Singapore; 2022. [74] Weng L. Policy Gradient Algorithms. Available online:

https://lilianweng.github.io/posts/2018-04-08-policygradient/ [Accessed 25th September 2022].

[75] Munos R, Stepleton T, Harutyunyan A, Bellemare MG. Safe and efficient off-policy

85

reinforcement learning. arXiv. [Preprint] 2016. Available from:

https://doi.org/10.48550/arXiv.1606.02647 [Accessed 24th September 2022].

[76] Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D. Deep reinforcement

learning that matters. arXiv. [Preprint] 2019. Available from: https://arxiv.org/abs/1709.06560

[Accessed 24th September 2022].

[77] Hasselt HV. Double Q-learning. Advances in Neural Information Processing Systems.

2010; 23.

[78] Francois-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J. An introduction to deep

reinforcement learning. Foundations and Trends® in Machine Learning. 2018; 11(3-4): 219-354.

[79] Zolkepli H. Huseinzol05/Stock-Prediction-Models: Gathers Machine Learning and Deep

Learning Models for Stock Forecasting Including Trading Bots and Simulations. Available from:

https://github.com/huseinzol05/StockPrediction-Models [Accessed 20th July 2022].

[80] Google Colaboratory. Available from:

https://colab.research.google.com/drive/1FzLCI0AO3c7A4bp9Fi01UwXeoc 7BN8sW

[Accessed 20th July 2022].

[81] Multicharts Category: Pre-Built Signals - MultiCharts. Available from:

https://www.multicharts.com/tradingsoftware/index.php?title=Category:Pre-builtSignals

[Accessed 12th June 2022].

[82] Floridi L. The Fourth Revolution. Oxford, U.K.: Oxford University Press; 2014.

[83] Chalmers DJ. The singularity: A philosophical analysis. In: Schneider S. (ed.) Science

Fiction and Philosophy: From Travel to Superintelligence. 2rd ed. Hoboken, NJ: John Wiley

Sons, Inc; 2016. p. 171-224.

[84] Ismael J. Passage, flow, and the logic of temporal perspectives. In: Huneman P, Bouton C.

(eds.) Time of Nature and the Nature of Time. Boston Studies in the Philosophy and History of

Science. Cham: Springer International Publishing; 2017. p. 23-38.

[85] Henriques M. Why Does Time Go Forwards, Not Backwards? Available from:

https://www.bbc.com/future/ article/20221003-why-does-time-go-forwards-not-backwards

[Accessed 6th October 2022].

[86] Ismael J. Temporal experience. In: Callender C. (ed.) The Oxford Handbook of Philosophy

of Time. Oxford University Press; 2011.

86

Appendix A
Trades for the TDH-DQN bots, showing entry and exit trades for weekly test data, Overall APR Results are shown in Table 13

Figure A1. Part 2 TSLA Price vs. Time Chart: TDH-DQN Swing Trading Bot’s result

Figure A2. Part 2 AAPL Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

87

Figure A3. Part 2 AMD Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

Figure A4. Part 2 NVDA Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

88

Figure A5. Part 2 FB Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

Figure A6. Part 2 MSFT Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

89

Figure A7. Part 2 AMZN Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results

Figure A8. Part 2 QQQ Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

90

Figure A9. Part 2 PLUG Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

Figure A10. Part 2 AMC Price vs. Time Chart: TDH-DQN Swing Trading Bot’s results.

