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Abstract 

Solar energy is one of the most dependable renewable energy technologies, as it is feasible 

almost everywhere globally and is environmentally friendly. Photovoltaic-based renewable energy 

systems are highly susceptible to power grid transients. Their operation may suffer drastically 

during faults in the solar arrays, power electronics, and the inverter. Thus, it is vital to develop an 

intelligent mechanism to detect any type of fault or abnormalities within the shortest possible time 

that will increase reliability and decrease the maintenance cost of the solar system. To accomplish 

that, in this research, different artificial intelligence (AI) techniques are utilized to develop 

classification, fault detection, and optimization algorithms for solar photovoltaic (PV) panels. 

Initially, a convolutional neural network (CNN) model was designed to detect and classify PV 

modules based on the images taken from the solar panels. It is found that the proposed CNN model 

can identify the fault with an accuracy of 91.1% for binary (i.e., healthy and faulty) and 88.6% for 

multi-classification (i.e. cracked, shadowy, dusty and normal). However, sometimes the fault in 

the solar panel may not be detectable from the images of the solar panels. That is why an adaptive 

neuro-fuzzy inference system (ANFIS) model is developed to detect and classify the defects of PV 

systems based on the signals collected from the solar panels. The performance of the developed 

defect detection and classification algorithms was tested using real-life solar farm datasets. The 

performance of the proposed ANFIS-based fault detection scheme has been compared with 

different machine learning algorithms. It is found from the comparative results that the proposed 

ANFIS-based fault detection technique is robust and straightforward. Thus, the developed ANFIS-

based intelligent technique will enhance the reliability of the PV system by minimizing the 

maintenance cost and saving energy. 
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Finally, another ANFIS model is developed to predict the power generation in a combined 

cycle power plant. The codes were written in MATLAB, and their validity is confirmed with the 

available ANFIS toolboxes in MATLAB. The proposed ANFIS is found capable of successfully 

predicting power generation with extremely high accuracy and being much faster than the built-in 

ANFIS of MATLAB Toolbox. Thus, the developed ANFIS model could be utilized as a promising 

tool for energy generation applications. 
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Chapter 1     Introduction                              

1.1 Background 

Over the last few decades, the tendency toward employing renewable energy sources such 

as wind and solar has increased significantly. The European Union is projected to become the 

world’s leader in renewable energy sources by 2030 [1]. In the energy sector, due to several 

complex environmental issues related to pollution, human desires clean energy more than they did 

in past decades. As a result, people utilize renewable energies much more than before, which 

demands sustainable energy generation. For example, different pieces of clean power generation 

are demonstrated in Figure 1-1, including photovoltaic energy systems[2], a power-to-gas plant, 

and various components for transferring and storing this clean energy. The power to gas (PtG) 

plant is used when there is an excess amount of renewable energy generated by solar farms or wind 

turbines. The PtG plant converts the gas into hydrogen through PEM electrolysis technology. 

Hydrogen is a green fuel as it is converted to water vapour when combusted. 

 

Figure 2-1 Integration of different energy sources to provide clean energy. This image is taken from reference [3] 
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Besides using renewable energy sources, saving on the consumption of fossil fuels and 

natural gases is a useful approach to reducing global warming effects. Combined cycle power 

plants are effective and adaptable to changing demand as compared to traditional power plants [4]. 

Since they are more efficient, they use fewer natural sources. In addition, designs and performance 

predictions of these plans are also possible using artificial intelligence (AI) techniques. The 

application of artificial intelligence may reveal opportunities to improve these performances while 

addressing issues more efficiently.  

1.1  Research motivation 

Solar power is one of the most reliable renewable energy technologies because it is viable 

and environmentally friendly almost anywhere in the world. The fastest-growing source of 

renewable energy, photovoltaic (PV)  energy output is expected to double in size by 2024, and as 

an example, the relative cost of PV maintenance will rise from 50% of the overall cost of the UK's 

large-scale PV farms in 2019 to 67.5% in 2030 as a result of this expansion, which is driven by a 

decline in capital costs[5] As a result, research is being done on how to best maintain solar PV 

systems utilizing automated defect detection powered by AI. Therefore, to increase the reliability 

of solar systems and reduce maintenance costs, it is important to develop intelligent mechanisms 

that detect all kinds of faults and anomalies in the shortest possible time[6]. To achieve this, this 

research aims to develop AI techniques for defect detection and fault classification of PV panels. 

Again, the correct prediction of power generation in a power plant is an important factor in 

deciding whether a power plant would be economically feasible to construct or operate to minimize 

the cost of electricity production in a power plant. As the power plant is a highly complicated 

system, AI-based optimization algorithms would be a good candidate for the exact prediction of 
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power generation in a power plant coping with system uncertainties. Thus, the developed AI-based 

technology will enhance the reliability of the power plants by minimizing the maintenance cost 

and saving time and energy. 

 

1.2 Literature review 

Artificial intelligence is a branch of science that interacts with humans by assisting machines 

in finding solutions to complex problems in a human-like way. AI helps humans resolve many 

engineering faults and optimize engineering tools smoothly. Artificial intelligence can be divided 

into several subfields such as data mining, distributed AI, expert systems, robotics, machine 

learning, natural language understanding, and neural networks [7]. 

AI might be used to automatically detect mistakes or performance degradation, allowing 

engineers to address issues much more quickly. In the contemporary century, AI has become a 

crucial area of research in all fields, including engineering, science, education, medicine, and 

business. Discovering and implementing the most cutting-edge artificial intelligence engineering 

applications may lead to professional growth in advanced technologies. In the field of solar energy 

generation, various approaches are used to construct predictive models for PV systems. Some 

methods use parametric models with the PV system and weather variables as well as adjustable 

parameters, while others use artificial intelligence techniques such as neural networks[8], fuzzy 

logic[9], expert systems, and PV system modelling using commercial simulation packages. 

Various existing fault detection, classification, protection, and localization systems for solar PV 

arrays have been provided to increase PV system efficiency, safety, and reliability. PV modules' 

energy conversion efficiency is still low, so running a PV system at total capacity is highly 



4 
 

demanded. Moreover, the prediction of power generation of combined cycled power plants with 

the aid of AI is very likely and has been investigated by several researchers such as [10], [11] in 

boosting the generation of renewable energy [12]. 

 

1.3 The objectives of this thesis 

The main objective of this thesis is as follows: 

     •   To troubleshoot PV systems safely, quickly and without substantial financial costs. 

• To develop a convolutional neural network-based technique for detecting and classifying 

faulty PV systems to be safe and computationally effective. 

• To compare the performance of the proposed CNN with other CNN models and confirm 

the correctness of the proposed models. 

• To develop ANFIS-based fault detection of PV systems based on the signals to check if it 

is suitable for these systems or if ML classifiers would be better. 

• To develop an ANFIS model for predicting power generation in a combined cycled power 

plant, which is faster and more accurate. 

• To ensure that AI techniques that have the potential to be utilized in the solar energy 

industry sector while keeping their simplicity and efficiency. 

1.4 Organization of the thesis 

In Chapter two, a CNN model is proposed to develop and optimize the fault detection of PV 

systems. The model is trained with different images taken from normal and faulty PV panels. Then 



5 
 

its learning ability is assessed by introducing new images in order to detect and classify the faults 

of PV systems for binary and multi classes. 

In Chapter three, an ANFIS is utilized to detect the faults of a PV system based on the 

recorded voltage and current signals. Various defects caused by different parts of a PV system are 

classified into one normal condition and seven faulty conditions. The trained model is evaluated 

by introducing new voltage and current signals data and examining its prediction.  

Chapter four represents an ANFIS model for predicting the power generation in a combined 

cycle power plant. These power plants are significantly more efficient than traditional ones, 

making them useful in reducing energy consumption and greenhouse gas emissions. 

Finally, chapter five provides a summary of the achievement of the thesis and 

recommendations for future works. 
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Chapter 2  CNN-based fault detection and classification of PV 

images 

2.1 Introduction 

Solar energy is one of the most dependable renewable energy technologies, as it is feasible 

almost everywhere globally. However, improving the efficiency of a solar PV system remains a 

significant challenge. To enhance the robustness of the solar system, this chapter proposes a trained 

convolutional neural network (CNN) based fault detection scheme to divide the images of 

photovoltaic modules. For binary classification, the algorithm classifies the input images of PV 

cells into two categories, i.e. faulty or normal. To further assess the network's capability, the 

defective PV cells are organized into shadowy, cracked, or dusty cells, and the model is utilized 

for multiple classifications (i.e. four classes). The success rate for the proposed CNN model is 

91.1% for binary classification and 88.6% for multi-classification. Thus, the proposed trained 

CNN model remarkably outperforms the CNN model presented in a previous study which used 

the same datasets. The proposed CNN-based fault detection model is straightforward, simple and 

effective and could be applied in the fault detection of solar panel 

Traditional fossil fuel-based power generations are shifting towards renewable energy to 

achieve net-zero greenhouse gas emissions by 2050. Renewable energy may be cheaper as well as 

be friendly to the environment. Examples of the most promising renewable energy sources are 

hydroelectric power, solar, and wind, as shown in Figure 2-1. 
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Figure 2-1 Images of typical renewable energy sources. Images are taken from [13]. 

 

Photovoltaic energy is one of the cleanest and most [14]available renewable resources, 

which has attracted much attention in recent decades [15]. Solar energy utilization is expected to 

increase more globally in the coming years. It is a promising alternative to fossil fuels and has a 

low adverse environmental impact. The use of solar energy can be downscaled to individual homes 

by using solar panels. These panels absorb the energy from the sun and provide power for a 

particular use, which makes the power system independent of larger electrical grids. Solar panels 

are usually designed to generate electricity in recent decades. However, they may face issues 

during their operation, which can reduce their efficiency or cause complete failure. Like any other 

electrical energy production system, photovoltaic power plants require monitoring and supervision 

to detect defects or abnormalities that may develop during operation and ensure their appropriate 

functioning and longevity while minimizing energy losses [16]. The faults seen in a PV system 

can be grouped into several categories, such as a line-to-line defect [17]. The most common solar 

panel defects are the generation of a hot spot that causes degradation of the cells, microcracks due 

to thin construction, broken glass, and dust accumulation under the glass. All these defects may 

severely diminish the performance of the solar modules. The monitoring can be done on-site (e.g. 
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[18]) or remotely (e.g.[19]). The author applied two CNN strategies to recognize issues in PV 

frameworks with a normal exactness of 73.5%, which isn't palatable and needs more improvement. 

A PV imperfection forecast approach was proposed by combining the fuzzy hypothesis and ANN 

and using voltage and power proportions as input factors to distinguish different PV issues. The 

author connected neural network methods for fault localization and classification of PV 

frameworks and reached good results even with noisy data [20]. 

Despite a lot of research in the intelligent algorithm-based fault detection of PV panels, 

determination of the best performing classifiers remains a challenge since their performances 

depend on various parameters such as the type of the problem, quality of the input signals or 

images, the number of inputs, number of layers, and the adjusting parameters in the networks. The 

current study provides a feature extraction and classification method based on a deep two-

dimensional (2-D) CNN. An overview of the CNN-based fault detection algorithm is illustrated in 

Figure 2-2. Initially, the algorithm classifies the input images of PV cells into two simple 

categories, faulty or normal, called binary classification. Thereafter, the defective PV cells are 

further classified into shadowy, cracked, or dusty cells, known as multiple classifications. The 

approach used in this work is relatively simple while providing satisfactory outcomes. Moreover, 

the algorithm can be used to analyze several pictures of grid-connected solar PV panels and locate 

the faulty cells, which improves the durability and reliability of the PV system. 
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Figure 2-2 A general perspective of the CNN-based fault detection algorithm. 

 

The convolutional neural network is a type of deep learning commonly utilized in image 

recognition and classification in remote sensing. The CNN transforms input information into 

numbers using several layers through its different topologies. The general architecture of a CNN 

is demonstrated in Figure 2-3. The main parts of the CNN are generally convolution layers, pooling 

layers, fully connected layers, batch normalization, SoftMax, and classification layers which are 

briefly discussed below. 
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Figure 2-3 General architecture of the CNN. 

 

Convolution Layer - The convolution layer extracts the image features and convolves the 

input image using convolution kernels of various sizes to produce the image's properties. It is 

followed by an aggregate process that combines the extracted features from diverse image parts 

[21]. 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) (2-1) 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡)∑𝑥(𝑎)𝑤(𝑡 − 𝑎)

∞

−∞

 (2-2) 

This equation indicates the complex function of t, x and w. The latter is the function of a two-

dimensional network. 

Pooling layer – This layer reduces the size of input images and makes the computation cost 

and duration much less. The layer connects the convolutional layer and the output of the model. 
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Fully connected layer - This layer maps the representation of inputs and outputs. It often has 

numeric values. 

The remaining of this chapter is organized as follows. Section 2.2 explains the proposed 

methodology. Section 2.3 provides the findings from the proposed CNN-based fault detection 

technique, and Section 2.4 contains the conclusion. 

2.2 Proposed CNN-based defect detection method 

The proposed CNN-based defect detection scheme is implemented using MATLAB 

software with the following system properties: CPU Intel ® Core™ i5-10400 CPU, 8 GB RAM 

with a 500 GB SSD hard disk, 64-bit operating system, and x64-based processor. This section 

explains the pre-treatment of the training dataset and the network's details for classification. The 

dataset consists of RBG images of solar panel arrays. The majority were collected from various 

internet search engines that offer photos of solar projects worldwide. Authors in [22] provided 

images of four classes (normal, cracked, dusty, and shadowed) of PV panels. The images are 

publicly available on www.github.com. The pictures of the solar cell modules are of the normal 

type, modules of cracked cells, images of dusty cells, and the rest are those partially covered by 

shadow. A typical illustration of each class is demonstrated in Figure 2-4. The data is separated 

into training (70%) and test sections (30%). 
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Figure 2-4 samples of images (cracked, dusty, shadowy and normal). 

 

A segmentation model is utilized to extract an individual segmentation mask for each PV 

module, removing unnecessary information in the images and allowing for entirely accurate 

localization of PV modules in the pictures [23]. Then, data has been rescaled and normalized to be 

prepared for data augmentation to prevent overfitting. The adapted CNN classification framework 

and topology presented in this study can be seen in  
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Figure 2-5 (a). In the proposed model, three layers of convolution followed by max-pooling 

to downscale the input data and extract the different features of the images at different levels. 

Besides, batch normalization layers are applied to robust the training procedure. In the fully 

connected layer, the extracted information from other neurons is combined and compared so that 

the network can predict the classes of each input image. The SoftMax layer is responsible for 

probability distribution over each possible class and classifying the datasets according to the most 

probable type. The network parameters and their assigned values are summarized in  

Figure 2-5 (a) 

Figure 2-5 (b). Afterward, the proposed CNN is applied for training the data. For binary 

classification, the data sets are split into two different categories.  70% of the data are randomly 

selected for training purposes, whereas 30% of the remaining data was selected for testing and 

validation. The output of this classification network indicates the normal and faulty PV cells. 

Details of the parameters used for data augmentation are listed in Figure A 1 in the Appendix. 

Moreover, the parameters of the convolutional, pooling, and batch normalization layers are 

summarized in Figure A2 of the Appendix.  
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Figure 2-5 (a) CNN classification framework and topology, (b) network parameters and their assigned values. 

 

 

 

(a) (b) 
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2.3 Evaluation of the proposed CNN model 

The fault detection accuracy rate of the proposed CNN model is compared with another 

CNN model published in the literature [22] for binary and multi-classifications of the same dataset. 

According to the authors, for semantic segmentation, they used four convolutional layers, each of 

which was followed by a set of ReLu units and max pooling layers. After the last convolution 

layer, authors used a fully connected layer with SoftMax activation functions. The filter size they 

used was 3×3 pixels. For the multiclass architecture of the CNN, they used five convolutional 

layers which featured 5×5 filters. Each convolutional layer was followed by a batch normalization 

layer[24], a ReLu unit, and a max pooling layer. 

The overall results of the comparison are shown in Table 2-1. It can be seen that the proposed 

CNN offers remarkably better accuracy (91.2%) than the other CNN model explored in ref. [22], 

which was found to be 75.2%. The plots of accuracy and loss function with the epoch number for 

binary classification are demonstrated in Figure 2-6. The simulation was terminated after 30 

epochs. However, it appears from the plots that even higher accuracies could be achieved if the 

simulation were allowed to run for more epochs. 

Table 2-1 Comparison of the accuracies among various CNN models for binary classification 

Model Overall accuracy 
Espinosa et al. [22] 75% 
Proposed CNN model 91 % 
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Figure 2-6 Comparative plots of accuracy and loss function with the epoch number for binary classification. 

 

The CNN model was also evaluated by applying it to multiclass images. A comparison 

between the prediction accuracies of the CNN model with that proposed in ref. [22] is summarized 

in  Table 2-2. For the case of multi-classification, the model used in the current study outperforms 

the model in the literature by offering an accuracy of 88.6% compared to 70%. Similar to the 

binary case, the plots of accuracy and loss function shown in Figure 2-7 suggest that further 

improvements in the results could be achieved if the simulation ran for more epochs. 

Table 2-2 Comparison of the accuracies among various CNN models for multi-classification 

Model Overall accuracy 
Espinosa et al. [22] 70 % 
Proposed CNN model 88.6 % 

 



17 
 

 

Figure 2-7 Comparative plots of accuracy and loss function with the epoch number for multi-classification. 

 

The effectiveness of the proposed CNN model is again evaluated by reducing the number of 

layers. That is, a convolutional step is removed from the architecture previously shown in  

Figure 2-5(a), and the new architecture is demonstrated in Figure 2-8 (a). It can be seen in 

Figure 2-8 (b) and (c) that reducing the number of layers degrades the prediction accuracy. For the 

binary class, the model achieved an accuracy of nearly 80%, while for the multiclass, its accuracy 

is around 55%, both of which are less than the accuracies of the three-layer CNN model. 
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Figure 2-8 (a) CNN classification framework and topology with a reduced convolutional layer compared to the 

previous case. (b) Accuracy and loss function with epoch for binary class. (c) Accuracy and loss function with epoch 

for multiclass. 

 

Transfer learning is a machine learning technique [25] that uses a pre-trained model or 

another task [26]. The capability of some frequently used pre-trained networks, including Squeeze 

Net, Dark Net, and Alex Net, in classifying the PV images is examined. The architecture of these 

networks is schematically shown in Figure A3– Figure A5 in the Appendix, respectively. For this 
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purpose, the same dataset is used to re-train the pre-defined network available in the deep learning 

toolbox of MATLAB. A summary of the results is listed in Table 2-3. It can be observed that the 

pre-trained model did not have good performance as compared to the simple CNN model because 

the nature of data is different than the datasets that these pre-trained models have been trained. 

 

Table 2-3 Accuracies of the prediction for three common CNN models. 

 

2.4 Conclusion 

A convolutional neural network-based defect detection of solar PV panel images has been 

presented in this thesis. The proposed technique may be utilized to improve the durability and 

reliability of the PV system and its operations. To rectify the challenges faced with the PV systems, 

this research study offers a deep learning-based solution through a simple fault detection system 

with a far less degree of complexity than other alternatives, so the overall efficiency of the PV 

system is not affected. The network was used to classify the images of PV panels divided into four 

classes of normal, cracked, dusty, and shadowed. It was found that the proposed CNN technique 

effectively classifies data sets with an accuracy of 91.2% for two classes (normal and faulty) and 

88.6% for four categories (normal, cracked, dusty and shadowed), respectively, based on the 

experimental data. The performance of the proposed model was also compared with a model in 

the literature that used the same dataset. It was found that our CNN model outperformed the model 

 Squeeze Net Dark Net Alex Net 

Binary classification 28% 78% 75% 

Multi classification 25% 25% 28% 
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in the literature by 16% for the binary and 18.6% for multi-class. Transfer learning was used to 

investigate if some pre-trained models can perform better. The results suggested that those models 

are not suitable for this specific dataset and did not provide acceptable accuracies. The presented 

model can be easily applied to other similar engineering applications, such as the inspection of 

wind turbines in which a manual check is not safe. Furthermore, the proposed algorithm is very 

flexible for implementation. Thus, the proposed fault detection scheme could be applied to a real-

life solar farm to increase the reliability of the solar system and decrease the maintenance cost of 

PV panels. 
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Chapter 3 ANFIS-based fault detection and classification of 

PV systems 

3.1 Introduction 

  In recent years, renewable energy resources and their interconnection to the power grid 

have become the focal subject of research in academia and industry. The exhaustion of fossil fuels, 

the necessity to create carbon-free power grids, and the reduction of global warming have 

accelerated the integration of solar energy systems, especially PV systems, into power networks. 

Although PV systems provide numerous environmentally friendly advantages, their operation is 

highly susceptible to undesirable transient conditions, such as electrical faults at the point of 

common coupling near the grid or any fault at the PV mechanical and electrical system. This 

chapter presents the implementation of an intelligent algorithm for improving the reliability and 

suitability of a photovoltaic (PV) system. These renewable energy systems are highly susceptible 

to power grid transients. Their operation may suffer drastically during faults in the solar arrays, 

power electronics, and the inverter. Thus, it is essential to develop an intelligent mechanism to 

detect any type of fault or abnormalities in the shortest possible time and provide security for the 

solar system. An adaptive neuro-fuzzy inference system (ANFIS) is developed to distinguish 

between a grid-connected PV system's regular and faulty operation. A large dataset from a real-

time laboratory experiment using TBD125x125-36-P PV module, which includes the current and 

voltage characteristics of PV, is extracted, preprocessed, and used in the machine learning 

algorithm training. ANFIS is not commonly used for classification purposes. In this study, we 

investigated its capability in multi-classification by applying it to the signals of a PV system in 
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normal and faulty conditions. ANFIS demonstrated promising results, with an accuracy rate of 

95.4%. Furthermore, the proposed technique is significantly robust and straightforward. Thus, the 

developed ANFIS-based intelligent approach will enhance the reliability of the PV system by 

minimizing the maintenance cost and saving time and energy. 

The investigation was repeated with machine learning classifiers and concluded that the 

Decision Tree and K-nearest neighbours have quick and good performance with an accuracy rate 

of 99.8% and 99.7%, respectively. Although these ML classifiers outperform ANFIS, these models 

can not be used with a controller in experiments. ANFIS controller is an outstanding experimental 

tool for the prevention and control of probable faults of the system.   Hence, condition monitoring 

of photovoltaic systems is highly critical to avoid additional costs and low system performance 

and provide customers with a reliable and sustainable service.  

The rest of the chapter is organized as follows. Section 3.2 presents the fundamental 

operation of solar cell and PV systems. The development of the proposed ANIFS-base fault 

detection is discussed in section 3.3. At the same time, the parameters of the ANFIS and PV system 

under study are presented in section 3.4. Lastly, a conclusion is drawn in section 3.5, which sums 

up the findings and contribution of the research concisely. 

 

3.2 Literature Review 

Much research has been conducted on PV systems' monitoring and fault detection [26-35]. 

In [27], [28], the authors suggested that fault detection and diagnosis in any power system 

compromised by photovoltaic systems could achieve optimal efficiency. For small-scale solar 

panels, fault detection may be performed by a skilled technician. However, such manual inspection 
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and diagnosis may not be efficient and takes time on a large-scale grid-connected PV system. As 

a result, automatic fault detection using intelligent algorithms was recommended to optimally 

detect any fault and perform real-time diagnosis in these systems [29]. In this research [29], an 

isolated convolutional neural model (ICNM) was proposed to monitor the condition of PV systems 

and classify solar panels based on their operation. However, the performance of this model suffers 

drastically as the size of the dataset increases, which may result in poor performance. This research 

flaw was addressed in [[30] by proposing two different CNN schemes to develop an intelligent 

fault detection mechanism for large-scale PV systems. However, the algorithm's performance was 

poor and had an accuracy rate of only 72%, which requires further improvement. The application 

of a hybrid fuzzy logic and artificial neural network (ANN) was tested for fault detection in PV 

systems [31], where the authors employed power ratio and voltage ratio as input variables to detect 

various PV conditions, with a detection accuracy of 92.1 percent for PV faults, which demonstrated 

more promising results compared to the previous methods. However, all the aforementioned 

techniques, with similar variations, including artificial intelligence (AI) approaches, neural 

networks, fuzzy logic, and expert systems, as observed in [9], failed to detect the faults at a high 

accuracy rate and satisfactory results. Therefore, there is a necessity to develop alternative 

approaches to tackle the fault detection and diagnosis challenges in PV systems[9], [29]–[36]. 

The aforementioned problems were addressed in  [37], where the authors implemented an 

ANFIS-based hybrid artificial intelligence that combines both the neural network and fuzzy logic 

algorithms into one system, which would provide both the merits of the learning ability of neural 

networks and the knowledge representation of fuzzy systems, in a unique system  [38]. Fuzzy 

inference systems benefit from having an inherently unique structure in the form of fuzzy if-then 

rules which can be applied in dealing with uncertain situations. Such a system intelligently 
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interpreted the desired outcome. At the same time, other approaches, such as neural networks, 

could not do so in such a subtle way  [39]. A similar study showed that ANFIS could be 

implemented in applications that require parameter estimation, modelling, and control of complex 

systems, such as PV systems [40]. Furthermore, it was shown that applying ANFIS would result 

in fewer errors in classification and regression [41] This enables precise solutions even for highly 

nonlinear systems. 

Based on the advantages mentioned above, an ANFIS-based fault detection mechanics is 

proposed in this research to monitor the condition of PV modules and detect any abnormalities in 

the system. The intelligent control scheme is successfully trained by incorporating a large dataset 

from a real-time laboratory experiment. The data is further processed by denoising and rectifying 

to improve the efficiency and accuracy of ANFIS. The proposed technique is developed in a way 

that can discriminate between normal and abnormal operations and classify the type of fault that 

occurs in PV systems.  

3.3 Proposed ANFIS-based Fault Detection Scheme for PV Systems 

This section presents the development of the proposed ANFIS-based fault detection scheme 

for a grid-connected PV system. In order to build the intelligent control scheme, data are extracted 

from the real-time lab experiments of the PV microgrid system during normal and fault operations 

as provided by [42], [43]. The dataset includes 16 data files, each corresponding to one 

experimental scenario. Only eight files were chosen for this study. The experiments were 

performed under a control mode of maximum power point tracking (MPPT). For the purpose of 

fault classification for this research, data are classified into eight classes, and a number between 0 

to 7 is assigned to each class. Number zero corresponded to the fault-free experiment (normal 
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condition). As a sample, a part of the experimental voltage and current data for all classes, 

including normal and faulty ones, are listed in Table A2 and  

Table A3 of the Appendix.   

In contrast, others imply a specific kind of fault in the system. These faults are caused by the 

severity of photovoltaic array faults, inverter faults, grid anomalies, feedback sensor faults, and 

MPPT controller faults. Measurements are recorded with a sampling time of ~10 μs, which would 

result in unwanted noisy data. Each dataset row consisted of 13 columns: the PV array current, PV 

array voltage, DC voltage, 3-phase current, 3-phase voltage, current magnitude, current frequency, 

voltage magnitude, and voltage frequency. To classify the faults in the current study, only two 

signals, the PV array current (IPV) and voltage (VPV), are chosen as the ANFIS inputs. The output 

would be the class of fault and the normal operation of the PV system, as shown in Table 0-1, 

where the proposed ANFIS would be responsible for detecting the correct behaviour of the PV 

based on the incoming inputs. 

 

 

 

 

 

 

Table 0-1 Different types of faults in the PV system 

PV Condition Defected part Details 
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The presence of noise in this dataset adds complexity to the model. It may increase the time 

of learning the intelligent system. As a result, the performance of the learning algorithm would 

suffer immensely. Hence, the 10 μs measurements are averaged over 0.1 ms periods to diminish 

the noise in the data. The averaging is performed on the last 100 data, and the resultant signal is 

introduced to the intelligent system. The applied averaging technique would significantly reduce 

the measurement variability and improve the model accuracy. However, the drawback would be 

that it may slow down the system response marginally. Nonetheless, it does not create any 

significant lag in detecting faulty signals since the data is averaged over 0.1 ms, which is still 

considered a relatively short time. 

To understand the development of the intelligent control scheme in detecting faults in PV 

systems, the simplified architecture of an ANFIS technique is presented here. Assuming that the 

fuzzy inference system has two input variables (x, y) and one output variable (z), as shown in 

Figure 0-1, the architecture would consist of five layers. The role of each layer is presented as 

follows: 

Normal All parts are intact The PV system is in a healthy condition 

Fault 1 Inverter fault Complete failure in one of the six IGBTs 

Fault 2 Feedback Sensor fault One phase sensor fault 20% 

Fault 3 Grid anomaly Intermittent voltage sags 

Fault 4 PV array mismatch 10 to 20% nonhomogeneous partial shading 

Fault 5 PV array mismatch 15% open circuit in PV array 

Fault 6 MPPT controller fault −20% gain parameter of PI controller in MPPT 
controller of the boost converter 

Fault 7 Boost converter controller 
fault 

+20% in time constant parameter of PI controller in 
MPPT controller of the boost converter 
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Figure 0-1 A simplified ANFIS architecture with two inputs (x,y) and one output (z). 

 

Layer 1: This layer contains square nodes represented by a linguistic fuzzy label representing 

a membership function (MF). These nodes are adaptive, and each node in this layer outputs the 

membership value for the specified input crisp value given by: 

𝑂𝑖
(1)
= 𝜇𝐴𝑖(𝑥), 𝑖 = 1, 2 (0-1) 

𝑂𝑖
(1) = 𝜇𝐵𝑖−2(𝑦),      𝑖 = 3, 4 (0-2) 

where 𝑂𝑖
(1)  represents the output of node i, 𝐴𝑖  and 𝐵𝑖  and 𝐶𝑖  are the fuzzy sets, and μ 

represents the membership function value, which may vary between 0 and 1. The membership 

functions may be triangular, trapezoidal, Gaussian, bell-shaped, or any arbitrary part that varies 

between 0 and 1. Here, a generalized bell-shaped membership function is employed to quantify 

the degree of belongingness of the crisp input in the fuzzy set: 

 𝜇(𝑥) =
1

1 + |
𝑥 − 𝑐
𝑎 |

2𝑏 (0-3) 
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where a, b, and c are premise parameters that should be determined through training of the system 

by the dataset. Parameter a defines the width of the MF, b establishes the shape of the curve on 

either side of the central plateau, and c defines the center of the membership function. 

Layer 2: The nodes in this layer are fixed nodes categorized by П, which take the product of 

all the incoming signals and calculate the firing strength (𝑤𝑖) of a rule for node i as: 

𝑂𝑖
(2) = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∙ 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2  

(0-4) 

Layer 3: This layer determines the normalized firing strength for node i by calculating the 

ratio of the ith rule firing Power to the sum of the firing strengths of all rules: 

𝑂𝑖
(3) = 𝑤𝑖̅̅ ̅ =

𝑤𝑖
𝑤1 + 𝑤2

, 𝑖 = 1, 2 (0-5) 

where, 𝑤𝑖̅̅ ̅ Represents the ith rule normalized firing strength.  

Layer 4: This layer consists of square nodes which are adaptive. The output of this layer 

may be expressed by: 

𝑂𝑖
(4) = 𝑤𝑖̅̅ ̅ 𝑓𝑖 = 𝑤𝑖̅̅ ̅ (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1, 2 (0-6) 

where 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖 denote the consequent parameters for the ith rule and are determined through 

training of the system by the dataset.  

 Layer 5: This layer contains circular nodes labelled as ∑. This layer sums up all the 

incoming signals from Layer 4. It estimates the overall output of the fuzzy inference system as: 
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𝑂1
(5) =∑ 𝑤𝑖̅̅ ̅

𝑖
𝑓𝑖 (0-7) 

ANFIS has rarely been applied for classification purposes in the literature since the output 

layer yields an actual number rather than an integer. This results from the continuity of the 

membership functions used to fuzzify the inputs. A minor modification has been proposed to the 

output layer in the current study to make the ANFIS architecture suitable for fault classification 

purposes. The outputs of the ANFIS are real numbers, most of which fall within 0 to 7. The 

outcome is rounded to the closest integer to determine the fault class. This is similar to a sign 

activation function for binary classification. For instance, if the output is 3.2, the faulty signals are 

considered in the third fault class. For a few data pairs, the predictions are out of the valid range 

of 0 to 7. To address the out-of-range predictions, any output more than 7 (e.g., 8.8) is regarded as 

class 7, while any output smaller than 0 (e.g., -2.4) is regarded as class 0 (normal signals). The 

proposed ANFIS-based fault detection scheme is then trained using the experimental data 

discussed earlier and verified by the rest of the data. 

3.4 ANFIS and PV System Parameters 

The ANFIS parameters used in the current study are tabulated in  

Table 0-2. Each input is fuzzified using five membership functions. After every five epochs, 

the learning rate may increase or decrease by 10%, or remain the same, to strike a balance between 

the solver stability and computational speed. The maximum number of the epoch is set to 500. The 

dataset is divided into the train and test sets, with the allocation of 80% (shuffled and randomly 

selected) to the train set and the rest of 20 % to the test set. 

Table 0-2 The parameters of the proposed ANFIS-based fault detection scheme applied for PV systems 
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ANFIS Parameters Value 
Number of inputs 2 
Number of membership functions 10, 20 for the first and second input 
Number of linear parameters 600 
Number of nonlinear parameters 90 
Number of fuzzy rules 200 
Clustering type Grid partition 
Maximum epoch 60 
Initial learning rate 0.01 
Step size increase 1.1 
Step size decrease 0.9 
Number of training data pairs 428,021 (80% of the total data) 
Number of test data pairs 107,003 (20% of the total data) 

 
 

3.5 Simulation Results 

This section presents the data preprocessing, the training of the proposed ANFIS scheme, 

and a comparison of the performance of ANFIS with various machine learning techniques in 

detecting faults in a PV system. 

3.5.1 Data preparation for ANFIS-based intelligent control scheme 

As mentioned earlier, the dataset attained from the real-time lab experiment consists of some 

distortions. Before training ANFIS, processing the dataset and diminishing the unwanted noises is 

crucial. Therefore, both the voltage and current datasets are processed by denoising the signals to 

hamper the noise in the data, where the 10 μs measurements are averaged over 1 ms periods. Then 

the refined datasets are used as the inputs of the proposed ANFIS. The averaging is performed on 

the last 100 data. The resultant signal is introduced to the intelligent system for voltage and current 

signals before and after data denoising. The typical waveform for the voltage and current denoising 

process is shown in  

(a) (b) 
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Figure 0-2 and Figure 0-3, respectively. 

 

Figure 0-2 Data preprocessing by denoising the voltage signals using the moving average of 100 previous data: (a) 

original data and  (b) denoised data. 

 

Figure 0-3 Data preprocessing by denoising the current signals using the moving average of 100 previous data: (a) 

original data and  (b) denoised data. 

 

3.5.2 The training process of ANFIS and further improvement procedures 

After the current and voltage input signals are properly rectified, they are fed to the 

developed ANFIS to be trained so that the control scheme can detect any abnormality in the PV 

system by classifying fault types and discriminating between normal operation and fault conditions 

(a) (b) 



32 
 

of solar panels. During the training of the ANFIS, several observations related to overfitting, 

membership functions and learning rate are addressed here. 

3.5.3 Accuracy of predictions 

The results of the capability of ANFIS in classifying the signals are demonstrated by a 

confusion matrix shown in Figure 0-4. In the confusion matrix, the green cells on the diagonal 

represent the number of correct predictions of each class, while those in the other cells show the 

incorrect predictions. Some cells are empty, which means there are no false predictions for that 

specific class.  Also shown in Figure 0-4 is a table that summarizes the percent of correct and 

incorrect predictions for each individual class. Based on the results, ANFIS works very well in 

predicting classes 0, 3, 4, 5, 6, and 7 (above 97%). However, it shows a fair ability to classify 

classes 3 and 4. The overall accuracy of the model considering all classes is 95.4%. 
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Figure 0-4 Confusion matrix of ANFIS performance: The digits on the axis represent the class of faults, ‘0’ - 

normal operation, ‘1’-  inverter fault. ‘2’- feedback sensor fault   , ‘3’- grid anamoly,4,5-PV array mistmatch,6- 

It is worth comparing the ANFIS performance with two common classifiers: Decision Tree 

and k-nearest neighbours’ algorithm (KNN). The same dataset after denoising was fed to these 

models, and the system was trained. The training procedure was found to be much faster than that 

of the ANFIS. The result of the comparison is shown in Table 0-3. As can be seen, both methods 

offer a high value of accuracy (> 99%), except for coarse decision tree and cosine KNN, with 

accuracies of 65.7% and 85.9%, respectively. The exactness of the Decision Tree and KNN models 

are also inspected when raw data (without denoising) is introduced into the algorithm. The results 

are listed in Table 0-3. It can be seen that both methods provide fair accuracies. The methods, 

however, have their own disadvantages, which have been discussed elsewhere [44], [45].  
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Table 0-3 Accuracy of the classification using Decision Tree and KNN. 

 

3.5.4 Overfitting  

Because of the massive size of the dataset, overfitting might reduce the accuracy and 

performance of ANFIS. One way to minimize the overfitting issue is to check the test data's root 

mean square error (RMSE) after a certain number of epochs. Once it begins to increase, the training 

must be ceased. At this point, it provides the best performance on both the training and test datasets. 

The minimal value of RMSE in this research is found to be 0.3.  

3.5.5 Membership functions 

In this section, the investigation is focused on the performance of the ANFIS with different 

types of membership functions. The overview of the proposed ANFIS-based intelligent system is 

illustrated in Figure 0-5. The criterion for the performance quality is the RMSE of the trained data. 

Among a variety of existing memberships, it is observed that the general bell function seems to be 

Algorithm Accuracy (%) Accuracy (%) without denoising 

Decision Tree (Fine) 99.8 91.7 

Decision Tree (Medium) 99.3 90.5 

Decision Tree (Coarse) 65.7 65.2 

KNN (Fine) 99.7 89.7 

KNN (Medium) 99.8 91.7 

KNN (Coarse) 99.7 91.9 

KNN (Cosine) 85.9 69.3 

KNN (Cubic) 99.8 91.7 

KNN (Weighted) 99.8 90.3 
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one of the best candidates as it results in a low RMSE rate. The Gaussian Membership would also 

be suitable; however, it only provides a negligible improvement to the error while introducing an 

extra premise parameter to the system of equations. Finally, the combination of two general bell 

functions or two Gaussian membership functions would provide a small RMSE, nonetheless fails 

to significantly improve the error rate compared to when the individual sigmoidal and Gaussian 

membership functions are implemented. Additionally, it is worth noting that by increasing the 

number of membership functions, the minimal RMSE drops dramatically. 
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.  

Figure 0-5 Overview of the proposed ANFIS-based control scheme: (a) Membership functions used for voltage and 

current input signals, (b) General learning association links between inputs and output. 

3.5.6 Learning rate: 

The learning rate (η) is a primary parameter that should be adjusted in the training process. 

This parameter balances the magnitude of the weight updates to minimize the loss function. The 

learning rate may initially be set to a small value. If the loss increases, a smaller value of η results 
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in overfitting and hence, leading to performance degradation. So, the initial learning rate is 

typically chosen as large as possible since the weights may be far from optimum values. In this 

research, the learning rate of 0.01 is found more suitable and reliable than the lower initial learning 

rates. 

3.6 Conclusion 

In this research, an intelligent fault detection mechanism based on the ANFIS algorithm has 

been developed to monitor the condition of PV systems and detect any abnormality within the 

module. A large dataset from a real-time laboratory experiment for the TBD125x125-36-P PV 

module was extracted to train the algorithm [43]. The PV solar panels’ current and voltage 

characteristics were preprocessed and used as input to the proposed ANFIS structure. After that, 

eight different outputs, normal operation, and seven different types of fault conditions, such as 

inverter fault of the PV system, were defined for the proposed ANFIS algorithm. The proposed 

technique has been tested under various conditions, and its efficacy has been compared with 

commonly used machine learning techniques decision tree and k nearest neighbours. The accuracy 

of the proposed ANFIS-based technique in detecting and classifying the PV panel faults has been 

found superior to the commonly used machine learning techniques. Therefore, the developed 

ANFIS-based fault detection and classification scheme could be utilized as an excellent condition 

monitoring technique for PV systems to improve their reliability, suitability and efficiency in 

modern power systems.  
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Chapter 4  

ANFIS Based Prediction of Electrical Power Generation in a 

Combined Cycle Power Plant 

4.1 Introduction  

      The accurate prediction of power generation in a power plant is crucial to decide whether 

a power plant would be econimcally viable to construct and/or operate to minimize the cost of 

electricity production. The power plant is a highly complicated and nonlinear system, intelligent 

optimization algorithms would be a good candidate to deal with such complicated system with 

uncertainties. Soft computing techniques have attracted many researchers in the past few decades. 

They have proven to be an efficient method to deal with complicated problems for which 

conventional analytical methods are infeasible or too expensive. Thus, this chapter presents the 

development of an adaptive neuro-fuzzy inference system (ANFIS) to predict the generated 

electrical power in a combined cycle power plant. The ANFIS architecture is implemented in 

MATLAB through a custom code that utilizes a hybrid algorithm combining the gradient descent 

and the least square estimator with training the network. The model is verified by approximating 

a nonlinear equation with three variables. Once its validity is confirmed, the ANFIS is used to 

forecast the power generated by the power plant. The ANFIS structure has three inputs: 

temperature, pressure, and relative humidity. Three Gaussian membership functions are used to 

fuzzify each of the three inputs. The first-order Sugeno type defuzzification approach is employed 

to evaluate a crisp output. It is found that the ANFIS can successfully predict the electrical Power 

to a high degree of accuracy and is a promising tool to be applied to the field of energy production. 
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Several artificial intelligence techniques have been proposed [46]to solve different issues in 

different areas. These methods include artificial neural networks (ANN), neuro-fuzzy (NF), fuzzy 

logic and optimization algorithms such as the genetic algorithm (GA), particle swarm optimization 

(PSO), and artificial bee colony (ABC) algorithm. Among these techniques, ANFIS has attracted 

much attention and has become one of the most popular artificial intelligent models that have been 

employed in several studies, such as prediction of the energy required in buildings[47], control of 

nonlinear systems [48], time-series predictions[49], estimation of wind speed membrane 

separation. 

The Adaptive Neuro-Fuzzy Inference System technique was initially introduced by Jang in 

1993 [50]. ANFIS is a hybrid artificial intelligence technique that combines neural networks and 

fuzzy logic. Therefore, provide both the merits of the learning ability of neural networks and the 

knowledge representation of fuzzy systems [51]. Fuzzy inference systems enable us to show 

uncertain situations using fuzzy If-Then rules. The system can wisely interpret the results while 

other approaches, such as neural networks, cannot do so [52]. ANFIS has proven to estimate 

functions among other neuro-fuzzy models [41]. 

ANFIS utilizes several training data to map the desired output through its rule-based 

structure. The fuzzy sets are defined by membership functions (MF) and rules. C crisp values are 

converted into fuzzy values by assigning the membership functions to each input variable. 

Therefore, the input variables are fuzzy in nature, whereas the output variables are crisp in nature. 

In fuzzy logic, the [53] of any statement has a degree of correctness contrary to classical logic, 

which only permits conclusions that are either true or false. There are two main fuzzy inference 

systems commonly used, Mamdani and Sugeno-type. The difference between these two types is 

how the outputs are determined. In the Sugeno-type inference system, the network's output is 
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constant (zero-order Sugeno model) or a linear combination of the input variables (first-order 

Sugeno model). ANFIS is usually applied to optimize the Sugeno fuzzy inference system's 

parameters for matching input-output data with minimal error. Both the gradient descent (GD) 

method and least squares estimate (LSE) are used to train the ANFIS. This method was first 

proposed by Jang[50]. The ANFIS was applied to predict the generated electricity in a combined 

cycle power plant in this research. In these types of plants, efforts are put into converting as much 

heat as possible from the exhaust gas of the gas turbine into steam for a steam turbine[54]. 

Therefore, the plant efficiency is boosted because of this heat recovery. From a set of measured 

data in one year, it turns out that the output electrical power of the plant (E) is a function of the 

ambient temperature (T), ambient pressure (P), and relative humidity (H). Here, a custom code in 

MATLAB was developed to construct an ANFIS structure whose inputs are T, P, and H. 

The gradient descent and least square estimator optimization techniques are used to train the 

parameters of the proposed ANFIS structure for this specific application. They predicted the power 

of some unseen data. To ensure that the code is free of errors, additional steps were used other than 

predicting and checking the output power of the plant. The same model of the power plant in the 

MATLAB ANFIS toolbox compared the results with the proposed custom code. The results of 

each step are explained in detail. Some aspects of the ANFIS, such as the effect of the type of 

membership functions, zero and first-order Sugeno models, number of membership functions and 

so forth, are discussed.  

The rest of this chapter includes background, methodology, evaluation, and conclusion. 

4.2 Background   
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The details of an ANFIS architecture are already explained in Chapter 3. In this chapter, the 

hybrid learning algorithm is discussed, and the implementation of the model through programming 

in MATLAB is presented. Once the ANFIS structure is built, it is refined by a hybrid learning 

algorithm. The LSE algorithm followed by a back-propagation algorithm based on the gradient 

descent method is commonly used as the learning algorithm for updating the parameters[50]. This 

technique is found superior to the classical training algorithms because it helps to avoid trapping 

in the local minima. If the values of the premise parameters (𝜎𝑖 and 𝑐𝑖) are fixed, the overall output 

of the system becomes a linear combination of the consequent parameters (𝑝𝑖, 𝑞𝑖, and 𝑟𝑖 ). The 

specific ANFIS architecture shown in Figure 0-1 contains three inputs with 3 Gaussian 

membership functions assigned to each input variable. For the proposed ANFIS architecture, 27 

fuzzy IF-THEN rules based on a first-order Sugeno model are considered. Note that higher-order 

Sugeno fuzzy models may be employed, but they introduce more complexity to the system without 

significant merit [55].  

In the design of the ANFIS, the maximum possible number of rules were considered that can 

be started by the "AND" fuzzy operator. The number of rules, in this case, can be calculated by 

the product of the number of membership functions of all inputs. Therefore, 27 rules may be 

introduced to the network. Fewer rules may be used to boost computational speed, but that will 

degrade the performance of the system. However, this is not necessary since the computational 

time for the chosen number of training data is a few minutes. Moreover, by using fewer rules, the 

system may find capturing the relation between the inputs and the output more challenging. 

Methods to find the optimal number of rules may be found elsewhere [56]. Based on the 27 rules 

and 9 MSFs, the total number of fitting parameters is 126, including 18 premise parameters 

(nonlinear) of the Mfs and 108 consequent parameters (linear) of the rules.  
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Figure 0-1 ANFIS architecture for three inputs and a single output. Each input has 3 Gaussian Mfs, and 27 rules are 

defined. 

 

The ANFIS developed in Section 4.2 should be appropriately trained to generate an optimal 

input/output mapping. The iteration in each epoch consists of two significant steps. First, for the 

given values of the MF parameters and P training data pairs, the liner parameters in the consequent 

part are optimized using LSE. For the 27 rules considered, 108 unknowns need to be obtained. The 

gradient descent algorithm is employed to update the premise parameters 𝑐𝑖 and 𝜎𝑖. The root mean 

square error (RMSE) of the model predictions is defined as: 
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𝐸(𝜽) = √
1

2𝑃
∑(𝑦obs

(𝑘) − 𝑦model
(𝑘) )

2
𝑃

𝑘=1

 (0-1) 

where 𝑦model
(𝑘)  is the predicted output for the kth data pair and 𝑦obs

(𝑘) is the actual kth output. This 

function, also known as the cost function, should be minimized. The parameters of the membership 

functions may be updated as:  

𝑐𝑖 = 𝑐𝑖 − 𝜂
𝜕𝐸

𝜕𝑐𝑖
 (0-2) 

𝜎𝑖 = 𝜎𝑖 − 𝜂
𝜕𝐸

𝜕𝜎𝑖
 (0-3) 

Where 𝜂  is the learning rate initially set to a small value (i.e. 0.001), it may be increased to 

accelerate the convergence or decreased to avoid system instability. The selection of 𝜂 is problem-

specific which needs to be determined by the user. The procedure of choosing an appropriate 𝜂 in 

this study will be discussed later. Initially, 80% of the data (P = 2521) were loaded for training the 

network. The FIS was generated by choosing Gaussian Mfs by using a hybrid optimization 

algorithm. To facilitate convergence, the initial parameters of the membership functions were 

selected in such a way that the centers of the MFs are equally spaced along with the range of each 

input variable.  

4.3 Hybrid learning Algorithm 

Once the ANFIS structure is built, it is refined by a hybrid learning algorithm. The LSE 

algorithm followed by a back-propagation algorithm based on the gradient descent methods is 
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commonly used as the learning algorithm for updating the parameters [57]. This technique is 

superior to classical training algorithms because it helps avoid trapping in the local minima. If the 

values of the premise parameters (𝜎𝑖 and 𝑐𝑖) are fixed, the overall output of the system becomes a 

linear combination of the consequent parameters ( 𝑝𝑖 , 𝑞𝑖 , and 𝑟𝑖  ). Therefore, initially, the 

parameters of all membership functions are fixed, and the solution is propagated forward in the 

system. Next, the recursive weight learning algorithm is used to tune the consequent parameters. 

For the given membership functions, the resulting parameters can be obtained using the LSE 

method: 

𝑨𝜽 = 𝒚 (0-4) 

Where 𝑨 is the design matrix, 𝜽 is the unknown parameter vector, and 𝒚 is the output vector. 

By minimizing the error, the final best approximation for the consequent parameters can be found 

by: 

𝜽̂ = (𝑨𝑇𝑨)−1𝑨𝑇𝒚 (0-4) 

In the backward path, the parameter matrix 𝜽̂  is held constant, and the error signals 

propagate backward in the system. The parameters of all membership functions are adjusted 

using the gradient descent method. 

In this work, the ANFIS architecture (Figure 0-1) contains three inputs with three Gaussian 

membership functions assigned to each input variable. To present the ANFIS architecture, 27 fuzzy 

IF-THEN rules based on a first-order Sugeno model are considered: 

IF 𝑥1 is 𝐴1 AND 𝑥2 is 𝐵1 AND 𝑥3 is 𝐶1 THEN 𝑦1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1𝑥3 + 𝑠1 

IF 𝑥1 is 𝐴1 AND 𝑥2 is 𝐵1 AND 𝑥3 is 𝐶2 THEN 𝑦2 = 𝑝2𝑥1 + 𝑞2𝑥2 + 𝑟2𝑥3 + 𝑠2 
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.                     .                      . 

.                     .                      . 

IF 𝑥1 is 𝐴3 AND 𝑥2 is 𝐵3 AND 𝑥3 is 𝐶2 THEN 𝑦26 = 𝑝26𝑥1 + 𝑞26𝑥2 + 𝑟26𝑥3 + 𝑠26 

IF 𝑥1 is 𝐴3 AND 𝑥2 is 𝐵3 AND 𝑥3 is 𝐶3 THEN 𝑦27 = 𝑝27𝑥1 + 𝑞27𝑥2 + 𝑟27𝑥3 + 𝑠27 

where 𝑥1, 𝑥2, and 𝑥3 are the inputs, 𝐴𝑖 and 𝐵𝑖 and 𝐶𝑖 are the fuzzy sets, 𝑦𝑖 are the outputs 

within the fuzzy region specified by the fuzzy rule, and 𝑝𝑖, 𝑞𝑖, 𝑟𝑖, 𝑠𝑖 are the design parameters that 

are determined during the training process. Note that higher-order Sugeno fuzzy models may be 

employed. However, they introduce more complexity to the system without significant merit [55]. 

In the design of the ANFIS, we considered the maximum possible number of rules that can 

be stated by the “AND” fuzzy operator. The number of rules, in this case, can be calculated by the 

product of the number of membership functions of all inputs. Thus, 27 rules are used in the 

proposed ANFIS network.  Less than 27 rules may be used to boost the computational speed, but 

this would result in the degradation of system performance. Moreover, in this work, it is not 

necessary to reduce the computational burden since, for the chosen number of training data, the 

computational time is in the order of a few minutes only. Methods to find the optimal number of 

rules may be found elsewhere [56]. Based on the 27 rules and 9 Mfs, the total number of fitting 

parameters is 126, including 18 premise parameters (nonlinear) of the Mfs and 108 consequent 

parameters (linear) of the rules.  

The correlation coefficient is an index that demonstrates the strength of the relationship 

between the actual values and the predicted values and is given by: 
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𝑅2 =
∑ (𝑦obs

(𝑘) − 𝑦̅obs)
2

𝑃
𝑘=1 − ∑ (𝑦obs

(𝑘) − 𝑦model
(𝑘) )

2
𝑃
𝑘=1

∑ (𝑦obs
(𝑘) − 𝑦̅obs)

2
𝑃
𝑘=1

 (0-5) 

where 𝑦̅model  and 𝑦̅obs  are the average values of 𝑦model
(𝑘)  and 𝑦obs

(𝑘) , respectively. The 

correlation coefficient takes a value between zero and one. A model with a higher 𝑅 is said to have 

better performance. The correlation coefficient of the plot is 0.943, which is quite close to one. 

The ANFIS developed in Section 4.2 should adequately be trained to generate an optimal 

input/output mapping. The iteration in each epoch consists of two significant steps. First, for the 

given values of the MF parameters and P training data pairs, the liner parameters in the consequent 

part are optimized using LSE. For the 27 rules considered, 108 unknowns need to be obtained. The 

resulting matrix from the inference operation of the NF predictor is formed as: 

𝑨

=

[
 
 
 
 
 
 
 
 𝑤̅1𝑥1

(1) 𝑤̅1𝑥2
(1) 𝑤̅1𝑥3

(1) 𝑤̅1 ⋯   

𝑤̅1𝑥1
(2) 𝑤̅1𝑥2

(2) 𝑤̅1𝑥3
(2) 𝑤̅1 ⋯   

𝑤̅1𝑥1
(3) 𝑤̅1𝑥2

(3) 𝑤̅1𝑥3
(3) 𝑤̅1 ⋯   

⋮ ⋮ ⋮ ⋮ ⋱   

𝑤̅1𝑥1
(𝑃−2) 𝑤̅1𝑥2

(𝑃−2) 𝑤̅1𝑥3
(𝑃−2) 𝑤̅1 ⋯   

𝑤̅1𝑥1
(𝑃−1) 𝑤̅1𝑥2

(𝑃−1) 𝑤̅1𝑥3
(𝑃−1) 𝑤̅1 ⋯

𝑤̅1𝑥1
(𝑃) 𝑤̅1𝑥2

(𝑃) 𝑤̅1𝑥3
(𝑃) 𝑤̅1 ⋯

𝑤̅27𝑥1
(1) 𝑤̅27𝑥2

(1) 𝑤̅27𝑥3
(1) 𝑤̅27

𝑤̅27𝑥1
(2) 𝑤̅27𝑥2

(2) 𝑤̅27𝑥3
(2) 𝑤̅27

𝑤̅27𝑥1
(3) 𝑤̅27𝑥2

(3) 𝑤̅27𝑥3
(3) 𝑤̅27

⋮ ⋮ ⋮ ⋮

𝑤̅27𝑥1
(𝑃−2) 𝑤̅27𝑥2

(𝑃−2) 𝑤̅27𝑥3
(𝑃−2) 𝑤̅27

𝑤̅27𝑥1
(𝑃−1) 𝑤̅27𝑥2

(𝑃−1) 𝑤̅27𝑥3
(𝑃−1) 𝑤̅27

𝑤̅27𝑥1
(𝑃) 𝑤̅27𝑥2

(𝑃) 𝑤̅27𝑥3
(𝑃) 𝑤̅27]

 
 
 
 
 
 
 
 

𝑃×108

 

The consequent parameter set 𝜽, whose elements are to be updated, and the output vector 𝒚 

are written as: 
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𝜽 =

[
 
 
 
 
 
 
 
 
𝑝1
𝑞1
𝑟1
𝑠1
⋮
𝑝27
𝑞27
𝑟27
𝑠27]
 
 
 
 
 
 
 
 

  ,   and       𝒚 =

[
 
 
 
 
 
 
 
 
 
 
𝑦(1)

𝑦(2)

𝑦(3)

𝑦(4)

⋮
𝑦(𝑃−3)

𝑦(𝑃−2)

𝑦(𝑃−1)

𝑦(𝑃) ]
 
 
 
 
 
 
 
 
 
 

 

Once the consequent parameters are obtained by using Eqn. (0-4), the gradient descent 

algorithm is employed to update the premise parameters 𝑐𝑖 and 𝜎𝑖. The root means square error 

(RMSE) of the model predictions is defined as: 

𝐸(𝜽) = √
1

2𝑃
∑(𝑦obs

(𝑘) − 𝑦model
(𝑘) )

2
𝑃

𝑘=1

 (0-6) 

where 𝑦model
(𝑘)  is the predicted output for the kth data pair and 𝑦obs

(𝑘) is the actual kth output. This 

function, also known as the cost function, should be minimized. The parameters of the membership 

functions may be updated as follows: 

𝑐𝑖 = 𝑐𝑖 − 𝜂
𝜕𝐸

𝜕𝑐𝑖
 (0-7) 

𝜎𝑖 = 𝜎𝑖 − 𝜂
𝜕𝐸

𝜕𝜎𝑖
 (0-8) 

 The selection of 𝜂 is problem-specific which needs to be determined by the user. The procedure 

of the selection of an appropriate 𝜂 in our study will be discussed later. Since we used Gaussian 
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MFs, the partial derivatives of the errors with respect to 𝑐𝑖 and 𝜎𝑖 may be obtained by the chain 

rule: 

𝜕𝐸

𝜕𝑐𝑖
=∑(

𝜕𝐸

𝜕𝜇𝑖

𝜕𝜇𝑖
𝜕𝑐𝑖

)

𝑃

𝑘=1

 (0-9) 

and 

𝜕𝐸

𝜕𝜎𝑖
=∑(

𝜕𝐸

𝜕𝜇𝑖

𝜕𝜇𝑖
𝜕𝜎𝑖

)

𝑃

𝑘=1

 (0-10) 

The derivatives of a Gaussian membership function with respect to its premise parameters are: 

𝜕𝜇

𝜕𝑐
= −

(𝑥 − 𝑐)

𝜎2
𝑒−

1
2
 (
𝑥−𝑐
𝜎
)
2

 (0-11) 

𝜕𝜇

𝜕𝜎
= −

(𝑥 − 𝑐)2

𝜎3
𝑒−

1
2
 (
𝑥−𝑐
𝜎
)
2

 (0-12) 

Initially, 80% of the data (P = 2521) were loaded for training the network. FIS was generated 

by choosing Gaussian Mfs by using a hybrid optimization algorithm. To facilitate convergence, 

the initial parameters of the membership functions were selected in such a way that the centers of 

the MFs are equally spaced along with the range of each input variable. Also, the initial 

membership functions meet the condition of ϵ-completeness with ϵ = 0.5, meaning that within the 

ranges of the inputs, there is always a linguistic variable for which 𝜇 ≥ 0.5. Once the ANFIS 

model training was completed, the remaining 20 % of the data was used to test the model. The 

model's performance was verified by calculating the RMSE values during training and testing. 
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4.4 Methodology and evaluation 

In this section, the custom ANFIS model is evaluated, and the performance of the proposed 

model is assessed by comparing it with the results of a similar model implemented in the "Neuro-

Fuzzy Designer" available in the MATLAB/Simulink toolbox. 

4.4.1 Evaluation with actual data 

The database used to make the ANFIS models in this study is obtained from the UC Irvine 

Machine Learning Repository website [58]. The model is applied to the data available for a 

combined cycle power plant in Turkey collected in 2015. The 3D CAD design of a combined-

cycle power plant is demonstrated in Figure 4-2, where the CAD is taken from "www.power-

technology.com." 

 

Figure 0-2 Combined-cycle power plant including gas and steam turbines to increase process efficiency 

(taken from www.power-technology.com.) 

 



50 
 

The disposed heat from the gas turbine is directed to a nearby steam turbine, which can 

generate extra Power. The plant consists of many complicated components. Therefore, obtaining 

an analytical solution for predicting the plant's power output is very difficult. In this study, the 

ANFIS is used to predict the electricity generation of the plant base on three inputs. The dataset 

represents the generated electrical power of the plant, E (MW), as a function of the ambient 

temperature, T(K), ambient pressure P (mbar), and relative humidity, H (%). As claimed by the 

data publisher, the data was shuffled five times. 2-fold cross-validation is carried out for each 

shuffling to ensure they are randomly distributed. The data were divided into two sets: the training 

and the checking data set. The graphical summary of the database is presented in Figure 0-3.  
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Figure 0-3 Measured data of generated electrical power in MW as a function of (a) temperature, (b) 

pressure, and (c) relative humidity. 

 

As it can be seen, the output power has a distinguishable relation with the temperature; it has 

no apparent link with the pressure and the relative humidity. Next, the ANFIS is utilized to 

approximate the connections between the inputs and the output, even though it is a difficult task 

for human beings to do so. The system is implemented using the procedure explained in Section 

4.3 and is optimized using the hybrid optimization method discussed earlier.. 
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Figure 0-4 Membership functions for temperature, pressure and humidity, before (dotted curves) and after  

(solid curves) training of the system. 

 

Figure 4-4 shows the membership functions of each input before and after the training. The 

dashed curves show the initial membership functions, while the solid curves are the final 

membership functions. As can be seen, all membership functions have changed due to training. 

Here, each variable has three membership functions and therefore, the linguistic variables of "low" 

to Mf1, "medium" to Mf2, and "high" to Mf3 for each input may be assigned. The location of the 

maximum represents the member with the highest contribution. For example, 294 K is counted as 

a medium temperature in the temperature plot, and Mf2 can mean temperatures around 294 K. The 
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same is true for pressure and relative humidity. A pressure of 995 mbar and relative humidity of 

28% is counted as low quantities in a combined cycle power plant. The trained membership 

functions must have some characteristics. First, they should be continuous. This means that any 

number in the universe of discourse should be presented by at least one of the membership 

functions. Gaussian Mfs are guaranteed to satisfy this condition as they span from −∞ to +∞. 

However, care should be taken not to allow minimal values for the multiplications of the Mfs. 

Second, there should be no gap between the membership functions. As it can be seen, the final 

Mfs satisfy this criterion. The Mfs for the second input (pressure) have become slightly squeezed. 

To improve the ANFIS performance, restrictions may be applied to the variance of all Mfs so that 

the intersection of all Mfs is always more significant than a threshold (e.g. µintersection ≥ 0.5). This 

condition has not been applied in this study. As shown in Figure 4.6, the membership functions 

have not significantly changed. This is expectable since the number of train data is relatively small. 

In this case, as Jang [50] mentioned, fixed membership functions could also be used throughout 

the learning process. The trained data, test data, and model predictions are compared in Figure 0-5. 
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Figure 0-5 Model predictions of the trained data and the tested data. 

. The first and the third panels show the result of the custom code used in this study. The 

second and the fourth panels are the results of the ANFIS available in the MATLAB  ANFIS 

toolbox. It can be seen that both approaches give almost the same plots, which confirm the validity 

of the MATLAB code written in this work. Each method's termination criterion was fulfilled when 
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the error was below 10-5. The number of iterations was not the same for both approaches. The 

MATLAB Toolbox uses its optimized learning rate, which may differ from our code. Interestingly, 

both RMSEs of the fitted model to the train and the test data in our code were slightly better than 

those of the MATLAB Toolbox. Moreover, the developed ANFIS simulation time per epoch (0.16 

s per epoch) is found to be shorter than that of the ANFIS Toolbox (0.55 s per epoch), as 

summarized in  The overall quality of the predictions may be shown by the R2 values calculated 

from Eq(4-5). The predicted outputs vs the actual outputs are compared in Figure 0-7. It can be 

seen that most of the data are close to the solid blue line (y = x line). The closer the data are to the 

y = x line, the better the model performance is. The R2 of the model is 0.943, which indicates quite 

a good agreement of the predictions with the actual outputs.  

 

Table 0-1 Comparison of the RMSE of the custom ANFIS code and MATLAB ANFIS 

Toolbox 

 Training data 
size 

Training 
RMSE 

Checking data 
size 

Checking 
RMSE 

Time per 
epoch (s) 

MATLAB 
ANFIS toolbox 1259 4.0299 315 6.735 0.55 

ANFIS code 1259 4.0261 315 6.701 0.16 

 

In order to get a better picture of the model prediction, the three-dimensional plots of the 

output against the pairs of inputs are illustrated in Figure Error! Reference source not found.. T

he scattered data shown by the black dots are the actual outputs, and the surface plots are the 

ANFIS predictions which have been fitted to the data quite well. The overall quality of the 

predictions may be shown by the R2 values calculated from Eq(4-5). The predicted outputs vs the 
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actual outputs are compared in Figure 0-7. It can be seen that most of the data are close to the solid 

blue line (y = x line). The closer the data are to the y = x line, the better the model performance is. 

The R2 of the model is 0.943, which indicates quite a good agreement of the predictions with the 

actual outputs.  

 

 

 

           
(a) 

 

 

 

  

 

 

 

 

 

 

 

(b) 

(C) 

Figure 0-6 three- dimensional representation of the ANFIS prediction. Black dots are the actual outputs, 

and the surfaces are the ANFIS predictions 
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Figure 0-7 Scatter plot of the predicted values versus the target values with the corresponding R2 using 

ANFIS. 

 

4.4.2 Data normalization / standardization  

It is suggested that the data should be normalized or standardized before being introduced 

into the model for better convergence. However, no improvement was found as a result of 

normalization and standardization. For some learning rates, the model gets diverged. As a result, 

the original form of the training and testing process is kept. This is reasonable since the values of 

all inputs are in the same order of magnitude. 

4.4.3 Selection of different membership functions 

As it is mentioned earlier, the selection of the best membership function is case-specific. In 

this section, we investigate the performance of the ANFIS with different membership functions 

for the specific case of electricity generation in the combined cycle plants. The equations for some 
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important membership functions are provided in Table A1 in the Appendix. The criterion for the 

performance quality is taken to be the RMSE of the trained data. The RMSE of the predicted data 

for different types of membership functions is listed in  Table 0-2. Both zero and the first-order 

Sugeno models are investigated. 

Table 0-2 Comparison of different types of membership functions on the error 

 Name Membership function plot 
MATLAB 
notation 

RMSE(First 
order) 

RMSE(Zero 
order) 

1 Gaussian 

 

gaussmf 4.096 4.374 

2 Triangular 

 

trimf 
 

4.140 4.332 

3 Trapezoidal 

 

trapmf 
 

4.139 6.401 

4 
General 

Bell 
 

gbellmf 
 

4.084 4.486 

5 Pi-shaped 

 

pimf 
 

4.1537 7.723 

6 
Difference 

of 2 
sigmoidal  

dsigmf 
 

4.0885 4.365 

7 
Product of 2 
sigmoidal 

 

psigmf 
 

4.0874 4.358 

8 
Combination 
of 2 
Gaussian  

gauss2mf 4.0935 5.062 
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From Table 0-2, it can be seen that the Gaussian membership function that is used in the 

current work turns out to be one of the best choices as it results in a small RMSE for both zero-

order (RMSE = 4.37) and the first-order (RMSE = 4.09) Sugeno models. The General Bell function 

would also be suitable, but it only makes a negligible improvement to the error while introducing 

an extra premise parameter to the system of equations. The triangular membership function would 

also be a good choice. However, it requires extra programming effort as the sign of the derivatives 

changes at the maximum of the function. As it appears from Table 0-2, the trapezoidal and the Pi-

shaped membership functions are not good choices for zero-order Sugeno systems since they make 

poorer predictions compared to the other types. Finally, the combination of two sigmoidal or two 

Gaussian membership functions provides a small RMSE, but they do not make significant 

improvements in error compared to those of the individual sigmoidal and Gaussian membership 

functions used. 

 

4.4.4 Learning rate 

The learning rate is one of the most critical parameters that should be adjusted in the training 

process. The learning rate may be initially set to a small value. The learning rate adjusts the 

magnitude of the weight updates to minimize the loss function. If a small 𝜂 is selected, the model 

will probably converge, but it takes a lot of time to do so because steps towards the minimum of 

the loss function are very small. On the other hand, if the learning rate is too large, training may 

not converge or even diverge as the solution may jump over the minimum.  
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The training error curves with different learning rates are shown in Figure 0-8 (a).  

 

Figure 0-8 Comparison of convergence speed of the NF predictors trained with different learning rates. 

Training is stopped if the error increases after certain epochs to prevent overfitting. 

 

At the end of the training with each 𝜂, the error curves are evaluated. If the loss increases, a 

smaller 𝜂 is selected since it is a sign of performance degradation, which can lead to overfitting. 

The overfitting issue will be addressed later. By having a closer look at the error curves in Figure 

0-8 (b), it can be seen that the error values for 𝜂 = 0.003 and for 𝜂 = 0.004 increase after 200 and 

300 epochs, respectively. This implies that these learning rates may not be appropriate for this 

specific dataset and may result in overfitting. However, for 𝜂 = 0.002, the error is monotonously 

decreasing. As a result,  𝜂 = 0.002 was selected for the learning rate, and unless otherwise stated, 

this value is used in the rest of the study to analyze the ANFIS performance. However, RMSE is 

another factor that should be considered as different learning rates result in different RMSEs. The 

most efficient learning rate may be the case number 9 in Table 4-3. This approach has been 

proposed by Jang [50]. In this method, the learning rate increases after four successive declines in 

the error and decreases after two combinations of one up and one down. It can be seen that the best 

RMSE (4.0126) is obtained by applying this method after 118 epochs only. This approach is even 
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better than case 1, where the initial learning rate is seven times larger. The plot of the error with 

the iteration number for case 9 is shown in Figure 4.9. effect of varying 𝜂 on the performance of 

the ANFIS code. 

 

Figure 0-9 Plot of RMSE versus epoch number with the learning rate of case number 9th in Table 0-3. 

 

Table 0-3 Different learning rates and their effects on the epochs numbers 

 

 

 
Initial 𝜂 𝜂 update Epochs RMSE at error < 10−5 

1 𝜂0 = 0.07 𝜂:= 0.90 𝜂 every 5 epochs 206 4.0199 

2 𝜂0 = 0.07 𝜂:= 0.80 𝜂 every 5 epochs 115 4.0230 

3 𝜂0 = 0.07 𝜂:= 0.8 𝜂 every 5 epochs 188 4.0192 

4 𝜂0 = 0.05 𝜂:= 0.95 𝜂 every 5 epochs 319 4.0182 

5 𝜂0 = 0.05 𝜂:= 0.80 𝜂 every 5 epochs 110 4.0254 

6 𝜂0 = 0.05 𝜂:= 0.50 𝜂 every 5 epochs 60 4.0362 

7 𝜂0 = 0.03 𝜂:= 0.95 𝜂 every 5 epochs 317 4.0203 

8 𝜂 = −5 × 10−5(𝑒𝑝𝑜𝑐ℎ − 1) + 0.001 107 4.0266 

9 𝜂0 =0.01 
𝜂:= 0.95 𝜂 after two peaks 

𝜂:= 1.05 𝜂 after 4 decreases 
118 4.0126 
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 The summary of different strategies is listed in table 4.3. If the learning rate is allowed to 

change during the epochs, the system can find the solution much faster. For instance, by setting 

the initial learning rate to 0.05 and reducing it by 80% in every five epochs (case 6), it only takes 

The initial learning rate is typically chosen as large as possible since the weights may be far 

from optimum values. After some epochs, the learning rate can decrease to allow more fine weight 

updates and avoid divergence. Setting the learning rate to 𝜂 = 0.002, it takes 219 seconds for the 

ANFIS code to fulfill the termination criterion. 5. The most efficient learning rate may be number 

9 in Table 0-3. 

 This approach has been proposed by Jang[50]. In this method, the learning rate is increased 

after four successive declines in the error and decreased after two combinations of one up and one 

down. It can be seen that the best RMSE (4.0126) is obtained by applying this method after 118 

epochs only.  

4.4.5 Overfitting 

Overfitting is one of the most common issues in machine learning. It happens when a model 

is trained too long so that it learns the unnecessary detail and noise in the training data. Since this 

behaviour may not exist in the new data, it deteriorates the ability of the model to be generalized 

to new datasets. One way to minimize the overfitting issue is to check the RMSE of the test data 

after a certain number of epochs. Once the RMSE starts to increase, the training should be stopped. 

At this point, the model has the best skill in both the training and unseen test datasets. This method 

adds computational cost during training which can be reduced by evaluating the model less 

frequently, such as every ten training epochs. The RMSE of the train and the test datasets vs the 

epoch number is shown in 4.10. 
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Figure 0-10 RMSE of the train and the test datasets as a function of the number of epochs. 

 

.It can be seen that the train RMSE decreases rapidly up to epoch 300 and continues to 

decrease gradually after the 300 epochs. However, the RMSE of the test data has a minimum of 

650 epochs. This means that after 650 epochs, further iterations worsen the learning process. 

Therefore, the number of epochs should not exceed 650 in this study to avoid overfitting. Another 

efficient method to prevent overfitting is called the resampling technique. In this technique, the 

model is trained and tested several times on different subsets of the training data. This gives a 

rough estimate of the model's performance in predicting unseen data. However, this method is not 

investigated in this thesis. 
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Chapter 5  

Conclusion 

A novel ANFIS architecture has been presented in this Chapter to predict the generated 

output power by a combined cycle electric power plant. Temperature, pressure, and relative 

humidity were considered as three inputs for the proposed ANFIS architecture since these inputs 

affected the system's output power. The ANFIS linear and nonlinear parameters were optimized 

using the hybrid method that includes gradient descent and LSE algorithms simultaneously. A 

first-order type Sugeno model was used to de-fuzzified the output of the aggregated fuzzy set. 

The ANFIS model was constructed by writing a custom code in MATLAB. Before 

predicting the data, the validity of the code was confirmed by applying it to approximate a 

nonlinear equation with three variables and the ANFIS toolbox in MATLAB. Excellent 

agreements were found between the developed code results and those produced by the MATLAB 

toolbox. The code had a slightly better performance than the MATLAB toolbox in the accuracy of 

the predictions. Furthermore, the custom code was much faster than the MATLAB toolbox, which 

may be because it is more straightforward and written for a specific application.  

The effect of different parameters of ANFIS on its performance and predictions were 

studied. Different learning rates were used to simulate the system, and the strategy to select the 

best learning rate was discussed. Commonly used data normalization was not helpful in this work 

as it led to divergence in some occasions. It was found that the more significant number of 

membership functions assigned to each variable can reduce the RMSE of the predicted data, but it 

increases the computational burden significantly. Furthermore, different types of membership 

functions were analyzed, and the Gaussian, triangular, and general Bell functions seemed to be the 
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best choice for this specific application. The overfitting issue was also addressed. It was found that 

training the system beyond 600 epochs gradually decreases the ability of the model to make good 

predictions of the test data. In conclusion, the developed specific ANFIS structure has been found 

as a strong candidate to predict the power generation in an electric power plant. 
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Chapter 5 

Conclusion 

5.1 Summary and Conclusion 

In this thesis, several artificial intelligence techniques have been developed to apply and test 

their performance in different electrical engineering fields. Mainly, AI has been used for fault 

detection in PV panels and prediction of electric power generation in a combined cycle power 

plant.  The achievement of the thesis is briefly summarized below. 

• A novel convolutional neural network has been developed for defect detection and 

classification of defects in solar PV panels based on the images of the solar panels. The 

proposed CNN model has been found to be efficient in classifying the images, with an 

accuracy of 91.1% for binary (i.e., faulty and normal) classification and 88.6% for multi-

classification (i.e., normal, shadowy, dusty, cracked). The proposed CNN model remarkably 

outperforms the CNN model presented in a previous study that used the same datasets. Thus, 

the proposed CNN-based defect detection technique could be utilized to improve the 

longevity and reliability of the PV system significantly. 

• Next, in Chapter 3, the feasibility of an adaptive network-based fuzzy inference system  was 

investigated. This kind of network is often used in the field of control, where PID controllers 

may not have good performances. In this chapter, however, the ANFIS was evaluated in a 

classification study to see how well it can classify the signals of a PV system (i.e. current 

and voltage). The signals of eight classes, one normal and seven faulty, were analyzed. 

Interestingly, ANFIS was found to have a high ability to correctly predict the different 



67 
 

classes. Denoising the input data significantly increased the intelligent system's learning 

ability. The computational time of the ANFIS classification was high, which might be the 

main reason this algorithm is not suitable for classification purposes. The ANFIS accuracy 

was compared with machine learning classifiers, and it was found that ANFIS does not offer 

advantages over these kinds of classifiers. 

• In Chapter four, another ANFIS was developed to predict the power output of a combined 

cycle power plant was investigated. A custom code was developed in MATLAB, which 

could take three inputs, train the ANFIS architecture based on the given data, and predict 

the power output. The code was compared with the neuro-fuzzy toolbox in MATLAB to 

ensure its accuracy. The code was found to perform faster than the MATLAB toolbox. Plus, 

it has the flexibility of changing a customized learning rate, defining membership functions 

that are not provided in the toolbox, and flexibility of further developments. The results 

showed that ANFIS had acceptable performance (95%) in correctly predicting the power 

outputs. Therefore, in this thesis the ability of artificial intelligence algorithms have been 

utilized for two different fields of electrical elngineering such as, fault detection in soalr 

energy ystems and power generation in a combined cycle power plant. In each case, the AI 

based techniques outform the traditional methods. 

5.2 Future Scope of the Work 

 Chapter 2 presents a convolutional neural network-based defect detection method for solar 

PV panel images. It was also found that the advantage of the model was its simplicity while 

yielding a reasonably high accuracy. The effect of the number of convolutional units was also 

investigated, and it was found that a three convolutional unit performs better than a two 
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convolutional unit. Yet, more layers could be added to the model but at the price of increasing the 

computational time and resources. As a result, one recommendation for future works could be the 

optimization of the number of layers for such a network. Moreover, the network has to be utilized 

for classifying different categories of images (i.e. medical images, animals, plants, etc.) to see if 

the finding of this study can be extended to any image type or if it is only specific to the PV images. 

The investigations may be much simpler by utilizing fewer parameters and layers; although the 

overall accuracy may reduce, it may be valuable in some applications as, such as face detection of 

frauds. Another work is to use machine learning classifiers such as Random Forest and Naïve 

Bayes algorithms to see how their results are comparable to the CNN model in terms of accuracy 

and computational time. To obtain a universal conclusion, some small implementations may be 

carried out in the near future to raise the simplicity and reliability of the proposed CNN method. 

In general, while ANFIS has proven to be suitable for the field of control, it doesn’t seem to 

be a good classifier. As a result, it is not recommended to be used as a classifier. Further, the 

ANFIS algorithm becomes significantly slow as the number of inputs increases. That’s why 

ANFIS is not common for problems where the number of inputs exceeds six. As a result, for future 

work on the signal classification of the PV systems, efforts should be put into using the more robust 

classifiers such as KNN and decision trees. Moreover, other types of signals may be utilized to 

improve the classification reliability and enhance the speed of fault detection for taking quick 

measures in case of abnormal functionality of PV systems. 

As a result, it is a dependable approach for being used in the design and optimization of plant 

efficiencies, which may significantly reduce the construction cost.  It is worth using ANFIS or any 

other AI techniques for more technical applications, such as wind turbine inspections, where a 

manual check is unsafe. 
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Figure A 1 Parameters used for image classification in MATLAB toolbox. 
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Figure A2 Parameters used in different layers of proposed CNN. 
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Figure A3 The AlexNet architecture, adopted from [59]. 

 

Figure A4 DarkNet 19 architecture adopted from [60]. 

 

Figure A5 Squeeze Net architecture adopted from  [61]. 
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Table A1 Some important membership functions with their mathematical formulas 

Membership function Formula Matlab syntax 

Gaussian 𝑓(𝑥, 𝜎, 𝑐) = 𝑒
−
(𝑥−𝑐)2

2𝜎2  
gaussmf 

 

Generalized bell-shaped 
 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑎 |

2𝑏 gbellmf 
 

Sigmoidal 𝑓(𝑥, 𝑎, 𝑐) =
1

1 + 𝑒−𝑎(𝑥−𝑐)
 sigmf 

Triangular 𝑓(𝑥, 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0,          𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
          𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
          𝑏 ≤ 𝑥 ≤ 𝑐

}
 
 

 
 

 trimf 

Trapezoidal 
𝑓(𝑥, 𝑎, 𝑏, 𝑐, 𝑑)

= 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,
𝑑 − 𝑥

𝑑 − 𝑏
 ) , 0) 

trapmf 
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Table A2 Voltage data recorded for normal and faulty PV panel in the experimentrs of ref. [41]   

time (s) Normal Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 

4.08E-05 90.42969 88.50098 85.21729 91.22314 86.6272 86.66382 92.11426 86.77979 

0.000141 90.16113 88.00049 85.04028 90.83862 86.49902 86.38306 92.07764 86.57227 

0.000241 90.74097 86.91406 85.54688 90.53345 87.77466 86.59668 92.10205 87.01172 

0.000341 91.00342 88.07983 85.40039 90.28931 87.75635 86.21826 91.03394 87.78076 

0.000441 91.11328 88.34839 85.20508 90.33813 87.89673 86.8103 92.49268 87.69531 

0.000541 90.40527 88.30566 84.85718 90.36255 87.42676 86.70044 92.8833 86.78589 

0.000641 90.20996 88.05542 85.0647 90.86914 87.70142 86.73706 92.79175 86.54175 

0.000741 90.72876 87.68921 84.66797 90.68604 87.95776 86.75537 93.06641 87.19482 

0.000841 90.75928 88.22021 85.37598 90.83252 88.15308 87.06055 92.76733 87.79297 

0.000941 91.25366 88.43994 85.31494 91.08887 88.0127 86.99341 92.73071 87.76855 

0.001041 90.46021 88.79395 85.29663 91.25977 86.88354 86.74316 92.47437 86.77979 

0.001141 89.22729 88.10425 85.2356 90.92407 87.61597 86.34033 92.79175 86.49292 

0.001241 90.39307 87.82349 85.27222 90.52734 88.48877 86.40747 92.79175 86.56006 

0.001341 90.73486 88.03711 85.49805 90.50293 88.27515 86.13281 92.74292 87.75635 

0.001441 90.52734 88.35449 85.4187 90.39307 86.85913 86.49902 92.38281 87.73804 

0.001541 90.29541 88.34229 85.18677 90.55176 86.48682 86.84692 92.15088 86.68213 

0.001641 90.01465 88.04932 84.94873 90.88745 87.83569 86.72485 92.60864 86.59058 

0.001741 90.64941 87.68311 84.90601 90.88745 87.79297 86.74316 92.25464 86.93848 

0.00184 90.85693 88.26904 84.60083 90.78979 88.0127 86.88965 92.57202 87.79297 

0.00194 91.08887 88.38501 84.93042 90.93628 87.52441 87.13989 92.25464 87.71973 

0.00204 90.43579 88.93433 85.35767 91.18042 87.75635 87.07275 92.48047 86.79199 

0.00214 90.24048 88.06152 85.26001 90.84473 87.96387 86.86523 92.58423 86.56006 

0.00224 90.76538 86.89575 85.10132 90.50903 88.06763 86.4502 92.92603 86.73706 

0.00234 90.802 88.17749 85.15015 90.271 88.04321 86.76758 92.5354 87.86621 

0.00244 91.25977 88.42773 85.08911 90.65552 86.87134 86.40137 92.08984 87.75635 

0.00254 90.43579 88.33008 85.46753 89.47754 87.48779 87.17041 92.06543 86.83472 

0.00264 89.0564 88.11035 85.39429 90.63721 88.47046 86.85303 92.74292 86.52954 

0.00274 90.38086 87.82959 84.99146 90.68604 88.3667 86.83472 92.14478 86.23657 

0.00284 90.65552 88.39722 84.78394 90.74707 87.68921 86.75537 92.15088 87.82959 

0.00294 90.57617 88.5498 84.8938 91.13159 86.65771 87.06055 92.34619 87.79907 

0.00304 90.28931 88.89771 84.58862 90.96069 87.77466 87.17041 92.43774 86.8042 

0.00314 90.03906 88.14087 85.18677 90.86304 87.92114 86.84082 92.68799 86.66992 

0.00324 90.67993 87.45728 85.2417 90.38696 88.03101 86.38306 92.8894 87.16431 

0.00334 90.93628 88.22632 85.20508 90.55786 87.45117 86.07178 92.67578 87.81738 

0.00344 91.06445 88.45825 85.28442 90.271 86.66382 85.99854 92.37061 87.81738 

0.00354 90.39917 88.61694 85.30884 90.69824 88.0249 86.13281 92.40112 86.93237 

0.00364 90.22217 88.12256 85.35156 90.77759 88.09814 86.82861 92.24854 86.6394 

0.00374 90.75928 87.58545 85.26001 90.53955 88.12256 86.87134 92.65747 86.2854 

0.00384 90.85083 88.34229 85.16846 90.41748 87.17651 86.93237 92.79785 87.96997 



85 
 

Table A2 continued 

time (s) Normal Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 

0.00414 88.78784 88.18359 84.83276 90.76538 88.18359 87.06055 92.84058 86.66992 

0.00424 90.48462 87.06055 85.33325 90.49072 87.90894 86.93237 92.77344 87.20093 

0.00434 90.74707 88.24463 85.27832 90.448 86.91406 86.95068 92.62085 87.71973 

0.00444 90.72266 88.42163 85.05249 90.55176 87.87842 87.02393 92.37061 87.81738 

0.00454 90.42358 88.51318 84.83887 90.57617 88.29956 87.21313 92.26074 86.92017 

0.00464 90.1062 88.22021 84.93652 90.72266 88.57422 87.07275 92.29736 86.66992 

0.00474 90.67993 87.68311 84.7168 90.4541 87.09106 86.73096 92.49268 86.72485 

0.00484 90.95459 88.35449 85.2356 90.39307 86.66992 86.25488 92.65137 88.06763 

0.00494 91.29028 88.48267 85.18677 90.625 87.86011 86.55396 92.51099 87.73804 

0.00504 90.50903 89.00757 85.03418 90.53345 87.86011 86.1145 92.46216 86.73706 

0.00514 90.29541 88.14087 85.04639 90.76538 87.93945 86.90796 92.74292 86.43188 

0.00524 90.51514 86.9873 85.20508 90.59448 87.47559 87.323 92.98096 86.57837 

0.00534 90.66162 88.23853 85.05249 90.50903 87.62207 86.71265 92.72461 87.77466 

0.00544 90.67383 88.41553 85.28442 90.64331 88.03711 86.73706 92.1875 87.73193 

0.00554 90.31982 88.5498 85.04639 90.75928 88.12256 86.82251 92.26685 86.76147 

0.00564 89.94141 88.15918 84.91821 89.55078 88.0188 86.78589 92.17529 86.57837 

0.00574 90.50903 87.71362 84.94263 90.59448 86.90796 86.9812 92.56592 87.1521 

0.00584 90.69824 88.39722 84.69849 90.73486 87.71973 86.87744 92.5293 87.60986 

0.00594 91.19263 88.58643 85.31494 90.57007 88.56812 86.57227 92.57813 87.70752 

0.00604 90.41138 89.03809 85.28442 91.27808 88.26294 87.35352 92.49878 86.82251 

0.00614 89.13574 88.17749 85.11963 90.98511 86.83472 86.41968 91.77246 86.58447 

0.00624 90.42358 87.02393 85.02197 90.83252 86.57227 86.91406 92.91382 87.10938 

0.00634 90.66772 88.16528 85.18066 90.47241 87.81128 86.8103 92.79175 87.95776 

0.00644 90.71045 88.51318 84.96704 90.83862 87.83569 86.58447 92.47437 87.81128 

0.00654 90.36255 88.34839 85.44312 90.66162 88.00659 86.54785 92.46216 86.84692 

0.00664 90.07568 88.15918 85.31494 90.93018 87.46338 86.60889 92.62085 86.51123 

0.00674 90.69214 87.87231 85.08301 90.64941 86.85303 86.73706 92.90161 86.99341 

0.00684 90.81421 88.48877 84.96094 90.76538 87.93335 86.84082 92.63306 87.86011 

0.00694 91.13159 88.87329 85.14404 90.83862 88.09204 86.50513 92.77344 87.68921 

0.00704 90.38086 88.95874 85.13184 90.99731 88.07983 86.40137 92.26074 86.65161 

0.00714 89.50806 88.22021 85.13184 90.86304 87.08496 86.51123 92.57202 86.59058 

0.00724 90.58838 87.40234 85.05249 90.59448 87.4939 86.46851 92.45605 86.57227 

0.00734 90.66162 88.33008 84.82666 90.46021 88.43384 86.74927 92.64526 87.6709 

0.00744 90.80811 88.51929 85.08301 90.53955 88.3728 86.76758 92.31567 87.68921 

0.00754 90.42969 88.62305 84.78394 90.66162 87.79907 86.70044 92.41943 86.85303 

0.00764 90.05127 88.1897 85.30273 90.91797 86.87744 86.9873 92.59033 86.68213 

0.00774 90.53955 86.84692 85.19287 90.67383 87.82959 87.12769 92.81006 86.59668 

0.00784 90.7959 88.28735 85.11353 90.68604 88.13477 86.9751 92.73682 87.98828 
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Table A3 Current data recorded for normal and faulty PV panel in the experimentrs of ref. [41]   

time (s) Normal Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 

4.08E-05 2.369843 2.260101 2.389709 2.172119 1.975342 2.472961 2.418091 2.421875 
0.000141 2.44931 2.465393 2.328217 2.287537 2.078461 2.49472 2.400116 2.506073 
0.000241 2.345245 2.62149 2.315918 2.438904 1.989532 2.375519 2.169281 2.508911 
0.000341 2.176849 2.509857 2.389709 2.430389 1.823975 2.280914 2.139954 2.270508 
0.000441 2.226044 2.291321 2.454041 2.234558 1.777618 2.323486 2.199554 2.280914 

0.000541 2.382141 2.264832 2.486206 2.176849 1.936554 2.39917 2.192932 2.426605 
0.000641 2.502289 2.462555 2.389709 2.252533 1.966827 2.412415 2.170227 2.515533 
0.000741 2.366058 2.558105 2.323486 2.295105 1.858032 2.372681 2.180634 2.503235 
0.000841 2.197662 2.464447 2.330109 2.261993 1.770996 2.291321 2.246857 2.287537 

0.000941 2.182526 2.261993 2.36795 2.189148 1.866547 2.323486 2.309296 2.280914 
0.001041 2.380249 2.230774 2.401062 2.207123 1.931824 2.436066 2.301727 2.428497 

0.001141 2.52594 2.472961 2.406738 2.330109 1.983856 2.519318 2.204285 2.519318 
0.001241 2.460663 2.61676 2.367004 2.459717 1.764374 2.492828 2.101166 2.519318 
0.001341 2.212799 2.524994 2.292267 2.391602 1.761536 2.340515 2.238342 2.298889 
0.001441 2.194824 2.263885 2.348083 2.205231 1.962097 2.282806 2.36322 2.288483 
0.001541 2.34903 2.244965 2.424713 2.172119 2.080353 2.400116 2.387817 2.410522 
0.001641 2.44458 2.460663 2.493774 2.271454 1.962097 2.412415 2.183472 2.509857 

0.001741 2.340515 2.548645 2.44931 2.323486 1.795593 2.412415 2.144684 2.498505 
0.00184 2.19104 2.427551 2.332001 2.301727 1.76059 2.355652 2.2005 2.274292 
0.00194 2.230774 2.244965 2.36795 2.279022 1.952637 2.279968 2.305511 2.256317 

0.00204 2.415253 2.238342 2.354706 2.197662 1.999939 2.367004 2.249695 2.401062 
0.00214 2.515533 2.463501 2.39444 2.312134 1.882629 2.48526 2.130493 2.491882 
0.00224 2.398224 2.483368 2.404846 2.434174 1.744507 2.529724 2.111572 2.503235 

0.00234 2.183472 2.512695 2.402954 2.543915 1.873169 2.39444 2.254425 2.26767 
0.00244 2.201447 2.257263 2.32254 2.220367 2.034943 2.32254 2.395386 2.273346 
0.00254 2.39444 2.239288 2.344299 2.280914 2.021698 2.325378 2.352814 2.39917 
0.00264 2.590271 2.404846 2.405792 2.284698 1.80127 2.379303 2.148468 2.48999 
0.00274 2.488098 2.514587 2.509857 2.339569 1.752075 2.443634 2.121033 2.477692 
0.00284 2.244965 2.432281 2.52594 2.273346 1.962097 2.418091 2.203339 2.263885 

0.00294 2.211853 2.246857 2.390656 2.22226 2.052917 2.345245 2.246857 2.264832 
0.00304 2.366058 2.286591 2.342407 2.235504 1.972504 2.291321 2.060486 2.416199 

0.00314 2.417145 2.454041 2.378357 2.345245 1.791809 2.433228 2.121979 2.463501 
0.00324 2.335785 2.592163 2.409576 2.402008 1.769104 2.550537 2.206177 2.48053 
0.00334 2.196716 2.486206 2.412415 2.36322 1.964935 2.569458 2.242126 2.240234 
0.00344 2.252533 2.268616 2.391602 2.199554 1.983856 2.332947 2.381195 2.2724 

0.00354 2.397278 2.252533 2.378357 2.169281 1.910065 2.307404 2.291321 2.39444 
0.00364 2.481476 2.461609 2.372681 2.2724 1.758698 2.315918 2.138062 2.519318 
0.00374 2.365112 2.565674 2.396332 2.384033 1.817352 2.352814 2.104004 2.512695 

  



87 
 

 

time (s) Normal Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 

0.00414 2.529724 2.455933 2.337677 2.310242 1.761536 2.395386 2.119141 2.501343 
0.00424 2.43512 2.573242 2.333893 2.411469 1.895874 2.406738 2.090759 2.471069 
0.00434 2.199554 2.486206 2.373627 2.378357 1.92804 2.424713 2.240234 2.244965 
0.00444 2.185364 2.269562 2.437958 2.189148 1.955475 2.347137 2.347137 2.261047 
0.00454 2.35849 2.252533 2.491882 2.175903 1.761536 2.306458 2.331055 2.411469 
0.00464 2.43985 2.445526 2.385925 2.307404 1.762482 2.360382 2.129547 2.522156 

0.00474 2.338623 2.533508 2.329163 2.390656 1.94223 2.491882 2.108734 2.515533 
0.00484 2.177795 2.437958 2.342407 2.371735 2.058594 2.580811 2.198608 2.282806 
0.00494 2.207123 2.251587 2.385925 2.196716 1.97818 2.415253 2.311188 2.258209 

0.00504 2.390656 2.223206 2.418091 2.191986 1.800323 2.447418 2.245911 2.406738 
0.00514 2.527832 2.443634 2.433228 2.305511 1.781403 2.292267 2.117249 2.487152 
0.00524 2.443634 2.573242 2.385925 2.365112 1.935608 2.357544 2.080353 2.518372 

0.00534 2.214691 2.48999 2.318756 2.370789 1.990479 2.454041 2.243073 2.294159 
0.00544 2.207123 2.271454 2.285645 2.180634 1.831543 2.478638 2.384979 2.258209 
0.00554 2.379303 2.244019 2.453094 2.180634 1.747345 2.380249 2.35849 2.398224 
0.00564 2.491882 2.43512 2.487152 2.290375 1.868439 2.294159 2.15509 2.487152 
0.00574 2.36795 2.515533 2.4039 2.407684 2.124817 2.347137 2.098328 2.476746 
0.00584 2.217529 2.422821 2.341461 2.278076 1.998993 2.476746 2.187256 2.261047 

0.00594 2.19577 2.246857 2.348083 2.194824 1.77478 2.52594 2.238342 2.232666 
0.00604 2.416199 2.266724 2.376465 2.139954 1.743561 2.440796 2.211853 2.395386 

0.00614 2.532562 2.458771 2.440796 2.303619 1.977234 2.326324 2.105896 2.482422 
0.00624 2.462555 2.574188 2.452148 2.39917 2.065216 2.300781 2.122925 2.496613 
0.00634 2.213745 2.517426 2.389709 2.397278 1.981964 2.392548 2.264832 2.250641 
0.00644 2.217529 2.259155 2.331055 2.19577 1.798431 2.481476 2.326324 2.264832 

0.00654 2.384033 2.248749 2.338623 2.156982 1.772888 2.450256 2.286591 2.387817 
0.00664 2.467285 2.453094 2.419037 2.302673 1.952637 2.325378 2.117249 2.502289 
0.00674 2.35849 2.514587 2.464447 2.385925 1.979126 2.263885 2.119141 2.496613 
0.00684 2.180634 2.402008 2.434174 2.362274 1.869385 2.395386 2.234558 2.270508 
0.00694 2.198608 2.22699 2.319702 2.180634 1.737885 2.503235 2.378357 2.261993 
0.00704 2.372681 2.306458 2.290375 2.139954 1.823975 2.490936 2.336731 2.415253 

0.00714 2.515533 2.48053 2.402954 2.289429 1.967773 2.309296 2.124817 2.490936 
0.00724 2.427551 2.598785 2.4758 2.44931 1.989532 2.275238 2.116302 2.490936 

0.00734 2.197662 2.476746 2.476746 2.414307 1.791809 2.345245 2.196716 2.266724 
0.00744 2.165497 2.259155 2.364166 2.22699 1.732208 2.422821 2.31308 2.248749 
0.00754 2.36795 2.256317 2.316864 2.174957 1.911957 2.397278 2.265778 2.397278 
0.00764 2.476746 2.461609 2.349976 2.27713 1.988586 2.329163 2.110626 2.515533 

0.00774 2.379303 2.556213 2.400116 2.360382 1.969666 2.304565 2.091705 2.522156 
0.00784 2.169281 2.487152 2.424713 2.341461 1.767212 2.386871 2.209015 2.27713 
0.00794 2.165497 2.261993 2.4039 2.188202 1.735046 2.523102 2.341461 2.251587 
0.00804 2.392548 2.23172 2.321594 2.174011 1.934662 2.552429 2.326324 2.397278 

 




