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Abstract

Unmanned aerial vehicles (UAVs) are considered as a promising solution to assist terrestrial net-

works in future wireless networks (i.e., beyond fifth-generation (B5G) and sixth-generation (6G)).

The convergence of various technologies requires future wireless networks to provide multiple

functionalities, including communication, computing, control, and caching (4C), necessary for

applications such as connected robotics and autonomous systems. The majority of existing works

consider the developments in 4C individually, which limits the cooperation among 4C for potential

gains. UAVs have been recently introduced to supplement mobile edge computing (MEC) in ter-

restrial networks to reduce network latency by providing mobile resources at the network edge in

future wireless networks. However, compared to ground base stations (BSs), the limited resources

at the network edge call for holistic management of the resources, which requires joint optimiza-

tion. We provide a comprehensive review of holistic resource management in UAV-assisted wire-

less networks. Integrated resource management considers the challenges associated with aerial

networks (such as three-dimensional (3D) placement of UAVs, trajectory planning, channel mod-

elling, and backhaul connectivity) and terrestrial networks (such as limited bandwidth, power, and

interference). We present architectures (source-UAV-destination and UAV-destination architecture)

and 4C in UAV-assisted wireless networks. We then provide a detailed discussion on resource

management by categorizing the optimization problems into individual or combinations of two

(communication and computation) or three (communication, computation and control). Moreover,

solution approaches and performance metrics are discussed and analyzed for different objectives

and problem types. We formulate a mathematical framework for holistic resource management

to minimize the linear combination of network latency and cost for user association while guar-

anteeing the offloading, computing, and caching constraints. Binary decision variables are used

to allocate offloading and computing resources. Since the decision variables are binary and con-

straints are linear, the formulated problem is a binary linear programming problem. We propose

a heuristic algorithm based on the interior point method by exploiting the optimization structure

of the problem to get a sub-optimal solution with less complexity. Simulation results show the ef-

fectiveness of the proposed work when compared to the optimal results obtained using branch and

bound. Finally, we discuss insight into the potential future research areas to address the challenges

of holistic resource management in UAV-assisted wireless networks.
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Chapter 1

Introduction

Future wireless networks are expected to provide connectivity to an ever-increasing number of het-

erogeneous and resource-constrained Internet of things (IoT) devices [1–5]. To achieve this, future

wireless networks must support communication in three-dimensional (3D) space by integrating

ground and aerial networks [6]. On-demand deployment of unmanned aerial vehicles (UAV) base

stations (BSs) can provide dynamic and flexible networks, leading to more complex interference

management and requires efficient resource management. Deployment of UAV BSs and relays

can integrate terrestrial and aerial networks to provide massive connectivity in 3D space [7–10].

Further, mobile edge computing (MEC) has been considered a promising solution to these chal-

lenges by deploying cloud servers at the edge of the network [11]. With the help of MEC, en-

ergy consumption and latency can be minimized by offloading the intensive computations to the

nearby edge servers, which results in computational complexity. For effective utilization of com-

puting and caching resources in MEC and finite physical bandwidth of wireless channels, task

control and resource allocation are required, especially in the presence of a large number of delay-

sensitive tasks [12]. Recently, UAV-assisted MEC networks have been considered for flexible and

on-demand deployment to provide cost-effective computation offloading and caching services for

resource-constrained devices [13–16]. However, UAVs have limited resources, backhaul capacity,

and battery life—thus, there is a need to optimize resources, energy, power, bandwidth, trajectory
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etc. These limitations put a daunting challenge for the operational lifetime of UAVs and the quality

of service (QoS) of UAV-assisted MEC networks.

Network entities such as IoT devices, mobile users, and UAVs need to make local and au-

tonomous decisions about different resources, e.g., bandwidth allocation, transmit power, spectrum

and interference control, caching decision, to achieve the goals including throughput maximiza-

tion, power optimization, bandwidth minimization, etc. The resources of network entities can be

categorized as communication, computing, caching, and control (4Cs) and are necessary for the

success of UAV-assisted MEC networks [17,18]. There has been research on the resource manage-

ment of UAV-assisted MEC networks with the goal of optimizing system latency [12, 16, 19–21],

energy consumption [13,15,22–26], power minimization [14,27] and maximization of secure com-

puting and computation efficiency [28, 29].

1.1 Motivation

Resources associated with each 4Cs functionality play a vital role in enhancing network perfor-

mance. Considering a large number of heterogeneous and resource-constrained devices, it is cru-

cial to optimize resources, including energy, power, bandwidth, trajectory, etc. The communi-

cation resources (such as bandwidth and power, etc.) need to transmit data through the wireless

channels [11, 30, 31]. The computing resources (such as memory, CPU cycle, etc.) are required

for computational jobs [1, 2, 32]. Caching makes the computing jobs faster if the cache is located

near the user or edge of the networks [8, 33, 34]. The selection of cache location and size depends

on the network infrastructure and user applications. If joint communication and computing or

caching resources are considered, then the control parameters (such as managing input/output data

rate, timing, synchronization) need to be set up according to the network infrastructure as well

as the quality of service (QoS) requirements [11, 35]. User applications depending on wireless

networks need 4Cs resources to full fill the QoS requirements of users and network operators. The

tremendous growth of online data traffic, diverse parameters and applications, as well as heteroge-
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neous and resource-constrained devices, require holistic management of resources.

In IoT networks, each computation task is either processed locally at the IoT device or of-

floaded to the centralized cloud server, which offers enormous storage and computation resources.

The IoT devices’ computing resources (e.g., battery power, memory, etc.) are limited; thus, IoT

devices can offload computational tasks to the centralized cloud server in the network. However,

cloud computing may cause a delay due to relatively large distance between the IoT devices and

the cloud servers [11] which may not meet the requirements of some latency-sensitive applica-

tions. Also, the massive amount of data transmissions may cause traffic congestion in the core

networks [1, 2, 11]. To address these problems, UAV-assisted MEC is proposed where computing

and caching is performed at the edge of the network and UAVs are used to assist the edge de-

vices of the networks [8, 36, 37]. The UAVs equipped with MEC capability (with computing and

caching resources) can reduce the bandwidth requirement of the network. UAV-assisted MEC is

considered as a low latency computing service for IoT devices [8,36,37]. The UAV devices can be

used to handle the offloading task in a network architecture where UAVs are deployed as mobile

cloudlets, edge enabled UAV wireless networks, and UAV assisted multi-hop relays etc. On the

other hand, the minimization of the network bandwidth requirement and network latency while

satisfying user-perceived quality of experience (QoE) becomes one of the most critical concerns

of network operators [11, 30, 38, 39].

Radio resource management becomes more challenging with the integration of UAVs to sup-

port the computing and caching requirements of the users. UAVs have limited communication,

computation, and storage capabilities; there is always a need to optimize resources, energy, power,

bandwidth, trajectory etc. Although the placement of UAVs provides a promising solution to these

4Cs issues of the wireless networks, still there are limitations on endurance, backhaul capacity,

and power [40, 41]. Recently, non-orthogonal multiple access (NOMA) has been explored to im-

prove the communication throughput in UAV-assisted networks [42, 43]. However, a UAV cannot

be available for a long duration as it is required to charge or replace its battery and return to its

hotspot region. The backhaul link capacity of the UAV is restraining its deployment region to a

3



space around the ground BS. Tethered balloons are considered to overcome these limitations by

providing continuous power and data via a tethered from the ground station to tethered balloons,

and through backhaul link to UAVs [41, 44]. Also, tethered balloons are placed at fixed locations

at a higher altitude than UAVs, increasing the probability of having a line of sight (LoS).

Several radio resource management schemes have been developed for UAV-assisted wireless

networks while considering different objectives and constraints, including network scalability, re-

liability, efficiency (spectral usage and energy consumption), QoS requirements, coverage, and re-

ducing complexity. The majority of existing work considers the developments in 4Cs individually

or a combination of two, which limits possible gain that could be achieved through the cooperation

of 4Cs [1, 2, 45]. The limited resources in the UAV-assisted wireless networks and MEC needs

holistic management of the resources, which requires joint optimization [4]. Joint optimization

of resources (spectrum, energy, computation), trajectory, content caching, interference, and user

association is needed to fully utilize the UAV-assisted wireless networks. On the other hand, the

multi-dimensional optimization problems can enable intelligent control to meet stringent end-to-

end delay requirements [11].

1.2 Preliminary of 4Cs in UAV-assisted Wireless Networks

This section will discuss two architectures of UAV-assisted wireless networks (i.e., UAV as relay

and UAV as a BS). Also, we present the significance and utilization 4Cs resources in UAV-assisted

wireless networks.

1.2.1 Architectures for UAV-assisted Wireless Networks

The UAVs can be used either as a BS or relay node in a UAV-assisted wireless network, depending

on the application. Thus, UAV-assisted wireless applications (i.e., airborne BS, aerial delivery

service, etc.) are grouped into two types of architecture, as shown in Fig 1.1. The use of tethered

balloons can further enhance the performance of UAV-assisted wireless networks. As shown in

4



Tethered 
balloon

UAV-BS UAV assisted MEC
UAV assisted V2X

(a) (b)

Fiber UAV Users Base station Backhaul Fronthaul

Figure 1.1: Architectures of UAV-assisted wireless networks (a) UAV-destination (UAV as BS) and
(b) source-UAV-destination (UAV as relay).

Fig. 1.1, tethered balloons are connected with a link with ground BS and through a backhaul link

to UAV which will increase the data rate of the ground users associated with UAVs and tethered

balloons [41, 44].

• Source-UAV-Destination (UAVs as Relay): UAVs can be considered as a relay node in

source-destination network [37, 46] as shown in 1.1(a) . For example, UAVs can relay the

data collected from IoT nodes to the data center in IoT networks. Further, the performance

can be enhanced using tethered balloons. There are two types of association: (i) the access

association between UAVs and IoT devices and (ii) a backhaul association between UAVs

and tethered balloons. In the case of multi UAVs, each UAV is associated with one tethered

balloon. On the other hand, each tethered balloon can associate with multiple UAVs. There

are many scenarios in which single or multiple UAVs acts as relays to provide better cov-

erage, data offloading, backhauling and hotspots. UAV relaying is an important application

that can efficiently extend the communication coverage [37]. By utilizing a UAV as a relay,

two users with blockage communication channels can be linked. This gives a new method to

help local resource-limited users access remote resources. Also, in [47] UAV acts as a relay

5



to offload the user’s computation tasks to the BS to minimize total energy consumption and

efficient completion of the task.

• UAV-destination (UAV as a BS): Here, the UAVs are considered as BSs for data trans-

mission, computing, and storage devices for wireless communication [8, 48]. UAV-BSs are

different from terrestrial BSs because the location of BS is fixed in terrestrial networks, while

in the case of UAV-assisted BS, both user and BS are mobile. The air to the ground path be-

tween user and UAV depends on user location and UAV-BS location. In UAV-assisted BS

networks, UAV placement is a 3D problem to deal with. In [8] authors considered a 6G

integrated aerial-terrestrial network model where UAVs and terrestrial remote radio heads

jointly serve as heterogeneous BSs of a cloud radio access network serving different mobile

users. Authors in [49, 50] considered UAVs with small cell capabilities to work as UAV-BS.

Particularly, in [49], the UAV movement, charging, and coverage action are considered in

terms of jointly optimizing the energy and throughput through revenue and cost components.

Whereas throughput maximization is considered in [50] in terms of buy or sell decisions of

energy consumed and produced by the cellular network integrating renewable energy gen-

eration. In [51], a downlink cellular network with multiple UAVs has been proposed where

UAVs are acting as BS, which wireless charging stations on the ground power. In [52],

UAVs as mobile base stations provide video streaming services within a cellular macro area.

Authors formulated a Q-learning-based UAV flight planning algorithm to improve the QoE

of video users. A distributed heterogeneous computing platform across the UAVs and ter-

restrial BSs has been proposed to improve the cache capacity and minimize the cache miss

ratio. In [36], UAVs integrating computing platforms act as small distributed clouds where

data is offloaded to minimize the computation and transmit powers of all users in the system.

1.2.2 4Cs in UAV-assisted Wireless Networks

The main obstacle to fully enable the collaboration of cloud computing, MEC, IoT, and UAVs

exhibit 4Cs problems. This subsection discusses 4Cs resources in UAV-assisted wireless networks
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4Cs in UAV-assisted 
Wireless Networks

Communication Computing Caching Control

Bandwidth
Power

Interference
Noise

Channel association
Channel capacity

Channel state
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Figure 1.2: 4Cs resources in UAV-assisted wireless networks.

as shown in Fig. 1.2 and how these resources are utilized and optimized in the existing literature

for wireless networks.

Communication

In general, channel, bandwidth, power, and transmission rate are considered as communication

resources in wireless networks. When UAVs are integrated into the terrestrial networks, the band-

width sharing and power optimization become more challenging due to the heterogeneity of the

networks [47, 53]. For example, in the source-UAV-destination-based architecture, two commu-

nication channels are utilized: (i) from source to UAVs and (ii) UAVs to destination. UAVs’

different altitudes, speeds, and LoS communication generate UAV-related interference, which im-

poses challenges in the communication resource allocation problems. In wireless communication,

UAVs have been applied in various scenarios, such as UAV-assisted heterogeneous computing plat-

form [8], UAV relaying to expand the communication coverage [37, 46], UAV-assisted mmWave

communications to increase the transmission probabilities of the communication links and system

throughput [54]. To offload a task from users to the MEC servers or UAVs, the network will incur

communication cost, which requires optimizing uplink and downlink bandwidth, transmission rate,
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transmission power, channel gain, noise, etc. Moreover, UAVs’ mobility and energy-constrained

nature pose many communication challenges in UAV-based systems to meet strict requirements

such as low latency, low cost, and high transmission capacity. In [36] multiple-input multiple-

output (MIMO) technology is discussed to increase the uplink capacity of the UAV system. Au-

thors in [47,55] introduced the NOMA-based UAV system to improve the spectrum efficiency and

system capacity.

Computing

Computing efficiency is one of the objectives of optimizing computing resources. Computing

efficiency is estimated based on the CPU energy, execution time, flying latency, the velocity of

UAV, trajectory, etc. UAV trajectory and acceleration play an essential role in minimizing the total

required energy of the system and energy of UAV, hence improving the computing efficiency of

the system [40]. The computing resource can be of three types in UAV-assisted wireless networks:

• Local computing: Data is processed at the IoT device/mobile user. In the UAV-destination-

based architecture, the UAVs are worked as a local computing device.

• Edge computing: When the computing resources (e.g., battery power, CPU cycles, memory,

and input/output data rate) of the IoT devices are limited, the computational tasks can be

offloaded to the edge devices [11]. In this case, UAVs are used as the edge devices which

contain the computing servers. For example, UAV-assisted MEC where UAV equipped with

energy transmitter and a MEC server provides both energy and computing services to IoT

devices [46].

• Cloud Computing: The remote cloud is used for big data processing. In the source-UAV-

destination architecture, UAVs are utilized in the middle of the communication process

among the remote cloud data centers and wireless users to minimize communication de-

lay. Tethered balloons can also be utilized as computing servers in which UAVs can act as
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a relay between IoT devices and tethered balloons. Moreover, remote cloud computing with

UAV uses AIâs cognitive functions to enhance QoE [31].

In [9], a random best and better response algorithm has been proposed to avoid the computa-

tional complexity considering the distributed character of UAV swarms. In this kind of network,

the location of the servers (i.e., UAVs) is changeable so that the channel quality of offloading

links can be adjusted and impact other offloading behaviours. In [46], the UAV-assisted wireless

powered cooperative MEC system has been introduced to minimize the total required energy of

UAV. In order to avoid co-channel interference, computation task offloading is implemented over

orthogonal frequency bands. The authors in [40] investigated a new application scenario where a

cellular-connected UAV offloads its computing tasks to multiple ground BSs along its trajectory to

minimize mission completion time. UAV trajectory is designed using maximum speed, location,

and computation capacity constraints to achieve this goal.

Caching

In both architectures (source-UAV-destination and UAV-destination), UAVs are utilized as a storage

device to cache the most frequently used data. In the UAV-assisted MEC system, MEC server

caches data after the task has been offloaded. This data can be retrieved from the cache storage

based on the demand. However, due to limited cache capacity/resources, the least recently used

data can be replaced by new data. The well-known least frequently used cache replacement is one

of the solutions to this limited cache capacity problem [11]. The other solutions are cache data in

the collaboration space [56], and proximity to destination nodes (i.e., BSs, user terminals) in order

to reduce the fetching delay and backhaul load [1,2,11,45]. The group of UAVs can be utilized as

UAV swarms which can provide one collaboration space to cache data. The surge of mobile traffic

increases communication delay while placing a tremendous burden on the backhaul links. To

address this issue, content caching has reappeared as an exciting topic in beyond 5G/6G networks,

particularly in the network edge serviced by heterogeneous BSc (network model in which UAVs

and remote radio heads works jointly) [8]. The content caching-enabled BSs in 6G feature a vast
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deployment of UAVs acting as flying BSs [8, 57–59]. The deployment of cache enabling UAVs

to offload the data in the peak hours of some hotspots provides a low-cost and rapid-deployment

solution for content distribution applications with high data rate and low latency requirements [60].

However, the solutions have ignored the limited battery life as well as the limited storage capacity

of the UAV.

Control

The control or scheduling methods are essential when two or more resources (i.e., communication,

computing, caching) are utilized in the data communication process. It is challenging to con-

trol autonomous IoT systems in UAV-assisted wireless networks to accommodate environmental

dynamics and make intelligent decisions or actions in real-time. There are two types of control

methods considered from the resource management perspective: i) centralized control method and

ii) distributed control method. In [11], the authors proposed distributed control method in which

resource demands that are not satisfied at one MEC server can be satisfied by other MEC servers in

the same collaboration space. The BS-based MEC systems utilized a centralized control method.

In contrast, the UAU-assisted MEC system requires distributed control method due to the mobility

and the distributed nature of UAV [11,40,61]. In [62], authors proposed a resource-sharing model

for multiple learning services for both centralized and decentralized approaches. The centralized

resource management is based on CPU allocation, bandwidth allocation, and hyper-learning rate

decision, while the decentralized algorithm allows each learning service to manage the resources

independently. According to the authors, the decentralized approach requires many iterations to

convergence; it provides more flexibility and scalability to resource allocation procedures without

revealing the learning service information. Authors in [63] which investigates the optimization

questions related to the use of UAVs employed as flying antenna arrays granting improved wire-

less services to users. The authors investigate the minimization of the transmission and control

time of the UAVs within flying antenna arrays. Optimal locations of the UAVs are derived such

that transmission time and control time for the user are minimized by controlling the speed of the
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UAVs.

1.3 Thesis Objective

The main objective of this thesis is to develop an efficient 4Cs resource management scheme

for UAV-assisted MEC networks to minimize the latency and cost. The tremendous growth of

online data traffic, diverse parameters and applications, as well as heterogeneous and resource-

constrained devices, require holistic management of resources. Data and computational task of-

floading to nearby UAV servers can enhance the system performance by increasing the resources.

In other words, data will be offloaded, processed, analyzed, and cached at the available UAV, if the

associated base station is unavailable. To achieve this, we need to have caching storage, big data

platform, and analytics software in the UAV server. Furthermore, since offloading data for being

processed, analyzed, and cached at the UAV server requires communication resources, rather than

considering each C (Computing, Caching, Communication, or Control) independently, we need

to have a joint 4Cs model that reduces communication delay, computational delay, and backhaul

bandwidth consumption.

1.4 Thesis Contributions

Following are the main contributions of this thesis:

• We provide a comprehensive survey on the state-of-the-art progress of 4Cs resource opti-

mization issues in UAV-assisted wireless networks mainly investigated in the last five years.

• We provide a comprehensive discussion on optimization of 4Cs in UAV-assisted wireless net-

works in terms of four categories of joint problems: i) joint communication, computing and

caching (3C) resource optimization, ii) joint communication and computing (2C) resource

allocation, iii) joint trajectory and communication resource allocation, and iv) joint comput-

ing and caching (2C) resource allocation. The joint problems are analyzed with different
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objectives, parameters and constraints settings. We also present the solution approaches

and performance metrics for different joint optimization problems in UAV-assisted wireless

networks.

• We propose a mathematical framework for holistic resource management in UAV-assisted

MEC networks to schedule resource-constrained devices on the ground for data offloading.

The objective is to minimize the network’s communication and computation latency and cost

by jointly optimizing 4Cs resources. Constraints on bandwidth, computation resources, and

caching resources are considered.

• We first solve the joint optimization problem using branch & bound algorithm to obtain op-

timal results. Then, we propose a heuristic algorithm to solve the joint optimization problem

with less complexity.

• Simulation results demonstrate the effectiveness of the proposed framework, and the results

of the proposed heuristic algorithm are compared with the branch & bound algorithm, which

is used as a benchmark.

• Lastly, we discuss the challenges and future research directions for holistic resource man-

agement to deploy UAV-assisted wireless networks successfully.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides background and literature review

on 4Cs resources of UAV-assisted wireless networks. This chapter includes a detailed review

of existing surveys and a comprehensive discussion on joint optimization of UAV placement or

trajectory with 4Cs, 3Cs, and 2Cs. We discuss the solutions and techniques for joint optimization

problems as well as performance metrics and measurements used in the literature to access the

solutions discussed. Chapter 3 provides the system model and optimization problem for holistic

resource management in UAV-assisted MEC networks to schedule resource-constrained devices
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on the ground for data offloading. Chapter 4 presents a proposed heuristic algorithm to solve the

formulated optimization problem. This chapter also provides simulation results of the proposed

heuristic algorithm and its comparison with the optimal (branch & bound algorithm) in terms of

connected devices and active BSs and UAVs. Finally, the thesis concludes and future research

directions are highlighted in Chapter 5.
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Chapter 2

Background and Literature Review

This chapter provides a comprehensive survey of the state-of-the-art progress of 4Cs (communica-

tion, computation, cache and control) resource optimization issues in UAV-assisted wireless net-

works. We discuss details about 4Cs individually, a combination of three (joint communication,

computation, caching), a combination of two (joint communication and computing/joint comput-

ing and caching) individually and with UAV trajectory. We provide available solution techniques,

algorithms and performance metrics to solve 4Cs optimization problems for UAV-assisted wireless

networks.

2.1 Existing Surveys

This section reviews existing surveys on joint optimization of terrestrial and aerial networks re-

sources. Authors in [35] presented a survey on the application of deep reinforcement learning

(DRL) for communication, caching, and security from both terrestrial and aerial IoT networks.

The network issues such as dynamic spectrum access, joint user association, data control in dy-

namic and unpredictable environments, caching and energy consumption have been discussed.

Various deep reinforcement learning extensions are proposed to solve these issues. This survey

motivates the use of MEC close to end-users having computational resources and caching capa-

bilities that significantly improve the users’ energy efficiency and QoS requirements. In [64], the
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authors proposed a general DRL model for autonomous IoT systems. Computation complexity and

storage capacity requirements in autonomous IoT systems are also discussed. Resources control

actions using DRL techniques, e.g., partially observable Markov decision process-based deep re-

inforcement learning and multi-agent deep reinforcement learning, are also presented. The survey

is categorized from the perspective of the proposed DRL model. In [65], the authors discussed

DRL algorithms to enhance the scalability and elasticity in 4Cs problems in terrestrial networks.

The application of DRL algorithms is discussed in several IoT applications, including intelligent

transportation services and smart grids. Authors in [66] presented an overview of artificial intelli-

gence (AI) systems in increasingly complex environments. They introduced several typical DRL

algorithms such as deep Q-network, policy search, and actor-critic network to address communica-

tion and caching issues. The above-mentioned surveys [35, 64–66] provided insights into the 4Cs

problems of IoT-supported terrestrial networks using DRL algorithms. However, the 4Cs problems

are not discussed from the perspective of UAV-assisted wireless networks and are limited to the

application of DRL in terrestrial networks.

In [67], the authors presented a comprehensive survey of resource allocation schemes with a

holistic view of objectives, constraints, problem types, and solution strategies in cloud radio access

networks (CRAN). They presented several emerging use-cases for CRAN, challenges, open issues,

and application-specific objectives. They only discussed communication and computing resource

allocation problems in detail. In [68], authors investigated the resource management problem

for large-scale UAV-assisted wireless networks from a game-theoretic perspective. Several game-

theoretic models (including mean-field game, graphical game, Stackelberg game, coalition game,

and potential game) for resource management in large-scale UAV-assisted wireless networks. An

interference-aware online channel selection game and joint task and allocation game are presented

to show the usefulness of game theory models. In [18] authors provided a detailed survey on

resource management (placement of UAVs, UAV trajectory, backhaul, path planning, charging,

spectrum, and data offloading) in UAV assisted wireless networks while considering communica-

tion and computation parameters. Only two aspects out of 4Cs are considered in this paper. A
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survey on communication and networking technologies for UAV-assisted wireless networks is pre-

sented in [69]. The communication technologies are analyzed for both hardware and algorithm-

based software, including antenna arrays, signal management, and utilization of centralized and

decentralized techniques. The authors in [70] presented a comprehensive survey on AI-enabled

resource management considering communication, computing, and caching resources. The main

focus of this survey is the AI-empowered resource management framework which is one of the

critical drivers for future wireless networks.

In [71], authors discussed 3D placement of UAVs, trajectory planning, channel modelling,

backhaul connectivity, energy limitations, resource management issues, existing solutions, and

challenges in 5G/B5G wireless networks. This survey is focused on 2Cs problems (communica-

tion and computation). In [72] authors examine the intrinsic connection between the game theory,

machine learning, their applications and open issues for UAV wireless communication networks.

They covered several game theory formulations for task allocation, coverage maximizing, bea-

coning schedule, energy optimization and machine learning tools for channel modelling, resource

management and UAV positioning problems. This survey provides comprehensive details of 2Cs

(communication and computing) problems for UAV-assisted wireless communication. The authors

in [73] studied two applications of UAVs, namely, aerial base stations and cellular-connected users.

For each application of UAVs, the key challenges such as 3D deployment, performance analysis,

and channel modelling are presented. The authors also presented the energy efficiency of UAV-

assisted wireless networks in terms of communication resource allocation with some insightful

results. In [74], the authors discussed the major limitation of providing connectivity to rural and

underprivileged areas. In providing rural connectivity, the UAVs are considered one of the poten-

tial solutions for fronthaul and backhaul communication for the 6G networks. Similarly, in [75]

considers energy-efficient management of a fleet of UAVs that operate as flying 5G base stations

to provide continuous coverage of user nodes in rural areas.

In summary, given in Table 2.1, the holistic resource management in UAV-assisted wireless

networks is not given sufficient attention. Most of the existing surveys either focused on (i) the
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machine learning, AI, or game-theoretic solutions for the resource management [35,64–66,68,70]

or (ii) focusing on the individual or combination of two (communication and computation) [71,72],

or three (communication ,computation and control) [18, 69]. In comparison, our survey covers all

the 4Cs problems in UAV-assisted wireless networks and how these problems are solved using

different algorithms in recent literature.

Table 2.1: Existing surveys [UAV= UAV-assisted wireless networks;C1=Communication;
C2=Computing; C3=Caching, C4=Control].

Ref. UAV C1 C2 C3 C4 Remarks

[35] ✗ ✓ ✓ ✓ ✓ Studied the applications of DRL with a focus on com-

munications and networking problems in terrestrial net-

works.

[64] ✗ ✓ ✓ ✓ ✓ Different learning methods in autonomous IoT systems

in terrestrial networks are discussed.

[65] ✗ ✓ ✓ ✓ ✓ Provided a detailed review of DRL algorithms and their

applications in terrestrial networks. Also, the application

of DRL to solve 4Cs in IoT applications is discussed.

[66] ✗ ✓ ✓ ✗ ✓ The role of deep enforcement learning in communica-

tion, computing and control management in terrestrial

networks is discussed.

[67] ✓ ✓ ✓ ✗ ✗ This survey is related to the communication and comput-

ing resource allocation issues,objectives,problems types

for CRAN network.They didn’t discuss UAV networks

and their problems in detail.

[68] ✓ ✓ ✗ ✗ ✓ Investigated the distributed resource management prob-

lems for large-scale UAV communication networks, pro-

viding cost-effective and reliable applications.
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[18] ✓ ✓ ✓ ✗ ✓ A comprehensive review on resource management, path

planning, backhauling, charging, and channel associa-

tion in UAV-assisted wireless networks is presented.

[69] ✓ ✓ ✓ ✗ ✓ Communication technologies in UAV networks and a re-

view of 3Cs resource management are presented.

[70] ✗ ✓ ✓ ✓ ✗ An AI-empowered resource management framework is

presented and elaborates on the functions of AI in some

key drivers of this framework through current research.

[71] ✓ ✓ ✓ ✗ ✗ Focused on UAV 3D placement and resource allocation

(mainly communication and computation) problems in

5G/B5G wireless networks.

[72] ✓ ✓ ✓ ✗ ✗ The role of game theory and machine learning in com-

munication and computation problems for UAV-assisted

wireless networks is discussed.

[73] ✓ ✓ ✗ ✗ ✗ Challenges, open problems and mathematical model for

UAV base stations and cellular connected UAVs are dis-

cussed.

[74] ✓ ✓ ✗ ✗ ✗ This survey discussed the directions of the future evo-

lution of rural connectivity. The authors also highlighted

how to integrate UAVs for granting wireless communica-

tions in zones where the deployment of traditional base

stations is not possible.
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Our

sur-

vey

✓ ✓ ✓ ✓ ✓ Our survey reviews 4Cs resource allocation and opti-

mization in terrestrial and aerial networks. The problems

related to joint optimization of resources, their solution

methods and performance metrics have been discussed

and analyzed.

2.2 Optimization of 4Cs in UAV-assisted Wireless Networks

The integration of UAVs in terrestrial wireless networks raises several challenges related to the

coordination of UAVs, mobile users, services, UAV placement, trajectory optimization, etc. Since

mobile users’ resources (i.e., power, bandwidth, energy, memory, I/O data rate, etc.) are limited,

there is always a need to optimize these resources to increase the efficiency of the network. There-

fore, the joint 4Cs problems for UAV-assisted networks are crucial. To get the best performance of

the system, it is necessary to jointly optimize all the resources such as communication, computing,

and caching and have an efficient control method for all these resources as discussed in [11]. Au-

thors jointly optimized all the resources (communication, computing and caching) in a terrestrial

network and used the distributed control to minimize the edge cloud network’s bandwidth con-

sumption and network latency. However, most of the existing literature is focused on either 3Cs

(joint communication, computing and caching), 2Cs (joint communication and computing, joint

computing and caching along with UAV trajectory), or 1C (joint trajectory and communication)

problems. In subsequent subsections, we will discuss joint 3Cs, 2Cs, and 1C for terrestrial and

non-terrestrial networks. However, there is no existing work for the joint 4Cs problems for the

UAV networks.
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2.2.1 Joint Communication, Computing and Caching (3Cs) Optimization

This subsection provides the joint optimization of 3Cs resources along with UAV placement. There

exists literature on joint 3Cs resource optimization in terrestrial networks. In [1], authors consid-

ered the minimization of energy consumption and execution delay taking into account service

caching and device-to-device (D2D) communication and introduced opportunistic networks in

multi-access networks simultaneously. They formulated the offloading decision as a sequential

game problem with lower time complexity. In [2], the energy minimization problem has been for-

mulated by jointly optimizing caching, offloading, and time allocation policy subject to caching

and deadline constraints for the MEC network. The formulated optimization problem is mixed-

integer non-linear programming (MINLP) problem and NP-hard. In [45], authors formulate an

MINLP to minimize the computation delay and energy consumption of the mobile user that jointly

optimize the service caching placement, computation offloading decisions, and system resource

allocation (e.g., CPU processing frequency and transmit power) in MEC systems. Here, service

caching refers to pre-sorting the necessary programs for executing computation tasks at MEC

servers. It reduces the real-time delay and bandwidth cost of acquiring and initializing service

applications.

In [32], the authors considered frequency-division multiple access setups for minimizing the

weighted-sum energy of the BS and the users by jointly optimizing cache placement and bandwidth

allocation subject to caching and computing capacities of BS, limited bandwidth and computation

latency constraints for each type of task. Authors in [33] proposed a computing task caching strat-

egy to minimize the processing delay of tasks by jointly optimizing communication, computing,

and cache resource allocation at the edge cloud in terrestrial network. In [30], authors considered

the bidirectional computation task model, where each task is served via three mechanisms, i.e.,

local computing with local caching, local computing without local caching, and computing at the

MEC server. They formulated the average bandwidth minimization problem by jointly optimizing

the caching and computing resources under the latency, cache size, and average power constraints.

Based on the problem structure and optimal properties, they transform the problem into a multiple
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dimensional multiple-choice knapsack problem (MMKP) which is NP-hard.

In [31] authors considered AI-enabled smart edge with heterogeneous IoT architecture that

combines edge computing, caching, and communication. The authors proposed the Smart-Edge-

CoCaCo algorithm to minimize total delay and confirm the computation offloading decision by

joint optimization of the wireless communication model, the collaborative filter caching model in

edge cloud, and the computation offloading model. They experimented in a real environment on

the affective interaction through wearable computing and cloud technology emotion interaction

system and observed the delay of the proposed algorithm. In [76], authors jointly considered 3Cs

to reduce infotainment content retrieval delay and enhance the QoE of the smart car users and

formulate the problem as a mix-integer, non-linear, and non-convex optimization. UAV mounted

storage and computing servers perform the caching and computing operation to improve commu-

nication and computing efficiency. Due to the limited communication and computing facility in

the UAV devices, the joint optimization of UAV placement (i.e., UAV location, altitude, speed,

and distance) with 3Cs resource allocation are considered in [8, 77, 78]. UAV-assisted heteroge-

neous computing platforms (HCP) are considered in [8], where content cache placement and traffic

distribution problem is considered in the optimization problem. Authors in [9] considered UAV

deployment with communication resources (i.e., power control and channel access) and computing

decision (i.e., computation offloading) in the optimization problem where maximum power budget,

minimum data rate and computation requirements of UAV are considered as main constraints.

In [60], the authors considered cache enabling UAV-assisted network where user association

problem with joint cache placement and UAV deployment is considered to maximize the QoE of

users. Authors in [79] addressed the learning-based joint scheduling and 3C resource management

in UAV networks. An asynchronous advantage actor-critic-based joint device selection, UAVs

placement, and resource management algorithm is proposed to enhance the federated convergence

speed and accuracy. In order to enhance the performance of UAV-assisted wireless communica-

tion, MEC technology is used by appropriately utilizing communication and computing resources

jointly at the edge of the network to decrease response delay and increase the efficiency of network
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resources utilization [77]. In [80] authors jointly considered NOMA with wireless cache and si-

multaneous wireless information and power transfer (SWIPT) for UAV communication by utilizing

communication and caching resources to enhance energy harvesting and information transmission

in UAV based IoT networks. In [81], a multi-resource management architecture of terrestrial satel-

lite networks (TSN) towards 6G has been proposed. The uplink capacity of the user has been

improved by joint optimization of the satellite service period and 3C power allocation consider-

ing user fairness and data security in the uplink transmission of TSN. The downlink transmission

capacity improved by introducing terrestrial and aerial relays and observed the influence on the

overall system throughput. In [82], the authors proposed a next-generation aerial delivery network

architecture based on the 3D connectivity of the 3Cs resources. In [83], the energy consumption

of UAVs has been minimized by jointly optimizing its trajectory and resource allocation, and task

decision and bits scheduling of users considering fairness. The problem is formulated as a mix-

integer nonlinear programming problem with strongly coupled variants and further transformed

into three more tractable subproblems, i.e., trajectory optimization, task decision and bits schedul-

ing and resource allocation.

Lessons Learnt: In summary, given in Table 2.2, the main lessons are:

• Joint 3Cs problems are either bandwidth minimization or energy minimization problems.

• Most of the current literature on 3Cs resource allocation problems is related to terrestrial

networks.

• Joint 3C problems for UAV assisted networks also consider UAV placement, user associa-

tion, and path planning, making it more challenging.
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Table 2.2: Objectives and constraints for joint communication, computing, and caching (3C) re-
source optimization.

Ref. Objectives Parameters/constraints Problem

type

[1] Offloading strategy based

on game theory to decrease

overall computation over-

head, energy consumption,

and execution delay

• Parameters: Computation task parameter,

decision-making parameter, the overhead

of mobile user.

• Constraints: Delay, storage capacity,

cache capability of the server, computa-

tional offloading strategies.

Non

convex

[11] Minimize bandwidth con-

sumption and network la-

tency

• Parameters: Vectors of cache, compu-

tation allocation and communication re-

source allocation.

• Constraints: Sum of spectrum allocation

less than total available spectrum, compu-

tation, and caching resources limit, task

execution frequency.

Non-

convex

[2] Energy minimization • Parameters: Caching action, system state,

offloading vector, time allocation vector.

• Constraints: caching, deadline.

MINLP

non-

convex
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[32] Weighted sum energy min-

imization

• Parameters: Energy consumption, dual

variables, input and output data length.

• Constraints: Computation offloading

deadline, caching and computation capac-

ity, transmission bandwidth, latency.

MINLP

[33] Minimizing processing de-

lay of the task through the

deployment of task caching

• Parameters: Four video tasks, task re-

quests, task duration, uplink data rate,

edge caching, and computing capacity.

• Constraint: Caching capacity.

Mixed-

integer

linear

prob-

lem

[30] Minimize average band-

width

• Parameters: Number of tasks, caching and

computing policy, average bandwidth, en-

ergy, cache, bandwidth cost.

• Constraints: Latency, cache size, average

power.

MMKP

and NP

hard,

aux-

iliary

prob-

lem

[31] Reduce network conges-

tion; decrease computing

and communication delay;

better user QoE

• Parameters: AIWAC emotion recognition

system, data(image), number of users, the

average delay.

• Constraints: Caching and computation.

Convex

24



[76] Minimize the total delay

for the smart cars in the ser-

vice area

• Parameters: Speed of cars, data rate, com-

putation and cache capacity, delay.

• Constraints: Cache allocation, computa-

tion and resource constraints.

NP-

hard,

MINL

[8] Minimize cache-miss ratio • Parameters: User equipment identifier,

weight vector, control parameter, context

information, stochastic gradient descent

(SGD).

• Constraints: Same learning model for user

equipment and HCP

Two-

step

feder-

ated

prob-

lem

[9] Deployment, computation

offloading, power con-

trol, and channel access

in coalition-based UAV

swarms

• Parameters: Channel parameters, power

level, coalition head location, SNR thresh-

old.

• Constraints: Time, any two offloading

members in the same coalition should

choose different sub-channels, highest lo-

cal computing frequency.

Energy

saving

opti-

miza-

tion

prob-

lem
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[60] Maximize the QoE of users

in the networks, optimiza-

tion problem of UAV de-

ployment, caching place-

ment

• Parameters: Cache capacity, SINR, trans-

mission delay, the distance between user

and UAV.

• Constraints: Coupling constraint (binary

variables coupled).

Non-

convex

[79] Minimize the federated

learning model execution

time and the learning

accuracy loss

• Parameters: Data sample vector, learn-

ing model, loss function, probabilistic loss

model, SINR, data rates, bandwidth, trans-

mit power.

• Constraints: Maximum transmit power

UAV sub-channel, computation capacity

range.

MINLP

[77] Minimize response delay • Parameters: Power, distance, transmission

probability, delay, packet arrival rate.

• Constraints: Payload and energy, Commu-

nication and computation resources con-

straints.

Lower

and

upper

convex

2.2.2 Joint Communication and Computing (2C) Optimization

The enormous growth of smart devices and applications in beyond 5G/6G networks emerges into

computation-intensive and delay-sensitive tasks. MEC with the integration of UAVs is consid-

ered a promising solution to provide the communication and computing resource platform for
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computation-intensive and delay-sensitive tasks. However, the joint decision of offloading and the

transmission power controlling is still one of the challenges in the UAV-assisted MEC systems.

As shown in Table 2.3, joint optimization of communication and computing resources considered

time, power, bandwidth and energy in terrestrial networks, while the integration of UAVs includes

UAV location, speed, trajectory and UAV battery power as a parameter in the optimization prob-

lems.

In [84], authors considered dynamic user pairing NOMA-based offloading to deal with the mas-

sive access and different offloading requirements of IoT devices in terrestrial networks. The min-

imization of energy consumption is obtained by jointly optimizing user pairing, communication

and computing resources (i.e., transmission power, CPU energy and frequency). The joint multi-

user offloading and transmission power control optimization problem to minimize the system-wide

computation overhead in a multi-channel wireless interference scenario is studied in [85]. Authors

in [86] comprehensively discussed the cooperative communication and computation of vehicu-

lar systems and established a stochastic model of vehicle-to-vehicle (V2V) communication using

probability theory. Further, they combine V2V communication and vehicle computing to charac-

terize the coupling reliability of cooperative communications and computation systems. In [87],

fairness of users has been ensured by joint pilot transmission, data transmission, and resources

allocation during the computation execution process to minimize the maximum offload computing

delay of all users in the massive MIMO MEC network. The optimization problem is considered

constraints on user energy consumption, signal to interference and noise ratio (SINR), and com-

puting resource.

A joint computation offloading and multi-user scheduling algorithm has been proposed to min-

imize the long-term average weighted sum of delay and power consumption in narrow-band-IoT

edge computing system [88]. A semi-distributed dynamic optimization problem is formulated

where the offloading is performed locally at the IoT devices. At the same time, the scheduling is

auction-based, in which the IoT devices submit bids to the BS to make the scheduling decision cen-

trally. In [89], authors formulated a stochastic optimization problem, which maximizes the system
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utility and ensures the queues stability subject to the power, subcarrier and computation resources

constraints by the joint congestion control and resource allocation in the MEC system. In [90], au-

thors considered both transmission and computation resources to decide on the resource allocation

scheme to minimize data loss and maximize the number of completed missions for space network

missions. In [91, 92], authors considered joint optimization of communication (i.e., transmission

power and bandwidth) and computing resources (i.e., CPU frequency, offloading decision) of both

the mobile user and MEC server to minimize the energy consumption of all the users.

An incentive mechanism based on joint non-convex optimization problem of opportunistic

computation offloading under delay and cost constraints is formulated in [93] for 5G integrated

satellite-ground framework in vehicular network. A vehicular user can either be a service re-

questor or a service provider. A service requestor is allowed to offload workload to nearby vehicles

via V2V channels while effectively controlling the cost and a service provider provides comput-

ing services while protecting profit. Joint resource management for D2D communication-assisted

multi-tier fog computing is studied in [94], and a joint power control, link scheduling integration,

channel assignment and multi-dimensional resource optimization problem has been formulated

to maximize the network management profit. In [95], authors proposed joint optimization of the

cooperative computation offloading decision and resource allocation cooperative computation of-

floading to maximize the weighted sum of the computation rate and the transaction throughput for

blockchain-enabled MEC systems. In [96], authors considered a multi-user MEC-enabled wireless

communication system, where the user equipment suffers limited communication and computa-

tion resources. To achieve higher energy efficiency and a better QoE, they formulate an NP-hard

MINLP problem, aiming to maximize the number of offloaded tasks in uplink communication

while maintaining the computation resources of MEC at an acceptable level.

The computation offloading problem for the hierarchical MEC system with UAVs is studied

in [36]. The hierarchical MEC, which exploits both centralized and distributed computing archi-

tectures, is promising to support computation offloading in emerging computationally expensive

mobile applications. In this study, UAVs integrating computing platforms act as small distributed
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clouds while the macro BS integrates a more powerful central cloud server. Furthermore, the

MIMO technology is employed for data communication. The authors considered the joint task

offloading, user-cloud/cloudlet association, transmit power allocation, and path planning to mini-

mize the total weighted consumed power of the system. The computation efficiency maximization

problem is discussed in [97] by addressing the joint optimization of communication and compu-

tation resources (i.e., transmit power, offloading times, CPU frequencies and trajectory of UAV)

for UAV enabled MEC systems. In [90], authors discussed both transmission conflict and system

performance improvement for the space networks by joint transmission and computation resource

allocation. The authors in [62] discussed the joint resource optimization and hyper learning rate

control method to minimize the energy consumption of mobile devices and overall learning rate

in the MEC system. The authors proposed a resource-sharing model for both centralized and de-

centralized resource management. In [98], authors considered a UAV-assisted MEC system in

which a mobile UAV equipped with computing resources is employed to help user devices (UDs)

compute their tasks. They formulated an optimization problem to minimize the weighted-sum

energy consumption of the UAV and UDs by jointly optimizing the UAV trajectory and computa-

tion resource allocation under the constraint of the number of computation bits for orthogonal and

non-orthogonal access modes.

Lessons Learnt: In summary, given in Table 2.3, the main lessons are:

• The objective of all the joint communication and computation problems are either energy

and power minimization or maximization of the weighted sum of computational offloading.

• Majority of the problems are MINLP and dynamic optimization.

• Limited literature is available on joint communication and computation is discussed for

UAV-assisted wireless networks.
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Table 2.3: Objective and constraints for joint communication and computing (2C) resource opti-
mization.

Ref. Objectives Parameters/constraints Problem

type

[99] Minimize energy con-

sumption

• Parameters: Power, time, task offloading,

transmission rate.

• Constraints: Time resources, offloading

task to MEC server, transmission delay.

Non-

convex

[84] Minimize energy con-

sumption

• Parameters: Transmission power, offload-

ing data size, transmission energy, CPU

frequency, SINR.

• Constraint: Time.

MINLP

[85] Minimize computation

overhead

• Parameters: Execution latency, energy

consumption, power, channel parameters.

• Constraints: Transmission power, multi-

dimensional discrete space.

Non-

convex,

MINLP

[86] Maximize the estimated

success probability of

computation offloading

• Parameters: Time, data, feasible schedul-

ing solution, SINR, privacy tolerance

threshold, bandwidth.

• Constraints: Reliability, end-to-end delay

Convex

30



[87] Minimizing the maximum

offload computing delay

for all users

• Parameters: CPU frequency, total comput-

ing delay, transmission rates, energy con-

sumption.

• Constraints: User energy consumption,

computing resource constraints, SINR.

Non-

convex

[88] Minimize the weighted

sum of the average delay

and power consumption

for the IoT devices

• Parameters: System state, transmission

queue length, processing queue length,

and offloading decision.

• Constraints: Average delay and power

consumption.

Dynamic

opti-

miza-

tion

[89] Maximizes the system util-

ity and ensures the queues

stability by the joint con-

gestion control and re-

source allocation

• Parameters: Bandwidth, time, Transmis-

sion power, CPU frequency, execution

time.

• Constraints: Power, sub-carrier and com-

putation resources.

Convex

opti-

miza-

tion

prob-

lem

[90] Maximize number of com-

pleted missions while min-

imizing data loss

• Parameters: Antenna size, data size, com-

pression ratio, mission index.

• Constraints: State transition, run time,

completed mission constraint.

MILP
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[91] Minimize energy con-

sumption

• Parameters: Bandwidth, data rate, upload

time, AWGN power, path loss, the refer-

ence distance.

• Constraints: Task delay constraints, trans-

mission power, maximum CPU frequency.

Non-

convex

[93] Opportunistic computa-

tional offloading and price

per resource block

• Parameters: Weight factors, completion

time, CPU cycles.

• Constraints: Delay and cost.

Non-

convex,

NP-

hard

[94] Maximization of network

management profit

• Parameters: Link scheduling, channel as-

signment, power.

• Constraints: Energy consumption cost,

computation and communication, SINR,

power.

MINLP

[95] Maximize weighted sum of

computation rate and trans-

action throughput for MEC

systems

• Parameters:State space, channel condi-

tions, computing resources, power.

• Constraints: Maximum frequency (Dy-

namic voltage and frequency scaling), la-

tency time to finality.

MDP
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[92] Minimization of energy

consumption and time

delay

• Parameters: Energy Consumption, execu-

tion delay, transmission power, bandwidth

limit, offloading decision.

• Constraints: Frequency of CPU, power,

bandwidth, computing resources, the sta-

bility limit.

Convex

opti-

miza-

tion

[96] Maximize the number of

offloaded tasks

• Parameters: Radio remote heads, SINR,

Transmitted data rate, power, bandwidth.

• Constraints: Time cost, computation,

communication, power.

MINLP

[36] Minimize the total

weighted computation

and transmit powers of all

users in the system

• Parameters: Distance/coverage radius,

time, CPU clock speed, path loss, maxi-

mum allowable speed.

• Constraints: Computation resources, min-

imum transmission rate, maximum allow-

able consumed powers.

MINLP

[97] Maximization of computa-

tional efficiency of UAV-

enabled MEC system

• Parameters: UAV trajectory.

• Constraints: Energy, offloading time, CPU

frequencies, transmit power, UAV’s mo-

bility, position of UAV.

Non-

convex
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[62] Minimize the running time

cost and the energy con-

sumption of user equip-

ment

• Parameters: Hyper learning rate, cost

of learning service,CPU frequency, band-

width.

• Constraints: CPU frequency, bandwidth,

uplink transmission time, shared CPU re-

sources.

Non-

convex

2.2.3 Joint Computing and Caching (2C) Optimization

Joint optimization of cache and computing resources in terrestrial and aerial networks consider

content cache placement and computing task offloading decision as shown in Table 2.4. Edge

service caching is considered a promising solution to reduce real-time delay in MEC-supported

applications. Authors in [45] considered terrestrial networks where mobile users contain single

servers that cache pre-sorted initial service for real-time applications. MEC networks provide

more computing and storage capability for latency-sensitive mobile applications. However, the

computation and caching resources at the edge servers are limited, so there is a need to optimize

these resources to increase the efficiency of the network. In [100], the authors proposed a joint

task offloading and data caching scheme to minimize the overall computation latency of all mobile

devices while maintaining the lowest energy consumption. Introducing UAVs in the MEC network

is another solution to increase the computing and caching resources of the network. UAV-mounted

cloudlet distribution and data computation in location-based social networks are considered in

[101], where computing and traffic load reduction are the main objectives for the optimization

problem in the UAV-cloudlet distribution.

Lessons Learnt: In summary, given in Table 2.4, the main lessons are:

• Joint computing and cashing resource optimization consider CPU frequencies, computation
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time, energy, power and caching capacity parameters.

• The joint computing and caching problems can be MINLP, linear programming, and convex

optimization.

• MEC, cloud computing and UAVs in the network plays a vital role in maximizing caching

and computing efficiency.

Table 2.4: Objectives and constraints for joint computing and caching resource optimization.

Ref. Objectives Parameters/constraints Problem

type

[45] Minimize the overall com-

putation delay and energy

consumption of the mobile

user

• Parameters: Computation time, CPU fre-

quency, energy efficiency, power.

• Constraints: Time and energy consumed

while computing tasks, caching capacity.

MINLP

[100] Minimize the overall com-

putation latency

• Parameters: Task arrival rate, storage size,

amount of data, power, service rate.

• Constraints: Energy consumption, per-

slot computation delay, bandwidth, dead-

line requirements.

Binary

pro-

gram-

ming

prob-

lem

[101] Optimization of energy

consumption and cache

placement

• Parameters: Time, latency, energy con-

sumption.

• Constraints: Storage, popular file li-

brary,CPU and link bandwidth resources.

Convex
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2.2.4 Joint Trajectory, Communication and Computation Optimization

This subsection is about joint optimization of UAV trajectory and 2Cs, i.e., communication and

computation resource allocation. As shown in Table 2.5, UAV trajectory optimization considers

the parameters of UAV mass, velocity, acceleration, altitude and its location parameters along

with power, signal-to-noise ratio (SNR), bandwidth, CPU frequencies, energy consumption and

offloading rate etc.

The future wireless networks in which UAVs can be used to assist computing in MEC systems

pose new opportunities to solve the challenges in communication and computation design, and

several prior related works have been done for this [37, 40, 46, 47, 102]. Particularly, the work

in [37] considers that UAV is deployed as a helper that not only helps compute the bits offloaded

from terminal devices but also acts as a decode-and-forward (DF) relay to assist task bits to trans-

mit from terminal devices to BS and minimize the sum energy of communication-related energy,

computation-related energy, and UAVâs flight energy. In [47], the UAV-assisted MEC system is

studied, in which the UAV serves as a relay between the offloading users and the BS. Furthermore,

NOMA is introduced to improve the spectrum efficiency and joint trajectory and computation of-

floading optimization is done to minimize the total delay of all users. Authors in [46] formulated

the non-convex joint optimization of the CPU frequencies, the offloading amount, the transmit

power, and the UAVâs trajectory to minimize the required energy of UAV in UAV-assisted wireless

powered cooperative MEC. This work also shows that trajectory optimization plays a dominant

factor in minimizing the total required energy of the system and optimizing acceleration has a

significant effect on the required energy of the UAV.

In [40], the authors aim to minimize the UAVâs mission completion time by optimizing its

trajectory jointly with the computation offloading scheduling, subject to the maximum speed con-

straint of the UAV and the computation capacity constraints at ground BSs. Authors in [102] inves-

tigated a multiple UAVs-assisted two-stage MEC system in which the computation-intensive and

delay-sensitive tasks of mobile devices are cooperatively executed on both MEC-enabled UAVs

and terrestrial BSs attached with the MEC server. A joint task offloading, communication and
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computation resource allocation problem has been formulated to minimize the energy consump-

tion of mobile devices and UAVs while considering the limited communication resources for the

uplink transmission, the computation resources of UAVs and the tolerable latency of the tasks.

In [103], a novel framework is proposed to exploit the flexibility of the UAV for legitimate mon-

itoring via joint trajectory design and energy management. The UAV can adjust its positions and

send the jamming signal to the suspicious receiver to ensure successful eavesdropping. To achieve

energy-efficient UAV operations in practice, authors further consider a solar-powered rotary-wing

UAV-enabled monitoring system, including propulsion power consumption.

In [104], authors designed the UAV trajectory to minimize the total energy consumption while

satisfying the requested timeout requirement and energy budget, which is accomplished via jointly

optimizing the path and UAVâs velocities along with subsequent hops. The corresponding op-

timization problem is challenging to solve due to its non-convexity and combinatorial nature.

In [105], joint communication and computation resource allocation and UAV trajectory optimiza-

tion have been studied for maximizing the total energy efficiency in UAV-based NOMA downlink

wireless networks with the QoS requirements. The UAV-assisted cellular network where multi-

ple UAVs serve as aerial BSs to provide wireless connectivity to ground users through frequency

division multiple access scheme has been discussed in [106]. Joint optimization for user associ-

ation, communication and computing resource allocation, and UAV placement is investigated to

maximize the downlink sum rate.

Lessons Learnt: In summary, given in Table 2.5, the main lessons are:

• Joint UAV trajectory, communication, and computation resource allocation problems are

mainly non-convex optimization and MINLP.

• Communication resources and trajectory optimization have a significant impact on the net-

work’s total energy consumption.
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Table 2.5: Objectives and constraints for joint UAV trajectory, communication, and computation
resource optimization.

Ref. Objectives Parameters/constraints Problem

type

[37] Minimize total energy con-

sumption

• Parameters: Time, bandwidth, SNR, of-

floading rate, power, speed, location, CPU

frequency.

• Constraints: Communication, compu-

tation resource allocation, computation

causality, UAV trajectory.

Non-

convex

[47] Joint trajectory and com-

putation optimization

• Parameters: Data rate, power, interfer-

ence, energy, commutation capacity, UAV

mass, QoS requirement.

• Constraints: UAV energy, latency, trans-

mit power, transmission rate, require-

ments of successive interference cancella-

tion.

Non-

convex
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[46] Minimize the total required

energy at the UAV

• Parameters: CPU frequency vector, com-

putational bits offloading vector, UAV tra-

jectory, velocity, acceleration, Transmit

power vector.

• Constraints: Sensor device computing

task constraints, the information and en-

ergy harvesting causality, UAVâs trajec-

tory.

Non-

convex

[40] Computation offloading

and trajectory optimization

of UAV

• Parameters: Number of tasks, CPU cycles,

UAV altitude, horizontal locations, mis-

sion completion time, UAV’s speed, com-

putational offloading.

• Constraints: Maximum speed of UAV,

computation capacity.

Non-

convex

[102] Minimize the energy con-

sumption of mobile de-

vices and UAVs

• Parameters: Channel assignment variable,

approximation function, channel gain,

SNR, the thrust of UAV, energy consump-

tion, weight and penalty parameters.

• Constraints: Task execution time, task

data size, maximum computing capacity,

channel association.

MINLP
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[103] Minimizing total energy

consumption

• Parameters: UAV location, travel distance,

maximum speed, transmit power.

• Constraints: UAVâs mobile activity con-

straints (location and speed), SINR.

Non-

convex

[104] Minimize UAV energy

consumption

• Parameters: Power consumption, flying

velocity, UAV path.

• Constraints: Feasible set of paths, HOP

(trajectory line segments) velocities, en-

ergy budget, maximum latency.

Non-

convex

[107] Minimize power consump-

tion

• Parameters: Trajectory, beam-forming

vector, time, power, frequency.

• Constraints: Semi-infinite constraint, dis-

junctive constraint.

Non-

convex

2.2.5 Joint Trajectory and Communication Optimization

The employment of UAVs in wireless communication provides better communication channels and

mobility, which provides flexibility in deployment. The trajectory optimization and acceleration

of UAV plays a dominant factor in minimizing the total required energy of the system [46]. On

the other hand, the unique characteristic of UAVs also poses challenges in resource allocation,

such as mobility, trajectory, speed and energy, which are enlisted in the parameters and constraints

column in Table 2.6. This subsection is about communication resource allocation along with UAV

trajectory optimization. Communication resource allocation and optimization mainly consider
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spectrum efficiency, power control and interference management. In order to tackle UAV-related

challenges and communication resources (i.e., transmission power, bandwidth etc.) optimization

issues in UAV-assisted wireless networks, the proper design of UAV trajectory is necessary.

In [34, 108], authors considered the optimization of the communication resource allocation by

minimizing the interference and protection cost in terrestrial networks. In [34], authors investigate

the resource allocation and power control problems in which the D2D pairs utilize the uplink re-

sources of cellular users in 5G networks. In [34], joint channel and power allocation algorithm with

deep Q-learning has been investigated to maximize the system capacity and spectrum efficiency

while minimizing interference in D2D communication in terrestrial networks. In [108], a multicast

routing algorithm has been investigated to provide working communication paths for staged load

control by jointly organizing the load control terminals in source grid load systems, optimizing the

dispatching of power supply, power grid, and power load. In [86], the authors proposed an op-

timization problem to minimize the total energy consumption, including communication energy,

computation energy and UAVâs flight energy, by optimizing communication resources (i.e., bits al-

location, time slot scheduling, and power) and UAV trajectory. Authors in [109] applied Q-learning

method for trajectory optimization problem. The joint trajectory and sum-rate maximization prob-

lem is considered in [109] where the UAV works as a machine learning agent that updates the

trajectory that maximizes the sum rate of the transmission based on q-learning techniques.

In [110], UAV trajectory and power allocation scheme is proposed to maximize the downlink

achievable sum rate of all users by considering UAV mobility, information causality, and transmit

power constraints. Authors in [53] proposed a UAV-assisted multi-carrier wireless communication

model to maximize the minimum achievable rate in the uplink among all IoT nodes by jointly opti-

mizing the UAV trajectory, subcarrier, power, and subslot allocation. Authors in [111] considered a

generic optimization problem to maximize the UAV communication utility by jointly designing the

continuous-time UAV trajectory and communication. Power-efficient resource allocation is signif-

icant in UAV-assisted communication systems due to limited onboard battery capacity. In [104],

authors optimized UAV trajectory to minimize the total energy consumption while satisfying the
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UAV mobility (i.e., location and speed ), maximum latency, and SINR in UAV enabled commu-

nication system. The optimal path is selected as the designed trajectory of the UAV for best UAV

performance. Authors in [107] considered the minimization of the total power consumption by

jointly optimizing the 2D trajectory and the transmit beamforming vector of the UAV. In [112], au-

thors considered a single cell multi-user orthogonal frequency division multiple access (OFDMA)

network with one UAV, which works as an amplify-and-forward relay to improve the QoS of the

user equipment in the cell edge. In order to improve the throughput while guaranteeing user fair-

ness, they jointly optimized the communication mode, sub-channel allocation, power allocation,

and UAV trajectory, which is an NP-hard problem.

Lessons Learnt: In summary, given in Table 2.6, the main lessons are:

• Interference management, power, and spectrum allocation play a vital role in communication

resource optimization problems along with UAV trajectory.

• The problems in this category of resource allocation are either non-convex optimization or

mixed integer linear programming (MILP).

• The goal of communication resource optimization is to maximize the system capacity, spec-

trum efficiency and achievable sum rate.

Table 2.6: Objectives and constraints for joint UAV trajectory and communication resource opti-
mization.

Ref. Objectives Parameters/constraints Problem

type

[34] Maximize system capac-

ity and spectrum efficiency

while minimizing interfer-

ence to cellular users

• Parameters: State transition probabilities,

reward function, environment state, CPU

capacity.

• Constraints: SINR, power, bandwidth.

State

space

prob-

lem
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[108] Improve the resource uti-

lization rate of the commu-

nication for load control,

minimize protection cost

• Parameters: Cost, the working capacity of

the link, number of protection paths.

• Constraints: Bandwidth, total energy con-

sumption, CPU capacity, the deadline re-

quirement, computation offloading.

MILP

[110] Maximize the downlink

achievable sum rate of all

users by jointly optimiz-

ing UAV trajectory and

BS/UAV power

• Parameters: Flight speed, UAV distance.

• Constraints: UAV mobility and informa-

tion causality, flight speed, BS/UAV trans-

mit power.

Non-

convex

[53] Maximize the minimum

achievable rate in the up-

link among all IoT nodes

• Parameters: Antenna gain, altitude, UAV

speed, location of UAV, bandwidth, en-

ergy.

• Constraints: Achievable sum rate, UAV

flight speed, power.

Non-

convex

[111] Maximizing the UAV com-

munication utility

• Parameters: Number of segments by path

and time discretization, communication

utility function, conventional path dis-

cretization, flexible path discretization,

flight time.

• Constraints: Maximum UAV speed, UAV

communication, UAV trajectory.

Non-

convex
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Optimization in UAV-assisted wireless networks

Problems

Problem Types

UAV deployment; 
trajectory; joint optimization 

3C (communication, 
computing, cache)

Joint optimization 2C 
(communication and 

computing or computing and 
caching)

Optimization 1C 
(communication or 

computing or caching or 
control)

MINL NL Non-convex Convex

Solutions

Approximation Algorithms
• Successive convex approximation (SCA)
• Alternating Direction Method of 

Multipliers
• Block coordinate descent
• Block Successive Upper Bound 

Minimization Machine Learning Algorithms
• Deep Reinforcement Learning (DRL)
• Federated Learning (FL)
• Markov Decision Process (MDP)

Search based Algorithms
• Heuristic Search
• Exhaustive Search
• Distributed Search

Iterative Algorithms

Figure 2.1: Solution and techniques for optimization problems in UAV-assisted wireless networks.

2.3 Solutions and Techniques

This section discusses the solution methods and techniques for optimization issues presented in

the considered in Section 2.2. We classify the solutions methods and techniques for the joint 3Cs

resource optimization, joint 2Cs resource optimization, joint trajectory and 2Cs resource optimiza-

tion, joint trajectory and communication resource optimization can be divided into the categories

shown in Fig. 2.1. Mainly, we divide the solution methods and techniques into approximation

algorithms, iterative algorithms, search-based algorithms, and machine learning algorithms. These

categories are further categorized into different approaches. The optimization problems identified

in the literature include convex, non-convex, linear programming, MINLP, and MILP. However,

most of the work considered non-convex optimization formulations. The solution methods for

non-convex problems utilize relaxation, approximation, and multipliers, converting non-convex

problems to convex problems.
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2.3.1 Approximation Algorithms:

The approximation algorithms are utilized in non-convex optimization problems such as energy

efficiency. In aerial networks, UAV-related problems such as UAV trajectory, path planning and

UAV placement are solved using approximation methods. The approximation algorithms can be

further classified into the following:

Successive Convex Approximation (SCA)

Successive convex approximation (SCA) converts the non-convex problem into a convex or linear

problem by introducing slack variables into the function until it becomes linear. Authors in [37]

formulated the energy minimization problem by optimizing the UAV trajectory as a part of the

main problem, i.e., joint communication and computing resource optimization. The formulated

problem is non-convex optimization that is challenging to be solved. Lagrange duality and the

SCA method are used to convert the problem into convex optimization and obtain a local optimal

solution. Similarly, in [40] alternating optimization and the SCA techniques are applied in com-

putation offloading and trajectory optimization problems which return the sub-optimal solution to

the offloading decision problem.

Authors in [85] developed distributed power control algorithm for MEC using SCA by opti-

mizing auxiliary variables and the transmission power in a distributed way, given the convergence

threshold and learning rate. In [47], joint optimization of UAV trajectory and power allocation

problem is addressed by leveraging the SCA to obtain a sub-optimal solution. The SCA-based al-

gorithms should be adopted to find an optimal solution due to increased computational complexity,

relatively large amount of data and mobility of UAVs in 6G networks. In [46], the total required

energy of UAV is minimized by jointly optimizing the CPU frequencies, the offloading amount, the

transmit power, and the UAVâs trajectory by using the SCA-based algorithm. In [97], the authors

proposed the two-stage alternative optimization algorithm to solve the non-convex computation

efficiency maximization problem for UAV-assisted MEC network. In the first stage for any given

UAV trajectory, they applied the Lagrangian dual method to obtain the closed expressions of the
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optimal transmitted power and CPU frequencies. In the second stage, the SCA method is used to

obtain the optimized trajectory of the UAV.

To improve the performance of UAV-assisted wireless networks, the joint design of UAV tra-

jectory and communication is considered in [111]. Authors have to deal with the challenge of

many design variables arising from the continuous-time UAV trajectory optimization. The SCA

is used to optimize the UAV trajectory with piecewise-linear path segments connected via a finite

number of waypoints in a 3D space to obtain a sub-optimal solution. In [103], the authors con-

sidered joint trajectory design and energy management of UAV. Authors model and include the

propulsion power to minimize the overall energy consumption of the UAV, and using the SCA,

an effective iterative approach is developed to find a feasible solution fulfilling the Karush-Kuhn-

Tucker (KKT) conditions. Authors in [107] investigated the total power consumption minimization

problem by jointly optimizing the 2D trajectory and the transmit beamforming vector of the UAV

for multi-user downlink multiple-input single-output (MISO) UAV communication systems. They

proposed a sub-optimal iterative low-complexity scheme based on the SCA to balance optima and

computational complexity.

Alternating Direction Method of Multipliers (ADMM)

The alternating direction method of multipliers (ADMM) is a simple but powerful first-order

method for solving convex optimization problems with a large number of variables and constraints.

Using this method, one can decompose the complex problem into a series of sub-problems con-

taining only a small number of variables and constraints. These sub-problems are independent of

each other and can be solved in a distributed manner.

In [2] authors considered joint caching, offloading, and time allocation (3C resource alloca-

tion), which is a non-convex and MINLP problem for the MEC system to minimize the weighted

sum energy consumption using caching and deadline constraints. The authors converted it into

equivalent convex MINLP using some appropriate transformations to solve this problem. They ob-

tained a sub-optimal solution using the alternating direction method of multipliers and the penalty
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convex-concave procedure. To address the complexity issue in large size terrestrial networks, au-

thors in [113] proposed an ADMM based technique that jointly optimizes the mode selection and

time allocation. Joint computing and communication resources with cache allocation are con-

sidered in [76]. The authors applied the ADMM method for MINLP to find the optimal global

solution for resource allocation. In [62], the authors investigated multi-service federated learning

problem to jointly optimize communication, computation and control parameters while minimiz-

ing the learning time energy consumption of users. The authors developed a decentralized algo-

rithm that leverages the parallelism structure for sub-problems update of Jacobi-Proximal ADMM

into multi convex ADMM (i.e., JP-miADMM). It allows each learning service to independently

manage the local resource and learning process without revealing the learning service information.

Block Coordinate Descent (BCD) method

Block coordinate descent (BCD) is a simple iterative algorithm for non-convex optimization that

sequentially minimizes the objective function in each block coordinate while the other coordi-

nates are held fixed. Joint optimization of UAV trajectory and resource allocation problems are

non-convex optimization problems in which continuous-time variables are coupled together. A

non-convex optimization problem due to the coupling among the 2D UAV waypoints, travelling

duration on line segments, and UAV communication scheduling has been proposed in [111]. To

address the coupling, a BCD method is used for the joint UAV trajectory and communication de-

sign. The BCD method decoupled the variables into multiple blocks (non-convex) and solved

them in iterations to get the sub-optimal solution. Practically, BCD cannot be applied directly to

non-convex problems and guarantees the convergence of the objective function, so another approx-

imation method is always used in combination with BCD to convert the non-convex function to

convex. In UAV trajectory optimization problems, the BCD method is used in combination with

successive convex approximation to get the finest trajectory as discussed in [104].
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Block Successive Upper bound Minimization (BSUM) method

The block successive upper Bound minimization (BSUM) method is a distributed algorithm for

big-data optimization and solving separable smooth or non-smooth convex optimization problems

with linear coupling constraints. The BSUM method allows the decomposition of the formulated

optimization problem into small sub-problems that can be addressed separately by minimizing

the proximal upper-bound function by updating the variables’ blocks until it converges to both a

coordinate-wise minimum and a stationary solution. In [11], the authors developed a BSUM based

distributed optimization control algorithm to jointly optimize a linear combination of the band-

width consumption and network latency in big data MEC. They investigated BSUM for the 4Cs

with a cyclic rule, Gauss-Southwell rule and randomized rule. In [102], the authors formulated

a joint offloading, communication, and computation resource allocation problem to minimize the

energy consumption of mobile devices and UAVs by considering limited communication and com-

puting resources. The formulated problem is mixed-integer non-convex due to coupling among

the variables, so they applied the BSUM method to get the stationary points of the non-convex

objective function. The non-convex objective function is decomposed into multiple sub-problems,

which are then solved in a block-by-block manner, and finally, the optimal solution is obtained.

Lessons Learnt: The main findings of this sub-section are:

• Approximation algorithms are mainly used to convert the non-convex optimization problem

into convex and divide the main problem into subproblems to reduce the complexity.

• Approximation algorithms play a vital role in trajectory optimization or path selection of

UAVs.

• Approximation algorithms alone cannot solve joint 3Cs or 2Cs problems. BCD, BSUM, and

SCA methods are mostly used for 2Cs resource allocation.

48



2.3.2 Iterative Algorithms

The complex non-convex problems with higher computational complexity are solved using math-

ematical evaluations of the iterative algorithms. This method computes the results using approx-

imation from the previous answer or an initial guess. Iterative algorithms are mostly used in

UAV-assisted wireless networks where energy consumption minimization is needed to optimize

the UAV trajectory.

Two steps iterative method

The two-step procedure invokes the iterative method that divides the joint problems into two

phases. It is very popular in two parameters optimization problems, e.g., joint bandwidth and

power allocation problems. The first phase keeps one variable (e.g., power) fixed and iteratively

updates other parameters (e.g., bandwidth). In the next phase, use the updated parameters (i.e.,

bandwidth) to find the solution for the first parameter (i.e., power).

In [36], authors considered the joint task offloading, user-cloud association, transmit power

allocation, and path planning to minimize the total weighted consumed power of the system. They

proposed an iterative two-phase algorithm to tackle the underlying non-convex MINLP. In [37],

an iterative algorithm is used to optimize the computation bits allocation jointly, power allocation,

time slot scheduling, and UAV trajectory optimization after converting the problem into convex

optimization as discussed in Section 2.3.1. The user-cloud or cloudlet association problem is

solved in the first phase, and the joint resource allocation, path planning problem is solved in the

second phase. The iterative optimization algorithm is designed to solve the joint optimization

problem of time delay and energy consumption in [92]. According to the authors, as the number

of algorithm iterations increases, the task execution energy consumption tends to converge fewer

times. In [110], an iterative algorithm is proposed to optimize the UAV trajectory and BS/UAV

transmit power to obtain the approximately optimal solution. The formulated problem contains

multiple constraints such as flight speed, information causality, and BS/UAV transmit power, which

is difficult to solve directly. Therefore, the problem is divided into two parts and solved iteratively
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until the optimal value of the objective function is achieved.

Authors in [53] proposed a low complexity iterative algorithm to solve non-convex optimiza-

tion problem discussed in Section-III. The optimization problem is challenging to solve directly

because it involves multiple discrete variables and includes UAV flight speed, subcarrier, and power

allocation constraints. Therefore, the problem is divided into two steps. Firstly, a resource allo-

cation algorithm based on joint subcarrier, power and subslot allocation is designed for a fixed

UAV trajectory. Secondly, the UAV trajectory for different flight modes is optimized for fixed re-

source allocation. The solution is effective for both one flight and periodic flight mode. In [107],

authors investigated robust resource allocation algorithm design for multi-user downlink multiple-

input single-output UAV communication systems. The proposed non-convex optimization prob-

lem is first solved optimally by employing monotonic optimization theory and semi-definite pro-

gramming relaxation, yielding the optimal 2D trajectory and beamforming policy. The developed

optimal resource allocation algorithm is of high computational complexity, so a low complexity

iterative scheme is proposed. The results proved that the proposed algorithms confirm their robust-

ness with respect to UAV jittering, wind speed uncertainty, and user location uncertainty. In [114],

the authors formulated the MINLP problem to minimize the task latency of all devices by jointly

optimizing caching and offloading decisions. They proposed an iterative algorithm to obtain the

joint solution of resource allocation and UAV placement.

Lessons Learnt: The main summary of this sub-section includes:

• Iterative algorithms effectively optimize the UAV trajectory, significantly enhance the achiev-

able rate among all nodes, and improve the achievable sum rate.

• Iteration algorithm has good convergence compared with conventional resource allocation

schemes.
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2.3.3 Search based Algorithms

This subsection discusses search-based algorithms and their applicability in UAV networks. In the

existing literature, these algorithms are mostly used to find maximum coverage, maximum sum

rate, minimum power consumption, and optimum height of UAV.

Heuristic Search

In [84], a heuristic algorithm is applied for user scheduling to get the sub-optimal solution. A sub-

optimal cache placement scheme is proposed in [32] to solve the MILP problem by using a greedy

heuristic algorithm to reduce the complexity caused by exhaustive search. Authors in [96] formu-

lated a task scheduling and resource allocation problem as non convex mixed integer problem.They

proposed a low complexity heuristic algorithm to achieve a near optimal solution. In [104], the

authors designed the UAV trajectory by solving a non-convex joint optimization problem using

heuristic search and dynamic programming to obtain a feasible set of paths. They compared the

proposed heuristic search and dynamic programming with exhaustive search and travelling sales-

man problem. While the exhaustive search achieves the best performance at a high computation

cost, the heuristic algorithm exhibits relatively poor performance with low complexity. As a re-

sult, dynamic programming is proposed as a practical trade-off between exhaustive and heuristic

algorithms.

Exhaustive Search

Exhaustive search is a high computational complex algorithm that checks every possibility to ob-

tain the best solution. In the existing literature, exhaustive search is mostly used in UAVs place-

ment problems concerning user locations, bandwidth allocation, and cache placement problems.

In [32], the authors found the optimal caching decisions and bandwidth allocation to minimize the

weighted-sum energy of the edge server and the users using exhaustive search. The exhaustive

search algorithm provides global optimal solution; its exponential computation complexity might

limit its applicability in practical applications. Therefore, the authors proposed the greedy cache
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placement algorithm to find the sub-optimal solution to the problem.

Distributed Search

In [9], authors proposed a distributed learning algorithm to optimize the joint deployment, com-

putation offloading, power control, and channel access in coalition-based UAV swarms. The algo-

rithm compared multiple offloading strategies in one iteration, which can fasten the convergence

speed and avoid the cost of searching the whole strategy space.

Lessons Learnt: The main summary of this sub-section includes:

• The heuristic algorithm exhibits relatively poor performance with low complexity.

• Exhaustive search exponential computation complexity may limit its applicability in practi-

cal applications.

2.3.4 Machine Learning (ML) Algorithms

This section briefly presents the role of machine learning algorithms such as federated learning,

DRL, and Markov decision process in UAVs joint optimization problems and 4Cs problems in

B5G and 6G networks.

Deep Reinforcement Learning (DRL)

With the dynamic nature of UAVs and uncertain environment conditions, UAVs need to improve

the QoS of sensing and communication without complete information, which makes reinforcement

learning suitable for use in the cellular Internet of UAVs [115]. In [79], the authors used DRL to

deal with uncertain channel conditions of multi UAV enabled network. Model-free reinforcement

learning is one of the dynamic programming techniques capable of tackling the decision-making

problem by learning an optimized policy in dynamic environments. In [116], a model-free DRL-

based collaborative computation offloading and resource allocation scheme has been proposed

in an aerial to ground network to minimize task execution delay and energy consumption. In
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[117], authors formulated the optimization problem considering backhaul rate, transmission power

and transmission mode. They proposed a DRL-based method to enhance the backhaul rate with

limited information exchange and avoid malicious power exchange. In [118], authors formulated

the complex optimization problem for joint communication and computation resource allocation

in a space-air-ground-sea integrated network architecture. In the integrated network, satellites and

UAVs provide the users with edge computing services and network access. A complex decision

process and DRL solution is designed to provide better QoS. In [119], the authors formulated

the MINLP problem for joint communication and computing resource allocation for hybrid MEC

networks. Hybrid deep learning-based online offloading algorithm has been proposed to provide

the user association and computing resource allocation under the practical latency requirement of

the task and limited computing resources of the MEC network. The global optimal solution has

been found while speeding up the decision-making through a deep neural network. The simulation

results have shown that the proposed solutions have better computational efficiency and accuracy.

Federated Learning (FL)

Federated learning (FL) emerges as a promising paradigm aiming to protect device privacy by

enabling devices to train AI models locally without sending their raw data to a server. Instead

of training the AI model at the data server, FL enables devices to execute local training on their

data. In [8], the authors proposed a two-stage FL algorithm among the users, UAVs/BSs, and dis-

tributed heterogeneous computing platform to collaboratively predict the content caching place-

ment by jointly considering traffic distribution, user mobility, and localized content popularity in

6G networks. An asynchronous weight updating method is adopted to avoid redundant learning

transfer in FL. Authors in [79] developed an asynchronous FL framework for multi-UAV-enabled

networks. The proposed framework can provide asynchronous distributed computing by enabling

model training locally without transmitting raw and sensitive data to UAV servers to achieve fast

convergence speed and high learning accuracy for multi-UAV-enabled wireless networks.
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Markov Decision Process (MDP)

The UAVs or IoT devices must determine the best action based on their current state in reinforce-

ment learning techniques. The repetition of this process in any problem is known as a Markov

Decision Process (MDP). The goal of an MDP is to look for an optimal solution to sequential

decision problems. An MDP model consists of possible states, a set of actions, a transition model,

and a reward value function. In [88], the authors formulated a continuous-time MDP problem for

the multiuser narrow band-IoT MEC system considering stochastic task arrivals to minimize the

average delay and power consumption of processing the sensed data for the IoT devices. Authors

in [95] considered a cooperative computation offloading and resource allocation framework for

blockchain-enabled MEC systems to maximize the computation rate and transaction throughput.

Due to the dynamic characteristics of the wireless fading channel and the processing queues at

MEC servers, the joint optimization is formulated as an MDP.

In [120] authors investigated the joint task generation and computational offloading policy by

using the average energy constraint at the device in a MEC system. Using the Lagrangian method,

they solved the constrained MDP problem by transferring it into the unconstrained MDP. They

showed that the optimal policy for the constrained MDP with a single constraint is a randomized

mixture of two deterministic policies for the unconstrained MDP. By jointly considering the evo-

lution of the age of obtained status updates and the energy consumption of computation offloading

for minimizing the average age of obtained status updates under the average energy constraint at

the device. In [121], authors formulated the resource management of UAV-assisted wireless pow-

ered IoT networks and data collection as MDP to get an optimal solution, where states consist of

battery levels and data queue lengths of the IoT nodes, channel qualities, and position of UAV.

Lessons Learnt: The main summary of this sub-section includes:

• Machine learning-based solutions such as DRL, FL, and MDP are used for channel mod-

elling, resource management, and UAV positioning problems.

• Machine learning makes the problems model-free and easier to analyze the consumer be-
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haviour and requirements.

• Federated learning is used to protect the privacy of data.

• Reinforcement learning is effective in a dynamic environment.

2.4 Performance Metrics

The performance metrics for joint resource optimization in UAV-assisted wireless networks are

shown in Fig. 2.2 and are measured based on the optimization objectives with joint resource

allocation problems. The performance metrics are designed based on either individual resource

components or overall networks. For example, the overall networks or applications related per-

formance such as throughput, sum rate, energy efficiency and spectrum efficiency are consid-

ered in UAV placement, and joint 3Cs resource allocation problems [8, 9, 60, 77, 79]. Individual

component-based performance metrics are described below:

Communication Performance Metrics

UAV path planning, placement, trajectory optimization problems, and joint transmission power

and bandwidth allocation problems have significantly affected the communication performance of

the UAV networks. The main objectives of the UAV communication side are to minimize commu-

nication delay and extend the coverage. Communication latency, path-loss, weighted consumed

power, system throughput, as well as spectrum and energy efficiency are considered as key per-

formance metrics for communication resources in UAV-assisted wireless networks [36,47,58,80].

UAV communication distance and trajectory are also used to measure its performance. UAVs tend

to move to locations to support the users better, increasing the SNR. However, UAVs try to bal-

ance the benefits of moving to minimize the communication distance and the consumed flying

power to achieve the best solution while effectively supporting users’ computation demands [9].

Maximum transmit power and UAV speed are used to measure the communication performance

and it is observed that the flying power of UAV increases with the UAV speed for OFDMA UAV
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Figure 2.2: Performance metrics.

relay networks [112]. In [38], the authors presented the performance of the power optimization

for low interference and throughput enhancement scheme for 6G future networks by measuring

the delay of the transmitted packet. The probability of the user receiving the requested file from

its associated UAV is the crucial performance measurement criterion for UAV deployment and

power optimization schemes [55]. Simulation results in [59] showed that the proposed trajectory

design could improve the network throughput and UAV-to-device link utilization compared to the

conventional reinforcement learning algorithms.

Computing Performance Metrics

When UAVs are installed with computing processors, they can provide computing services as

MEC servers. The UAV trajectory and acceleration optimization play a dominant factor in mini-

mizing the total required energy of the UAV. The UAV computation efficiency can be analyzed by

computation overhead, total energy consumption, computation time, energy cost, average CPU cy-

cles to complete the task, and the flying UAV BS computation capacity. Average system-wide

computation overhead is usually measured with the different number of users, data sizes and
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CPU cycles and compared with the baseline results to see the convergence of the proposed so-

lutions [9, 36, 40, 85]. For example, in [47], the performance of the proposed multi-dimensional

computing resource allocation is measured by comparing the computation capacity of the different

schemes. In [46], CPU frequency is used as a performance parameter, where data received at the

UAV is allowed to compute in the subsequent time slots to minimize the energy required for the

computation. The number of bits offloaded to the UAV and UAV’s CPU frequencies in each time

slot are jointly optimized to achieve computation equilibrium. In [118], the proposed DRL-based

scheme performance is measured with the required CPU cycles for computing a task and compared

with the different schemes in the integrated network where satellites and UAVs provide the users

with edge computing services and network access.

Caching Performance Metrics

Content caching at the network edge and deployment of cache enabling UAVs at hot spots has been

extensively used in recent years to alleviate network traffic load [8, 60]. The caching size, cache

hits, misses and cost are usually used to measure the UAV caching efficiency. A cache hit occurs

when the requested content is retrieved from cache storage available at the UAV-BS. It contributes

to bandwidth saving as it reduces the data exchange between UAV BS and the data centre (cloud

or edge user). On the other hand, a cache miss occurs when requested data is unavailable at the

UAV-BS or ground BS. The total number of cache hits and cache misses measures the cache effi-

ciency. In learning-based content caching algorithms, performance is evaluated using the proposed

algorithm’s convergence and mean square error with baseline algorithms. In [8], a heterogeneous

computing platform for FL-based collaborative content caching algorithm is used to improve the

caching efficiency and its performance evaluated using two real-world data sets. Simulations are

conducted to evaluate the learning accuracy using the proposed FL approach with a convolutional

neural network (CNN) layer and two baseline FL methods. The results showed that the proposed

scheme has minimum loss or mean square error (MSE) and convergence compared to baseline.

NOMA scheme is used to increase the caching efficiency for UAV-assisted caching networks [55],
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and its performance is measured by comparing its convergence with the baseline schemes.

Other Performance Metrics

QoE is a subjective evaluation of the userâs media experience, used as the performance monitor

of mobile networks [60]. In order to meet the requirement of high-quality data transmission of

video applications, a certain QoE of users needs to be guaranteed. The usersâ QoE maximization

is studied in UAV-assisted cellular networks for content distribution. One potential application

scenario is a stadium that hosts a large-scale sports event, which deploys cache-enabling UAV BSs

outside the stadium for hotspots coverage to reduce the traffic load of ground BSs. In [61], authors

used QoE as a performance parameter to evaluate the convergence of proposed joint spectrum,

computing, and caching resource allocation for UAV-assisted vehicular networks.

2.5 Summary

This chapter has discussed the resource optimization issue in singleton and joint 4Cs resources in

UAV-assisted wireless networks. We presented two architectures for UAV-assisted wireless net-

works, i.e., UAV as a BS and UAV as a relay. The state of the artwork for each use case in B5G/6G

wireless communication is presented. The architectures of UAV-assisted wireless networks have

been presented along with tethered balloons to increase the data rate and backhaul capacity of the

UAVs. To investigate the role of 4Cs resource management in future UAV-assisted wireless net-

works, we studied the joint optimization of resources in terrestrial and aerial networks. To the best

of our knowledge, there is no current research in which all 4Cs resources are considered holisti-

cally along with UAV placement and trajectory optimization. We analyzed all the related problems,

their types, parameters, constraints, solution types, and commonly used performance metrics for

each use case. It is worth mentioning that UAV path planning, 3D placement and trajectory op-

timization have a significant role in communication and computing resources optimization in the

UAV networks. Also, network efficiency can be increased by adding multiple UAVs to the net-
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work. We studied the problem types and their solution methods, especially for the UAV-assisted

networks and concluded, based on current research, that approximation and iterative algorithms

are widely used in combination with machine learning algorithms to solve the high complexity

resource allocation problems.
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Chapter 3

4Cs Resource Management in UAV-assisted

MEC Networks

3.1 Introduction

The limited resources in the UAV-assisted MEC networks need holistic management of the re-

sources, which requires joint optimization [4]. However, the majority of existing work considers

the developments in 4Cs individually or a combination of two, which limits possible gain that could

be achieved through the cooperation of 4Cs [25, 28]. Joint optimization of resources (spectrum,

energy, computation), trajectory, content caching, interference, and user association is needed to

utilize the UAV-assisted MEC networks fully. On the other hand, the multi-dimensional optimiza-

tion problems can enable intelligent control to meet stringent end-to-end delay requirements [11].

Thus, a joint communication, computing, and caching resources, along with the control parameters

(such as managing input/output data rate, timing, synchronization), need to be set up according to

the network infrastructure as well as the quality of service (QoS) requirements [11, 22].
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3.2 Related Work

Recently, there have been several efforts in joint resource management in UAV-assisted MEC net-

works. There exists some literature on joint 3C resource optimization in UAV assisted MEC net-

works but there is no such work in which all 4Cs have been jointly optimized. However, joint

4Cs optimization have been found in terrestrial networks. For example, authors jointly optimized

communication, computing and caching in a big data MEC network and used the distributed op-

timization control to minimize the edge cloud network’s bandwidth consumption and network

latency in [11]. In [24], UAV’s energy consumption has been minimized by jointly optimizing its

trajectory and 3C resource allocation, and task decision and bits scheduling of users considering

fairness. The formulated mixed-integer nonlinear programming problem transformed into three

more tractable sub-problems, i.e., trajectory optimization, task decision, and bits scheduling and

resource allocation. The branch & bound algorithm is used to solve the task and bit scheduling

problem, while a penalty-based method is used to reduce the complexity. An iterative algorithm

based on SCA and BCD is used to deal with all three sub-problems. Service caching in a multi

UAV-assisted MEC system has been investigated in [20], where each UAV equipped with an edge

server can cache offloaded data from the ground devices. A joint service caching, task offloading,

resource allocation, and UAV placement optimization problem is formulated to minimize the la-

tency of all the devices while guaranteeing the task delay requirement and the energy budget of

all devices and UAVs. The mixed-integer non-linear programming problem is decoupled into two

sub-problems, i.e., a joint service caching, offloading decision and resource allocation problem

and a UAV placement. An iterative algorithm is proposed to obtain the joint solution.

Joint 2C resource management is the combination of two resources, such as communication

and computing, communication and caching and computing and caching etc. Here, the existing

literature on joint 2C resources optimization of UAV assisted MEC networks have been discussed

in detail. Extensive research efforts have been made from the academia to employ UAVs as dif-

ferent kinds of wireless communication platforms. For example, in [19] authors consider the 3D

wireless communication scenario in UAV enabled MEC network. They aimed to minimize the
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weighted sum of the service delay of all IoT devices and energy consumption of a single UAV

by jointly optimizing UAV position, communication and computing resource allocation, and task

splitting decisions. The non-convex problem is solved by converting it into convex subproblems

and getting the sub-optimal solution using successive convex approximation. A non-convex prob-

lem of minimum secure computing capacity maximization division multiple access (TDMA) and

non-orthogonal multiple access (NOMA) schemes [28]. A block coordinate descent (BCD)-based

and a penalized BCD (P-BCD) based algorithms are proposed to solve the problems for TDMA

and NOMA schemes, respectively. In [13], authors studied the joint optimization of trajectory, the

power of the users, user scheduling and computation offloading in a UAV-assisted MEC network

with NOMA. The constraints on UAV’s energy consumption and QoS of the users are considered.

The successive convex approximations (SCA) approach is adopted to solve the optimization prob-

lem. The sum power minimization problem is considered in [14] by jointly optimizing offloading

decisions, resource allocation, user association, and power control in a MEC system with multiple

UAVs. To solve the mixed-integer and non-convex optimization problem efficiently, the authors

reformulated it as a Markov decision process and proposed a deep reinforcement learning-based al-

gorithm named as multi-agent reinforcement learning and a semi-distributed multi-agent federated

reinforcement learning algorithm with the integration of federated learning and deep reinforcement

learning.

The UAVs are deployed for computation tasks offloaded from terminal devices as well as for

decode-and-forward relay to assist tasks between terminal devices and BS in [15]. Energy con-

sumption for communication, computation, and UAV flight is minimized by optimizing the UAV

trajectory. The non-convex optimization problem is solved using Lagrange duality and the SCA

method by converting the problem into convex optimization and obtaining a local optimal solution.

Authors in [16] considered the problem of cooperative computation offloading for UAVs such that

energy consumption and task execution latency can both be reduced. Transmission data rate and

communication and computation resource allocation are optimized to satisfy energy consumption

and task execution latency. The convex optimization problem is solved using simulated annealing-
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based particle swarm optimization for optimal data allocation. A UAV-assisted MEC network with

consideration of priority constraints among tasks is designed in [21]. The objective is to mini-

mize the maximum processing time of tasks to guarantee the response time in forest fire monitor-

ing. A learning-based cooperative particle swarm optimization with a Markov random field-based

decomposition strategy is adopted to solve the optimization problem. UAV energy efficiency is

maximized by jointly optimizing the UAV trajectory, user transmit power, and computation load

allocation in [22]. The constraints on user communication energy budget, computation capability,

and the mechanical operation of the UAV are considered. The optimal resource allocation results

are obtained by exploiting the SCA technique and Dinkelbach algorithm to transform the non-

convex fractional programming problem into a solvable form and by further decomposing it using

the alternating direction method of the multipliers technique. In [23], the authors proposed an

energy-efficient resource allocation and computation offloading strategy in a UAV-assisted MEC

network to minimize energy consumption. Two heuristic algorithms are proposed to obtain the

sub-optimal solutions to the proposed problem.

In [25], authors considered the minimization of weighted sum energy consumption of UAVs

and users in a UAV-assisted MEC network by jointly optimizing the bit allocation, transmit power,

CPU frequency, bandwidth allocation and UAV trajectories. The non-convex problem is decom-

posed into two sub-problems, and a joint resource allocation and trajectory design algorithm is

proposed based on the SCA technique and alternative optimization. A UAV-assisted MEC network

is considered in [26] in which a moving UAV equipped with computing resources is deployed to

computer the tasks of user devices. The weighted-sum energy consumption of the UAV and user

devices is minimized by jointly optimizing the UAV trajectory and computation resource alloca-

tion under the constraint of the number of computation bits for orthogonal and non-orthogonal

access modes. The non-convex problem is solved using the proposed alternating iterative algo-

rithm based on the block alternating descent method. In [27], authors formulated the sum power

minimization problem with latency and coverage constraints by jointly optimizing user association,

power control, computation capacity allocation and location planning in a UAV-assisted MEC net-
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work. The non-convex problem is decomposed into three subproblems and solved iteratively. The

compressive sensing-based algorithm is used for the user association. At the same time, the one-

dimensional search method is adopted for computation capacity allocation or location planning

optimal solution. The computation efficiency maximization problem is studied in [29] to jointly

optimize communication and computation resources (including transmit power, offloading times,

and CPU frequencies) in a UAV-assisted MEC network. The non-convex problem is solved us-

ing the proposed two-stage optimization algorithm, in which first the Lagrangian dual method is

applied to obtain the closed expression of the optimal transmitted power and CPU frequencies.

Then the SCA method is used to obtain the optimized trajectory of the UAV. In summary given in

Table 3.1, several resource management schemes have been developed for UAV-assisted wireless

networks while considering different objectives and constraints,including network scalability, re-

liability, efficiency (spectral usage and energy consumption), QoS requirements, coverage, and re-

ducing complexity. The majority of existing work considers the developments in 4Cs individually

or a combination of two, which limits possible gain that could be achieved through the cooperation

of 4Cs.

Table 3.1: Summary of related work

Ref. UAV 4C Objective Constraints Problem

Type

Solution

[11] ✗ 4C Minimize bandwidth

consumption and

network latency

Spectrum, compu-

tation, and caching

resources limit, task

execution frequency

Non-

convex

Block suc-

cessive upper

bound

[24] ✓ 3C Minimize energy

consumption of

UAVs

Offloading, channel

conditions,latency

requirements, task

scheduling

MINLP Iterative, SCA,

BCD
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[20] ✓ 3C Minimize the sum of

the total latency

Energy requirement,

latency

MINLP SCA, Iterative

algorithm

[19] ✓ 2C Minimize service de-

lay and energy con-

sumption of UAV

Computing delay Non-

convex

SCA, iterative

algorithm

[28] ✓ 2C Maximize minimum

secure computing

capacity

UAV mobility and sec-

ond order cone (SOC)

constraints

Non-

convex

BCD,P-BCD

[13] ✓ 2C Minimize the energy

consumption of all

the UEs

Data rate, interfer-

ence, energy of UAV

Non-

convex

DCP, SCA,

Two step itera-

tive algorithm

[14] ✓ 2C Power minimization

problem

UE power, weight and

latency

Non-

convex

Markov deci-

sion process,

MARL

[15] ✓ 2C Minimize total en-

ergy consumption

Communication, com-

putation resources,

computation causality,

UAV trajectory

Non-

convex

Lagrangian

duality, SCA

[16] ✓ 2C Energy consumption

and task execution

latency minimization

Latency, transmission

power, time

Convex

opti-

miza-

tion

SAPSO,

Lagrange mul-

tiplier method
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[21] ✓ 2C Minimize the max-

imum processing

time of tasks

Task priority, decision

variables

Discrete

opti-

miza-

tion

prob-

lem

LCPSO, MRF-

based decom-

position

[22] ✓ 2C Maximize UAV en-

ergy efficiency

Communication en-

ergy, computation

capability, second

order cone (SOC)

Non-

convex

SCA, Dinkel-

bach algo-

rithm, ADMM

[23] ✓ 2C Energy consumption

minimization

Offloading, delay,

computational re-

sources, data rate

Single

variable

opti-

miza-

tion

Golden-

section search

method

(GSSM),

heuristic algo-

rithm

[25] ✓ 2C Energy consumption

minimization of

users and UAVs

CPU frequencies, in-

formation causalities,

transmission data rate,

bandwidth, energy

consumption

Non-

convex

SCA, alterna-

tive optimiza-

tion

[26] ✓ 2C Energy consumption

minimization

Number of computa-

tion bits

Non-

convex

Block alter-

nating descent

method, itera-

tive algorithm
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[27] ✓ 2C Sum power mini-

mization problem

Latency and coverage

constraints

Non-

convex

Fuzzy c-

means clus-

tering, One-

dimensional

search

[29] ✓ 2C Maximization of

computation effi-

ciency

Energy consumption,

offloading time, CPU

frequencies, transmit

power, UAV mobility

and position

Non-

convex

Lagrangian

duality, SCA

This

chap-

ter

✓ 4C Minimize the latency

and cost

Size of data, data

rate, computational

workload, deadline,

computing resources

and allocation

Linear

pro-

gram-

ming

Heuristic algo-

rithm

3.3 System Model

We consider a UAV-assisted MEC network that consists of K number of IoT devices on the ground

and a set of L = {L0, L1} layers to represent a ground network and aerial network, respectively,

as shown in Fig. 3.1. The layer L0 consists of MB number of base stations and L1 consists of

MU number of UAVs, both equipped with MEC capabilities. We assume that IoT devices have

applications that need computation and caching resources. However, IoT devices are resource-

constrained with limited computation, caching, and battery capability. It is also assumed that

MEC server resources are virtualized and shared by multiple IoT devices. A 3D coordinate system

is considered in which the coordinates of m-th UAV are φMU
m = [xMU

m , yMU
m , zMU

m ], where xMU
m
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Figure 3.1: Architecture of UAV-assisted MEC network.

,yMU
m are horizontal coordinates and zMU

m is the vertical coordinate which is height in meters. The

coordinates for the base stations and IoT devices are considered as φMB
m = [xMB

m , yMB
m ] and φK

k =

[xK
k , y

K
k ], respectively. To avoid interference between backhaul and access links, we assume that

all communication occurs on orthogonal frequencies [122]. Also, we consider the communication

between UAVs and IoT devices using orthogonal frequency division multiple access (OFDMA).

We consider a task offloading model in which IoT devices offload their tasks for computation

and caching to the appropriate MEC server in the network, depending on their residual energy. A

task from a k-th IoT device can be defined as Tk = (sk, τk, wk), where sk represents the size of the

data for computation (in bits), τk is the computation deadline, and wk is the computation workload

(in CPU cycles/bit). It is assumed that the resource demand of each user is independent. We

assume that the IoT device will forward the task to the control center. The control center will then

find the appropriate base station or UAV for the offloading and/or computation. The control center

is assumed to have information about available resources from the ground base stations and UAVs

through a resource allocation table (RAT) that keeps track of available resources, including CPU
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utilization and cache capability. The ground base station and UAVs share their RAT updates with

the control center. Based on the task demand, a control center can decide whether to assign a task to

ground BS or offload it to one of the UAVs. To offload a task from an IoT device, communication

resources are required (to transfer data to the UAV or base station), computation resources are

required to process this data, and caching resources are required to store the most frequently used

data. Control resources are required to coordinate allocating communication, computation, and

storage resources for a given task.

Table 2 details the list of acronyms used in this chapter .

3.4 Proposed Joint 4Cs Resource Allocation

In our proposed work, each IoT device k transmit its task Tk = (sk, τk, wk) to the control center

as shown in Fig. 3.2. The control center then maps the demands into the resource allocation

required by k-th IoT device. When τk = 0 and wk = 0, we consider that the k-th IoT device only

needs communication (to offload the task) and caching (to store the data) resources for data of size

sk [11]. On the other hand, when τk ̸= 0 and wk ̸= 0, we consider that the k-th IoT device need

communication, computation, and caching resources for the data of size sk.

The task of k-th IoT device can be offloaded to the m-th device in the l-th layer. This can be

defined using a binary variable ΦOF
k,m,l:

ΦOF
k,m,l =


1 if Tk is offloaded to m-th device

in l-th layer,

0 Otherwise.

(3.1)

Once the k-th IoT device offload a task Tk to the m-th device in l-th layer as decided by control

center, it must send the sk bits as an input for the task (which incurs communication cost); after

receiving the data, the MEC server only cache the data if τk = 0 and wk = 0 (caching cost).
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Figure 3.2: Proposed scheduling scheme.

Otherwise, the MEC server processes the data, which means it must allocate resources (computa-

tion cost). We define a binary variable ΥCO
k,m,l that specifies whether the k-th IoT device’s data is

computed on the the m-th device in the l-th layer.

ΥCO
k,m,l =


1 if Tk is computed to m-th device

in l-th layer,

0 Otherwise.

(3.2)

Thus, we need to discuss communication, computation, caching, and control models to calcu-

late all of these costs.
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Communication Model

When k-th IoT device offloads data, there will be communication cost in terms of bandwidth. Thus,

the data rate of the k-th IoT device is given as [11]:

Rk,m,l = ak,m,lBm,l log2

(
1 +

Pkhk,m,l

σ2
k

)
, ∀ k,m (3.3)

where Pk is the transmission power of k-th IoT device, hk,m,l is the channel gain between the

k-th IoT device and m-th device of l-th layer, and σ2
k is the power of the Gaussian noise at k-th

IoT device. ak,m,l is the fraction of bandwidth Bm,l allocated for communication between k-th

IoT device and m-th device in l-th layer. We assume that the available spectrum is divided into

orthogonal resource blocks. Therefore, there is no interference among the users.

The transmission delay in offloading data can be represented as:

LOF
k,m,l = ΦOF

k,m,l

sk
Rk,m,l

, ∀ k,m, l. (3.4)

We assume that the signalling delay for the communication between the IoT device and the

control center is negligibly small. The cost for offloading the data is considered as a linear function

of bandwidth [123].

COF
k,m,l = f(ΦOF

k,m,lsk), (3.5)

where f is a linear function.

Computing Model

If the task of k-th IoT device needs computation after offloading (i.e., τk ̸= 0 and wk ̸= 0), it

needs computation resources and incurs latency. We represent the available computation resources

at m-th device of l-th layer by Om,l. The computation allocation of ok,m,l can be calculated as [11]:

ok,m,l = Om,l
wk∑Kg

g Qg

, ∀m, l. (3.6)
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where
∑Kg

g Qg is the computation workload used by other devices.

The latency to perform task Tk can be written as [11, 124]:

LCO
k,m,l = ΥCO

k,m,l

skwk

ok,m,l

. (3.7)

The cost for computation of data is also considered as a linear function of resources allocated

to IoT devices as:

CCO
k,m,l = f(ΥCO

k,m,lok,m,l). (3.8)

Caching Model

The cache capacity of m-th device on l-th layer is represented by Ym,l. Thus, the total cache

capacity of m-th device in l-th layer must satisfy:

∑
k

ΦOF
k,m,lsk ≤ Ym,l,∀m, l. (3.9)

Control Model

We propose a centralized optimization control model that coordinates and integrates the commu-

nication, computation and caching models. We consider the total delay and cost for the task from

k-th IoT device to complete offloading and computing. The total latency required for the task from

k-th IoT device can be written as:

LTOT
k,m,l = ΦOF

k,m,lL
OF
k,m,l +ΥCO

k,m,lL
CO
k,m,l. (3.10)

Similarly, the total cost for the task from k-th IoT device can be written as:

CTOT
k,m,l = ΥCO

k,m,lC
CO
k,m,l + ΦOF

k,m,lC
OF
k,m,l. (3.11)
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Thus, the utility function for the task of k-th IoT device can be written as:

U(ΥCO
k,m,l,Φ

OF
k,m,l) = αLTOT

k,m,l + (1− α)CTOT
k,m,l. (3.12)

where α = (0, 1) is the weight associated with latency and cost.

3.4.1 Problem Formulation

We formulate a joint 4Cs optimization problem to minimize the network delay.

min
ΦOF

k,m,l,Υ
CO
k,m,l

:
∑
k

∑
m

∑
l

U(ΥCO
k,m,l,Φ

OF
k,m,l),

Subject to:

C1 : ΥCO
k,m,l ≤ ΦOF

k,m,l, ∀l,m, k

C2 : LCO
k,m,l ≤ τk, ∀l,m, k

C3 :
∑
m

∑
l

ΦOF
k,m,l ≤ 1, ∀k

C4 :
∑
m

∑
l

ΥCO
k,m,l ≤ 1, ∀k

C5 :
∑
k

ΦOF
k,m,lak,m,l ≤ 1, ∀l,m

C6 :
∑
k

ΥCO
k,m,lok,m,l ≤ Om,l, ∀l,ml

C7 :
∑
k

ΦOF
k,m,lsk ≤ Ym,l,∀m, l

C8 : ΦOF
k,m,l = ΥCO

k,m,l,∀k,m, l

(3.13)

where C1 ensures that computation will be done only when the task is offloaded. C2 implies

that the computation deadline should be met. C3 and C4 ensure that a task can be offloaded to and

computed by only one device of any layer, respectively. C5 deals with bandwidth allocation, which

should be a fraction of the total bandwidth available. C6 and C7 ensure that the computation and
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caching resources required by the task are less than the available resources, respectively. Lastly,

C8 implies that computing and offloading should be done on the same device.

3.5 Summary

This chapter proposes a 4Cs resource management framework for user association in UAV-assisted

MEC networks. This framework uses MEC servers (Bs/UAV) to satisfy users’ demands. We have

formulated the problem as a joint optimization problem that aims to minimize a linear combina-

tion of network latency and cost under the constraints of offloading, computational resources and

caching capability.
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Chapter 4

Proposed Scheme and Simulation Results

4.1 Solution Approaches

The formulated problem in (3.13) is a binary linear programming problem, and such problems

are generally convex. We adopt a branch and bound algorithm to obtain optimal results to solve

this binary linear programming problem. In general, given a convex problem, a branch & bound

algorithm explores the entire search space of possible solutions and provides an optimal solution.

However, the worst-case complexity of the branch and bound algorithm is high, which limits the

scalability of the network [125]. Thus, we propose a heuristic algorithm to obtain near-optimal

results with low complexity. The results for heuristic algorithm are almost equal to branch &

bound in most of the cases.

4.1.1 Heuristic algorithm

We also solve binary linear programming problem using the proposed heuristic algorithm based on

the interior point method. We use the primal-dual interior point method as a basis of the heuristic

algorithm. The main advantage of the interior point method is that the number of iterations of the

constraint condition is not sensitive to polynomial time complexity [126]. First, we applied the

primal-dual method, and the problem formulated in (3.13) can be written as:
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Primal : min
x

U(X) (4.1)

Subject to : AΘX = b

Xmin ≤ X ≤ Xmax

X = {1, 0}

Dual : max
π,S

U(π) (4.2)

Subject to : AT
Θπ + S = c

S ≥ 0

where U(X) is the objective function, X is the primal variable, A is the non-linear constraints

matrix, Xmin and Xmax are the upper and lower limits of variable X .To write the dual of 4.1, we

consider π and S dual variables. X ∈ {Υ and Φ} are binary decision variables, and Θ is a set

of constraints from C1 to C8. This method approximates the optimization problem by adding the

slack variables to a sequence of sub-problems. The primal-dual search direction is found using

modified Karush-Kuhn-Tucker (KKT) conditions. KKT conditions for the primal-dual interior

point method are:

rpd(X, π, S) =


ATπ + S − c

diag(X)π − (1/t)1

AX − b

 (4.3)

The interior point method solves the problem 4.1 ( or the KKT conditions 4.4) by applying

Newton’s method to a sequence of the modified version of KKT conditions. The search directions

in a primal-dual interior-point method are obtained from Newton’s method, applied to modified

KKT equations as [126]: set 0 = rpd(y + ∆y) ≈ rpd(y) + Drpd(y)∆y,( where y is the search

direction (y = (X, π, S)) and D is the derivative) i.e, solve:
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
0 I AT

diag(π) diag(X) 0

A 0 0



∆X

∆π

∆S

 = −rpd(X, π, S) (4.4)

and take step:

y+ = y + s∆y (4.5)

(with line search for s ≥ 0 ), but only once , Then update:

t = µt (4.6)

where parameter t is set to factor µ times the current duality gap. If X , π, and S were central, with

parameter t, then we would increase t by the factor µ. Values of the parameter µ on the order of 10

appear to work well. Once backtracking allows for s = 1, primal-dual iterates will be primal and

dual feasible from that point onward. To see this ∆X , π , S are constructed so that:

AT∆π +∆S = −rdual = −(ATπ + S − c) (4.7)

A∆X = −rprim = −(AX − b) (4.8)

Therefore after one step

X+ = X +∆X, π+ = π +∆π, S+ = S +∆S (4.9)

We have

rdual = ATπ+S+ − c = 0 (4.10)

rprim = AX+b = 0 (4.11)

so our iterates primal and dual feasible.
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Algorithm 1 : Heuristic algorithm.

Given: X that satisfies U(X) ≤ 0, π ≥ 0, µ ≥ 1, ϵfeas ≥ 0, ϵ ≥ 0.
repeat:
Step 1:

Determine t := tµ
Step 2:
Compute primal-dual search direction ∆ypd.
Step 3:
Line search and update.
Determine step length s ≥ 0 and set y := y + sypdS.
Until: ∥ rprim ∥2≤ ϵfeas, ∥ rdual ∥2≤ ϵfeas, and η ≤ ϵ rfeas = (∥ rprim ∥22 + ∥ rdual ∥22)1/2
Output Xrelaxed

IRA:
Step 4:
Input← Output(Xrelaxed)

Step 5:
Assign connection matrix X̄ = 0

Step 6:
Iteratively discretized the relaxed value of Xrelaxed to assign each user with its corresponding

BS/UAV.
Update corresponding X̄

Step 7:
if (termination criteria satisfied) then

X=X̄
end if

The heuristic algorithm is given in Algorithm 1. In step 1, the parameter t is set to a factor µ

times t, which is the value of t associated with the current surrogate duality gap η. The primal-

dual interior-point algorithm terminates when X is primal feasible and π, S are dual feasible.

A threshold is applied at the output of the primal-dual algorithm by using the interior rounding

algorithm (IRA). The output from the interior point method is compared with the threshold, if

its greater than threshold value than connection value will be set as 1; otherwise, it will be 0.

This strategy restricts IoT devices from offloading data at the BS/UAV when there are insufficient

resources.
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4.1.2 Complexity Analysis

We can find the solution to the problem (3.13) using branch & bound; however, the computational

complexity is high. The worst-case complexity of the branch & bound algorithm is equal to ex-

haustive search [125]. For a linear program (4.1) where constraint matrix AΘ ∈ RΘ,n (Θ is the

number of constraints and n is the number of variables) the interior point computational complexity

is O(n3) [127, 128].

The computational complexity of heuristic algorithm can be calculated based on the number

of flops (basic unit of computation) [129]. In our proposed heuristic algorithm , computational

complexity can be calculated as;

Number of Flops ≈ 2 +M(M + 3 +KLogK + 8 +K)

≈ 2 + (11 +M2 +MKLogK +MK)

≈ O(M2 +MKLogK)

Total Computational Complexity ≈ IPM + IRA

≈ O(n3) +O(M2 +MKLogK)

≈ O[(n3) + (M2 +MKLogK)] (4.12)

where (4.12) is the complexity of the proposed heuristic algorithm in polynomial time. In contrast,

the complexity of optimal (B and B) is O(2MK). Where M = MB +MU . The difference between

the heuristic and optimal computational complexity can be seen in Table 4.1. Optimal (branch &

bound) algorithm computational complexity increases very rapidly with the increase in the num-

ber of variables n = K ∗M . Without loss of generality, we choose small values of K and M for

illustration purposes.
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Table 4.1: Complexity analysis

Parameters Heuristic Optimal

K = 4, M = 3, n = K ∗M = 12 5855.006 262144

K = 6, M = 4, n = K ∗M = 24 13858.675 16777216

K = 8, M = 4, n = K ∗M = 32 32812.899 4294967296

4.2 Simulation Results

In this section, we evaluate the performance of the proposed framework using the branch & bound

algorithm and heuristic algorithm. Branch & bound algorithm provides optimal results with high

computation complexity. Thus, the results obtained using the branch & bound algorithm are used

as a benchmark to evaluate the performance of the proposed heuristic algorithm. We consider

a UAV-assisted MEC network with the number of IoT devices varying from K = 20 − 100, the

number of base stations varying from M0 = 5−15, the number of UAVs varying from M1 = 6−9

with computing and caching capabilities. We consider network layers L = L0, L1 where L0 is

the ground network and L1 is the aerial network. The objective of assigning a BS or UAV for the

task Tk = (sk, τk, wk) is to minimize network latency and cost (offloading and computing). We

consider the simulation parameters similar to [11] and are given in Table 4.2.

Table 4.2: Simulation parameters

Parameter value

Number of IoT devices, K 20-100

Aerial-assisted networks layers, L 2

No of base stations MB 5-15
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No of UAVs MU 6-9

size of data sk 2-7 Mega Bits

Computation deadline τk 1-12 sec

Computation workload wk 452-737 cycles/bit

Offloading cost for BS COF
k,m,l 90

Offloading cost for UAV COF
k,m,l 120

Computing cost for BS CCO
k,m,l 100-150

Computing cost for UAV CCO
k,m,l 400-1500

Computation capacity Om,l 3000-9000

Caching capacity Ym,l 100-500 Mega bits

Figs. 4.1(a)-(e) show the number of IoT devices served versus the total number of IoT devices

for K = {20, 40, 60, 80, 100}. We consider the number of base stations MB = 5 in all cases,

whereas the number of UAVs varies from MU = 6 in Figs. 4.1(a)-(c) and MU = 9 in Figs. 4.1(d)-

(f). Figs. 4.1(a) and (d) are for users served by BSs (MB = 5) only. On the other hand, Figs. 4.1(b)

(MU = 6) and (e) (MU = 9) are for users served by UAVs only and the lastly Figs. 4.1(c) and (f)

are combined results for users served when both UAVs and BSs deployed in both cases. In Fig.

4.1(a) MB = 5, it is observed that users served by the BS increases with the increase in users from

k = 20 to K = 100. Although in Fig. 4.1 (b) when MU = 6 and K = 20, there is no user served

by UAVs. However, as the number of users increased, the number of served users increased. Fig.

4.1 (c) MB = 5 and MU = 6, is the combined result when MB = 5 BSs and MU = 6 UAVs are

available. It is observed that more users have been assigned to UAVs (MU ) as the number of users

(K) increases. Also, the combined results for the optimal and heuristic algorithm are nearly equal.

A similar pattern has been observed in Figs. 4.1 (e) and (f) when we increase the number of UAVs

from 6 to 9.There is no sign of increasing user association with UAVs as the cost of UAVs is high
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Figure 4.1: Number of users served when number of BS MB = 5 and number of UAVs (a) MU = 6
with BSs only, (b) MU = 6 with UAVs only, (c) MB +MU = 5 + 6 with both BSs and UAVs, (d)
MU = 9 with BSs only, (e) MU = 9 with UAVs only, (f) MB +MU = 5 + 9 with both BSs and
UAVs.

and one of the objectives is to minimize the cost. Thus, users preferably associate with the BSs if

they are available.

Figs. 4.2(a)-(e) show the number of IoT devices served versus the total number of IoT devices

for K = {20, 40, 60, 80, 100}. We consider the number of base stations MB = 10 in all cases,

whereas the number of UAVs varies from MU = 6 in Figs. 4.2(a)-(c) and MU = 9 in Figs. 4.2(d)-

(f). In Fig. 4.2(a) MB = 10, (b) MU = 6 , (c) MB = 10 and MU = 6, it is observed that with

the increase in number of BS (MB) user (K) association with the UAVs (MU ) has bee decreased

(as we can see from last fig. 4.1 (b) and (e)) and with the BS (MB) is increased.The combined

results for heuristic and optimal are nearly equal. Figs. 4.3(a)-(e) show the number of IoT devices

served versus the total number of IoT devices for K = {20, 40, 60, 80, 100}. We consider that the

number of base stations MB = 15 in all cases, whereas the number of UAVs vary from MU = 6
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Figure 4.2: Number of users served when number of BS MB = 10 and number of UAVs (a)
MU = 6 with BSs only, (b) MU = 6 with UAVs only, (c) MB +MU = 10 + 6 with both BSs and
UAVs, (d) MU = 9 with BSs only, (e) MU = 9 with UAVs only, (f) MB +MU = 10+ 9 with both
BSs and UAVs.

in Figs. 4.3(a)-(c) and MU = 9 in Figs. 4.3(d)-(f). In Figs. 4.3(a) MB = 15, (b) MU = 6 , (c)

MB = 15 and MU = 6, with the increase in number of deployed BSs, there is significant change

in the user association with UAVs. This shows that if we increase the MB = 15, there are enough

BSs available for the users to be served, so no user has been served by the UAVs.

Comparing Figs. 4.1-4.3, it is observed that by increasing the number of UAVs with the same

number of BSs, there is little change in the association. In contrast, if we increase the number of

BS with the same number of UAVs, there is a significant effect on the user association. The BS

has served more users, so in the last case, no user has been served by the UAVs. Overall, if we see

individual cases, the heuristic algorithm occasionally performs better than optimal. However, if

we see combined results, then optimal and heuristic are performing nearly equal. The complexity

of the heuristic algorithm is less than optimal; thus, the heuristic algorithm is more suitable for
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Figure 4.3: Number of users served when number of BS MB = 15 and number of UAVs (a)
MU = 6 with BSs only, (b) MU = 6 with UAVs only, (c) MB +MU = 15 + 6 with both BSs and
UAVs, (d) MU = 9 with BSs only, (e) MU = 9 with UAVs only, (f) MB +MU = 15+ 9 with both
BSs and UAVs.

scalable future wireless networks. Since the objective is to minimize the latency and cost of the

network, we see that by increasing the number of UAVs in the network (UAVs have more cost and

latency than the BS), there is no significant effect on users’ connectivity with the UAVs.

Figs. 4.4 to 4.6 show the number of active BSs/active UAVs versus number of users K =

{20, 40, 60, 80, 100} for optimal and heuristic algorithm. Fig. 4.4(a) and 4.4(c) it is observed that

all the BS (MB = 5) have been active in serving IoT devices while in Figs. 4.4(b) MU = 6 and (d)

MU = 9, it is observed that there is little increase in number of deployed UAVs (MU ) with increase

in users. This is mainly because the objective is to minimize latency and the cost of deployment.

The connectivity cost of UAVs is considered higher compared to BSs. Thus IoT devices connect

with UAVs only when the overall objective function is minimized. Figs. 4.5(a) and (c), the number

of active BS has been increased to MB = 10 while in Figs. 4.5(b) and (d) active UAVs are MU = 6
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Figure 4.4: Number of active BSs and UAVs when total available number of BS MB = 5 (a),(c)
and number of UAVs MU = 6 (b) and MU = 9 (d) (a) number of active BSs, (b) Number of active
UAVs, (c) number of active BSs , (d) Number of active UAVs.

and MU = 9 respectively. In Figs. 4.5(a) and (c), it is observed that with the increase in the number

of users from left to the right number of deployed BS (MB) increases; when K = 100 all the BS

have been deployed to meet the demand of increased users also deployment of UAVs have been

increased when users increases as can be seen in Figs. 4.5(b) and (d). In Figs. 4.6(a)-(d), the

number of BSs has been further increased to MB = 15 while in 4.6(b) and (d) UAVs are MU = 6

and MU = 9 respectively. It is observed in Figs. 4.6(a) and (c) that with increases in the number

of users from left to right number of deployed BS (MB) increases. Moreover, when K = 100, all

the BSs have been deployed to meet increased user demand. In Figs. 4.6(b) and (d) no UAV has
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Figure 4.5: Number of active BSs and UAVs when total available number of BS MB = 10 (a),(c)
and number of UAVs MU = 6 (b) and MU = 9 (d) (a) number of active BSs, (b) Number of active
UAVs, (c) number of active BSs , (d) Number of active UAVs.

been deployed as there is enough active BS available for the users. Overall, we can see that the

performance of the heuristic algorithm is comparable with optimal.

Figs. 4.7(a)-(e) show connections of BS (MB=15) and UAVs (MU=9) with different number of

users (K = 20, 40, 60, 80) using heuristic algorithm. We have randomly deployed BS and UAVs

in an area of 5000m × 5000m. In 4.7(a) users are K = 20, active BS are MB = 15 and active

UAVS are MU = 9, it is observed that almost all the users are associated with the BS (MB). As

the number of users increases to k = 40 in Fig. 4.7(b), there is little increase in association with

the UAV to meet the user demand, while in Fig. 4.7(e) significant users are associated with the
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Figure 4.6: Number of active BSs and UAVs when total available number of BS MB = 10 (a),(c)
and number of UAVs MU = 6 (b) and MU = 9 (d) (a) number of active BSs, (b) Number of active
UAVs, (c) number of active BSs , (d) Number of active UAVs.

UAVs in addition to BSs as the demand of users increases. We can say that our proposed heuristic

algorithm satisfies the users’ connectivity demands in most cases.

4.3 Summary

In this chapter, we have discussed the proposed solution and simulation results to show the effec-

tiveness of the proposed framework. We proposed a heuristic algorithm based on the interior point

method to solve the formulated optimization problem. We also discussed the proposed algorithm’s
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Figure 4.7: Heuristic: Association of users with base stations and UAVs (a) K = 20, (b) K = 40,
(c) K = 60 and, (d) K = 80.
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computational complexity and compared it with the branch & bound. The branch & bound (opti-

mal) algorithm is considered as a benchmark that provides optimal results with high complexity.

We compare the results from the heuristic algorithm with those computed via the branch & bound

method (optimal). The results of the proposed heuristic are comparable with optimal with less

complexity.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

Increasing demand for wireless connectivity, high data rate, and improved QoS requirements im-

pose various challenges to traditional terrestrial networks. To fulfill the requirements of future

applications, integrated aerial and terrestrial networks are considered game-changer. This thesis

has discussed 4Cs resources, their optimization issues, current literature proposed solutions, and

their performance parameters for UAV-assisted MEC networks. Also, we propose a mathematical

framework for user association in UAV-assisted MEC networks while considering 4Cs resources.

The formulated problem as a joint optimization problem aims to minimize a linear combination of

network latency and cost subject to offloading, computational resources and caching constraints.

The heuristic algorithm based on the interior point method has been proposed to solve the for-

mulated optimization problem. The branch & bound algorithm is considered as a benchmark that

provides optimal results with high complexity. The results from the heuristic algorithm have been

compared with those computed via the branch & bound method (optimal). We have concluded that

the performance of the proposed heuristic is comparable with optimal with less complexity.
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5.2 Future Research Directions

Based on our study of 4Cs resource management in UAV-assisted wireless networks, there are still

open research areas which need attention:

5.2.1 Dynamic 4Cs Resource Management

Dynamic 4C resource allocation in the integrated UAV and cellular system is an interesting future

work to improve system efficiency. The efficient design of dynamic 4Cs resource management in

integrated networks needs to satisfy asymmetric QoS requirements of UAVs and terrestrial net-

works with the stringent constraints imposed by the size, weight, power, control, deployment of

UAVs, and the limitations imposed by the cellular networks. In the 4Cs resource allocation proto-

col design, researchers focus on the dynamic spectrum, interference management, multiple access

schemes for cellular-connected UAVs, channel measurement for UAV-to-UAV and UAV-to-ground

communication, UAV cache placement, and edge computing design. Authors in [31] highlighted

that the caching in the edge computing nodes and offloading model is a potential future research

topic that requires comparative verification experiments on cache hit ratio, coverage, and offload-

ing delay to optimize network architecture and algorithm performance. In [91], authors suggested

user cooperation on joint communication and computation optimization problems. In [92], the

authors suggested investigating the execution order of computing tasks with different latency re-

quirements to improve the QoE. Moreover, AI algorithms and technologies can improve system

performance and intelligence [130]. In dynamic 4Cs resource management, the use of DRL can

also play a critical role in improving the network’s performance. 4Cs resource management in the

perspective of self-organization and autonomous techniques for sustainable UAV-assisted networks

are the new research horizon.
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5.2.2 Multi-UAV, MEC, and IoT devices

UAV-assisted MEC systems are utilized for on-demand LoS computing services. In this cate-

gory, multi-UAV-supported multi-MEC is one of the potential research areas. Multiple UAV-based

MEC systems need to design the UAV movement control, cooperation, and communication re-

source allocation of multiple UAVs. The computation efficiency maximization problem in [97]

can be extended into the multi-UAV and multi-user scenarios. In [11], authors focused on intra-

cooperation between MEC servers that belong to one collaboration space. One interesting future

work could be to extend the framework to account for inter-cooperation between MEC servers that

belongs to different collaboration spaces. The work in [30] can be extended into the joint design

of caching at the MEC server and the mobile device and the joint caching and computing policy

design in a multicast-enabled scenario with multiple MEC servers and multiple mobile devices.

The authors in [79] pointed out that multiple UAVsâ trajectory optimization without collision and

power control can be an exciting work to investigate.

5.2.3 4Cs Resource Management in Satellite-Aerial-Terrestrial Networks

Integrated satellite-aerial-terrestrial (SAT) are envisioned to support the multidimensional require-

ments of future wireless networks. Integrated 3D SAT architecture using low orbit satellites, high

altitude tethered balloons, high altitude platforms, UAVs, and cellular networks can meet the high

data rate and multi-QoS demands and improve coverage and capacity in various applications. The

future improvement of SAT networks needs to address the following points:

• Proper design and requirement analysis of channels (LEO-to-UAV, UAV-to-UAV, and UAV-

to-ground ) model and air interface, interference models.

• Address the 4Cs resource management in SAT networks regarding QoS requirements of

different applications.

• Address the 4Cs resource management in SAT networks regarding resource scheduling, load

balancing, multiple access, and different channel model points of view.
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• Integrate AI/ML techniques in managing 4Cs components in SAT networks.

5.2.4 Blockchain-enabled 4C Resource Management

Developing low complexity distributed consensus and blockchain-enabled 4Cs resource manage-

ment is another potential research area in UAV-assisted wireless networks. Blockchain provides

lightweight, secure and consensus distributed security solutions to content distribution, network

monitoring, and security-related applications. In [95], interference management in blockchain-

enabled MEC systems is explored. Blockchain-enabled 4Cs resource management can address

the challenges associated with using blockchain-based services (e.g., monitoring, security, content

distribution, etc.) and the challenges related to integrated networks. The blockchain-enabled 4Cs

resource management needs to address the following as future research works:

• Data integrity and security using blockchain UAVs.

• Blockchain-enabled UAVs-based secure content delivery.

• Computing and caching solutions for multi-UAV multi-MEC communications using Blockchain.

• Low complexity blockchain solutions for flying automation.

5.2.5 Green 4Cs Technologies for 6G Networks

It is anticipated that 6G networks consist of a large number of devices with smarter and energy-

efficient resource management of edge computing, caching and ultra-reliable low-latency commu-

nications with machine learning capability. The new research direction horizon includes technolo-

gies associated with overcoming the energy barriers in radio access, computing, and caching sides

and making the 6G networks more green and sustainable. For example, authors in [131] considered

energy-efficient solution in next-generation delivery networks using UAVs. The high-altitude plat-

forms are used as hybrid energy sources, including wind and solar energy and possible RF energy

93



harvesting approaches. Similarly, in [132], authors considered the DRL-based charging mecha-

nism for UAVs battery. The UAVs’ optimal locations are utilized to improve the performance of

wireless power transfer in UAV networks. Novel technologies, architecture and design related to

energy harvesting, energy supply for UAVs in 6G networks, and energy-efficient UAV-assisted

MEC are the potential research areas for green 6G networks.
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of the pyramid: A survey on rural connectivity,” Proceedings of the IEEE, vol. 108, no. 4,

pp. 533–582, Apr. 2020.

[75] L. Amorosi, L. Chiaraviglio, F. D’Andreagiovanni, and N. Blefari-Melazzi, “Energy-

efficient mission planning of UAVs for 5G coverage in rural zones,” pp. 1–9, Mar. 2018.

[76] Kazmi, SM Ahsan and Dang, Tri Nguyen and Yaqoob, Ibrar and Ndikumana, Anselme and

Ahmed, Ejaz and Hussain, Rasheed and Hong, Choong Seon, “Infotainment enabled smart

cars: A joint communication, caching, and computation approach,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 9, pp. 8408–8420, Sep. 2019.

[77] Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, “Response delay optimization in

mobile edge computing enabled UAV swarm,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 3, pp. 3280–3295, Mar. 2020.

104



[78] S. Zheng, Z. Ren, X. Hou, and H. Zhang, “Optimal communication-computing-caching for

maximizing revenue in UAV-aided mobile edge computing,” pp. 1–6, Jan. 2021.

[79] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, “Privacy-Preserving federated

learning for UAV-enabled networks: learning-based joint scheduling and resource manage-

ment,” arXiv preprint arXiv:2011.14197, Nov. 2020.

[80] H. Li, J. Li, M. Liu, Z. Ding, and F. Gong, “Energy harvesting and resource allocation for

cache-enabled UAV based IoT NOMA networks,” IEEE Transactions on Vehicular Tech-

nology, vol. 70, no. 9, pp. 9625–9630, Jul.2021.

[81] M. Lin and Y. Zhao, “Artificial intelligence-empowered resource management for future

wireless communications: A survey,” China Communications, vol. 17, no. 3, pp. 58–77,

Apr. 2020.

[82] G. Kurt and H. Yanikomeroglu, “Communication, computing, caching, and sensing for next

generation aerial delivery networks,” arXiv preprint arXiv:2011.13224, vol. 14, no. 8, pp. 1–

7, Jun. 2020.

[83] M. Zhao, W. Li, L. Bao, J. Luo, Z. He, and D. Liu, “Fairness-aware task scheduling and

resource allocation in UAV-enabled mobile edge computing networks,” IEEE Transactions

on Green Communications and Networking, vol. 5, no. 4, pp. 2174–2187, Dec. 2021.

[84] J. Li, F. Wu, K. Zhang, and S. Leng, “Joint dynamic user pairing, computation offloading

and power control for NOMA-based MEC system,” in 2019 11th International Conference

on Wireless Communications and Signal Processing (WCSP), pp. 1–6, IEEE, Dec. 2019.

[85] J. Liu, P. Li, J. Liu, and J. Lai, “Joint offloading and transmission power control for mobile

edge computing,” IEEE Access, vol. 7, pp. 81640–81651, May. 2019.

105



[86] X. Han, D. Tian, Z. Sheng, X. Duan, J. Zhou, W. Hao, K. Long, M. Chen, and V. C.

Leung, “Reliability-Aware joint optimization for cooperative vehicular communication and

computing,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–20, Dec. 2020.

[87] W. Feng, J. Zheng, and W. Jiang, “Joint pilot and data transmission power control and

computing resource allocation algorithm for massive MIMO-MEC networks,” IEEE Access,

vol. 8, pp. 80801–80811, Apr. 2020.

[88] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation offloading and mul-

tiuser scheduling using approximate dynamic programming in NB-IoT edge computing sys-

tem,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5345–5362, Jun. 2019.

[89] S. Li, Q. Wang, Y. Wang, D. Tan, and W. Li, “Delay-aware task congestion control and

resource allocation in mobile edge computing,” in IEEE 30th Annual International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6, IEEE,

Nov. 2019.

[90] L. He, J. Li, M. Sheng, R. Liu, K. Guo, and J. Liu, “Joint allocation of transmission and com-

putation resources for space networks,” in IEEE Wireless Communications and Networking

Conference (WCNC), pp. 1–6, IEEE, Jun. 2018.

[91] S. Li, W. Sun, Y. Sun, and Y. Huo, “Energy-Efficient task offloading using dynamic voltage

scaling in mobile edge computing,” IEEE Transactions on Network Science and Engineer-

ing, vol. 8, no. 1, pp. 588–598, Dec. 2020.

[92] S. Yang, “A joint optimization scheme for task offloading and resource allocation based

on edge computing in 5G communication networks,” Computer Communications, vol. 160,

pp. 759–768, Jul. 2020.

[93] M. LiWang, S. Dai, Z. Gao, X. Du, M. Guizani, and H. Dai, “A computation offloading

incentive mechanism with delay and cost constraints under 5G satellite-ground IoV archi-

tecture,” IEEE Wireless Communications, vol. 26, no. 4, pp. 124–132, Apr. 2019.

106



[94] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-device communication

assisted fog computing,” IEEE Transactions on Mobile Computing, Nov. 2019.

[95] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative computation offloading

and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforce-

ment learning approach,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6214–6228,

Dec. 2019.

[96] Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, “Joint offloading decision and resource alloca-

tion for mobile edge computing enabled networks,” Computer Communications, vol. 154,

pp. 361–369, Feb. 2020.

[97] X. Zhang, Y. Zhong, P. Liu, F. Zhou, and Y. Wang, “Resource allocation for a UAV-

enabled mobile-edge computing system: Computation efficiency maximization,” IEEE Ac-

cess, vol. 7, pp. 113345–113354, Aug. 2019.

[98] J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization in UAV-assisted

mobile-edge computing systems: Joint resource allocation and trajectory design,” IEEE

Internet of Things Journal, vol. 8, no. 10, pp. 8570–8584, May 2021.

[99] Z. Yang, J. Xie, J. Gao, Z. Chen, and Y. Jia, “Joint optimization of wireless resource al-

location and task partition for mobile edge computing,” in 2020 IEEE/CIC International

Conference on Communications in China (ICCC), pp. 1303–1307, IEEE, Nov. 2020.

[100] N. Zhang, S. Guo, Y. Dong, and D. Liu, “Joint task offloading and data caching in mobile

edge computing networks,” Computer Networks, vol. 182, p. 107446, Aug. 2020.

[101] Y. Sai, D.-z. Fan, and M.-y. Fan, “Cooperative and efficient content caching and distribution

mechanism in 5G network,” Computer Communications, vol. 161, pp. 183–190, Jul. 2020.

107



[102] N. N. Ei, M. Alsenwi, Y. K. Tun, Z. Han, and C. S. Hong, “Energy-Efficient resource

allocation in multi-UAV-assisted two-stage edge computing for beyond 5G networks,” arXiv

preprint arXiv:2011.11876, pp. 1–11, Nov. 2020.

[103] S. Hu, Q. Wu, and X. Wang, “Energy management and trajectory optimization for UAV-

enabled legitimate monitoring systems,” IEEE Transactions on Wireless Communications,

pp. 1–33, Apr. 2020.

[104] D.-H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse tra-

jectory design for energy minimization in UAV-enabled,” IEEE Transactions on Vehicular

Technology, vol. 69, no. 9, pp. 9483–9496, Jun. 2020.

[105] Y. Li, H. Zhang, K. Long, C. Jiang, and M. Guizani, “Joint resource allocation and trajectory

optimization with QoS in NOMA UAV networks,” pp. 1–5, Dec. 2020.

[106] S. Yin, L. Li, and F. R. Yu, “Resource allocation and basestation placement in downlink

cellular networks assisted by multiple wireless powered UAVs,” IEEE Transactions on Ve-

hicular Technology, vol. 69, no. 2, pp. 2171–2184, Feb. 2020.

[107] D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Multiuser MISO UAV communications in un-

certain environments with no-fly zones: Robust trajectory and resource allocation design,”

IEEE Transactions on Communications, vol. 68, no. 5, pp. 3153–3172, Jan. 2020.

[108] L. Liu, B. Li, B. Qi, X. Ye, Y. Sun, S. Tian, C. Zhu, and P. Xi, “Optimization of com-

munication capacity for load control considering shared risk link group in source-grid-load

system,” International Journal of Electrical Power & Energy Systems, vol. 122, p. 106166,

May 2020.

[109] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory optimization for autonomous flying

base station via reinforcement learning,” pp. 1–5, Aug. 2018.

108



[110] Z. Na, B. Mao, J. Shi, J. Wang, Z. Gao, and M. Xiong, “Joint trajectory and power opti-

mization for UAV-relay-assisted Internet of Things in emergency,” Physical Communica-

tion, vol. 41, p. 101100, Apr. 2020.

[111] Y. Guo, C. You, C. Yin, and R. Zhang, “UAV trajectory and communication co-design:

flexible path discretization and path compression,” arXiv preprint arXiv:2010.07068, pp. 1–

30, Oct. 2020.

[112] S. Zeng, H. Zhang, B. Di, and L. Song, “Trajectory optimization and resource Allocation for

OFDMA UAV relay networks,” IEEE Transactions on Wireless Communications, vol. 20,

no. 10, pp. 6634–6647, Oct, 2021.

[113] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge

computing with binary computation offloading,” IEEE Transactions on Wireless Communi-

cations, vol. 17, no. 6, pp. 4177–4190, Apr. 2018.

[114] G. Zheng, C. Xu, H. Long, and Y. Sheng, “Service caching based task offloading and re-

source allocation in multi-UAV assisted MEC networks,” in IEEE/CIC International Con-

ference on Communications in China (ICCC), pp. 1024–1029, IEEE, Jul. 2021.

[115] J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, “Reinforcement learning for a cellular

internet of UAVs: Protocol design, trajectory control, and resource management,” IEEE

Wireless Communications, vol. 27, no. 1, pp. 116–123, Feb. 2020.

[116] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu, “Collaborative

computation offloading and resource allocation in multi-UAV-assisted IoT Networks: A

deep reinforcement learning approach,” IEEE Internet of Things Journal, vol. 8, no. 15,

pp. 12203–12218, Aug. 2021.

[117] W. Xu, H. Lei, and J. Shang, “Joint topology construction and power adjustment for UAV

networks: A deep reinforcement learning based approach,” China Communications, vol. 18,

no. 7, pp. 265–283, Jul. 2021.

109



[118] F. Xu, F. Yang, C. Zhao, and S. Wu, “Deep reinforcement learning based joint edge resource

management in maritime network,” China Communications, vol. 17, no. 5, pp. 211–222,

May. 2020.

[119] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-learning-based joint re-

source scheduling algorithms for hybrid MEC networks,” IEEE Internet of Things Journal,

vol. 7, no. 7, pp. 6252–6265, Jul. 2020.

[120] L. Liu, X. Qin, Y. Tao, and Z. Zhang, “Timely updates in MEC-assisted status update sys-

tems: Joint task generation and computation offloading scheme,” China Communications,

vol. 17, no. 8, pp. 168–186, Sep. 2020.

[121] K. Li, W. Ni, E. Tovar, and A. Jamalipour, “Deep Q-Learning based resource management

in UAV-assisted wireless powered IoT Networks,” pp. 1–6, Jul. 2020.

[122] J. Gora and S. Redana, “In-band and out-band relaying configurations for dual-carrier LTE-

advanced system,” in IEEE 22nd International Symposium on Personal, Indoor and Mobile

Radio Communications, pp. 1820–1824, IEEE, 2011.

[123] C. W. Zaw, N. N. Ei, H. Y. Reum Im, Y. K. Tun, and C. S. Hong, “Cost and latency trade-

off in mobile edge computing: A distributed game approach,” in 2019 IEEE International

Conference on Big Data and Smart Computing (BigComp), pp. 1–7, Apr. 2019.

[124] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge comput-

ing: The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 4, pp. 2322–2358, Fourthquarter 2017.

[125] N. Thakoor and J. Gao, “Branch-and-bound for model selection and its computational com-

plexity,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 5, pp. 655–

668, May 2011.

110



[126] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004.

[127] F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of computational and applied

mathematics, vol. 124, no. 1-2, pp. 281–302, 2000.

[128] S. J. Wright, Primal-dual interior-point methods. SIAM, 1997.

[129] D. S. Watkins, Fundamentals of matrix computations, vol. 64. John Wiley & Sons, 2004.

[130] S. U. Jamil, M. Arif Khan, and S. u. Rehman, “Intelligent task off-loading and resource

allocation for 6G smart city environment,” pp. 441–444, Jan. 2021.

[131] M. Amjad, A. Ahmed, M. Naeem, M. Awais, W. Ejaz, and A. Anpalagan, “Resource man-

agement in energy harvesting cooperative IoT network under QoS constraints,” Sensors,

vol. 18, no. 10, p. 3560, 2018.

[132] Z. Ullah, F. Al-Turjman, U. Moatasim, L. Mostarda, and R. Gagliardi, “UAVs joint opti-

mization problems and machine learning to improve the 5G and Beyond communication,”

Computer Networks, p. 107478, Aug. 2020.

111


	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Preliminary of 4Cs in UAV-assisted Wireless Networks
	Architectures for UAV-assisted Wireless Networks
	4Cs in UAV-assisted Wireless Networks

	Thesis Objective
	Thesis Contributions
	Thesis Organization

	Background and Literature Review
	Existing Surveys
	Optimization of 4Cs in UAV-assisted Wireless Networks
	Joint Communication, Computing and Caching (3Cs) Optimization
	Joint Communication and Computing (2C) Optimization
	Joint Computing and Caching (2C) Optimization
	Joint Trajectory, Communication and Computation Optimization
	Joint Trajectory and Communication Optimization

	Solutions and Techniques
	Approximation Algorithms:
	Iterative Algorithms
	Search based Algorithms
	Machine Learning (ML) Algorithms

	Performance Metrics
	Summary

	4Cs Resource Management in UAV-assisted MEC Networks
	Introduction
	Related Work
	System Model
	Proposed Joint 4Cs Resource Allocation
	Problem Formulation

	Summary

	Proposed Scheme and Simulation Results
	Solution Approaches
	Heuristic algorithm
	Complexity Analysis

	Simulation Results
	Summary

	Conclusion and Future Work
	Conclusions
	Future Research Directions
	Dynamic 4Cs Resource Management
	Multi-UAV, MEC, and IoT devices
	4Cs Resource Management in Satellite-Aerial-Terrestrial Networks
	Blockchain-enabled 4C Resource Management
	Green 4Cs Technologies for 6G Networks


	Bibliography

