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Abstract

Recent evolution and technological advancement in wireless communications and micro-
electronics have enabled enhanced research trends toward wireless body area networks
(WBANSs). This emerging new field of research plays an important role in medical and
healthcare services. An electronic health (eHealth) monitoring system is one of the major
applications of WBANSs that in addition to saving lives can provide cost-effective healthcare
services by replacing the need for costly in-hospital monitoring with wearable or implanted
monitoring systems that help early detection and prevention of any abnormal physiolog-
ical activities that could risk the patients’ lives. Such a system continuously monitors
the patient’s vital signs and helps patients to involve in their routine activities of daily
life without requiring intensive or specialized medical services all the time, thus creating
significant enhancement in the standard of living. One of the key challenges that limit
the widespread usage of eHealth solutions in practical healthcare facilities is the limited
battery life of sensor nodes (SNs) that are needed to be replaced /recharged manually once
the energy is depleted. In most scenarios, battery replacement is not preferable, and it
becomes highly unsuitable and impractical, especially when the SNs are implanted inside
the human body. This limited battery capacity of SNs not only causes a performance
bottleneck but is also likely to disrupt the future operations of SNs, which may cause a life
hazard. Therefore, in order to have seamless and efficient implementation of an eHealth
monitoring WBAN, improving the SNs’ lifetime or energy efficiency (EE) is of paramount

importance.

EE is one of the fundamental design objectives that greatly affects the performance
of the eHealth system, and optimizing the EE enables efficient use of energy-constrained
SNs. In this regard, this thesis has threefold objectives. Firstly, a linear fractional EE

optimization problem is formulated and solved for an eHealth monitoring WBAN consisting

v



of SNs equipped with energy harvesting capabilities communicating with an aggregator.
The EE objective function is defined as the ratio of the overall source rate of all the SNs to
the total power consumption of WBAN by considering energy harvesting and power budget
constraints. Secondly, a robust communication scheme for eHealth monitoring WBAN is
proposed that can characterize the propagation characteristics of various patient activities
by only utilizing the generalized gamma distribution that can efficiently model various body
movements. In this regard, a novel EE optimization problem is formulated and solved that
does not require channel state information (CSI) from transmitting SNs to the aggregator
while optimizing the transmit power and encoding rate of each SN by considering outage
probability and packet retransmission. Last but not the least, an energy-efficient resource
allocation framework is proposed to maximize the EE of an eHealth monitoring WBAN
assisted with backscatter communication (BackCom) and energy harvesting technologies,
subject to quality of service (QoS) and power budget constraints. More specifically, the
optimization problem optimizes the transmit power of the aggregator, transmission time,
and backscatter time of WBAN consisting of energy-constrained SNs which have the ability

to harvest energy from the signals transmitted by the aggregator.
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Chapter 1

Introduction

1.1 Background and Motivation

The population of the world is increasing rapidly, and every country around the globe is
experiencing growth in the number of older people in their population. According to a
report on world population aging statistics [1], there were 703 million people aged 65 years
or over in the world in 2019, and from 2025 to 2050, the elderly population is projected to
nearly double at least to 1.6 billion globally, as shown in Fig. 1.1. Furthermore, the number
of people living alone is increasing day by day, and the majority of older people are facing
chronic diseases. However, conventional medical treatment which needs patients to go to a
medical facility or doctor when they feel sick, cannot confront these situations in a timely
manner. It is expected that this increase in the number of adults will overburden the
efficient performance of the health care systems, thus considerably affecting the quality of
life. Based on these statistics it is necessary to have a dramatic shift in currently available

health care systems towards more affordable and adaptable health solutions [2-4].
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Fig. 1.1: World population (in millions) by age group: 2015 to 2050 [1].

On the other hand, hundreds of thousands of patients die every year from various fatal
and chronic diseases such as cancer, cardiovascular disease, Parkinson’s, diabetes, asthma,
obesity, etc [5]. In most cases, the patients suffering from such fatal diseases experience
the symptoms of illness and have been diagnosed with the disease when it is too late. Most
of the research studies have shown that many of these diseases can be cured if they are
detected during their early stages. Therefore, future health care solutions need to offer
dynamic wellness management and focus on early detection and prevention of any signs
of illness. In this regard, with the evolution of wearable sensors and the advancement
in wireless communication technologies, eHealth monitoring system arises as an emerging

research field in the academics and R&D industries worldwide [6-9].

eHealth system serves as a promising solution that provides cost-effective healthcare
services through wearable or implanted monitoring systems that help early detection and
prevention of any abnormal physiological activities that could risk the patients’ lives. Such

a system continuously monitors the patient’s vital signs and helps patients to involve



in their routine activities of daily life without requiring intensive or specialized medical
services all the time thus creating significant enhancement in the standard of living. Such
seamless medical and healthcare services can only be acquired through a smart network
consisting of low-power microelectronics and nanotechnology based actuators and SNs that
can be deployed on the body surface as wearable devices or implanted inside the patient’s
body. Such networks are commonly called as WBANs [10-12]. In comparison with the
conventional healthcare services, eHealth systems with WBAN take advantage of portable
health monitoring devices to offer location-independent healthcare facilities. In addition
to saving lives, the prevalent use of WBANSs will reduce health care costs by removing the

need for costly in-hospital monitoring of patients [2].

1.2 Research Challenges and Possible Solutions

To facilitate the efficient and seamless implementation of eHealth monitoring WBANS,
such as to be adopted widely, certain challenges need to be addressed. In this regard,
increasing the battery life with sustainable energy supply, QoS guarantee of the data, and
high EE with minimal power consumption are of significant importance [8,13,14]. Body
SNs require a sustainable energy supply to perform their activities and perpetual operation.
Conventionally, these SNs are powered by batteries, which have a limited lifetime and are
needed to be replaced/recharged manually once the energy is consumed. Moreover, battery
maintenance and replacement are not preferable sometimes, and it becomes unsuitable
when sensors are implanted within the human body. Furthermore, the evolution of battery
technologies is not yet capable of meeting the energy demand to develop WBAN with
sufficient lifetime and satisfactory cost; thus there exists a vast gap between the energy

demand of the wireless devices and the energy density resulting from the development



in battery technology. That said, improving the SNs’ lifetime or EE is of paramount
importance for the widespread adoption of eHealth monitoring systems in the practical

healthcare environment.

Numerous research efforts are carried out in the literature at different layers with a
focus on minimizing the energy constraints by designing energy-efficient protocols, en-
ergy conservation strategies, and effective network topology designs. As a result of recent
technological breakthroughs, various battery recharging techniques have been developed
to overcome the limited battery life of the SNs that remained a major hurdle making
the WBAN use less appealing. One such alternative is wireless energy harvesting, which
serves as a promising approach and helps enable the self-sustained body SNs operations.
In this technique, SNs are equipped with energy harvesting capabilities that allow them to
scavenge energy from ample biochemical and biomechanical energy sources present in the
human body or ambient green sources (e.g., solar, thermal, vibrational, radio frequency
(RF)) [15-18]. However, the energy recharging rate is usually slow and varies from time to
time; therefore a body sensor may deplete its energy before its battery is recharged which
creates a disturbance in the eHealth monitoring system. This interruption may cause a
hazard if the vital information of a serious patient is not received on time. Nevertheless, the
harvested energy requires effective energy management schemes such as EE maximization
that focuses on saving the energy of WBAN given the available resources while maintaining

the satisfactory performance level of the network in terms of data transmission.

Recently BackCom has emerged as an evolving paradigm that serves as a communi-
cation technology for the next-generation wireless networks such as eHealth monitoring
WBANSs [19]. BackCom can provide nearly limitless chances to connect wireless devices
due to this revolutionary way of communication by reflecting and modulating the incident

signal. BackCom is considered a key enabler to tackle the issue of limited battery capacities



in wireless devices, therefore can be utilized to enable pervasive connectivity in a variety
of applications, including wearable devices, smart connected homes, industrial Internet-of-
Things (IoT), and small embedded devices. In contrast to a conventional radio architecture
that requires a chain of power-hungry modules, a backscatter node does not comprise any
active RF components, therefore, can be deployed to have miniature hardware with excep-
tionally low power consumption [20]. Furthermore, BackCom is envisioned to revolutionize
the healthcare supplied through embedded microelectronics and wearable devices by effi-
ciently transmitting the data under a low-power budget. Consequently, this technology

helps enable customized self-managing and self-monitoring eHealth systems [21].

1.3 Objectives and Thesis Contributions

As discussed earlier, the main objective of an eHealth monitoring system is to serve with
continuous and high-quality service to the subscribers. A sustainable service necessitates
that the system can operate without interference for an adequately prolonged stretch of
time with the end goal that adequate information can be gathered for a patient. Due to
limited battery life, improving the SNs lifetime or EE is of significant importance to realize
smart healthcare solutions in real life. However, such a design objective has been overlooked
in the literature, and most of the existing research on eHealth monitoring WBANSs is
based on aspects of designing the medium access control (MAC) protocols [13,22,23] and
maximizing the throughput of WBANSs that focuses on transmitting the maximum data

by utilizing all the available power [24-26].

In comparison with the existing literature on WBANS, the objective of this thesis is to
design an energy-efficient eHealth system by considering EE as the design objective. EE is

one of the fundamental design objectives that greatly affects the performance of an eHealth
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system. In this regard, this research proposes new solutions for achieving enhancements in
the eHealth monitoring system by considering different system models and various design
parameters with the principle aim of saving the power of energy-constrained WBAN. In
addition, the discussion and insight into future research directions with potential scope of
improvements and opportunities for further research are provided. The main contributions

(also summarized in Fig. 1.2) of this thesis are briefly described as follows:

1. An optimization problem is proposed and solved to maximize the EE of an eHealth
monitoring WBAN. The proposed system model consists of SNs equipped with en-
ergy harvesting capabilities communicating with an aggregator, and the correspond-
ing energy harvesting process of the SNs is modeled using the discrete-time Markov
chain. The EE objective function is defined as the ratio of the sum of the source
rate of all the SNs to the power consumption of all SNs in the network. The formu-
lated linear fractional EE optimization problem is converted to an equivalent linear
form by using the Charnes-Cooper transformation. The optimization problem aims
to maximize the overall EE of the self-sustained eHealth monitoring system with
WBAN by optimally allocating each SN source rate such that the overall EE of the
WBAN system is maximized. Moreover, the structure of the optimization problem
is analyzed to provide a suboptimal solution at lower computational complexity, and
mathematical expressions of upper and lower bounds of the source rates of the SN
are derived. Extensive simulations are performed to evaluate the performance of
the proposed scheme, which reveal that the optimal allocation of the source rate to

energy-constrained SNs improves the performance of WBAN in terms of EE.

2. A robust eHealth monitoring communication system is proposed that can charac-

terize the propagation characteristics of various patient conditions by only utilizing



the generalized gamma distribution that supports various patient conditions and can
efficiently model both everyday and dynamic activities. More specifically, an opti-
mization problem is formulated to optimize the EE of WBAN without requiring the
CSI from the transmitting SNs to the aggregator. The optimization problem opti-
mizes the transmit power and encoding rate of each SN such as to optimize the EE
(measured in J/bits) by considering outage probability and packet retransmission.
It is shown that the formulated optimization problem is semi-strictly quasi-convex
in each decision variable, and an alternative optimization approach is proposed to

determine its solution.

. A resource allocation framework is proposed to maximize the EE of WBAN assisted
with BackCom, subject to QoS and power budget constraints. More specifically, the
optimization problem optimizes the transmit power of the aggregator, transmission
time, and backscatter time of WBAN consisting of energy-constrained SNs which
have the ability to harvest energy from the signals transmitted by the aggregator.
A generalized gamma distribution is adopted to characterize the channel propaga-
tion characteristics of patients under different arbitrary body movements/activities.
The formulated EE optimization problem is shown to be a quasi-concave nonlinear
fractional problem, which is transformed to an equivalent parametric problem by
using the Dinkelbach approach, and the corresponding Karush-Kuhn-Tucker (KKT)
conditions are solved to obtain the solution. Furthermore, a low-complexity iterative-
based suboptimal heuristic is proposed with performance fairly close to the optimized
solution. Simulation results demonstrate the effectiveness of the proposed scheme in
maximizing EE of the WBAN by considering relaxing, walking, and running states.
Additionally, comparisons with the related work from the literature are performed

that reaffirm the superiority of the proposed algorithm.
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1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2, the general architecture of WBAN and its various medical and non-
medical applications including eHealth monitoring system is discussed. The taxonomy of
WBANS including different modules and a brief overview of the classification of WBAN
devices according to their functionalities are also highlighted. The different communication
architectures are also discussed to provide an idea about different communication tiers in
WBANSs. Moreover, energy harvesting in WBANSs is discussed and a classification of the
available energy resources that can be utilized for harvesting energy are also provided. Last
but not the least, a brief over of BackCom in eHealth monitoring WBAN is discussed to
highlight the advantages in overcoming the issue of limited battery capacities in eHealth

systems by enabling pervasive connectivity.

In Chapter 3, a self-sustained WBAN system model is presented in which the energy
harvesting mechanism of the SN is modeled using the discrete-time Markov chain. In
this regard, an EE maximization problem formulation and its solution are discussed that
intends to maximize the EE of energy-constrained SNs equipped with energy harvesting
capabilities communicating with an aggregator. Finally, the suboptimal solution at a lower

computational complexity is also discussed in this chapter.

In Chapter 4, a WBAN system model with a robust communication scheme that fo-
cuses on saving the power of energy-constrained SNs is presented. In this regard, an EE
optimization problem without having the CSI from the transmitting SNs to the aggregator
is formulated and solved. Moreover, a generalized gamma distribution is adopted that can
support different patient conditions during daily life activities and can efficiently model

both everyday and dynamic activities.



In chapter 5, a BackCom based eHealth monitoring system model is proposed that aims
to provide sustainable and high-quality medical services. Based on that, an energy-efficient
optimization framework is studied on a transmission frame consisting of two phases, i.e.,
passive BackCom phase, and active data transmission phase to maximize the EE of energy-
constrained WBAN equipped with energy harvesting capabilities. Moreover, a generalized
gamma distribution is adopted to model various patients’ conditions by considering re-
laxing, walking, and running states. Last but not the least, extensive simulations are
performed to evaluate the performance of the optimized and suboptimal solutions in com-

parison with the related literature to show the effectiveness of the proposed scheme in

maximizing the EE of WBAN.

In Chapter 6, a summary of our investigation and important conclusions regarding
the research are drawn by summarising the important findings from each research con-
tribution. It also includes discussion on future research directions in the field of eHealth
monitoring WBAN that are expected to be a source of inspiration for future innovations

and developments in WBANSs.

1.5 List of Publications

I, Osama Amjad, hold a primary author status for all the published manuscript discussed
in the chapters (Chapter 3 - 5) of this dissertation. Whereas, my supervisors and co-
researchers, are co-authors on each research article, whose time and guidance, careful
assessment, and constructive feedback throughout this research have helped improve the
technical and presentation quality of the work and development of these publications in-

dicated below.
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Chapter 2

Wireless Body Area Networks:

Background and Preliminaries

2.1 Introduction

The recent evolution and technological advancements in wireless communication and mi-
croelectronics have enabled the enhanced research trends towards the development of low-
power, inexpensive, miniaturized smart wireless devices that can be implanted underneath
the skin or attached to the human body surface as wearables sensors, or integrated with ac-
cessories and clothing. This set of bio-medical sensors can be connected to form a network
referred to as WBAN that enables advanced continual monitoring applications without
disturbing the daily-life activities of the patients. The sole standard available for WBAN
is IEEE 802.15.6, which was issued in 2012. IEEE 802.15.6 defines WBAN as a specific
form of wireless sensor network (WSN) [27]. IEEE 802.15.6 offers reliable communication

over a short distance and a wide range of data rates to serve a variety of applications.
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WBANS help enable the SNs to continuously monitor various physiological attributes of
the body during stationary or mobility states. The SNs sense the patients’ vital infor-
mation such as heart rate, blood pressure, respiratory measurement, body temperature,
pulse rate data, and blood glucose level from the body and translate this information into
data packets which are wirelessly transmitted to the central coordinator node known as
aggregator /gateway. Most importantly, the information collected by an eHealth monitor-
ing WBAN provides the medical facility and healthcare providers with a clear picture of
the patient’s status as this data is gathered during a patient’s daily-life routine activities

in a natural environment [28].

2.1.1 Taxonomy of WBAN Devices

As discussed earlier, a WBAN system consists of miniature devices with communication
capabilities to sense the information through various SNs and transmit that information
as data packets over wireless channels. Based on their functionalities and roles, these
devices can be categorized into three classes. This section details a brief overview of the

classification of WBAN devices according to their functionality.

1. Wireless Sensor Node: A SN senses the physiological attributes, performs
the data processing of the sensed information by using the analog-to-digital converter
(ADC), and transmits that in the form of data packets to the aggregator using wireless
communication technology. The general architecture of a wireless SN comprises four
components as shown in Fig. 2.1: a radio transceiver, storage battery, microprocessor,
and the sensor component [29]. When connected to the power supply the SNs are
activated to provide wireless monitoring for anybody, anywhere, and anytime. SNs in

WBAN are categorized according to their location on the body, as follows
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Fig. 2.1: Tllustration of different modules of a wireless sensor node [29].

e Wearable Sensor: These devices are placed on the body surface or attached
to the clothes for gathering vital signs. Some existing varieties of these sensors
can be embedded in a smart wristwatch, smartphone, or earphone of the patient,
allowing continuous monitoring independent of the patient’s location. For ex-
ample, peripheral oxygen measures the saturation level of oxygen in the human
blood. The electrocardiogram (ECG) sensor investigates the functionality of the
heart by sampling the heart muscle propagation waveform with respect to time.
The electroencephalography (EEG) sensor utilizes the electro-physiological mon-
itoring method to record the electrical activity of the brain. The various types of
available sensors for eHealth monitoring WBAN are temperature sensor, motion

sensor, blood pressure (BP), blood glucose, pulse rate, motion sensor [2,4].

With the advancements in wearable devices, the trend of measuring the BP
using the sensors has increased [30,31]. It is due to the fact that measuring a BP
using a cuff-based technology is sometimes distressing as it utilizes an inflatable
cuff that is wrapped on an arm and pressure is applied to the artery by increas-

ing the pressure on the arm and then gradually releasing the pressure from the
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cuff, thus enabling the measurement of the systolic and diastolic BP. Due to the
inflation and the deflation, a cuff-based BP measurement takes a few minutes for
the arteries to recover fully. As a result, cuff-based BP measurement technology
is considered obstructive and unsuitable for wearable-based eHealth monitoring
WBANSs [32]. There are various studies in the literature regarding the cuffless and
wearable technologies to measure the BP using several indirect techniques such
as tonometry and pulse transmit time (PTT) methods as discussed in [33, 34].
Due to its ability to track BP change, as well as its benefits as a noninvasive,
continuous, and most importantly cuffless instrument for BP measurement, the
PTT method has attracted much interest in recent decades. Most industry and
academia efforts for cuffless BP monitoring are now focused on PTT to reduce
the distress caused due to the cuff inflations. In [31], a cuff-less based BP esti-
mation system is designed that uses only one sensor for photoplethysmography
that is expected to provide a wearable device for continuous and stress-free BP
monitoring. The studied research evaluates and validates the clinical application
of cuffless BP estimation in compliance with the IEEE standard for wearable
cuffless BP measuring devices (issued by IEEE to publicize the development of
cuffless BP measurement) [35].

Implantable Sensor: These devices are placed beneath the skin surface or
even injected into the body tissue or in the bloodstream to access the health
parameters. These sensors can constantly assess metabolite levels irrespective
of the patient’s physiological condition (rest, sleep, etc.) [36]. For example, in
Parkinson’s disease, these sensors are used to send electrical impulses to the
brain through neural simulators [37]. One of the distinguished applications of an

implantable sensor in healthcare is the ability of retina prosthesis chips implanted
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11.

111.

within a human eye to assist visually impaired or patients with no vision to see

at a decent level [36].

Actuators: Actuators are used to administer medicine to a patient. The required
drug is administered directly in a predefined manner when a sensor detects an abnor-
mality or when it is triggered by an external source, according to the doctors decision.
Similar to a SN, an actuator consists of a transceiver, battery, memory, and the ac-
tuator hardware that holds and manages the drug. The actuator is activated upon
receiving data from the sensors. Its function is to offer network feedback by acting on
sensor data such as injecting the right amount of dose to control the blood pressure,

body temperature and to treat many other illnesses [38].

Wireless Personal Device: A personal device (PD) is responsible for collect-
ing the incoming data information transmitted from the sensors. It is also called a
body control unit, gateway/aggregator, or sink [2,8|. It is the central unit that is
responsible for establishing communication between sensors, actuators, and a cellular
phone in a wireless fashion. PD can be a specialized dedicated unit, a personal digital
assistant (PDA) or a smartphone. A smart cellular phone, for example, can be con-
figured to transmit information to and from the human body to external healthcare
providers. This device is usually more resource-rich than the SNs. Its main compo-
nents are a transceiver, a rich power source, a large processor, and a large memory. It
can also provide coordination by sending the device configuration updates or medical
alerts from the service provider to the SNs. Unlike the energy-constrained SNs, a PD
is usually energy sufficient, and normally it has stable charging access within reach

such as a power outlet, or high capacity portable power bank to recharge its battery.
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Fig. 2.2: Medical and non-medical applications of WBANSs [39].

2.2 Applications of WBANSs

In this section, the applications of WBANSs are discussed that can help reduce medical
expenses and provide enhancement in quality of life. WBANs applications can be mainly
classified into medical and non-medical applications. Fig. 2.2 shows some interesting and
innovative medical and non-medical applications that WBANSs can support. The low power

and the low cost of individual SNs are the key factors due to which WBAN applications
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span diverse fields including, but not limited to, eHealth monitoring, stress control, patient
rehabilitation, tracking records of patient bio-metrics, managing chronic diseases, together
with the non-medical applications such as intelligent environmental surveillance, disaster,
and emergency management for workers safety in hazardous workplaces (e.g., building
workers, firefighters, soldiers, etc.), human activity recognition such as sports, and fitness
tracking [39,40]. The common aspect of all WBAN applications is to improve the user’s

standard of living.

2.2.1 Electronic Health Monitoring

WBANS have a great potential to revolutionize the future of the healthcare field by identify-
ing several life-threatening disorders and by enabling real-time continuous patient monitor-
ing via eHealth system. Fig. 2.3 illustrates the general architecture of eHealth monitoring
system with WBAN [41]. It has two main modules that include a body sensor network
(BSN) and an eHealth service provider. BSNs are the type of WSNs that consists of sev-
eral body SNs and the central coordinator node known as an aggregator. As discussed
earlier, the aggregator could be a handheld device such as a smart cell phone. The SNs are
deployed on the body surface, or they can be implanted inside the human body [2,8,40].
These sensors continuously monitor and collect the patient’s required information and send
it wirelessly to the aggregator. The aggregator wirelessly transmits the collected data to
the base station. Further, the information from the base station is sent to the eHealth
service provider over the wired channels for further processing and analysis. eHealth mon-
itoring provides medical facilities at multiple places that may include the patient’s home,
shopping mall, and the hospital and they will be continuously monitored as far as they are

in one of the eHealth locations.
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Fig. 2.3: General architecture of an eHealth monitoring system with WBAN [41].
2.2.2 Patient Rehabilitation

WBANS have significant developments in continuous patient monitoring and administering
appropriate medication when needed. In this regard, WBANs are also equally useful with
high potential in the rehabilitation process of individuals suffering from mobility issues,
such as those recuperating from a stroke or traumatic brain injury. They play a significant

role in keeping track of a patient’s physical activities and exercises in order to:
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e Avoid improper exercises

Update difficulty level of exercises

Observe recovery

Compare alternative treatment protocols

Enable telerehabilitation

The purpose of a WBANSs in rehabilitation is typically to capture patients’ movements
and posture during motor activities. The velocity and acceleration of limbs and joints are
traditionally measured using accelerometers, gyroscopes, and magnetometers. Those tools

have primarily been employed for gait analysis [40,42].

2.2.3 Assisted Living

Assisted living facilities have evolved as a viable housing option for elderly with disabilities
who are not regarded as independent but do not require round-the-clock medical assistance,
such as provided by nursing or retirement centers. As a result, assisted living encourages
independence and self-respect in the aging population while also lowering medical expenses.
As a result, smart homes have developed as an effective tool for monitoring patients’
activities and lifestyles by utilizing a sensor network containing wearable and living space
sensors that can sense and regulate the characteristics of the environment before sending
body data to a central station. The patient’s health can be evaluated based on their heart
rate, blood pressure, and environmental data. In an event of significant changes in the
measured parameters or deviations from the usual range, the system may be connected to

a healthcare facility for surveillance and emergency help [39,40].
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Fig. 2.4: Communication architecture of WBAN with different tiers [2].

2.3 Communication Architecture of WBAN

The communication architecture of WBANSs as presented in Fig. 2.4, can be separated into

three different tiers as follows

e Tier-1: Intra-WBAN communication
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e Tier-2: Inter-WBAN communication

e Tier-3: Beyond-WBAN communication

Fig. 2.4 illustrates the network communication within a WBAN and between the WBAN
and among multiple tiers in an efficient, component-based system. The devices are dis-
persed all over the body in a centralized network architecture where the exact location
of a device is application specific. However, due to the random body movements during
daily-life activities (e.g. running, walking), the ideal body location of SNs is not always

the same; hence, WBANSs are not always regarded as being static.

Tier-1: Intra- WBAN communication - Tier-1 depicts the network interaction of
SNs and their corresponding transmission ranges (~ 2 meters) in and around the human
body. In Tier-1 communication, different wearable and implantable sensors are used to
transmit the vital information from the patient’s body to the personal server, also known
as the aggregator node, located in Tier-1. The collected physiological data is then processed

and wirelessly transmitted to an access point in Tier-2.

Tier-2: Inter-WBAN communication - Tier-2 communication is usually between
the aggregator and one or more access points (APs). The APs can be considered as part
of the infrastructure or even deliberately placed in a dynamic environment to manage
emergency circumstances. Tier-2 communication focuses on connecting WBANs with other
networks, including cellular networks and the Internet, that may be conveniently accessed
in daily life. The more technologies supported by a WBAN, the easier for them to be

integrated within applications.

Tier-3: Beyond-WBAN Communaication - This communication tier is intended
for use in metropolitan areas. In other words, from the Internet to the healthcare facility

in a particular application, a gateway, such as an aggregator can be utilized to bridge
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the link between Tier-2 and Tier-3. However, the design of Tier-3 for communication is
application-specific. In principle, a database is one of the most crucial elements of Tier-3 in
a medical setting because it contains the patient’s medical history and profile. As a result,
either the Internet or short message service can be used to inform doctors or patients of
an emergency situation. Additionally, Tier-3 allows restoring all necessary information of

a patient which can be used for their treatment.

2.4 Energy Harvesting in WBANSs

Energy harvesting is a promising alternative that has gained significant attention in the
communication solutions in WBANs by allowing the energy-constrained SNs to harvest
energy and perform the required operations [16]. In eHealth monitoring solutions, the
energy harvesting technology is considered a feasible solution for increasing the operational
time of the network or may even replace the battery of SNs with a continuous energy supply.
In eHealth monitoring, energy harvesting can enable the real-time monitoring of various

vital parameters of the patients, resulting in a self-sustainable system [17].

Energy can be harvested from a variety of different types of energy sources available
in the surrounding environment and converting it to usable electrical form. However, the
availability of a specific energy source may vary depending on the patient’s body state
and surrounding environment, or the battery capacity, location, or function of a particular
SN. Even though it is not a novel concept, knowing that it has been deployed on a vast
scale around the world, its application in small devices such as SNs is an emerging topic
in academics and industry. Along with minimizing the network expenses, it reduces the
electrical waste in the form of drained or dead batteries, thus promoting the concept of

green energy supply as well. Moreover, recent technological advancements have also made
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Fig. 2.5: Classification of energy sources available for energy harvesting in WBANs [15].

it possible to harvest energy from a variety of sources present within the human body, which
was previously unimaginable [15]. WBANSs can harvest energy from a range of ambient
sources available in the surrounding environment and human body, as summarized in
Fig. 2.5. In this section, a brief overview of two main categories of energy sources, i.e.,

ambient and human body sources available for harvesting energy in WBANs are discussed.
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2.4.1 Energy Harvesting from the Human Body

In the human body, there are plenty of energy sources that can be exploited to power
both in/on-body SNs. Based on the type of energy, the energy sources available in the
human body can be categorized into biomechanical and biochemical energy sources. The
former source is mobility dependent and based on the voluntary and involuntary movement
of the human body, which can be converted into electrical energy. The latter deals with
harvesting energy from the electrochemical reactions inside the human body that generate

energy and can be utilized for the purpose of harvesting energy.

i. Biochemical Energy Sources: Inside the human body, biofluids include a
wide range of chemicals and active enzymes that supply energy to the body. Biofuel
is the key enabler technology for harvesting energy that relies on converting chemical
energy into electrical energy from the chemical compounds by using electrochemical
processes under appropriate conditions [43]. The scavenged energy can be used to
power low-power SNs embedded inside the body. The amount of harvestable chemicals
in the body fluctuates with age and is mostly determined by an individual’s health and
daily food and nutrition intake. In general, these sources can be harvested whenever

necessary, as long as the body has an adequate quantity of potential chemicals.

As an example, among the different chemical substances that the body extracts
from dietary substances, glucose is among the most common sources of energy. By
utilizing an implantable enzymatic biofuel cell that helps to digest glucose into acid
and releases electrons, which can be subsequently used to generate electrical energy.
Lactate is another chemical found in high concentrations in human saliva or sweat.
A noninvasive tattoo-based biofuel cell design that can be externally positioned on a

human body can also be used to harvest energy [44].
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ii. Biomechanical Energy Sources: Another type of source associated with
the human body is biomechanical energy which exists in the form of kinetic en-
ergy obtained through various internal and external movements of the human body.
These body movements can be involuntary and voluntary activities. The involuntary
movements refer to the body’s continual actions, such as breathing, heartbeat, blood
pressure, and other muscular movements, irrespective of a human’s desire. Whereas
walking, exercising, and other similar activities connected corresponding to physical

movements are examples of voluntary movements [45].

The human body movements account for a large portion of biomechanical sources,
which include footsteps, knee movement, and arm motion. Various piezoelectric and
mechanical generators can be used to harvest energy from these sources. Foot taps
during walking can generate a significant quantity of energy, which can be scavenged
by employing piezoelectric polymers in the shoe sole. The energy produced can be
utilized to power biometric sensors. In addition, considerable amounts of vibrations
occur at the knee during movements that generate kinetic energy, which can also be

used to scavenge energy [15,46].

2.4.2 Energy Harvesting from Ambient Sources

Energy can also be harvested from various ambient sources, such as RF radiation, thermal,
and solar. These sources can generate a considerable amount of energy, which, if utilized

effectively, can power a variety of embedded and wearable devices.

Light is the most dominant of these ambient sources, and it may be scavenged in both
outdoor environments from the natural sunlight and indoor settings from artificial light

sources. In outdoor locations, the amount of energy harvested from sunshine varies greatly
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depending on the time of day, region, and environmental circumstances, but successful
solar harvesting can result in a full day or several days of operational time. However,
indoor artificial light does not have the same intensity as natural sunshine; thus, it can
only generate a small amount of energy [42]. Similarly, the human body continuously
dissipates a reasonable amount of heat throughout the day. This heat is a reliable source
of thermal energy that can be harvested by using the thermoelectric transducer to charge

wearable devices [47].

With the explosive increase in the growing wireless devices, RF radiations available
in the surrounding environment have also increased significantly. Consequently, Wi-Fi
routers, cellular and radio towers, and TV broadcasting towers utilize the electromagnetic
spectrum, in particular, RF radiations for data communication [15]. These signals can
be captured by utilizing a rectifying antenna which is a specific type of efficient antenna
connected to special hardware known as an energy harvester. This rectifying antenna
converts the received radiations into usable DC electrical energy [48]. However, one of the
drawbacks is that the amount of harvested energy is dependent on the distance between
the transmitter and the receiver device. Even though there may be a lot of electromagnetic
radiation available for harvesting nearby a transmitting source, as it radiates and spreads
farther out, the amount of energy available for harvesting also decreases. Therefore, by
taking the distance into consideration, this method of harvesting energy can provide a
promising solution for lower-power devices in eHealth monitoring WBANs. In addition,
dedicated RF sources include specially designed and configured transmitters that emit
radio waves and act as a reliable source of transmitting energy signals, e.g., TX91501b

powercaster transmitter [49].
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2.5 Backscatter Communication in eHealth Systems

BackCom has emerged as an evolving paradigm that serves as a communication technology
for the next-generation wireless networks such as eHealth monitoring WBANs [19]. Back-
Com can provide nearly limitless chances to connect wireless devices due to this revolu-
tionary way of communication by reflecting and modulating the incident signal. BackCom
is considered a key enabler to tackle the issue of limited battery capacities in wireless de-
vices, therefore can be utilized to enable pervasive connectivity in a variety of applications,
including wearable devices, smart connected homes, industrial IoT, and small embedded

devices.

As illustrated in Fig. 2.6, a basic BackCom system consists of two components: a Tag,
which is a mobile backscatter node, and a Reader [50]. The Tag is a passive device that
harvests energy from a sinusoidal continuous wave (CW) emitted by the Reader and mod-
ulates and reflects the incident signal back to the Reader. The signal reflection is caused by
an intended impedance mismatch between the antenna and the load impedance. The re-
flection coefficient varies as the load impedance varies, followed by a random sequence that
modulates the reflected signal with Tag’s data information bits. This modulation scheme
is known as backscatter modulation. In BackCom, the Reader transmits a binary intensity
modulated signal to the Tag. The Tag connects its information decoder and utilizes the re-
ceived RF signal for RF energy harvesting and energy-detection based demodulation. The
decoding mechanism is used for ultra-low power designs that allow the receiver to decode
the data information with high efficiency by only utilizing an average envelope detector
and a threshold computation circuit. Firstly, the envelope detector smoothes/averages out
the variations of the received signals, and then based on the two signal levels produced at

the output, a threshold value is calculated. Finally, the comparison circuit consisting of
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Fig. 2.6: A general architecture of a backscatter tag [50].

an resistor /capacitor (RC) circuit and a comparator compares the average envelope signal

and the threshold to distinguish between the output bits.

In contrast to a conventional radio architecture that requires a chain of power-hungry
modules, a backscatter node does not comprise any active RF components, therefore, can be
deployed to have miniature hardware with exceptionally low power consumption [20]. Fur-
thermore, BackCom is envisioned to revolutionize the healthcare facilities supplied through
embedded microelectronics and wearable devices by efficiently transmitting the data under
a low-power budget. Therefore the potential benefits of BackCom are considered to have
a considerable impact on how doctors and patients engage with wireless devices. Con-
sequently, this technology can help enable customized self-managing and self-monitoring

eHealth systems [21].

29



Chapter 3

Energy Efficiency Maximization of
Self-Sustained Wireless Body Area

Sensor Networks

3.1 Introduction

eHealth monitoring system with WBANs helps integrate the patient’s data processing and
communications technologies into traditional medical facilities and serves as a promising
approach to boost healthcare efficiency. In a WBAN, the SNs monitor the patient’s vital
signs and send the data wirelessly to the aggregator. These SNs are conventionally pow-
ered by batteries, which are needed to be replaced once the energy is consumed. Moreover,
battery replacement is not preferable sometimes, and it becomes highly impractical and
infeasible in the case of implanted SNs. Therefore, wireless energy harvesting serves as an

alternative approach that enables self-sustained SNs operations by scavenging energy from
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various biomechanical, biochemical, and ambient sources (e.g., thermal, electromagnetic
radiations) [15]. Nevertheless, the harvested energy necessitates appropriate energy man-
agement techniques such as EE maximization, which focuses on conserving WBAN energy
given available resources while maintaining a satisfactory network performance level in

terms of data transmission.

3.1.1 Related Work

As discussed earlier, in order to realize an efficient eHealth system in real-life healthcare
environments, improving the lifetime of energy-constrained SNs or EE is of paramount
importance. EE is one of the important design objectives that have a significant effect on
the performance of an eHealth system. However, such a crucial design objective has not
been thoroughly investigated for different eHealth systems. More specifically, in [51], an
efficient power QoS control scheme for WBAN is proposed in which the SNs are powered
by human body energy harvesting. The proposed algorithm utilizes the concept of an
energy neutral operation (ENO) based power management to prolong the network lifetime
and achieve continuous operation as long as there are no faults in the system hardware.
In other words, a SN that utilizes energy harvesting is said to be in the ENO state if its
power consumption is less or equal to the energy scavenged from the surrounding environ-
ment. In this regard, the proposed ENO inspired algorithm focuses on achieving the best
possible QoS by efficiently transmitting the data packets under different human activities
and ensuring that the SNs can detect any medical condition by considering various human

body movements.

In [52], stochastic modeling of wirelessly powered wearables is proposed that provides

an analytical framework for the SNs’ ability to notify the medical staff about the patient’s
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condition promptly by deriving the probability of correct notification in a cluster-based
hospital environment. More practically, in order to be approved by the medical commu-
nity such as to be widely adopted in real-life healthcare facilities, wearables must have a
perpetual lifetime and reliable data communication. In these situations, it is critical to
understand the likelihood of accurate notification, which is primarily affected by the de-
ployment of wireless wearables and their power source. Since the hospital rooms frequently
house numerous patients, therefore in order to obtain more reliable results, a cluster-based
communication model is adopted in which there are multiple clusters with each containing
multiple patients distributed around the cluster head/gateway according to the Poisson

cluster process.

In [13], a MAC layer protocol for health monitoring WBAN is proposed that utilizes the
carrier-sense multiple access with collision avoidance (CSMA/CA) and time division mul-
tiple access (TDMA) hybrid schemes to extend the lifetime and EE of SNs suffering from
the energy shortage challenge. In the proposed protocol, the concept of awaiting orders
(AO) is proposed that refers to a specific type of idle state in which a SN’s synchronous
clock keeps working, whereas all other operations are stopped to help save energy. Anytime
a SN needs to transmit or receive data information, it can promptly switch to the active
state from an AO state. In addition, the transmission overhead in the proposed protocol
is put on the aggregator’s side to save the energy of SNs. Simulation results in comparison

with the related literature show that the proposed MAC protocol consumes less energy.

In [53], a MAC protocol for WBAN is proposed that deals with the two important chal-
lenges associated with the WBANS, i.e., to maintain a satisfactory QoS and ensure the EE
of energy-constrained system. In this regard, a TDMA based MAC protocol is proposed
that ensures to tackle these challenges in the power-constrained network by dynamically

adjusting the transmission order and by optimizing the transmission slot such as the en-
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ergy consumption of the SNs is minimized. Simulation results show that in comparison
with the related literature, the proposed scheme is energy-efficient in terms of less power

consumption.

The cooperative energy harvesting-adaptive MAC protocol proposed in [23] improves
the WBAN performance in terms of delay, EE, and throughput by changing its operation
based on the energy harvesting conditions. In [54], a point-to-point communication system
is studied for a WBAN consisting of SNs that can harvest energy from radio signals. In
the proposed system, power splitting and power switching protocols are considered for
normal and abnormal situations, respectively, and the corresponding power spilling and
time switching ratios are derived for each protocol. The goal of this study is to maximize
the information throughput in uplink from the SNs to the access point by optimizing the
time in the command transfer/ energy harvesting phase and information transfer phase

while considering the energy constraint.

In [8], the authors investigated two important challenges associated with WBANs;
i.e., the need for sustainable energy supply for the SNs and the QoS guarantee of the
data. Resource allocation optimization is used to provide high quality and sustainable
health monitoring system by formulating and solving two resource allocation optimization
problems. In the first problem, named as a steady-rate optimization problem, the source
rate of each SN is optimized to minimize the source rate fluctuations with reference to
the average sustainable source rate, while considering the power budget constraints. The
energy harvesting process of a SN is modeled using the discrete-time Markov chain and
the theoretical relationship between the source rate and the uninterrupted lifetime of a SN
is analyzed. Based on the optimal source rates obtained from the steady-rate problem,
the second optimization problem called as QoS optimization problem is formulated. In

this problem, the transmission power and the transmission rate are optimized jointly for
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each SN to ensure a QoS guarantee of the data transmission. Simulation results show
that optimal resource allocation of transmit power and transmission rate can improve the
performance of the eHealth monitoring system in terms of sustainability and guarantee

satisfactory QQoS.

3.1.2 Contributions

Compared to the existing work discussed above, in this chapter, an energy-efficient opti-
mization problem is formulated and solved that focuses on maximizing the EE of energy-
constrained WBAN by using optimization techniques. The linear fractional EE objective
function is defined as a ratio of the sum of the source rate of all the SNs in the network
to the total power consumption of WBAN. In a WBAN system model, the SNs are con-
sidered to be equipped with energy harvesting capabilities that allows them to harvest en-
ergy, whereas the corresponding energy harvesting process is modeled using a discrete-time
Markov chain. To facilitate obtaining the solution, the Charnes-Cooper transformation is
used to convert the defined linear fractional EE optimization problem to an equivalent lin-
ear form. More precisely, the goal of the optimization problem is to maximize the overall
EE of the self-sustaining eHealth monitoring WBAN by optimally assigning the source rate
to each SN, such that the overall EE of the WBAN system is maximized. Furthermore,
the structure of the optimization problem is investigated in order to propose a suboptimal
solution with lower computational complexity, and to obtain the mathematical expres-
sions of the SN’s upper and lower bounds of the source rates. Extensive simulations are
performed to assess the performance, revealing that allocating the source rate optimally
to energy-constrained SNs enhances WBAN’s system performance in terms of EE under

various body movements/activities of the patients during daily life.
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3.2 System Model
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Fig. 3.1: WBAN system model.

We consider a WBAN with one aggregator carried by the patient which acts as the
gateway as shown in Fig. 3.1. There are N SNs in the network deployed on the patient’s
body in a star topology such that each node directly communicates with the aggregator.
The aggregator is assumed to be connected with a reliable energy source, whereas the SNs
are energy-constrained and are supposed to have a rechargeable battery that can harvest
energy from biochemical and biomechanical energy sources available in the human body.
In WBAN, each SN inquires a dedicated guaranteed time slot from the aggregator, during
which it periodically transmits its data using the standard TDMA scheme [13].

3.2.1 Energy Harvesting Model

In WBAN, energy can be harvested from the human body that includes biochemical energy,
thermal energy, and biomechanical energy generated by the motion, and the movement of

limbs of the human body [16]. The amount of available energy depends on the size and
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efficiency of the energy harvesting device, as well as the availability of energy sources. In
recent years energy harvesting from the human body has been a topic of great interest for

energizing the wearable and implantable SNs due to their almost ubiquitous availability.

The available power density from human body energy harvesting can provide a consid-
erable amount of energy that can potentially operate the low power SNs [47 55]. Due to
the universal availability of energy, many studies in the literature model the energy har-
vesting process by utilizing the energy sources available in the human body as described
in [8,56]. Therefore in this work, we model the energy harvesting process in which the SNs

are assumed to be compatible with harvesting energy available in the human body.

The energy harvesting of a SN is a random process and it depends on the type of
energy harvesting technology used and the state of the subscriber. In the case of energy
harvesting from the human body, the state/posture of the subscriber, the motion during
daily activities, and the environmental conditions are time-varying, due to which the energy
recharging rate is time-varying. Therefore, the energy harvesting rate of each SN is also
varying during different positions (e.g., relaxing, walking, running). However, in each time
slot, based on the state of the patient, the SN ¢ can harvest different amounts of energy that
follows a uniform distribution in a range of [E™™ EM™X] denoting the minimum energy level

required to be maintained and the maximum battery capacity of SN i, respectively [56].

The energy harvesting process in this work is modeled by adopting the discrete-time
Markov chain model in [8]. Since the source rate and the energy recharging rate during
each time slot remains constant, the energy harvesting process at SN 7 can be modeled as a
discrete-time Markov chain [8,51] represented as {A;, P;}, where A; is the set of states in
the Markov chain model, and P; is the transition probability matrix. The energy recharging
rate at state m (m € A;) is expressed as ggm). Fig. 3.2 shows the two-state Markov chain

with transition probabilities Py, and Fy; from state S; to S, and from state S, to S,

36



P10

Po1
Fig. 3.2: Two state discrete Markov chain of energy harvesting process.

respectively. The states in A; are arranged in an increasing order as g£1) < g§2) e < glA"l,
where |A,| is the cardinality of A; and represents the number of the states in A;. Let II;
be the steady-probability vector at SN 4, that can be calculated as follows: IT'P; = IT7,

13

and TITT = 1, where I is the identity vector with all entries equal to 1. The long-term

avg

average recharging rate of SN i is then written as g;

= II7g;, where g; is the vector of
the recharging rates at SN 1.

3.2.2 Power Consumption Model

In WBAN, the power consumption of a SN depends on: sensing power consumption and
transmission power consumption. The SNs monitor and capture the patient’s vital infor-
mation /readings and translate these readings to data packets and send them wirelessly to
the aggregator. The sensing power consumption is the energy consumed by the SN during
its sensing operation. If a SN senses more readings/sec, the sensing power consumption
will be higher, and it will have a higher amount of data to be sent to the aggregator and

vice-versa. Therefore the sensing power consumption at a SN i is proportional to the source
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Fig. 3.3: Radio energy dissipation model [57].

rate r; modeled as: Ps; = 1;m;, where 1; is the energy cost of sensing at SN i [8].

In an eHealth system, most of the wearable devices and SNs are fastened to the human
body; therefore communication between the SNs and the aggregator occurs along the
surface of the human body, which contributes towards the attenuation of the transmitted
radio signal. Furthermore, the random body movements of the subscriber cause changes
in the distance and the direction of the SN to the aggregator that results in the change of

path loss and ultimately attenuates the transmission power consumption F; ;.

According to the radio energy dissipation model [57] as shown in Fig. 3.3, the trans-
mitter depletes the energy to operate the radio electronics and the transmit amplifier of
the SN, and on the receiving end, the receiver consumes the energy to operate the radio
electronics. The signal power attenuates as the signal propagates a certain distance d from
the SN to the aggregator. Therefore, the power control can be utilized to invert this prop-
agation loss by adjusting the power amplifier such as to guarantee a certain power at the
receiver /aggregator. Thus, the energy consumption model to transmit and receive k-bits

data over a distance d can be given as follows [57]

ETX(k: d; mp) - kET:r—eIec + kETm—ampdmp;
ERX(k) - kERm—etec (31)
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where Ery_ciec and E'ry_elec are the energy consumption costs dissipated by the radio to run
the circuitry for the transmit and receive electronics, respectively. Erz_aqmp is the energy
cost of transmit amplifier (in J/b/m™?), and m,, is the path loss exponent. As discussed, the
power amplifier can be adjusted to control the propagation loss between the transmitter and
the receiver, therefore we are only interested in the transmit amplifier term to determine
the required transmit power as a function of receiver threshold and the distance between
the SN and the aggregator. Thus, in terms of transmit power consumption, (3.1) can be

written as follows

R: - ETm—amprd?np; (32)

where P, is the transmitted power consumption equal to the transmit energy per bit, and
Ry is the bit-rate of the radio. According to the Friis free space equation, the received

power P, is given as follows
P = ETr—amprG£GTA2
= (4m)? .

(3.3)

Since we have to adjust the F; such that the received power at the aggregator is above
a specific threshold P,_ipyesn. Therefore the parameter Er,_qm,p, can be found by setting

(3.3) equal to P,_;presn written as follows

Pr—thresh (477)2

ETJ:—amp - RbG;Gr)\Q 3

(3.4)

where G; and G, are the transmitting and receiving antenna gains, respectively. A repre-
sents the wavelength. By using the value of Er,_gmp from (3.4) the transmit power P, can
be found from (3.2) as follows

P r—thresh (477) 2dmp

b= GG \2 '
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Finally, the required transmitted power consumption F;, as a function of receiver threshold

and the distance between the SN and the aggregator can be written as

Pt - TPr—threshdmp- (36)

where T = C}j&?;. Therefore, according to the radio energy model in [57], to guarantee
a certain minimum received power at the aggregator, P,; takes d; " as a path loss and
the energy cost due to a channel variation in respect with distance d; between SN i and
the aggregator, and thus makes the received power independent of d; . The transmission

power consumption depends on the path loss model of the wireless channels in WBAN as

illustrated in [8]

PL(d;) = PL(d,) + 10 m, log,, (%) +X,, VieN, (3.7)

where PL(d,) is the path loss at reference distance d,, m, is the path loss exponent. The
transmission power consumption at SN i can be modeled as P;; = 1076 Biri + 0;, where 6;
is the constant energy cost of transmit electronics of SN i, §; is the transmission energy
consumption cost of SN i given by 3; = (;d;*, and (; is a coefficient term associated
with the energy cost of transmit amplifier. X, is the Gaussian random variable that
represents shadowing, and denoted as N(0,02%). The standard deviation o, depicts the
different postures of the body such as relaxing, walking or running [58]. The total power

consumption at SN i is the sum of F;; and F;; given as
Xo
Py = Ps; + B ; = ir; + 1010 Bir; + 6;,

= (¢ + 1076 Gd™)ry + 6;,  Vie{l,...,N}. (3.8)
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3.3 Energy Efficiency Optimization Problem

In this section, we propose and solve an optimization problem to maximize the EE of
the WBAN subject to energy harvesting constraints. Furthermore, the structure of the
optimization problem is analyzed to propose a suboptimal solution at a significantly lower

computational complexity.

3.3.1 Problem Formulation and Optimal Solution

The proposed optimization problem aims to maximize the EE of the WBAN, consisting of
SNs equipped with energy harvesting capabilities. The EE objective function is defined as
the ratio of the sum of source rate of all the SNs to the power consumption of all the SNs

in the network. Mathematically the problem can be formulated as follows

subject to  Cy: P = (¢; + IU%C@d?”)T?) +6;, Vi,
Cy: EMY =EY 4 760 — 7P - F®)
Csy: EMm<E™D<EM™ v

Cy: rP>0 Vi. (3.9)

In problem (3.9), the constraint C; represents the total power consumption at SN i
during time slot t. C, represents the energy at the beginning of time slot (¢ + 1), Egt) is
the energy of SN i at the beginning of time slot ¢, the length of the time slot is 7, and (;5?)

is the energy recharging rate of SN i at time slot ¢. Fé” is the amount of energy wasted

41



by SN ¢ during time slot ¢ due to battery overflow. Cs shows that the energy at time slot
(t+ 1) must not be less than the minimum energy level E™" required to be maintained at

SN i and should not be larger than the maximum battery capacity E"** of SN i.

3.3.2 Linear Fractional Programming

The optimization problem in (3.9) is in linear fractional form and a problem of optimiz-
ing such a ratio of affine functions is known as linear fractional programming (LFP). A
LFP problem can be transformed into an equivalent linear program (LP) with the help
of a Charnes-Cooper transformation [59]. A LP can be viewed as a special case of the
LFP problem, in which the objective function is transformed from the ratio of two linear
functions to an equivalent linear function in which the denominator is a constant function

equal to one. The standard LFP problem can be written as follows
T+
oT) = —— 3.10
o) = Tt (3.10)

From the standard LFP problem defined in (3.10), the EE objective function in (3.9)

can be written in standard linear fractional form as follows

#T7

fo(T) = Frrnd (3.11)

where 7 is a n X 1 vector that contains the source rate of each sensor given as 7 =

T
[7-?) 'rét) . r,_gf)] , and the coefficients of objective function Z is a n x 1 vector of ones such

T T
as T = [1 1 --- 1] . Similarly € is a n x 1 vector written as follows € = [)\1 Ag = )\n] ,
where, \j = ¢; + IO%demp. The sum of the energy cost of transmit electronics of the N

sensors in the network can be expressed as f =6, + 60, + ...+ 0y and d = 0 in our case.
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3.3.3 Transforming to a Linear Program

From equation (3.11), it can be seen that the EE optimization problem can be written as
a standard LFP problem. Now, in order to apply the Charnes-Cooper transformation to
the EE objective function in (3.11), multiply both the numerator and the denominator of
the objective function by a positive constant value a such that the objective function value

does not change.

That said, the EE objective function in (3.11) can be re-written as a standard linear-
fractional optimization problem as

7Tz

fo(Z) = Tt fa (3.12)

where Z = ra, and the value of o can be selected such that the denominator of the objective
function in (3.12) is equal to one, i.e., €727+ fa = 1. In order to show the equivalence, it
can be noted that if 7 is feasible in (3.11), then Z'is feasible in (3.12), with the denominator
function equal to one and with the same objective function value equal to f,(Z) = 777
The equivalent LP of the (3.9) can be written as follows

maximize Z7Z

a7
subject to C; : CEPS) = (i + lo%gd?”)z@ + ab;, Vi,

Cy: EMY = EY 416" —rP® — FY,

Cy: EMM < EMD < EM v

?

Ci: €77+ fa=1,
C5 LR Z 0, Vi}
Ce: a>0. (3.13)
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It can be noted, that the EE optimization problem defined in (3.13) has a linear objec-
tive function with a set of linear equations and inequalities, and an additional equality

constraint C4 has been added as a constraint after applying the LP transformation.

The constraints can be further simplified by substituting the constraint C; and C; in C4

of the problem (3.13), the resultant EE optimization problem can be written as follows

maximize 77 Z
a7
subject to C; : aBE™ < aB" — 7[(¢; + 10)§—3¢id;"")zi + ab;]
+ard) —aF® < aE™> Vi,
Co: €2+ fa=1,
C3: 2z >0, Vi,

Ci: a>0. (3.14)

Further, simplifying the compound inequality constraint C; in (3.14), the EE optimiza-
tion problem with the linear objective function, and the simplified set of constraints with

decision variables zZ and a can be written as follows

ma}gilznize zTz,

subject to C;: T(¢; + IO%C@d?p)z@ + (E™® 4+ F® 4 70, — E® — 7¢{")a < 0,
Cot —7(3hs + 10T Gd™) 2 + (B + 760 — 76 — FP — E"™)a <0,
Cs: T2+ fa=1,
Cy: 220, Vi,

Cs: a>0. (3.15)
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The EE optimization problem defined in (3.15) can be written in a generalized form as

maximize 17
o,z

subject to Ci: aizi +bia <0, Vi,
Co: —a;z +ca<0, Vi
Cy: T2+ fa=1,
Ci: 2z >0, Vi,

Cs: a>0. (3.16)

where a; can be written as, a; = 7(¢; + IO%C@d?”), b = Emn 4 FO 4 70, — EY — 76" and
¢; can be given as follows ¢; = Eﬁ‘) + Tgbg) —76; — Fé” — E™. The optimization problem
to maximize the EE of WBAN is now in a standard form and can be solved to obtain the

optimal solution using the simplex method [60].

3.3.4 Suboptimal Solution

In this subsection, we exploit the structure of the EE optimization problem in (3.16) and
provide a suboptimal solution with lower computational complexity. The optimization
problem finds the source rate of each sensor in the network and based on that information,
the power consumption, and ultimately the EE of the overall WBAN is calculated. From
the constraints C; and C, of the optimization problem defined in (3.16), the source rate of

the sensor 7 can be written as
EP v 74 —76; — ) — Ep

TG) < 1 1 = — T;nax? (317)
(i + 10756 Gid; ™)
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o . E@(t) + qugt) . T'gz' . Féﬂ . E;na.x
(i + 1076 ™)

= M (3.18)

Alternatively by using (3.17) and (3.18), the source rate of SN i can be written as a

compound inequality as follows

rmn < ’r?) < rer (3.19)

According to (3.19), the source rate of the SN i can take any value between the mini-
mum 7™" and the maximum source rate r™**, By analyzing the optimization problem in
(3.16), it can be noticed that by relaxing the C3 that is coupling the decision variables in
the constraints together, the source rate of each sensor can take either the maximum or
minimum source rate values only. In order not to deviate much from the original optimiza-
tion problem and the optimal solution, constraint C; and its effect on the source rates has
to be determined. It can be observed that Cs is contributing towards the denominator of
the objective function in (3.12), where the source rate of each sensor is coupled with other

sensors in the network.

The main idea of the suboptimal solution is to choose the source rates such as to
maximize the EE objective function, i.e., to keep the denominator of the objective function
as minimum as possible as the numerator is the equal-weighted sum of the SNs’ source rates.
That said, we propose to allocate either the maximum or the minimum source rates to each
SN (based on the coefficients );) to minimize the denominator in (3.12). In particular, the
SN with a higher coefficient \; should take the minimum source rate, and the SN with
a lower coefficient A\; will be allocated by the maximum source rate equation. From the
system model, the higher \; means that the SN is far from the aggregator and on the other

hand, the lower coefficient \; means that the SN is near to the aggregator. Consequently, it
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can be concluded from our analysis, that the SN close to the aggregator should transmit its
data with maximum source rate r;"®*, and the SN far from the aggregator should transmit

the data by minimum source rate r™".

The question now is to determine the number of SNs transmitting with maximum and
minimum rates for a given set of parameters. To address this question, we propose a
suboptimal Algorithm 1 that has twofold objectives: 1) It separates the source rate of
each sensor into two groups that either satisfy the maximum or minimum source rate
equation. 2) Based on the selection of source rates of each sensor, it finds the maximized
EE of the overall eHealth monitoring WBAN. The proposed algorithm calculates the EE
of the WBAN by selecting the optimal source rates combination from either maximum
or minimum source rate for each SN, such as to achieve the maximum EE. The basic
idea of the algorithm is to assume all the sensors will have a minimum source rate. Then
we incrementally assign the maximum source rate for each sensor based on its distance
from the aggregator and calculate the EE. The source rate combinations that result in the
maximum EE is the required suboptimal solution. The proposed suboptimal Algorithm 1

is formally summarized at the top of the next page.

3.3.5 Complexity Analysis

The worst case computational complexity of the suboptimal solution can be analyzed as
follows: starting from line 1 of the Algorithm 1, taking input for N number of sensors is
independent of any parameters in the optimization problem; therefore its complexity does
not scale with the value of N. For remaining inputs Rmin, Rmax, Pmin, and Pmax have
the complexity of O(N) each. Since the complexity scales linearly with the number of SNs;
the overall complexity of the input is O(N). The complexity of the for loop at line 2 is
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Algorithm 1 Proposed suboptimal algorithm for energy efficiency optimization problem

1: INPUT: N, Ruin, Pmin; Rmax, Pmax

2: fori=0,...,n+1do

3: if i #0 then

4 Replace Ryax[i — 1] with Ry i

5 Replace Ppax[i — 1] with Ppy[i]
6: end if
7
8
9

Get sum of all R, source rates
Get sum of all P, power consumption
:  Find the energy efficiency
10: if i =0 then

11: push energy efficiency value in new array K[|
12:  else

13: push energy efficiency value in new array K|i
14: end if

15: Increment 7
16: end for

17: OUTPUT: Find the maximum energy efficiency from the array K|[i] and get the index
of the maximum element.

O(N +2) as the loop repeats N + 2 times. From line 3 to line 6, the overall computational
complexity is O(N +1). For line 7 and line 8, the complexity is O(N +1) each. From line 9
to line 12, each has a complexity of O(1) as this computation is independent of N. The line
13 executes N +1 times, which makes its complexity equals to O(N +1). Hence, the overall
worst-case computational complexity of the suboptimal EE optimization Algorithm 1 is
O(N +2)O(N + 1)+ O(N) = O(N?), which is the polynomial time complexity of N. In
comparison, the computational complexity of the optimal solution that utilizes the simplex

method has a worst-case computational complexity of O(2V) [60].
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3.4 Results and Discussion

We considered a WBAN with 10 SNs to evaluate the performance of the proposed scheme.
By following the simulation parameters of [8], the distance between SNs and aggregator is
uniformly distributed between 0.3 and 0.7 m. The initial energy E™ of each SN is set to 0.1
J. The maximum battery capacity E™® of each SN is 0.11 J. The minimum energy E™o
required for each SN is 0.01 J. In the power consumption model, the energy cost of sensing
1; and transmit electronics ; of SN i is set as 2 x 107® J/b and 6 x 10~® J/b respectively.
Similarly, the energy cost of transmit amplifier ¢ is chosen as 8 x 107® J/b/m™#. The path
loss exponent m, of the SNs is set between 1.4 to 4.4. In the energy harvesting Markov
chain model, from state 1 to state 2, the transition probability is uniformly distributed
between 0.6 and 0.8. From state 2 to state 1, the transition probability is uniformly
distributed between 0.2 and 0.4. The length of the time slot 7 is set as 5 s.

A statistical model of the dynamic on-body time-varying channel based on an exper-
imental measurement campaign for different human body movements is proposed in [58].
The model considers different body movements of various human subjects to study the ef-
fect of human activities on propagation channel behavior. The measurement results reveal
that the movement conditions of the subject are strictly shadowing dependent. Moreover,
the shadowing conditions also depend on the human subject’s way of movement, and shad-
owing conditions remain identical if the subject does not show any movement. Due to
the random movements of the patient during daily life activities, the direction, and the
distance from the SN to the aggregator changes, which results in the variation of path
loss. Since, the transmission power consumption is a function of distance, the change in
distance affects the transmission power consumption. Therefore, in our work, the varia-

tions of the transmission power consumption F;; during different postures are modeled as
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Fig. 3.4: Optimal and suboptimal energy efficiency of WBAN in relaxing state.

P,;= 1056 Biri + 0;, where X, is the Gaussian random variable denoted as A/ (0,02). The
standard deviation o depicts the different postures of the body such as relaxing, walking
or running [8,58]. In this regard, X, is chosen as 1 in the relaxing state as the direction,
and the distance from a SN to the aggregator remains unchanged in the relaxing state.
However, the arbitrary movements of the human body change the direction and distance
between the SN and the aggregator and cause variations in the path loss. Therefore, based
on the experimental and measured results in [58], o, for the walking and the running

activities are chosen as 2.15 dB and 3.49 dB, respectively.

Fig. 3.4 shows the performance of the optimal and suboptimal solution of the EE
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Fig. 3.5: Optimal and suboptimal energy efficiency of WBAN in walking state.

optimization problem in relaxing state in comparison with the steady-rate problem [8]. It
can be noticed that the EE optimization problem provides higher EE in comparison with
the steady rate problem. The EE remains almost static during the time slots because the
distance and the direction from the SN to the aggregator remain unchanged in a relaxing
state. Moreover, the performance of a suboptimal solution is very close to the optimal

solution.

Fig. 3.5 illustrates the effect of EE when the patient is in the walking state. The EE

varies due to the change of path loss and the distance from the SN to the aggregator.
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Fig. 3.6: Optimal and suboptimal energy efficiency of WBAN in running state.

Moreover, the energy harvesting rate also changes due to dynamic behavior. Therefore, for
a particular time slot, if the harvested energy is more than the energy consumed, EE will
increase, and if the harvested energy is less than the power consumed, EE will decrease. As
depicted from Fig. 3.6, in the running state, the EE is higher as compared to the walking

state as the harvested energy is higher due to the aggressive body movements.
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3.5 Conclusion

In the design of an eHealth monitoring WBAN, due to the limited battery life of the SNs,
saving energy is of paramount importance. Therefore, maximizing the EE enables efficient
use of the energy critical nodes. This chapter formulates and solves a novel optimization
problem to maximize the EE of the WBAN equipped with energy harvesting capabilities.
The optimization problem is transformed from the linear fractional problem to a linear
function, and the resultant problem is solved using numerical methods. For further in-
depth analysis, we exploited the structure of the optimization problem and derived the
upper and the lower bounds of the source rates, and a suboptimal solution is proposed
that approaches the optimal solution with lower computational complexity. Simulation
results validate the proficiency of the proposed schemes, and the performance merits in

terms of EE of the eHealth monitoring network.

3.6 Publication Resulted From This Chapter

e O. Amjad, E. Bedeer, and S. Ikki, “Energy-Efficiency Maximization of Self-Sustained
Wireless Body Area Sensor Networks,” IEEE Sensors Letters, vol. 3, no. 12, pp. 14,
Oct. 2019.
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Chapter 4

Robust Energy Efficiency
Optimization Algorithm for Health
Monitoring System with Wireless
Body Area Networks

4.1 Introduction

The aging population poses several challenges for healthcare providers as people aged over
65 years are expected to account for nearly 12% of the world population by 2030. Such
challenges motivate the research community and healthcare providers to investigate new
techniques to reduce costs and cut unnecessary hospitals/clinics visits while maintaining
the expected high quality of care. eHealth is a new paradigm—bridging concepts from bio-

sensing, signal processing, and communication theory—proposed mainly to support and
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improve the existing health services. In eHealth, sensors are deployed on, in, or around
the human body to perform real-time monitoring of physiological attributes, and hence,

detect any vital sign abnormalities [61].

4.1.1 Related Work

One of the implementation challenges of eHealth solutions is that not all the sensors’
batteries can be easily replaced, especially if they are implanted in the patient’s body.
That said, improving the sensors’ lifetime or EE is crucial. Such a design objective has
been overlooked in the literature [25], [61-66]. In [25], a multi-point WBAN is proposed
that aims to maximize the throughput by considering the normal and abnormal scenarios to
promote reliable information transmission and to improve the performance of the system.
In this regard, time switching protocol and hybrid time switching and power splitting
protocols are proposed. In time switching protocol, SNs transmit command signals to
the access point in the uplink, and the access point then broadcasts the energy signals
to distributed sensors in the downlink. As a result, SNs provide data information to the
access point in the uplink. In the hybrid time switching and power splitting protocol,
after the access point transmits wireless energy and commands to all SNs, the SNs take
turns to simultaneously send the needed physiological data in the opposite direction. The
transmission time of SNs, time spend by the access point in transmitting the energy signals,
and power splitting ratios are optimized to obtain the solution of the proposed throughput

maximization problems.

The authors in [61] proposed the design and development of an eHealth system that
keeps track of patient parameters to support disease management during daily life ac-

tivities. The presented system combines patient health monitoring, status logging for
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recording various difficulties or symptoms encountered, and social sharing of the recorded
data within the patient’s community, all with the goal of making illness treatment eas-
ier. A prototype for unobtrusive vital sign monitoring via a wearable multi-sensing device
is built on a mobile device, demonstrating the feasibility and application of the current
work. In addition, a study involving 16 hypertensive patients was done to determine user

acceptance, usability, and the merits of the proposed scheme.

The authors in [62] proposed two TDMA based scheduling algorithms to improve the
reliability and EE of WBAN such as to guarantee better QoS in unexpected emergency
situations while minimizing energy consumption. In this regard, an adaptive scheduling
scheme is proposed that dynamically allocates the time slots to the SNs by observing
their channel conditions. In addition, another dynamic scheduling scheme is proposed that
allocates the time slots to the SNs based on the status of their buffer. Both normal and

emergency situations are considered to evaluate the performance of the proposed algorithms

to ensure WBAN reliability, EE, and better QoS.

In [63], EE optimization for WBAN is performed that considers the QoS required from
each SN, intelligent time and power resource allocation for energy saving. In this regard,
global energy minimization and network lifetime maximization problems are solved to
improve the EE by considering the minimum power consumption of a SN in an active state,

required throughput of a SN, and the global energy constraint of an eHealth network.

In [64], an investigation of the real-time health monitoring system is provided for the
patients suffering from the threatening disease of diabetic ketoacidosis by using the C-band
sensing techniques. In [65], a remote eHealth system is designed that optimizes clinician
time with reduced medical costs and improved healthcare. A system-level design with a
specific focus on early detection of patient deterioration provided in [66] utilizes the various

wireless sensors to monitor patient activities.
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4.1.2 Contributions

Compared to the existing literature, in this chapter, a robust optimization algorithm is
designed to save the power of energy-constrained sensors, which does not require perfect
CSI from the transmitting sensor to the gateway. The optimization algorithm is robust
in a sense that it utilizes a generalized gamma distribution that supports various patient
conditions and can efficiently model both everyday and dynamic activities. EE objective
function is defined as the ratio of the transmission power consumption of the SN to a trans-
mission rate of the SN while considering the retransmissions due to error. The formulated
problem optimizes the EE (measured in J/bits) by optimizing the transmit power and
encoding rate of a SN while considering outage probability and packet retransmission. It
is shown that optimization problem is semi-strictly quasi-convex in each decision variable,

and an alternative approach is utilized to determine its solution at reduced complexity.

The remainder of this chapter is organized as follows: Section 4.2 presents the system
model and problem formulation. The problem is analyzed and solved in Section 4.3. Section

4.4 provides the numerical results, and the chapter is finally concluded in Section 4.5.

4.2 System Model and Problem Formulation

In order to design a robust communication system for WBAN that can support different
patient conditions is a challenging task as each condition has its own propagation char-
acteristics. For instance, the channel propagation of patients with everyday activities like
walking, outdoor jogging, regular home, and office activities was found to be characterized
by Weibull or gamma distributions [67,68]. Such activities can be referred to as “everyday
activities”. For patients with more “dynamic activities” such as running or exercising,

the authors in [68] showed that the channel propagation characteristics follow a lognor-
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mal distribution. The propagation characteristics of everyday and dynamic activities were
confirmed later in [69] and it was also shown that Rayleigh distribution—which is usually

assumed for WBAN transmission—is a poor fit for such scenarios.

We consider a WBAN with one aggregator carried by the patient that acts as a gateway.
The sensors are deployed on, in, or around the human body to monitor the patient’s
vital signs. Each sensor inquires a dedicated guaranteed time slot from the aggregator,
during which it periodically transmits its data directly (i.e., no need for a relay) to a
gateway without having perfect CSI using the standard TDMA scheme [41]. The maximum

transmission rate of sensor n for infinite packet length can be expressed as follows [70]

Cn = B logs(1 + 1sn), (4.1)

where B is the bandwidth and s, is the transmit power of sensor n. v, = |h,|?/02 is
the instantaneous channel gain to noise ratio (CNR), h,, is the complex channel coefficient
between sensor n and the gateway and o2 is the noise variance. From [70], C,, in (4.1) can

be approximated to characterize the channel capacity of a finite packet length given as

Capproz =~ Cp — @Q‘l(e), (4.2)

where L is a finite number of bits per packet, Q~'(.) is the inverse of the Gaussian cu-
mulative distribution function, and € € (0,1) is the average error probability. V(v,,s,)
is the Gaussian dispersion function that measures the stochastic variability of the channel

relative to a deterministic channel with the same capacity given as follows

VnSn(YnsSn + 2)
2(Ynsn +1)2

V (Vn, 5n) = log® e. (4.3)

From (4.2), the numerator in the second term mainly depends upon V (v, s,), since Q™! (e)

is not a large value. Therefore, by looking at the term V (v, s,) in (4.3), it can be observed
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Fig. 4.1: Actual and approximated channel capacity vs. SNR for different packet lengths.

that it is a function of v, and s,. It can be noticed from (4.3), if the sensor transmits
its data using a fixed s,, the term V (7n, sn) is always small for any practical value of 7y,
because both numerator and denominator are of the same order. Moreover, in the worst

case, if v, approaches infinity and for a fixed s,,, V (75, s,) becomes as follows

+2) 1
lim V7, 50) = loge. lim [ 2zsn(nsn = _log?e. 4.4
']’nli"noo (’? ' ) o8 e 7"E}noo( 2(711371"’ 1)2 2 o8 e ( )

Therefore, from (4.2), it can be noticed that for a fixed s,, and any practical value of v, the
numerator in the second term is significantly small in comparison to a finite packet length
of L bits, consequently the term MQ_I(G) reaches a very small value. Therefore,
based on the simulation results in Fig. 4.1, for L > 50 the approximation of achievable
rate is found to be significantly good to the Shannon’s capacity given in (4.1), and thus
(4.1) is sufficiently acceptable to characterize the channel capacity for L > 50 bits.

We do not assume knowledge of the instantaneous value of h,, and hence, knowledge

of 7,, at the transmitting sensor n due to the lack of a feedback channel from the gateway
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to sensor n. Accordingly, sensor n transmits its information using a fixed encoding rate

Yn,0 and its transmission rate is given as

R, = B logy(1 + Yn08n)- (4.5)

A packet sent from sensor n to the gateway is received correctly if R, < Cy, and is received

in error if R, > C, and outage occurs. The outage probability is given by

Pout — p(’?ﬂ < 771,0) - F('}’n,o); (46)

where p(.) is the probability and F(.) is the cumulative distribution function. In order
to design a robust and reliable WBAN system that supports both everyday and dynamic
activities of patients, a generalized gamma distribution for =, is adopted that can easily

capture Weibull, gamma, and lognormal distributions [69].

Sensor n transmits its information to the gateway in packets each of length L bits.
If any of the L bits are received in error, an outage occurs and the gateway requests
retransmission of the whole packet. The retransmission is assumed to be repeated until
the packet is received correctly. The average number of retransmissions of a given packet

(Nay) until it is received correctly is derived as follows

Na = Y i(PER)™'(1— PER)

i=1

(1— PER)*(1— PER)

(1— PER)™, (4.7)

where i is the number of retransmissions and the and the infinite geometric series in (4.7)
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has a convergent sum given as Y i(PER)""! = (1— PER) 2. The packet error rate (PER)

i=1
of a given packet can be expressed as [56]

PER=1—-(1-P.)" (4.8)

where P, is the bit error probability. Consequently, substituting PER from (4.8) in (4.7)
the average number of retransmissions of a given packet N,, until it is received correctly

is given as follows

Nuow = (1—-P)7F, (4.9)

In the considered system model, since the majority of errors are due to the outage, therefore,
in the rest of this chapter, the outage probability is considered to be approximately equal
to the probability of error, and hence, P, ~ F(7,,). The total transmit power of sensor n,

Sh, 18 given as [41]
Sn = EnSn + Sne, (4.10)

where k,, represents the amplifier efficiency of sensor n and s, . is the fixed power consumed
in transmission by sensor n. That said, the EE 7, (measured in J/bits) for sensor n

considering the retransmissions due to errors is represented as

- KnSn + Sne
" Blog,(1+ Yn.0Sn)

(1= Flyno) ™" (4.11)

The aim of this work is to optimize the sensor transmit power s, and its encoding CNR

value 7, o to optimize the EE 7,.
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4.3 Optimization Problem Analysis and Solution

In this section, the optimization problem is analyzed and solved to optimize the EE 7,, of
sensor n without knowledge of perfect CSI. The EE optimization problem can be formally

expressed as

. KnSn + Snec 1
min g— i 1—F n
Sn, Yn,0 n B ].Og2(]_ —|— 'Yn,OSn) ( (7 ,0))
st Sn S Snmax, (4.12)

where s, max represents the maximum transmit power of sensor n. The EE objective
function in (4.12) is analyzed in order to facilitate obtaining a solution in a low complexity
manner. The power term in the numerator in (4.12) is affine in s,, and positive assuming
that s,. > 0, while the transmission rate term in the denominator is positive and bi-
concave in s, and 7, . To analyze the term (1 — F(v,,0))7%, its second derivative can be

found as follows

(1 — F(ymp)) "
8"!3;,0

= L(L+ 1)f2(”fn,ﬂ)(1 - F(WN,O))_L_2 + Lf? (Vn,0)(1 — F('Yn,o))_L_l;

(4.13)

where f'(v,0) is the first derivative of the probability density function (PDF) f(yn0) of

the random variable 7, 0. One can see that the second derivative is positive if and only if

(L + l)fQ(rYn,D) + f!(’]’n,ﬂ)(l - F('?n,ﬂ)) > 0. (414)

The question now is whether (4.14) holds for the generalized gamma distribution adopted

for WBAN to model propagation characteristics of various patient conditions. The PDF

62



f(9n,0) of generalized gamma distribution is given as [69]

Flaine) = grotitesp (- (22)). (.15)

where T'(.) is the standard gamma function, a and ¢ represents the shape parameters of
the generalized gamma, distribution, respectively, and b is its scale parameter. The Weibull
and gamma distributions can be reached from the generalized gamma distribution PDF
by setting @ = 1 and ¢ = 1, respectively; however, the lognormal distribution can be

reached from the generalized gamma distribution in the limiting case when ¢ — 0 and

a = 2/(c*") [69].

Lemma 1. The PDF of the generalized gamma distribution that characterizes various

patient conditions of WBAN is log-concave if ¢ > 1 and ac > 1.

Proof: The second derivative of the log of the generalized gamma distribution, i.e.,

log(f (703 a, b, c)), is found as

9 log(f(m0;a,b,¢)) 1 "0\
B = (cte—1) (T) +ac—1). (4.16)

For the generalized gamma distribution PDF to be log-concave, its second derivative in
(4.16) has to be non-negative. One can see that this can be achieved when both ¢ > 1 and
ac > 1. For Weibull distribution, i.e. @ = 1, this condition reduces to ¢ > 1. On the other

hand, for gamma distribution, i.e. ¢ = 1, the condition reduces to a > 1. [ |

The fact that the generalized gamma distribution PDF is log-concave for a certain
operating region implies that (1 — F'(7,,)) is log-concave as well. From the properties of a
twice differentiable log-concave function, it is known that (1 — F(v,0)) V? (1 — F(yn0)) <
(V (1= F(7m0)))* [71]. This implies that —f (ys0) (1 — F(1m0)) < f*(7n,), and hence,
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the condition in (4.14) is always satisfied for L. > 1. This concludes that the term (1 —

F(vn0))~t is strictly-convex.

Recalling that the transmission rate in the denominator of (4.12) is bi-concave, the
power consumption in the numerator is affine, and the average number of retransmission
is strictly-convex, hence, the EE optimization problem of WBAN without knowing the
CSI at the transmitting sensor is semi-strictly quasi-convex with respect to s, and v,

individually.

To obtain a low-complexity solution to the optimization problem in (4.12), an alternate
optimization approach is followed where first the EE is optimized with respect to s, while
treating 7y, as a constant. Later optimized is the EE with respect to 7, while treating
s, as a constant. This process repeats until convergence is reached such that the change
in EE is no greater than ¢ = 0.001. In particular, we start by finding the local minimum

with respect to s, by setting 22 = 0 which results in

T
Osn

Sn.c
(1 + 'Yn,l]Sn) 111(1 + ']’n,ﬂsn) = Yn,08n + K’—"]’n,ﬂ, (417)

13

Then, the transmit power s,, of sensor n can be given as

sme— 1o (1+W (e (10 -1 : (4.18)
e (o (2 () )

where W(.) is the Lambert-W function. To consider the maximum transmit power con-

straint in (4.12), the transmit power s of sensor n can be expressed as

Sy = Min(Sy, Spmax)- (4.19)
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Algorithm 2 Robust energy-efficient iterative algorithm for optimizing EE of eHealth
monitoring WBAN

1: INPUT: &y, Sne, L, and B.

2: Assume initial values of s, and v, .

3: Calculate the transmit power of sensor s}, using (4.19).
4: Calculate the encoding rate 7;, , numerically from (4.20).

5: Repeat steps 3 and 4 until convergence is reached such that change in EE is no greater
than € = 0.001.

6: OUTPUT: s}, and 7, .

Second, the local minimum is found with respect to v, by setting B = 0 as follows

(7o) . . Sn
€ )(1 + 771,{]571) 111(1 + 771,{]571) = f

—_— 4.20
1-F ("}“;,0 ( )

Unfortunately, a closed-form solution of 7, ; cannot be reached; however, (4.20) can be
efficiently solved numerically. The proposed Algorithm 2 to optimize the EE of WBAN
without knowing the perfect CSI at the transmitting sensor is formally summarized at the

top of this page.

4.4 Simulation Results

We consider an eHealth system with WBAN to evaluate the performance of the proposed
algorithm. In this regard, the amplifier efficiency &,, of the sensor n is set to 35%. From [41],

the fixed power consumed in transmission by sensor n, i.e., s, is set to 5 x 107® W. The
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Fig. 4.2: Optimized transmit power of the sensor for different everyday and dynamic
activities.

maximum transmit power s, max Of the sensor n is set as 10 mW, and the bandwidth B is set
to 1 MHz. The parameters of the generalized gamma distribution depend on the measured
data under different activities and based on that best fitting distribution model is applied.
From the experimental results in [68] the shape parameters are chosen as a = 3.08 and
¢ = 1, and scale parameter is set as b = 0.28 to model the everyday activities. Similarly,

the dynamic activities are modeled by setting the a = 0.9, b = 0.14, and ¢ = 2.5.

Fig. 4.2 shows the transmit power of a sensor for different patient’s conditions calcu-

lated from the analytical solution in (4.19). It can be noticed that for higher L, the sensor
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Fig. 4.3: Optimized fixed encoding rate of the sensor for different everyday and dynamic
activities.

transmits its information with higher transmit power for both everyday and dynamic ac-
tivities. Moreover, it can be observed that with an increased L, the transmit power of a

sensor in dynamic activities is higher as compared to everyday activities.

Fig. 4.3 shows the optimized fixed encoding rate ;, ; of the sensor for different packet
lengths obtained from solving (4.20) using bisection and inverse quadratic interpolation
methods [71]. The simulation results and the mathematical solution shows that s} and
Yno are inversely proportional to each other. However, compared to everyday activities,

dynamic activities have a higher encoding rate.
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Fig. 4.4: Comparison of optimized and suboptimal energy efficiency of the sensor for
everyday activities.

Fig. 4.4 depicts the solution of the optimization problem and achieved EE at s} and
Ymo for everyday activities. Since the EE is a function of J/bits, to transmit a higher
number of bits per packet higher transmit power is required by the sensor that ultimately
results in the increase of EE. Moreover, from (4.9) if a packet contains a higher L, PER
and N,, are also increased, due to which more energy will be consumed by the sensor to
retransmit the same packet again. Therefore, it is better to transmit the shorter packets
instead of sending the information in a single burst to avoid the number of retransmission

request from the gateway of incorrectly received bits, and to ultimately save the energy of
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Fig. 4.5: Comparison of optimized and suboptimal energy efficiency of the sensor for

dynamic activities.

the sensor. The comparison of the optimized solution with the suboptimal results obtained
by using different values of s,, and 7, o other than calculated from (4.19) and (4.20) shows

that the optimized solution provides better EE.

Fig. 4.5 shows the optimized EE for dynamic activities. In comparison with everyday
activities, the EE for dynamic activities is higher due to the higher transmit power required
to transmit the fixed number of bits per packet. For various suboptimal values of v, , and
s other than calculated from (4.19) and (4.20), the EE curve shifts upwards which shows

that the sensor requires more energy /bit as compared to the optimized solution.
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4.5 Conclusion

In the design of WBAN, due to the limited battery life of the sensors, saving energy is
of paramount importance. Consequently, optimizing the EE enables efficient use of the
energy-constrained sensors. This chapter formulates a novel optimization problem that
aims to minimize the EE (measured in J/bits) of WBAN by optimizing transmit power
and encoding rate of the sensor while considering outage and packet retransmission. The
simulation results demonstrate that for a packet length of L = 50 bits the proposed algo-
rithm is 47% more energy-efficient in comparison with L = 500 bits. Therefore, transmit-
ting the information in smaller packets is preferable to avoid the retransmission request
for any incorrectly received bits, and thus to save the energy of overall WBAN system.
Additionally, the proposed algorithm is 30% more energy efficient when compared to sub-
optimal solution with a constant encoding rate and transmit power of 5 dB, and 0.6 mW,

respectively.

4.6 Publication Resulted from This Chapter

e O. Amjad, E. Bedeer, N. A. Ali, and S. Ikki, “Robust Energy Efficiency Optimization
Algorithm for Health Monitoring System with Wireless Body Area Networks,” IEEE
Communications Letters, vol. 24, no. 5, pp. 11421145, Feb. 2020.
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Chapter 5

Energy Efficient Resource Allocation
for eHealth Monitoring Wireless
Body Area Networks with

Backscatter Communication

5.1 Introduction

With the evolution of low-power wearable sensors and advancement in wireless communi-
cations, WBANs have experienced remarkable growth in providing the aging population
with more proactive and affordable healthcare solutions [2]. eHealth monitoring, among
prominent applications of WBAN, allows continuous monitoring of patients’ health and
helps early detection and prevention of any abnormal physiological activities. eHealth sys-

tem with WBAN consists of several SNs deployed on, or implanted inside the human body
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and a central coordinator node known as an aggregator (e.g., a smart cell phone) [72].
The SNs collect the patient’s vitals (e.g., heart rate, blood pressure, body temperature,
and pulse rate) and send it wirelessly to the aggregator [2,73]. By deploying an eHealth
system, patients can perform their daily life activities without constantly requiring special-
ized medical services, thus reducing the unnecessary hospital visits and creating significant

enhancement in the standard of living.

To facilitate the efficient and seamless implementation of WBANSs, there are certain
challenges that need to be addressed. For what concerns the major issues to be addressed,
increasing battery life or EE of the SNs is of significant importance. Body SNs require a
sustainable energy supply to perform a perpetual operation. Conventionally, these SNs are
powered by batteries, which have a limited lifespan and are needed to be replaced /recharged
manually once the energy is depleted. Moreover, battery maintenance and replacement
are not preferable sometimes, especially when SNs are implanted within the human body.
Therefore, wireless energy harvesting emerged as an alternative and a promising approach
that allows the energy-constrained SNs to harvest energy from a variety of energy sources

and ultimately helps enable self-sustained body SNs operations [41,74].

BackCom technology is considered as a promising solution in overcoming the limited life
span challenge in next-generation wireless networks such as WBANs. It has a remarkable
potential to decrease or even eliminate the reliance on batteries and allows self-sustainable
operations to energy-constrained SNs to transmit information by reflecting and modulat-
ing the incident signal of the aggregator. Unlike a conventional radio architecture that
requires a chain of power-hungry modules, a backscatter node does not need any active
RF components, therefore, can be deployed to have miniature hardware with exceptionally

low power consumption [21].
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5.1.1 Related Work

Most studies regarding WBANSs in the literature focus on devices that harvest energy
through a rectenna-based energy harvesting device that converts the signals captured ei-
ther from ambient, or biomechanical and biochemical energy sources available inside the
human body. Despite the fact that this technique of harvesting energy is feasible, the
amount of harvested energy is typically very limited. On the other hand, BackCom has
gained significant attention due to the fact that it can extend the battery life of the wireless
network by consuming less power. However, BackCom has not been thoroughly investi-
gated for eHealth systems. There is only a limited number of works in the literature
that considered BackCom technology for eHealth systems. In [75], Kwan et al. studied
a two-way data transmission optimization problem for wireless powered communication
network (WPCN) consisting of multiple on/in body SNs and multiple hybrid access points
(H-APs). More specifically, a blind adaptive beamforming with combination sensors (MS2-
BABF/combo) protocol with time switching and power splitting structure is studied on
a time block divided into three phases that includes energy harvesting/backscatter uplink
phase, downlink data decoding phase, and uplink data transmission phase. The MS2-
BABF /combo protocol optimizes the beamforming vector at each H-AP, duration of time
used by H-AP in transmitting energy signals, power splitting ratio between energy harvest-
ing and data decoding, and system timings such as to maximize the total throughput of
WPCN, including the throughput fairness between sensors by adopting the Jain’s fairness
index. MS2-BABF /combo algorithm attempts to maximize the throughput of WPCN by
using the optimal beamforming vector for each H-AP and the duration of time used by
the RF source in transmitting energy signals for each H-AP by initially considering no SN
in the BackCom mode. Later on, the algorithm considers one SN at a time starting with

the SN with the lowest signal-to-noise ratio (SNR) to be operated in a BackCom mode.
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Based on the previous SNs operation mode configuration, the algorithm keeps a check to
observe if adding more SNs to the BackCom mode will result in any improvement in the
WPCN throughput. If there is no improvement, it shows that adding more SNs to the
BackCom mode will not enhance the throughput any further indicating that the global

optimal solution has already been reached.

Ling et al. in [76] proposed an optimal resource allocation for point-to-point WBAN
by employing BackCom and harvest-then-transmit (HTT) modes. The authors treated
each mode independently and solved the throughput maximization problem by optimizing
the time slots, reflection coefficient, and the SN’s transmit power by considering only one
SN. Zang et al. in [77] investigated an experimental study of a throughput maximization
of BackCom-based WBAN studied on a time block that only considers the BackCom
mode in which SNs take turns to transmit data to the gateway using passive BackCom
technology. The proposed optimization scheme utilizes the CVX toolbox to jointly optimize
the emitting power of the source as well as the backscatter time by collecting real-time

WBAN data of a patient in a walking scenario.

BackCom technology has also been studied in the literature to prolong the lifetime of
wireless powered backscatter communication networks (WPCNs). In this regard, Ye et al.
in [78] considered a WPCN consisting of one transmitter-receiver pair and one BackCom
node to maximize the EE by optimizing the transmit power, time allocation, and reflection
coefficient by only considering the passive BackCom mode. In [79], Lyu et al. studied a
WPCN that considers a power beacon (PB), an access point, one hybrid device (HD)
operating in HT'T mode, and one BackCom device operating in BackCom mode. The
proposed scheme maximizes the EE by optimizing the beamforming vector adopted at PB,
time, and power allocation by using fractional programming and a semidefinite relaxation

approach. Shi et al. in [80] studied a WPCN consisting of a PB, a reader node, and
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multiple HDs that can either operate in the BackCom or HTT modes. The proposed
scheme maximizes the EE by optimizing the PB’s and HDs transmit power and the time
allocation between the BackCom and HT'T modes to obtain the optimal solution using
the iterative algorithm. In [81], Xu et al. studied a multi-subcarrier WPCN consisting
of a dedicated power source and one information transmitter-receiver pair to solve the
rate maximization problem by optimizing the power allocation, time allocation, energy
allocation, and reflection coefficient. Yang et al. in [82], proposed an unmanned aerial
vehicle (UAV) enabled hybrid BackCom-HTT IoT network in which UAV serves as a mobile
PB to provide energy signals to the IoT nodes. The proposed scheme maximizes the EE
by optimizing the UAV’s transmit power and trajectory, BackCom reflection coefficients

of the nodes, and time allocation by using fractional programming to obtain the solution.

5.1.2 Contributions

Based on the above discussion on BackCom based resource allocation, in comparison with
the throughput maximization problem [75,76], and [81], the problem formulation, analysis,
and the solution of a proposed problem in our work are different as it focuses on maximizing
the EE of WBAN defined as ratio of the overall achievable throughput to the sum of total
transmission and circuit power consumption of WBAN [83]. Considering the fractional
EE objective function makes the optimization problem more complex to solve due to the
coupling of the decision variables. Moreover, unlike MS2-BABF /combo algorithm [75] that
initially considers no SN in the BackCom mode and then, later on, considers one SN at a
time starting with the SN with the lowest SNR to be operated in a BackCom mode such
that not all the SNs are always selected to be operated in BackCom mode, in our work

all SNs take turns to operate in the BackCom mode during the passive BackCom phase.
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Similarly, in comparison with the related works that only considered one SN [76, 78, 79],
in [81], and the studies that treated both BackCom and HTT modes independently [76], or
only considered the BackCom mode as in [78], our work considers the WBAN with multiple
SNs that are supported to operate under both BackCom and HTT modes. eHealth system
with multiple SNs and considering the time frame in which BackCom and HT'T modes are
not independent makes the optimization problem more challenging and complex to solve
due to the more optimization variables being involved. In [75,76,78,79], and [81], there are
no constraints that restrict the transmit power of the SNs, which is unsuitable for WBANs
as excessive transmission power of SNs can be hazardous to human health [84]. Moreover,
in order to fully exploit the information transmission time, the aggregator in our work
is assumed to operate both in the downlink frequency for sending energy signals to the
SNs, and the corresponding uplink frequency on which the SNs can either backscatter or
perform active data transmission to the aggregator. Based on such an assumption, we have
considered an energy harvesting model such that, when a specific SN is transmitting data
to the aggregator during the active data transmission phase the remaining SNs can still
harvest energy from the aggregator’s signal and store it for operations in next time frame.
Therefore, in comparison to the existing literature with an assumption that the aggregator
stays silent during the active data transmission phase, our optimization problem involves

coupling of the BackCom and data transmission time variables.

In this work, we investigate the energy-efficient resource allocation problem for Back-
Com-based WBAN. The objective of any resource allocation framework in WBAN is to
better exploit the network resources given a particular transmission scenario while ensuring
a satisfactory performance level for each SN. In this regard, the proposed model is studied
on a time frame divided into two phases, i.e., the passive BackCom phase and the active

data transmission phase. The main contributions of this work are summarized as follows
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e A resource allocation optimization framework is proposed to maximize the EE of
eHealth monitoring WBAN subject to energy harvesting and power budget con-
straints, whereas the communication between SNs and aggregator is assisted by
adopting BackCom. In order to design an energy-efficient system, and to make
the best use of available resources, the SNs are supported to operate in two different
communication modes, i.e., the BackCom and HTT modes. In this regard, an EE
maximization problem is formulated that optimizes the aggregator’s transmit power,
BackCom time, and data transmission time of each SN, with the principal aim of

using the power of energy-constrained WBAN with a stricter economy.

e One of our aims in this work is to design an eHealth system that can incorporate
different movements/activities of the patients during daily life. This is a challeng-
ing task as each arbitrary movement of the patient has its own specific propagation
characteristics, and accurate modeling of the WBAN radio propagation channel is
required that is appropriate for a variety of body movements. Numerous statisti-
cal characterizations based on real-time measurements are studied in literature to
approximate the human body radio propagation channel [69]. In this regard, the
channel model of patients with activities like walking, outdoor jogging, driving a
car, general home, and office activities was found to be characterized by Weibull
or gamma distributions [67,68]. For more aggressive activities such as running, the
authors in [68] showed that the propagation characteristics of the communication
channel can be best modeled by a lognormal distribution. Later, in [69] it is shown
that the well-known Rayleigh distribution, commonly assumed for WBAN commu-
nication channel—is a poor fit for such scenarios. Therefore, in this work, instead
of utilizing a different distribution to model various patient conditions, a generalized

gamma distribution is adopted for the BackCom based eHealth monitoring WBAN.
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A generalized gamma distribution can support propagation scenarios under differ-
ent body movements and helps model the radio-propagation channel that can easily
characterize the Weibull, gamma, and lognormal distributions [85]. In this regard,
the EE optimization problem formulation in our work utilizes the generalized gamma
distribution for channel gain to noise ratio whose parameters are used to model the

different body movements of the patient.

To facilitate obtaining the solution, we first prove that the nonlinear fractional EE
objective function is quasi-concave and then it is converted to an equivalent paramet-
ric form by using the Dinkelbach algorithm, and the corresponding KKT conditions
are solved. Based on the expected value of the overall throughput, we obtain the
throughput performance lower and upper bounds to show that the results of the EE
maximization problem using both the bounds are tight. To reduce the computational
complexity, the structure of the EE optimization problem is analyzed and an iterative
suboptimal solution is provided whose performance is fairly close to the optimized
solution. Extensive simulations are provided to evaluate the performance of the pro-
posed schemes in comparison with related work from the literature that show the
superiority of the proposed algorithm in terms of EE. Simulation results reveal that

optimal allocation of aggregator’s transmit power, BackCom and data transmission

times helps improve EE of the WBAN.

The remaining chapter is organized as follows: In Section 5.2, the system model is

described. Section 5.3 formulates the BackCom-based EE optimization problem. Section

5.4 details the optimization problem analysis including optimized and suboptimal solutions.

Finally, simulation results are presented in Section 5.5, whereas conclusions are drawn in

Section 5.6.
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Fig. 5.1: WBAN system model with backscatter communication [83].

5.2 System Model

5.2.1 WBAN Topology

We consider an eHealth monitoring WBAN with one central coordinator node (i.e, an
aggregator) that is carried by the patient which serves as both the gateway and energy
source for the SNs, as shown in Fig. 5.1. There are N SNs in the network denoted by S;,
where, i = 1,..., N. These SNs could be either deployed on the patient’s body surface, or
they can be embedded inside the body to monitor the vital signs. The SNs are connected
in a star topology such that each SN communicates directly with the aggregator. The
aggregator is assumed to be connected with a reliable and steady energy supply within easy
reach, e.g., a power outlet or a high capacity portable power bank. Note that, for energy

harvesting rather than transmitting a random burst signal the aggregator node has to
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broadcast the CW signal. In contrast, the SNs are energy-constrained with limited battery
capacity and are supposed to have a rechargeable battery with an accompanying energy
harvesting device to harvest energy. The downlink frequency upon which the aggregator
broadcasts the energy signals to the SNs is represented by f;. The corresponding uplink
frequency upon which the SNs either backscatter the data passively or perform active data
transmissions to the aggregator is represented by f,. The SNs can harvest energy from
the CW signals transmitted by the aggregator, which upon storage in their batteries, can
be used to support internal operations as well as data transmission to the aggregator.
Alternatively, the SNs may exploit the incident broadcast signals to transmit data to the

aggregator by performing BackCom.

5.2.2 Time frame Structure

As illustrated in Fig. 5.2, the transmission frame structure is considered to have two op-
erating phases, i.e., the passive BackCom phase, and the active data transmission phase.
During the BackCom phase, the SNs can either backscatter signals to transmit data to the
aggregator by modulating and reflecting the incident signals of the aggregator, or alterna-
tively, the SNs can harvest and store the energy signals for transmitting their data later
in the active data transmission phase. It is important to emphasize that, when a SN 5; is
backscattering the data, the remaining N — ¢ SNs in the WBAN can still harvest energy
from incident signals of the aggregator. This feature ensures the maximum utilization of
the energy signals broadcasted by the aggregator. However, if at a particular time slot
more than one SN backscatter their data at the same time, they can create interference
for each other. Thus, to avoid such a situation, each SN in the considered WBAN model

is equipped with a single antenna, meaning that at a specific time slot, it can only either
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Fig. 5.2: Normalized time frame structure of WBAN.

harvest energy from the signals transmitted by the aggregator or backscatter signals. That
said, no two SNs are allowed to backscatter at the same time, assuring the elimination of

any possibility for interference.

The backscatter time is allocated to the SN based on multiple factors that include its
energy harvesting efficiency, data backscattering rate, and the aggregator’s transmit power
to maximize the overall EE of the WBAN. The passive BackCom phase and the active data
transmission phase of the WBAN under consideration are not independent. As a result, if
the SNs spend more time backscattering data in the passive BackCom phase, less duration
of time will be allocated to the SNs for transmitting data in the second phase. Moreover,
since the SNs are energy-constrained we focus on maximizing the overall EE of the WBAN

subject to the energy harvesting and transmission power of the SNs.

In each transmission frame, let * denotes the normalized amount of time during which
sensor S5; backscatter data information to the aggregator and ¢ represents the normalized
time duration allocated to the sensor S; for transmitting data to the aggregator. Since
during a particular transmission frame, 2 and #¢ are the portions of the time allocated to

sensor 5; either for data backscattering or performing active data transmission, respectively,
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therefore in a particular transmission frame the total normalized time is given by the

following constraints

N N
PIE DI
P R |

(5.1)
t.t2>0, Vie{l,...,N}.
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5.3 Energy Efficiency Optimization Problem Formu-

lation

In this section, we discuss and formulate the optimization problem that aims to maximize
the EE of a BackCom-assisted WBAN. In particular, the optimization problem optimally
allocates the transmit power of the aggregator, backscatter and transmission times of
energy-constrained SNs subject to energy harvesting and transmission power constraints.
Additionally, the WBAN under consideration is supposed to operate under two commu-
nication modes: 1) BackCom mode and 2) HTT mode, whose details are provided in the
subsections. Furthermore, the structure of the optimization problem is analyzed to propose

a suboptimal solution at a significantly lower computational complexity.

5.3.1 Passive BackCom Phase

Data backscattering depends only on the first operating phase of the transmission frame.
During the passive BackCom phase, the SNs exploit the incident broadcast signals of
the aggregator to backscatter their data to the aggregator by employing TDMA as de-

scribed in Fig. 5.2. In order to obtain a closed-form of the backscatter throughput, the
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receiver /aggregator must be able to sample the received backscatter signal for demodulat-
ing and decoding the data information. Obtaining the digital samples, on the other hand,
necessitates the use of an ADC, which is often avoided in ultra-low-power designs. In this
regard, the decoding mechanism proposed in [86] allows the receiver to decode the data
information with high efficiency by utilizing an envelope detector and averaging circuit and
a threshold computation circuit. In order to evaluate the feasibility of the proposed mecha-
nism the hardware prototype is implemented and real time experiments were performed in
a metropolitan area at different indoor and outdoor locations to account for the multipath
and attenuation effect by considering the channel between the backscatter transmitter and
receiver that is not ideal. Firstly, the envelope detection and averaging circuit smoothes
by averaging out the variations of the received signals, then, based on the two signal levels
produced at the output of the averaging circuit the threshold value is calculated. Finally,
the comparison circuit consisting of an RC circuit and a comparator compares the average

envelope signal and the threshold to distinguish between the output “0” and the “1” bits.

Under the proposed decoding mechanism in [86], the closed-form of the backscatter
throughput for the BackCom mode can not be derived as it explicitly depends on the
decoding circuit, and the BackCom rate can be regulated by adjusting the RC circuit
elements of the aggregator node. As a result, for a given BackCom system, the BackCom
achievable rate can only be determined through real experiments [87] as performed in [86]
by considering practical channel conditions in which the channel between the backscatter

transmitter and receiver is not ideal.

In [88], a hybrid BackCom for WPCNs is proposed. The authors have considered two
zones such as long-range WiFi-zone and short-range Macro-zone in which the achievable
BackCom rates for each zone are specified with different rate equations. For instance,

short-range Macro-zone transmission up to 15 meters the achievable rates are prototype
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dependent and the BackCom rate is limited by the transceiver design. Since the achievable
rate of the short-range BackCom transmission is unknown [88], therefore based on the
designed prototype in [86] the authors have used the fixed BackCom rate that depends on

the real experiments.

Since the communication in WBAN is in the range of few meters only, and the focus
of our work is to design an energy-efficient WBAN, therefore by following the decoding
mechanism [86], we have assumed that the achievable BackCom rate can be determined
in advance by means of testing through real-time experiments as considered in [87-92],
which is more relevant and related to the short-range WBAN communications. Therefore,
the BackCom throughput of SN S; during data BackCom phase denoted as R?, can be

expressed as follows
Ri =1;B;, (5.2)

where B? represents the achievable backscatter rate of sensor S, i.e., the number of data
bits successfully decoded at the aggregator by using BackCom [87-92]. It is worth noting
that when a sensor S; is backscattering its data signals to the aggregator, in the mean-
time other SNs in the WBAN simultaneously harvest energy from the signals broadcasted
by the aggregator, and this guarantees that the SNs have sufficient time for both data

backscattering and energy harvesting.

5.3.2 Active Data Transmission Phase

The data transmission of SNs depends on both the passive BackCom phase and the active
data transmission phase of the time frame. The SNs adopt the HT'T protocol to harvest the

energy first in the passive BackCom phase from the signals broadcast by the aggregator.
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Then, the SNs utilize the harvested energy for transmitting data in the active data trans-
mission phase using TDMA. Since the aggregator is transmitting and receiving on different
frequency channels, therefore in order to efficiently utilize the available resources, it should
be noted that when the SN S; is transmitting the data to the aggregator during the active
data transmission phase the remaining SNs in the network can still harvest energy from
the aggregator’s signal and store it for the operations in next transmission block. In the
following, we formulate the energy harvesting model, power consumption model, and the

total throughput of the SNs in the active data transmission phase.

1) Energy Harvesting Model:

As stated in [93], the energy received by the sensor S; from the signals transmitted by the
aggregator can be computed by using Friis free space propagation model, which can be
mathematically given as follows

GTGRN?

PR=¢§P— 1"
i " (4rd;)?

(5.3)
where P! is the harvested power of sensor S; and d; is its energy harvesting efficiency. The
transmit power and the antenna gain of the aggregator are denoted by P;, GT, respectively.
GY is the antenna gain of SN S;. ) represents the wavelength, and d; is the distance of S;

from the aggregator.

In a particular transmission frame, the SN S; uses #> amount of time for data backscat-
tering and ¢! amount of time is utilized for active data transmission, whereas all the
remaining slots are used for harvesting energy. Therefore, based on the received energy
signals from the aggregator, the total energy harvesting time of sensor S; in each transmis-

sion frame is given as ((E:Zl tb) — b+ (E:Zl t¢) —t%). Thus, the total energy harvested
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by S; in one transmission frame, denoted as EI*, which is equal to the total energy har-
vesting time of SN .S; multiplied by the harvested power P}. This can be mathematically

expressed as follows

EM = ((i:lt") — b+ (ZN:t ) —t“) (5.4)

n=1
2) Power Consumption Model:

The energy consumption of a SN mainly depends on sensing, data processing and data
communication for transmitting data to the aggregator. The sensing power consumption is
mainly responsible for sensing operations including the signal amplification and ADC. The
ADC converts the analog signals of the sensors into digital signals, which are subsequently
supplied into the processing unit. The key functions of the data processing module are
sensor controlling and data processing using the microcontroller unit (MCU). The power
consumption of the amplification and ADC block is usually very low (in uW), and the TI
MS430P microcontrollers family generally used in health monitoring also have low power

consumption [94].

The SN S; utilizes the harvested energy to transmit its data to the aggregator during
the time slot ¢{ in the data transmission phase. Let P;* represents the transmit power of the
SN S; during the transmission time slot 2, which can be obtained as EI/t?. Note that, the
major power consumption is due to the communication module in which the SNs transmit
their data during the active data transmission phase [95]. In order to better understand
this concept [95] showed through an example by comparing the energy consumption costs
of the data processing by radio and data transmission. It is showed that for ground-to-

ground transmission, 3 J of energy is consumed to send 1 kb of data across a distance of
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100 m. In contrast, a general purpose processor with a modest processing capability of 100
million instructions per second can execute 300 million instructions for the same amount
of energy. Therefore, the total transmission power consumption of N SNs in eHealth

monitoring WBAN can be written as follows [52,96,97]

N
Rsum:Pc+ZPia

i=1

N ((éltﬂ) — (ﬂétz) —t?)Pf‘

=P.+)Y_ = , (5.5)

where power consumption F, is written as P. = p, + p» + p., where p, represents the fixed
circuit power consumption of the aggregator [79], py is the total circuit power consumption
in the BackCom phase [76,98], and p, is the total power consumption required to transmit
the information from SNs to the aggregator including the sensing and processing power

consumption [52, 81].
Let r{ be the maximum achievable transmission rate of SN S; during active data trans-
mission phase, which can be written as follows [99]

ri = Wlogy(1+7.F), (5.6)

where W is the bandwidth of the channel from SN to the aggregator. v; = |g;|2/Ny is
the instantaneous channel gain to noise ratio of SN S;, where g; is the complex channel
coefficient between SN S; and the aggregator, and N, is the noise power. Then, the total

number of data bits transmitted by SN S; during the active data transmission time ¢;
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denoted as R{ can be given as follows

((ét?‘) —t (étz) —tg) PR

Ri =it logy | 1+ a »
i

(5.7)

where ¥, = ;W and ¢; € (0, 1) represents the transmission efficiency coefficient. The total
throughput of the sensor S; is the sum of the number of bits transmitted during the passive

BackCom and active data transmission phases, i.e., R; = R® + R?, written as follows

N N
((558) -+ ($1) 1)

Ri =t/B; +itilog, | 1+ — a — ; (5.8)

13

Thus, the overall achievable throughput of N sensors in a WBAN, denoted as Rsum, can

be written as follows

N N
N ((Eltﬂ) —tﬁ?+(¥1t§’;)—t§)PiR

Reum = Y |t/B} + it} log, | 1+ 7—~—"= —
i=1 i

(5.9)

Note that, in this work, we consider the average value of the total throughput over a large
number of channel realizations. The average value of the throughput does not require an
estimation of the channel coefficients every coherence time, which significantly reduces the
complexity of the system. The overall average throughput of the WBAN represented as
Rave = E[Rgum|, which can be calculated as follows

N

B[Rum] = > [E[25] + E it log, (149022 ) || (5.10)
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where [E[ -] represents the expected value. Let f(-) be a real-valued concave function with
respect to z, where = be the random variable with finite expectation, then the Jensen’s
inequality [100] can be stated as E[f(z)] < f(E[z]). Since ~; is the only random variable in
(5.10), therefore it can be easily verified that (5.10) is a concave function of ~; by showing
that the second derivative R (7;) < 0. Accordingly, by applying the Jensen’s inequality

on (5.10) as E[log (1 + z)] < log(1 + E[z]), expected value of the overall throughput

performance upper bound can be written as

Eh

Ravg < ) ltiﬁBf + it log, E l1 + %t—;H . (5.11)
i=1 t

Consequently, after simple mathematical manipulations and by using the expectation prop-

erties, the expected value of the overall throughput performance upper bound can be writ-

ten as follows

El
Ravg g Z |:th.? + wit? IOgQ (1 + t_‘;E {’}’1})] . (512)

i=1 t
Similarly, by convexity of log, (1 + 1/z), where z = 1/z for z > 0, and by applying the
Jensen’s inequality, the overall throughput performance lower bound can be written as

follows [101]

N
Ravg > Y
i=1

b b a E:l 1 -
t;B] +ittlog, [ 1+ t_“E — . (5.13)
i Yi

Note that, the exact value of the overall throughput expression given in (5.10) is

bounded between the throughput performance upper and lower bounds given in (5.12)
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and (5.13), which can be written as follows

<O R Bl f17 b Rb B}
D |mitt B + ¢itd log, | 1+ —E {—} <> [mt@fg +E {wg log, (1 + %-Ff) }] <

i—1 i T im1 i

7

Lower bound;)f throughput

Z [?}'ith? + ity logy (1 + t_‘;E {’Yi})] - (5.14)

i=1 ¢
A

7

Upper boundT)f throughput

As discussed earlier, one of our aims in this work is to design a WBAN that can incorpo-
rate different movements/activities of the patients during daily life and their corresponding
transmission requirements. Therefore, in order to design a reliable WBAN communication
system, a generalized gamma distribution for ~; is adopted to model the radio-propagation
channel that can support propagation scenarios under different body movements [85]. The

PDF of ~; is given as follows

b)) = G aem] ()"
f(r}('ha%jb'hct) b?icil—\(ai)’?t eX_p( (bg) )) (515)

where T'(.) is the standard gamma function, a; and ¢; are the shape parameters of the
generalized gamma distribution, respectively, and b; is the scale parameter. From overall
throughput performance upper bound in (5.14), the expected value of well-known gener-

alized gamma distribution E{~;} can be written as [102]

. btl—’(ag—i—l/c,,) .
E{w} = Ty s (5.16)
Similarly, from overall throughput performance lower bound in (5.14), the expected

value of the inverse of the generalized gamma distribution E {%} can be calculated by

1
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doing the integration as follows

(o - [Smrare e (- (7)
wf Tl W@ TPU\b) )
oo . . — . - C:
0 b’!';bi‘ t ]_—‘(G.'.@ - 1/0,;)]_—1((1.,;) b@

_ I(ai —1/ai) /’°° i P (_ (%)c")
o b@]_—‘(ai) 0 b‘;ici_ll—‘(a@ — 1/6,;)7@ eXP b@ ’

I'a; — 1/c;)
= @) (5.17)

-1
From (5.17), E {%} can be written as

E{1}—1:L@g:x | (5.18)

% D(a; —1/c;) LB

Therefore, the exact value of the overall throughput bounded between the lower and the

upper bounds of the throughput can be written as

Eh

Z nit; By + ¢it{ log, | 1+ fiw < Z [ﬁit?B;? +E {lbit? log, (1 + ’Y@?—f) H <
i=1 i i=1 i
) Lower bound‘gf throughput ”
N Efx
Z nit? BY + it®log, | 1+ thB . (5.19)
i=1

.

Upper bound of throughput

Thus, the EE objective function U (measured in bits/Joule) is defined as the ratio
of the overall achievable throughput of WBAN to the sum of the total transmission power
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and circuit power consumption of all the SNs in the network, can be written as follows

> [thg + it? log, (1 + Etﬁ)]

i=1

. _ _ (5.20)
[
_Pc—|— E n=1 n=1
i=1

Ui

t?

Consequently, the optimization problem to maximize the EE of eHealth monitoring WBAN

can be formally expressed as follows
(282 + vite log, (1+ 2]

tae, tb Py N ((% :g) _;gur(f; tg)—t;}‘) PR
PC + E n=1 n=1

o,
[uy

i=1
N N
((Eti)—t$+(2tﬁ) —t:‘) PR
st G~ m n=l < P
N N
Cy: ((th’l) — P+ (Ztﬁ) —t;‘) PR > pmin,
n=1 n=1
N N
C: (th) — i+ (Zti‘l) —tz‘) P} < B,
n=1 n=1
N N
Coiy B+ <1,
i=1 i=1
Cs: P, < P,
Co: t2,t2 > 0. (5.21)
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Note that, the term k; in (5.21) can either take the value X,p 0T X, 8 given in (5.16) and
(5.18) to obtain the EE optimization problem using the throughput performance upper or
lower bound, respectively. In optimization problem (5.21), the variables t* = [t%, ... #}],
and t* = [t{,...,t}], are vectors of the data BackCom and data transmission times of
all the SNs in the WBAN, respectively. The variable P, represents the transmit power
of the aggregator. Note that, the term E" in the total throughput of the EE objective
is a function of 2, ¢, and P,. Similarly, in the total power consumption, the term P}
is a function of P, such that all the decision variables are coupled in the numerator and
the denominator of the EE objective function. In order to avoid the harmful effects of
the transmit power of the SNs on the human body, the constraint C; bounds the transmit
power of each SN such that it should be less than or equal to the maximum transmit power
threshold of the SN denoted as P/™**. The constraint C; ensures the total harvested energy
of each SN must not be less than the minimum energy E™" needed to be maintained at
the SN. Due to the finite battery capacity of the SN, C3 guarantees that the total harvested
energy of each SN must not exceed its maximum battery capacity E"**. The constraint
C4 reflects that the total normalized time during both the operating phases must be less
than or equal to one. The constraint Cs requires that P, should be no greater than the

predefined maximum power threshold of the aggregator denoted as P/™**.

5.4 Optimization Problem Analysis and Solution

In this section, the EE optimization problem is analyzed and solved by using the concepts
of fractional programming. To facilitate obtaining the solution, the Dinkelbach algorithm
is utilized to convert the nonlinear fractional problem to an equivalent parametric prob-

lem. To balance between the computational complexity and achievable performance, the
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inherent structure of the EE optimization problem is analyzed to provide an iterative based

suboptimal heuristic solution.

5.4.1 Optimization Problem Solution

In order to find the solution of the formulated EE optimization problem, we first prove (as
shown in the Appendix A) that the overall throughput function in the numerator of (5.21)

is concave with respect to (t2,#2, P;), and the total power consumption in the denominator

is convex with respect to (t2,¢?), and affine with respect to P,. That said, the concave-

convex fractional EE optimization problem in (5.21) is a quasi-concave with respect to
time variables V (t2,t), where i € {1,..., N}, and the aggregator’s transmit power P,
individually. Such characteristics allow us to utilize the primal Dinkelbach algorithm [103]
to solve the parametric concave-convex optimization problem. Accordingly, the nonlinear

fractional EE problem in (5.21) can be converted to an equivalent parametric problem,

written as follows

N
Elk;
max [t?Bf + it] log, (1 i B )]

ta tb P, ¢

i=1

N ((%tﬂ)—t?Jr(itg)—tg)ﬂR

n=1

s. t. Cl; CQ? C3;, C4;, CEI; Cﬁ. (522)

where ¢ is a constant non-negative parameter whose optimized value, denoted as g*, is the

maximum EE, ie., ¢ = max - The parametric EE maximization problem in (5.22) can

94



be solved by using the KKT conditions to obtain the solution. The corresponding partial

Lagrangian function £ can be written as follows

h

L(t*, 8", P, A, B,7,¢0) = ) [t?Bﬁ’ + )it} log, (1 + Et”)]

1

i=1

N ((éti) B+ (éltg) —tg)aR

= tf
N N N
—Zhi(((Ztﬂ) — b4 (Zt;) - t?)PiR - t;‘P;“ax)
N N N
-3 5 (Em ((th;) ~t+ () - tg) Pﬁ)
N N N
- () -+ () ) r)

—o (P, — P™) | (5.23)

where A = [A,..., An], B=[B1,---,Bxn]; ¥ = [11,---,7n]; ¢, and o are the non-negative
Lagrange multipliers associated with the constraints C;,Cs,C3, C4, and Cs respectively,
given in (5.21). Since the optimization problem is quasi-concave, the necessary and suffi-

cient KKT conditions can be solved to obtain the solution [71]. The corresponding KKT
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conditions of the EE maximization problem can be written as follows

3£(t‘,1 tb R:: )‘i: ﬁt‘: Vi, C: 0)

i3 Vi —-0
ote ’

3£’(t?; t?: R:: )‘i: ﬁt‘: Yis C: 0)
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3£’(t?: t?: R:: )‘i: ﬁt‘: Vi C: 0) -0
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() () - )] =

=1

N N
Q(Zt‘;Jthg — 1) =0,
i=1 i=1

(P, — P™) =0

N N
((;ti) —ti+ (Z;lt) —t?) PR — g2 <,
N N
g ((;tb) e (2n) —tg) pro,

N N
((Zti) ~t+ () —t?) PR — EP™ <0,
n=1 n=1 N N
Y+t -1<0,
i=1 i=1
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0,

t?:tga)\iaﬁe‘a%;caa > 0.
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From (5.24), (5.25), and (5.26) we can obtain (5.38), (5.39), and (5.40) shown below and
the top of the next page. For simplification and to save space, the term p; in (5.40) has
its definition in (5.3), such that P} = p;P,. It is important to note that, the term ; in
(5.38)-(5.40) can either take the value X, OF X, 3 given in (5.16) and (5.18) to obtain
the EE optimization problem solution and to evaluate the tightness of the results using
the throughput performance upper and lower bound, respectively. It can be seen from
(5.24)-(5.31) that there are 5N + 3 equations with 5N + 3 unknown variables that include
te, t° P, X, B,~, ¢, and o.
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N

—D_ NP +ZﬁJPR Z%PR =0, Vi=1,...,N, (5.39)
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The parametric optimization problem in (5.22), can be solved by numerically solving the
KKT conditions separately over the time variables (¢, £°), and P.. In order to find the time
variables t¢ and t? a system of 5N + 1 equations with 5N + 1 unknowns as given in (5.38),
(5.39), and equations (5.27)-(5.30) are solved simultaneously using the nonlinear equation
solver at a specific initial value of ¢ using the primal Dinkelbach iterative algorithm. The
MATLAB nonlinear equation solver utilizes the interior-point method to solve the system
of equations as described in [71]. After each iteration the value of ¢ is updated with the
results obtained from the previous iteration and the parametric problem in (5.22) is solved
again until ¢ and #? are optimized with no further change in values. Later on, by using
the optimized values of ¢ and t?, the transmit power of the aggregator P, is optimized
separately by numerically solving (5.31) and (5.40). The iterative procedure is repeated
over time variables and the transmit power of the aggregator until the values of the decision
variables are optimized with no further change in the values. The optimized values of time

*b

variables 7%, t;

, and transmit power P can be used to find the converged ¢*. This
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converged ¢* is the maximum EE value, given as follows

N b Db E*hy.
[t; B + it log, (1+

t

o )

q = ~ ~ )
_PC + E n=1 n=1

(L
t:’

1

(5.41)

i=1

where P} is the optimized transmit power of the aggregator, 1%, and ¢;® are the optimized

values of the data transmission and data backscattering times of sensor S;, respectively.

5.4.2 Suboptimal Solution

In this subsection, the structure of the EE optimization problem is analyzed to obtain a low-
complexity suboptimal solution. It can be seen that (5.38) and (5.39) are 2N equations
in 2N unknowns for known values of the Lagrange multipliers. Similarly, (5.40) is one
equation in one unknown P; for known values of Lagrange multipliers and time variables
t2, t?. Unfortunately, the closed-form expression of time allocation from (5.38) and (5.39),
and aggregator’s transmit power P; from (5.40) can not be reached; however, they can be
solved efficiently using numerical techniques. In this regard, to reduce the computational
complexity of EE optimization problem, an iterative method is used to find the values of
decision variables t¢, t2, and P,. Whereas the subgradient method [104] is used to tune the
values of the Lagrange multipliers after each iteration such as to converge to the optimal
values that satisfies the constraints. The subgradient Lagrange multiplier update rule is

given as

AFL = N ol(te Prax — B, Vi=1,...,N, (5.42)
B = B —vi(E! — E™), Vi=1,...,N, (5.43)
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,?;?"‘1 :7§_U§(E§]M_E?): Vi = 1;"':N: (544)

N N

gl+1:¢ﬂ_v*(1—2t§+2t§), Vi=1,...,N, (5.45)
i=1 i=1

o't = ol — vt (P — P, Vi=1,...,N. (5.46)

where v; represents the sufficiently small step sizes associated with the corresponding La-
grange multipliers, chosen as v/0.1/I, and [ represents the index number. Note that, the
MATLAB is used for testing the performance of the proposed algorithm, however it can
be implemented in any programming language as an application that can be run on a
smart phone. As the goal of the proposed study is to maximize the battery life or EE
of energy-constrained SNs that rely on the energy signals harvested from the aggrega-
tor, therefore the algorithm needs to be run on the aggregator instead of running it on
each SN as a distributed algorithm. As mentioned that we focus on saving energy of
the energy-constrained SNs, therefore running the algorithm on an aggregator will incur
the operational overhead cost such as computation and processing on the aggregator node
rather than the SNs. Therefore, in this regard, the aggregator node in our work is supposed
to have sufficient energy and has stable charging access within reach. The suboptimal algo-
rithm to maximize the EE of BackCom assisted eHealth monitoring WBAN is summarized

in Algorithm 3 shown at the top of next page.

5.4.3 Complexity Analysis

The computational complexity of the proposed suboptimal algorithm is analyzed as fol-
lows: Given the number of iterations needed to update the Lagrange multipliers denoted

as Ky, to solve the Lagrangian dual method in (5.23) by using the subgradient method
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Algorithm 3 Proposed iterative based suboptimal algorithm for energy efficiency maxi-
mization problem

1: INPUT: GT,GE )\ d;,6:, W, e, ai,bi, ci, BY.

Start with the initial values of q,%,t2, P;, A, Bi, i, €, 0.
Calculate the data transmission time ¢t numerically from (5.38) using the interior-point

method in MATLAB.

Calculate the data backscattering time t? numerically from (5.39) using the interior-

point method in MATLAB.

Calculate the transmit power of the aggregator P; numerically from (5.40) using the
interior-point method in MATLAB.

6: Repeat steps 3-5 until the convergence is reached.
7: Update the Lagrange multipliers AL, 8¢, 7%, ¢!, and o according to (5.42), (5.43), (5.44),

12:

(5.45), and (5.46), respectively.

Repeat steps 3-7 until the constraints are satisfied or certain stopping criterion is

fulfilled.

: Calculate the value of energy efficiency 7, from (5.20).
10:
11:

Update the value of g as with 7, obtained from step 9.

Repeat steps 3-10 until the convergence is reached such that the change in 7, is no
greater than ¢ = 0.001.

OUTPUT: The suboptimal solution of EE maximization problem.

after each iteration calculated from (5.42), (5.43), (5.44), (5.45), and (5.46), respectively,

is of computational complexity O(Kp.x/N). For each iteration, to solve the optimization

problem in (5.22) numerically using the interior point method has a computational com-

plexity of O(,/m1log(m.)), where m; represents the number of inequality constraints in

(5.22) [71,105]. Given the number of iterations needed to reach the convergence of the

Dinkelbach denoted as L.y, and I, are the number of iterations required to alternately

solve the time variables t2, 2, and transmit power of the aggregator P, are calculated

according to (5.38), (5.39), and (5.40), respectively. Therefore, the total computational
complexity of Algorithm 3 becomes @[(KmaxN + /My log(ml))Lmaxfmax}.
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5.5 Simulation Results

In this section, simulation results are presented to demonstrate the performance of the
proposed EE optimization scheme for eHealth monitoring system. As illustrated in Fig. 5.1,
we consider a BackCom-based WBAN with N = 3 SNs and one aggregator that not only
serves as a gateway but also acts as a power source to stimulate the SNs transmission in
WBAN. In the energy harvesting model, the distance d; from the SN to aggregator is set
between 0.3 to 0.7 m [8]. The transmission antenna gain of the aggregator GT and the
SNs GE are chosen as 6 dBi, respectively [106]. In the power consumption model, the
power consumption p. including sensing and processing consumption is considered as 5
mW [79], and the circuit power consumption in the BackCom phase is 10 uW [98]. The
transmission efficiency ¢; and energy harvesting efficiency d; are given as 60% [84,89]. The
length of each normalized time frame is set as 1 s. From [8], the minimum energy E™®
and maximum battery capacity E™* of the SN is set to 0.01 J and 0.11 J, respectively.
The maximum transmit power P/ of the SN is set to 1.5 mW [84]. The parameters of
the generalized gamma, distribution depend on the measured data under different arbitrary
movements of the patient’s body during routine activities of daily life, and based on that,
the best fitting distribution model is applied. From the experimental results in [68], three
most common body postures are modeled using the generalized gamma distribution, i.e.,

relaxing, walking, and running state.

5.5.1 Energy Efficiency of the WBAN Under Different Body

Movements

Fig. 5.3 shows the optimized and suboptimal EE (in bits/Joule) of the WBAN in a relaxing

state with generalized gamma distribution parameters set as a; = 3.84,b; = 0.0026, and
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Fig. 5.3: Optimized and suboptimal EE of WBAN for relaxing state with a; = 3.84,b; =
0.0026, and ¢; = 1.

¢; = 1 [68]. By following the Federal Communications Commission (FCC) rules in [106]
that allows the maximum transmit power of a device in an ISM band up to 36 dBm, the
simulation results are plotted against the predefined maximum transmit power threshold of
the aggregator P/"® varying from 20 dBm to 30 dBm. It can be readily observed that the
performance of the suboptimal solution is reasonably close to that of the optimized case.
In order to provide a fair comparison and to evaluate the performance of the proposed opti-
mization framework, the results are compared with the throughput maximization problem

in [89]. It can be clearly noticed that the proposed EE maximization problem provides
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Fig. 5.4: Optimized and suboptimal EE of WBAN for walking state with a; = 3.52,b; =
0.251, and ¢; = 1.

higher EE in comparison with the throughput maximization problem, in which the SNs
transmit data to the aggregator with maximum transmit power. Moreover, the obtained
EE of system by using both the throughput performance lower and upper bounds is fairly

close to each other that validates that the obtained bounds are tight.

Fig. 5.4 depicts the EE of eHealth monitoring WBAN by considering the patient in the
walking state. Based on the experimental results from [68] to model the walking posture,
generalized gamma distribution with shape parameters chosen as a; = 3.52 and ¢; = 1, and

scale parameter set as b; = 0.251. It can be noticed that EE (in bits/Joule) follows the
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Fig. 5.5: Optimized and suboptimal EE of WBAN for running state with a; = 1,b; = 0.948,

and ¢; = 1.64.

increasing trend with the increase in maximum transmit power of the aggregator. It is due
to the fact that, since the aggregator acts as the energy source for the SNs by broadcasting
energy signals at a certain transmit power, therefore when the maximum transmit power
threshold of the aggregator is increased the SNs can harvest more energy that ultimately

results in higher EE. Moreover, it can be observed that the EE of the optimized and

suboptimal solutions are close to each other.

Fig. 5.5 illustrates the EE of BackCom based WBAN in running state. From [68], the

running state of the patient is modeled using the generalized gamma distribution with shape
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parameters chosen as a; = 1 and ¢; = 1.64, and scale parameter is set as b; = 0.948. Similar
to the relaxing and walking state, the EE in running state also follows the same increasing

behavior with the increased maximum transmit power threshold of the aggregator.

5.5.2 Effect of Backscatter Rate on Energy Efficiency of the Sys-
tem in BackCom and HTT Modes

In order to observe the performance of the proposed algorithm in both the passive BackCom
phase and the active data transmission phase, we calculated the EE of the individual
phases, which are referred to as BackCom and HTT modes. The EE of the BackCom
mode and HT'T mode is calculated as the ratio of the throughput in the passive BackCom
phase or the active data transmission phase, to the total power consumption of the WBAN

such that the sum of the EE of both the modes is equal to the EE of the overall WBAN.

Fig. 5.6 shows the EE of the WBAN in a relaxing state against the backscatter rate
varying from 2 kbps to 30 kbps, by considering a throughput performance lower bound.
For a fixed maximum transmit power threshold of the aggregator set as 20 dBm and 9;
as 40%, it can be seen that by increasing the backscatter rate, the EE of the WBAN also
increases. Moreover, another interesting result that can be deduced is the effect of the
backscatter rate on the BackCom and HTT modes of operation. In a specific time frame,
as the backscatter rate increases, the SNs will spend most of their time in backscattering
data to the aggregator in the passive BackCom phase and ultimately less duration of time
will be spent by SNs for transmitting data in the active data transmission phase. As a
result, when the backscatter rate increases the solution of the EE maximization problem
switches to the BackCom mode. Since the SNs spend less time for data transmission due to

the increasing backscatter rate, the EE in the HT'T mode is less than that in the BackCom
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Fig. 5.6: Effect of backscatter rate on EE of the system in BackCom and HTT modes.

mode and far from the EE maximization solution.

5.5.3 Effect of Maximum Transmit Power of Aggregator on En-
ergy Efficiency in BackCom and HTT Modes

Fig. 5.7 illustrates the effect of the maximum transmit power threshold of the aggregator
on different communications modes as well as the EE of the WBAN system in the running
state by considering throughput performance lower bound, and a fixed backscatter rate

of 4 kbps. The maximum transmit power threshold of the aggregator is an important
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Fig. 5.7: Effect of aggregator’s maximum transmit power on EE of the system in BackCom
and HTT modes.

factor that affects the time allocated to the SNs during the passive BackCom and active
data transmission phases. As mentioned earlier that the aggregator node also acts as the
energy source for the SNs by broadcasting the energy signals, therefore by increasing the
aggregator’s maximum transmit power, the SNs will spend more time for harvesting energy
during the first phase. Consequently, when the maximum transmit power of the aggregator
increases, the SNs utilize the harvested energy in the first phase to transmit data during the
active data transmission phase. As a result, the solution of the EE maximization problem

switches to the HTT mode. By increasing the maximum transmit power threshold, the
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EE of the HT'T mode is reasonably close to the EE maximization solution. In comparison
with the BackCom mode, it can be noticed that the EE in BackCom mode decreases with

the increase of maximum transmit power of the aggregator.

5.6 Conclusion

In this chapter, we proposed an energy-efficient resource allocation framework for a Back-
Com-based eHealth system to provide sustainable and high-quality medical services by
maximizing the EE of WBAN. BackCom technology is envisioned to be highly desirable
for the EE system catering to severe and life-threatening illness by keeping the energy-
constrained SNs alive and thus assuring the self-sustainable and perpetual WBAN oper-
ations. The significance of the proposed optimization scheme and the EE maximization
algorithm is important for widespread adoption in the eHealth monitoring WBAN, as
the optimal allocation of aggregator’s transmit power, data BackCom and data transmis-
sion times demonstrate the effectiveness of the proposed scheme in maximizing the EE of
the WBAN. Furthermore, for a practical dynamic environment, the adopted generalized
gamma distribution is appropriate for a variety of body movements and can efficiently

model different activities/movements of the patient during daily life.

Since improving the SNs lifetime or EE is a crucial design objective in the eHealth
systems, in this regard simulation results demonstrate that the proposed EE maximization
framework outperforms in comparison with the throughput maximization scheme from the
literature. In addition, in a specific time frame if the BackCom rate is increased the SNs
will spend more time backscattering their data to the aggregator, and to maximize the
EE of the WBAN, the solution of the optimization problem switches to BackCom mode.

Alternatively, the solution of the EE problem switches to the HT'T mode by increasing
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the maximum transmit power of the aggregator as more time will be spent by the SNs for
harvesting energy in the first phase. Simulation results show the effect of varying aggrega-
tor’s maximum transmit power and BackCom rate on the EE in different communication
modes, along with the performance of the proposed scheme in maximizing the EE of the

WBAN under different arbitrary movements.

5.7 Publication Resulted from This Chapter

e O. Amjad, E. Bedeer, N. A. Ali, and S. Ikki, “Energy Efficient Resource Allocation
for eHealth Monitoring Wireless Body Area Networks with Backscatter Communi-
cation,” doi:10.1109/JSEN.2022.3175754, IEEE Sensors Journal.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions made in this dissertation and discusses potential

extensions and future directions to our work.

6.1 Conclusions

One of the key challenges that limit the widespread usage of eHealth solutions in prac-
tical healthcare facilities is the limited battery life of the SNs that are needed to be re-
placed /recharged manually once the energy is depleted. In most scenarios, battery replace-
ment is not preferable, and it becomes highly unsuitable and impractical, especially when
the SNs are implanted inside the human body. This limited battery capacity of the SNs
not only causes a performance bottleneck but is also likely to disrupt the future opera-
tions of the SNs, which may cause a life hazard. In order to have seamless and efficient
implementation of an eHealth monitoring WBAN, improving the SNs’ lifetime or EE is of

paramount importance.
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In this regard, we have formulated and solved the EE optimization problems under
different system models and communication systems. Firstly, an optimization problem is
proposed and solved to maximize the EE of an eHealth monitoring WBAN consisting of
SNs equipped with energy harvesting capabilities in which the energy harvesting process
of the SN is modeled using the discrete-time Markov chain. The EE objective function is
defined as the ratio of the sum of the source rate of all the SNs to the power consumption
of all the SNs in the network. The optimization problem aims to maximize the overall EE
of the self-sustained eHealth monitoring system with WBAN. It can be concluded from
this research that the source rate of the SNs is an important parameter that affects the
EE of the system, and by optimally allocating each SN’s source rate the overall EE of the
WBAN can be improved.

Secondly, a robust eHealth monitoring communication system is proposed that can
characterize the propagation characteristics of various patient conditions by only utilizing
the generalized gamma distribution and can efficiently model both everyday and dynamic
activities. More specifically, an optimization problem is formulated to optimize the EE
of WBAN without requiring the CSI from the transmitting SNs to the aggregator and
by considering outage probability and packet retransmission. The transmit power and
encoding rate of the SNs are important parameters that can be optimized to improve the

EE of the system.

Finally, considering a BackCom-assisted WBAN in the proposed research has its basis
on exceptionally low-power consumption and enabling the energy-constrained SNs with
self-sustaining capabilities by utilizing an energy harvesting mechanism can help improve
the efficiency of the healthcare system globally. In this regard, the significance of the pro-
posed optimization framework and EE maximization algorithm is that it shows potential

in tackling the implementation difficulty faced by an eHealth system that requires a sus-
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tainable energy supply. In this way, it can facilitate the realization of eHealth solutions in
real-life healthcare settings by efficiently utilizing the network resources while guaranteeing
a satisfactory performance of the WBAN. Furthermore, the healthcare sector is projected
to be overwhelmed by the growing population. In this regard, the proposed scheme also
has the potential to provide adaptable health services under various body postures with-
out limiting the patients’ mobility, thereby limiting unnecessary hospital visits. This can
ultimately reduce healthcare expenses by eliminating the need for expensive in-hospital pa-
tient monitoring and alleviating overburdening of healthcare facilities. Simulation results
demonstrate the performance of the proposed algorithm in comparison with the existing
literature, along with the effectiveness of the proposed scheme in maximizing EE of the

WBAN under different arbitrary movements.

6.2 Future Work

There are various future directions that can serve a source of inspiration in future devel-
opment and advancement of eHealth monitoring WBANs, which can be briefly outlined as

follows:

e It would be worthwhile researching to extend BackCom assisted eHealth monitoring
WBAN to the scenario of multi-input-multi-output (MIMO) system. More specif-
ically, the BackCom assisted EE optimization problem can be extended to a case
in which the aggregator instead of having only a single antenna has multiple anten-
nas. Extending the work to the MIMO system is expected to enhance the system

performance in terms of EE of the system.

e Interference is a critical issue in WBANs and has a significant impact on system

113



performance, including lifetime, EE, and reliability. In real applications, multiple
WBANS patients may coexist in the same local region, such as a hospital ward. Mul-
tiple types of interference sources, such as Bluetooth and WiF1i, may coexist in such
an environment. When numerous SNs use the same channel and time slot at the
same time, interference occurs, resulting in transmission problems for those SNs. In
this regard, interference mitigation schemes are another interesting research direc-
tion that can be focused on to help improve the performance of eHealth monitoring

WBANS in the real-life practical healthcare environment.

WBANS have usually used the 2.4 GHz microwave Industrial, Scientific, and Med-
ical (ISM) band. It is anticipated that the 2.4 GHz microwave band, on the other
hand, will be insufficient for the PHY channel of future WBANS, as evidenced by the
expanding requirements for real-time high-speed communication of WBANs. Fur-
thermore, many existing services use the 2.4 GHz spectrum, which would interfere
with the reliability of WBAN connections. In this regard, a 60 GHz mmWave band
can serve as a potential alternative that can offer high data rates with low-power
consumption in short-range networks. However, the exact potential and limitations
of this band have yet to be completely investigated. Large-scale testing and research
of 60 GHz communication environments are required for the development of WBAN

solutions in 5G networks. [11].
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Appendix A

Proof of the Quasi-Concavity of the
Objective Function of EE

Maximization Problem

A.1 Proof of Quasi-Concavity of BackCom-Assisted
EE Objective Function

The EE objective function defined in (5.20) is a quasi-concave function V (¢¢,#%), where
i € {1,..., N}, and the aggregator’s transmit power P, individually, satisfying the given
constraints. Recalling the EE objective function in (5.20) is a ratio of the overall through-
put of WBAN in the passive BackCom phase and the active data transmission phase to
the total power consumption of all the SNs in the network. In order to find the solution of

the EE optimization problem, we need to verify the concavity of the total throughput in

the numerator and the total power consumption term in the denominator. For simplicity,
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we will show that the total throughput of sensor S; is a concave function in each decision

variable, i.e., (t¢,#%, ;). In this regard, we study the concavity of total throughput function

R;(t¢,t2, P,) by computing the Hessian matrix as follows H; = 2R;(t%,t2, P;), which is

177L?

found to be written as

_pR2
— 0 pPf

2o B K f?

a 4b - [t it i
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From (A.2), we can write the following

228 p; 22PE 22t%p;
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Accordingly, by multiplying (A.3) with —1, the sign of the inequality is reversed as follows

R 2&
_zlp z3t3 pi
1% —
Stip, BT QPR S

(A4)

Since for t2,#2, P, > 0, 4, pi, ki, E" > 0, ¥i € {1,..., N}, and by utilizing (A.4), it can

1171}

be seen from (A.2) that z"Hyz < 0, Vi € {1,...,N}. Hence, from (A.1), the Hessian
matrix H; (R;(t¢, ¢, P;)) is negative semi-definite (Vi € N), therefore the total throughput

[ B

function of sensor S;, i.e., R;(t2,t2, P,) is concave with respect to t¢,%, and F,.

In order to analyze the the total power consumption term in the denominator of EE
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objective function in (5.20), i.e., Pum(#%,#?), the Hessian matrix Hy = 72 Paym (%, ) can

1171 [

be computed as follows

N N
2((2?551) —t+ (Etf;) —t?) P11 o
n=1 n=1
23 ’

0 0O

H, (Poum (7, 12)) =

T

(A.5)

For any arbitrary real vector z = [2; 2]

STHyz = 2 ((Z}V:tb)—t%r(g:t“)—t‘-‘) PR>0 (A.6)
2 t%a:; n i o n i i = ¥ :

n=1

As, z"Hyz > 0, the Hessian matrix Hg(JF’E,.m(t‘v1 tl?)) in (A.5) is positive semi-definite

i1l
(Vi € N), which proves that the total power consumption term, i.e., Paum(t%,1?) is convex
with respect to ¢ and 0. Similarly, for a specific ¢ and %, the total power consumption
is positive and affine with respect to P;,. Therefore, the objective function to maximize
the EE of WBAN is concave-convex fractional program which in turn is a quasi-concave
function in t? and #?, and separately with respect to P; [107]. In the similar manner the

above mentioned analysis can be adopted to show that the overall EE of N SNs in the

WBAN is a quasi-concave function. |
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