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THESIS ABSTRACT 

 Global climate change is occurring and observed warming patterns have had significant 

impacts on aquatic environments as trends in water temperature are closely related to trends in 

air temperature. In ectothermic organisms such as fishes, temperature is relevant to the 

maturation and deposition of gametes during spawning, and lifetime growth potential. By using 

historical spawning and size at age datasets spanning 43 years, I estimated more than 100 peak 

spawning dates for White Sucker (Catostomus commersonii) and Lake Trout (Salvelinus 

namaycush) and described changes in growth of White Sucker to summarize the observed effects 

that local climate warming over the past 50 years has had on two economically and culturally 

important fishes in Northwestern Ontario. I show how spawning events are dependent on annual 

variation in seasonal thermal conditions, and how long-term increases in average fall surface 

water temperatures by 1.4oC and decreases to thermal cooling by 87oCᐧdays in lakes have shifted 

the peak spawning date of Lake Trout by 5 days over the past 4 decades. Additionally, I show 

how changes in population density, likely as a result from increased survival and recruitment of 

juvenile White Suckers have worked to dramatically reduce the body size of White Sucker by 

over 90% in weight and 50% in length in some populations. Finally, I discovered that declining 

White Sucker body size appears to be a common pattern across an expansive geographic range. 

These results fill knowledge gaps in the current literature by providing observational accounts of 

climatic impacts to inland fish populations for a highly studied culturally significant species, and 

for a lesser considered, but ecologically important species. 
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LAY SUMMARY 

Global climate change over the past 150 years as a result from human activity has and 

will continue to cause rapid temperature warming across the planet. Temperature is a vitally 

important metric in the environment, capable of governing many different processes in living and 

non-living things. For living creatures such as fish, their body temperatures are determined by 

the temperature of their environment and climate warming may have a large negative impact on 

their ability to survive and thrive in the environment. Fish carry important economic and cultural 

values in human society, thus understanding how they respond to the effects of climate change is 

critically important. I discovered that seasonal thermal conditions of a given year were highly 

important in the timing of spawning to White Sucker in the spring and Lake Trout in the fall; 

warmer fall seasons have changed the average time at peak spawn in Lake Trout by 5 days over 

the past 40 years. I also found that White Sucker over the past 4 decades are much smaller than 

they used to be, where some populations are more than 90% lighter today than in the 1980’s. The 

reason for smaller fish seems to be a result of higher population sizes. Additionally, smaller 

White Sucker over time were found in several other lakes across Northwestern Ontario, 

suggesting this pattern may be representative of a regionally occurring pattern. 
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Chapter 1 General Introduction 
 

Over the next several decades, climate change is expected to become the greatest threat to 

global biodiversity at all levels of biological organization (Bellard et al. 2012). Indeed, the global 

climate has changed dramatically over the past century; global atmospheric temperature and 

carbon dioxide levels are two metrics of climate change that illustrate the significant changes our 

earth has experienced since 1880. At the time of writing, the average global temperature is 

1.01oC warmer than 1880, and atmospheric carbon dioxide levels are at 418 parts per million 

(ppm), which is significantly higher than any recorded or predicted value across the past 800 000 

years. Despite global efforts to mitigate carbon emissions, future global temperatures will 

continue to rise with the only uncertainty being in the magnitude of the increase (Masson-

Delmotte et al. 2018). 

As a consequence of a warming climate, surface water temperatures have also risen 

globally, as the temperature of air and surface water are closely related (Matuszek and Shuter 

1996; Livingstone and Lotter 1998). Oceanic environments over the past 25 years have warmed 

at an average rate of 0.13oC per decade with some locations warming at 4 times this rate (Belkin 

2009). On average, global summer surface water temperatures in freshwater lakes have warmed 

by 0.34oC per decade between 1985 – 2009, with the fastest lakes warming at an alarming 1.3oC 

per decade (O’ Reilly et al. 2015; Woolway et al. 2020). In northeastern North America, summer 

surface waters have warmed by 0.54oC per decade since 1975 (Richardson et al. 2017). A meta-

analysis of 19 studies further support the notion that surface water temperatures are increasing; 

regional distributions of lakes are warming more intensely than global distributions, though 

individual lake warming trends are highly variable (Richardson et al. 2017). 
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Parameters describing lake habitat are also responsive to the local climate and have 

demonstrated changes in the face of current warming trends. Thermoclines can structurally 

change via faster epilimnetic warming and fluctuating dissolved organic carbon (DOC) inputs 

(Schindler et al. 1996; King et al. 1997; Rennie et al. 2009; Richardson et al. 2017). Where more 

intense epilimnetic warming occurs, stratification gradients intensify causing shallower 

thermoclines; alternatively, reductions in DOC inputs due to reduced precipitation can alter 

water clarity and therefore light penetration, causing deeper thermoclines. Lake stratification is 

also increasing in duration by spring and or fall warming which is promoting the development 

and prevalence of hypoxic lake bottoms (King et al. 1997; Poff et al. 2002; Guzzo and 

Blanchfield 2017). In addition, longer stratification can restrict access for certain fish species to 

energy rich littoral regions during the open water growing seasons (King et al. 1999; Guzzo et al. 

2017).  

Fish populations residing within lakes stand to be affected in several ways via changes to 

the quality and quantity of the lake’s habitat. Spatially, volume reductions of key cold-water fish 

habitat will occur via reductions to hypolimnetic oxythermal habitat (Shuter and Meisner 1992; 

Guzzo and Blanchfield 2017). As thermoclines fluctuate from DOC inputs, which are partly 

governed by precipitation cycles (Schindler et al. 1996) and prolonged stratification promotes 

hypoxic lake bottoms, oxythermal habitat of the hypolimnion stands to shrink, potentially 

triggering a density-dependent response that can alter population and size structure of a species.  

Temporally, changes to the timing of thermocline establishment will affect energy 

acquisition and timing of important biological events for fishes. Prolonged stratification can 

restrict access to portions of the lake for some fish species, where early development of the 

thermocline acts as a natural barrier, preventing movement into energy rich littoral zones and 
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posing strains on internal energetic demands (King et al. 1999; Guzzo et al. 2017). Accelerated 

warming of the shoulder seasons can also impact timing of spawning in fishes (Wedekind and 

Küng 2010; Farmer et al. 2015; Lyons et al. 2015). Spawning phenology is largely governed by 

two cues, photoperiod and temperature (Pankhurst and Porter 2003; Pankhurst and King 2010; 

Pankhurst and Munday 2011). While photoperiod plays a modulating role to hormones involved 

in gonadal development, temperature acts more acutely, aligning optimal environmental 

conditions with the precise timing of gamete maturation. Where photoperiod regimes will remain 

relatively constant for lakes, changes in surface water temperatures during spring and fall 

spawning seasons may impact the precise timing of spawning, potentially leading to egg 

deposition at suboptimal times and emergence mismatches with vital larval prey sources 

(Casselman 1995; Winder and Schindler 2004; Thackeray 2012).  

Lastly, physiological consequences to fishes are widely expected from altered quality and 

quantity of aquatic habitat, but the expression of this effect is strongly debated. Undoubtedly, 

increased epilimnetic temperatures and prevalence of hypoxic conditions will pose metabolic 

strains on ectothermic fish communities, primarily expressed as a reduction in individual body 

size (Baudron et al. 2014; Guzzo et al. 2017; Audzijonyte et al. 2020 and others). Trends of 

reducing body size in conjunction with rising temperatures are well supported across many 

marine and freshwater taxa which has led to the proposal of the Temperature-Size Rule (TSR) as 

an overarching mechanism to explain the physiological response of fish (Atkinson 1994; 

Daufresne et al. 2009; Audzijonyte et al. 2019). While the TSR states that the individual body 

size of ectotherms tends to decrease with increasing temperatures (Atkinson 1994), the 

underlying mechanism driving this rule remains poorly understood. One explanation considers 

that metabolic rates of ectotherms are highly dependent on the body size, and the temperature of 
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their environment (Brown et al. 2004; Woodward et al. 2010). Other explanations have been 

based on individual oxygen demand, as oxygen solubility in water is known to scale negatively 

with warmer temperatures (Harvey et al. 2011). Oxygen may be a limiting factor to size and is 

hypothesized to occur either by “gill oxygen limitation” (GOL; Pauly 1981), “maintain aerobic 

scope and regulate oxygen supply” (MASROS; Pörtner et al. 2017), or “oxygen and capacity 

limited thermal tolerance” (OCLTT; Atkinson et al. 2006). These three mechanisms are 

fundamentally similar as they are based on the notion that oxygen demand outpaces the uptake 

ability at larger body sizes, and where dissolved oxygen content will be reduced and metabolic 

demand will be increased at higher temperatures, oxygen demand will outpace uptake ability 

more intensely, leading to asymptotic size reductions across many taxa (Audzijonyte et al. 2019). 

A challenge to both higher metabolic rates and oxygen limitation as a driver of TSR is the fact 

that when oxythermal habitat varies spatially, fish can behaviourally thermoregulate to minimize 

the effect on physiological function. Further, oxygen uptake can be regulated by fishes (Lefevre 

et al. 2018), which can also partially or fully negate the outpacing effect of demand on supply 

and uptake of oxygen (demand for oxygen increases, uptake ability also increases, supply is not-

relevant) (Audzijonyte et al. 2019). Despite a lack of universal agreement to the underlying 

mechanisms of TSR, it remains a heavily cited concept to explain the physiological 

consequences to the body size of fish resulting from climate change. 

Climate studies that attempt to predict future changes to the body size of fishes do so 

based on proposed underlying physiological mechanisms and complex models of ecological 

systems (Cheung et al. 2013; Lefort et al. 2015; Biswas et al. 2017) despite uncertainty within 

these mechanisms and models. This uncertainty makes them risky to use at best by resource 

managers (Planque 2016) and it is inherently difficult to assess the reliability of a projection 
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focused on changes in fish stocks even with the benefit of hindsight because of the projected 

period of time, and the assumptions used (Brander et al. 2013). For example, fishing mortality is 

reported to have an evolutionary effect on maturity in exploited stocks leading to similar size 

reductions (Zimmermann and Jørgensen 2015), yet this assumption is often excluded in 

projection models (Tu et al. 2018). Several of these projection papers have gone forward with 

citing climatic change alone as the sole driver of declines in fish size, despite investigating 

populations that support active fisheries (Cheung et al. 2013; Lefort et al. 2015; Limburg and 

Casini 2018). Where temperature and fishing mortality have both been considered as drivers in 

historically observed size declines of fish stocks, temperature driven reductions were witnessed 

but the majority of size reductions observed were related to fishing pressure, and the more 

significant climatic effect came from increased sensitivity of the populations to changes in their 

environment (Genner et al. 2010; Tu et al. 2018). The uncertainty stemming from these 

publications underlines the need for additional research regarding observed effects in 

unharvested populations to provide clearer evidence of the response of fishes to climate change 

(Lynch et al. 2016).  

Two large-bodied fish species whose opposing life history qualities make them of interest 

for environmental monitoring programs investigating climate impacts are White Sucker 

(Catostomus commersonii) and Lake Trout (Salvelinus namaycush). White Sucker is a widely 

distributed, highly abundant, cool-water, spring spawning species (Scott and Crossman 1973). 

By contrast, Lake Trout is a northerly distributed, long-lived, cold-water, fall spawning species 

with uniquely specific oxythermal habitat requirements (Evans 2007; Guzzo and Blanchfield 

2017). White Sucker rarely suffers from any significant sources of fishing mortality, meanwhile 

active recreational, commercial, and subsistence fisheries exist for Lake Trout throughout their 
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range. Finally, White Sucker has proven valuable in environmental effects monitoring, having 

been used as sentinels in oil sands and pulp mill effluent projects (Miller et al. 2013; Mcmaster et 

al. 2020) 

The International Institute for Sustainable Development Experimental Lakes Area (IISD-

ELA) is a collection of pristine boreal lakes situated east of Kenora, Ontario and is home to 

populations of both White Sucker and Lake Trout. For over 50 years, the ELA has functioned as 

a natural laboratory free of anthropogenic disturbances, making it an excellent setting in which to 

study the impacts of climate change on fish. Previous research has shown that the climate at ELA 

is changing, and numerous changes to ecosystems and the fishes they support have been 

observed (Schindler et al. 1990, 1996; Guzzo and Blanchfield 2017; Guzzo et al. 2017).  

OBJECTIVES 

The main objectives of this thesis were to evaluate White Sucker and Lake Trout for 

long-term trends (> 40 years) in spawning phenology and changes in historical White Sucker 

body size related to patterns of climate change observed at the ELA. I used in-field spawning 

data collected for both species to predict their peak spawning dates and assessed potential 

changes in peak spawning date over time in response to climate change. Additionally, I 

considered the linkage between spawning dates and thermal conditions of the spawning season to 

reveal how annual variation in thermal conditions can alter peak spawning dates.  

To fulfil my second objective, I fit linear models to historical White Sucker body size 

data from the ELA to describe changes over time. I also fit linear models to historical body size 

data for populations across Northwestern Ontario and compared their response over time to the 

ELA White Sucker populations to evaluate the fish’s utility as a sentinel species. For ELA 

populations of White Sucker, I sought to understand whether climate change affected body size 
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directly or indirectly using hierarchical partitioning on a collection of variables to predict the 

most likely casual factor to explain size at a given age. 
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Chapter 2 Shifts in spawning phenology of fishes associated with climate variation 
ABSTRACT 

 Spawning phenology in fishes is a process heavily governed by environmental 

conditions. While photoperiod is the primary environmental cue, temperature is the secondary 

cue that aligns the final stages of maturation with optimal environmental conditions to ensure 

that deposited eggs have the best chance at survival. Given the importance of temperature in 

synchronizing active spawning, seasonal climate change may affect fish spawning schedules, and 

ultimately the survival of early life stages of fish. I estimated > 100 peak spawning dates for both 

White Sucker and Lake Trout across 8 populations from ELA lakes over 40+ years and evaluated 

changes to their spawning phenology over time. Additionally, I evaluated the impact of 

variability in surface water temperature, and seasonal cumulative growing (spring) and cooling 

(fall) degree days on peak spawning. I discovered a subtle but significant delay in Lake Trout 

peak spawning events by about 1 day/decade from 1978 to 2019, along with an increase in 

average fall temperature (1.4oC) and decrease in cumulative cooling degree days (86.7oCᐧdays). 

While no temporal changes in spring conditions or peak spawning of White Sucker were 

observed, White Sucker spawned earlier in warmer springs when greater cumulative growing 

degree days > 5oC were experienced. Similarly, Lake Trout reached peak spawning later in 

warmer falls with fewer cumulative cooling degree days < 20oC. These results demonstrate the 

importance of water temperature to spawning in fishes and suggest that this important life history 

event is susceptible to further manipulation from a continued warming climate. 

Keywords: Boreal, Catostomidae, Climate Change, Fitness, Life History, Reproduction, 

Salmonidae  
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INTRODUCTION 

The most recent climate evaluations suggest that earth’s global temperature and 

atmospheric CO2 content are at the highest levels seen in over 800 000 years, suggesting that 

future climate warming is inevitable despite society’s future best efforts to mitigate carbon 

emissions in the near-term (Masson-Delmotte et al. 2018). Climate warming is a global 

phenomenon that often leads to warmer surface water temperatures of lakes (O’ Reilly et al. 

2015), but lake warming may occur heterogeneously both spatially and temporally (Guzzo and 

Blanchfield 2017), and may be more intense than global patterns regionally (Richardson et al. 

2017). Due to the close association between atmospheric and surface water temperatures 

(Livingstone and Lotter 1998), important life history events in fishes cued by thermal conditions 

stand to be impacted with an evolving consensus of negative outcomes for fitness and 

recruitment (Pankhurst and Porter 2003; Pankhurst and Munday 2011). 

Spawning is an important phenological event in the life cycle of fishes that is inextricably 

linked to environmental conditions. (Pankhurst and Porter 2003; Rogers and Dougherty 2019). 

Fish use two main environmental cues (photoperiod and water temperature) to initiate complex 

internal processes that stimulate gonadal development and incite behavioural changes that 

signify the start or end of the spawning season (Pankhurst and Porter 2003; Maitra and Hasan 

2016). These cues are used in tandem and operate on different time scales. Where changes to 

baseline environmental conditions induced by climate change have already begun to significantly 

disrupt annual patterns, many species of fish of different life histories and ecosystems have been 

observed to shift their spawning schedules in accordance to the environmental change 

experienced (Warren et al. 2012; Lyons et al. 2015; McQueen and Marshall 2017). Such changes 

to this important life cycle event may negatively impact the development of embryos, as the egg 
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stage in fish is thought to be the most thermally sensitive life stage (Pankhurst and Munday 

2011). 

Photoperiod is regarded as the principle cue which dictates the initiation and broader 

seasonal phasing of reproductive development (Pankhurst and King 2010). The production and 

inhibition of melatonin, a hormone thought to be central in the control and regulation of 

spawning activity in fish (Maitra and Hasan 2016), is directly associated with light and dark 

cycles, providing fish with a physiological understanding of daylength and time of year 

(Pankhurst and Porter 2003). As daylength gradually rises and falls throughout the year, the 

secretion of melatonin inversely follows this trend, further triggering a reproductive response in 

fishes. Lab studies strongly suggest that significant manipulations to photoperiod regimes can 

shift timing of spawning much sooner or later than expected, however the effect of temperature 

has been poorly separated from these studies (Bromage et al. 2001).  Under natural settings, 

photoperiod acts to gradually entrain populations to initiate reproductive development and 

further promotes maturation for a spawning event, but it does not explicitly control when 

gametes are deposited. 

Temperature is regarded as the secondary cue that controls the precise timing of gamete 

maturation and deposition into the environment (Pankhurst and King 2010). Specifically, 

temperature controls the reaction rates of hormones where increases to temperature will promote 

hormone synthesis and activity to a point, after which further increases to temperature negatively 

affects activity of these hormones (Pankhurst and Munday 2011). In addition, higher 

temperatures can change protein shape and make steroids more water-soluble, reducing their 

ability to pass through cell membranes and increasing their potential for filtration through the 

kidneys (Pankhurst and Munday 2011). Through hormonal sensitivity, temperature can 
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synchronize the final stages of maturation to the ideal environmental conditions, ensuring 

gametes are deposited with the best chance for survival. 

Laboratory studies investigating the effects that temperature has on fish physiology 

during spawning has discovered that reproductive hormones are sensitive to changes in thermal 

environment (Pankhurst and Munday 2011). These studies have demonstrated that deviations 

from optimal spawning temperatures produce an inhibitory effect on the spawning of fishes, 

whereby spawning is first promoted in spring spawners as water temperature rises to within a 

species-specific optimum spawning range, and then is terminated once a thermal threshold is 

exceeded. For fall spawners, the relationship is similar but inversed, where elevated water 

temperatures delays activity until the temperature declines below a specified threshold, at which 

point spawning is promoted and deposition of gametes can begin. As temperatures get colder and 

pass beyond a species optimum, spawning behaviours are again terminated. 

Given that location-specific annual photoperiods are generally stable over time, changes 

in temperature brought about by climate change are the most likely contributor to the exact 

timing of the peak spawning window in fishes, and annual variability in thermal conditions are 

likely to be reflected in spawning patterns (Wedekind and Küng 2010; Pankhurst and Munday 

2011; McQueen and Marshall 2017). It is expected that gradual increases to mean seasonal 

temperatures will shift spawning times earlier in spring spawning species or later in fall 

spawning species (Pankhurst and Munday 2011; McQueen and Marshall 2017; Rogers and 

Dougherty 2019). For example, a species such as Lake Trout which prefer to spawn at water 

temperatures approximately 10oC (Casselman 1995; Fitzsimons 1995), in theory, where warmer 

years cause delays to lake cooling and optimal spawning temperatures are achieved later in the 

season, spawning events may be delayed (Guzzo and Blanchfield 2017).  
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Climate-related change to the spawning phenology of fishes may lead to a cascade of 

fitness impairments at the population level (Zettlemoyer and DeMarche 2021).  Elevated water 

temperatures and unfavourable environmental conditions may result in reduced reproductive 

success (Pankhurst and King 2010). Though warmer water temperatures during incubation 

expedite developmental rates (Pankhurst and Munday 2011), greater amounts of cumulative 

thermal exposure largely driven by more thermal exposure during the fall season has been shown 

to significantly reduce successful hatch rates of Lake Trout eggs to the larval fry stage 

(Casselman 1995). Warmer conditions during egg development can lead to the earlier emergence 

of fry which may expose them to initially suboptimal conditions, such as maladaptive 

temperatures and increased predation (Skoglund et al. 2011). Alternatively for a spring spawning 

species, incubation at temperatures just 2oC greater than optimal White Sucker egg development 

temperatures can significantly reduce hatching success (McCormick et al. 1977). Assuming for a 

moment that there is no limitation in resource availability, early emergent larval fishes that 

survive initial conditions may be rewarded by faster spring warming as this will aid in faster 

growth and achievement of the next life stage (Pankhurst and Munday 2011). Later-emerging 

larval fishes will be disadvantaged from competitive interactions and density dependence versus 

the early emergent survivors (Skoglund et al. 2011).  

Underpinning the potential intra-specific emergent scenarios is the dynamic between the 

blooms of primary producers and consumers, and how they align in relation to fry emergence. 

Often thought of as a temporal mismatch where different environmental cues initiate blooms of 

phytoplankton or zooplankton (Winder and Schindler 2004; Vadadi-Fülöp et al. 2012), the 

mismatch is actually a result of a shift in the predator-prey dynamic between producer and 

consumer, where peak abundances are a function of time-lags and biomass transfer from one 
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trophic level to the next (Thackeray 2012). Further, the effects of climate change and increasing 

temperature can exacerbate time-lags in this dynamic by affecting overwinter survival, 

community/ size structure, egg emergence phenology, and other life history traits (Winder and 

Schindler 2004; Vadadi-Fülöp et al. 2012; Thackeray 2012; Hébert et al. 2021). An increase or 

decrease to the time-lag between phytoplankton and zooplankton may desynchronize the timing 

of blooms of prey from emergence of fry, and/or create scarcity of biomass resources, leading to 

increased competition, starvation, and ultimately reduced recruitment success of the fry 

(Pankhurst and Munday 2011) 

 Boreal shield lakes in Northwestern Ontario support abundant large and small bodied fish 

communities of various species, including the White Sucker and Lake Trout. White Sucker is a 

widespread, cool-water, spring-spawning species, whereas Lake Trout is a more northerly 

distributed, cold-water, fall-spawning species (Scott and Crossman 1973). Both species have 

been monitored in designated research lakes for decades, providing an opportunity to explore 

long-term effects of climate change on the timing of peak spawning events in these two species 

with differing spawning strategies. The average seasonal air temperature in Northwestern 

Ontario between September to November has increased by nearly 1.7oC since 1970, but no 

significant change in March to May temperatures has been observed (Guzzo and Blanchfield 

2017), indicating that climatic effects temporally have occurred heterogeneously. The principal 

objective of this chapter was to assess shifts in the spawning phenology of White Sucker and 

Lake Trout. Given that spawning events in shallow waters of lakes are more likely to be 

determined by temperature than photoperiod, I would expect to see spawning events being driven 

by changes in water temperature. Further, due to unequal climate warming between spring and 

fall seasons in Northwestern Ontario, I hypothesize that Lake Trout spawning phenology may 
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have shifted but White Sucker spawning phenology may not have, compared to historic 

spawning schedules. 

METHODS 

Study Site  

This study used long-term data from eight lakes over 43 years (1977-2019) from the 

International Institute for Sustainable Development Experimental Lakes Area (ELA) network of 

fifty-eight lakes pristine boreal lakes located East of Kenora Ontario, Canada (Table 2.1; 

Appendix 1 Figure A). Lakes 223, 224, 260, 373, 375, 382, 442 and 626 were used to evaluate 

the spawning phenology of White Sucker. For Lake Trout, the same collection of lakes was used 

except for Lake 373 due to lack of adequate data (see below). Lakes 224, 373 and 442 belong to 

the Long-Term Ecological Monitoring (LTER) program. These LTER lakes are intentionally left 

unmanipulated to reflect the natural variability and baseline ecological conditions of lakes in the 

region. Lakes 223, 260, 375, and 626 have all undergone ecosystem manipulations (Table 2.1). 

Spawning data for White Sucker and Lake Trout was first collected in 1977 and remains 

ongoing, though data ranges vary among individual lakes (Table 2.1). The ELA is an ideal 

location to evaluate peak spawning as a response to climate change, because previous research 

has observed other changes in the region in response to a warming climate (Schindler et al. 1990, 

1996; Guzzo and Blanchfield 2017; Guzzo et al. 2017). 

Water Temperature Modelling 

 Given the documented importance of water temperature on spawning, daily surface water 

temperatures were estimated between April 4th to November 30th for every year on every lake. 

The ELA weather station has recorded hourly air temperature data since the summer of 1969, 
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such that a mean daily air temperature can be calculated.  Surface water temperature data exists 

for all 8 study lakes, collected at varying intervals through time (ranging from hourly to bi-

weekly to monthly). Air and water temperature data were used in conjunction to predict surface 

water temperatures for every day of the open water season, and were estimated by using the 

“Enhanced Multiyear Model” equation described in Matuszek and Shuter (1996):  

(1)  WTEMP = C0 + C1 (ATEMP1) + C2(YDAY) + C3(YDAY)2 + C4(INVADYD) +   

          C5(ATEMP2) 

where WTEMP is water temperature, ATEMP1 is the 15-day moving average of daily mean air 

temperature, YDAY is the day of the year, INVADYD is the inverse of YDAY adjusted so that 

ice-out is standardized as YDAY= 100, ATEMP2 is the 5-day moving average of daily mean air 

temperature, and C0-C5 are coefficients estimated from the model fit. ATEMP2 was introduced 

to account for water temperature variation caused by very recent air temperatures (Matuszek and 

Shuter 1996). The model term INVADYD in Matuszek and Shuter (1996) was set 2 days prior to 

earliest ice out in their data; I adopted a similar approach, setting the new standardized ice out 

day to YDAY 94 in my models to reflect the ELA’s earliest ice out date of Julian day 96 (April 

6th, 2012). This approach ensured that there would be no gap between the ice off dates and the 

predicted water temperature values. All years of data with both water temperature and air 

temperatures were used to estimate model coefficients for each lake separately (Appendix 2 

Table A).  

Prior to running models for all lakes, data from Lake 442 was used to test the predictive 

efficacy of the model. Lake 442 was used because it had many years and observations of daily 

surface water temperature data available (33 years, 3367 daily observations), allowing me to test 
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whether the model was sufficiently robust to capture annual variation. I ran the model using 75% 

of the years where water temperature data was present (N = 25 of 33 available years for Lake 

442, 2791 daily observations) and then fitted the resulting predicted water temperatures to the 

25% of the remaining data that was excluded but had observed water temperatures for 

comparison (N = 8 of 33 years, 575 daily observations). A cross validation R2 value was 

estimated from the match between model predictions with the observed 25% of data excluded 

from model generation, as per Rennie et al. (2005): 

(2) Xr2 = 1 – (∑ [yobs - ypredicted]2 / SST) 

Where yobs is the observed water temperature value from the 25% of data excluded from model 

generation, ypredicted is the model-estimated water temperature value from the 75% of data 

included for model generation, and SST is the total sum of squares times N – 1, where N is the 

number of observations of water temperature in the 25% of data excluded from the model. 

Estimating Peak Spawning Date 

Peak spawning date was estimated using similar methods for both White Sucker and 

Lake Trout by using the raw catch data from sampling events during their respective spawning 

seasons. These data contained daily catch totals of adult fish for each sex and assessed spawning 

condition of females (male spawning status does not vary during the 3-4-week period during 

which they are captured on spawning shoals; M. Rennie, Pers. Comm.). Female spawning 

condition was categorized as either being tight, loose/ripe, ripe & running, or spawned out (Table 

2.2). Female fish typically arrive in greater numbers to the spawning shoals later than males, and 

they also leave the shoals sooner than males (Martin and Olver 1980; MacLean et al. 1981). For 

this reason, emphasis when predicting the peak spawn date was placed on the data collected from 
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female fish as the window of time during which females deposit their gametes is much narrower 

than the window for males.  

Given the time constraints on field crews and the need to survey several lakes each year, 

no lake was sampled every day consecutively throughout the spawn within a given year, and 

furthermore, no lake was sampled every year across the study period. For these reasons, a peak 

spawning date was assessed considering the range of sampling events for each lake within a 

given year, using information on numbers of females observed and their spawning status to 

interpolate peak spawning.  

The general pattern in female spawning data used to determine peak spawning required 

evidence of an increase, peak, and decrease of spawning activity. Increasing activity was 

associated with a rise in the number of females caught on the spawning shoals and greater 

numbers and proportions of tight fish compared to loose/ripe or ripe/running fish. Peaking 

windows of activity were typically associated with higher female catches along with greater 

numbers and proportions of females in spawning conditions favouring the ripe/running 

condition. Finally, decreasing spawning activity was noted by falling daily catch totals and 

female conditions showing a diminishing number of ripe/running individuals eventually giving 

way to fish in a spawned-out condition.  

To determine a peak spawning date, I would objectively select a spawning start date and 

spawning end date from the recorded sampling events based on the criteria outlined above, 

which created a spawning window. Peak spawning was then estimated as the midpoint between 

these dates. Estimated peak spawn dates ending in 0.5 were rounded down, as 0.5 was 

interpreted to be the midpoint of the day (ex. Day 287.5 is still day 287). Occasionally, sampling 
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of a lake in a season would finish prior to the spawning window being fully captured, or data on 

the final sample event would resemble a peak spawning date. When this occurred, the final 

sample date was selected as the peak spawning date for that year; only 19% of Lake Trout 

spawning dates and 15% of White Sucker spawning dates were estimated in this fashion.   

To account for inconsistent sampling efforts between years (e.g., many visits vs few visits 

to a lake), and variable catch and spawning condition information between years (e.g., few to 

many females, few to many spawning conditions assigned), confidence levels from 1 (low) – 10 

(high) were associated with each estimated spawning date (Table 2.3). With each date and 

confidence value, I provided a description of what I saw in the data that detailed why I selected 

my chosen start and end dates and how that estimated date aligns in relation to the data present 

for that year. Only spawning dates with a confidence value of 6 or greater were considered for 

analysis. Across all sampling periods on 8 lakes for White Sucker and all 7 lakes for Lake Trout, 

109 of 137 (80%) and 110 of 170 (65%) predicted peak spawning dates were included in the 

analysis, respectively. Lake 373 was excluded entirely from the Lake Trout analysis due to 

overall low confidence values assigned to the estimated peak spawning dates (20 predicted dates, 

only 3 of which were assigned a confidence value of 6 or greater). 

 To provide confidence in the application of the described method, estimated peak dates of 

both species from 2014-2019 were compared against the ELA field crew’s in-field peak spawn 

estimations (made during spawning, integrating behavioural observations from visits every 2-3 

days to lakes, and arguably a ‘best’ estimate of spawning dates made at the time observations are 

being taken). A total of 20 spawning dates were compared for White Sucker and 23 spawning 

dates were compared for Lake Trout. These estimates were compared by correlation, and through 
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calculation of the mean difference between methods and 95% confidence intervals (CI) of 

between-method differences were estimated.  

Evaluating Temporal Changes in Estimated Peak Spawning Date 

 Changes in peak spawn dates across the 43-year study period for both White Sucker and 

Lake Trout were analyzed using an Analysis of Covariance (ANCOVA; Quinn and Keough 

2002) approach, using the statistical program R Version 4.1.2 (R Core Team 2021). Individual 

spawning date observations included in the analysis were weighted by their assigned confidence 

level (as described above). For each test, ANCOVA was only attempted after verifying that a test 

for heterogeneity of slopes was non-significant (p > 0.05). For Lake Trout, a mixed effects model 

was also employed, and the value of the common slope was compared against the ANCOVA 

model. The categorical variable ‘lakes’ under the ANCOVA approach was a fixed effect but 

modelled as a random additive effect in the mixed effects modelling framework. The two models 

provided nearly identical results for the value of the common slope; as such, I retained lake as a 

fixed effect and proceeded with ANCOVA for all subsequent analyses. A t-test on planned 

comparisons was employed to compare adjusted means following the result of a significant 

ANCOVA. When no significant ANCOVA was discovered, a Tukey’s HSD was employed to 

compare group means.  

Seasonal Climate Trend Analysis 

 Climatic trends relevant to the spawning season in all 8 study lakes were assessed. A 

mean spring or fall temperature was estimated to provide a general assessment of the conditions 

experienced each year (e.g., hotter, colder, typical). Mean water temperatures for the spring and 

fall season were calculated using the daily predicted water temperature values from April 4th to 
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May 31st and September 1st to October 31st respectively, for every year since 1970, the first full 

season in which air temperatures were recorded daily.  

In addition to average seasonal water temperatures, a total value of thermal accumulation 

or loss measured by the cumulative of Growing Degree Days above 5oC (GDD5) in spring and 

the cumulative of Cooling Degree Days below 20oC (CDD20) in fall was calculated. These 

quantities were calculated to provide a better sense to how temperatures changed across the 

spring or fall season (e.g., Faster/slower warm up or cool down).  

The time frame used for cumulative climate metrics were standardized so that for every 

year, calculations would begin April 4th and end on June 5th for GDD5, whereas CDD20 began 

August 1st and ended October 18th. April 4th was selected as two days prior to the earliest 

observed ice out in ELA lakes (which was April 6th, 2012; Guzzo and Blanchfield 2017). 

Selecting August 1st as the threshold to begin CDD20 calculation from was chosen because this 

date is typically just past peak summer temperatures in ELA lakes (Scott Higgins, Pers. Comm.), 

thus representing the period at which lakes begin to cool. The application of base temperatures of 

5oC for GDD and 20oC for CDD were used to describe the warming and cooling period leading 

up to the peak spawning events for both species under investigation, and to standardize the 

approach (Chezik et al. 2014). The end dates of June 5th and October 18th were selected as the 

dates at which 95% of estimated peak spawn dates had occurred for White Sucker and Lake 

Trout respectively, thus characterizing the conditions leading up to and including the spawning 

period under investigation. Both cumulative thermal metrics were calculated every year 

beginning in 1970 based on available meteorological data. Like spawning phenology, these 

variables were evaluated for temporal changes over the duration of the study period using 

ANCOVA to control for among-lake differences (Quinn and Keough 2002). 
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Evaluating Relationships between Spawning Phenology and Climate 

 To determine the effects of seasonal climate variability on the spawning phenology of my 

study species, ANCOVA was used to examine the effect of spring water temperature and GDD5 

on estimated peak spawning dates for White Sucker, and the effect of fall water temperature and 

CDD20 on the estimated peak spawning dates for Lake Trout (Quinn and Keough 2002). In each 

case, the categorical variable ‘lake’ was included as a grouping variable and spawning 

observations were again weighted based on their assigned confidence values. 

Comparing Temperatures at Peak Spawning Among Lakes 

To test whether peak spawning in White Sucker and Lake Trout occurred at similar 

temperatures across years in all study lakes, I determined the water temperature on the estimated 

date of peak spawn. When both the observed and predicted water temperature was listed in the 

data for a given spawning date, the observed value was selected over the predicted value. One-

Way Analysis of Variance (ANOVA) tests were applied to spawning water temperatures for 

each species, and Tukey’s HSD tests were performed to determine significant differences among 

lakes, when applicable (Quinn and Keough 2002). 

Correlation between Adjusted Mean Spawning Dates with Lake Characteristics 

I investigated whether the physical characteristics of the lakes influence the different 

timing of spawning for both Lake Trout and White Sucker among lakes and also the different 

average seasonal temperatures and heating/cooling schedules using correlation. The adjusted 

mean spawning dates for each species (derived from Year+Lake ANCOVA models) were 

examined against lake total volume, surface area, maximum depth, average depth, and Secchi 

depth.  
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In all statistical analyses, the data were examined to ensure the assumptions of the 

statistical models were satisfied. Results from testing the heterogeneity of slopes from each 

ANCOVA analysis can be found in Appendix 2 Tables B – K. Residuals of the models were 

assessed for normality and heterogeneity using Anderson-Darling’s Test for Normality, Levene’s 

Test for Homogeneity, and examination of residual plots (Quinn and Keough 2002). Any 

instances where data failed at least one of these tests prompted the application of data 

transformations to satisfy the assumptions of the model. Unless otherwise specified in the results, 

all data were found to be homogeneous and normal. ANOVA tests were conducted on the 

covariate to assess for differences in the predictor variable among the covariate levels. In cases 

where there were differences in the predictor among the covariate, the results were still accepted 

as the ANCOVA model is robust to deviations of this assumption (Quinn and Keough 2002).  

RESULTS 

Validation of Estimated Peak Spawn Date Method  

 The method employed here for estimating the peak spawning date of Lake Trout was not 

significantly different from estimates made in the field at the time of spawning by ELA staff for 

estimates during 2014–2019 (mean difference = 0.74 days later than in field estimates, 95% CI 

of mean differences = -0.55 to + 2.02 days), and the two estimation methods were significantly 

correlated (r = 0.83, t21 = 6.83, p < 0.001; Figure 2.1A). On average, the same estimation method 

applied to White Sucker peak spawning dates yielded estimates only slightly earlier than those 

determined in the field (mean difference = -1.70 days, 95% CI -3.17 to -0.23 days), and like Lake 

Trout, the two methods were significantly correlated (r =0.65, t18 = 3.64, p = 0.002; Figure 

2.1B). The close agreement between my method and in-field estimates provided confidence that 
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this approach could be applied to all years of data to yield accurate and meaningful peak 

spawning dates. 

Evaluating Temporal Changes in Estimated Peak Spawning Date 

 To determine whether a temporal change in peak spawning date occurred for Lake Trout, 

the relationship between the peak spawning date and year was tested and found to be consistent 

across lakes (Year*Lake interaction: F6,96 = 2.01, p = 0.072). A significant increase in Lake 

Trout peak spawning date with time over all lakes during the study period was detected 

(ANCOVA, Year effect: F1,102 = 13.57 p < 0.001), with a common delay in Lake Trout spawning 

among lakes of 5 days over the entire period of study, or a rate of 1 day per decade, (Figure 

2.2A; Table 2.4). The ANCOVA also revealed significant differences in the timing of spawning 

among lakes, controlling for the temporal effect (Lake effect: F6,102 = 18.95 p < 0.001). An 

ANOVA on the covariate (Year) was significant (F6,103 = 4.44 p < 0.001), which reflected 

different years of study among lakes, but observations over time overlapped among most lakes in 

the dataset, suggesting this had little influence on the results (Figure 2.2A). Planned comparison 

t-tests on the adjusted lake means of Lake Trout spawning from the ANCOVA indicated that 

Lake Trout in Lake 260 and 382 spawn the earliest (~day 279 or October 6th), Lakes 223, 224, 

442 and 626 spawn the latest (~day 287 or October 14th) and Lake 375 spawns in between these 

dates (~day 284 or October 11th).  

 To determine whether a temporal change in peak spawning date occurred for White 

Sucker, the relationship between the peak spawning date and year was found to be consistent 

across lakes (Year*Lake interaction: F7,93 = 0.81 p = 0. 58), and ANCOVA revealed no 

significant effect of year on peak spawning dates across lakes during the study period (F1,100 = 

0.51, p = 0.49; Figure 2.2B). However, it did reveal a significant difference in spawning date 
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among lakes (F7,101 = 5.87 p < 0.001), indicating that White Sucker in different lakes operate on 

different spawning schedules. A Tukey’s HSD follow up test identified Lake 442 as the first lake 

to spawn (~day 140 or May 20th), followed by Lakes 375, 382 and 626 (~day 146 or May 26th), 

and finally Lakes 223, 224, 260, and 373 as the latest spawning lakes (~day 149 or May 29th). 

Estimation of Water Temperatures 

 To evaluate the predictive efficacy of the surface water temperature model, the predicted 

independent observations of water temperature from Lake 442 yielded a cross validation R2 of 

0.99. The average absolute difference between the observed surface water temperature values left 

out of the model and the predicted values generated from the Matuszek & Shuter (1996) model 

was 0.8oC, indicating good agreement between observed and predicted values (Table 2.5). Based 

on these results, individual lake models were generated to provide surface water temperatures for 

the open water season across all years (Appendix 2 Table A) 

Seasonal Climate Trend Analysis 

 To determine whether the thermal conditions of the aquatic environment during fall were 

changing, the relationship between average water temperature of the fall season and CDD20 over 

time was evaluated among all 7 Lake Trout lakes and was found to be consistent (Year*Lake 

interaction in both models: Fall water temperature: F6,336 = 0.03, p = 1.00; CDD20: F6,336 = 0.08, p 

= 1.00). An ANCOVA revealed a significant and common shift towards higher average fall 

water temperatures and fewer cumulative CDD20 over the study period across all lakes (fall water 

temperature: F1,342 = 82.6, p < 0.001; CDD20: F1,342 = 111.32, p < 0.001; Figure 2.3). The 

common slopes estimated from the models (Table 2.4) indicate that since 1970, the average fall 

surface water temperature has increased by 1.4oC and the cumulative thermal loss during the fall 
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period has been reduced by 86.7oCᐧdays (Figure 2.3). Residuals of the ANCOVA models failed 

normality tests and the application of data transformations did not improve results; histograms of 

the residuals appeared reasonably approximate of normal distributions in the fall water 

temperature model and showed some minor left skew in the CDD20 model (Appendix 3 Figure 

A), and ANCOVA is generally robust to minor deviations from this assumption (Quinn and 

Keough 2002). No visible trends were detected in the residual vs fitted plots of either model.  

 To test whether the thermal conditions of the aquatic environment during spring were 

changing, the relationship between average spring water temperatures and GDD5 with time were 

evaluated among all 8 White Sucker lakes and found to be consistent (Year*Lake interaction in 

both models: spring water temperature: F7,384 = 0.0004, p = 1.00; GDD5: F7,384 = 0.0006, p = 

1.00). Neither the average spring water temperature nor cumulative GDD5 changed significantly 

over the study period (ANCOVA: spring water temperature: F1,391 = 0.13, p = 0.72; GDD5: F1,391 

= 0.54, p = 0.46; Figure 2.4). Residuals of the ANCOVA models failed the normality test only 

for the average spring water temperature model, and the application of data transformations did 

not improve results enough to pass the test. Examination of the residual vs fitted plot and 

residuals histogram showed a reasonable approximation of normality and only minor left skew 

(Appendix 3 Figure A) but was not so dramatic as to discount the model results (Quinn and 

Keough 2002).  

Evaluating the Relationship between Spawning Date and Climate Variability 

To determine whether annual variability in fall thermal conditions influenced the date of 

spawn, the relationship between Lake Trout estimated peak spawning date and either average fall 

water temperature or CDD20 was evaluated and found to be consistent across all 7 lakes (fall 
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water temperature*Lake: F6,96 = 0.96, p = 0.46; CDD20*Lake: F6,96 = 0.90, p = 0.5). The 

ANCOVAs indicated that estimated peak spawning date was influenced by both average fall 

water temperature and CDD20 (fall water temperature: F1,102 = 5.48, p = 0.02; CDD20 F1,102 = 

10.93, p = 0.001). The common slopes estimated from the model (Table 2.4) suggested that a 

1oC increase in the average fall water temperature or a total decrease of 37oCᐧdays during the fall 

season was sufficient to shift spawning later by 1 day (Figure 2.5). An ANOVA of the covariate 

was significant for both models (fall water temperature: F6,103 = 8.00, p < 0.001; CDD20: F6,103 = 

8.95, p < 0.001) reflecting differences among lakes in average fall water temperatures and 

cooling schedules, however, the general relationship was consistent across lakes for both models 

as evidenced by an insignificant interaction between lakes and fall water temperature or CDD20. 

Residuals of the ANCOVA model using fall water temperature as the response variable narrowly 

failed the test for normality, but a histogram of the residuals showed a near-normal distribution 

(Appendix 3 Figure A).  

To determine whether annual variability in spring thermal conditions influenced the date 

of spawn, the relationship between White Sucker estimated peak spawning date and either 

average spring water temperature or GDD5 was evaluated and found to be consistent across all 9 

lakes (spring water temperature*Lake: F7,93 = 0.83, p = 0.57; GDD5*Lake: F7,93 = 0.23, p = 0.98). 

The ANCOVA models indicated that estimated peak spawning date was influenced by both 

average spring water temperature and GDD5 (log spring water temperature: F1,100 = 54.1, p < 

0.001; GDD5: F1,100 = 72.03, p < 0.001). The common slopes estimated from the model (Table 

2.4) predict that a 1oC increase in spring water temperature should advance White Sucker peak 

spawning date by 2.4 days. Similarly, an increase of 17oCᐧdays was enough to shift spawning 

sooner by 1 day (Figure 2.6). An ANOVA of the covariate was significant for both models 
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(spring water temperature: F7,101 = 6.29 p < 0.001; GDD5: F7,101 = 2.403 p = 0.03) reflecting 

differences among lakes in average spring water temperatures and warming schedules, however, 

the general relationship was consistent across lakes for both models as evidenced by an 

insignificant interaction between lakes and spring water temperature or GDD5.  

Differences in Temperature at Peak Spawn Date Among Lakes 

 To assess whether peak spawning among lakes occurred at different temperatures for 

both species, Lake Trout appeared to have no significant difference in the estimated temperature 

on the day of peak spawning among the 7 lakes (ANOVA, F6,103 = 1.75 p = 0.12; Figure 2.7), 

where peak spawning occurred at an average of 10.9oC (St. Dev: +/- 1.8, SE: +/-0.2; Figure 2.8) 

across all lakes. In contrast, White Sucker showed a significant difference in the log values of 

temperature at peak spawning date among the 8 study lakes (F7,101 = 3.33 p = 0.003).  A Tukey’s 

HSD post-hoc test revealed that spawning temperatures for the lakes were divided into 3 main 

groups: those that spawn at warmer temperatures (Lakes 224 and 260; 16.8oC) those that spawn 

at mid-range temperatures (Lakes 223, 373, 375, 382, and 626; 15.3oC) and those that spawn at 

cooler temperatures (Lake 442; 14.0oC, Figure 2.7).  

Correlation between Adjusted Means and Lake Characteristics 

 To evaluate for correlations between adjusted means from Year + Lake spawning 

ANCOVA’s, among all lake characteristics evaluated, only surface area was significantly 

correlated with the adjusted mean spawning date for Lake Trout (r = -0.76, t5 = 2.65, p = 0.045; 

Figure 2.9) and was nearly significantly correlated with the mean spawning date for White 

Sucker (r = 0.65, t6 = 2.09, p = 0.08; Figure 2.9). Plots of the non-significant correlation tests can 

be found in Appendix 3 Figure B - E. Surface area was not found to be further correlated with 

any adjusted means from spring or fall surface water temperatures, GDD5 or CDD20, however, 
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Secchi depth was shown to be strongly negatively correlated with adjusted means of fall water 

temperature (r = -0.9, t5 = -4.73, p = 0.005) and positively correlated with CDD20 (r = 0.87, t5 = 

3.98, p = 0.01; Figure 2.10). 

DISCUSSION 

Environmental conditions during spawning, and specifically the average temperature and 

cumulative thermal environment during the shoulder seasons experienced by both Lake Trout 

and White Sucker appear to be important drivers in spawning phenology for these species. A 

1.4oC increase to the average fall water temperature was observed over the 50-year period 

examined, and Lake Trout spawning events now occur 5 days later on average in 2019 than 

1978; no such seasonal trend was observed in spring water temperature, and White Sucker 

spawning events occur at the same time on average as historical spawning schedules. However, 

given significant relationships for both species with mean annual temperatures in spring and fall, 

annual increases to average water temperatures by 1oC would be expected to delay Lake Trout 

peak spawning by 1 day in the fall, or advance White Sucker spawning by 2.4 days in the spring. 

Alternatively, in units of thermal accumulation, my study suggests that annual increases to 

thermal retention during the fall of 37oCᐧdays can delay peak Lake Trout spawning by 1 day, and 

annual increases to thermal gain of 17oCᐧdays can advance White Sucker spawning by one day. 

These relationships between temperature metrics and peak spawning dates in both species, as 

well as directional changes to annual thermal conditions in the fall demonstrate important links 

between spawning phenology and climate in both species.  

My observations of delays in Lake Trout spawning are consistent with the expectation 

that rising temperatures driven by climate change will alter the timing of spawning in fishes 
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(Pankhurst and Munday 2011; Warren et al. 2012; Lyons et al. 2015). Previous work 

investigating phenological changes to Lake Trout habitat availability at ELA indicated that the 

onset of the fall period shifted roughly one week later in 2013 than what was expected through 

the 1970s, though the length of the fall season was stable (Guzzo and Blanchfield 2017). 

Changes in fall climatic conditions and spawning phenology of Lake Trout observed in my study 

are consistent with the one-week shift in the onset of the fall period specific to Lake Trout 

previously reported (Guzzo and Blanchfield 2017). As the initiation of summer’s end gradually 

delays, elevated water temperatures persist longer into the fall season which delays the onset of 

cooling for lakes. The result of this shift is an increase in both above average fall temperatures 

and thermal retention during the spawning season for Lake Trout, ultimately delaying the 

commencement of spawning. 

My findings are also consistent in magnitude with the only other study that has evaluated 

changes in phenological timing of Lake Trout spawning, but this study was over a shorter time 

period. Lyons et al. (2015) reported that a population of Lake Michigan Lake Trout was 

spawning as much as 5 days later in 2006 than previously expected in 1983. The same study also 

examined the Lake Trout population at the Apostle Islands of Lake Superior but found no 

significant trend in spawning between 1988–2012. Overall, the total adjustment in spawning date 

between ELA Lake Trout and Lake Michigan Lake Trout was similar, though the decadal rate of 

change in Lake Michigan Trout was nearly double the decadal rate of change among ELA 

populations. Interestingly, the analysis by Lyons et al (2015) of Lake Michigan water 

temperatures at the time indicated no significant temporal changes during the open water season, 

however more recent research has shown this to be an artefact of the time frame under 

investigation (Mason et al. 2016; Zhong et al. 2019). Only 13 years of water temperature data 
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were analyzed despite evaluating spawning trends over 24 years. Furthermore, October in Lake 

Michigan appears to be the month with the greatest warming rate compared to all other months 

of the year over the past 25 years (1995-2019; Anderson et al. 2021). 

The peak spawning date of Lake Trout observed in ELA populations appears to be 

outpacing the expected shift that might be expected due to temperature alone (Appendix 3 Figure 

F), suggesting that spawning phenology may be influenced by factors beyond seasonal thermal 

conditions (Lyons et al. 2015, this study). Factors that could affect gonadal development in the 

lead-up to spawning such as oxy-thermal habitat and food availability may also be relevant 

contributors to spawning phenology (Lyons et al. 2015). A phenomenon known as skipped 

spawning is based upon the premise of suboptimal growth and gonadal developmental conditions 

(either by poor food resources or surviving in harsh, energy demanding environments; Rideout 

and Tomkiewicz 2011). This pattern has also been observed directly in Lake Trout (Morbey and 

Shuter 2013; Goetz et al. 2021). Based on relationships observed from annual variation to 

thermal conditions, spawning should occur one day later by either an increase of 1oC to the 

average fall water temperature or decrease of 37oC CDD20, which over the study period would 

predict a delay in spawning by 1 – 3 days, less than the observed 5-day delay.  In a closely 

related species, Brook Trout (Salvelinus fontinalis) delayed spawning activity by 7 days for 

every 1oC increase in summer maximum air temperatures, likely due to metabolic disruption 

diverting energy away from gonadal development (Warren et al. 2012). In small shield lakes like 

those found at the ELA, optimal oxy-thermal habitat during the summer is becoming 

increasingly rare (Guzzo and Blanchfield 2017), which may ultimately impact metabolic rates 

leading to reduced growth and reproductive impairment (Evans 2007). Additionally, a reduction 

in the duration of the spring period/lengthening of summer has been shown to limit the ability of 
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Lake Trout to access key littoral resources (Guzzo et al. 2017). Reduced access to important 

energy sources and occupation of sub-optimal oxy-thermal habitat are both likely to place 

significant metabolic strain on Lake Trout, potentially further exacerbating climate-related 

delays in spawning.  

Though no shift in White Sucker peak spawning dates or spring thermal conditions were 

observed over time, White Sucker peak spawning was significantly related to spring thermal 

conditions; based on the relationships reported here, a 1oC increase in mean spring water 

temperature would be expected to advance White Sucker spawning by approximately 2.5 days, 

indicating that a directional shift towards warmer springs (a predicted outcome of climate 

change; Bush and Lemmen 2019) would likely advance White Sucker spawning phenology in 

our region. In other regions where spring warming has been observed, other spring spawning 

species have typically advanced their dates of spawn to keep pace with a changing climate. For 

example, Yellow perch (Perca flavescens) in Lake Michigan have shifted their peak spawning 

dates between 1.8 and 6.2 days per decade earlier to keep pace with optimal thermal 

temperatures (Lyons et al. 2015). Spring spawning European Grayling (Thymallus thymallus) are 

now engaging in reproductive activity as much as 3-4 weeks earlier in a season across a 62-year 

period as their critical spawning temperature of 6oC continually advanced over the years 

(Wedekind and Küng 2010). Additionally, Walleye (Sander vitreus) spawning phenology was 

shown to be significantly advanced with earlier ice off dates in Minnesota lakes (Schneider et al. 

2010).  

The mean temperature at peak spawning date for ELA Lake Trout was not significantly 

different among lakes and occurred on average at 11oC every year. This value is similar to other 

reports of observed Lake Trout spawning temperatures which have ranged from  6.6oC – 11.5oC 
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across the Great Lakes and various inland waterbodies (Scott and Crossman 1973; MacLean et 

al. 1981; Casselman 1995; Fitzsimons 1995; Lyons et al. 2015). Lake Trout were seldom 

observed spawning at higher water temperatures across the study period (only 8% of spawning 

events observed at 13oC or higher), but the vast majority of spawning events occurred near or 

below the ~11oC temperature mark, indicating 11oC was a critical threshold temperature 

important to inciting spawning activity. 

 The timing of spawning in White Sucker has also previously been characterized as an 

event based on the attainment of a critical threshold temperature, rather than the attainment of a 

cumulative threshold temperature (Hamel et al. 1997). Hamel et al. (1997) suggests 13oC is an 

important spawning cue to White Sucker, as cessations to spawning were observed when water 

temperatures fluctuated below 13oC and resumed as they fluctuated above 13oC. While not 

studied at this fine scale in the current study, my findings suggest that thermal thresholds of 

White Sucker populations at ELA appear to be population specific. However, my results also 

indicate that the timing of spawning in White Sucker are strongly related to the conditions 

experienced in a given spring season, as spawning phenology scaled negatively with both 

average spring water temperature and GDD5 across all lakes. Additionally, my results align well 

with the literature of reported spawning temperatures for White Sucker. Unlike Hamel et al. 

(1997), where five of six distinct populations spread across a large spatial range in Quebec were 

observed to begin spawning at a common temperature of 13oC, peak spawning of White Sucker 

at ELA ranged nearly 3oC (14–17oC). Literature reporting spawning temperatures of White 

Sucker indicates a range between 9.4oC and 17oC (Hamel et al. 1997; Catalano and Bozek 2015), 

and an optimal spawning temperature of 15.5oC (McCormick et al. 1977; Hasnain et al. 2010) 

which agrees well with our observed spawning temperatures. 
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 Heating and cooling in temperate lakes are driven by atmospheric temperature, 

morphology, and DOC content (Livingstone and Lotter 1998; Richardson et al. 2017; Craig et al. 

2017). Both Lake Trout and White Sucker spawning events showed relationships with 

environmental conditions, and both species experienced among-lake differences. Lake surface 

area appeared to be the only lake-morphometric feature to provide insight as to why spawning in 

ELA lakes occurs at slightly different times from one another; on average, Lake Trout spawning 

occurred sooner in lakes with larger surface area than lakes with smaller surface area, and the 

opposite was true for White Sucker. Presumably, with more surface area to release heat, the 

larger lakes should release more surface heat than the smaller lakes in the fall, and in spring, with 

less surface area to heat up, the smaller lakes should warm quicker, causing the fish occupying 

these lakes to spawn sooner than the fish in the larger lakes. However, this hypothesis was not 

supported by further examination into surface area’s relationship with seasonal surface water 

temperatures and GDD5/CDD20 among lakes, indicating that surface area could not fully describe 

why some lakes heated or cooled more than others. Interestingly, Secchi depth (a measure of 

water clarity) provided some insight into among lake thermal differences, in that lakes with the 

greatest water clarity were the warmest and cooled the least, and the shallowest Secchi belonged 

to the coldest lakes that incurred the greatest amount of cooling; no similar effect was discovered 

in spring temperatures and GDD5. Dissolved organic carbon (DOC) inputs are largely 

responsible for water clarity as it is known to play a role in the thermal structure of lakes 

(Schindler et al. 1996; King et al. 1997; Richardson et al. 2017). This result supports the notion 

that DOC inputs are an important factor in thermal structure, and that lake cooling in the fall may 

be influenced by DOC inputs accrued over the open water season.  
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 An observed pattern over the course of any given spawning season for some populations 

of Lake Trout and White Sucker is a tendency for younger, smaller fish to migrate and 

potentially spawn sooner than the older, larger fish (Bond and Machniak 1979; Martin and Olver 

1980; Casselman 1995). Repeated evidence shows that fish populations globally will experience 

body size reductions induced by climate change (Daufresne et al. 2009), suggesting the potential 

for size-based skews to drive changes in spawning phenology. However, for several reasons, I do 

not believe that potential changes in mean size over time are contributing to the shifts in 

phenology observed here. First, concerning Lake Trout, evidence shows that when access to 

littoral resources becomes restricted due to warming water temperatures, growth and condition of 

Lake Trout suffer (Guzzo et al. 2017). While the size of spawning individuals was not assessed 

in this study, if access to littoral energy sources became increasingly restricted over time, size 

shifts of Lake Trout populations at ELA would likely skew towards smaller individuals as 

growth rates and condition decline, leading to smaller size at maturity. This shift to smaller 

mature Lake Trout would be expected to skew spawning events sooner (Martin and Olver 1980; 

Casselman 1995), rather than later as I demonstrated. Similarly, size trends of spawning White 

Sucker were not explicitly considered for this chapter, though other research shows marked 

declines in size at age of populations from lakes that I have examined for spawning phenology 

(Chapter 3). Maturity is related to age for these suckers, and slower immature growth may be 

leading to smaller sizes at maturity in this population (Chapter 3). However, despite marked 

declines in size, there is no tendency for the timing of spawning to begin sooner than historical 

records as demonstrated here, again suggesting that environmental factors are a more prominent 

driver of spawning phenology than population size structure.  
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Without a well-timed successful spawn, a cascade of fitness impairments may be 

expected for both Lake Trout and White Sucker. As shown here, water temperature directly 

affects timing of spawning and egg deposition into the environment, which if deposited at 

suboptimal egg incubation conditions, can lead to hatching at a suboptimal time in relation to 

larval food sources, causing reduced early life stage survival (Casselman 1995; Asch et al. 2019). 

For larval fish that do survive hatching from potentially suboptimal incubation conditions, 

emergence too early exposes fry to a greater risk of predation, and emergence too late 

disadvantages fry by density dependence limitations (Skoglund et al. 2011). The first year of 

growth is vitally important to determining the asymptotic size a fish can achieve (Sibly et al. 

2015) and also over winter survival (Biro et al. 2004, 2005), so if first year growth rates and lipid 

stores are not optimized, increased winter mortality and reduced body size may result. For the 

survivors, reduced fecundity is to be expected at smaller sizes (Ahti et al. 2020), and combined 

with a phenological alteration, this may begin a negative feedback loop that promotes lower 

survival, smaller, and less fecund fish, ultimately challenging the reproductive resilience of a 

species (Lowerre-Barbieri et al. 2017). Further impacting fitness is a tendency for many fish 

species to participate in skipped spawning (Trippel and Harvey 1990; Rideout and Tomkiewicz 

2011; Morbey and Shuter 2013; Goetz et al. 2021), an event usually determined by poor 

nutritional or environmental conditions (Rideout and Tomkiewicz 2011), and both are conditions 

that have been increasingly observed at the ELA (Guzzo and Blanchfield 2017; next chapter). A 

successful spawn is vitally important to the continuation and fitness of a species, such that 

adapting one’s spawning phenology to environmental change becomes critical to long-term 

success of the population (Zettlemoyer and DeMarche 2021). 
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While a change in spawning phenology can undoubtedly impact the next generation’s 

ability to recruit to the adult population, it is unlikely spawning phenology has contributed to 

fitness impairments in the two species considered here. Firstly, as the average fall thermal 

conditions track warmer, I discovered a shift in Lake Trout spawning greater than would be 

expected based on the interannual variation patterns discovered. Lake Trout that spawn in 

warmer fall conditions subject their eggs to greater accumulated thermal units, which is 

associated with increased early developmental rates and greater proportions of mortality within a 

cohort (Casselman 1995). That Lake Trout are spawning later than would be expected based on 

relationships with temperature alone may suggest spawning delays are a result of greater 

metabolic demand throughout the summer (Evans 2007; Guzzo et al. 2017). Alternatively, from 

an egg’s perspective, a greater delay in spawning than otherwise predicted by temperature might 

provide protection from excessive accumulated thermal units (Casselman 1995). A shift to a later 

spawning date, coupled with evidence that the length of fall seasons are not changing in this 

region (Guzzo and Blanchfield 2017), suggests that Lake Trout are responding to the temperature 

signal and providing their eggs the best chance to incubate and hatch next spring. 

 Similarly for White Sucker, the absence of a change in spring thermal conditions and 

spawning dates suggest optimal spawning and recruitment conditions remain for this spring 

spawner. While there is evidence for a longer spring, this mostly is a result of an earlier ice off 

combined with an onset of summer (defined as development of a 15oC isotherm) that has been 

consistent over time on average (Guzzo and Blanchfield 2017). Lab tests investigating the effects 

of early-life temperatures to White Sucker show that optimum egg hatching occurred at an 

incubation temperature of 15.2oC and widespread mortality occurred at eggs incubated at 24.1oC 

(McCormick et al. 1977). Larval growth rates were optimized at ~26.9oC and were deleterious at 
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> 30.0oC, but thermoregulating behaviours were observed, showing adaptive capacity to lethal 

temperatures (McCormick et al. 1977). This suggests that in addition to demonstrating relative 

stability in mean spawning dates over time, larval White Sucker during spring and summer are 

likely adaptable to the current degree of warming conditions, though as with Lake Trout, again 

relays the importance of spawning at the right thermal conditions to maximize recruitment 

potential. 

Based on my findings, if a change in fitness or recruitment success were to occur in these 

populations, it would likely be due to an effect of altered food webs or altered juvenile survival 

rates independent from shifts in spawning phenology exclusively. Phytoplankton and 

zooplankton predator-prey dynamics can be affected in numerous ways in response to rising 

temperatures (Vadadi-Fülöp et al. 2012), which may affect time-lags between the peak 

abundance of prey and consumers and reduce the total biomass transferred to the zooplankton 

level (Thackeray 2012). Shorter winters can also contribute through the suppression of spring 

chlorophyll a due to increased survival of (and grazing by) overwinter-adapted zooplankton 

species under the ice (Hébert et al. 2021). This can influence top-down effects on the first 

significant primary productivity bloom of the season, potentially cascading into impacts for 

juvenile fish (Hébert et al. 2021). Both White Sucker and Lake Trout feed intensively on 

zooplankton during their age-0 life stages (Siefert 1972; Borgmann and Ralph 1985; Ellen 

Marsden et al. 2022). If juvenile fish do not achieve somatic growth thresholds or if lipid stores 

are not adequately stockpiled for the winter, predation and overwinter starvation are likely to 

increase mortality (Biro et al. 2004, 2005; Mogensen and Post 2012). The increases in mortality 

can be a result from food resources limiting growth rates, mid summer temperatures pausing 

feeding activity, or some combination of the two that force juveniles to engage in riskier energy 
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acquisition behaviour leaving them more susceptible to predators (Biro et al. 2005; Mogensen 

and Post 2012). However, if food resources are plentiful, and overwinter mortality is limited, 

better juvenile recruitment may be expected, thus greater levels of competition and density-

dependent factors may influence overall population fitness. Chapter 3 presents evidence for 

instability of zooplankton food resources and greater White Sucker abundances in several study 

lakes from this chapter, further supporting the notion that to date, fitness and recruitment changes 

of my species have likely been a result of a changing food web and age-0 survival that are 

otherwise independent to the spawning phenology of Lake Trout and White Sucker. 

CONCLUSION 

This study is the first to evaluate long-term phenological responses in reproductive events 

for White Sucker and for inland populations of Lake Trout. My findings agree with previous 

research that suggests phenological changes to the spawning of fishes are expected in a warming 

climate. Through this research I have demonstrated the importance of temperature trends on the 

peak spawning dates of two lake-spawning species with differing life history strategies, and so, 

these results may be applicable to many populations of White Sucker and Lake Trout. Lake-

spawning White Sucker typically do so in the shallows of lakes which may explain why surface 

water temperatures can shift peak spawning dates so significantly by up to 2.5 days. Across a 

Lake Trout’s range, these findings would be applicable to inland Lake Trout populations that 

experience full destratification during the fall turnover, or shallow-spawning Lake Trout 

occupying much larger lakes that do not fully turn-over. Overall, this study further highlights the 

importance of successful spawning to population fitness and recruitment, and managers should 

continue to advance strategies that protect spawning and nursery habitats that facilitate early 

survival of fish. 
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Table 2.1. Description of lakes used, years of data included in the spawning analyses, historical lake usage and physical morphological 1 
properties 2 

Lake 

Used in 
White 
Sucker 
Analysis 

White 
Sucker Data 
Range (# 
Years in 
Model) 

Used in 
Lake 
Trout 
Analysis 

Lake Trout 
Data Range 
(# Years in 
Model) 

Other 
Experiments 
Conducted During 
Used Data Ranges 

Ref. To 
Paper 

Surface 
Area (m2) 

Max 
Depth(m) 

Volume 
(m3*106) 

Secchi 
Depth (m) 

223 Yes 1977 – 2019 
(20) Yes 1977 – 2019 

(15) 

Yes 
(Acidification; 
1976 – 1990) 

Mills et al. 
1987 27.3 14.4 1.89 5.4 

224 Yes 1987 – 2018 
(16) Yes 1978 – 2019 

(22) No (LTER) N/A 25.9 27.4 3.07 6.5 

260 Yes 1989 – 2019 
(13) Yes 1984 – 2019 

(20) 
Yes (Estrogen; 
2001 - 2003) 

Kidd et al. 
2014 32.8 14.2 1.98 4.5 

373 Yes 1989 – 2019 
(22) No N/A No (LTER) N/A 27.3 20.7 3.11 6.1 

375 Yes 1989 – 2010   
(7) Yes 1989 – 2019 

(18) 
Yes (Aquaculture; 
2003 – 2007) 

Rennie et 
al. 2019 23.2 26.8 2.70 4.5 

382 Yes 1985 – 2005 
(14) Yes 1984 – 2008 

(13) 
No (NORDIC 
Netted in 2003) N/A 36.9 13.1 2.13 4.0 

442 Yes 1991 – 2019   
(9) Yes 1990 – 2018 

(13) No (LTER) N/A 16.0 17.8 1.36 4.4 

626 Yes 2008 – 2019   
(8) Yes 2008 – 2018   

(9) 
Yes (Diversion; 
2011 – Ongoing) N/A 27.9 11.2 1.90 5.4 

 3 

 4 
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Table 2.2. Type and description of spawning conditions 

Spawning 
Condition Description of the spawning condition 

Tight 
Females are full of eggs but do not release many when pressure is applied to 
the belly. Presence of tight females indicates time to spawn is nearing but has 
not arrived yet. 

Loose/Ripe 
Females almost ready to spawn and release some eggs when pressure is 
applied to the belly. Loose/Ripe females indicate that spawning is about to 
begin 

Ripe & 
Running 

Females are ready to spawn. Eggs are being freely released without much 
added pressure. Ripe and Running females indicate that fish are actively 
spawning. 

Spawned out 
(Spent) 

Females have concluded spawning and have no eggs left to release. Spent 
females indicate that the height of the spawn has passed. 

 

Table 2.3. General description of the spawning patterns associated with confidence values 
assigned in the catch and condition data collected by ELA crews from 1977 – 2019 

Confidence 
Value 

General Description of The Data That Would Be Associated with The 
Confidence Value 

1 – 5 

     Insufficient Data. Either too few visits (e.g., 1-3), too spaced-out sample 
events (e.g., 4+ days in between visits), not enough females caught, little to no 
conditions reported on, or some combination of all 4. Unable to assess 
spawning trends with any degree of certainty. Confidence of 5 can potentially 
infer spawn but significantly lacking in supporting data. 

6 

     Sample events are more frequent (e.g., 3+ visits) and female catch numbers 
can assess a spawning period (enough to see a rising, peaking, falling trend), 
but condition data may be sparsely assigned in relation to overall female catch 
or not totally consistent with trends (e.g., 1-2 conditions assigned each day). 
Could also be where a final sample date shows good evidence of a peak (e.g., 
10+ females, 3-4 assigned ripe condition). Determining a spawn range is 
manageable, but peak date is only somewhat supported by data, or peak date 
lands on a final sample date. 

7 

      Progression of spawn is evident with good female data that shows a rise, 
peak, and decline in catch. Sample event spacing is reasonable (e.g., max 3 days 
between visits), and condition data is plentiful enough to support the strong 
trends in female catch numbers (e.g., 4+ conditions assigned each day). 
Occasionally a 7 was given to final sample dates, but only when data was 
strong (e.g., 12+ females, 6+ ripe/running). Determining a range is overall easy 
and peak date is fairly supported by the data 

8 – 9 

     Progression of spawn very evident. Many females caught and plentiful 
condition data that together, support the rise, peak, and decline of spawning. 
Determining range is easy and peak date supported by data (where peaks are 
easily visible in catch data) 



42 

 

Table 2.4. Summary table of the equations of the common slope derived from the ANCOVA 
models 

ANCOVA Model Slope Intercept Significant? Y/N 
LT_spawn ~ Lake + Year 0.11196 63.1763 Y 
WS_spawn ~ Lake + Year -0.0381 225.315 N 
CDD20 ~ Lake + Year -1.7661 3769.83 Y 
FallWtemp ~ Lake + Year 0.02819 -42.571 Y 
GDD5 ~ Lake + Year -0.1612 650.392 Y 
SpringWtemp ~ Lake + Year 0.00181 5.13633 N 
LT_spawn ~ Lake + CDD20 -0.0272 292.86 Y 
LT_spawn ~ Lake + FallWtemp 0.9895 272.918 Y 
WS_spawn ~ Lake + GDD5 -0.059 168.746 Y 
WS_spawn ~ Lake + SpringWtemp -2.405 170.306 Y 
    

Table 2.5. Validation of Matuszek & Shuter (1996) Enhanced Multi-year water temperature 
model; predictive efficacy of the model developed using 75% of years from Lake 442 

Year Left Out of 
Model 

Cross-Validation R2 
Value 

Avg Absolute 
Difference (oC) Number of Observations 

1987 0.9982 0.7°C 13 
1990 0.9891 1.2°C 14 
1991 0.9968 1.3°C 14 
1998 0.9955 1.0°C 13 
2004 0.9996 0.8°C 147 
2014 0.9988 0.9°C 71 
2016 0.9987 0.8°C 119 
2017 0.9998 0.8°C 184 
All Years 0.9999 0.8°C 575 
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Figure 2.1. Correlation plots of estimated peak spawning date created via methods described in 
this paper versus ELA staff’s selected spawn date based on infield estimation during 2014–2019. 
(A) shows Lake Trout estimates (r = 0.83), (B) shows White Sucker estimates (r = 0.65). Black 
line in both plots indicates 1:1 agreement line for comparison.  
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Figure 2.2. Estimated peak spawning date of Lake Trout (A) and White Sucker (B) over time. 
For Lake Trout, date of spawn is shifting by 0.1 days each year, or 1 day per decade (y= 0.1x + 
63.2). R2 value indicates this model describes 56% of the variation experienced by spawn dates 
over time.  
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Figure 2.3. Seasonal fall climatic trends of mean fall water temperatures through time (A), and 
cumulative cooling degree days through time (B). Average fall water temperature is increasing 
by 0.03oC/year (y= 0.03x + -42.4) and CDD20 is decreasing by 1.9oC/year (y= -1.9x + 4090). R2 
values suggest the model explains 36% and 35% of the variance in (A) and (B) respectively. 
Some lines and points may not be visible due to the closeness of the data. 
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Figure 2.4. Seasonal spring climatic trends of mean spring water temperatures through time (A), 
and cumulative growing degree days through time (B). Average spring water temperature and 
GDD5 are not significantly changing over time. Some datapoints may not be visible due to the 
closeness of the points. 
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Figure 2.5. Estimated peak spawning date of Lake Trout in relation to (A) average fall water 
temperature and (B) cumulative cooling degree days. A 1oC increase to fall water temperature 
(y= 1x + 272.9) or 37oC day decrease in CDD20 (y= -0.03x + 292.9) is needed to shift the 
spawning date later by 1 day. R2 values suggest the model explains 52% and 54% of the variance 
in (A) and (B) respectively.  

 

 

 

 

 



49 

 

 

Figure 2.6. Estimated peak spawning date of White Sucker in relation to (A) average spring 
water temperature and (B) cumulative growing degree days. Approximately a 1oC increase to 
spring water temperature (y= -2.4x + 170.5) or 17oC day increase in GDD5 (y= -0.06x + 168.7) is 
needed to shift the spawning date sooner by 1 day. R2 values suggest the model explains 48% 
and 53% of the variance in (A) and (B) respectively. 
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Figure 2.7. Average temperature at peak spawn date for Lake Trout (top) and White Sucker 
(bottom) among lakes studied. The lettering atop the White Sucker figure indicate results from 
post-hoc tests where differences among lakes were revealed. Lake Trout tend to spawn at a 
consistent temperature of 11oC across all lakes. White Sucker tend to have different thermal 
preferences at peak spawning across lakes and are separated by warm (16.8oC), medium (15.3oC) 
and cold (14.0oC) spawning temperatures. Mean spawning temperatures of lakes are represented 
by the solid horizontal lines. 
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Figure 2.8. Frequency histogram of water temperatures recorded on date of peak spawn for Lake 
Trout. Water temperatures are a mix of observed values when data was present on the peak 
spawning date, and predicted values when no observed data was recorded on the date. Red dot 
represents mean temperature of 10.9oC. solid error bars represent +/- 1 standard error of the 
mean (0.17) and dashed error bars represent +/- 1 standard deviation of the mean (1.77). 
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Figure 2.9. Correlation plot between estimated peak spawning date of Lake Trout (A) and White 
Sucker (B) versus the physical lake characteristic surface area. The Lake Trout plot was 
significant and the White Sucker plot was nearly significant. Correlation coefficients (r) indicate 
strong negative agreement in Lake Trout (r = -0.76) and moderate-strong positive agreement in 
White Sucker (r = 0.65). Colour differences in the White Sucker plot represent different critical 
spawning temperatures among the lakes as seen in Figure 2.7; Blue = cold lake (14oC), Orange = 
mid-temp lakes (15.3oC) and Red = warm lakes (16.8oC).  
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Figure 2.10. Correlation plot of depth of Secchi readings as a measure of water clarity between 
sum cooling degree days (A) and average fall surface water temperature (B). Both plots were 
significant and highly correlated (plot A r = -0.9; plot B r = 0.87)  
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Chapter 3 Mechanisms of climate-related growth declines of White Sucker 
ABSTRACT 

 Climate change is expected to disrupt aquatic communities globally and research 

suggests declining fish body size is an expected outcome. White Sucker (Catostomus 

commersonii) are an environmentally tolerant, non-game species with a North American-wide 

distribution that may prove useful as a sentinel species for climate effects monitoring. I evaluated 

long-term (20–40 year) datasets for potential climate-induced size reductions of White Sucker in 

3 Northwestern Ontario lakes with extensive data on abundance, climate, and food availability 

(ELA lakes), and 4 other lakes in the region lacking detailed ecosystem-level data (Northern 

Development, Mines, Natural Resources and Forestry; NDMNRF lakes). White Sucker of 

representative age classes from ELA lakes declined in size by 25 – 95% in weight, 17 – 64% in 

length, and 11 – 26% in length-based body condition. Examination of growth drivers identified 

growing degree days, food availability, and abundance all as negative contributors to growth 

declines at various ages, though the most likely affect was via increased abundance. Within the 

four NDMNRF lakes, fewer and lesser growth declines were observed across age classes, yet 

there were observed weight and length declines of ~ 50% and 20% respectively, indicating some 

level of effect on these populations as well. These results demonstrate how a warming climate 

may improve survival and cause a population level response in species via density dependence to 

alter size distributions of populations. This research further advances the knowledge of climate 

change research by describing observed trends in a widely distributed non-game species and 

provides evidence for its potential utility as a sentinel species for climate monitoring projects.  

Keywords: body size, Catostomidae, hierarchical partitioning, juvenile, metabolism, size at age, 

survival 
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INTRODUCTION 

 There is growing evidence that climate change directly affects the body size of fishes, 

both in marine and freshwater environments (Lefort et al. 2015; Lynch et al. 2016; Lema et al. 

2019). As ectotherms, the asymptotic body size of fish is partly governed by the Temperature 

Size Rule (TSR; Atkinson 1994). While there is debate regarding the exact mechanism by which 

TSR operates (Pauly 1981; Atkinson et al. 2006; Pörtner et al. 2017), and whether these 

mechanisms are valid descriptors of the pattern or not (Lefevre et al. 2018; Pauly and Cheung 

2018; Audzijonyte et al. 2019), this rule describes the otherwise widely observed phenomenon 

that higher temperatures beget fish of smaller body sizes (Kolding et al. 2008; Daufresne et al. 

2009; Pauli et al. 2017). However, a common criticism of such observations made in populations 

experiencing active fisheries is that harvest has a similar effect on body size (Zimmermann and 

Jørgensen 2015; Ahti et al. 2020). Thus, potential fisheries effects must either be accounted for 

in statistical models (e.g., Tu et al. 2018) or investigated in populations not subject to fishing 

pressure.  

 Climate change may also affect fish body size indirectly. Food availability is well 

correlated with growth potential and survival in fishes (Borgmann and Ralph 1985; Anderson 

and Sabado 1995; Biro et al. 2004; Rennie et al. 2009), and changes to primary production are 

known to result in similar changes in overall fish production (Downing et al. 1990; Downing and 

Plante 1993; Blanchard et al. 2012; Hecky and DePinto 2020). The impacts of climate change on 

planktonic communities have been well documented, where variable responses to phenology, 

abundance, distribution, size, and community structure have been observed, with many 

suggesting zooplankton communities may be more variable year to year (Winder and Schindler 

2004; Vadadi-Fülöp et al. 2012; Hébert et al. 2021). A significant concern regarding 
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phenological changes has been the potential effect of a warmer temperature on important 

predator-prey dynamics of phytoplankton and zooplankton, leading to longer time-lags between 

peak abundances and greater discrepancies in biomass transfer to zooplankton, which may 

ultimately reduce resources available to fishes of all life stages (Winder and Schindler 2004; 

Thackeray 2012). Climate may also limit fish growth indirectly through limiting population size; 

fish growth is density dependent (e.g., Chen and Harvey, 1995; Pierce et al., 2003), and climate-

induced changes may affect habitat space (e.g., total volume or thermal suitability; Shuter and 

Meisner, 1992), or by a net change in recruitment success and mortality, both of which directly 

impact abundance (Lynch et al. 2016).  

 Given these potential impacts of climate on fishes, certain attributes may make some 

species good sentinels for understanding impacts of climate on fisheries. Sentinel species are 

generally useful in identifying the status of a community, habitat, or ecosystem, and have been 

widely adopted in environmental monitoring programs (Beeby 2001; Zacharias and Roff 2001). 

Good sentinel species are generally defined as ubiquitous in distribution, abundant, easy to 

identify, tolerant to (but manifests a change in) a wide range of environmental conditions, and  

large enough to provide materials for analysis (Beeby 2001). Sentinel species previously 

proposed to quantify climate change impacts include Gentoo Penguins (Pygoscelis papua; 

Carpenter-Kling et al., 2019), Pacific Oysters (Crassostea gigas; Thomas et al., 2018), western 

North American stoneflies (genus Lednia; Green et al., 2022), and various apex marine predators 

globally (Hazen et al. 2019), but few freshwater fish examples currently exist.  

 The biology of the White Sucker (Catostomus commersonii) lends itself well to their 

potential use as a species for evaluating climate change impacts. White Sucker are an easily 

identifiable, relatively longer lived large-bodied fish with a broad North American distribution 
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and are typically highly abundant in the waterbodies they inhabit (Scott and Crossman 1973). 

Additionally, they are poorly regarded as a species for commercial, recreational or sustenance 

fisheries, and thus rarely experience significant fishing mortality compared to other targeted 

species (Scott and Crossman 1973). White Sucker are a cool water species with a broad thermal 

tolerance (Scott and Crossman 1973; Bond and Machniak 1979; Wakefield and Beckman 2005; 

Hasnain et al. 2010), and occupy environments known to be experiencing climate change (Guzzo 

and Blanchfield, 2017, this study). Indeed, the use of White Sucker as a sentinel species for the 

evaluation of environmental impacts in both lake and river environments has been validated 

through its use in environmental effects monitoring projects Canada-wide, from the Alberta oil 

sands to Northern Ontario pulp mills (Doherty et al. 2010; Miller et al. 2013; Mcmaster et al. 

2020). 

 Growth of White Sucker can be highly variable among populations (Scott and Crossman 

1973; Chen and Harvey 1995), and correlated with several factors; growth of younger age 

classes are heavily dependent upon food availability, where higher densities of benthos, 

specifically chironomids, are associated with increased growth rates (Trippel and Harvey 1987; 

Chen and Harvey 1995). White Sucker can reflect bi-modal feeding distributions, favouring 

either benthivory or zooplanktivory (Saint-Jacques et al. 2000). Larger asymptotic sizes of White 

Sucker are generally correlated with less abundant populations (Trippel and Harvey 1987; Chen 

and Harvey 1995). The presence of piscivorous fish (via increased mortality and competitive 

release) can also improve growth of immature suckers (Bertolo and Magnan 2005). Finally, 

environmental temperatures can also influence growth trajectories of White Sucker via 

metabolism, where increased temperature results in greater oxygen consumption (Beamish 
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1964), though behavioural thermoregulation in this species is also known to occur (Trippel and 

Harvey 1987).  

 Given that the optimal temperature for adult White Sucker growth is 25.5oC (Hasnain et 

al. 2010), growth in the northern portion of their range might be predicted to increase with a 

warming climate. However, negative impacts are possible if a warming climate impacts variables 

known to alter growth such as reducing food availability, increasing population density, or 

increasing metabolic function beyond an optimal rate. The objectives of this study were therefore 

to 1) assess whether changes in White Sucker growth were occurring in unharvested, 

unmanipulated lakes over a 41 year time series in a region of Northwestern Ontario where 

climate change has been well-documented (Guzzo and Blanchfield 2017), 2) evaluate variables 

important in explaining growth variation in these populations, and 3) assess the generality of 

these findings when applied to other White Sucker populations not subject to intense targeted 

fishing harvest in Northwestern Ontario. 

METHODS 

Study Site 

To evaluate long-term changes in growth and growth correlates in White Sucker, I used data 

from three lakes within the IISD Experimental Lakes Area (ELA) located East of Kenora 

Ontario, Canada, from 1976 to 2019 (Appendix 1 Figure A). Specifically, Lakes 224, 373 and 

442 were selected, all of which are part of the Long-Term Ecological Monitoring program, 

which are closed to fishing and not manipulated, thus reflecting only natural variability of the 

region. 
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Collections of White Sucker biological information has occurred on a near-annual 

frequency during the period of study. Sampling began on Lake 224 in 1976, followed by Lake 

442 and 373 in the mid 1980’s. Lake 442 was last sampled in 2008 and only recently resumed 

spring sampling in 2019; due to the large gap between sampling events, the 2019 data were not 

assessed in this study (Table 3.1). Field sampling efforts occurred during the spring and fall.  

Beamish-style trap nets (Beamish 1972) were used to catch White Sucker congregating near 

spawning shoals in spring and through random encounters during the fall. Captured fish were 

temporarily held in large tubs of lake water for transport from nets to the sampling site onshore.  

Morphometric data of fork length (FLEN; nose to inside fork of caudal fin), total length 

(TLEN; nose to farthest point of caudal fin) and round weight (RWT; weight on capture) were 

measured and recorded, and the leading 1-3 rays from pectoral or pelvic fin were clipped and 

taken for age analysis. Sex and spawning condition of an individual were determined in spring 

by the expression of gametes from gently applying pressure down the abdomen of the fish 

towards the anus. To facilitate population estimates, fish were tagged via seasonal batch marks 

on the dorsal fin to quickly identify the capture years of the individual and identify fish captured 

previously in the current sampling period. Prior to 2017, a subset of White Sucker larger than 

200 mm were targeted for application of a 4-digit, externally sutured Carlin tag each spring to 

provide individual-level information. Starting in 2017, all White Sucker larger than 200 mm 

encountered were also implanted with a unique 15-digit passive integrated transponder (PIT) tag.  

Morphometric data from fall sampling efforts were excluded from size analyses as fall data can 

lead to ageing and size at age biases. However, estimates of population size from the fall were 

used in conjunction with spring population estimates to provide a yearly average population 
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estimate. To fill in gaps where estimates for one or both time periods were absent, linear 

interpolation was used. 

 To evaluate the generality of findings from ELA lakes to other Northwestern Ontario 

lakes, additional White Sucker populations were investigated through data provided by biologists 

from the Ontario Northern Development, Mines, Natural Resources and Forestry (NDMNRF) for 

Lac des Milles Lacs (LDML), Lake of the Woods (LOTW), Lake Nipigon, and Whitefish Lake 

(hereafter collectively referred to as NDMNRF lakes; Appendix 1 Figure B). These lakes were 

selected because they have historical datasets comparable in length to those evaluated from ELA 

lakes; LOTW data began collection in 1986, followed by Whitefish in 1989, and LDML and 

Nipigon both began generating consistent sampling programs in 1999 (Table 3.1). In proximity 

to the ELA field station, Whitefish Bay of LOTW is the closest, lying only ~ 30km southwest in 

a straight-line distance. The remaining 3 lakes are to the east or southeast of ELA, ranging from 

230km – 330km away. All four lakes are larger than the study lakes at ELA, with LOTW and 

Lake Nipigon being two of the largest inland lakes in all of Ontario by surface area. These lakes 

also tend to support more diverse ecosystems, and all are subject to varying degrees of 

anthropogenic disturbance in the form of fishing (recreational, commercial, or subsistence), 

pollution, eutrophication, and the introduction of invasive species. Sampling of these lakes has 

been performed via fish community index netting (FCIN; (Salmon and Livingston 1997, 1998; 

Mosindy 2011), fall walleye index netting (FWIN; Morgan, 2002) and broadscale monitoring 

(BSM; Sandstrom et al., 2013) programs during the time period under investigation. These 

programs employed gillnets set overnight (16+ hours) at randomly selected sites and destructive 

biological sampling was performed on the catch, where morphometrics, sex, and ageing 

structures were all collected. Sampling occurred during the summer and fall months for these 
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programs, which contrasts with the ELA’s emphasis on the spring period for size and age data, 

however the sampling frame has been consistent over years for each waterbody, thus minimizing 

bias arising from variable catch periods. White Sucker were not of primary focus during much of 

the sampling on LOTW and Nipigon, therefore sex data in these datasets were sparse and 

investigations of changes in size at age over time are based on pooled samples that do not 

differentiate based on sex. Due to the large size of LOTW and Nipigon, data collected through 

the BSM program (2008 – Present) was conducted regionally, where a full sampling of the lakes 

occurred over two sampling seasons. This sampling effort should not affect size at age estimates 

over time as the sections of these lakes are not physically obstructed from one-another, and 

White Sucker in these lakes are free to move throughout the entire lake. 

Ageing Structure Preparation and Interpretation 

White Sucker fin rays are regarded as the most accurate and accessible ageing structure, 

making them the preferred option to age populations for several organizations including the ELA 

and Ontario NDMNRF (MacCrimmon 1979; Chalanchuk 1984; Sandstrom et al. 2013). The 

pectoral fin ray method is a proven and validated technique for ageing White Sucker, and is a 

reliable method for ageing older fish as well (Chalanchuk 1984). Pectoral fin rays can be attained 

from fish through non-lethal sampling which lends itself well to mark/recapture studies and 

tracking longer term trends in age over time (MacCrimmon 1979; Chalanchuk 1984). 

Slide preparation of 2014 – 2019 ageing structures were performed as described in 

Pritchard et al. (2019). Briefly, fins were cured in epoxy using a 2:1 mixture of resin to hardener 

and set to dry under a fume hood for 24 hrs. Once dried, cross-sectional cuts were made using a 

Buehler low speed jeweler saw. The first cut was made close to the edge of the sample to remove 

the frayed edge caused by sampling tools used during field collection and to establish a 
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perpendicular axis across the fin ray. After the initial cut, 4 cross-sectional pieces were taken 

from the fin, with a target thickness of 80 – 90mm. Each piece was then rinsed in water to 

remove dust and placed on a slide from left to right in order of the cuts performed, where 

consideration was given to the orientation of the placed cross-section so that each cross-section 

showed annuli of a different cut. Shandon mounting media was applied using a plastic pipette 

which secured the cross sections in place, and were set to dry under a fume hood for 24 hrs. Fin 

ray cross sections of both recent and historical data were viewed using a LaxcoTM LMC 4000 

Trinoc Microscope, and age estimation was performed using the marginal increment analysis 

method (Campana 2001). NDMNRF biologists used the same preparation and ageing methods. 

Confirmation of Historically Assigned Ages 

To ensure standardization in age determinations in our datasets over the time series 

among different readers, a comparison of age assignment between readers was undertaken. From 

1973 to 2013, two different biologists were responsible for the ageing of ELA White Sucker, 

where the second biologist began age interpretation in the early 1990’s (Ager 1: Pre 1995, Ager 

2: Post 1995). The ability of the post-1995 reader (Ager 2) to accurately assign ages using the 

pectoral fin ray for these populations had been previously confirmed (Chalanchuk 1984). Due to 

the inherent subjectivity required in assigning age estimates, the potential for interpretation error 

can be high among different readers, justifying the need for an independent evaluation (Campana 

2001). To do so, I independently re-aged White Sucker fin rays collected pre- and post- 1995. 

Comparison and confirmation of ages from the two periods were performed using percent 

agreement. Slide boxes of White Sucker slides were randomly selected from the available 

collection of ageing samples, and slides were aged blindly (i.e., without prior knowledge of the 

previously assigned age for any given specimen) to remove potential bias.  
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Updating Ageing Records  

 Age determination for White Sucker collected from 2014 to 2019 was required for the 

study. To ensure good characterization of ages from across the size distribution of available fish, 

fork length data were sorted into size bins by increments of 50mm. Up to 20 fish per 50 mm size 

bin per year in each lake were randomly selected, and where possible, were split equally between 

sexes (10 males and 10 females). Confidence values on a scale of 1 – 10 (low – high) were 

assigned with each estimated age. Once ages were assigned and entered into a computer 

database, the age for individuals with prior or later detections (based on their individual tag 

number) were assigned by addition or subtraction from the year of observation compared to the 

year of capture when fish were aged. In total, I aged 326 samples from Lake 224 and 313 

samples from Lake 373.  

Additionally, a small collection of fish (N = 36) were captured during the fall of 2020 in 

Lake 224 to assess and confirm my ability to produce accurate ages. Only fish that had 

previously been captured, tagged, and had an ageing structure taken were selected in 2020, 

allowing for the assignment of two ages to the same individual fish (based on tag number) over a 

known passage of time. In total, 72 slides of fin ray cross-sections were viewed from 36 fish (N= 

36 fish x 2 fins/fish = 72 slides). 

Temporal Size at Age Analysis- ELA lakes 

This study evaluated changes to White Sucker size at age as a proxy for changes to 

growth rates (and hereafter referred to as growth; Ahti et al., 2020) over time for three 

morphometric variables: fork length (FLEN), round weight (RWT) and body condition (BCD). 

Body condition was assessed using a length-based method, and calculated using a standard 

weight equation for this species (Bister et al. 2000): 
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(1)  Body condition = Round weight / 10 -4.755+log
10

(Fork length) * 2.94 

 The standard weight equation generates an indexed measure of mass relative to the 75th 

percentile of weight for a given length for the species and can be applied to fish with a fork 

length of 100mm or greater in length.   

 Based on an assessment of age-at-maturity (determination of the 20% quantile of all male 

or female data for a given lake; Appendix 4 Figure A; M. Rennie Pers. Comm.), male and female 

White Sucker begin to mature in ELA lakes between 3-5 years of age. Based on this, populations 

were separated into an immature dataset (consisting of ages 1 – 4), and a mature dataset 

(consisting of ages 5 – 10). The immature dataset used only White Sucker for which sex was 

undetermined to exclude early maturing fish. Conversely, the mature dataset used only sexed 

individuals, separating for males and females due to known size dimorphism among sexes within 

this species (Scott and Crossman 1973). Age 10 was selected as the final age class to include in 

the analysis, as initial analyses indicated that asymptotic size for females was achieved by age 10 

and few males older than age 10 occurred in the dataset.  

 To analyse changes over time in average FLEN, RWT, and BCD at age of immature and 

mature White Suckers, linear models were fit for each dataset using Lake, Age, Sex, and Year as 

predictor variables (Quinn and Keough 2002). Models were fit beginning with a 4-way 

interaction term; non-significant interactions were progressively removed until the simplest 

model with only significant interactions was determined. Both datasets used Lake and Age as 

categorical variables and Year as a continuous variable. The dataset of mature fish also included 

Sex as a categorical variable. Age class 1 was not evaluated for BCD analysis because few fish 

in this age class were greater than 100mm (Bister et al. 2000). 
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Temporal Size at Age Analysis- NDMNRF Lakes 

 Similar to ELA lakes, changes to growth (from size at age data) of White Sucker in 

populations of other Northwestern Ontario lakes were evaluated based on the change in average 

FLEN, RWT and BCD over time and linear models were fit to the data in the same fashion as 

performed in the ELA populations (Quinn and Keough 2002). Maturity and maximum age class 

breakpoints of 4 and 10 respectively were similarly applied to these datasets. Mature fish in 

LOTW and Lake Nipigon were assessed without sex as a categorical predictor variable (see 

above).  

Comparison of Growth Changes among White Sucker Populations 

In order to help interpret complex lake-specific interactions in my models, comparisons 

of changes in growth were made between all ELA and NDMNRF study lakes by estimating a 

rate of change (slope of linear decline or annual percent change) for representative age classes 

and also the total size decline over each lake’s study period, calculated from the equations 

predicted by fitted linear models.  

Evaluation of Potential Drivers of Size at Age 

 To understand variables associated with observed changes in the growth of White Sucker, 

three variables were examined related to climate variability, resource availability and intra-

specific competition: climate variability was assessed as cumulative Growing Degree Days of 

surface water temperature above 5°C during of the open water season (GDD5; Neuheimer and 

Taggart, 2007; Venturelli et al., 2010); food availability was measured as average annual 

zooplankton biomass (ug/L dry weight), and population density, measured as annual average 

abundance estimate. GDD5 was calculated from predicted daily water temperatures (Chapter 2) 

and population estimates were derived by using a Schnabel census based on the numbers of 
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marked and unmarked fish within a sampling period and estimated over multiple capture events 

in each lake. While benthic invertebrate data are largely unavailable from ELA lakes, Kidd et al. 

(2014) showed that emergence patterns of invertebrates from Lake 442 during 1999-2003 mirror 

trends in peak zooplankton biomass within a season, suggesting that zooplankton biomass is an 

accurate representation of the temporal trends in food available to White Sucker generally. 

Further, limited diet analysis of White Sucker from ELA lakes indicates a high degree of 

zooplanktivory (Rennie et al., unpublished data) and is supported by observations in other small 

Ontario lakes that report high rates of zooplanktivory (Saint-Jacques et al. 2000). Moving 

averages from 1 – 10 years were calculated and offset by 1 year so that the value of the predictor 

variable matched the age class under evaluation to better reflect the conditions experienced 

during the cumulative lifespan by a given age class. For example, to represent the average food 

availability over the lifespan for spring captured age class 4 White Suckers of 1994, a 4-year 

average of zooplankton biomass during 1990-1993 was chosen. The cumulative growth of the 

fish in 1994 has not realized the effect of the current year’s food availability but is rather a 

function of the prior conditions experienced over the lifetime of the fish. Years where food 

availability and population estimates were missing were interpolated linearly from the preceding 

and succeeding year’s estimates.  

Analysis of Growth Drivers: Hierarchical Partitioning 

 Hierarchical partitioning (HP) was employed to determine the joint and independent 

contributions of climate variability, food availability and population density on White Sucker 

growth (Mac Nally 2002). This method does not seek to develop a single ‘best’ model to explain 

growth, but rather evaluates all possible models in a multiple regression setting to identify the 

most likely causal factors (Mac Nally 2000, 2002). The HP method accomplishes this by 
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considering the average influence one variable provides over all models in which it appears (Mac 

Nally 2000). Additionally, the averaging method employed is thought to reduce 

multicollinearity, a significant problem for multiple regression models when present (Mac Nally 

2000, 2002). To determine the statistical significance of the predictor variables, the data matrix 

was randomized 999 times and the distribution of independent variable contributions were 

computed. Extreme independent values relative to the randomized distribution were expressed as 

Z-scores, where Z-scores equal to or greater than +/- 1.65 (upper 95% CI) were considered to be 

statistically significant explanatory variables in the analysis (Mac Nally 2002). If the Z-score for 

a variable was nearly significant, the data matrix was re-randomized, this time with 9999 

iterations to better determine whether the variable was significant or not. 

 For the sake of simplicity, HP was applied to only representative age classes for each of 

mature and immature White Sucker datasets. Consideration as to which age classes to use were 

dependent upon 3 criteria: (1) model output: e.g., if the model was additive, one age class in the 

mature or immature dataset was selected as representative of all the other age classes. (2) Rate of 

change: e.g., if the model in a dataset was not multiplicative, and two or more subgroups of age 

classes were similar amongst themselves yet different between subgroups, one age from each 

subgroup would be selected. (3) Available data: e.g., the age class with the most data available 

across the time series was selected, all else being equal. From this selective process, age classes 

4, 6, and 8 from Lake 224, age classes 2, 3, and 5 from Lake 373, and age classes 4 and 5 from 

Lake 442 were selected. All mature age classes were analyzed using female data, though patterns 

in female size at age should be representative of males as sex was additive in all models (see 

results). Lake 442 did not have a second mature age class evaluated for HP due to sparse data in 

older age classes, exacerbated by the shorter sampling frame available (and these two factors 
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leading to misalignment of the size at age data with the moving average estimates of predictor 

variables).  

Tests of linear model assumptions 

 Assumptions of the statistical models were evaluated to ensure residuals of the models 

were normal and evenly distributed. In cases where residuals failed normality testing using 

Anderson-Darling’s Test for Normality, log10 and square root transformations were first applied 

to the response variable, and continuous predictor variable if necessary. If normality was not 

satisfied after transforming both variables using log10, the results were still accepted though 

interpreted with caution. Cases where transformations were required, and whether normality was 

successfully resolved or not by transformations are noted in the results.  

RESULTS 

Age Validation 

 Pre-1995 (Ager 1), a total of 282 fins were re-examined. Of the 282 fins, 234 were aged 

the same as the previously recorded age (83% exact agreement). 48 of these fins were aged one 

year apart, and no fins had age differences of 2 years or greater (100% within 1-year agreement 

between the previous age and my determination; Table 3.2, Figure 3.1). Post-1995 (Ager 2), I re-

examined 274 fins. Of these, 260 fins had exact agreement between the previous age and my age 

(95% exact agreement; Figure 3.2), 13 fins were aged 1 year apart, and only 1 fin was aged 2 

years apart. Thus, there was nearly 100% agreement within one year of samples re-examined, 

similar to the pre-1995 assessment (Table 3.2). Overall, 556 fins were examined between both 

eras and 555 of these fins were assessed to within 1 year of each other, suggesting that the 
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historical ageing data for White Sucker was robust between both eras and is consistent with 

determinations made for 2014-19.  

 Of the 72 fins selected for confirmation of interpretation of ages on the same individual 

fish, I was unable to confidently assign an age to three fish, which were thus excluded from the 

analysis. Blind evaluation of the remaining 33 fish (66 fins) yielded a 100% exact agreement 

between ages (Table 3.2); in all cases, the difference in assigned age between the initial capture 

and the 2020 capture was equal to the number of years difference between capture events for all 

fins evaluated. The maximum years difference between capture of fishes was 3 years (2017-

2020), the youngest and oldest fish aged in this exercise was 5 and 17 years old respectively, and 

only 9% of ages were assigned 12 or greater (6 of 66), indicating determinations were largely 

made over age classes known to be reliably interpreted by pectoral fin rays.  

Temporal Size at Age Analysis – ELA Lakes  

 Initial linear models attempting to describe growth revealed significant interaction terms 

between Year with the predictor variable Lake, indicating that changes in growth with time were 

different among lakes. To interpret results more easily, a lake-specific approach to data analyses 

was adopted (model equations and coefficients for all ELA lakes can be found in Appendix 5). 

When modelling size at age of the immature and mature data on a lake-specific basis, the 

predictor variable Year was significant (either as a main effect or as part of a significant 

interaction) in all lakes for all size variables except for Lake 442 BCD (Mature data), and in 

nearly all cases had a negative coefficient value, indicating declines in growth have occurred in 

ELA lakes. In the mature fish models, Sex was found to be a significant additive term in all cases 

(no interaction with other variables), such that females were always larger than males, reflecting 

sexual size dimorphism in this species, but rates of change over time were similar between males 
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and females. All models except for Lake 224 FLEN, and Lake 442 BCD (Mature datasets) 

required log10 transformations on both the continuous response (size, as either FLEN, RWT or 

BCD) and predictor variable (Year) to satisfy the assumption of normality of residuals. For 

several models (indicated below), log10 transformations of both the response and predictor did 

not satisfy normality. These results were accepted but interpreted with caution, as histograms of 

the residuals appeared generally normal with slight skews (Appendix 4 Figure B), and residual 

plots indicated that observed rates of change were more rapid than could be modeled with log10 

transformations, indicating models based on log10-transformed data are a conservative 

description of growth declines over time in these lakes. 

Lake 224 

 Linear models for Lake 224 revealed negative relationships across time for both 

immature and mature White Sucker for all three size variables (Figure 3.3). Models describing 

immature fish were additive, indicating a similar growth decline among age classes over the 

period of study (ages 1-4; log10RWT log10Yr: F1,60 = 60.55, p < 0.001; log10FLEN log10Yr: F1,60 

= 53.01, p < 0.001; log10BCD log10Yr: F1,51 = 37.93, p < 0.001). Conversely, models on the 

mature datasets revealed Year*Age differences, suggesting that declines in growth rates of White 

Sucker were age-specific (ages 5-10: log10RWT log10Yr*Age: F5,234 = 8.23, p < 0.001; FLEN 

Year*Age: F5,234 = 4.86, p < 0.001; log10BCD log10Yr*Age: F5,234 = 3.63, p = 0.004). In Lake 

224, immature age classes 1-4 declined annually by -7.6% in round weight, -2.4% in fork length, 

and -0.9% in body condition (Table 3.3). Mature age classes 5-10 declined annually by a range 

of values, most steeply in age class 6 for weight, length, and condition (-9.3%, -8.6mm, -0.8% 

respectively; Table 3.3). Age 8 fish declined by the slowest rates for all three variables (RWT: -
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4.6%, FLEN: -5.3mm, BCD: -0.4%; Table 3.3). After transformations, normality was not 

satisfied for body condition in either mature or immature datasets, nor for mature RWT data. 

Lake 373 

 The linear models for Lake 373 revealed negative relationships across time in the 

immature and mature fish for all three size variables (Figure 3.4). Immature fish revealed 

significant Year*Age differences for weight and length but were additive for condition, 

suggesting weight and length growth declines were occurring at different rates among immature 

age classes 1-4 but were consistent among ages for body condition (ages 1-4: log10RWT 

log10Yr*Age: F3,81 = 4.53, p < 0.005; log10FLEN log10Yr*Age: F3,82 = 3.09, p =0.03; log10BCD 

log10Yr: F1,67 = 32.29, p < 0.001). The models produced from mature White Sucker were all 

additive, indicating that growth and condition of age classes 5-10 were declining at the same rate 

over time (ages 5-10: log10RWT log10Yr: F1,168 = 36.34, p < 0.001; log10FLEN log10Yr: F1,169 = 

33.28, p < 0.001; BCD Year: F1,168 = 23.9, p < 0.001). Declines to growth among immature fish 

were greater in older age classes, where on an annual basis, age 2 weight and length declines 

were -3% and -0.9% respectively, age class 3 weight and length declines were nearly twice than 

those observed in age 2 (-6.2% and -1.9% respectively; Table 3.3). Body condition across all 

immature age classes declined slightly but significantly by -0.01 units annually (Table 3.3). 

Growth of mature males and females from age classes 5-10 declined annually by -3.8% in 

weight, -1.2% in length, and -0.5% in condition (Table 3.3). After transformations, normality 

was not satisfied for the mature models and body condition of the immature data. 

Lake 442 

 Linear models describing growth changes in Lake 442 were unlike Lake 224 and 373 as 

the directional change in growth was not consistent across age classes (Figure 3.5). Immature 
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White Sucker growth models revealed additive relationships where declines to growth were 

occurring for all variables (ages 1-4: log10RWT log10Yr: F1,45 = 64.64, p < 0.001; log10FLEN 

log10Yr: F1,45 = 63.84, p < 0.001; log10BCD log10Yr: F1,42 = 22.5, p < 0.001), whereas the mature 

White Sucker models produced significant Year*Age relationships indicating that each age class 

had a unique rate of change, and this change in growth was not uniform directionally (age 5-10: 

RWT Year*Age: F5,76 = 4.36, p < 0.001; log10FLEN log10Yr*Age: F5,76 = 3.08, p = 0.01). Unlike 

Lakes 373 and 224, condition of mature fish did not change significantly over time, but 

differences among age classes and sexes were present (age 5-10: log10BCD Age: F5,82 = 4.48, p = 

0.001, Sex: F1,82 = 13.35, p < 0.001). Annual growth declines of weight, length and condition in 

immature fish were -8.9%, -2.9%, and -0.6% respectively (Table 3.3). Mature fish experienced 

the widest range of growth changes, where age classes 5, 6 and 7 declined in weight and length 

by as much as -8.2g and -0.4% respectively, versus age classes 8, 9 and 10 where weight and 

length increased annually by as much as 37.5g and 0.7% respectively (Table 3.3). However, it is 

important to note that declines in growth of younger age classes all occurred after 2000, whereas 

observations of fish from these older age classes after 2000 were sparse, making evaluations of 

growth declines during this period of time impossible (Figure 3.5). After transformations, 

normality was not satisfied for length and condition in the mature dataset. 

Temporal Size at Age Analysis- NDMNRF Lakes  

 Initial linear models attempting to describe growth discovered significant Year*Lake 

interaction terms, indicating lake-specific modelling was required. Lake-specific modelling of 

NDMNRF populations revealed significant positive, negative, and no trends over time, 

depending on the lake (model equations and coefficients for all NDMNRF lakes can be found in 

Appendix 6). In all mature lake-specific models, Sex in White Sucker models was only an 
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additive term, indicating that size differences exist between males and females, though the 

relationship with growth over time was consistent between sexes (as observed in ELA lakes). 

Normality of the residuals did not always pass the Anderson-Darling Normality test even after 

log10 or square root transformations. When transformations caused residuals to deviate even 

greater from normality (e.g., indicated by an increase to the test statistic of the AD test), the un-

transformed data were retained. These results were similarly interpreted with caution, but this 

often arose in non-significant models, or in models without Year as a significant effect. 

Histograms of the residuals were evaluated for the models that violated normality assumptions 

when Year had a significant effect, and the distributions appeared generally normal (Appendix 4 

Figure C). 

 Immature data for NDMNRF lakes revealed several different patterns of changes in 

growth, with most directional changes being negative over time. Annual changes to weight were 

experienced in 3 of 4 populations, and were described by additive models except for LOTW, 

which was described by a Year*Age model. The immature White Sucker in LDML declined by -

21.2g (LDML age 1-4: RWT Year: F1,7 = 10.87, p = 0.01; Table 3.4, Figure 3.6), immature 

LOTW sucker ranged from -0.97% to +5.97% on average (LOTW age 1-4: sqrt-RWT 

Year*Age: F3,110 = 3.35, p = 0.02, Table 3.4, Figure 3.7), and Lake Nipigon suckers declined by -

3.78% (Nipigon age 1-4: log10RWT Year: F1,27 = 5.59, p = 0.03; Table 3.4, Figure 3.8). 

Immature White Sucker from Whitefish Lake did not weigh less over time (Table 3.4, Figure 

3.9). Fork length in all immature populations and age classes were shown to change over time 

annually and were described by additive models, except for LOTW. Immature LDML White 

Sucker declined by -3.7mm (LDML age 1-4: FLEN Year: F1,8 = 6.69, p = 0.03), LOTW suckers 

ranged from -0.2mm to +3.2mm (LOTW age 1-4: FLEN Year*Age: F3,110 = 3.3, p = 0.02), Lake 
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Nipigon suckers declined by -1.24% (Nipigon age 1-4: FLEN Year: F1,27 = 5.57, p = 0.03) and 

Whitefish Lake suckers declined by -0.86mm (Whitefish age 1-4: FLEN Year: F1,15 = 16.2, p = 

0.001). Body condition remained stable across all age classes in all populations except in Lake 

Nipigon, where condition changes were described by a Year*Age model and ranged from -0.01 

units in age class 2 to +0.01 units in age class 4 annually (BCD Year: F2,25 = 4.22, p = 0.03; Age 

class 1 was excluded because there was only one datapoint).  

 Changes to growth over time in mature fish among all external populations were largely 

not witnessed over time. Lake Nipigon experienced significant annual declines to weight and 

length in mature age classes by only -9.5g and -2.0mm (Nipigon age 5-10: RWT Year: F1,59 = 

5.9, p = 0.02; FLEN Year: F1,59 = 8.88, p = 0.004; Table 3.4, Figure 3.8). Conversely, Whitefish 

Lake mature White Sucker experienced a small but significant annual increase to weight and 

length of mature age classes by +6.1g and +1.0mm (Whitefish age 5-10: RWT Year: F1,65 = 

21.34, p = <0.001; FLEN Year: F1,66 = 33.33, p < 0.001; Table 3.4, Figure 3.9). Additionally, 

Lake of the Woods experienced a statistically significant but nearly negligible change to 

condition of mature fish by -0.001 units annually (LOTW age 5-10: BCD Year: F1,204 = 3.9, p = 

0.0495; Table 3.4, Figure 3.7). The remainder of growth variables for these lakes and all size 

variables of Lacs des Milles Lacs White Suckers showed no change to growth over time 

evidenced by Year bearing no significance either as an interaction or when considered in additive 

models (Table 3.4, Figure 3.6). Of the models listed above where changes to growth were 

discovered, only the model for length in Lake Nipigon and condition in LOTW failed normality 

assumptions, and transformations in these cases did not improve model fits. 
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Comparison of ELA and NDMNRF Populations  

 Between the ELA and NDMNRF datasets, most immature White Suckers experienced 

growth declines. Growth declines of ELA populations were more pronounced than in NDMNRF 

lakes, as losses to weight, length and condition occurred exponentially (log10 scale) in nearly all 

age classes (Table 3.3, Table 3.5). White Suckers in Lake 224 at representative age classes are on 

average 92% lighter, 54% smaller, and 26% poorer condition than historical sizes. A similar 

narrative emerges in Lake 373 where White Suckers are on average 75% lighter, 36% smaller, 

and 17% less proportionately sized than historical records. Lake 442 immature fish growth was 

reduced on par with the previous two lakes (81% lighter, 42% smaller, 11% less proportionately 

sized). Compared to the NDMNRF populations, no NDMNRF lake experienced as dramatic 

annual or total declines over time in growth (Table 3.4, Table 3.6). Declines to weight growth 

were a mix of linear (LDML), exponential (Nipigon), and square root (LOTW), and declines to 

fork length growth were mostly linear (LDML, LOTW, Whitefish) but also exponential 

(Nipigon).  Immature weight reductions ranged from 27% in age 2 LOTW fish to 50% and 52% 

in LDML and Nipigon fish respectively. Similarly with fork length, a range of declines were 

experienced from 3% and 6% in age 2 LOTW and age 4 Whitefish, to 19% and 21% reductions 

in LDML and Nipigon fish. Only Lake Nipigon age 2 White Suckers experienced a body 

condition decline among the external lakes, and this relationship was linear. The immature Lake 

Nipigon White Suckers have reduced in condition by 59%, a metric greater than any body 

condition decline observed across all 7 study populations. 

 When comparing the different populations of mature White Sucker for changes to growth 

in representative age classes, ELA White Suckers exhibited consistent declines across all age 

classes and growth metrics in Lake 224, 373 and only in younger mature fish for weight and 
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length of Lake 442 (Table 3.3, Table 3.5). Seven of the 9 growth evaluations underwent 

exponential changes and the remaining two were linear (Lake 224 FLEN, Lake 442 RWT). 

Consistent with declines of immature fish, Lake 224 White Suckers were as much as 95% 

lighter, 64% shorter and 23% poorer conditioned, and Lake 373 White Suckers were 71% 

lighter, 32% shorter and 14% less proportionately sized. Lake 442 younger mature fish (where 

data length was still respectable for interpretation) experienced 26% and 17% declines to weight 

and length and no declines to condition. From the NDMNRF data, only mature White Sucker of 

Lake Nipigon declined steadily in length (Table 3.4, Table 3.6) and the decline was by a 

maximum of 40mm (9%) in any mature age class; the shallowest compared to any lake ELA or 

NDMNRF lake. Lake Nipigon White Sucker weight also declined at a steady linear rate and 

when compared to the younger mature representative age class in Lake 442, declines in Lake 

Nipigon were greater over the whole study period (Lake Nipigon: 15%, -180g; L442: 26%, -

147g). LOTW body condition declined by a statistically significant but negligible amount (-

0.001 units, 3% over 34 years) and was not comparable to the 10+ percent declines observed in 

ELA populations. 

Hierarchical Partitioning 

 Across representative age classes from each of the 3 ELA lakes, the outcomes from 

hierarchical partitioning and partial regression plots showed that the selected predictor variables 

were all significantly responsible to varying degrees at explaining the variance in size at some 

point during the lifespan of White Sucker. GDD5 in all lakes have increased, and zooplankton 

biomass levels in lakes 224 and 442 have declined precipitously from their peak levels, however 

biomass in lake 373 has been variable over time (Appendix 4 Figure D, E, F). Lastly, all three 

lakes have experienced rapid increases to population densities (Appendix 4Figure D, E, F). 
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Recall that representative age classes were ages 4, 6, 8 in Lake 224, 2, 3, 5 in Lake 373, and 4, 5 

in Lake 442. In Lake 224, 4-year-old White Sucker sizes (representative of immature fish in this 

lake) were most significantly negatively explained by zooplankton abundance (RWT 80.9%, Z = 

6.7; FLEN 84.9%, Z = 6.71; BCD 75%, Z = 4.14;Table 3.7, Figure 3.10). Independent 

contributions from GDD5 were significantly negatively responsible for declines in all 3 variables 

of 6-year-old females (representative of younger mature sucker; Cumulative GDD5: RWT 

41.5%, Z = 2.5; FLEN 47%, Z = 2.69; BCD 35.7%, Z = 2.34), and food availability was 

significantly negatively responsible to weight, condition, and nearly significantly negatively 

responsible to length (food availability: RWT 31.2%, Z = 1.65; FLEN 31.8%, Z = 1.56 @ 9999 

iterations; BCD 59.8%, Z = 4.34).  Finally, 8-year-old females (representative of older mature 

sucker) were nearly significantly negatively explained by population density for weight and 

length, though not for body condition (both re-tested at 9999 iterations: RWT 72.6%, Z = 1.61; 

FLEN 60.3%, Z = 1.45). In summary, partial regression analysis revealed the majority of 

relationships between growth predictor variables and size variables were negatively related 

(Table 3.7). 

 Examination of Lake 373 outcomes showed that climate was most negatively responsible 

for weight and length of 2-year-old fish (immature fish with a slower declining growth rate), and 

food availability was most positively responsible for body condition, though none of these were 

identified as significant (RWT 62.6%, Z = 0.27; FLEN 80.4%, Z = 0.49; BCD 83.8%, Z = 

0.89;Table 3.7, Figure 3.11). Population density appeared to be the sole variable most negatively 

responsible for declines with all size metrics of 3-year-old fish (immature fish declining in 

growth more quickly; RWT 75%, Z = 4.01; FLEN 77.3%, Z = 5.53; BCD 77%, Z = 1.26). 

Finally, a mix of climate and population were most negatively responsible for explaining the size 
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of 5-year-old females (mature fish representative of all mature age classes; Cumulative GDD5: 

RWT 37.4%, Z = 2.02; FLEN 29%, Z = 1.07; BCD 55.7%, Z = 2.83; Population density: RWT 

56.7%, Z = 3.18; FLEN 68.9%, Z = 3.73; BCD 40.3%, Z = 1.91). Partial regression revealed 

negative trends between all growth metrics of all age classes with GDD5 and population density, 

and nearly all positive trends with food availability (Table 3.7). 

 The outcomes from hierarchical partitioning in Lake 442 showed that independent 

contributions of population density to 4-year-old fish (representative of the immature population) 

were most significantly negatively explained by population density, though it was not significant 

for body condition (RWT 89.8%, Z = 4.04; FLEN 85.8%, Z = 4.02; BCD 93.8%, Z = 0.91; Table 

3.7, Figure 3.12). Five-year-old fish (representative of mature suckers whom are declining in 

growth) were most negatively explained by population density and food availability for length 

and weight, and body condition seemed to be negatively explained most by GDD5 and food 

availability, though none of these contributions were significant (Population density: RWT 

51.4%, Z = 0.67; FLEN 48.4%, Z = 0.69; food availability: RWT 47.2%, Z = 0.52; FLEN 

48.6%, Z = 0.65; BCD 30.5%, Z = -1.01; Cumulative GDD5: BCD 50.9%, Z = -0.98).  Partial 

regression analysis revealed that for age class 4, GDD5 and food availability were positively 

correlated with all size variables (with exception to BCD~ food availability) and population 

density was negatively correlated with all variables. Among age class 5, only GDD5 was 

positively correlated with weight and length; BCD~ GDD5, and all relationships between 

population density and food availability were negative (Table 3.7).  
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DISCUSSION 

 Growth of White Sucker in all ELA reference populations (e.g., those not undergoing any 

intentional manipulation) declined significantly throughout the 33-year study period. On average, 

growth of White Suckers in the representative age classes across Lake 224, 373, and 442 

declined between 25 – 95% in weight, 17 – 64% in length, and 11 – 26% in condition. The oldest 

age classes of Lake 442 were the only White Sucker from ELA lakes shown to be growing larger 

over time, yet this can likely be attributed to the smaller dataset (i.e., shorter period of 

evaluation) for this lake. Interestingly, the greatest declines across all ELA lakes appear to be in 

the immature ages, a pattern that held true within the NDMNRF lakes despite physical (e.g., lake 

size) and geographical differences.  

Observed declines in White Sucker growth were associated with several environmental 

factors; annual growing degree days above 5oC have increased and zooplankton biomass levels 

have declined dramatically from peak densities experienced in Lake 224 and 442 but have been 

variable over the decades in Lake 373. Consistently, populations and biomass of White Sucker 

sharply increased in all 3 ELA lakes, but these increases to population density seemingly had no 

effect on zooplankton biomass levels (Appendix 4 Figure G), suggesting the significant negative 

relationship between food resources and White Sucker growth declines are likely an artefact of a 

different relationship that was not evaluated here (e.g., the potential role of DOC inputs; Tonin 

2019). With no anthropogenic interference in these systems, few other possible causes exist for 

the changes to our growth variables besides climate change. These results demonstrate that the 

effects of climate change are significantly impacting the growth potential of White Sucker both 

directly via changes in environmental temperatures and indirectly via changes in population 

density. 
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Density dependence is a well-documented phenomenon that, via competition for shared 

resources is capable of altering the asymptotic body size of fishes (Chen and Harvey 1995; 

Pierce et al. 2003). Population size was identified as a leading or secondary contributing factor to 

growth declines in our oldest age classes across all lakes and was negatively associated with all 

size variables of all age classes. Indeed, population estimates and biomass are increasing over 

time at the ELA in conjunction with significant declines to size-at-age. This most likely has to do 

with more favourable conditions to support the survival of juvenile fishes through their first 

growing and overwintering seasons (Biro et al. 2004). Age-0 White Suckers have been shown to 

accumulate biomass at optimal rates when occupying water temperatures of 27oC (McCormick et 

al. 1977); the faster a juvenile fish achieves its required somatic growth target, the longer in the 

season it has to accumulate lipid stores for overwinter survival (Biro et al. 2004, 2005). Evidence 

from another study (Guzzo and Blanchfield 2017) shows that winter seasons are becoming 

shorter at the expense of longer, warmer growing seasons in this region, a finding corroborated 

here by increased annual GDD5 in our lakes. This suggests that conditions favourable to juvenile 

growth and survival have likely improved for this species, and that increases in population 

density and biomass are likely due to higher juvenile survival. 

There were clear increasing trends in GDD5 over time in all 3 lakes, which for a species 

whose preferred thermal growing optima is ~25oC (Hasnain et al. 2010), more GDD should 

promote growth rates and sizes at a given age, yet these trends appear to be negatively 

contributing to White Sucker growth declines in Lake 224 and 373. Environmental temperatures 

control the vital rates such as metabolism and consumption of ectotherms, which can affect body 

size either separately or in combination (McCormick et al. 1977; Borgmann and Ralph 1985; 

Atkinson 1994; Brown et al. 2004; Volkoff and Rønnestad 2020). Growing degree days directly 
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relate the thermal energy of the environment with an organism’s cumulative metabolism and has 

explained much of the variation in size and maturity relationships among immature fish species 

(Neuheimer and Taggart 2007; Venturelli et al. 2010). These studies show that fish growth and 

GDD are positively correlated, and lower densities may further increase growth rates predicted 

by GDD (Venturelli et al. 2010). In my study, under higher densities, higher environmental 

temperatures and metabolic processes are potential causal factors to growth declines, even after 

maturation. When fish become sexually mature, they begin re-allocating energetic gains from 

somatic growth to reproductive development which constitutes a significant energetic investment 

(Lester et al. 2004). This added energetic cost coupled with a greater need to compete as 

populations increase (Chuard et al. 2018) may be constraining energy supply in older fish, 

leaving less energy to contribute to weight, length, and condition gains, ultimately causing 

smaller sizes at ages and reduced individual fecundity. Although behavioural thermoregulation 

has been documented in the species (McCormick et al. 1977; Trippel and Harvey 1987), it is 

likely not relevant in this scenario, as the increasing amount of competition forces fish to become 

more active, regardless of the thermal costs involved (Chuard et al. 2018). 

White Sucker has long been thought of as a benthic feeder, whose diet is primarily 

composed of chironomids (Trippel and Harvey 1987; Chen and Harvey 1995), though Saint-

Jacques et al. (2000) showed that White Suckers are flexible in their diet and can switch their 

resource use when one forage base becomes exhausted. Limited gut analysis of White Sucker 

and the bedrock lake bottoms of the ELA suggest zooplankton may be an important forage 

species for White Sucker in these lakes. My study indicates food availability (zooplankton 

biomass) was a significant negative influence on size at age of White Sucker in Lake 224, 

however White Sucker abundance was not correlated with zooplankton biomass (Appendix 4 
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Figure G), suggesting observed relationships between zooplankton and White Sucker growth are 

an artefact of a different relationship unaccounted for in this study.  

Recent research into the effects of varying DOC gradients across lakes on resource 

availability have shown that higher DOC content is associated with lower biomass of 

zooplankton, benthic invertebrates, and White Sucker, indicating perhaps DOC or light 

penetration is playing a mediating role between food availability and White Sucker abundance 

(Tonin 2019).  Using stable isotopes, this recent study found that chironomids were identified as 

an important diet component of White Sucker, and that zooplankton may not be as effective at 

capturing patterns of resource availability as well as initially thought (Tonin 2019). Tonin (2019) 

found that fewer food resources support lower White Sucker biomass, i.e., fewer fish with faster 

growth and larger sizes occurring when fewer resources are present in the system. Tonin (2019) 

and my study highlight that density dependence is a critically important factor in the growth 

relationships in ELA lakes because these are unexploited systems that lack additive pressures. 

Fewer growth declines to White Sucker populations in NDMNRF lakes were witnessed 

across the region, but when declines occurred, they were most notably discovered in the 

immature ages of these populations (when excess energy is solely directed to somatic growth). 

The size reductions were much less drastic than those witnessed in the ELA lakes, and only in 

Lake Nipigon was stunted immature growth carried through to the older ages. These lakes are all 

much larger and complex in habitat and biological community than the ELA lakes, which for a 

White Sucker, may help to insulate them from serious harmful climatic impacts, potentially 

explaining why growth was not as significantly reduced compared to ELA populations. Due to a 

lack of associated environmental data, we did not investigate the drivers of growth relationships 

in the NDMNRF lakes, so it is unclear which specific variables are contributing to slower 
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immature growth rates in these lakes. However, White Suckers in these systems are not likely to 

be significantly targeted by any amount of fishing effort, thus they should be reflective of the 

conditions in their environment. I believe the fact that I see a change in somatic growth rates to 

immature age classes of an environmentally tolerant, unexploited species, supports my claim that 

White Suckers are likely to be negatively impacted by climate change, and thus are a useful 

sentinel species for climate change monitoring. 

 The consequences of reduced body size in fishes due to driving pressures such as climate 

change are far-reaching and capable of impacting a species fitness in many ways.  Recently 

summarized by Ahti et al. (2020), individual-level implications may alter juvenile and adult 

growth rates, behavioural changes, and fecundity. At the population level, a change in body size 

can change population growth, and phenotypic and genotypic expression. Finally at the 

ecosystem level, predator-prey dynamics may change, and trophic cascades may occur if body 

size changes take effect. Further complicating matters at the ecosystem level, body size may be 

capable of initiating positive feedback loops, where a slight change to smaller sizes may amplify 

predation dynamics and mortality leading to reduced overall biomass of a species (Audzijonyte 

et al. 2013). Ultimately the consequences of reduced body size in response to external pressures 

such as climate change may contribute to reduced survival of a species at all levels of biological 

organization.  

In my study, I have identified that a population level response to a warmer climate seems 

to be the leading cause for size declines, as this has been paralleled by increases to GDD5 which 

are presumably having positive effects to juvenile survival and negative effects to adults through 

increased competition. Further, there are clear negative trends in the zooplankton biomass levels 

of these lakes, which is likely still relevant to White Sucker growth, but at a lesser degree than 



84 

 

initially hypothesized to be. Spawning phenology has not been changed by population size shifts 

nor climate change, though Chapter 2 presents evidence that spawning events may be highly 

susceptible to climate change, should a trend to warmer springs occur. Finally, growing seasons 

and over-wintering periods have changed for the better from a juvenile fish’s perspective 

(McCormick et al. 1977; Borgmann and Ralph 1985; Biro et al. 2004), suggesting the climatic 

influence on these lakes may have promoted juvenile survival and recruitment at the expense of 

adult body growth.  

The independent evaluation of the historical ageing data showed that exact agreement 

between readers was strong and agreement between all readers within one year was nearly 100%. 

There was some evidence of age overestimation in age 3-4 fish from the pre-1995 period which 

could exacerbate declines if pre-1995 fish were aged one year older than supposed to be. 

However, of all samples determined to be age 3 or 4 by myself, only 29% (38 of 131) of these 

samples did not agree exactly with the previously determined age. This was the only case of any 

significant source of ageing bias between readers and across all age classes. Despite this 

potential bias in two age classes, we still observed significant declines in growth across all ages, 

increasing my confidence that the large depressions to size at age were not a result of 

inconsistent age interpretation. 

 

CONCLUSION 

A recent review paper has identified knowledge gaps of the current literature and future 

needs of climatic research on inland fish populations of North America (Lynch et al. 2016). They 

correctly identify that the current body of information focuses mostly on 1) distributional shifts, 
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2) projections of future effects, and 3) coastal/great lakes regions and important game species of 

those regions. This study addresses all three knowledge gaps, as it provides observational 

evidence of climatic effects to growth in a poorly regarded, non-game species across a 

Northwestern Ontario distribution. Further my study supplies resource managers with a 

potentially useful sentinel species for monitoring aquatic climate change impacts across North 

America. Ultimately my study shows that White Sucker populations have very likely been 

affected by climate change, most significantly due to increased survival and density dependent 

consequences. Understanding the range of potential ecological effects to a species via climate 

change will help better inform the survival and fitness expectations of future individuals and 

populations.  

 

 



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

Table 3.1. Breakdown of lakes used, years of data included in the growth analyses, and physical 
lake morphological characteristics. 

Lake  
Data Range 
(years 
inclusive) 

# Years 
included 
in models 

Surface 
Area (m2) 

Max 
depth (m) 

Average 
Depth (m) 

Water 
Clarity (m) 

Lake 224 1979 - 2018 30 25.92 27.4 11.8 6.5 
Lake 373 1987 - 2019 29 27.3 20.75 11.4 6.1 
Lake 442 1990 - 2008 18 16 17.8 8.5 4.4 
Lacs des 
Milles Lacs 1999 - 2018 8 24511 24.4 6.8 2.5 

Lake of the 
Woods 1986 - 2019 34 434900 64 N/A < 1 to > 3.5 
Lake 
Nipigon 1999 - 2018 12 484800 165 55 N/A 
Whitefish 
Lake 1989 - 2018 10 2871 6.4 2 2.5 

 

Table 3.2. Summary of ager comparisons relaying number of samples examined and how the 
agers compared in the interpretation of the slides. Ager 1 was responsible for the pre-1995 era 
and Ager 2 was responsible for the post-1995 era. BDS was the principle ager of this study, 
responsible for the verification of historical data and updating records from 2014 – 2019. 

 

 

 

 

 

 

Test Exact 
agreement 
(#) 

Agreement 
within 1 year (#) 

Exact 
agreement 
(%) 

Within 1-year 
agreement (%) 

Structures 
examined 
(Total #) 

Ager 1: BDS 234 282 83% 100% 282 

Ager 2: BDS 260 273 95% 99.60% 274 

BDS: BDS 66 66 100% 100% 66 
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Table 3.3. Annual rates of change to size at age of White Sucker from representative age classes 
in the ELA lakes. Percent decline indicates exponential relationship. 

Lake  Ages RWT FLEN BCD 

224 1–4 -7.60% -2.40% -0.90% 

 
6 -9.30% -8.6mm -0.80% 

 
8 -4.60% -5.3mm -0.40% 

 

373 2 -3.00% -0.90% -1.1% 

 
3 -6.20% -1.90% -1.1% 

 
5–10 -3.80% -1.20% -0.50% 

 

442 1–4 -8.90% -2.90% -0.60% 

 
5 -8.2g -1.00% 0 

  8 +37.5g 0.70% 0 
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Table 3.4. Annual rates of change to size at age of White Sucker from representative age classes 
in the NDMNRF lakes. Percent decline indicates exponential relationship 

Lake  Age RWT FLEN BCD 

LDML 1-4 -21g 3.7mm 0 

 
5-10 0 0 0 

 

LOTW 1 5.71% 3mm 0 

 
2 -0.97% 0  0 

 
3 0.74% 1.0mm 0 

 
6-10 0 0 -0.001 

 

NIP 2 -4g -2mm -0.01 

 
4 -4g -2mm 0.01 

 
9 -9.5g -2.mm 0 

 

WFSH 1–4 0 -1mm 0 

  7 +6.1g 1.0mm 0 
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Table 3.5. Total average decline in growth of representative age classes for White Sucker among 
ELA lakes over each lake’s study frame (Lake 224 & Lake 373: 1987 – 2019, Lake 442: 1990 – 
2008). Decline in growth is expressed as a numeric and percent value. 

Lake Age RWT % RWT (g) FLEN % FLEN # BCD % BCD # 

224 4 -92.30% -226g -53.70% -140mm -26.00% -0.28 

 
6 -95.60% -1173g -64.00% -275mm -23.00% -0.27 

 
8 -78.10% -1002g -38.00% -168mm -12.30% -0.14 

 

373 2 -63.00% -22g -25.60% -36mm -17.40% -0.17 

 
3 -87.50% -127g -47.00% -105mm -16.80% -0.17 

 
5 -71.00% -378g -32.00% -105mm -14.50% -0.17 

 

442 4 -81.50% -363g -41.80% -134mm -11.10% -0.11 

 
5 -26.00% -147g -17.40% -61mm -- -- 

 
10 14.00% +112g 1.60% +6mm -- -- 
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Table 3.6. Total average decline in growth of representative age classes for White Sucker among 
NDMNRF lakes over each lake’s study frame (LDML & Nipigon: 1999 – 2018, LOTW: 1986 – 
2019, WFSH: 1989 – 2018). Decline in growth is expressed as a numeric and percent value. 

Lake  Age RWT FLEN BCD 

LDML 4 -50% -402g -19% -70mm -- -- 

 
6 -- -- 0% -- -- -- 

 

LOTW 1 535.00% +270g 66% +107mm 

-- -- 

 
2 -27.00% -64.5g -3% -8mm -- -- 

 
3 28.00% +90.5g 12% +32mm -- -- 

 
6 -- -- -- -- -3% -0.04 

 

NIP 2 -52.00% -108g -21% -52mm -59% -1.4 

 
4 -52.00% -227g -21% -66mm 20% 0.2 

 
9 -15% -180g -9% -39mm -- -- 

 

WFSH 4 -- -- -6% -25mm 

-- -- 

89-18 7 18% +176g 7% +29mm -- -- 
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Table 3.7. Partial regression coefficients indicating directionality of the relationship between the 
predictor variables (GDD, POP, ZOOP) and response variables (RWT, FLEN, BCD). Green 
squares indicate significant relationships (Z > +/- 1.65), light green squares indicate nearly 
significant relationships (Z > +/-1.45, < +/-1.65) discovered in hierarchical partitioning analyses. 

Lake Age Size 
Variable GDD POP ZOOP 

Lake 224 Age 4 RWT -0.04 -0.16 -0.34 
    FLEN -0.03 -0.08 -0.24 
    BCD -0.000005 0.000178 -0.000249 
  Age 6 RWT -0.31 -1.06 -1.34 
    FLEN -0.11 -0.20 -0.35 
    BCD -0.0001 0.0001 -0.0004 
  Age 8 RWT 0.01 -1.54 -0.16 
    FLEN -0.01 -0.29 -0.06 
    BCD 0.0001 -0.0002 0.0001 

            
Lake 373 Age 2 RWT -0.02 -0.01 0.01 
    FLEN -0.03 -0.01 0.00 
    BCD -0.00007 -0.00001 0.00017 
  Age 3 RWT -0.05 -0.10 0.03 
    FLEN -0.04 -0.09 0.04 
    BCD -0.00004 -0.00011 0.00010 
  Age 5 RWT -0.34 -0.58 -0.48 
    FLEN -0.07 -0.15 -0.06 
    BCD -0.0001 -0.0001 0.0001 

            
Lake 442 Age 4 RWT 0.03 -0.35 0.06 
    FLEN 0.01 -0.16 0.06 
    BCD 0.00001 -0.00009 -0.00002 
  Age 5 RWT 0.12 -0.80 -1.53 
    FLEN 0.05 -0.25 -0.47 
    BCD -0.000004 -0.000047 -0.000210 
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Figure 3.1. Size at age comparison plots between the ager of the current study (Ager 3) and the 
ager responsible for ages assigned through the 1970’s, 1980’s and the early 1990’s (Ager 1). 
Values on the plot indicate the number of fins aged at a certain age. Values that fall within the 
boxes indicate perfect agreement between the agers. 
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Figure 3.2. Size at age comparison plots between the ager of the current study (Ager 3) and the 
ager responsible for ages assigned from the mid 1990’s to 2013 (Ager 2). Values on the plot 
indicate the number of fins aged at a certain age. Values that fall within the boxes indicate 
perfect agreement between the agers. 
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Figure 3.3. Representative age classes from Lake 224 depicting changes in size at age over time. Age classes are by column while size 
variables are by rows Bars represent standard error of the mean. R2 values range from 0.50 (mature body condition) to 0.78 (mature 
fork length) indicating overall fair to strong model fits. 
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Figure 3.4. Representative age classes from Lake 373 depicting changes in size at age over time. Age classes are by column while size 
variables are by rows Bars represent standard error of the mean. R2 values range from 0.42 (mature body condition) to 0.82 (immature 
round weight) indicating overall fair to strong model fits 
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Figure 3.5. Representative age classes from Lake 442 depicting changes in size at age over time. Age classes are by column while size 
variables are by rows Bars represent standard error of the mean. R2 values range from 0.3 (mature body condition, year non-
significant) to 0.85 (immature weight and length) indicating certain models for size at age fit more strongly than others. 
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Figure 3.6. Representative age classes from Lac des Milles Lacs depicting changes in size at age over time. Age classes are by column 
while size variables are by rows. Bars represent standard error of the mean. With the exception of body condition, R2 values range 
from 0.34 (mature weight) to 0.87 (immature length) indicating overall fair to strong model fits  
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Figure 3.7. Representative age classes from Lake of The Woods depicting changes in size at age over time. Age classes are by column 
while size variables are by rows. Bars represent standard error of the mean. With the exception of immature and mature body 
conditions, R2 values range from 0.62 (immature weight) to 0.7 (mature length) indicating overall moderate model fits 
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Figure 3.8. Representative age classes from Lake Nipigon depicting changes in size at age over time. Age classes are by column while 
size variables are by rows. Bars represent standard error of the mean. R2 values range from 0.17 (mature body condition, year not 
significant) to 0.61 (mature weight) indicating generally fair model fits 
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Figure 3.9. Representative age classes from Whitefish Lake depicting changes in size at age over time. Age classes are by column 
while size variables are by rows. Bars represent standard error of the mean. With the exception of mature body condition, R2 values 
range from 0.5 (immature body condition, year not significant) to 0.91 (immature length) indicating overall stronger model fits.
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Figure 3.10. Hierarchical partitioning relaying the percent independent and joint contribution 
each of the size predictor variables were responsible for in explaining size at age of White 
Sucker in Lake 224. Representative age classes were selected for brevity and are listed by 
column. Size variables are by row. 
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Figure 3.11. Hierarchical partitioning relaying the percent independent and joint contribution 
each of the size predictor variables were responsible for in explaining size at age of White 
Sucker in Lake 373. Representative age classes were selected for brevity and are listed by 
column. Size variables are by row. 
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Figure 3.12. Hierarchical partitioning relaying the percent independent and joint contribution 
each of the size predictor variables were responsible for in explaining size at age of White 
Sucker in Lake 442. Representative age classes were selected for brevity and are listed by 
column. Size variables are by row. A third, older age class was not included due lesser data in 
older age classes and misalignment of size values with predictor variables.  
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Chapter 4 General Conclusions 
 

 The broader objectives of this thesis were to evaluate changes to important life history 

characteristics in White Sucker and Lake Trout from observed patterns of climate change over 

the past 50 years. Two widely expected life history changes in response to climate change are 

shifting spawning phenology and shrinking of body sizes; both resulting from warmer 

temperatures. The findings of both data chapters corroborate these expected results as I displayed 

clear links between seasonal climate variation and longer-term climate trends with changes to the 

phenology of spawning in both White Sucker and Lake Trout. Additionally, my second data 

chapter supports the expectation that fish will shrink under increased warming, but interestingly 

this was for a species hypothesized to benefit from climate change. Ultimately, I have provided 

more observational evidence for the effects of climate change in two freshwater species and 

further support the growing body of evidence that climate change will negatively impact fish 

populations globally.  

The main objective of the first chapter in this study was to assess whether climate change 

impacts experienced on a longer time scale have caused changes to the spawning phenology in 

resident populations of White Sucker and Lake Trout at the ELA. I discovered that the timing of 

peak spawning was heavily governed by thermal conditions of the spawning season and shifts in 

peak spawning were related to climatic patterns observed during the shoulder seasons. Average 

fall water temperatures in the 7 study lakes have increased by 1.4oC over 50 years and similarly, 

Lake Trout average peak spawning date has shifted by 5 days over 43 years in these lakes. No 

detectable change was observed in average spring water temperature in 8 lakes, and predictably, 

no detectable change was observed in the spawning phenology for White Sucker of those 8 lakes. 
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This chapter identified behavioural spawning responses to environmental conditions in the field, 

furthering our knowledge of the expected response to phenological events in species exposed to 

the effects of climate change.  

 Regarding my second chapter’s objectives, I sought to describe and detail patterns in 

growth of White Sucker at the ELA potentially as a response to the effects of climate change. 

Additionally, I evaluated whether this species has merit as a sentinel for climate change by 

evaluating populations external to the ELA for similar changes. The White Sucker populations 

have experienced precipitous declines to growth and body size over the 43-years where spring 

captured morphometric data was available. This concerning trend appeared to be primarily 

governed by the density dependent effects of population size, likely as a result from increased 

juvenile survival and recruitment to adulthood. I did discover few changes to growth in all 

NDMNRF populations, where most of the growth impairments seem to be occurring in the 

immature age classes. The White Sucker is commonly used in environmental effects monitoring, 

and perhaps this finding proves that they have potential as a sentinel species useful in longer-

term climate effects monitoring programs. Overall, this study provided some much-needed 

observational data on growth declines as a result from climate change, as much of today’s focus 

is on projecting future changes to body sizes.  

When considering the greater context that these studies contribute to the impacts of the 

success and fitness to fishes over periods of observed climate change, an interesting story 

emerges. First considering the White Sucker, a spring spawning species with a generally higher 

thermal tolerance among Ontario fishes, the phenology of spawning events and exposure to 

temperatures optimal for development have remained stable because spring-time thermal 

conditions have remained stable; my study shows White Suckers spawn between 14-17oC, and 
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other research suggests optimal incubation temperatures occur at ~15oC (McCormick et al. 

1977). Further, no mismatch effect by advanced development and emergence should be expected 

for a significant portion of the hatching population because to this point, there has been no effect 

of climate change realized on the next generation. 

Once emergent fry hatch and deplete their yolk sacs, they must switch to active feeding, 

of which zooplankton appears to be a primary diet component (Siefert 1972; Borgmann and 

Ralph 1985). Again, I show there has been no observed temperature increase during spring, thus 

resources cued by separate signals of stratification or water temperature are not likely to bloom 

out of synchrony, and peak abundances of phytoplankton and zooplankton should remain in-step 

with one another (Winder and Schindler 2004; Thackeray 2012). Alternatively, where 

overwintering dynamics of phytoplankton and zooplankton have occurred, lingering top-down 

effects (more consumer, less producer than expected) can persist into the first major bloom of the 

season, though the effect largely vanishes after 1 month of ice off (Hébert et al. 2021), 

suggesting summertime juvenile food sources should remain stable.  

As the next generation of White Sucker approach the summer, this is a critical period of 

time where they must feed and grow somatically to achieve threshold sizes that reduce predation 

and allow their bodies to begin building lipid reserves for the winter (Biro et al. 2004, 2005; 

Mogensen and Post 2012). Research shows that juvenile White Suckers reared at 26.9oC achieve 

the most optimal rate of biomass gain; my study and Guzzo and Blanchfield (2017) show that 

summer maximum air and surface water temperatures are not increasing, but rather the length of 

the growing seasons above a biologically relevant thermal threshold of 5oC are. This indicates 

that the period in which juveniles have to attain critical somatic lengths and lipid reserves are 

increasing. Overwintering is a significant mortality source to juveniles (Biro et al. 2004), so the 
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longer growing period affords juveniles more time to attain their critical overwintering sizes. 

Further, (Guzzo and Blanchfield 2017) have found wintering seasons to be as much as 19 days 

shorter, which suggests that lipid reserves are likely robust to sustain more individuals through 

the winter season from a combination of a higher lipid reserve quantity and shorter duration than 

it needs to last for.  

The expected result of increased juvenile overwintering survival would be a higher 

population density of White Suckers, and my data from Chapter 3 shows exactly that in all 3 

ELA lakes. Populations have been steadily increasing during periods where growth and size at 

age has been declining. Further, population density was identified as a leading or secondary 

significant independent causal factor, for which the relationship between growth and abundance 

was negative in nearly all cases, and regardless of significance level identified in the HP 

analysis. In the absence of empirical work evaluating juvenile White Sucker survival at ELA, I 

can only hypothesize that higher juvenile recruitment is leading to higher population densities, 

though this is based on the peer-reviewed findings of others which I believe provides credibility 

to my hypothesis. Future research would be welcomed to better explain the mechanisms of 

juvenile survival and changes in population density of White Sucker in these lakes to confirm or 

refute this hypothesis. 

The story for fall spawning Lake Trout is somewhat different, given the different life 

history strategies of the fish. Fortunately, the species appears to be adjusting its spawning 

phenology so that its eggs are not being exposed to warmer fall conditions that can advance 

development and cause overwinter mortality (Casselman 1995). As spring conditions are being 

held constant, the hatching time and initial forage base are likely not significantly impacted, 

suggesting zooplanktivorous juveniles (Ellen Marsden et al. 2022) of fall spawning fish are also 
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still experiencing the optimal rearing conditions. A longer growing season and shorter winter is 

likely to benefit Lake Trout fry as well, though their optimal rearing temperature is attained at 

12.5oC (Edsall and Cleland 2000). This cooler optimal temperature suggests that somatic growth 

and fortification of lipid reserves may be paused with warm summer temperatures, a 

phenomenon observed in juveniles of other cold water species such as Rainbow Trout 

(Oncorhynchus mykiss; Mogensen and Post 2012). It is possible that the current effect of climate 

warming is providing juvenile Lake Trout a slight advantage, though warmer temperatures 

undoubtedly pose a greater threat to this species at all life stages compared to the White Sucker. 

An interesting topic that emerged while researching spawning information on both of my 

study species was the potential for them to skip spawning (Trippel and Harvey 1990; Morbey 

and Shuter 2013), a phenomenon typically characterized by poor environmental conditions that 

leads to undeveloped gonads and the inability to participate in spawning (Rideout and 

Tomkiewicz 2011). It is plausible a direct effect of temperature on Lake Trout physiology during 

the summer is indirectly affecting spawning phenology at the ELA, considering that hypoxic 

conditions strain physiological and reproductive demands in Lake Trout (Evans 2007), and 

hypoxic conditions are becoming more common in ELA lakes due to climate change (Guzzo and 

Blanchfield 2017). This has already been shown to affect other species, as Trippel and Harvey 

(1989) have shown widespread hypolimnetic oxygen deficiencies are associated with poor 

reproductive condition in White Sucker. Future research evaluating the effect of hypoxia 

(presence/persistence) on peak spawning dates would be necessary to address whether this is 

affecting spawning activity of ELA fish.  

 This study addressed and provided evidence that White Sucker may be a valuable 

sentinel species for climate monitoring programs. That such significant declines were observed 
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in small shield lakes, and that those patterns were repeated in some of the largest lakes in 

Northwestern Ontario, I believe provides good evidence that this pattern is not restricted to one 

environment type and is likely representative of the general trends in a majority of White Sucker 

populations across the region that are being impacted by climate change. Fish growth at 

immature age classes best reflects environmental conditions as this is the period when excess 

energy is directed to somatic body growth. Some of our most significant size declines occurred 

in the immature age classes at ELA and most of the growth declines of external populations  

 To conclude, this thesis addressed several knowledge gaps identified in the literature. 

Regarding spawning, the first chapter identified in-field behavioural responses to varying effects 

of climate change during the appropriate spawning season. I addressed a knowledge gap 

identified by (Goetz et al. 2021), answering the effect temperature has on the timing of spawning 

in Lake Trout. My second chapter addressed several knowledge gaps identified in fisheries and 

climate literature by (Lynch et al. 2016); these knowledge gaps included the lack of 

observational evidence, lack of regional and species diversity, and lack of diversity in topics 

explored. Here, I presented observational discoveries of declines to growth and condition from 

datasets 20 – 41 years in length for 7 distinct populations of a non-game species spread across a 

geographic range of +300km in Northwestern Ontario. Fortunately, these data will continue to be 

collected through annual sampling at the ELA, ensuring that future climate effects monitoring 

can continue. Opportunities for more research into climate impacts may want to evaluate 

potential changes in fecundity, impacts to eggs and fry survival post-spawning and the effects 

hypoxia and increased metabolic burdens place on timing of spawning.  

 



112 

 

REFERENCES 

Ahti, P.A., Kuparinen, A., and Uusi-Heikkila, S. 2020. Size does matter – the eco-evolutionary 
effects of changing body size in fish. Environ. Rev. 28(3): 311–324. doi:doi.org/10.1139/er-
2019-0076. 

Anderson, E.J., Stow, C.A., Gronewold, A.D., Mason, L.A., McCormick, M.J., Qian, S.S., 
Ruberg, S.A., Beadle, K., Constant, S.A., and Hawley, N. 2021. Seasonal overturn and 
stratification changes drive deep-water warming in one of Earth’s largest lakes. Nat. 
Commun. 12(1): 1–9. Nature Publishing Group. doi:10.1038/s41467-021-21971-1. 

Anderson, T.W., and Sabado, B.D. 1995. Correspondence between food availability and growth 
of a planktivorous temperate reef fish. J. Exp. Mar. Bio. Ecol. 189: 65–76. 
doi:10.1016/0022-0981(95)00011-F. 

Asch, R.G., Stock, C.A., and Sarmiento, J.L. 2019. Climate change impacts on mismatches 
between phytoplankton blooms and fish spawning phenology. Glob. Chang. Biol. 25(8): 
2544–2559. doi:10.1111/gcb.14650. 

Atkinson, D. 1994. Temperature and Organism Size-A Law for Ectotherms? In advances in 
ecological research, 25th edition. Edited by M. Begon and A.H. Fitter. Academic Press Inc., 
San Diego. pp. 1–58. 

Atkinson, D., Morley, S.A., and Hughes, R.N. 2006. From cells to colonies: At what levels of 
body organization does the “temperature-size rule” apply? Evol. Dev. 8(2): 202–214. 
doi:10.1111/j.1525-142X.2006.00090.x. 

Audzijonyte, A., Barneche, D.R., Baudron, A.R., Belmaker, J., Clark, T.D., Marshall, C.T., 
Morrongiello, J.R., and van Rijn, I. 2019. Is oxygen limitation in warming waters a valid 
mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 
28(2): 64–77. doi:10.1111/geb.12847. 

Audzijonyte, A., Kuparinen, A., Gorton, R., and Fulton, E.A. 2013. Ecological consequences of 
body size decline in harvested fish species: Positive feedback loops in trophic interactions 
amplify human impact. Biol. Lett. 9(2): 1–5. doi:10.1098/rsbl.2012.1103. 

Audzijonyte, A., Richards, S.A., Stuart-smith, R.D., Pecl, G., Edgar, G.J., Barrett, N.S., Payne, 
N., and Blanchard, J.L. 2020. Fish body sizes change with temperature but not all species 
shrink with warming. Nat. Ecol. Evol. 4: 809–814. Springer US. doi:10.1038/s41559-020-
1171-0. 

Baudron, A.R., Needle, C.L., Rijnsdorp, A.D., and Tara Marshall, C. 2014. Warming 
temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. 
Glob. Chang. Biol. 20(4): 1023–1031. doi:10.1111/gcb.12514. 

Beamish, F.W.H. 1964. Respiration of fishes with special emphasis on standard oxygen 
consumption. Part II. Influence of weight and temperature on respiration of several species. 
Can. J. Zool. 42: 177–188. doi:10.1139/z64-016. 

Beamish, R.J. 1972. Design of a trapnet with interchangeable parts for the capture of large and 



113 

 

small fishes from varying depths. J. Fish. Res. Board Canada 30(25): 587–590. 
doi:10.1139/f73-104. 

Beeby, A. 2001. What do sentinels stand for? Environ. Pollut. 112(2): 285–298. 
doi:10.1016/S0269-7491(00)00038-5. 

Belkin, I.M. 2009. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81: 207–213. 
doi:10.1016/j.pocean.2009.04.011. 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. 2012. Impacts of 
climate change on the future of biodiversity. Ecol. Lett. 15(4): 365–377. 
doi:10.1111/j.1461-0248.2011.01736.x. 

Bertolo, A., and Magnan, P. 2005. The relationship between piscivory and growth of White 
Sucker (Catostomus commersoni) and Yellow Perch (Perca flavescens) in headwater lakes 
of the Canadian Shield. Can. J. Fish. Aquat. Sci. 62(12): 2706–2715. NRC Research Press 
Ottawa, Canada. doi:10.1139/f05-174. 

Biro, P.A., Morton, A.E., Post, J.R., and Parkinson, E.A. 2004. Over-winter lipid depletion and 
mortality of age-0 Rainbow Trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 61(8): 
1513–1519. doi:10.1139/F04-083. 

Biro, P.A., Post, J.R., and Abrahams, M. V. 2005. Ontogeny of energy allocation reveals 
selective pressure promoting risk-taking behaviour in young fish cohorts. Proc. R. Soc. B 
Biol. Sci. 272(1571): 1443–1448. doi:10.1098/rspb.2005.3096. 

Bister, T.J., Willis, D.W., Brown, M.L., Jordan, S.M., Neumann, R.M., Quist, M.C., and Guy, 
C.S. 2000. Proposed standard weight (Ws) equations and standard length categories for 18 
warmwater nongame and riverine fish species. North Am. J. Fish. Manag. 20(2): 570–574. 
doi:10.1577/1548-8675(2000)020<0570:PSWWSE>2.3.CO;2. 

Biswas, S.R., Vogt, R.J., and Sharma, S. 2017. Projected compositional shifts and loss of 
ecosystem services in freshwater fish communities under climate change scenarios. 
Hydrobiologia 799(1): 135–149. doi:10.1007/s10750-017-3208-1. 

Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J., Dulvy, N.K., 
and Barange, M. 2012. Potential consequences of climate change for primary production 
and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 
367(1605): 2979–2989. doi:10.1098/rstb.2012.0231. 

Bond, W.A., and Machniak, K. 1979. An intensive study of the fish fauna of the Muskeg River 
watershed in northeastern Alberta. Edmonton, AB. doi:https://doi.org/10.7939/R34T6F64N. 

Borgmann, U., and Ralph, K.M. 1985. Feeding, growth, and particle-size-conversion efficiency 
in White Sucker larvae and young Common Shiners. Environ. Biol. Fishes 14(4): 269–279. 
Kluwer Academic Publishers. doi:10.1007/BF00002631. 

Brander, K., Neuheimer, A., Andersen, K.H., and Hartvig, M. 2013. Overconfidence in model 
projections. ICES J. Mar. Sci. 70(6): 1065–1068. doi:10.1093/icesjms/fst055. 

Bromage, N., Porter, M., and Randall, C. 2001. The environmental regulation of maturation in 



114 

 

farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 
197: 63–98. 

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B. 2004. Toward a metabolic 
theory of ecology. Ecology 85(7): 1771–1789. Ecological Society of America. 
doi:10.1890/03-9000. 

Bush, E., and Lemmen, D.. 2019. Canada’s Changing Climate Report. Environment and Climate 
Change Canada, Ottawa, ON. 

Campana, S.E. 2001. Accuracy, precision and quality control in age determination, including a 
review of the use and abuse of age validation methods. J. Fish Biol. 59(2): 197–242. 
doi:10.1006/jfbi.2001.1668. 

Carpenter-Kling, T., Handley, J.M., Connan, M., Crawford, R.J.M., Makhado, A.B., Dyer, B.M., 
Froneman, W., Lamont, T., Wolfaardt, A.C., Landman, M., Sigqala, M., and Pistorius, P.A. 
2019. Gentoo penguins as sentinels of climate change at the sub-Antarctic Prince Edward 
Archipelago, Southern Ocean. Ecol. Indic. 101: 163–172. 
doi:10.1016/j.ecolind.2019.01.008. 

Casselman, J.M. 1995. Survival and development of Lake Trout eggs and fry in Eastern Lake 
Ontario — in situ incubation, Yorkshire Bar, 1989–1993. J. Great Lakes Res. 
21(Supplement 1): 384–399. Elsevier. doi:10.1016/S0380-1330(95)71112-1. 

Catalano, M.J., and Bozek, M.A. 2015. Influence of environmental variables on catostomid 
spawning phenology in a warmwater river. Am. Midl. Nat. 173(1): 1–16. doi:10.1674/0003-
0031-173.1.1. 

Chalanchuk, S.M. 1984. Aging A population of the White Sucker, Catostomus commersoni, by 
the fin-ray method. Can. Tech. Rep. Fish. Aquat. Sci. 1321(4): 16. 

Chen, Y., and Harvey, H.H. 1995. Growth, abundance, and food supply of White Sucker. Trans. 
Am. Fish. Soc. 124(2): 262–271. doi:10.1577/1548-8659(1995)124. 

Cheung, W.W.L., Sarmiento, J.L., Dunne, J., Frölicher, T.L., Lam, V.W.Y., Palomares, M.L.D., 
Watson, R., and Pauly, D. 2013. Shrinking of fishes exacerbates impacts of global ocean 
changes on marine ecosystems. Nat. Clim. Chang. 3(3): 254–258. 
doi:10.1038/nclimate1691. 

Chezik, K.A., Lester, N.P., and Venturelli, P.A. 2014. Fish growth and degree-days I: Selecting a 
base temperature for a within-population study. Can. J. Fish. Aquat. Sci. 71(1): 47–55. 
doi:10.1139/cjfas-2013-0295. 

Chuard, P.J.C., Brown, G.E., and Grant, J.W.A. 2018. Competition for food in 2 populations of a 
wild-caught fish. Curr. Zool. 64(5): 615–622. Oxford Academic. doi:10.1093/cz/zox078. 

Craig, N., Jones, S.E., Weidel, B.C., and Solomon, C.T. 2017. Life history constraints explain 
negative relationship between fish productivity and dissolved organic carbon in lakes. Ecol. 
Evol. 7(16): 6201–6209. doi:10.1002/ece3.3108. 

Daufresne, M., Lengfellner, K., and Sommer, U. 2009. Global warming benefits the small in 



115 

 

aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106(31): 12788–12793. 
doi:10.1073/pnas.0902080106. 

Doherty, C.A., Curry, R.A., and Munkittrick, K.R. 2010. Spatial and temporal movements of 
White Sucker: implications for use as a sentinel species. Trans. Am. Fish. Soc. 139(6): 
1818–1827. doi:10.1577/t09-172.1. 

Downing, J.A., and Plante, C. 1993. Production of fish populations in lakes. Can. J. Fish. Aquat. 
Sci. 50(1): 110–120. doi:10.1139/f93-013. 

Downing, J.A., Plante, C., and Lalonde, S. 1990. Fish production correlated with primary 
productivity, not the morphoedaphic index. Can. J. Fish. Aquat. Sci. 47(10): 1929–1936. 
doi:10.1139/f90-217. 

Edsall, T.A., and Cleland, J. 2000. Optimum temperature for growth and preferred temperatures 
of age-0 Lake Trout. North Am. J. Fish. Manag. 20(3): 804–809. doi:10.1577/1548-
8675(2000)020<0804:otfgap>2.3.co;2. 

Ellen Marsden, J., Schumacher, M.N., Wilkins, P.D., Marcy-Quay, B., Alger, B., Rokosz, K., 
and Baker, C.L. 2022. Diet differences between wild and stocked age-0 to age-3 Lake Trout 
indicate influence of early rearing environments. J. Great Lakes Res. Elsevier. 
doi:10.1016/j.jglr.2022.02.004. 

Evans, D.O. 2007. Effects of hypoxia on scope-for-activity and power capacity of Lake Trout 
(Salvelinus namaycush). Can. J. Fish. Aquat. Sci. 64(2): 345–361. doi:10.1139/F07-007. 

Farmer, T.M., Marschall, E.A., Dabrowski, K., and Ludsin, S.A. 2015. Short winters threaten 
temperate fish populations. Nat. Commun. 6(1): 1–10. doi:10.1038/ncomms8724. 

Fitzsimons, J.D. 1995. Assessment of Lake Trout Spawning Habitat and Egg Deposition and 
Survival in Lake Ontario. J. Great Lakes Res. 21(Supplement 1): 337–347. Elsevier. 
doi:10.1016/S0380-1330(95)71108-X. 

Genner, M.J., Sims, D.W., Southward, A.J., Budd, G.C., Masterson, P., Mchugh, M., Rendle, P., 
Southall, E.J., Wearmouth, V.J., and Hawkins, S.J. 2010. Body size-dependent responses of 
a marine fish assemblage to climate change and fishing over a century-long scale. Glob. 
Chang. Biol. 16(2): 517–527. doi:10.1111/j.1365-2486.2009.02027.x. 

Goetz, F.W., Marsden, J.E., Richter, C.A., Tillitt, D.E., Sitar, S.P., Riley, S.C., and Krueger, 
C.C. 2021. Reproduction. In The Lake Charr Salvelinus Namaycush: Biology, Ecology, 
Distribution, and Management, Fish & Fisheries Series, 39th edition. Edited by A.M. Muir, 
C.C. Krueger, M.J. Hansen, and  and S.C. Riley. Springer International Publishing AG, 
Switzerland. pp. 315–354. 

Green, M.D., Tronstad, L.M., Giersch, J.J., Shah, A.A., Fallon, C.E., Blevins, E., Kai, T.R., 
Muhlfeld, C.C., Finn, D.S., and Hotaling, S. 2022. Stoneflies in the genus Lednia 
(Plecoptera: Nemouridae): sentinels of climate change impacts on mountain stream 
biodiversity. Biodivers. Conserv.: 1–25. doi:10.1007/s10531-021-02344-y. 

Guzzo, M.M., and Blanchfield, P.J. 2017. Climate change alters the quantity and phenology of 
habitat for Lake Trout (Salvelinus namaycush) in small boreal shield lakes. Can. J. Fish. 



116 

 

Aquat. Sci. 74(6): 871–884. doi:10.1139/cjfas-2016-0190. 

Guzzo, M.M., Blanchfield, P.J., and Rennie, M.D. 2017. Behavioral responses to annual 
temperature variation alter the dominant energy pathway, growth, and condition of a cold-
water predator. Proc. Natl. Acad. Sci. U. S. A. 114(37): 9912–9917. National Academy of 
Sciences. doi:10.1073/pnas.1702584114. 

Hamel, P., Magnan, P., Lapointe, M., and East, P. 1997. Timing of spawning and assessment of a 
degree-day model to predict the in situ embryonic developmental rate of White Sucker, 
Catostomus commersoni. Can. J. Fish. Aquat. Sci. 54(9): 2040–2048. doi:10.1139/f97-103. 

Harvey, R., Lye, L., Khan, A., and Paterson, R. 2011. The influence of air temperature on water 
temperature and the concentration of dissolved oxygen in Newfoundland rivers. Can. Water 
Resour. J. 36(2): 171–192. doi:10.4296/cwrj3602849. 

Hasnain, S.S., Minns, C.K., and Shuter, B.J. 2010. Key ecological temperature metrics for 
canadian freshwater fishes. In Ontario Ministry of Natural Resources, Applied Research and 
Development Branch. Sault Ste. Marie, ON. Climate Change Research Report CCRR-17. 
46p. 

Hazen, E.L., Abrahms, B., Brodie, S., Carroll, G., Jacox, M.G., Savoca, M.S., Scales, K.L., 
Sydeman, W.J., and Bograd, S.J. 2019. Marine top predators as climate and ecosystem 
sentinels. Front. Ecol. Environ. 17(10): 565–574. John Wiley & Sons, Ltd. 
doi:10.1002/fee.2125. 

Hébert, M.-P., Beisner, B.E., Rautio, M., and Fussmann, G.F. 2021. Warming winters in lakes: 
Later ice onset promotes consumer overwintering and shapes springtime planktonic food 
webs. Proc. Natl. Acad. Sci. 118(48): 1–9. doi:10.1073/PNAS.2114840118. 

Hecky, R., and DePinto, J. 2020. Understanding Declining Productivity in the Offshore Regions 
of the Great Lakes. Ottawa, ON. doi:20.500.12592/x193hx. 

Kidd, K.A., Paterson, M.J., Rennie, M.D., Podemski, C.L., Findlay, D.L., Blanchfield, P.J., and 
Liber, K. 2014. Direct and indirect responses of a freshwater food web to a potent synthetic 
oestrogen. Philos. Trans. R. Soc. B Biol. Sci. 369(1656): 20130578–20130578. The Royal 
Society. doi:10.1098/rstb.2013.0578. 

King, J.R., Shuter, B.J., and Zimmerman, A.P. 1997. The response of the thermal stratification of 
South Bay (Lake Huron) to climatic variability. Can. J. Fish. Aquat. Sci. 54(8): 1873–1882. 
doi:10.1139/f97-093. 

King, J.R., Shuter, B.J., and Zimmerman, A.P. 1999. Empirical links between thermal habitat, 
fish growth, and climate change. Trans. Am. Fish. Soc. 128(4): 656–665. doi:10.1577/1548-
8659(1999)128<0656:elbthf>2.0.co;2. 

Kolding, J., Haug, L., and Stefansson, S. 2008. Effect of ambient oxygen on growth and 
reproduction in Nile tilapia (Oreochromis niloticus). Can. J. Fish. Aquat. Sci. 65(7): 1413–
1424. doi:10.1139/F08-059. 

Lefevre, S., McKenzie, D.J., and Nilsson, G.E. 2018. In modelling effects of global warming, 
invalid assumptions lead to unrealistic projections. 24: 553–556. doi:10.1111/gcb.13978. 



117 

 

Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O. 2015. Spatial and 
body-size dependent response of marine pelagic communities to projected global climate 
change. Glob. Chang. Biol. 21(1): 154–164. doi:10.1111/gcb.12679. 

Lema, S.C., Bock, S.L., Malley, M.M., and Elkins, E.A. 2019. Warming waters beget smaller 
fish: Evidence for reduced size and altered morphology in a desert fish following 
anthropogenic temperature change. Biol. Lett. 15(10): 1–7. Royal Society Publishing. 
doi:10.1098/rsbl.2019.0518. 

Lester, N.P., Shuter, B.J., and Abrams, P.A. 2004. Interpreting the von Bertalanffy model of 
somatic growth in fishes: The cost of reproduction. Proc. R. Soc. B Biol. Sci. 271(1548): 
1625–1631. doi:10.1098/rspb.2004.2778. 

Limburg, K.E., and Casini, M. 2018. Effect of marine hypoxia on Baltic Sea cod Gadus morhua: 
Evidence from otolith chemical proxies. Front. Mar. Sci. 5(482): 1–12. 
doi:10.3389/fmars.2018.00482. 

Livingstone, D.M., and Lotter, A.F. 1998. The relationship between air and water temperatures 
in lakes of the Swiss Plateau: A case study with palaeolimnological implications. J. 
Paleolimnol. 19(2): 181–198. doi:10.1023/A:1007904817619. 

Lowerre-Barbieri, S., DeCelles, G., Pepin, P., Catalán, I.A., Muhling, B., Erisman, B., Cadrin, 
S.X., Alós, J., Ospina-Alvarez, A., Stachura, M.M., Tringali, M.D., Burnsed, S.W., and 
Paris, C.B. 2017. Reproductive resilience: a paradigm shift in understanding spawner-
recruit systems in exploited marine fish. Fish Fish. 18(2): 285–312. doi:10.1111/faf.12180. 

Lynch, A.J., Myers, B.J.E., Chu, C., Eby, L.A., Falke, J.A., Kovach, R.P., Krabbenhoft, T.J., 
Kwak, T.J., Lyons, J., Craig, P., Whitney, J.E., Lynch, A.J., Myers, B.J.E., Chu, C., Eby, 
L.A., Falke, J.A., Kovach, R.P., Krabbenhoft, T.J., Kwak, T.J., Lyons, J., and Paukert, C.P. 
2016. Climate Change effects on North American inland fish populations and assemblages. 
41(7): 346–361. doi:10.1080/03632415.2016.1186016. 

Lyons, J., Rypel, A.L., Rasmussen, P.W., Burzynski, T.E., Eggold, B.T., Myers, J.T., Paoli, T.J., 
and McIntyre, P.B. 2015. Trends in the reproductive phenology of two great lakes fishes. 
Trans. Am. Fish. Soc. 144(6): 1263–1274. doi:10.1080/00028487.2015.1082502. 

MacCrimmon, H.R. 1979. Comparative annulus formation on anatomical structures of the White 
Sucker, Catostomus commersoni (Lacépède). Aquac. Res. 10(3): 123–128. 
doi:10.1111/j.1365-2109.1979.tb00263.x. 

MacLean, J.A., Evans, D.O., Martin, N. V., and DesJardine, R.L. 1981. Survival, growth, 
spawning distribution, and movements of introduced and native Lake Trout (Salvelinus 
namaycush) in two inland Ontario lakes. Can. J. Fish. Aquat. Sci. 38(12): 1685–1700. 
doi:10.1139/f81-217. 

Maitra, S.K., and Hasan, K.N. 2016. The Role of melatonin as a hormone and an antioxidant in 
the control of fish reproduction. Front. Endocrinol. (Lausanne). 7(38): 1–11. 
doi:10.3389/fendo.2016.00038. 

Martin, N. V., and Olver, C.H. 1980. The Lake Charr, Salvelinus namaycush. In CHARRS: 



118 

 

Salmonid Fishes of the Genus Salvelinus, Volume 1. Edited by E.K. Balon. Dr W. Junk bv 
Publishers, The Hague, Netherlands. pp. 205–281. 

Mason, L.A., Riseng, C.M., Gronewold, A.D., Rutherford, E.S., Wang, J., Clites, A., Smith, 
S.D.P., and McIntyre, P.B. 2016. Fine-scale spatial variation in ice cover and surface 
temperature trends across the surface of the Laurentian Great Lakes. Clim. Change 138(1–
2): 71–83. doi:10.1007/s10584-016-1721-2. 

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., 
Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, 
X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T. 2018. Summary 
for Policymakers. In Global warming of 1.5°C. An IPCC Special Report on the impacts of 
global warming of 1.5°C above pre-industrial levels and related global greenhouse gas 
emission pathways, in the context of strengthening the global response to the threat of 
climate change,. Geneva, Switzerland,. doi:10.1017/CBO9781107415324. 

Matuszek, J.E., and Shuter, B.J. 1996. An empirical method for the prediction of daily water 
temperatures in the littoral zone of temperate lakes. Trans. Am. Fish. Soc. 125(4): 622–627. 
doi:10.1577/1548-8659(1996)125. 

McCormick, J.H., Jones, B.R., and Hokanson, K.E.F. 1977. White Sucker (Catostomus 
commersoni) embryo development, and early growth and survival at different temperatures. 
J. Fish. Res. Board Canada 34(7): 1019–1025. doi:10.1139/f77-154. 

Mcmaster, M.E., Tetreault, G.R., Clark, T., Bennett, J., Cunningham, J., Ussery, E.J., and Evans, 
M. 2020. Baseline White Sucker health and reproductive endpoints for use in assessment of 
further development in the Alberta oil sands. Int. J. Environ. Impacts Manag. Mitig. 
Recover. 3(3): 219–237. WIT Press. doi:10.2495/ei-v3-n3-219-237. 

McQueen, K., and Marshall, C.T. 2017. Shifts in spawning phenology of cod linked to rising sea 
temperatures. ICES J. Mar. Sci. 74(6): 1561–1573. doi:10.1093/icesjms/fsx025. 

Miller, D.H., Tietge, J.E., Mcmaster, M.E., Munkittrick, K.R., Xia, X., and Ankley, G.T. 2013. 
Assessment of status of White Sucker (Catostomus commersoni) populations exposed to 
bleached kraft pulp mill effluent. Environ. Toxicol. Chem. 32(7): 1592–1603. 
doi:10.1002/etc.2218. 

Mogensen, S., and Post, J.R. 2012. Energy allocation strategy modifies growth-survival trade-
offs in juvenile fish across ecological and environmental gradients. Oecologia 168(4): 923–
933. doi:10.1007/s00442-011-2164-0. 

Morbey, Y.E., and Shuter, B.J. 2013. Intermittent breeding in the absence of a large cost of 
reproduction: Evidence for a non-migratory, iteroparous salmonid. Ecosphere 4(12): 1–18. 
Ecological Society of America. doi:10.1890/ES13-00259.1. 

Morgan, G.E. 2002. Manual of Instructions - Fall Walleye Index Netting (FWIN). Peterborough, 
Ontario. 

Mosindy, T. 2011. South Sector 6 , Lake of the Woods : Fish Community Index Netting , 2007 – 
08. Ontario. Min. Natur. Resour., Northwest Sci. & Info, NWSI Aquatics Update. 2011–3: 



119 

 

18pp. 

Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and 
ecology: The distinction between - and reconciliation of - “predictive” and “explanatory” 
models. Biodivers. Conserv. 9(5): 655–671. doi:10.1023/A:1008985925162. 

Mac Nally, R. 2002. Multiple regression and inference in ecology and conservation biology: 
Further comments on identifying important predictor variables. Biodivers. Conserv. 11(8): 
1397–1401. doi:10.1023/A:1016250716679. 

Neuheimer, A.B., and Taggart, C.T. 2007. The growing degree-day and fish size-at-age: The 
overlooked metric. Can. J. Fish. Aquat. Sci. 64(2): 375–385. doi:10.1139/F07-003. 

O’ Reilly, C.M., Rowley, R.J., Schneider, P., Lenters, J.D., Mcintyre, P.B., Kraemer, B.M., 
Weyhenmeyer, G.A., Straile, D., Dong, B., Adrian, R., Allan, M.G., Anneville, O., Arvola, 
L., Austin, J., Bailey, J.L., Baron, J.S., Brookes, J.D., de Eyto, E., Dokulil, M.T., Hamilton, 
D.P., Havens, K., Hetherington, A.L., Higgins, S.N., Hook, S., Izmest’eva, L.R., Joehnk, 
K.D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, 
D.M., MacIntyre, S., May, L., Melack, J.M., Mueller-Navarra, D.C., Naumenko, M., Noges, 
P., Noges, T., North, R.P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, 
L.G., Rusak, J.A., Salmaso, N., Samal, N.R., Schindler, D.E., Schladow, S.G., Schmid, M., 
Schmidt, S.R., Silow, E., Soylu, M.E., Teubner, K., Verburg, P., Voutilainen, A., 
Watkinson, A., Williamson, C.E., and Zhang, G. 2015. Rapid and highly variable warming 
of lake surface waters around the globe. Geophys. Res. Lett. 42(10): 10773–10781. 
doi:10.1002/2015GL066235.Received. 

Pankhurst, N.W., and King, H.R. 2010. Temperature and salmonid reproduction: Implications 
for aquaculture. J. Fish Biol. 76(1): 69–85. doi:10.1111/j.1095-8649.2009.02484.x. 

Pankhurst, N.W., and Munday, P.L. 2011. Effects of climate change on fish reproduction and 
early life history stages. Mar. Freshw. Res. 62(9): 1015–1026. doi:10.1071/MF10269. 

Pankhurst, N.W., and Porter, M.J.R. 2003. Cold and dark or warm and light: Variations on the 
theme of environmental control of reproduction. Fish Physiol. Biochem. 28: 385–389. 
doi:10.1023/B:FISH.0000030602.51939.50. 

Pauli, B.D., Kolding, J., Jeyakanth, G., and Heino, M. 2017. Effects of ambient oxygen and size-
selective mortality on growth and maturation in guppies. Conserv. Physiol. 5(1): 1–13. 
doi:10.1093/conphys/cox010. 

Pauly, D. 1981. The relationships between gill surface area and growth performance in fish: a 
generalization of von Bertalanffy’s theory of growth. Reports Mar. Res. 28(4): 251–282. 

Pauly, D., and Cheung, W.W.L. 2018. Sound physiological knowledge and principles in 
modeling shrinking of fishes under climate change. Glob. Chang. Biol. 24(1): 15–26. 
doi:10.1111/gcb.13831. 

Pierce, R.B., Tomcko, C.M., and Margenau, T.L. 2003. Density dependence in growth and size 
structure of Northern Pike populations. North Am. J. Fish. Manag. 8675(January 2014): 
331–339. doi:10.1577/1548-8675(2003)023<0331. 



120 

 

Planque, B. 2016. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. 
Mar. Sci. 73(2): 204–208. Oxford Academic. doi:10.1093/icesjms/fsv155. 

Poff, N.L., Brinson, M., and Day, J.B. 2002. Freshwater and coastal ecosystems and global 
climate change: a review of projected impacts for the United States. In Aquatic ecosystems 
& Global climate change. 

Pörtner, H.-O., Bock, C., and Mark, F.C. 2017. Oxygen- and capacity-limited thermal tolerance: 
bridging ecology and physiology. J. Exp. Biol. 220(15): 2685–2696. 
doi:10.1242/jeb.134585. 

Pritchard, H., Langford, K., and Mann, S.E. 2019. Methods for preparing calcified fish structures 
for age interpretation. Ontario Ministry of Natural Resources and Forestry, Science and 
Research Branch, Peterborough, ON. Science and Research Technical Manual TM-09. 23 p. 
+ appendix. 

Quinn, G.P., and Keough, M.J. 2002. Experimental Design and Data Analysis for Biologists. 
Cambridge University Press, New York. 

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rennie, M.D., Collins, N.C., Purchase, C.F., and Tremblay, A. 2005. Predictive models of 
benthic invertebrate methylmercury in Ontario and Quebec lakes. Can. J. Fish. Aquat. Sci. 
62(12): 2770–2783. doi:10.1139/f05-181. 

Rennie, M.D., Sprules, W.G., and Johnson, T.B. 2009. Factors affecting the growth and 
condition of Lake Whitefish (Coregonus clupeaformis). Can. J. Fish. Aquat. Sci. 66: 2096–
2108. doi:10.1139/F09-139. 

Richardson, D., Melles, S., Pilla, R., Hetherington, A., Knoll, L., Williamson, C., Kraemer, B., 
Jackson, J., Long, E., Moore, K., Rudstam, L., Rusak, J., Saros, J., Sharma, S., Strock, K., 
Weathers, K., and Wigdahl-Perry, C. 2017. Transparency, geomorphology and mixing 
regime explain variability i trends in lake temperature and stratification across Northeastern 
North America (1975–2014). Water 9(6): 442–464. doi:10.3390/w9060442. 

Rideout, R.M., and Tomkiewicz, J. 2011. Skipped spawning in fishes: More common than you 
might think. Mar. Coast. Fish. 3(1): 176–189. doi:10.1080/19425120.2011.556943. 

Rogers, L.A., and Dougherty, A.B. 2019. Effects of climate and demography on reproductive 
phenology of a harvested marine fish population. Glob. Chang. Biol. 25(2): 708–720. 
doi:10.1111/gcb.14483. 

Saint-Jacques, N., Harvey, H.H., and Jackson, D.A. 2000. Selective foraging in the White Sucker 
(Catostomus commersoni). Can. J. Zool. 78(8): 1320–1331. doi:10.1139/z00-067. 

Salmon, R., and Livingston, B. 1997. Fisheries Data Summary: Lake Nipigon Fish Community 
Index Netting (1997). NWST Tech. Rep. TR-119: 1–12. 

Salmon, R., and Livingston, B. 1998. Fisheries Data Summary: Lake Nipigon Fish Community 
Index Netting (1998). NWST Tech. Rep. TR-125: 1–12. 



121 

 

Sandstrom, S., Rawson, M., and Lester, N. 2013. Manual of Instructions for Broad-scale Fish 
Community Monitoring; using North American (NA1) and Ontario Small Mesh (ON2) 
Gillnets. Ontario Ministry of Natural Resources. Peterborough, Ontario. Version 2013.2 35 
p. + appendices. 

Schindler, D.W., Bayley, S.E., Parker, B.R., Beaty, K.G., Cruikshank, D.R., Fee, E.J., Schindler, 
E.U., and Stainton, M.P. 1996. The effects of climatic warming on the properties of boreal 
lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. 
Oceanogr. 41(5): 1004–1017. doi:10.4319/lo.1996.41.5.1004. 

Schindler, D.W., Beaty, K.G., Fee, E.J., Cruikshank, D.R., DeBruyn, E.R., Findlay, D.L., 
Linsey, G.A., Shearer, J.A., Stainton, M.P., and Turner, M.A. 1990. Effects of climatic 
warming on lakes of the central Boreal Forest. Science (80-. ). 250(4983): 967–970. 
doi:10.1126/science.250.4983.967. 

Schneider, K.N., Newman, R.M., Card, V., Weisberg, S., and Pereira, D.L. 2010. Timing of 
Walleye Spawning as an Indicator of Climate Change. Trans. Am. Fish. Soc. 139(4): 1198–
1210. doi:10.1577/t09-129.1. 

Scott, W.B., and Crossman, E.J. 1973. Freshwater Fishes of Canada. Fisheries Research Board of 
Canada, Ottawa. Available from 
https://publications.gc.ca/site/eng/9.870340/publication.html. 

Shuter, B.J., and Meisner, J.D. 1992. Tools for assessing the impact of climate change on 
freshwater fish populations. GeoJournal 28(1): 7–20. doi:10.1007/BF00216402. 

Sibly, R.M., Baker, J., Grady, J.M., Luna, S.M., Kodric-Brown, A., Venditti, C., Brown, J.H., 
and College, K. 2015. Fundamental insights into ontogenetic growth from theory and fish. 
112(45): 13934–13939. PNAS. doi:10.1073/pnas.1518823112. 

Siefert, R.E. 1972. First food of larval Yellow Perch, White Sucker, Bluegill, Emerald Shiner, 
and Rainbow Smelt. Trans. Am. Fish. Soc. 101(2): 219–225. doi:10.1577/1548-
8659(1972)101<219:ffolyp>2.0.co;2. 

Skoglund, H., Einum, S., and Robertsen, G. 2011. Competitive interactions shape offspring 
performance in relation to seasonal timing of emergence in Atlantic salmon. J. Anim. Ecol. 
80(2): 365–374. doi:10.1111/j.1365-2656.2010.01783.x. 

Thackeray, S.J. 2012. Mismatch revisited: What is trophic mismatching from the perspective of 
the plankton? J. Plankton Res. 34(12): 1001–1010. Oxford Academic. 
doi:10.1093/plankt/fbs066. 

Thomas, Y., Cassou, C., Gernez, P., and Pouvreau, S. 2018. Oysters as sentinels of climate 
variability and climate change in coastal ecosystems. Environ. Res. Lett. 13(10). 
doi:10.1088/1748-9326/aae254. 

Tonin, J. 2019. The effects of dissolved organic carbon on pathways of energy flow, resource 
availability, and consumer biomass in nutrient-poor boreal lakes. University of Manitoba. 

Trippel, E.A., and Harvey, H.H. 1987. Abundance, growth, and food supply of White Suckers 
(Catostomus commersoni) in relation to lake morphometry and pH. Can. J. Zool. 65(3): 



122 

 

558–564. doi:10.1139/z87-086. 

Trippel, E.A., and Harvey, H.H. 1989. Missing opportunities to reproduce: an energy dependent 
or fecundity gaining strategy in White Sucker (Catostomus commersoni)? Can. J. Zool. 
67(9): 2180–2188. doi:10.1139/z89-308. 

Trippel, E.A., and Harvey, H.H. 1990. Ovarian atresia and sex ratio imbalance in White Sucker, 
Catostomus commersoni. J. Fish Biol. 36(2): 231–239. doi:10.1111/j.1095-
8649.1990.tb05598.x. 

Tu, C.Y., Chen, K.T., and Hsieh, C.H. 2018. Fishing and temperature effects on the size 
structure of exploited fish stocks. Sci. Rep. 8(1): 1–10. Nature Publishing Group. 
doi:10.1038/s41598-018-25403-x. 

Vadadi-Fülöp, C., Sipkay, C., Mészáros, G., and Hufnagel, L. 2012. Climate change and 
freshwater zooplankton: What does it boil down to? Aquat. Ecol. 46(4): 501–519. 
doi:10.1007/s10452-012-9418-8. 

Venturelli, P.A., Lester, N.P., Marshall, T.R., and Shuter, B.J. 2010. Consistent patterns of 
maturity and density-dependent growth among populations of walleye (Sander vitreus): 
Application of the growing degree-day metric. Can. J. Fish. Aquat. Sci. 67(7): 1057–1067. 
doi:10.1139/F10-041. 

Volkoff, H., and Rønnestad, I. 2020. Effects of temperature on feeding and digestive processes in 
fish. Temperature 7(4): 307–320. doi:10.1080/23328940.2020.1765950. 

Wakefield, C.K., and Beckman, D.W. 2005. Life history attributes of White Sucker (Catostomus 
commersoni) in Lake Taneycomo and associated tributaries in Southwestern Missouri. 
Southwest. Nat. 50(4): 423–434. 

Warren, D.R., Robinson, J.M., Josephson, D.C., Sheldon, D.R., and Kraft, C.E. 2012. Elevated 
summer temperatures delay spawning and reduce redd construction for resident Brook 
Trout (Salvelinus fontinalis). Glob. Chang. Biol. 18(6): 1804–1811. John Wiley & Sons, 
Ltd. doi:10.1111/j.1365-2486.2012.02670.x. 

Wedekind, C., and Küng, C. 2010. Shift of spawning season and effects of climate warming on 
developmental stages of a grayling (Salmonidae). Conserv. Biol. 24(5): 1418–1423. 
doi:10.1111/j.1523-1739.2010.01534.x. 

Winder, M., and Schindler, D.E. 2004. Climate Change Uncouples Trophic Interactions in an 
Aquatic Ecosystem. Ecology 85(8): 2100–2106. doi:10.1890/04-0151. 

Woodward, G., Perkins, D.M., and Brown, L.E. 2010. Climate change and freshwater 
ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. 
Sci. 365(1549): 2093–2106. doi:10.1098/rstb.2010.0055. 

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., and Sharma, S. 
2020. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020 18 1(8): 388–
403. Nature Publishing Group. doi:10.1038/s43017-020-0067-5. 

Zacharias, M.A., and Roff, J.C. 2001. Use of focal species in marine conservation and 



123 

 

management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11: 59–76. 
doi:10.1002/aqc.429. 

Zettlemoyer, M.A., and DeMarche, M.L. 2021. Dissecting impacts of phenological shifts for 
performance across biological scales. Trends Ecol. Evol. 37(2): 147–157. Elsevier Ltd. 
doi:10.1016/j.tree.2021.10.004. 

Zhong, Y., Notaro, M., and Vavrus, S.J. 2019. Spatially variable warming of the Laurentian 
Great Lakes: an interaction of bathymetry and climate. Clim. Dyn. 52(9–10): 5833–5848. 
doi:10.1007/s00382-018-4481-z. 

Zimmermann, F., and Jørgensen, C. 2015. Bioeconomic consequences of fishing-induced 
evolution: A model predicts limited impact on net present value. Can. J. Fish. Aquat. Sci. 
72(4): 612–624. doi:10.1139/cjfas-2014-0006. 

 

 



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

Appendix 1 – Map of study sites 

 Appendix 1 Figure A details a map of ELA lakes used in this study. For Chapter 1, all 8 

lakes highlighted were studied for changes in White Sucker phenology, and only Lake 373 was 

not included for Lake Trout phenology analysis. Figure B details a map of the study sites across 

Northwestern Ontario used to evaluate changes in White Sucker growth. 

 

Figure A. Map of ELA study lakes used in Chapter 2 
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Figure B. Map of Northwestern Ontario study lakes used in Chapter 3 
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Appendix 2 – Chapter 2 Tables 

Appendix 2 details Chapter 2 tables that display equations derived from predicting daily 

water temperatures over the past 50 years for all 8 study lakes (Table A). The following tables 

(Tables B – K) detail the results from the testing the heterogeneity of slopes in the ANCOVA 

analysis. 

Table A. Unique water temperature equations produced from each lake from the "Enhanced 
Multi Year Model" from Matuzsek and Shuter (1996) 

Lake Model Equation Predicted # Observations Used 
to Predict Model Fit 

223 WTEMP = 13.81 + 0.483(ATEMP1) + .04526(YDAY) + -
0.0001915(YDAY)2 + -1478(INVADYD) + 0.2568(ATEMP2) 1263 

224 WTEMP = 24.03 + 0.4.76(ATEMP1) + .04504(YDAY) + -
0.0002.527(YDAY)2 + -2705(INVADYD) + 0.233(ATEMP2) 3776 

260 WTEMP = 70.5 + 0.4(ATEMP1) + -0.2.044(YDAY) + 
0.000154(YDAY)2 + -5409(INVADYD)+ 0.3052(ATEMP2) 1527 

373 WTEMP = 33.19 + 0.4352(ATEMP1) + -0.02088(YDAY) + -
0.0001252(YDAY)2 + -3095(INVADYD) + 0.2543(ATEMP2) 3672 

375 WTEMP = 17.06 + 0.4122(ATEMP1) + 0.04154(YDAY) + -
0.00021(YDAY)2 + -1905(INVADYD) + 0.3345(ATEMP2) 394 

382 WTEMP = 39.98 + 0.4507(ATEMP1) + -0.05505(YDAY) + -
0.00008785(YDAY)2 + -3654(INVADYD) + 0.3140(ATEMP2) 225 

442 WTEMP = 62.88 + 0.3653(ATEMP1) + -0.1727(YDAY) + 
0.0001128(YDAY)2 + -4882(INVADYD) + 0.3610(ATEMP2) 3367 

626 WTEMP = 16.79 + 0.3824(ATEMP1) + 0.07378(YDAY) + -
0.0003008(YDAY)2 + -2107(INVADYD) + 0.3142(ATEMP2) 1726 

 

Table B. Linear regressions testing the effect of Year on Lake Trout Estimated Spawning Date in 
each lake 

Lake F Value p Value Significant? Y/N 
223 F1,13 = 0.22 0.65 N 
224 F1,20 = 5.09 0.04 Y 
260 F1,18 = 3.04 0.1 Y 
375 F1,16 = 9.05 0.01 Y 
382 F1,11 = 0.47 0.51 Y 
442 F1,11 = 8.95 0.01 Y 
626 F1,7 = 1.36 0.28 N 
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Table C. Linear regressions testing the effect of Year on White Sucker Estimated Spawning Date 
in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,18 = 0.9 0.36 N 
224 F1,14 = 2.38 0.15 N 
260 F1,11 = 0.68 0.43 N 
373 F1,20 = 0.24 0.63 N 
375 F1,5 = 0.66 0.45 N 
382 F1,12 = 0.94 0.35 N 
442 F1,7 = 0.01 0.92 N 
626 F1,6 = 0.37 0.57 N 

Table D. Linear regressions testing the effect of Year on the sum of Cooling Degree Days below 
20oC in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,48 = 15.83 < 0.001 Y 
224 F1,48 = 15.72 < 0.001 Y 
260 F1,48 = 15.66 < 0.001 Y 
375 F1,48 = 15.79 < 0.001 Y 
382 F1,48 = 15.70 < 0.001 Y 
442 F1,48 = 15.66 < 0.001 Y 
626 F1,48 = 15.60 < 0.001 Y 

 

Table E. Linear regressions testing the effect of Year on Average Fall Water Temperature in 
each lake 

Lake F Value p Value Significant? Y/N 
223 F1,48 = 11.84 0.001 Y 
224 F1,48 = 11.78 0.001 Y 
260 F1,48 = 11.60 0.001 Y 
375 F1,48 = 11.56 0.001 Y 
382 F1,48 = 11.66 0.001 Y 
442 F1,48 = 11.43 0.001 Y 
626 F1,48 = 11.53 0.001 Y 
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Table F. Linear regressions testing the effect of Year on cumulative Growing Degree Days above 
5oC in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,48 = 0.0368 0.85 N 
224 F1,48 = 0.0687 0.79 N 
260 F1,48 = 0.0744 0.79 N 
373 F1, 48 = 0.0706 0.79 N 
375 F1, 48 = 0.0628 0.8 N 
382 F1, 48 = 0.0848 0.77 N 
442 F1, 48 = 0.0761 0.78 N 
626 F1, 48 = 0.0647 0.8 N 

 

Table G. Linear regressions testing the effect of Year on Average Spring Water Temperature in 
each lake 

Lake F Value p Value Significant? Y/N 
223 F1,48 = 0.02 0.88 N 
224 F1,48 = 0.02 0.88 N 
260 F1,48 = 0.02 0.9 N 
373 F1,48 = 0.02 0.88 N 
375 F1,48 = 0.01 0.92 N 
382 F1,48 = 0.02 0.9 N 
442 F1,48 = 0.01 0.92 N 
626 F1,48 = 0.01 0.91 N 

 

Table H. Linear regressions testing the effect of cumulative Cooling Degree Days below 20oC on 
Lake Trout Estimated Peak Spawn Date in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,13 = 0.33 0.58 N 
224 F1,20 = 4.67 0.04 Y 
260 F1,18 = 2.94 0.1 N 
375 F1,16 = 2.10 0.17 N 
382 F1,11 = 0.29 0.6 N 
442 F1,11 = 18.1 0.001 Y 
626 F1,7 = 0.17 0.74 N 
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Table I. Linear regressions testing the effect of the Average Fall Water Temperature on Lake 
Trout Estimated Peak Spawn Date in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,13 = 0.93 0.35 N 
224 F1,20 = 2.98 0.1 N 
260 F1,18 = 3.44 0.08 N 
375 F1,16 = 0.76 0.4 N 
382 F1,11 = 0.02 0.89 N 
442 F1,11 = 9.92 0.01 N 
626 F1,7 = 0.004 0.95 N 

 

Table J. Linear regressions testing the effect of cumulative Growing Degree Days above 5oC on 
White Sucker Estimated Peak Spawn Date in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,18 = 4.07 0.06 Y 
224 F1,14 = 4.61  0.05 Y 
260 F1,11 = 15.19 0.002 Y 
373 F1,20 = 18.77 < 0.001 Y 
375 F1,5 = 5.61 0.06 Y 
382 F1,12 = 24.07 < 0.001 Y 
442 F1,7 = 3.81 0.09 Y 
626 F1,6 = 24.73 0.003 Y 

 

Table K. Linear regressions testing the effect of Average Spring Water Temperature on White 
Sucker Estimated Peak Spawn Date in each lake 

Lake F Value p Value Significant? Y/N 
223 F1,18 = 0.84  0.37 N 
224 F1,14 = 6.00 0.03 N 
260 F1,11 = 12.29 0.005 N 
373 F1,20 = 9.9 0.01 N 
375 F1,5 = 5.41 0.07 N 
382 F1,12 = 51.12 < 0.001 N 
442 F1,7 = 3.57 0.1 N 
626 F1,6 = 33.12  0.001 N 
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Appendix 3 – Chapter 2 Assessment of temporal changes to critical spawning temperatures, 
histograms of ANCOVA model residuals, and plots from nonsignificant correlations between 
spawning dates and physical lake characteristics 

 Appendix 3 displays figures from Chapter 2 of the histograms from ANCOVA residuals 

where data failed normality tests (Figure A), and plots from evaluating whether physical lake 

characteristics were correlated with determining when the study species within those lakes would 

achieve peak spawning activity (Figure B -E). Additionally, a statistical test from Chapter 2 

where temperatures deemed critical to spawning were evaluated for temporal changes (e.g., has 

the date when temperature X was achieved significantly shifted through time; Methods, Results, 

Figure F). 

 

Figure A. Histogram plots of ANCOVA model residuals where the residuals failed Anderson-
Darling’s Test for Normality. Observed skewness appears minor and all distributions seem 
generally normal. 
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Figure B. Correlation plot between estimated peak spawning date of Lake Trout (left) and White 
Sucker versus the physical lake characteristic maximum depth. Neither relationship was found to 
be significantly correlated. 

 

Figure C. Correlation plot between estimated peak spawning date of Lake Trout (left) and White 
Sucker versus the physical lake characteristic mean depth. Neither relationship was found to be 
significantly correlated. 
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Figure D. Correlation plot between estimated peak spawning date of Lake Trout (left) and White 
Sucker versus the physical lake characteristic maximum depth. Neither relationship was found to 
be significantly correlated. 

 

Figure E. Correlation plot between estimated peak spawning date of Lake Trout (left) and White 
Sucker versus the physical lake characteristic maximum depth. Neither relationship was found to 
be significantly correlated. 



134 

 

Evaluating temporal changes in the timing of critical spawning temperatures - Methods 

 Based on my findings indicating the consistency of Lake Trout spawning with water 

temperatures, and delays in Lake Trout spawning over time (see results), I sought to evaluate 

whether a temporal shift in the water temperature associated with Lake Trout peak spawning was 

sufficient to explain observed delays in Lake Trout spawning among ELA lakes. For each year 

where an estimated peak spawn date was present, the Julian date on where the water temperature 

was closest to the Lake Trout spawning temperature was determined and defined as the critical 

spawning temperature date. Important to the selection of this date was the trend in temperature; 

to be selected, the date was required to be in a temperature trend where daily water temperature 

values passed through the mean spawning water temperature for the first time. Occasionally, 

water temperatures would get close to that mean prior to or beyond the first cooling event, but 

because these temperature values were not associated with a trend of cooling that passed through 

the mean, they were not considered. This new estimated critical spawning temperature date was 

compared to the original estimated spawn date using correlation. Further, a mean difference and 

95% confidence intervals (CI) were estimated.  

Evaluating temporal changes in the timing of critical spawning temperatures - Results 

 There was no difference between the critical spawning temperature date and estimated 

peak spawning date for Lake Trout (95% CI -1.1 to +1.25 days) and the two dates were 

significantly, but weakly correlated (r = 0.32, t108 = 3.46, p < 0.001, Figure F). Though Lake 

Trout temperature at spawning was estimated to occur at 11oC over all lakes, there was 

significant variation (Figure B), and this alone could not explain temporal changes in spawning 

timing. 
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Figure F. Correlation plot between predicted spawning date from encountering critical water 
temperatures (date when water temperature of the lake is closest to 11oC) versus the estimated 
spawning dates derived from raw historical data. Black line indicates 1:1 agreement.  
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Appendix 4 – Chapter 3 Figures 

 

 Appendix 4 contains figures from Chapter 3 related to the maturity analysis (Figure A), 

Histograms where data failed normality tests (Figure B, C), plots of size predictor variables from 

the hierarchical partitioning analysis over time (Figure D, E, F), and correlation plot between 

Zooplankton Biomass and White Sucker Abundance (Figure D).  

 

 

Figure A. Average age at maturity of males (left) and females (right) across Lakes 224, 373, and 
442 based on a 20% quantile assessment of all ages where a sex has been identified (M. Rennie 
Pers. Comm.). Dashed line represents average age at maturity across lakes. Males mature around 
3.5 years of age and females mature around 5.5 years of age. 
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Figure B. Histograms of ELA White Sucker growth linear model residuals where residuals failed 
Anderson-Darling’s Test for Normality. Observed skewness appears minor and all distributions 
seem generally normal 
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Figure C. Histograms of NDMNRF White Sucker growth linear model residuals where residuals 
failed Anderson-Darling’s Test for Normality. Observed skewness appears minor and all 
distributions seem generally normal 
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Figure D. Annual and trailing total/average of the size at age predictor variables in Lake 224. Each row represents one of GDD5, 
zooplankton biomass (ug/L dry weight), and population density, and each column represents the averaging period. Annual estimates 
are not offset by 1 year, whereas trailing total are offset to better reflect the history of growing conditions for White Sucker of that 
year. 
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Figure E. Annual and trailing total/average of the size at age predictor variables in Lake 373. Each row represents one of GDD5, 
zooplankton biomass (ug/L dry weight), and population density, and each column represents the averaging period. Annual estimates 
are not offset by 1 year, whereas trailing total are offset to better reflect the history of growing conditions for White Sucker of that 
year. 
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Figure F. Annual and trailing total/average of the size at age predictor variables in Lake 442. Each row represents one of GDD5, 
zooplankton biomass (ug/L dry weight), and population density, and each column represents the averaging period. Annual estimates 
are not offset by 1 year, whereas trailing total are offset to better reflect the history of growing conditions for White Sucker of that 
year.
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Figure G. Correlation plots of zooplankton biomass and White Sucker abundance for all 3 lakes 
annually, and at trailing averages of representative age classes considered. Note there is no 
positive or negative correlation between the two annually nor at a given age, suggesting observed 
changes in these variables (less zooplankton biomass, more White Sucker abundance) are 
occurring independently of each other. Zooplankton biomass has no effect on population size or 
vice versa. 
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Appendix 5 – Chapter 3 model summary outputs from ELA White Sucker populations 

 

 Appendix 4 details model summary outputs from the lake specific growth models for the 

ELA White Sucker populations. For each lake, there are 6 table summaries because the data was 

separated into an immature and mature dataset to run the models on. Recall RWT = round 

weight, FLEN = fork length, and BCD = body condition. Table A – F detail models for Lake 

224, Table G – L detail Lake 373, and Table M – R detail Lake 442. Equations of the models are 

listed in the table captions, and coefficients of the terms are detailed within the tables under the 

“Estimate” column 

Table A. Immature age classes Lake 224 RWT Equation: log10RWT = log10Yr + Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 531.2081 56.052   9.477   1.57E-13 *** 
logYr -160.694 16.9832   -9.462   1.66E-13 *** 
Age2 0.5278 0.1177   4.483   3.38E-05 *** 
Age3 0.8954 0.114   7.856   8.61E-11 *** 
Age4 1.182 0.1142   10.35   5.73E-15 *** 
Multiple R-squared: 0.7608 Adjusted R-squared: 0.7448     
                
Table B. Mature age classes Lake 224 RWT Equation: log10RWT = log10Yr*Age + logYr 
+ Age + Sex   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 613.3459 64.20534   9.553 < 2.00E-16 *** 
logYr -185.169 19.44442   -9.523 < 2.00E-16 *** 
Age6 36.18544 86.79909   0.417   0.677143   
Age7 -86.9724 85.15981   -1.021   0.308175   
Age8 -297.038 87.91361   -3.379   0.000853 *** 
Age9 -287.159 87.47266   -3.283   0.001185 ** 
Age10 -413.372 97.32609   -4.247   3.12E-05 *** 
Sex2 0.16933 0.03172   5.338   2.22E-07 *** 
logYr:Age6 -10.8813 26.28762   -0.414   0.679302   
logYr:Age7 26.48297 25.79091   1.027   0.305559   
logYr:Age8 90.15652 26.62486   3.386   0.000831 *** 
logYr:Age9 87.18856 26.49116   3.291   0.001152 ** 
logYr:Age10 125.4409 29.4733   4.256   3.01E-05 *** 
Multiple R-squared: 0.7579 Adjusted R-squared: 0.7455     
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Table C. Immature age classes Lake 224 FLEN Equation: log10FLEN = log10Yr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 161.0715 17.67348   9.114   6.36E-13 *** 
logYr -48.2188 5.3549   -9.005   9.70E-13 *** 
Age2 0.17285 0.03712   4.656   1.83E-05 *** 
Age3 0.29092 0.03593   8.096   3.36E-11 *** 
Age4 0.3798 0.03601   10.547   2.74E-15 *** 
Multiple R-squared: 0.7576 Adjusted R-squared: 0.7414     
                
Table D. Mature age classes Lake 224 FLEN Equation: FLENavg = Year*Age + Year + 
Age + Sex   
(Intercept) 14642.58 1634.392   8.959 < 2.00E-16 *** 
Year -7.2084 0.8154   -8.841   2.34E-16 *** 
Age6 2884.194 2214.985   1.302   0.19415   
Age7 1653.485 2183.317   0.757   0.44962   
Age8 -3785.92 2266.012   -1.671   0.09611 . 
Age9 -2658.6 2262.496   -1.175   0.24116   
Age10 -6728.89 2520.076   -2.67   0.00811 ** 
Sex2 38.8582 6.1578   6.31   1.38E-09 *** 
Year:Age6 -1.4159 1.1052   -1.281   0.20142   
Year:Age7 -0.7822 1.0893   -0.718   0.47346   
Year:Age8 1.9477 1.1306   1.723   0.08627 . 
Year:Age9 1.3951 1.1288   1.236   0.21773   
Year:Age10 3.4365 1.2566   2.735   0.00672 ** 
Multiple R-squared: 0.7765 Adjusted R-squared: 0.765     
                
Table E. Immature age classes Lake 224 BCD Equation: log10BCD = log10Yr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 62.34459 9.28037   6.718   1.52E-08 *** 
logYr -18.9101 2.81171   -6.725   1.48E-08 *** 
Age3 0.03186 0.01382   2.306   0.02524 * 
Age4 0.05438 0.01386   3.922   0.000263 *** 
Multiple R-squared: 0.5113 Adjusted R-squared: 0.4825     
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Table F. Mature age classes Lake 224 BCD Equation: log10BCD = log10Yr*Age + log10Yr + Age + 
Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 61.50729 9.330006   6.592   2.84E-10 *** 
logYr -18.6357 2.825568   -6.595   2.80E-10 *** 
Age6 -7.2548 12.61322   -0.575   0.565726   
Age7 -27.0354 12.37501   -2.185   0.029906 * 
Age8 -34.4691 12.77518   -2.698   0.007481 ** 
Age9 -33.2677 12.7111   -2.617   0.009443 ** 
Age10 -47.4218 14.14295   -3.353   0.000932 *** 
Sex2 0.020982 0.004609   4.552   8.54E-06 *** 
logYr:Age6 2.200835 3.819989   0.576   0.565077   
logYr:Age7 8.195175 3.747808   2.187   0.029758 * 
logYr:Age8 10.45164 3.868995   2.701   0.00741 ** 
logYr:Age9 10.08996 3.849566   2.621   0.00934 ** 
logYr:Age10 14.3808 4.282915   3.358   0.000917 *** 
Multiple R-squared: 0.5021 Adjusted R-squared: 0.4766     
                
Table G. Immature age classes Lake 373 RWT Equation: log10RWT = log10Yr*Age + logYr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 5.297 91.921   0.058   0.954188   
logYr -1.364 27.844   -0.049   0.96105   
Age2 202.292 122.475   1.652   0.102466   
Age3 425.913 121.804   3.497   0.000767 *** 
Age4 341.662 127.435   2.681   0.00889 ** 
logYr:Age2 -61.111 37.096   -1.647   0.103358   
logYr:Age3 -128.722 36.894   -3.489   0.000787 *** 
logYr:Age4 -103.076 38.6   -2.67   0.009154 ** 
Multiple R-squared: 0.8249 Adjusted R-squared: 0.8097     
                
Table H. Mature age classes Lake 373 RWT Equation: log10RWT = log10Yr + Age + Sex   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 258.8075 33.67302   7.686   1.21E-12 *** 
logYr -77.7017 10.19821   -7.619   1.78E-12 *** 
Age6 0.26234 0.05862   4.475   1.40E-05 *** 
Age7 0.54567 0.06067   8.995   4.86E-16 *** 
Age8 0.65748 0.06081   10.813 < 2.00E-16 *** 
Age9 0.77284 0.0711   10.87 < 2.00E-16 *** 
Age10 0.79109 0.06839   11.567 < 2.00E-16 *** 
Sex2 0.19362 0.04008   4.831   3.05E-06 *** 
Multiple R-squared: 0.6607 Adjusted R-squared: 0.6466     
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Table I. Immature age classes Lake 373 FLEN Equation: log10RWT = log10Yr*Age + log10Yr + 
Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 23.163 29.423   0.787   0.43341   
logYr -6.435 8.912   -0.722   0.47229   
Age2 39.967 39.497   1.012   0.31456   
Age3 110.34 39.277   2.809   0.00621 ** 
Age4 86.825 41.127   2.111   0.0378 * 
logYr:Age2 -12.055 11.963   -1.008   0.31657   
logYr:Age3 -33.331 11.897   -2.802   0.00634 ** 
logYr:Age4 -26.172 12.457   -2.101   0.03872 * 
Multiple R-squared: 0.812 Adjusted R-squared: 0.7959     
                
Table J. Mature age classes Lake 373 FLEN Equation: log10FLEN = log10Yr + Age + Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 82.24631 10.8292   7.595   2.00E-12 *** 
logYr -24.1915 3.27973   -7.376   6.99E-12 *** 
Age6 0.08081 0.01886   4.285   3.07E-05 *** 
Age7 0.17155 0.01952   8.789   1.66E-15 *** 
Age8 0.2157 0.0194   11.121 < 2.00E-16 *** 
Age9 0.25071 0.02287   10.961 < 2.00E-16 *** 
Age10 0.25504 0.022   11.591 < 2.00E-16 *** 
Sex2 0.05676 0.01288   4.407   1.86E-05 *** 
Multiple R-squared: 0.6579 Adjusted R-squared: 0.6438     
                
Table K. Immature age classes Lake 373 BCD Equation: BCDavg = Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 11.29674 1.898805   5.949   1.09E-07 *** 
Year -0.0052 0.000948   -5.491   6.65E-07 *** 
Age3 0.032776 0.02125   1.542   0.128   
Age4 0.113959 0.021647   5.264   1.60E-06 *** 
Multiple R-squared: 0.4825 Adjusted R-squared: 0.4593     
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Table L. Mature age classes Lake 373 BCD Equation: log10BCD = log10Yr + Age + Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 32.32044 5.526361   5.848   2.53E-08 *** 
logYr -9.78737 1.673714   -5.848   2.53E-08 *** 
Age6 0.031028 0.009621   3.225   0.001514 ** 
Age7 0.041979 0.009956   4.216   4.05E-05 *** 
Age8 0.054049 0.00998   5.416   2.08E-07 *** 
Age9 0.069999 0.011668   5.999   1.18E-08 *** 
Age10 0.076064 0.011224   6.777   1.99E-10 *** 
Sex2 0.025585 0.006578   3.889   0.000145 *** 
Multiple R-squared: 0.4154 Adjusted R-squared: 0.3911     
                
Table M. immature age classes Lake 442 RWT Equation: log10RWT = log10Yr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 619.0323 86.5879   7.149   6.13E-09 *** 
logYr -187.261 26.2268   -7.14   6.32E-09 *** 
Age2 0.5128 0.1225   4.185   0.000131 *** 
Age3 1.0028 0.123   8.151   2.08E-10 *** 
Age4 1.3611 0.1208   11.268   1.08E-14 *** 
Multiple R-squared: 0.8537 Adjusted R-squared: 0.8407     
                
Table N. Mature age classes Lake 442 RWT Equation: RWTavg = Year*Age + Year + Age + Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 16640.82 9275.295   1.794   0.076774 . 
Year -8.165 4.64   -1.76   0.082493 . 
Age6 -8218.7 13630.9   -0.603   0.54834   
Age7 -11806.9 13199.69   -0.894   0.373886   
Age8 -28366 14405.24   -1.969   0.052582 . 
Age9 -70706.8 30165.59   -2.344   0.021695 * 
Age10 -90646.7 22536.78   -4.022   0.000135 *** 
Sex2 180.738 28.051   6.443   9.63E-09 *** 
Year:Age6 4.165 6.822   0.611   0.54334   
Year:Age7 6.024 6.604   0.912   0.364551   
Year:Age8 14.378 7.207   1.995   0.049636 * 
Year:Age9 35.619 15.129   2.354   0.021141 * 
Year:Age10 45.646 11.295   4.041   0.000126 *** 
Multiple R-squared: 0.7628 Adjusted R-squared: 0.7253     
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Table O. Immature age classes Lake 442 FLEN Equation: log10FLEN = log10Yr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 200.1221 27.98942   7.15   6.11E-09 *** 
logYr -60.0386 8.47778   -7.082   7.71E-09 *** 
Age2 0.16776 0.03961   4.235   0.000111 *** 
Age3 0.32259 0.03977   8.112   2.37E-10 *** 
Age4 0.44205 0.03905   11.321   9.26E-15 *** 
Multiple R-squared: 0.8535 Adjusted R-squared: 0.8405     
                
Table P. Mature age classes Lake 442 FLEN Equation: log10FLEN = log10Yr*Age + log10Yr + Age 
+ Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 72.35 1.61E+01   4.486   2.54E-05 *** 
logYr -21.17 4.89E+00   -4.333   4.45E-05 *** 
Age6 -42.71 2.40E+01   -1.779   0.07928 . 
Age7 -51.01 2.29E+01   -2.228   0.02884 * 
Age8 -75.47 2.55E+01   -2.957   0.00414 ** 
Age9 -104.2 5.17E+01   -2.017   0.04725 * 
Age10 -116.6 4.03E+01   -2.895   0.00495 ** 
Sex2 0.03573 6.84E-03   5.224   1.48E-06 *** 
logYr:Age6 12.95 7.28E+00   1.78   0.07902 . 
logYr:Age7 15.47 6.94E+00   2.231   0.02864 * 
logYr:Age8 22.89 7.73E+00   2.96   0.0041 ** 
logYr:Age9 31.61 1.57E+01   2.018   0.04711 * 
logYr:Age10 35.36 1.22E+01   2.897   0.00492 ** 
Multiple R-squared: 0.7465 Adjusted R-squared: 0.7064     
                
Table Q. Immature age classes Lake 442 BCD Equation: log10BCD = log10Yr + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 43.1688 8.934037   4.832   1.83E-05 *** 
logYr -13.0878 2.706573   -4.836   1.81E-05 *** 
Age3 0.015807 0.008221   1.923   0.0613 . 
Age4 0.033756 0.007832   4.31   9.64E-05 *** 
Multiple R-squared: 0.4948 Adjusted R-squared: 0.4587     
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Table R. Mature age classes Lake 442 BCD Equation: log10BCD = Age + Sex (year non-significant) 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.00759 0.006955   1.091   0.278312   
Age6 0.009296 0.00941   0.988   0.326133   
Age7 0.027541 0.009505   2.898   0.004822 ** 
Age8 0.029242 0.01021   2.864   0.005307 ** 
Age9 0.02866 0.011667   2.456   0.016144 * 
Age10 0.025105 0.011378   2.207   0.030143 * 
Sex2 0.023149 0.006337   3.653   0.000455 *** 
Multiple R-squared: 0.3036 Adjusted R-squared: 0.2526     
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Appendix 6 – Chapter 3 model summary outputs from NDMNRF White Sucker populations 

 

 Appendix 6 details model summary outputs from the lake specific growth models for the 

NDMNRF White Sucker populations. For each lake, there are 6 table summaries because the 

data was separated into an immature and mature dataset to run the models on. Recall RWT = 

round weight, FLEN = fork length, and BCD = body condition. Table A – F detail models for 

Lac Des Mille Lacs (LDML), Table G – L detail Lake of the Woods (LOTW), Table M – R 

detail Lake Nipigon, (NIP), and Table S – X detail Whitefish Lake (WFSH). Equations of the 

models are listed in the table captions, and coefficients of the terms are detailed within the tables 

under the “Estimate” column. 

Table A. Immature age classes LDML RWT Equation: RWT = Year + Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 42621.65 13174.65   3.235   0.01435 * 
Year -21.172 6.553   -3.231   0.01443 * 
Age2 43.135 152.695   0.282   0.78574   
Age3 246.545 112.95   2.183   0.06537 . 
Age4 507.715 98.927   5.132   0.00135 ** 
Multiple R-squared: 0.6705 Adjusted R-squared: 0.5607     
                
Table B. Mature age classes LDML RWT Equation: RWT = Age + Sex    
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 660.15 65.43   10.089   8.61E-13 *** 
Age6 153.3 82.23   1.864   0.06929 . 
Age7 169.74 96.96   1.751   0.087317 . 
Age8 318.35 90.23   3.528   0.001028 ** 
Age9 388.01 92.25   4.206   0.000133 *** 
Age10 452.95 89.24   5.076   8.32E-06 *** 
Sex2 201.17 54.13   3.716   0.000591 *** 
Multiple R-squared: 0.3445 Adjusted R-squared: 0.2716     
                
 
 
 
 
   



151 

 

Table C. Immature age classes LDML FLEN Equation: FLEN = Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 7635.466 2609.689   2.926   0.01912 * 
Year -3.72 1.298   -2.866   0.020947 * 
Age2 55.708 36.624   1.521   0.166732   
Age3 75.32 25.402   2.965   0.018005 * 
Age4 168.61 23.948   7.041   0.000108 *** 
Multiple R-squared: 0.8667 Adjusted R-squared: 0.7905     
                
Table D. Mature age classes LDML FLEN Equation: FLEN = Age + Sex   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 351.304 9.451   37.17 < 2.00E-16 *** 
Age6 19.42 11.696   1.66   0.103931   
Age7 32.676 13.473   2.425   0.019465 * 
Age8 39.013 13.049   2.99   0.004559 ** 
Age9 46.71 13.346   3.5   0.001079 ** 
Age10 50.553 12.909   3.916   0.00031 *** 
Sex2 30.628 7.736   3.959   0.000271 *** 
Multiple R-squared: 0.5708 Adjusted R-squared: 0.5095     
                
Table E. Immature age classes LDML BCD Equation: BCD = Year (nonsignificant model) 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 13.68658 76.11787   0.18   0.861   
Year -0.00612 0.037854   -0.162   0.875   
Multiple R-squared: 0.002611 Adjusted R-squared: -0.09713     
                
Table F. Mature age classes LDML BCD Equation: BCD = Year (nonsignificant model) 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) -3.91626 73.18377   -0.054   0.958   
Year 0.002689 0.036417   0.074   0.941   
Multiple R-squared: 0.000116 Adjusted R-squared: -0.02116     
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Table G. Immature age classes LOTW RWT Equation: sqrtRWT = Year * Age + Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) -642.321 206.3302   -3.113   0.00236 ** 
Year 0.327 0.103   3.173   0.00195 ** 
Age2 794.4755 253.4805   3.134   0.00221 ** 
Age3 518.7642 249.3844   2.08   0.03983 * 
Age4 619.6698 250.8078   2.471   0.01502 * 
Year:Age2 -0.3959 0.1266   -3.127   0.00226 ** 
Year:Age3 -0.2557 0.1245   -2.053   0.04243 * 
Year:Age4 -0.3033 0.1253   -2.422   0.01709 * 
Multiple R-squared: 0.6173 Adjusted R-squared: 0.5929     
               
Table H. Mature age classes LOTW RWT Equation: RWT = Age     
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 791.11 30.69   25.776 < 2.00E-16 *** 
Age6 206.4 43.71   4.722   4.39E-06 *** 
Age7 378.17 43.4   8.713   1.13E-15 *** 
Age8 474.42 44.38   10.69 < 2.00E-16 *** 
Age9 667.45 44.04   15.156 < 2.00E-16 *** 
Age10 708.92 44.74   15.845 < 2.00E-16 *** 
Multiple R-squared: 0.6529 Adjusted R-squared: 0.6442     
                
Table I. Immature age classes LOTW FLEN Equation: FLEN = Year * Age + Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) -6277.52 1846.355   -3.4   0.00094 *** 
Year 3.2426 0.9221   3.516   0.000637 *** 
Age2 6974.52 2268.283   3.075   0.002657 ** 
Age3 4607.004 2231.628   2.064   0.04133 * 
Age4 5772.701 2244.366   2.572   0.011442 * 
Year:Age2 -3.475 1.1327   -3.068   0.002715 ** 
Year:Age3 -2.2668 1.1145   -2.034   0.044372 * 
Year:Age4 -2.8222 1.1208   -2.518   0.013241 * 
Multiple R-squared: 0.6664 Adjusted R-squared: 0.6451     
                
Table J. Mature age classes LOTW FLEN Equation: FLEN = Age     
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 365.621 3.465   105.512 < 2.00E-16 *** 
Age6 32.139 4.935   6.512   5.87E-10 *** 
Age7 51.524 4.901   10.514 < 2.00E-16 *** 
Age8 64.102 5.011   12.793 < 2.00E-16 *** 
Age9 84.948 4.972   17.085 < 2.00E-16 *** 
Age10 91.153 5.051   18.045 < 2.00E-16 *** 
Multiple R-squared: 0.7001 Adjusted R-squared: 0.6926     
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Table K. Immature age classes LOTW BCD Equation: BCD = Age     
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1.11048 0.02449   45.338 < 2.00E-16 *** 
Age2 -0.01148 0.03194   -0.359   0.72   
Age3 0.05746 0.03115   1.845   0.0677 . 
Age4 0.12922 0.03133   4.124   7.09E-05 *** 
Multiple R-squared: 0.207 Adjusted R-squared: 0.1861     
                
Table L. Mature age classes LOTW BCD Equation: BCD =  Year     
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 3.697194 1.226029   3.016   0.00289 ** 
Year -0.00121 0.000612   -1.976   0.0495 * 
Multiple R-squared: 0.01878 Adjusted R-squared: 0.01397     
                
Table M. Immature age classes NIP RWT Equation: log10RWT = Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 35.73188 15.42165   2.317   0.02833 * 
Year -0.01672 0.007665   -2.181   0.0381 * 
Age3 0.182087 0.116517   1.563   0.12976   
Age4 0.322646 0.111564   2.892   0.00747 ** 
Multiple R-squared: 0.3408 Adjusted R-squared: 0.2675     
                
Table N. Mature age classes NIP RWT Equation: RWT = Year + Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 19583.39 8395.127   2.333   0.0231 * 
Year -9.477 4.173   -2.271   0.0268 * 
Age6 116.288 80.207   1.45   0.1524   
Age7 410.648 82.041   5.005   5.34E-06 *** 
Age8 424.219 80.058   5.299   1.82E-06 *** 
Age9 545.123 78.461   6.948   3.32E-09 *** 
Age10 558.513 80.164   6.967   3.07E-09 *** 
Multiple R-squared: 0.6051 Adjusted R-squared: 0.5649     
                
Table O. Immature age classes NIP FLEN Equation: log10FLEN = Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 13.22412 4.965263   2.663   0.01288 * 
Year -0.00542 0.002468   -2.195   0.03692 * 
Age3 0.051067 0.037515   1.361   0.18469   
Age4 0.100019 0.03592   2.785   0.00968 ** 
Multiple R-squared: 0.3312 Adjusted R-squared: 0.2569     
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Table P. Mature age classes NIP FLEN Equation: FLEN = Year + Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 4410.834 1442.748   3.057   0.00335 ** 
Year -2.0327 0.7171   -2.835   0.00627 ** 
Age6 24.9786 13.7839   1.812   0.07505 . 
Age7 69.3091 14.0991   4.916   7.39E-06 *** 
Age8 78.5287 13.7585   5.708   3.93E-07 *** 
Age9 91.3256 13.4839   6.773   6.55E-09 *** 
Age10 92.7354 13.7765   6.731   7.69E-09 *** 
Multiple R-squared: 0.5958 Adjusted R-squared: 0.5547     
                
Table Q. Immature age classes NIP BCD Equation: BCD = Year * Age + Year + Age 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 21.7617 10.94763   1.988   0.05789 . 
Year -0.0103 0.005441   -1.894   0.06992 . 
Age3 -23.0576 14.54292   -1.585   0.12543   
Age4 -41.5865 14.3315   -2.902   0.00764 ** 
Year:Age3 0.011506 0.007231   1.591   0.12411   
Year:Age4 0.020694 0.007125   2.905   0.00759 ** 
Multiple R-squared: 0.3461 Adjusted R-squared: 0.2153     
                
Table R. Mature age classes NIP BCD Equation: BCD = Age     
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1.12818 0.02313   48.775 < 2.00E-16 *** 
Age6 0.02636 0.03271   0.806   0.42345   
Age7 0.08882 0.03352   2.65   0.01028 * 
Age8 0.05727 0.03271   1.751   0.08508 . 
Age9 0.08098 0.03202   2.529   0.01408 * 
Age10 0.09091 0.03271   2.779   0.00727 ** 
Multiple R-squared: 0.1766 Adjusted R-squared: 0.108     
                
Table S. Immature age classes WFSH RWT Equation: log10RWT = Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 2.05765 0.07318   28.119   2.16E-14 *** 
Age2 0.51072 0.09256   5.518   5.91E-05 *** 
Age3 0.81441 0.09256   8.799   2.62E-07 *** 
Age4 0.85877 0.08962   9.582   8.73E-08 *** 
Multiple R-squared: 0.8786 Adjusted R-squared: 0.8543     
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Table T. Mature age classes WFSH RWT Equation: RWT =  Year + Age + Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) -11336.2 3495.55   -3.243   0.001868 ** 
Year 6.069 1.746   3.476   0.000913 *** 
Age6 -8.871 52.85   -0.168   0.867219   
Age7 107.515 51.88   2.072   0.042201 * 
Age8 146.098 52.762   2.769   0.00732 ** 
Age9 201.23 60.771   3.311   0.001519 ** 
Age10 216.008 55.274   3.908   0.000225 *** 
Sex2 144.72 32.37   4.471   3.20E-05 *** 
Multiple R-squared: 0.5196 Adjusted R-squared: 0.4679     
                
Table U. Immature age classes WFSH FLEN Equation: FLEN = Year + Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1932.899 1355.939   1.426   0.174   
Year -0.864 0.6778   -1.275   0.222   
Age2 102.3148 16.7498   6.108   2.00E-05 *** 
Age3 169.7362 17.7003   9.589   8.65E-08 *** 
Age4 186.4311 16.8815   11.044   1.33E-08 *** 
Multiple R-squared: 0.9106 Adjusted R-squared: 0.8868     
                
Table V. Mature age classes WFSH FLEN Equation: FLEN = Year + Age + Sex 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1653.72 468.378   -3.531   0.000761 *** 
Year 1.014 0.234   4.335   5.09E-05 *** 
Age6 1.084 7.09   0.153   0.878984   
Age7 21.294 6.835   3.116   0.002717 ** 
Age8 24.293 7.078   3.432   0.001038 ** 
Age9 33.086 8.152   4.058   0.000133 *** 
Age10 35.516 7.415   4.79   9.83E-06 *** 
Sex2 28.672 4.313   6.648   6.81E-09 *** 
Multiple R-squared: 0.6423 Adjusted R-squared: 0.6044     
                
Table W. Immature age classes WFSH BCD Equation: BCD = Age   
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.92333 0.07919   11.659   6.40E-09 *** 
Age2 0.10467 0.10017   1.045   0.31264   
Age3 0.31867 0.10017   3.181   0.0062 ** 
Age4 0.28667 0.09699   2.956   0.00982 ** 
Multiple R-squared: 0.4988 Adjusted R-squared: 0.3985     
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Table X. Mature age classes WFSH BCD Equation: BCD = Sex (nonsignificant model) 
  Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1.15242 2.10E-02   54.921   <2e-16 *** 
Sex2 -0.02967 2.84E-02   -1.047   0.299   
Multiple R-squared: 0.0152 Adjusted R-squared: 0.00133     

 

 


