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Abstract 

 

Gearboxes are commonly used in rotating machinery for power transmission. A gearbox consists 

of shafts, gears, and bearings, each component having specific mechanical dynamics and fault 

properties. Reliable gearbox fault detection and health monitoring techniques are critically 

needed in industries for more efficient predictive maintenance applications. The objective of this 

work is to develop a new technology for health monitoring of gearboxes. Firstly, a new wavelet 

analysis method is technique for analysis of gear faults in a gearbox with demodulation from 

other rotating components such as shaft and bearings. Secondly, a mode decomposition 

technique is proposed to highlight bearing fault features in a gearbox. Thirdly, a new evolving 

neuro-fuzzy (eNF) classifier is developed to integrate the merits of different fault detection 

techniques for real-time health condition monitoring of gear systems. The effectiveness of the 

proposed techniques is verified by simulation and experimental tests. 
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Chapter 1 

Introduction 
 

 

1.1 Introduction to Gear Systems 

 Gearboxes (i.e., gear systems) are among the most ubiquitous mechanical 

systems, which are commonly used in rotating machinery in a wide variety of industries 

such as the automotive, manufacturing, and chemical engineering. A gearbox can be used 

to transmit power and rotation from the drive motor to the driven machinery [1, 2]. 

Correspondingly, the gearbox health condition is critical to ensuring that machines 

operate at desired operation accuracy and efficiency [3-5]. A gearbox consists of many 

components such as gears, bearings and shafts; all of these rotating components will 

contribute to the state of gearbox health conditions [6]. Each rotating component has its 

own dynamics, and specific types of faults [7, 8]. A shaft is used to support gears, and 

transmit the forces to the gearbox case through bearings. Bearings allow shaft to have a 

relative motion with respect to fixed structure of gearbox. The gear has the function of 

transmitting torque from one shaft to another shaft by tooth meshing operations. Fig. 1.1 

shows two examples of gearboxes [9, 10] with helical gears and spur gears.  

 

(a) (b)

 
Fig. 1.1 Examples of gearboxes [9, 10]: (a) helical gears, (b) spur gears. 
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The efficiency of a gearbox depends on the proper functioning of each rotating 

constituent component [11]. Any defect in the gearbox will not only have adverse 

impacts on the transmission accuracy, but also increase vibration and noise levels [12]. 

Damage to the gear system may also result in serious accidents and even catastrophic 

failures in some safety-critical applications such as aircraft and chemical engineering 

facilities [13]. Thus, reliable gearbox health monitoring techniques and systems are 

critically needed in industries for production quality control and the maintenance service 

planning. The next section will provide discussions on types of faults in gearboxes.  

 

1.2 Faults in a Gearbox System 

Fault in each rotating component in a gearbox can result in degradation of 

transmission accuracy of the gear train. Some of the common faults in gearboxes are 

summarized below.  

1.2.1 Shaft Faults  

The main shaft defects include misalignment and imbalance. Misalignment in a shaft 

is caused by shaft elastic deformation, manufacturing inaccuracy and assembly errors 

[14]. If the shaft misalignment error, as illustrated in Fig 1.2, is beyond some threshold, 

the gear train transmission accuracy degrades.  

(a) (b) 

Coupling

axis

Coupling

axis
 

 (a)              (b)                     

Fig. 1.2 Examples of misalignment fault in shaft: (a) Parallel shaft, (b) Angular shaft [15]. 
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The center of 
stator (housing) 
and rotor (shaft)

The center 
of stator 

(housing)

The center of 
rotor (shaft)

The stator 
(housing) 

The rotor 
(shaft) 

 
  (a)                 (b) 

Fig. 1.3 Examples of eccentricity in shaft (a) without eccentricity, (b) with eccentricity [16]. 
 

Shaft imbalance fault is related to excessive eccentricity, which occurs when the rotor 

mass center does not coincide with its rotation center. The imbalance is observed due to 

errors in mass distribution of the rotor, as illustrated in Fig. 1.3. The imbalance can be 

caused by reasons such as manufacturing errors and elastic deformation in operation [17]. 

Gear vibrations in the shafts can also cause eccentricity. In addition, when a shaft skews 

too much to one side, it may cause lubrication problems. A gearbox without proper 

lubrication can result in problems related to pressure loss, friction, and excessive wear 

[18]. 

1.2.2 Gear Faults 

Gearbox design is based on power transmission requirements. In parallel shaft 

gearboxes, gears can have spur or helical forms [19]. In spur gears as shown in Fig. 

1.1(b), tooth flanks are parallel to the axis of the shaft, and no extra axial forces are 

generated in transmission operation in theory. Gear vibrations are generated due to the 

engagement of the teeth in operation. Helical gears have slanted tooth flanks, as shown in 

Fig. 1.1(a). In comparison to the spur gears, the helical gears have larger contact ratio, 

which can transmit larger forces with higher transmission accuracy and less vibration 

[20]. 
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Gear tooth failures can be classified in two categories: distributed faults and localized 

defect. In general the initial gear faults are the localized faults such as pitting, and broken 

tooth [19, 21]. Pitting (i.e., small spalls) can be generated by the removal of surface 

material due to excess contact fatigue stress as shown in Fig. 1.4. Broken tooth as shown 

in Fig. 1.5 can be caused due to fatigue, or high impact load on tooth.  
 

 

 
Fig. 1.4 An example of pitting defect in gears [22]. 

 

 

 
Fig. 1.5 An example of a broken gear tooth defect [23].  

 

Distributed defects include excessive wear and scoring [19, 21]. Wear is a result of 

continuous, abrasive process of material removal from gear surface. It is typically 

observed in lack of sufficient lubricant between tooth surfaces, which will result in 

damage to tooth profile and variable contact ratio. Scoring (i.e., scratches) on the gear 

surface can be caused by insufficient lubrication in meshing as shown in Fig. 1.6. The 
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gear has to be replaced when it is damaged to prevent transmission degradation. This 

work will focus on fault detection of localized gear defects.  

 

Scuffed 
tooth 
surfaces

Original gear 
tooth surface 
(no scuffing)

 
Fig. 1.6 An example of tooth surface severe scoring defect [24].  

  

1.2.3 Bearing Faults 

Bearings can be classified as journal bearings and rolling element bearings [25, 26]. 

Journal bearings, also known as sliding bearings, comprise of a rotating shaft (journal) 

and a fixed bearing. A rolling element bearing has a series of rolling elements between 

the inner race and outer race to reduce the friction. Rolling element bearings are 

commonly used in rotating machinery; this work will focus on fault detection in rolling 

element bearings.  

Different from a shaft or a gear, a rolling element bearing is a system consisting of an 

inner race, an outer race, rolling elements and a cage [25]. Rolling element bearings are 

classified, on basis of rolling element structures, into balls, cylindrical rollers, tapered 

rollers, etc. Defects in rolling element bearings are classified as distributed fault (e.g., 

surface roughness, wear, and misaligned races) and localized defects (e.g., cracks, pits, 

and spalls). The localized faults are caused by dynamic fatigue loading on bearing 

components. This work will focus on detecting localized bearing faults.  

The bearing fault can occur in the outer race, inner race, or roller elements. Even a 

healthy bearing generates vibration and noise due to contact stiffness variations. A faulty 

bearing will generate excessive vibration and noise, which will influence transmission 
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accuracy [26]. Most machinery defects are related to bearing imperfections. Thus, 

condition monitoring of rolling element bearings is of higher priority not only in 

academic research and development but also in industrial applications.  

Outer 
diamete

r

Inner 
diameter

Inner 
ringCage

Outer 
ring

Width

Rolling 
element

 

Fig. 1.7 Structure of a rolling element (cylindrical roller) bearing [27].   

 

1.3 Literature Review 

Fault detection in gearboxes can be undertaken using different type of information 

carrier such as lubrication, temperature, or vibration [21, 28-29]. Out of all, vibration 

analysis could be the most commonly used method over thermal analysis and lubrication 

analysis as it is relatively easy to measure and could provide higher signal-to-noise ratio 

[30, 31]. Vibration analysis is non-destructive and does not need shut-down of machines; 

it is easier to be implemented in machines for defect detection than many other types 

(e.g., lubricant-based) of condition monitoring [32]. The vibration signal from a gearbox 

is complex in nature and requires advanced techniques to extract representative features 

to diagnose the presence of machinery faults [6, 8]. Vibration-based analysis will be used 

in this project.  
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Every rotating mechanical part generates a specific vibration signature [34]. Even a 

brand-new healthy gearbox will generate vibration signals, which can be used as the 

baseline for gear system health condition monitoring [29, 31]. 

 

1.3.1 Gear Fault Analysis 

Gear fault detection can be undertaken in the time, frequency, or time-frequency 

domains [35-38]. The related signal processing-based fault detection techniques are 

discussed below. 

The vibration signal generated from a gear system in the time domain can be 

characterized by properties such as the amplitude, statistical measures and phase. On 

basis of statistical analyses, the signal properties can be processed using indicators like 

signal demodulation, probability density function and signal average [36, 39]. These 

indicators are sometimes sensitive to the gear health conditions. The time synchronous 

averaging (TSA) filtering is a useful method of averaging signals over some 

cycles/rotations from the measured signals to recognize features to a specific gear [40, 

41]. The signal average generated by TSA is a representation of tooth meshing vibration, 

which could contain the features of gear health conditions [42]. Time domain signal of 

gear vibration can be used for determining some gear faults and severity of those faults 

[39, 41-43].  

Frequency domain analysis represents the repetitive occurrence of periodic events in a 

time signal. In a gear system, the energy is mainly distributed around the gear mesh 

frequency (GMF) and its harmonics [31]. The sidebands of GMF could contain 

information related to bearing defect and shaft faults (e.g., misalignment, imbalance, 

etc.). Generally, the frequency domain analysis may provide features to detect stationary 

gear faults, but it is very difficult to separate gear fault from other events occurring within 

a gearbox system, especially those time-varying signatures. To resolve this problem, the 

time-frequency domain analysis of gear systems has been adopted by the researchers.  

Time-frequency analysis of a signal can highlight time dependent components in the 

frequency domain [44]. For example, the EMD method can decompose the signal into 
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different energy bands in the time-frequency domain for machinery fault detection [45]. 

The wavelet transform (WT) can predict gear fault from examining abrupt and non-

stationary features in signals [44, 46], where the continuous WT can even achieve better 

time resolution at high frequencies than the discrete WT [47, 48]. Even though there are 

several approaches proposed in the literature to improve signal processing accuracy, 

reliable gear fault diagnosis still remains a challenging task because the gear data varies 

with operating conditions in terms of load and speed. More robust techniques are needed 

to provide better insight into gear system dynamics so as to improve gear fault diagnosis. 

The first goal of this research is to investigate features of different components (e.g., 

gears and bearings) of a gearbox so as to have a better understanding of the gear vibration 

signals. An averaged WT technique will be proposed for gear fault detection.   

1.3.2 Bearing System Faults Analysis  

As mentioned in subsection 1.3.3, rolling element bearings generate vibrations even 

though they are healthy. If a bearing is damaged, extra impacts will be generated, which 

will excite resonances in the bearing system and the bearing supporting structures [50]. 

Vibration-based bearing fault detection can also be processed in the time, frequency, and 

time-frequency domains. Some of bearing fault detection techniques in literature are 

discussed as below. 

If defect occurs on the fixed ring race (usually the outer ring), the fault location is 

fixed and the impacts between the damaged location and rolling elements are periodic at 

ball-pass frequency, which is easier to detection [26, 51]. If defect occurs in the rotating 

ring (i.e., the inner race) or a rolling element, the related vibration signatures could be 

non-stationary and more difficult to analyze. In a gearbox system, the gear vibrations are 

dominant signals, which can bury and modulate bearing fault-related signatures [26]. 

Therefore, for gearbox condition monitoring, bearing fault detection in the time domain 

still remains a very challenging task in this research and development field, which will be 

discussed in the following subsection. 

In frequency domain analysis, the Fourier transform (FT) can separate periodic 

features in the original vibration signal [52, 53]. Frequency spectrum can be useful in 



9 

 

 

analyzing the characteristic frequencies of a bearing especially for outer race defect [53]. 

However, the energy spectrum of bearing vibration is distributed over a wide range 

frequency bandwidth and it is difficult to explore fault features with time-varying 

properties. 

Many techniques have been proposed in the time-frequency domain for bearing fault 

detection, such as the short time FT [54, 56], the Hilbert Haung Transform (HHT) [58, 

59] and the WT [60-62]. The short-time FT generates a frequency spectrum related to a 

selected time window [57], for bearing fault frequency analysis [56]. However, the short-

time FT has low resolutions, which makes it difficult to recognize bearing fault 

information with time-varying properties [26, 56]. The WT uses variable size windows 

for bearing fault detection, or using large windows to extract low frequency components 

and short windows to extract high frequency components. In the WT, however, some 

high frequency components are affected by aliasing and distortion [62]. The HHT 

decomposes a signal into intrinsic mode functions (IMFs) by using a shifting process 

[58]. The Hilbert transform can be used to add an imaginary part to each IMF. Although 

the HHT can generate better resolution over the selected frequency bandwidth, however, 

the correlation of the IMF with faults is not straight forward and needs advanced 

investigations to improve bearing fault detection reliability, especially for bearings in 

gearboxes. 

 

1.3.3 Bearing Faults Analysis in a Gearbox  

In a multi-component system, such as a gearbox, the signal is a result of integrated 

effects from all the rotating components [32]. The collected signal is a mixture of bearing 

data modulated by gear meshing vibrations, which can be observed over any frequency 

spectrum of a gearbox. This modulated signal is a result of coupling of the gear and 

bearings through the shaft [62]. Thus, it is very challenging to predict the bearing fault 

under the modulation of gear mesh vibrations [63, 64]. The researchers face a crucial 

challenge in designing advanced simulation models for a gearbox that can represent the 

interaction between the fixed structure and the rotating components of the gear train [32, 

66]. The dynamic response of a gearbox is highly influenced by the characteristics of the 
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support structure used to support rolling element bearings and shafts [56]. Along with 

modulated side-bands from other components, manufacturing errors in gears can also 

result in extra dynamic gear mesh forces in the form of amplitude modulation, frequency 

modulation, and phase modulation [32, 56]. However, the number of sidebands around 

gear MF and its harmonics may also vary due to change in deformations of the gear train. 

The components involved in gear load sharing have an impact on the amplitude 

modulation and the dynamic gear mesh forces [62]. Thus, a strategy to improve 

diagnostic accuracy is to account impedance of signal transmission path from the 

vibrating source (fault) to the measurement sensors. To fulfill this requirement, the 

sensors/transducers should be placed at a location as close as possible to the bearing of 

interest. The current study aims to separate gear and bearing signatures from gearbox 

signal for bearing fault detection.  

Up to date, machine condition monitoring has gained a drag towards detecting bearing 

fault in gearboxes under the effect of strong interfering gear signatures [65]. In 

gearboxes, as gear signatures and bearing signals may inter-modulate each other in a 

complex way, more emphasis is placed on the process of separating them [66]. The 

decoupling strategies to achieve this type of distinction are essentially based on 

recognizing gear signatures as being periodic in nature, whereas bearing signals are 

random and can be approximated as a second-order cyclostationary function [67]. Such 

distinction can provide more accurate detection for bearing faults in gearboxes, by 

separating stochastic (bearing) signals from deterministic (gear) contents [65, 67]. Fault 

detection of a rolling element bearing in gearboxes can be achieved by different 

vibration-based monitoring techniques, which can be classified into time domain, 

frequency domain, and time-frequency domain analysis. A brief discussion of techniques 

from each domain is provided below. 

In time domain analysis, statistical parameters could be the most commonly used fault 

detection technique. In this method, a comparison is made between the information 

obtained from current state of the gearbox to the characteristics determined at its healthy 

state [68]. Some of the fault detection techniques are based on the TSA signals [69]. 

However, this analysis needs prior knowledge of the operating frequency, to extract the 
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periodic signal. These techniques, however, have limitations that they are sensitive to 

different load and speed conditions. Some time domain techniques are also implemented 

into linear prediction, such as autoregressive models using the Yule-Walker method [70], 

by which the future samples are predicted based on previously determined samples. 

However, an autoregressive model has a major limitation that the modeling process 

cannot properly use all of the available information. As a result, it becomes difficult to 

detect the consequential mesh harmonics and corresponding sidebands in gearbox 

spectra, because the each spectral component has a complex interaction with other 

components.  

In frequency domain analysis, the envelope spectrum of the measured signal is one of 

the common techniques for bearing fault diagnosis [71]. However, the envelope spectrum 

cannot differentiate between the bearing fault and the high energy deterministic spectral 

components of gear MF and its harmonics. As a result, the bearing characteristic 

frequencies are usually coated by these high-energy spectral components of gear MF in 

the amplitude spectrum [72]. The inverse FT of the estimated spectrum, referred to as 

Cepstrum analysis, can detect echoes in acoustic signals, which can use an equivalent 

liftering approach to remove harmonics but preserving the resonances [73-75]. Even 

though it could be used to separate the bearing signatures from the gear vibration signal, 

it may not be suitable to detect a bearing defect in the machine where prior baseline 

information is not available.  

The time-frequency analysis can study multi-resolution information in the vibration 

signals, for the examination of transient feature properties, using techniques such as the 

short-time FT [76-78], HHT [79, 81], and WT [82-84]. These techniques can analyze 

non-stationary signals with time-varying spectral contents and statistical properties. The 

short-time FT performs the FT over a time-shifted window, which is capable of 

extracting spectral information from the gearbox and bearing vibration signals [76, 77]. 

However, as discussed in section 1.3.2, the short-time FT cannot differentiate some 

frequencies in a signal due to the use of fix windows in analysis [78]. 
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As commented in subsection 1.3.3, the HHT utilizes EMD to extract IMFs from the 

non-stationary signal and then applies the Hilbert transform for signal property analysis 

[79- 80]. Although EMD can decompose the signal into various frequency components, 

the presence of noise interference may impact results [81]. In recent years, the 

Variational Mode Decomposition (VMD) technique has been used to reduce errors 

occurring during the EMD decomposition [85]. VMD implements a concurrent 

variational model to minimize errors between the extracted IMFs. In contrast to the 

classical EMD method, the VMD has rigorous mathematical foundations for decoupling 

different features [86]. However, the VMD requires some complex post-processing 

procedures due to interaction between different spectral components. In processing the 

vibration signals from a gearbox, which are non-stationary and nonlinear, the complex 

computation in VMD would limit its application in real-time machine health monitoring. 

1.3.4 Neuro-Fuzzy Classifiers   

 From the aforementioned analysis, each fault detection technique has its own merits 

and limitations to predict defects in bearings and gears. For automatic condition 

monitoring, some intelligent tools can be used to integrate the merits of several fault 

detection techniques for real-time machinery health fault diagnosis. 

 Decision-making is a process to classify representative features into different health 

categories of a machinery system. Soft-computing tools have been widely used in 

automatic fault diagnosis, by the use of tools such as fuzzy logic, neural networks, and 

synergetic paradigms such as neuro-fuzzy (NF) schemes for machinery fault diagnostics 

and prognosis [87-89]. In most of these diagnostic classifiers, fixed reasoning structures 

were used in reasoning operations, while system parameters were updated online. But 

these classifiers with fixed reasoning structures may not be suitable for monitoring 

applications of gearbox systems with time varying operating conditions. An alternative 

solution to this problem is implementing some clustering algorithm to diagnostic 

classification. 

 An evolving system uses some clustering algorithm to generate classifier structures, 

while system parameters are properly trained. Continuous and gradual adaptation will 
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make the classification operation smooth and regular over different input information 

[90]. As a fuzzy system is a universal approximator and can extract knowledge with 

mimic of human reasoning to understand and predict the outcome of a decision-making 

process [91], it is generally used as the platform in designing evolving systems. For 

example, Angelov et al. proposed an evolving Takagi-Sugeno (eTS) scheme for system 

control [92]. Formation of the clusters was determined by a potential measure in terms of 

the center and spread of clusters, while a least square estimator algorithm was used to 

update linear parameters. Pratama et al. suggested a parsimonious ensemble evolving 

classifier [93] to make adaptive selection of input features, where the selection of subset 

varied in each iteration; a problem of this clustering approach, however, is that the 

predefined cluster information (e.g., centers and spreads) is sensitive to noise in the data 

sets and processing errors. Kasabov suggested a transductive NF inference (TWNFI) 

system by taking weighted data normalization for transductive reasoning [94]. 

Comparing with the eTS in modeling of non-linear systems, the TWNFI usually 

generates more clusters/rules and thus may result in lower processing efficiency [90, 91].  

 One of the problems in the aforementioned evolving classifiers is related to their blind 

classification of the output space, which could degrade the diagnostic reliability. In order 

to tackle this problem, the third objective of this work is to develop a new evolving NF 

classifier for real-time gearbox health condition monitoring.  

 

1.4 Proposed Research Objectives 

Based on the aforementioned analysis, specific research objectives of this work are 

summarized as follows: 

 1) A new signal processing technique will be proposed to extract representative 

features for gear fault detection in a gearbox. 

 2) A novel envelope decomposition technique will be suggested for fault 

detection in rolling element bearings. This technique will tackle the problem of 

overlapping at nodes to preserve the fault information in mode functions. 
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 3) A new adaptive evolving NF classifier will be developed to integrate the merits 

of several fault detection techniques for automatic fault diagnosis and condition 

monitoring in gear systems.  

 4) A new training algorithm based on normalized Adadelta (NaD) will be 

proposed to train system parameters in the evolving NF classifier. 

 5) The effectiveness of the proposed techniques will be verified by simulation and 

experimental tests. 

 

1.5 Thesis Outline 

The outline of this study is as follows:  

Chapter 2 discusses the averaged WT technique for gear system analysis to detect 

faults. 

 Chapter 3 presents the proposed local mode decomposition technique for bearing 

fault detection.   

Chapter 4 discusses the developed evolving NF system for diagnostic 

classification of gear systems. A normalized adadelta method is proposed to train system 

parameters of the evolving NF classifier.  

Chapter 5 presents the experimental examination to examine the effectiveness of 

the proposed techniques.  

Chapter 6 summarizes concluding remarks of this study and future research. 
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Chapter 2 

Averaged Wavelet Analysis for Gear Faults 
 

2.1 Introduction to Gear Fault Analysis 

Gear systems are universal and irreplaceable for mechanical power transmission in 

many industries. The dynamic response of gear systems can be very complex due to 

excitation torque, multiple teeth contact, and backlash between teeth surfaces [95, 96]. As 

a result, under varying load, a distinctive gear system generates non-linear signals with 

complex behavior [97].   

Gear fault consists of localized damage and distributed defects (e.g., wear and pitting). 

This study focuses on localized gear fault diagnosis because initial gear damage is a 

localized fault, while a distributed defect also initiates from a localized fault. 

Furthermore, a localized fault will not only generate transmission errors but it also may 

cause sudden failures. For example, a tiny fatigue crack may occur at a gear tooth due to 

dynamic loading and stress concentration, which may then grow continuously. 

Unfortunately, by the time the crack is visible, the gear may be more than 90% used up. 

When a tooth is broken out, the following teeth will be damaged quickly because of the 

extra impact. As discussed in Chapter 1, this research is using vibration signal analysis 

for gear system health monitoring. 

In gear systems, vibration signals are inherent to gear mesh operation. During a 

contact between gear teeth, an impact is produced, resulting into a vibration signal. The 

frequency of impact is represented as a GMF fm [98, 99]. For a healthy gear system, the 

gear mesh vibration energy is concentric at the GMF and its harmonics. When the gear 

teeth have defects, such as crack, the stiffness at the contact point is modulated and the 

resultant vibration will have higher amplitude at second and third harmonic of the GMF 

[100].  

The time domain vibration signal of a gear is periodic with respect to its rotation. In 

time domain analysis, the gear signal can be firstly processed by time-synchronous 
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average (TSA) by filtering out the vibration signals non-synchronous to the rotation of 

the gear of interest [101]. The signal average then can be used for advanced analysis to 

detect presence of fault and its severity. 

A frequency spectrum of a normal gear train mainly presents peaks at rotation 

frequencies of the gears and to the GMF (fm) of each pair of gear in contact [98]. On the 

other hand, gear vibrations are sensitive to the load conditions and peaks in frequency 

spectrum do not always correspond to faults. Some other factors to influence the 

vibration spectrum include surface finish of gear teeth, irregular concentricity of teeth 

profile, and gear misalignments [102]. Based on the frequency domain analysis, the faults 

with periodic features can be distinguished based on gear characteristic frequencies. But 

for gear defect with non-periodic features caused by impacts, researchers are moving 

towards time-frequency analysis.  

A fault gear train generates non-stationary signals with distinct frequency 

characteristics [103]. In such cases, it is recommended to use techniques that offer 

combined time-frequency analysis, to provide comparative indications of changes in 

frequency with time. It can prevent loss of information of dynamic functions localized in 

the time domain and/or the frequency domain in gear signal processing.  

Many techniques have been proposed in the literature for gear signal analysis and fault 

detection in the time-frequency domain [104, 105], such as using the WT [106, 107]. This 

study will extract time-domain features using the WT to detect presence of fault in gear 

system, in order to provide a more accurate gear fault detection technique to minimize 

machinery maintenance costs. 

 

2.2 Analysis of Gearbox Signals 

2.1.1 Gear Mesh Frequency 

Gearbox consists of multiple pairs of gear trains, the corresponding GMF fm is 

determined by: 

fm = Z fr;       (2.1) 
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where Z is the number of teeth of the gear of interest, and fr is running speed of the gear. 

For a healthy gear system, the corresponding vibration signal spectrum has 

dominating components of GMF and its harmonics. Depending on the contact location of 

gear, there exists a varying force in gear mating operations due to variable contact 

stiffness [131, 132], which depends on GMF fm and its harmonics [69, 133]. 

 

2.1.2 Time Synchronous Average Filtering  

Time synchronous average (TSA) is a signal averaging process over a certain number 

of rotations of the gear of interest (or the shaft) in the gearbox [134]. It can extract 

signature to a specific gear by filtering out the signals non-synchronous to the rotation of 

the gear. The output is the signal average X[n] represented over one revolution of the 

gear:  

( ){ };])1([1][ ∑ −+= Nznx
Z

nX            (2.2) 

where x[n] is the collected vibration signal over Z revolutions, and each revolution is 

consisting of N data samples, n = 0,1, …, N-1. 

Nevertheless, a major drawback of this TSA method is the loss of scattered 

information that could contain representative fault features of a gear system [11, 135]. 

There are many techniques proposed in literature for gear fault detection. For example, 

the amplitude modulation analyzes the signal envelope, which could be used for gear 

fault analysis [108]. The phase demodulation analysis can be applied to examine gear 

fault-related phase distortion [108]. 

 

2.3 Wavelet Transform Analysis   

The WT is a recently developed signal processing technique with a strong potential in 

time and frequency domain analysis. The WT is independent of time and can provide 

detailed information regarding local events of the signal. The WT uses wavelets and a set 

of elementary functions to decompose and reconstruct the signal for advanced processing 

of signal properties. 
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In recent decade, many WT analysis techniques have been proposed for fault detection 

and diagnosis of rotating machines. A time-frequency spectrum reveals the magnitude of 

signal’s frequencies along with the time duration of each individual frequency [26, 108]. 

In particular, during condition monitoring of a gearbox, the WT can be used for 

identification of the transients in vibration signals, which are generated by faults [109]. 

The WT acquires numerous resolutions for localization of the short time components 

from different types of gear faults, highlighted with time-scaled distribution analysis 

[110, 111]. The WT represents the amplitude W(a,b) in terms of the mother wavelet 

function around region of (b,ω0/a) such that: 
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where *Ψ  is the mother wavelet function, a is the scale factor (index) and b represents 

the time shifting parameter.  

 Based on the type of mother wavelet function (Ψ*), the WTs are categorized into 

three classes: the continuous, discrete and multi-resolution WTs. The continuous WT 

compares the signal with shifted and scaled copies of mother wavelet. The continuous 

WT is very resistant to the noise in the signal, which helps to extract more information 

regarding the system [112]. In the continuous WT, the signal of finite energy is processed 

in the time-frequency domain by the shifts of mother wavelet function ( *Ψ ) in L2(R) 

universe. The subspace of scale a is defined by: 
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where *Ψ  is the mother wavelet function, a represents the scale factor (index) and b 

represents the time shifting parameter.  

The projected signal in the subspace of scale a can be expressed as: 

;)(),}({)( ,∫ •= R baa dbtbaxWtw ψψ                (2.5) 
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where the wavelet coefficients are  ∫= R baa dtttxbaxW .)()(),}({ ,ψψ  

In general, the continuous WT uses wavelet decomposition or reconstruction of the 

signal [113]. The classic mother wavelets include poisson wavelet, shannon wavelet, or 

morlet wavelet. The poisson wavelet has a single peak; but the signal from a gear system 

has multiple impulses. The shannon wavelet is either a real or a complex type. The morlet 

wavelet is composed of a complex exponential function (carrier signal) multiplied by a 

Gaussian window (envelope), as shown in Fig. 2.1.  

  

 

Fig. 2.1 Morlet wavelet function 
 

The morlet wavelet function can be defined as:  
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where σ is the spread which can define the time and frequency resolutions (usually σ > 5), 

and σc  is normalization constant defined as: 
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As the Morlet mother wavelet function can match gear fault feature properties 

better, it will be used in this work for gear fault detection.  
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2.4 Averaged Wavelet Power Spectrum Analysis 

As discussed in section 2.2, the WT is time-frequency domain analysis, implemented 

to analyze signal properties with complex structures. The morlet mother wavelet will be 

used for analysis. The proposed averaged wavelet power spectrum analysis technique 

follows the following procedures for gear fault detection: 

Step 1: Input gearbox vibration signal x(t) and the one-pulse-per-revolution (reference) 

signal p(t). 

Step 2: Perform the TSA filtering to get the signal average y(t) from the vibration signal 

x(t). 

Step 3: Calculate the continuous wavelet coefficients wa(t) from Eq. (2.5). 

Step 4: Calculate the averaged wavelet function Ta (t): 

;)(
)(

1)(
0
∑
=

=
T

t
a

a
a tw

tw
tT            (2.8) 

Step 5: Generate the power spectrum of averaged wavelet function Ta (t) to highlight the 

fault features for fault detection. 

 

2.5 Gear Health Monitoring Indices  

In this study, the fault diagnosis of a gear system is conducted gear by gear. As stated 

before, because the measured vibration is an overall signal generated from various rotary 

sources, the primary step is to differentiate the signal specific to each gear by using the 

TSA filter [107]. In this filtering process, all of the signals that are non-synchronous to 

the rotation of the gear of interest (e.g., those from bearings, shafts, and other gears) are 

removed. As a result, each gear signal is computed and represented in one full revolution, 

which is called the signal average that will be used for advanced analysis.  

Several techniques have been proposed in the literature for gear fault detection. 

Because of the complexity of the machinery structure and operating conditions, however, 

each signal processing technique has its own advantages and limitations and could be 

useful for specific applications only [107]. The more features are applied in fault 
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diagnosis, however, the more possible it is to achieve conflicting diagnostic results. In 

this work, three features are employed for this diagnostic classification. The selected 

features should be robust, or sensitive to component defects but insensitive to noise (i.e., 

the signal not carrying information of interest). The selected features are from three 

information domains—energy, amplitude, and phase:  

1) wavelet energy function, using the overall residual signal that is obtained by a 

bandstop filtering out the GMF fm = fr Z and its harmonics, where fr is the rotation 

frequency (in hertz) of the gear of interest, and Z is the number of teeth of the gear;  

2) beta kurtosis, using the overall residual signal; and  

3) phase demodulation [108], using the signal average. The reference functions are 

proposed as follows.  

 

1) Wavelet Energy Reference Function W(z):  

If R(t) is the overall residual of the signal average y(t) , the wavelet energy function is 

proposed as  

;)()()( 2
1 0 dsdtΨatRzW f

f∫ ∫
∞ −= ττ           (2.9) 

where a and t are the scale (frequency) variables and time variables, respectively, and f1 

and f2 are the frequency limits of interest. For the gear system in this paper, f1 = 0.5Zfr, 

and f2 = 4.5Zfr; Ψ(t) is the mother wavelet, which is a modified Morlet function  
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where k = 1, 2,..., 5Z.  

 

2) Beta Kurtosis Reference Function B(z):  

The beta kurtosis is the normalized fourth moment of a signal in terms of the beta 

function instead of a generally used Gaussian function. If μz and σz2 represent the mean 
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and variance of a one-tooth data block Tz, centered at z, then the Beta Kurtosis reference 

function B(z) is defined as the reciprocal of the kurtosis  
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where );( )/( 222
zzzzz σµµσµα −−=  and )( )/)1(( 222

zzzzz σµµσµβ −−−= . The details 

about derivation of Eq. (2.11) can be found in [89].  

 

3) Phase Modulation Reference Function P(z):  

For a pair of healthy gears with sound installation and ideal operating conditions, the 

meshing vibration y(t) can be approximately expressed as 
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where M is the total number of mesh-frequency harmonics considered.  

If a fault occurs in one tooth, because of a change in tooth stiffness, the amplitude 

and phase functions of the gear mesh vibration will be modulated such that  

;))(2cos( )()( ∑
=

+++=
M

om
mrmm tZtfmaAty ϕθπ         (2.13) 

The phase modulation φ(t) can be obtained from the analytical signal of Eq. (2.13), 

which is computed by taking the Hilbert transformation of y(t). The phase reference 

function P(z) is suggested as the maximum phase difference over a tooth period Tz 

centered at z, or 

P(z) = φmax(τ) − φmin(τ); τ ∈ [z − 0.5Tz, z + 0.5Tz].           (2.14)  
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4) Gear Monitoring Indices:  

Based on the derived reference functions, the monitoring indices are determined to 

quantify the feature characteristics, which are further used as input for gear health 

classification in Chapter 5. The monitoring indices are proposed as the normalized 

maximum amplitude values of the reference functions:  
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where σw, σb, and σp are the spreads of the wavelet energy, beta kurtosis, and phase 

modulation reference functions, respectively; )(zW , )(zB , and )(zP  are the respective 

mean values of the three functions outside the maximum locations (with one tooth period, 

Tz).  

Usually, these three maximum index values occur within a few tooth periods if the 

signature irregularity is caused by a real fault [114]. Thus, four tooth periods are selected 

to be an influence window in this work. If the indices in Eq. (2.15) are not within one 

influence window (e.g., no fault or more than one fault), more than one set of inputs 

should be provided to the diagnostic system. For example, if x3 does not fall within the 

influence window determined by x1 and x2, two sets of inputs will be given to the 

diagnostic system. The first input is {x1, x2, x3}, where x3 = max{P(τ)}, and τ lies in the 

influence window determined by x1 and x2. The second input is {x1, x2, x3}, where x1 = 

max{W(τ)}, x2 = max{B(τ)}, and τ lies within the influence window determined by x3. 

 

2.6 Gear Fault Analysis  

A 2-stage gearbox system will be analyzed in this study, as illustrated in Fig. 2.2. 

There are 2 gear pairs, where first gear pair has 32 and 80 teeth on pinion and gear, 
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respectively, and second gear pair has 96 and 48 teeth on pinion and gear, respectively. 

The vibration signal is collected from the system using vibration accelerometers. 

 

1 2 3 4 5

   
 

Fig. 2.2 (a) A two-stage gear system: (1) input gear; (2) input pinion; (3) output pinion; (4) output 
gear (5) the roller bearings. (b) A simulated damaged gear with one partially broken tooth 
(chipped gear).  

In this work, the pinion of first gear pair is used for analysis. Three different gear 

health conditions are for analysis: (a) healthy gear, (b) cracked gear, and (c) broken tooth 

gear. Further details are discussed in following section. 

 

2.7 Result Analysis  

Fig. 2.3 shows part of the corrected vibration signal of gearbox. The TSA filtering is 

used to differentiate the gear signal from the rest of the components, as shown in Fig 2.4. 

The TSA signal is further analyzed using the WT to obtain time-frequency components 

of the gear of interest, as illustrated in Fig. 2.5-2.7. In the WT maps, the x-axis represents 

number of samples (time domain), y-axis denotes the scale factor (frequency domain) and 

the color (z-axis) represents the wavelet energy amplitude.  

 

 

 

 

(a)                                                           (b) 
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Fig. 2.3 Part of the collected gear signals from different gear conditions: (a) Healthy gear,         
(b) gear with crack fault, (c) a gear with broken tooth fault.  

 

 

 

 

 

 

(a) 

 

(c) 

 

(b) 
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Fig. 2.4 TSA of gear signal from different gear conditions: (a) Healthy gear, (b) a gear with crack 
fault, (c) a gear with broken tooth fault. 
 

 
Fig. 2.5 Wavelet transform of the healthy gear signal. 

 

(a) 

 

(b) 

 

(c) 
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Fig. 2.6 Wavelet transform of the cracked gear signal.  

 

 
Fig. 2.7 Wavelet transform of the broken tooth gear signal.  

 

The averaged wavelet technique will convert 3D wavelet energy representation into a 

2D spectral map, which can highlight the peaks of the output as shown in Fig. 2.6. It is 

observed that the processing results from healthy gear (Fig. 2.8(a)) and cracked gear 

(Fig.2.8(b)) show peaks at GMF (i.e., 960 Hz), but the signature of the crack gear (Fig. 

2.8(b)) is almost doubled the amplitude in comparison of healthy gear (Fig. 2.8(a)). The 

broken tooth data (Fig. 2.8(c)) shows peaks at the shaft speed (i.e., 30 Hz), due to one 

strike per rotation of the gear shaft.  
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Fig. 2.8 Averaged power wavelet spectrum for gear system (a) Healthy gear, (b) cracked gear, (c) 
broken tooth gear.  
 

These monitoring indices will be used in the developed evolving NF classifier in 

Chapter 4 for real-time gear system monitoring. 
 

2.8   Discussion  

Gear fault analysis plays a significant role for condition monitoring of gearbox 

systems. The output of the wavelet analysis can provide promising results for time-

frequency analysis. Though the output has complex coefficients, it can provide the fault 

features/information. The averaged wavelet features obtained from wavelet coefficients 

can extract the frequency features and can transform the complex coefficients into 2D 

graphs. The averaged wavelet spectrum can highlight the spectral peaks and fault 

characteristic frequencies to improve the accuracy of fault diagnosis of gear systems.   

 

 

(a) 

 

(b) 

(c) 
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Chapter 3 

Local Mode Decomposition (LMD) Technique for 

Bearing Fault Detection  
 

3.1 Bearing Faults in a Gearbox 

The gearbox has a complex system consisting of many components, each having its 

own specific faults and corresponding dynamics. It is necessary to study the health 

conditions of each of these components in the gearbox. As discussed in Introduction, 

gears and bearings are main reasons of faults in a gearbox. As discussed in Chapter 2, 

gear signals are periodic and strong in magnitude, which are relatively easier to analyze 

[26]. But bearing signals are usually weak in magnitude and modulated by strong gear 

meshing vibrations, and thus bearing signatures are difficult to extract from the collected 

vibration. This chapter focuses on bearing fault detection using the proposed local mode 

decomposition (LMD) technique.  

Many studies have been undertaken for bearing fault detection in gearboxes [26, 115]. 

In general, vibration-based analysis is more reliable for fault detection of bearings in a 

gearbox, due to its higher signal-to-noise ratio. The contact of defect and rolling elements 

generates repetitive impulses with specific resonance properties. The signal from a 

bearing could be in high frequency or low frequency, depending on the location and type 

of the bearing defect [116]. The signals measured from a gearbox could contain vibration 

components not only from rolling element bearings, but also from the drive motor, gears, 

shafts, couplings, etc., which are very complex for direct analysis. In this study, the 

sensors are installed on the gearbox housing near the bearing of interest to minimize the 

vibratory effect from other components in the gearbox.  

Fig. 3.1 shows a rolling element bearing, where d is the rolling element (ball) 

diameter, Nb is number of rolling elements (balls), θ is the contact angle, and D is the 

pitch diameter. If the shaft rotating frequency is fr in Hz, the fault characteristic 

frequencies (in Hz) for defect on the outer race fOR, inner race fIR, and roller ball fRB will 

be [117]:  
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Fig. 3.1 Structure of a rolling element bearing 1) inner race, 2) outer race, 3) rolling element 
(ball), 4) cage [118].  
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3.2 Proposed Local Mode Decomposition (LMD) Technique 

As discussed in Introduction in Chapter 1, bearing fault analysis can be performed in 

different processing domains. In the time domain, for example, bearing fault can be 

detected by statistical moment indicator analysis [47-49, 51] and envelope analysis by 

examining the high frequency components [52, 53]. In frequency domain analysis, for 

example, depending on the running speed and bearing geometry, the bearing fault 

characteristic frequencies are calculated first, bearing health condition can then be 

analyzed by examining spectrum properties with the comparison of these theoretical fault 

characteristic frequencies. In general, if defect occurs on the outer race, the fault features 

are periodic in nature and relatively easy to detect. However, if defect occurs on the 

rotating ring (e.g., the inner race) or a rolling element, fault features may be non-periodic 
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in nature especially considering slip and elastic deformation, which is difficult to detect. 

A new LMD technique will be proposed in this work to tackle this challenge.   

 

3.2.1 Basic Mode Decomposition Techniques 

As summarized in Chapter 1, a lot of research efforts have been undertaken to propose 

signal processing techniques in the time-frequency domain for bearing fault detection in 

recent decends [116]. Some of well-accepted methods include the empirical mode 

decomposition (EMD), Hilbert-Haung transform (HHT), ensembled EMD, and local-

mean decomposition (LD), etc. [118-121]. 

The EMD is a process of decomposing the signal in the time domain to generate 

intrinsic mode functions (IMFs). An IMF should meet two mode function requirements 

[119]:  

1) An IMF has a mean value of zero; 

2) The difference between the numbers of extrema points and zero crossing points is 

no more than one.  

Each IMF has information of frequency behavior of the original signal. The selected 

number of IMFs for analysis depends on the complexity of the signal and analysis 

requirements.  

The HHT can highlight the frequency components by applying the Hilbert transform 

and spectral analysis. The Hilbert transform is a process of extracting instantaneous 

frequency from IMFs by adding the corresponding imaginary part for each IMF. The 

HHT results can be represented in a time-frequency distribution to highlight the localized 

features that could be associated with signature transients or bearing faults [119]. The 

ensembled EMD is a time-domain analysis method, with white noise added to the signal 

[120]. The ensemble of a signal is calculated by a shifting function and the output is 

computed by averaging to remove the white noise from the signal. In general, the 

ensembled EMD can provide better solution than EMD, but it needs a proper selection of 

white noise amplitude [121].  



32 

 

 

 

The LD method is proposed in [122] for time-variant signal analysis, which focuses on 

local trends like fault features in a signal. The LD decomposes a signal into a series of 

mono-component signatures, referred to as product functions that are products of 

envelopes and frequency modulated signatures. The LD uses the moving average to 

gradually smooth a signal. Similar to EMD, the LD also calculates the instantaneous 

frequency of each product functions, which has been used in fault detection in rotating 

machinery [121]. However, the LD has some drawbacks in applications: 

    (a) The orthogonality between product functions and their corresponding 

instantaneous frequencies is difficult to achieve in many applications. 

(b) In product function computation, some outliers are observed, which can affect 

the decomposition results. 

(c) It has mode mixing effect, which will cause distortion to some of the product 

function signatures. 

(d) It is not robust in application for bearing fault detection applications. 

 To tackle these related problems in the LD, a new LMD technique will be 

proposed in this work to extract and highlight fault features for bearing fault detection in 

gearboxes. 

 

3.2.2 The Proposed LMD Technique 

The processing procedures of the proposed LMD technique are illustrated in Fig. 3.2, 

which are summarized below:  

Step 1: Extract all the local envelope from the signal. Calculate local mean values 

M(t) based on the upper envelope EU, and lower envelope EL.  
 

;
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Step 2: Calculate the average envelope Ei(t) :  

;
2

)( LU
i

EEtE +
=           (3.5) 

 

Step 3: Calculate the local signal Li(t):  
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Step 4: Use Li(t) as a new signal if it does not meet the mode functions requirements 

as mentioned in subsection 3.2.1. Repeat Steps 1-3. For the ith iteration, Eq. (3.6) and Eq. 

(3.7) become: 
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Step 5: If Li(t) is a mode function, calculate the local mode functions (Ψj): 
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where A(t) is amplitude and the corresponding instantaneous frequency can be calculated 

as: 
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Step 6: Calculate transition residual T1(t), which will be the input signal for the next 

mode function. Repeat this procedure until Tk(t) becomes a monotonous function:  
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Input Signal x(t)

Obtain local mean signal Mi (t) 
Calculate average envelope Ei 

(t)

Calculate : Ti (t), Li (t);

Begin

Is Li (t) a mode function?

Update i = i+1, xi (t);
x (t) = Li (t) 

Or x (t) = Ti (t)

Calculate Ψi (t), and Ti (t)

Is Ti (t) a monotonous?

End

Reset i = 0;

True

True

False

False

Calculate local envelopes: EU , 
EL

 
Fig. 3.2 The processing procedures of the LMD technique. 

 

When Tk(t) becomes a monotonous function after (k-1)th iterations, the original signal 

can be represented as: 
 

);()()(
1

tTtΨtx k
K

k
k += ∑

=
   

 

where K is the total number of local mode functions (Ψ) generated from a signal x(t). 

After all the local mode functions (Ψ) are calculated, spectrum analysis will be 

undertaken for observing the presence of fault features. This LMD technique could 

overcome the mode mixing effect in the LD and provide better resolution in fault 

detection in bearings in a gearbox. 
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3.3 Performance Evaluation  

The effectiveness of the proposed LMD technique is verified in this section using data 

sets from Case Western Reserve University Dataset [123]. The test apparatus is shown in 

Fig. 3.3, which consists of a motor, a torque transducer and a dynamometer (load motor). 

A 2-HP electric motor is used to drive the system, and the motor bearings are tested for 

analysis. Accelerometers are placed at both drive-end and fan-end of the motor housing 

using magnetic bases and are used to collect vibration signals. The signal from the motor 

drive-end side is used for bearing health analysis in this study. Vibration signals are 

collected using a 16-channel digital audio tape recorder at a sampling frequency of 

48,000 Hz. The torque transducer/encoder is used to manually record other related data 

like shaft speed and torque.  

1 2 3 4

 

Fig. 3.3 Experimental (simulation) setup. 1) electrical driving motor (2 HP), 2) drive end bearing 
(used for analysis), 3) torque transducer, 4) load motor [123].  

  

A detailed description about the bearing materials and properties, defect 

specifications, experimental setup, and test conditions can be found in [123]. The tested 

bearings have different health conditions (e.g., healthy, outer race faults, inner race faults, 

and rolling element faults). As an example, the processing results using some data sets 

corresponding to shaft speed of 1772 RPM (or fr = 29.53 Hz) are used for demonstration 

in this thesis work. The corresponding characteristic frequencies are summarized in Table 

3.1. Parts of the corrected vibration signals from the experimental setup are shown in Fig. 

3.4 and the corresponding frequency spectrums are shown in Fig. 3.5.  
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Table 3.1. Bearing fault characteristic frequencies at shaft speed fr. 
 

Bearing condition                     Shaft speed wrt fr

Normal/Healthy bearing                    fH = fr

Outer race fault                             fOD = 3.58 × fr                          
Inner race fault                              fID = 5.42 × fr

Rolling element fault                   fBD = 4.71 × fr  
 

 

 

 

 

 
Fig. 3.4 Part of the collected bearing signals from different bearing conditions: (a) Healthy, (b) 
Outer race fault, (c) Inner race fault, (d) Roller element fault.   

(a) 

 

(b) 

 

(d) 

 

(c) 
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Fig. 3.5 Frequency spectrum of bearing data: (a) Healthy, (b) Outer race fault, (c) Inner race fault, 
(d) Roller element fault. (Arrows indicate the bearing characteristic frequency and its harmonics).   
 

The corresponding mode functions Ψj from the proposed LMD technique are 

extracted, and the processing results corresponding to different bearing health conditions 

are discussed below. 

(a) 

 

(b) 

 

(d) 

 

(c) 
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Fig. 3.6 The first three mode functions (Ψ) from a healthy bearing. 

 

The first three mode functions are shown for a bearing with healthy condition (Fig. 

3.6), outer race fault (Fig. 3.7), inner race fault (Fig. 3.8), and rolling element (ball) fault 

(Fig. 3.9). The first mode function includes most of the high peaks from the signal, which 

also has information related to health condition of bearing. The second and third mode 

functions have low amplitude data, mostly from surrounding components.  

(a) 

 

 

 

(b) 

 

 

 

(c) 
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Fig. 3.7 The first three local mode functions (Ψ) from a bearing with outer race fault.  

 

The first mode function is used for comparison of health condition of the bearing 

system. It is observed that the amplitude of healthy bearing (Fig. 3.6(a)) is much lower 

than bearing with fault. The bearing with an outer race fault shows the highest amplitude 

in the first mode function (Fig. 3.7(a)) as a result of periodic strikes between the rolling 

element and fault location. It shows clearly that visible peaks are periodic in nature and 

can provide initial indication towards the presence of outer race fault in the bearing 

system. 
 

(a) 

 

 

 

(b) 

 

 

 

(c) 
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Fig. 3.8 The first three local mode functions (Ψ) from a bearing with inner race fault 

 

The Fig. 3.8(a), the first mode function of the bearing with inner race fault, shows that 

the amplitude is not as high as in mode function of the bearing with outer race fault (Fig. 

3.7(a)); but it is still much higher than that of the healthy bearing (Fig. 3.6(a)). The peaks 

are still visible, but are not of same amplitude, indicating that the strikes between the 

rolling element and fault location are not periodic or of same intensity. This can indicate 

the presence of inner race faults, which are aperiodic in nature. 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 



41 

 

 

 
Fig. 3.9 The first three local mode functions (Ψ) from a bearing with rolling element (ball) fault.  
 

The first mode function for the bearing with rolling element fault, shown in Fig. 

3.9(a), has lower amplitude than the amplitude of the bearing with other fault conditions; 

but is still higher than the amplitude of healthy bearing. It can be observed that the peaks 

are aligned with the signal, which makes it difficult to even detect the presence of the 

fault. The frequency spectrum of the respective mode functions can be conducted for a 

detailed analysis for bearing health conditions. 

 

 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 
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Fig. 3.10 Results from a healthy bearing (a) Frequency spectrum of the original data, (b) 
Frequency spectrum of the first IMF from EMD, (c) Frequency spectrum of the first Ψ function 
from LMD, (d) Power spectrum of the first Ψ function from LMD. (Arrows indicate the bearing 
characteristic frequency and its harmonics). 
 

Fig. 3.10 shows the processing results from a healthy bearing. In this case, the bearing 

characteristic frequency is 29.82 Hz or the shaft frequency in this case. Fig. 3.10(a) 

shows the frequency spectrum of the health bearing signal where the black arrows 

indicate the characteristic frequency and its second harmonic. The Fig. 3.10(b) shows the 

frequency spectrum of the first IMF obtained from EMD processing. Fig. 3.10(c) 

(a) 

(d) 

(c) 

(b)  
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illustrates the spectral map of the first Ψ function obtained from the proposed LMD 

technique, while Fig. 3.10(d) depicts the power spectrum of the first Ψ function. It is seen 

that the proposed LMD technique performs better than EMD technique in healthy bearing 

condition monitoring due to its ability to suppress the noise signatures and highlight 

bearing characteristic frequency and its harmonics.  
 

 

 

 

  
Fig. 3.11 Results from a bearing with outer race fault (a) Frequency spectrum of the original data, 
(b) Frequency spectrum of the first IMF from EMD, (c) Frequency spectrum of the first Ψ 
function from LMD, (d) Power spectrum of the first Ψ function from LMD. (Arrows indicate the 
bearing characteristic frequency and its harmonics). 

(a) 

(d) 

(c) 

(b)  
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Fig. 3.11 shows the results for a signal from a bearing with outer race fault, with fault 

characteristic frequency 106.3 Hz. It is seen that EMD technique can predict the outer 

race fault, but it cannot remove the surrounding noise frequencies. The frequency 

spectrum as well as power spectrum of the first Ψ function shows clear and dominant 

peaks at outer race fault frequency as well as the corresponding first harmonics.  
 

 

 

 

 
Fig. 3.12 Results from a bearing with inner race fault (a) Frequency spectrum of the original data, 
(b) Frequency spectrum of the first IMF from EMD, (c) Frequency spectrum of the first Ψ 
function from LMD, (d) Power spectrum of the first Ψ function from LMD. (Arrows indicate the 
bearing characteristic frequency and its harmonics). 
 

(a) 

(d) 

(c)  

(b) 
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Fig. 3.12 shows the results for a signal from a bearing with inner race fault, with fault 

characteristic frequency 159.7 Hz. It is seen that EMD technique can predict the inner 

race fault, but with a lower signal-to-noise ratio. The frequency spectrum as well as 

power spectrum of the first Ψ function can recognize the existence of the inner race fault.  
 

    

 

    

 
Fig. 3.13 Results from a bearing with rolling element fault (a) Frequency spectrum of the original 
data, (b) Frequency spectrum of the first IMF from EMD, (c) Frequency spectrum of the first Ψ 
function from LM D, (d) Power spectrum of the first Ψ function from LMD. (Arrows indicate the 
bearing characteristic frequency and its harmonics). 
 

(a) 

(d) 

(c) 

(b)  
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Fig. 3.13 shows the results for a signal from a bearing with rolling element fault, with 

fault characteristic frequency 139.5 Hz. The EMD technique cannot recognize the 

corresponding fault frequency, which is suppressed by frequencies of other components. 

The frequency spectrum of the first Ψ function can recognize the bearing fault, but it is 

not a dominant spectral component. The power spectrum of the first Ψ function can 

predict the existence of the rolling element fault even though their magnitudes are 

relatively low.  

It is seen that LMD technique is effective, which can easily detect the presence of fault 

in the system. The LMD technique also is more efficient to separate the healthy bearing 

from the faulty bearings. For roller element (ball) fault, as its amplitude is suppressed 

under effect of other components, the LMD technique can detect the presence of the fault, 

but fails to provide dominant results.  
 

3.4 Discussion  

A novel LMD method has been developed in this work for bearing fault analysis in a 

gearbox system. The main purpose of this technique is to amplify the mode functions 

with respect to mean values to highlight the peak features. This helps to highlight the 

periodic events (e.g. outer race faults) and can also enhance the suppressed events (e.g. 

inner race fault, rolling elements faults) of a bearing system. The power spectrum of the 

local mode functions (Ψ) are analyzed to provide more clear peaks for fault frequencies. 

The simulation is conducted and evaluated using Case Western Reserve University 

dataset. The results have shown that proposed technique can detect bearing faults. The 

combination of the proposed LMD technique and power spectrum analysis has a potential 

for a fault diagnosis of bearing system in complex structures (e.g. gearbox).  
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Chapter 4 

Evolving Neuro-Fuzzy Classifier Technique 
 

4.1 Evolving Classifiers   

Evolving classification is based on some clustering algorithms to generate 

classification reasoning architecture, while system parameters are properly trained. The 

classification operation should be undertaken continuously and smoothly over the interval 

of inputs. As a fuzzy system is a universal approximator and can extract knowledge with 

mimic of human reasoning to understand and predict the outcome of a process [89, 91], it 

is generally used as the platform in designing evolving systems. Several evolving systems 

have been proposed in literature for different processing purposes [90-94]. For example, 

Angelov et al. have proposed an evolving Takagi-Sugeno (eTS) scheme for system 

control [92]; formation of the clusters is based on a potential measure in terms of the 

center and spread of clusters, while the least square estimator (LSE) algorithm is used to 

update linear parameters. A problem of this clustering approach is that the predefined 

cluster information (e.g., centers and spreads) is sensitive to noise in the data sets and 

processing errors. Kasabov has suggested a transductive weighted neuro-fuzzy inference 

(TWNFI) system by introducing weighted data normalization for transductive reasoning 

[94]. Comparing with the eTS in modeling of non-linear systems, the TWNFI usually 

generates more clusters/rules and thus may result in lower processing efficiency [90, 91]. 

One of the problems in the classical evolving classifiers is related to their blind 

classification of the output space, which could degrade the accuracy of diagnostic results. 

In order to tackle this problem, the objective of this work is to propose a new evolving 

neuro-fuzzy (eNF) technique for gear system fault diagnostics. Compared with these 

available evolving systems, the proposed eNF classifier has the following novel 

contributions:  

1) A new potential calculation method is proposed for better partition of the output 

space and elimination of contradictory clusters/rules generated due to noise-affected data 

sets.  
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2) A new training algorithm based on a normalized Adadelta (NaD) function is 

suggested to control the rate of weight change in training the eNF classifier. Its 

effectiveness is verified by simulation and experimental tests. 

 

4.2 Proposed Evolving Neuro-Fuzzy (eNF) System 

4.2.1 The eNF Fuzzy Model 

The proposed eNF classifier applies fuzzy If-Then rules to map the input space to the 

output space; an improved training algorithm will be used for optimization of the system 

parameters. Consider an input vector X = {x1, x2, …, xn}. The eNF reasoning is performed 

by the following fuzzy representation: 

jℜ : If  (x1 is jA1 ) and (x2 is jA2 ) and … (xn is j
nA ) Then (yj is Oj) with wj         (4.1) 

where j ϵ [1, C], C is the total number of fuzzy clusters/rules; j
iA is the j-th input fuzzy 

set for xi, i ϵ [1, n]; yj is an output indicator, and Oj is the output fuzzy set (e.g., healthy, 

possibly damaged, and damaged). wj is a weight factor representing the contribution of 

the related cluster/rule to the diagnostic classification. 

Data geometry is a representation of data samples in the input/output spaces. The rules 

are linear representation of multiple clusters corresponding to different system 

conditions. In the proposed eNF classifier, Gaussian membership functions (MFs) are 

used to describe all the fuzzy such that: 
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where ijµ   and ijσ  are the centers and spreads of the clusters, respectively.  

In evolving fuzzy systems, a Gaussian MF is more commonly used as it is continuous 

and generalized, which can be decomposed into multiple one-dimensional Gaussian MFs 

corresponding to different input variables with proper input/output partitions [124]. 
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If a max-product inference operator is used for the premise fuzzy reasoning, the firing 

strength can be expressed as: 
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After normalization of firing strengths, the output is obtained as: 
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An example of a evolving NF model is shown in Fig. 4.1. Initially, each input variable 

(in layer 1) has 3 MFs (in layer 2): S., M. and L. that are related to each cluster 

formulation based on Eq. (4.2). The evolving operation helps in formation of rules (in 

layer 3), R1 ~ R5. At the same time, the MFs of each input are related to R1 – R5. The 

firing strength of each rule is calculated in layer 3 by the related inference operation (Eq. 

4.3). After normalization in layer 4, the output indicator (y) can be computed by 

defuzzification (e.g., centroid) in layer 5.  
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Fig. 4.1 An example of an evolving NF model. 

 

4.2.2 The Proposed eNF Classifier  

The proposed eNF system formulates clusters in a gradual and continuous way. In the 

evolving operation, input and output patterns are mapped with required consistency, as so 

to prevent unnecessary cluster overlapping due to noise/outliers and make the clusters 

well-distributed over the input and output spaces. Different from the eTS [125] and the 

TWNFI [126], the proposed eNF approach has constrained partition generated in the 

output space related to machinery health states. The steps of the eNF clustering are 

summarized as follows: 

 1)  Initialization: The first input data is expressed as Da = [xa, ya], when a =: 1, the first 

cluster center is Ba =: Da. Other parameters of the new cluster will be initialized as C =: 1, 

n =: 1, a
I
C x=:µ , 2.0:=I

Cσ , a
O
C y=:µ , 2.0:=O

Cσ , 1:)( =aa DP , 1:)( =aa BP , where C is the 

number of clusters (rules) of the eNF; n is number of rules in a cluster; I
Cµ , I

Cσ , O
Cµ , O

Cσ  

are centers and spreads of the cluster in the input space and output space, respectively.  
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 2)  Calculating potential of new input data: For 1: += aa , new input data to system is 

Da =  [xa , ya].  The potential can be calculated by: 

;
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aβ  and aσ  are 

initialized as vectors of zeros with appropriate lengths of inputs. 

 3) Updating the cluster parameters: If the potential of the new input data is less than 

potential of the cluster center, or )()( aaaa BPDP < , then update the potential of existing 

clusters such as: 
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a DDδ is sum of distance between the new input and previous data. 

 4)  Determining the winner cluster: By comparing the potential of new input data and 

existing cluster, if );()( aaaa BPDP < , then go to step 6). Otherwise, if );()( aaaa BPDP >  

then determine the winning clusters in the respective input and output spaces, by the 

following process: 

 ;arg min
1









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µ       
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



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


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=
a

O
a

L

a

O
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O yCWC
a

µ       

where a = [1, L], and L is the total number of data pairs. 

 5) Recognizing the structure of cluster: If ;OI WCWC = , and descriptive grade 

min, dd aWCaWC <−= µµ ; (dmin = 0.07 in this case), merge new data to the winning 

cluster. The cluster parameters are updated by: 
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n −− −+= µµµ ;       

 Otherwise, if no winner cluster is recognized or the descriptive grade min, dd aWC > , 

create a new cluster with following initial parameters: 

 1: += CC , 1: += nn , a
I
C x=:µ , 2.0:=I

Cσ , a
O
C y=:µ , 2.0:=O

Cσ .     

 These parameters are properly chosen to prevent contradictory clusters/rules. 

Specifically, if two inputs are too close (e.g., σ < 0.1), they can be separated by these 

output space partition constraints. 

 6) Updating the weight factors: Based on the values of jw  determined by Eq. (4.3), 

depending on centers and spreads of the clusters, the weight factors will be updated as per 

Eq. (4.11) as discussed in section 4.2.3. 

 7) Repeating the processes from step 2) to step 6) for all the data samples. Compute 

the classification output by Eq. (4.4).  

 

4.2.3 The eNF Training using Normalized Adadelta (NaD) Method  

A NF system usually contains both linear and non-linear parameters [127]. The linear 

parameters are usually optimized by using the LSE. Many methods are proposed in 

literature to update non-linear parameters, such as gradient descent (GD), Newton 

Gaussian, Levenberg-Marquardt, etc. The GD algorithm could be the fundamental 

method for nonlinear parameter optimization; however, it has some problems in 

applications such as sensitive to noise and high computing costs [128]. To tackle these 

challenges related classical GD algorithms, Adadelta method is introduced in [128], 
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which takes an adaptive learning rate to make the search process less sensitivity to noisy 

gradient information.  

The GD algorithm for the optimization of the parameters θ  at the (t+1)th iteration can 

be expressed as: 

ttt gηθθ −=+1 ;             (4.7) 

where η  is a rate of change in parameter updating, and tg is the gradient of parameters at 

the tth iteration. 

The Adadelta method updates the parameter changes tθ∆  by the use of the root mean 

square measure on a selected data range, or 









+∆=∆ + )(1

t

t
tt gR

gηθθ ;         (4.8) 

where ε+= )()( 2
tt gEgR ; is the root mean square; )(•E is the expectation; and ε is a 

residual. 

In Eq. (4.8), the size of the diagonal matrix equals to length of data. The large 

dimension in matrices will affect the implementation and calculation efficiency, and 

make it difficult for real-time monitoring applications. To solve this problem, a 

normalized Adadelta, or NaD, will be proposed in this work to improve the convergence 

and computational efficiency of the classical Adadelta method. The NaD algorithm takes 

the following processing steps: 

1) Initialize the weight parameter matrix θ  with all the initial values of 1, or 11 =θ  . 

Initialize the controller matrix C1 = 103×I, where I is an identity matrix. 

2) Perform the feed-forward pass of eNF classifier to calculate yk using Eq. (4.2)- Eq. 

(4.4). 

3) Calculate the new convergence rate: 
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d

k
k N

n
=η ;           (4.9) 

where kn is number of error output, and dN  is total number of outputs calculated in each 

training epoch.  

4) Update the controller matrix 

kk
T
k

kk
T
k

T
k

kk WCW
CWWCCC
1

111
1 1 −

−−−
− +
+= ;     (4.10) 

where kW is sum of normalized weights in eNF classifier. 

5) Update the weight parameters of the eNF system: 

k
d
kkkkkk yyWC −+= − ηθθ 1 .     (4.11)  

4.3 Performance Evaluation of Proposed eNF Classifier  

Firstly, the effectiveness of the proposed eNF classifier is examined by simulation 

tests. Later, in Chapter 5, it is implemented for gear system health condition monitoring. 

Some related classifiers are used for comparison: eTS and TWNFI trained by hybrid 

methods of LSE and GD. Another comparison is undertaken with a self-evolving fuzzy 

classifier (SEF), which has been proposed in our research team to minimize rules and 

improve processing convergence [90]. The developed eNF classifier, trained by the LSE 

and GD algorithms denoted by eNF-GD, will be executed to compare and examine the 

effectiveness of the proposed eNF evolving algorithm. The eNF classifier trained by the 

proposed NaD, represented by eNF-NaD, will be compared with eNF-GD to check the 

efficiency of the NaD training algorithm. All of these classifiers will use the same inputs, 

with same training conditions and initial values of the parameters to be updated. 

4.3.1 Iris dataset 

The first simulation test is undertaken using the Iris dataset [129]. Iris dataset has 4 

inputs: sepal length (x1), sepal width (x2), petal length (x3), and petal width (x4). All these 
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4 variables are related to 3 output conditions: Iris Setosa, Iris Versicolour, and Iris 

Virginica. The output space is partitioned in 3 sections.  

 

 

 

 

Fig. 4.2 Initial membership functions (MFs) for Iris dataset (a) Septal length, (b) Septal width,  
(c) Petal length, (d) Petal width. 

 

There are 150 data pairs in this dataset: 75 of them will be used for training and 

remaining 75 pairs will be used for verification. In the evolving process, the initial MFs 

of these four inputs are shown in Fig. 4.2 which correspond to the first data pair.  

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
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The updated centers and spreads of the input variables are shown in Fig. 4.3, which 

are obtained after training by the use of the proposed eNF-NaD technique. It can be seen 

that {x1, x2, x3, x4} have different relations with the output space. The output zone shows 

that x1 has only 2 clusters/rules, x3 has 3 clusters/rules, while x2 and x4 have 4 

clusters/rules.      

 

 

Fig. 4.3 Final MFs of the eNF-NaD classifier for Iris dataset (a) Septal length, (b) Septal width,  
(c) Petal length, (d) Petal width. 

 

(a) 

 

 

 

 

(b) 

 

 

 

 
(c) 

 

 

 

 

(d) 
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The simulation is undertaken using MATLAB 2016b. In classification process, once 

the clusters are evolved and MFs are formulated, the classifier undergoes a forward pass 

processing to calculate the system output. Based on the error in each training epoch, the 

related training algorithms are used to optimize classifier parameters. Table 4.1 

summarizes the comparison results using the related classifiers. All of the selected 

classifiers are operated to achieve convergence based on the input conditions. The 

success rates of each classifier are the states before training and after training; it is clear 

that the related training can significantly improve classification accuracy.  

 

Table 4.1. Performance comparison of the related classifiers using the Iris data. 

Classifier

TWNFI

eTS

SEF

eNF-GD

eNF-NaD

Success Rate (%) Average 
Operation Time 

(sec)

No. of 
Clusters No. of Rules

5

5

3

3

3

6

4

3

4

4

Before 
Training

After 
Training

80.1

56.95

73.35

78.15

92.67

85.33

62.67

76.06

85.33

94.67

2.25

1.96

2.19

1.52

1.31

 
 

From Table 4.1, it is seen that during verification, the TWNFI performs better than 

the eTS classifier (85.33% vs. 62.67%), even though both have generated 5 clusters. The 

SEF and eNF classifiers have generated 3 clusters only, which can speed up the 

diagnostic classification processing. However, the eNF-GD outperforms the SEF 

(76.06% vs. 85.33%) due to the more efficient evolving algorithm, which can be related 

to the use of fewer rules (3 vs. 4) of the SEF. Comparing eNF-GD and eNF-NaD, it is 

seen that the proposed NaD algorithm can effectively control weights of the eNF system 

to further improve diagnostic accuracy (94.67% vs. 85.33%) and processing time (1.31 

sec vs. 1.52 sec).  

 



58 

 

 

 

 
Fig. 4.4 (a) Performance of the eNF-NaD classifier with respect to the desired output (red line) 
and classifier’s output (blue line); (b) Absolute errors. 

 

Fig. 4.4(a) shows the verification process of the developed eNF-NaD classifier for the 

Iris data. It generates four false results in misclassification of the output data. Fig. 4.4(b) 

shows the absolute errors of the verification.  

 

4.3.2 Breast cancer dataset  

 A second simulation test is undertaken using the Wisconsin Breast Cancer Dataset 

[130] to check the robustness of the proposed eNF classifier. This dataset has four input 

variables: glucose (x1), homa (x2), adiponectin (x3), and MCP (x4). The output has two 

classes: benign and malignant, or the output space is divided into 2 classes to be 

unbiased. The initial MFs for this dataset is shown in Fig. 4.5, which are from the first 

input data pair. 

(a) 

 

 

(b) 
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Fig. 4.5 Initial MFs of the inputs using the first data set for breast cancer dataset (a) Glucose,    
(b) Homa, (c) Adiponectin, (d) MCP. 

 

 This dataset has 116 data pairs for analysis: 58 pairs will be used for training and 

remaining 58 pairs will be used for verification. After training, the MFs of the input 

variables of the eNF-NaD classifier are shown in Fig. 4.6, which are related to the 

projected centers and spreads of the corresponding clusters.  

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
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Fig. 4.6 The final MFs of the eNF-NaD classifier for the breast cancer dataset (a) Glucose,        
(b) Homa, (c) Adiponectin, (d) MCP. 

 

 After processing, the classification results are summarized in Table 4.2. It is clear that 

the training can significantly improve the classification accuracy. In terms of the number 

of formulated clusters, the SEF and eNF are more efficient in the evolving process than 

the TWNFI and the eTS classifiers (i.e., 4 vs. 2 clusters). Since the SEF adopts 2 

clusters/rules, it results in the lowest classification accuracy in this case.  

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
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Table 4.2. Performance of the related classifiers using the breast cancer data. 

Classifier

TWNFI

eTS

SEF

eNF-GD

eNF-NaD

Success Rate (%) Average 
Operation Time 

(sec)

No. of 
Clusters No. of RulesBefore 

Training
After 

Training

74.25

67.90

59.31

74.83

81.57

81.06

78.70

68.08

82.14

87.93

4

4

2

2

2

5

3

2

3

3

1.61

0.78

0.91

0.93

0.48

 

 

 
Fig. 4.7 (a) Performance of the eNF-NaD classifier with respect to the desired output (red line) 
and classifier’s output (blue line); (b) Absolute errors.  

 

(a) 

 

 

(b) 
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With the comparison of the SEF and the eNF methods (i.e., eNF-GD and eNF-NaD), 

it is seen that the proposed evolving algorithm in eNF is more efficient than the related 

evolving algorithms. On the other hand, the eNF-NaD outperforms the eNF-GD in terms 

of classification accuracy (87.93% vs. 82.14%) and processing speed (0.48 sec vs. 0.93 

sec), due to its efficient NaD training. 

Fig. 4.7(a) shows the verification process of the developed eNF-NaD classifier for the 

Breast cancer data. It generates three false alarms and four missed alarms in 

classification, which misclassifies the output data. Fig. 4.7(b) shows the absolute errors of 

the verification.  

 

4.4 Discussion  

A constrained evolving NF classifier, eNF in short, has been developed in this study 

for real-time pattern classification. The cluster evolution is performed based on the 

constrained output space partitions; the purpose is to prevent possible misleading 

diagnostic information. The suggested evolving algorithm has the ability of adding or 

subtracting rules adaptively, and the distinguishable patterns can be recognized between 

the input data and the constrained output space partition. A novel normalized Adadelta 

(i.e., NaD) method is proposed to improve training efficiency and classification 

convergence. The effectiveness of the developed eNF classifier has been verified by 

simulation. Test results have shown that the new eNF classifier can effectively partition 

the input-output spaces with the appropriate constrained evolving strategy. It outperforms 

other related pattern classification techniques. The proposed NaD training method can 

improve training efficiency using less processing time, and convergence with higher 

classification accuracy. 
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Chapter 5 

Gearbox System Health Condition Monitoring  
 

5.1 Overview 

A gearbox is a complex power transmission system, consisting of gears, bearings, and 

shafts; each of them has its own vibration features and fault-related properties. The 

information of health condition of each component can be analyzed by the use of 

appropriate signal processing techniques. As illustrated in Introduction, fault diagnosis is 

based on vibration analysis in this work.  

The gear mesh signals are usually strong and dominate gearbox vibration. Gear fault 

detection can be undertaken by signal processing in this work [26]. In Chapter 2, a 

wavelet transform (WT) based signal processing technique is introduced to perform gear 

fault diagnosis. The vibration signal from the gearbox is analyzed by a WT technique 

combined with spectrum analysis to recognize gear fault features for health monitoring 

and fault diagnosis.  

The features from the gear system are used as input for classification of faults in the 

gearbox by the use of the proposed evolving neuro-fuzzy (eNF) classifier. The eNF 

parameters are optimized by using the suggested adaptive method (NaD) method. By 

simulation in Chapter 4, the eNF-NaD model proposed in this study has proven to be 

efficient for classification and robust to the change in feature parameters. Thus, the eNF-

NaD technology will be implemented for gear health condition monitoring in this 

chapter. 

The vibration signal of rolling element bearings in a gearbox is relatively weak in 

magnitude and modulated by of gear mesh vibration. It is necessary to filter out the gear 

mesh vibration so as to predict bearing health conditions. Then, the proposed local mode 

decomposition (LMD) technique will be applied to extract the bearing fault features in 

the form of amplified mode functions (Ψ). Bearing fault will be predicted by analyzing 

the resulting spectrum of amplified mode functions Ψ. 
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This Chapter focuses on implementation of the related techniques discussed in 

previous chapters for gearbox health condition monitoring. It will also examine the 

effectiveness of the suggested averaged power spectrum technique for fault detection in 

gear system, the eNF-NaD classifier for real-time gear system monitoring, and the LMD 

technique for bearing fault detection. But some fundamental analysis theories will be 

discussed first in section 5.2 before advanced gear system monitoring applications.    

 

5.2 Gearbox System Health Condition Monitoring 

A gearbox system health can be monitored by predicting the health states of its main 

components. In this section we will be discussing the details of experimental setup used 

for this study and procedures for condition monitoring of in a gearbox system.  

 

5.2.1 Experimental Setup  

The experimental setup used in this test is shown in Fig. 5.1. This setup is specially 

designed for simulation of machinery faults and study of gearbox dynamics, which is 

robust to run under different loading and speed operating conditions. The system is 

powered by 2.2 kW (3 HP) induction motor (Marathon Electric, model: 56T34F5306J) 

with a speed range of 0.3 Hz to 60 Hz. The speed of motor is controlled using a variable 

frequency speed controller (VFD022B21A, Delta Electronics Inc.).  

 
 

Fig. 5.1 Experimental setup: (1) variable speed controller; (2) drive motor; (3) optical sensor; (4) 
flexible-coupling; (5) load disc; (6) accelerometers (sensors) (7) gearbox; (8) electric load 
controller (9) magnetic brake load system.  
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The motor and the main driving shaft are connected using a flexible coupling to 

provide damping for shocks and other high-frequency impacts from the motor. The actual 

speed of the shaft is calculated from a one-pulse-per-revolution signal collected by using 

an optical sensor (Monarch Instruments, model ROLS-W), which can also be used as a 

reference for TSA filtering. The PC controllable magnetic brake system (B150-24-H, 

Placid Industries) is used to provide loading to the gearbox.   

The detailed gearbox system is shown in Fig. 5.2(a), which consists of two pairs of 

spur gears and bearings. The first pair of gears has 32 and 80 teeth for the pinion and the 

gear, respectively; and second pair has 96 and 48 teeth for the pinion and the gear, 

respectively. The bearing (MB ER-10K) on the driving shaft, close to the pinion of the 

first pair is used for the study in this experiment.  

The vibration signals are collected using ICP accelerometers (SN98697, ICP-IMI) 

with 100mV/g sensitivity. These ICP sensors are mounted in different directions on the 

gearbox casing to collect data along the corresponding directions. These sensors are 

connected to a data acquisition board (NI PCI-4472), attached to the computer. This data 

acquisition board has anti-aliasing filters with cut-off frequency set to half of the 

sampling frequency. A software interface is developed to control the data acquisition 

operations in real-time, in terms of the sensor network, sampling frequency, data size, etc. 

 

              

1 2 3 4 5

   
 

Fig. 5.2 (a) A two-stage gear system: (1) input gear; (2) input pinion; (3) output pinion; (4) output 
gear (5) the roller bearings. (b) A simulated damaged gear with one partially broken tooth 
(chipped gear).  
 

(a)                                                                          (b) 
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Three gear conditions are tested as illustrated in Fig. 5.3:   

  1)    healthy gears: 4 pairs of gears are tested, and 52 data sets are collected for 
analysis; 

  2)    cracked gears: 3 pairs of gears are tested and 67 data sets are collected; 

  3)    chipped gears: 3 pairs of gears are tested and 48 data sets are collected for 
analysis.   

The health conditions of each gear are constrained to three states:  

  C1= healthy, C2= possibly damaged, C3= damaged.  
 

(a) (b) (c)
 

 

Fig. 5.3 Tested gear conditions: (a) healthy gears; (b) cracked gears; (c) chipped gears. 
 

The bearing conditions for this study are healthy, outer race fault, inner race fault and 

rolling element (ball) fault. This work focuses on diagnosis of system fault at its initial 

stage, or it means during study only one component (either a gear or a bearing) will be 

faulty. The procedure of this study is discussed in following sub-section. 

 

5.2.2 Gearbox Health Analysis 

Fault diagnosis takes several stages of processing including collection of signal, pre-

processing, signal processing, feature extraction, and fault detection. The flow chart of 

the proposed methodology used for gearbox analysis is shown in Fig. 5.4. 
 

(a)    (b)     (c) 
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 LMD technique on 
bearing signal

TSA gear signature 

eNF-NaD based 
classification

Residual bearing signal

Data signal x(t)

Gearbox system

Features of  gear faults Features of bearing 
faults

Wavelet Analysis

 
Fig. 5.4 An example of gear system health analysis 

 

A vibration signal is collected from the gearbox, which is preprocessed by DAQ and 

stored in a computer system. The TSA is performed to calculate the signal average, which 

is used for advanced signal processing. The results are further processed to extract gear 

fault features like wavelet amplitude, phase amplitude and beta-kurtosis, which are used 

as input to the classifiers. The residual signal from the TSA contains information of 

bearing health conditions, which will be used as input to the proposed LMD technique for 

bearing health analysis. 

The processing details are discussed below: 

a) Gear fault analysis  

Gear fault can be classified into two categories: localized defects (e.g., broken tooth 

and chipped tooth) and distributed defects (e.g., scoring and wear). This work will focus 

on localized gear fault diagnosis because a localized fault not only will degrade 

transmission accuracy but also may cause sudden failures. In this work, the gear fault 

diagnosis is conducted gear by gear. 

Fig. 5.5 illustrates the processing procedures for gear fault detection using WT 

analysis as an example. The collected vibration signal, x(t), will be used as input to the 

TSA filter to eliminate the irregular components of the gearbox and derive the signal 
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average of the gear to be monitored. The gear signal average is processed by continuous 

wavelet for time-frequency information analysis. The power spectrum of the continuous 

WT is used for detailed fault detection.  

 

Time synchronous 
average (gear) signal

Continuous wavelet 
transform

Wavelet power 
spectrumGear Fault Features

Data signal, x(t)

 
Fig. 5.5 An example for gear fault feature extraction: WT-based gear fault analysis.  

 

b) Gear fault diagnostic classification 

As mentioned in subsection, this work will focus on classification of localized gear 

faults. As the measured vibration signal is generated from various vibratory sources in a 

gearbox, the primary step is to differentiate the signal specific to each gear by TSA 

filtering. In this filtering process, the signal components that are non-synchronous to the 

rotation of the gear of interest (e.g., those from bearings, shafts and other gears) can be 

filtered out. As a result, each gear signal is computed and represented in one full 

revolution, called the signal average, which will be used for advanced analysis. 

 

eNF classifier 
training

NaD based rules 
updationeNF-NaD classifierVerification

Gear fault features

 
Fig. 5.6 An example for gear fault feature classification: The eNF-NaD classifier. 

  

Many techniques have been proposed in the literature for gear fault detection. Because 

of the complexity and variation of the machinery dynamics and operating conditions, 

however, each technique has its own advantages and limitations, and is efficient for 

specific applications only. Based on systematic investigation in [89], in this work, three 
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features will be selected for this diagnostic classification from three information domains: 

energy, amplitude, and phase: 

 a) beta kurtosis index (x1) using the overall residual signal; 

 b) wavelet energy index (x2): using the overall residual signal obtained by band-

stop filtering out the GMF fr Z and its harmonics, where fr is the rotation frequency (Hz) 

of the gear of interest and Z is the number of teeth of the gear;  

 c) phase demodulation index (x3): using the signal average.  

 

5.2.3 Bearing Fault Detection 

 The signal collected from system contains information of bearing as well as gears; it is 

necessary to remove gear signatures for fault detection of rolling element bearings. The 

Fig. 5.6 shows the flow chart for bearing fault analysis. Firstly the gear signatures from 

collected signal are removed. The bearing faults detection is then undertaken using 

proposed LMD analysis technique, discussed in section 3.2. 

Eliminate gear 
signature

Implement LMD 
technique

Generate power 
spectrum

Bearing fault 
features

Data signal, x(t)

 
Fig. 5.7 An example for bearing fault feature extraction: LMD based bearing fault analysis. 

 

5.3 Gear Fault Analysis and its Classification 

A gearbox system is analyzed for fault detection in gear system as well as bearing 

system. The results for gear fault and bearing fault analysis are discussed in following 

subsections 5.4.1 and 5.4.2, respectively. The gear fault diagnosis using the proposed 

eNF-NaD classifier is discussed in subsection 5.4.3.  
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5.3.1 Gear Health Analysis 

The gear signatures are dominant in the collected vibration signal. The gear fault-

related features are periodic in nature, which are relatively easy to separate from 

aperiodic features of the signal. A signal average after the TSA is shown in Fig. 5.8, 

which is then processed by the WT to extract time-frequency features.   

  
Fig. 5.8 Signal average for different gear conditions: (a) Healthy gear, (b) Cracked gear, (c) 
Broken tooth gear.  

 

This WT for each gear condition is shown in Fig. 5.9. It can be observed that healthy 

gear condition, shown in Fig. 5.9(a), shows some yellow area (representing high 

amplitudes) at the scale number a = 60, which correlates to GMF (960 Hz). Similarly, the 

gear with a crack, shown in Fig. 5.9(b), also shows much larger yellow area, at the scale 

number a = 60, compared to healthy gear, and it can be considered as early indication of 

presence of crack fault in gear system. The gear system with a broken tooth, shown in 

Fig. 5.9 (c), shows high amplitude values at scale a = 1, which correspond to the running 

(a) 

 

(b) 

 

(c) 
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frequency (30 Hz) of gear system, because the broken tooth interacts once per rotation 

with other gear.  

 

  
Fig. 5.9 Wavelet spectrum analysis for different gears: (a) Healthy gear, (b) Cracked gear, (c) 
Broken tooth gear.  

 

This wavelet spectrum is then time-averaged to improve the signal-to-noise ratio, and 

then detect presence of gear faults. The comparison of the results is shown in Fig. 5.10. 

The features extracted from the wavelet spectrum are used as one of the inputs to the 

classifiers. 

The Fig. 5.10(a) shows the result for a healthy gear and the peak is at GMF (fr Z) of 

the first gear pair (i.e. 960 Hz). The processing result for a cracked gear is shown in Fig. 

(a) 

 

(b) 

 

(c) 
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5.10(b), with elevated peaks as a result of higher amplitudes of the vibration signal from 

the gearbox. For a broken tooth gear as shown in Fig. 5.10(c), the peak is located at the 

shaft frequency (i.e. 30 Hz) as the occurrence of meshing of the broken tooth is once per 

rotation of the shaft. The peak at the GMF is very low compared to the peak at the shaft 

frequency, as the broken tooth generates a high amplitude vibration signature compared 

to other tooth meshing engagements.  
 

 
Fig. 5.10 Averaged wavelet power spectrum for different gears: (a) Healthy gear, (b) Cracked 
gear, (c) Broken tooth gear. (Arrows indicate the gear characteristic frequency).  
 

From the above results, the wavelet power spectrum analysis can detect localized 

faults in the gear system. The advantage of this technique is that it can provide more 

detailed information of occurrence of fault compared to regular wavelet analysis, which 

is useful for early recognition of a gear fault.  
 

5.3.2 Gear Health Monitoring Indices for Classification 

Gear system health monitoring requires comparison between some monitoring 

indices, which are sensitive to the fault features. Researchers have used numerous 

statistical parameters, such as standard deviation, to represent fault related features. As 

(a) 

 

(b) 

 

(c) 
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mentioned in section 2.5, in this work, three features will be selected for this diagnostic 

classification from three information domains: energy, amplitude, and phase: 

1) Beta Kurtosis Index:  

The beta-kurtosis function B(z) for different gear health condition are shown in Fig. 

5.12. The beta-kurtosis index values, calculated using Eq. (2.15), are used as first input x1 

to the classifier.  
 

 
Fig. 5.11 Beta-Kurtosis reference function for different gears: (a) Healthy gear, (b) Cracked gear, 
(c) Broken tooth gear.   
 
 

2) Wavelet Energy Index:  

The Wavelet energy function W(z) for different gear health condition are shown in 

Fig. 5.11. The wavelet energy index values, calculated using Eq. (2.15), are used as 

second input x2 to the classifier.  
 

(a) 

 

(b) 

 

(c) 
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Fig. 5.12 The wavelet energy reference function for different gears: (a) Healthy gear, (b) Cracked 
gear, (c) Broken tooth gear.  
 

3) Phase Modulation Index:  

The phase reference function P(z) for different gear health condition is shown in Fig. 

5.13. The phase index values, calculated using Eq. (2.15), are used as third input x3 to the 

classifier.  
 

(a) 

 

(b) 

 

(c) 
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Fig. 5.13 The phase reference function for different gears: (a) Healthy gear, (b) Cracked gear,   
(c) Broken tooth gear.   
 

The three monitoring indices, extracted from gear system, are used as the input to an 

eNF classifier, to perform classification of health condition of the gear system. The 

classification results are shown in following section.   

 

5.3.3 Fault Diagnostic Classification in a Gear System 

In gearboxes, fault detection can be undertaken by complex signal processing-based 

approaches [8, 9]. But each signal processing technique has its own merits and limitations 

in fault detection, related to distortion of signal, approximation, or improper selection of 

output [9, 11]. In real-time gearbox health condition monitoring, some intelligent tools 

like neuro-fuzzy (NF) systems can be used for automatic fault diagnostic classification 

based on features extracted from the related fault detection techniques. 

Similarly to the conditions in simulation tests in section 4.3, five related classifiers 

are used for comparison: eTS, TWNFI, SEF, eNF-DG and eNF-NaD. All of these 

classifiers are with the three same inputs, and with same training conditions. The testing 

is undertaken under different load and speed conditions. The sampling frequency is 

selected to make sure each tooth period should contain about 50 data samples. For 

(a) 

 

(b) 

 

(c) 
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example, if the shaft speed is 1200 rpm, or fr = 20 Hz, the gear has Z = 32 teeth, the 

sampling frequency should be about:  
 

fs = 32 teeth × 50 samples × 20 Hz = 32,000 Hz. 
 

After the TSA filtering, the signal average is further processed to generate the 

monitoring indices of wavelet amplitude (x1), beta kurtosis (x2) and phase information 

(x3), which are input variables to the classifiers. Fig. 5.14 shows the initial MFs of the 

input variables, which are based on first set of input.  
 

 

Fig. 5.14 Initial MFs of the input variables of the related classifiers, using the first training data 
pair (a) Beta-kurtosis, (b) Wavelet amplitude, (c) Phase demodulation.  
 

In training, the evolution of MFs plays a vital role in efficient classification. The eNF 

classifier can effectively determine the centers Cµ  and spreads Cσ  to update the MFs 

corresponding different clusters. After training, the MFs of the input variables of the 

eNF-NaD classifier are shown in Fig. 5.15. 
 

(a) 

 

(b) 

 

(c) 
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Fig. 5.15 Final MFs of the eNF-NaD classifier in gear system monitoring: (a) Beta-kurtosis (b) 
Wavelet amplitude (c) Phase demodulation.  
 

Table 5.1 summarizes the diagnostic results using the related classifiers. In gear fault 

diagnosis, two types of errors are considered: a) false alarm, or the recognized gear fault 

is caused by other reasons (e.g., speed/load variations) instead of real gear defect; b) 

missed alarm, or the gear fault is not recognized by the diagnostic classifier. From Table 

5.1, it is seen that the proposed eNF classifiers outperform the classical eTS and TWNFI 

techniques, as well as the SEF classifier, with fewer clusters and higher diagnostic 

accuracy. That is mainly due to the more efficient evolving approach with the appropriate 

constrained partition strategy. On the other hand, with the comparison of eNF-GD and 

eNF-NaD, the proposed NaD training method can improve not only classification 

accuracy (98.38% vs. 96.74%), but also processing efficiency using less processing time 

(1.34 sec vs. 1.82 sec), which makes it suitable for real-time monitoring applications.  

 

 

 

(a) 

 

(b) 

 

(c) 
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Table 5.1. Gear monitoring test results using the related classifiers  

Classifier

TWNFI

eTS

SEF

eNF-GD

eNF-NaD

Success Rate  (%) Average
Operation  
Time (sec)

No. of 
Clusters

5

5

4

3

3

2.83

2.27

1.99

1.82

1.34

87.20

87.71

96.38

97.91

99.13

Healthy 
Gear

85.36

88.70

94.31

95.86

97.12

Cracked 
Gear

90.77

89.42

95.15

96.67

99.34

Chipped 
Gear

Overall 
Accuracy

(%)

87.49

88.59

95.21

96.74

98.38

6

6

4

4

4

No. of 
Rules

 
 

Fig. 5.16(a) shows the classification process of the eNF-NaD classifier during the 

testing process. It is seen that eNF-NaD classifier is efficient in separating healthy state 

from the faulty state of a gear system. But it has generated some errors in gear fault 

diagnosis with two false alarms and one missed alarm. 
 

 

 
Fig. 5.16 (a) Performance of the eNF-NaD classifier with respect to the desired output (red line) 
and classifier’s output (blue line); (b) Absolute errors.  

(a) 

 

(b) 
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Fig. 5.17 illustrates the constrained output clusters (dotted circles) using the eNF-

NaD classifier. The recognized clusters in the output space are indicated by the solid 

lines, in terms of x1 (beta-kurtosis) versus x2(wavelet amplitude).  
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Fig. 5.17 The output space evolving results: The dotted circles C1-C3 represent the constrained 
output space patterns. Solid circles represent the recognized clusters in the output space. 

 

Fig. 5.18 shows the recognized eNF model architecture after 50 training epochs using 

all of the training data sets. It is a 6-layer network. Different from a complete NF model, 

the eNF classifier does not have complementary links with low contribution factors (e.g., 

less than 0.1 in this case), which can facilitate the processing efficiency.  

During the evolving process, this structure is updated gradually and continuously. 

Initially, each input variable (in layer 1) had 3 MFs (in layer 2): S., M. and L. that are 

related to each cluster formulation as illustrated in Fig. 5.18. After the evolving 

operation, 3 clusters are generates, which result in 4 rules, R1 ~ R4. At the same time, x1 

has two MFs only: S1 and L1. S1 is related to R1 and R3, while L1 is related to R2. M1 is not 

represented as it is not related to any deciding rules. The firing strength of each rule is 

calculated in layer 3 by the related inference operation. After normalization in layer 4, the 

output indicator (y) can be computed by defuzzification (e.g., centroid) in layer 5.  
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Fig. 5.18 The identified eNF classifier model after 50 training epochs. 

 

The health state of the gear of interest is further classified into three states in layer 6:  

• healthy C1 if y ≤ 0.33,  

• damaged C3 if y > 0.67, and  

• possibly damaged C2 if 0.33 < y ≤ 0.67. 

 

5.4 Bearing Fault Analysis in a Gearbox  

In a gearbox, the bearing signals are usually weak and modulated by gear signatures. 

In order to improve signal-to-noise ratio of bearing signal, the gear signatures must be 

filtered out. This filtering process could help to eradicate gear mesh frequencies and their 

harmonics, which can generate less number of mode functions for bearing health 

monitoring. In this study, a leakage-free filter is implemented to minimize the filtering 

distortion [136]. The parameters of leakage-free filter are chosen based on the 

information of gearbox, such as running speed and number of teeth on the corresponding 

gear. The signal from the gearbox, x(t), includes data of different sources such as shafts, 

bearings, and gears. The gear signature xG is periodic and can be modeled as integration 

of gear mesh frequencies and its harmonics such as: 
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where Am and θm are the respective amplitude and phase of the mth gear harmonic; GMF = 

fr Z, Z is the number of teeth of the gear, fr is the shaft speed; and M is the number of 

mesh frequency harmonics considered (M = 5 in this study). 

The removal of gear mesh and its harmonic can be executed in the frequency domain 

by setting the amplitude of the related stopband spectral amplitudes to zero. If X(f) is the 

FT of the gearbox signal x(t), set X(f) to zero over the stopbands f ϵ [(mZ + 1) - 0.5p, (mZ 

+ 1) + 0.5p], where p is selected band window of the stopband. For instance, for the first 

pair of gears, if the pinion has 32 teeth with shaft speed 30 Hz, the first GMF is 960 Hz. 

For the second gear pair, if the pinion has 96 teeth with shaft speed of 12 Hz, the second 

GMF is 1152 Hz. The signal residual after leakage-free filtering is obtained and used as 

the real part of the inverse FT; the mode functions Ψ can be generated by using the 

proposed LMD technique to process the frequency components.  

The experimental setup, shown in Fig. 5.1, is used for bearing health condition 

monitoring under the effect of gears. As discussed in subsection 5.2.1, the system is 

powered by 3 HP induction motor with a speed range of 0.3 Hz to 60 Hz. An optical 

sensor is used to collect a one-pulse-per-revolution signal from the system. A load is 

provided to the gearbox by the PC controllable magnetic brake system. The ICP 

accelerometers are mounted with different orientation on the gearbox casing to collect 

data (vibration signals). To assure that the information is not distorted, the sensors are 

placed as close as possible to the bearing being analyzed. In this study, the bearing which 

is connected to the motor shaft is considered for analysis, as shown in Fig. 5.19.       
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Fig. 5.19 Gearbox system for bearing health monitoring: (1) the roller bearings; (2) input gear; (3) 
input pinion; (4) output pinion; (5) output gear. (Yellow arrow indicates the bearing being 
analyzed in this study.) 

. 

From systematic investigation, it is observed that the first mode function contains the 

more information of health state of a bearing. Thus, the power spectrum of the first mode 

function is used for condition monitoring of bearings in a gearbox. A typical example 

with motor speed of 30 Hz and braking load of 7.5 Nm will be used for illustration. The 

corresponding fault characteristic frequencies of outer race fault, inner race fault and 

rolling element fault are 91.48 Hz, 149.80 Hz, and 119.81 Hz, respectively. For 

verification, each health condition of bearing is processed by the EMD as well as the 

proposed LMD technique.  

The processing results for a healthy bearing are shown in Fig. 5.20, with 

characteristic frequency 29.82 Hz. The frequency spectrum of the first IMF obtained by 

EMD technique, shown in Fig. 5.20(a), shows peak at the frequency but with a high level 

of noise. Fig. 5.20(b) shows the spectral map of the first Ψ function, which has reduced 

level of noise in the output. Fig. 5.20(c) illustrates the power spectral of the first Ψ 

function using the proposed LMD technique, which can provide the best diagnostic 

results with clear characteristic frequency and its harmonics. 
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Fig. 5.20 Processing results for a healthy bearing: (a) Frequency spectrum of the first IMF from 
EMD, (b) Frequency spectrum of the first Ψ function from LMD, (c) Power spectrum of the first 
Ψ function from LMD. (Arrows indicate the bearing characteristic frequency and its harmonics). 

 

Fig. 5.21 shows the processing results for a bearing with outer race fault whose fault 

characteristic frequency is 91.53 Hz. Compared with the frequency spectrum of the first 

IMF obtained by EMD in Fig. 5.21(a), the spectral map of the first Ψ function in Fig. 

5.21(b) has reduced level of noise. However, as illustrated in Fig. 5.21(c), the power 

spectrum of the LMD technique outperforms another two techniques in this case, even 

though its characteristic frequency amplitude does not dominate the spectrum. 
 

 

(a) 

 

(c) 

(b) 
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Fig. 5.21 Results from a bearing with outer race fault (a) Frequency spectrum of the first IMF 
from EMD, (b) Frequency spectrum of the first Ψ function from LMD, (c) Power spectrum of the 
first Ψ function from LMD. (Arrows indicate the bearing characteristic frequency and its 
harmonics). 

 

Fig. 5.22 depicts the processing results for a bearing with inner race fault with 

characteristic frequency 148.4 Hz. It is seen that the first IMF obtained by EMD 

technique in Fig. 5.22(a) cannot recognize the existence of the bearing fault in this case. 

In comparison of Fig. 5.22(b) of the first Ψ function, the proposed LMD technique of the 

first Ψ function in Fig. 5.22(c) provides better processing results in detecting inner race 

fault in this case, even though the representative spectral peaks are not dominant on the 

map; it is because the time-varying representative features are time-varying and 

modulated significantly by gear vibrations. 
 

 

(a) 

 

(c) 

(b) 
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Fig. 5.22 Results from a bearing with inner race fault (a) Frequency spectrum of the first IMF 
from EMD, (b) Frequency spectrum of the first Ψ function from LMD, (c) Power spectrum of the 
first Ψ function from LMD. (Arrows indicate the bearing characteristic frequency and its 
harmonics).  

 

The processing results for a bearing with rolling element (ball) fault are shown in Fig. 

5.23, where the fault characteristic frequency is 119.38 Hz. In this case, both the first 

IMF obtained by EMD technique in Fig. 5.23(a) and the first Ψ function in Fig. 5.23(b) 

cannot predict the fault condition of the bearing as the characteristic features and time-

varying. In this case, the proposed LMD with the first Ψ function in Fig. 5.23(c) is the 

only technique that can detect random events such as first harmonic of the rolling element 

fault in a bearing. 
 

 

(a) 

 

(c) 

(b) 
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Fig. 5.23 Results from a bearing with rolling element fault (a) Frequency spectrum of the first 
IMF from EMD, (b) Frequency spectrum of the first Ψ function from LMD, (c) Power spectrum 
of the first Ψ function from LMD. (Arrows indicate the bearing characteristic frequency and its 
harmonics). 

 

5.5 Discussion 

In a gearbox system, advanced signal processing techniques are must for health 

monitoring of each component. As each component of gearbox has complex interaction 

with the surrounding system, it is necessary to separate the features related to each 

component. As gear features are dominant in a gearbox, gear fault analysis has a 

significant role in health monitoring of gearbox system. The output of WT provides a 

detailed analysis in time-frequency domain, but it has complex coefficients. The averaged 

WT features, obtained by converting complex wavelet coefficients into 2D coefficients, 

can provide clear indication related to presence of faults in gear system. The spectral 

(a) 

 

(c) 

(b) 
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graph of averaged wavelet coefficients can highlight the peaks related to fault 

characteristic frequencies, resulting in improved accuracy of fault diagnosis of gear 

systems. This technique can be implemented for real-time gear health monitoring 

systems. 

A novel LMD method has been developed in this work for bearing fault analysis in a 

gearbox system. Based on simulation results, it helps to highlight the periodic events (e.g. 

outer race faults) and can also enhance the suppressed events (e.g. inner race fault, rolling 

elements faults) of a bearing system. The power spectrum of the local mode functions (Ψ) 

are analyzed to provide more clear peaks for fault frequencies. The experimental test is 

conducted and evaluated using real-time dataset collected from a gearbox. The results 

have shown that the proposed technique can detect bearing faults under the effect of gear 

system. The combination of the proposed LMD technique and power spectrum analysis 

has a potential for a fault diagnosis of bearing system in complex structures (e.g. 

gearbox).  

A constrained evolving NF classifier, eNF in short, has been developed in this study 

for real-time pattern classification. A novel normalized Adadelta (i.e., NaD) method is 

proposed to improve training efficiency and classification convergence. In simulations, 

the suggested evolving algorithm has shown the ability of adding or subtracting rules 

adaptively. Based on the systematic investigation, three monitoring indices, from the 

domains of energy, amplitude and phase, are selected as input to the eNF system for 

classification of gear faults. The developed eNF classifier recognizes the distinguishable 

patterns between the input data and the constrained output space partition. Test results 

have shown that the new eNF classifier can achieve efficiency of 96%. It outperforms 

other related pattern classification techniques. The proposed NaD training method can 

improve training efficiency using less processing time, and convergence with higher 

classification accuracy of 98%. 
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Chapter 6  
 

Conclusions and Future Work 
 

6.1 Conclusion 

Gearboxes are the major power transmission units in rotary machinery, and widely 

used in industrial applications such as automobile and manufacturing industry. Faults in 

gearbox can result in high risk damage to other components as well as the working 

environment. In last few decades, the industries have moved towards condition based 

monitoring of faults to facilitate the fault identifications and to optimize maintenance 

plans. A gearbox consists of many rotating components like gears and bearings, which 

have their own faults as well as corresponding features. However, reliable gearbox 

condition monitoring and health management is still one of the most challenging aspects 

in predictive maintenance operations. The objective of this PhD research is to develop 

new techniques to detect faults in gears and bearings so as to improve reliability of 

gearbox health condition monitoring. Specific research themes include new signal 

processing techniques to predict defects in gears and bearings; and a new evolving NF 

classifier to integrate the merits of several features for gear system health monitoring.  

Firstly, an averaged wavelet spectrum technique has been proposed for fault detection 

in a gear system. The vibration signal collected from gearbox is processed using TSA 

filtering to separate specific features to a gear from the rest of the gear system. Then the 

signal average is processed using the wavelet transform to analyze time-frequency 

response for non-linear impulses, and for gear fault detection. Its effectiveness is verified 

by experimental tests; the spectral peak of broken tooth is at the shaft frequency with a 

much higher magnitude, which can identify gear faults in a gearbox. 

A novel local mode decomposition (LMD) technique has been proposed for more 

efficient fault detection in bearing systems. The collected vibration signal from a gearbox 

is dominant by gear mesh signatures. The leakage-free filter is adopted to remove the 

gear signatures by filtering out the GMF and its first 4 harmonics. The proposed LMD 
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technique is implemented to analyze the residual signal and the mode functions, which 

may contain bearing fault characteristic features. By simulation tests, it is observed that 

the first mode function (Ψ1) has the dominant magnitude; the power spectrum analysis is 

conducted on the first mode function to enhance gearing fault characteristic frequencies. 

The effectiveness of the proposed LMD technique is examined by experimental testing 

corresponding to different bearing health conditions. Test results show that the LMD 

technique can provide better insight to bearing characteristic features in a gearbox. It can 

be potentially used for real-world machinery predictive maintenance applications. 

Fault diagnostic classification in a gearbox is also a challenging task in this research 

and development field. An evolving Neuro-Fuzzy (eNF) classifier has been developed in 

this work for gearbox diagnostic pattern classifications. Three inputs are selected from 

the techniques of energy, amplitude and phase.  A normalized adadelta (NaD) method 

suggested for eNF system training, which has better convergence rate then conventional 

gradient descent methods. The efficiency of this eNF classifier is tested firstly by 

simulation tests using Iris dataset. Then it is implemented for real-time gear system 

monitoring. Test results show that the eNF classifier can eliminate the overlapping in the 

output space and improve classification accuracy. The NaD method can effectively train 

system parameters and enhance eNF convergence.  This eNF technology has a potential 

to be used for real-time fault diagnosis in gearboxes.  

 

6.2 Future Work  

The following topics are suggested for future research: 

a) A frequency-averaged wavelet spectrum technique will be proposed to provide 

supplementary analysis of the time-averaged LMD technique for fault isolation in 

multiple gears and bearings in a gearbox. 

b) The current analysis is based on signal processing techniques for fault analysis. A 

new mathematical model-based analytical approach will be integrated to provide in-

depth knowledge of the gearbox system, and improve condition monitoring 

robustness and reliability. 
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c) The proposed LMD technique will be implemented using electric current/voltage 

signals for fault detection of bearings in induction motors. These related fault 

detection techniques and the eNF classifier will be implemented for real-time health 

condition monitoring of vertical pump stations at the Bare Point Water Treatment 

Plant in Thunder Bay. 
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