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The boreal forest is one of the most extensive biomes in Canada at an estimated 2.7 million ha. 

The requirement for a growing agricultural sector, along with a currently warming climate, has 

accelerated the conversion of boreal forest to agriculture. The resulting more intensive soil use 

may have a significant impact on the soil ecosystem, potentially degrading some ecosystem 

services, such as carbon sequestration, water purification, climate regulation, nutrient cycling, 

flood regulation, habitat for organisms, climate control, and the provision of food, fibre, and fuel. 

Analysis of soil health using a structured synthesis of physical, chemical, and biological 

indicators can provide information on the sustainability of soil use. Soil health as a metric of soil 

change can inform farm managers and policy-makers of the status of soil and increase awareness 

of sustainable farm practices in a region. In this dissertation, I assessed the impact of land 

conversion from boreal forest to agriculture near Thunder Bay, Ontario, Canada. I found that 

land conversion created declines mainly in biological soil health indicators, along with total 

nitrogen and carbon. Soil health indicators related to soil carbon were the most informative to 

land disturbance in plots < 10 years since land conversion; indicators associated with forage 

cropping systems on Thunder Bay dairy farms. Carbon and nitrogen mineralization increased 

with time since conversion from forest. Archaeal and fungal abundance increased after land 

conversion. In addition, land conversion altered the microbial functions related to carbon, 

nitrogen, and phosphorus cycling. New knowledge about the effects of land conversion in the 

boreal forest will play a critical role in developing and implementing environmental and 

agricultural policies supporting Canada’s soil sustainability and soil health.  
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CHAPTER 1  INTRODUCTION  

The boreal forest ecosystem is the most extensive biome in North America, spanning 270 

million ha in Canada (Natural Resources Canada, 2018). The biome contains a significant 

portion of global forest carbon (1.9 ± kg m-2), and it is a sink for atmospheric C (Botkin & 

Simpson, 1990; Kishchuk et al., 2016). In addition to playing an essential role in C dynamics 

(Seedre et al., 2011), the ecosystem services of the boreal forest also include provision of clean 

water and air (Price et al., 2013). However, due to the cumulative effects of natural and 

anthropogenic disturbances, the boreal forest has become a net C source (Kishchuk et al., 2016).   

 Boreal soils are formed by the combination of various factors related to climate, biotic 

activities, topography, parental material (Jenny, 1941), which all create a mosaic of soils across 

the boreal area (Maynard, 2002). In the Boreal Shield ecozone, soils support low to medium 

forest productivity of 0.6 -1.5 m3 ha-1 year-1 (Maynard, 2002). Here, Podzolic, Luvisol and 

Organic soils are the dominant orders (Soil Landscapes of Canada Working Group, 2010). 

Podzols are generally coarse-textured, less productive and more susceptible to nutrient depletion 

than the fine texture Luvisols (Lavkulich & Arocena, 2011; Sanborn et al., 2011). The natural 

soil formation process occurs slowly, naturally and for a prolonged time. Chemical properties 

and soil profile changes occur without notice (Jenny, 1941). However, soil nutrient cycles are 

disturbed by natural or anthropogenic interventions like wildfire, insect disease outbreaks, 

landslides, erosion, forestry operations, mining, agriculture, and other resource extraction.  

 Partial or complete removal of the above-soil biomass may have both positive or negative 

effects on soil health and ecosystem services (Maynard, 2002). Since the Industrial Revolution 

(1750-1850), human intervention has been changing the environment (Rockström et al., 2009). 

The Boreal region is considered relatively undisturbed by human activity, although it is 
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estimated that 3% of the Canadian Boreal zone has been converted to other land uses, where 

industrial development is the main driver of this change, creating 31% of the change (Anielski & 

Wilson, 2009). Agriculture, one of the significant contributions to the Canadian economy, has 

been growing as expected due to the demand for agricultural products nationally and 

internationally, where the market for cereals and meats continues to grow (Government of 

Canada, 2018). Ontario has more than half of the highest soil class for farming (Class 1) and 

makes up one-quarter of all farm revenues in Canada (Ontario Minister of Agriculture, 2019).  

 Agriculture has been one of the main causes of conversion of forested land, where 

historically, forests and shrublands have been seen as a potential source of agricultural land 

(Ramankutty & Foley, 1999). The Canadian government has long been developing projects for 

land clearing of forests to change mainly for agriculture, urban development, mining, and road 

building (Ripley et al., 1946). For example, development of the Boreal Shield ecozone expanded 

rapidly during the European pre-settlement stage in the late 18th to mid-19th centuries (DeFries et 

al., 2004). In the southern boundaries of the boreal forest, farmers have increased their 

production areas to meet the demand for food, fiber, and energy (Fitzsimmons, 2002). Since 

1850, forest conversion to agriculture has contributed 35% of anthropogenic carbon dioxide 

(CO2) emissions worldwide, also causing fragmentation and degradation of habitats, soil and 

water pollution, and overexploitation of native species (Foley et al., 2005). The environmental 

consequences of land-use changes also include impacts on global carbon cycles, atmospheric 

deposition, and lower fertility of soils (Wackernagel et al., 2002). From 1990 to 1998, 

agricultural expansion caused a net loss of 54,000 to 81,000 ha year-1 of natural habitat in 

Canada (Robinson, et al., 1999), contributing to the loss of biodiversity that has undermined the 

sustainability of provision of food security, freshwater, and fresh air, and for regulation of the 
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climate (Foley et al., 2005). By 2016, the rate of deforestation in Canada declined to 37,000 ha 

year-1, which now represents less than 1% of Canada’s total forest area converted to other land 

uses (Natural Resources Canada, 2018). In 2017, total greenhouse gas (GHG) from the 

agriculture sector still accounted for 60 Mt, equivalent to 8.4% of total GHG emissions in 

Canada, where 30% represented CH4; the agriculture sector emits 75% of N2O of the total 

nationally. Since 2005, grazing livestock production has declined in Canada; as a result, total 

N2O has a slightly higher proportion due to crop production than from livestock, and a 

decreasing C sink in agricultural soils has occurred due to a shift from perennial to annual crops 

(Government of Canada, 2019). 

 Clearing forest land, known as deforestation, is a process of converting forested areas to 

other land uses (Ramankutty & Foley, 1999). The Ontario Ministry of Agriculture, Food, and 

Rural Affairs (OMAFRA, 2019) defined deforestation as “permanent conversion of forest to 

other uses as a direct result of human activities such as agriculture, urban development, 

transportation and industry.” Land clearing occurs when trees, stumps, brush, stones and other 

elements on the field are removed to acquire or add more land into crop production or pasture. 

This cleared land could be part of an existing farm or a new farm operation (NOFIA, 2017). 

Land clearing aims to increase land productivity and enhance the livelihoods of farmers by 

producing revenues for themselves and the country above those revenues from forest operations. 

 For national forest monitoring in Canada, a forest is defined as a minimum land area of 1 

ha with tree crown cover of more than 25%, and with trees having the potential to reach a 

minimum height of 5 m at maturity in situ (UNFCCC, 2006); the Food and Agricultural 

Organization of the United Nations defines a forest as “land spanning more than 0.5 ha with trees 

higher than 5 m and a canopy cover of more than 10% or trees able to reach these thresholds in 



 

4 

 

situ. It does not include land that is under agriculture or land use” (Marklund & Schoene, 2006). 

The density of cover trees set at 10% or 25% is the main difference in the definition of forest 

between the two organizations. Below these densities, areas are defined as “other wooded land,” 

which is often a class more relevant to monitoring in northern parts of the boreal forest (Dyk et 

al., 2015).   

 Even though clearing areas in the boreal forest can have a positive effect on the local and 

national economies, it involves recognized negative impacts on ecosystem services, specifically 

in carbon sequestration, provision of clean water, air purification, and soil aggregation (Acton & 

Gregorich, 1995). With the degradation of these ecosystem services, the agricultural sector is 

reducing its own resiliency (Walker et al., 2006). Once land is cleared, carbon can be released 

rapidly by fires or slowly with heightened decomposition by microorganisms (Houghton, 1995; 

Wei et al., 2014). The Boreal Shield ecozone has already shown signs of degradation, such as 

less soil organic matter, soil compaction, aggregate structure destruction, soil acidification, and 

decreases in water quality, including groundwater contamination by nitrate (Acton and 

Gregorich, 1995). It is estimated that agriculture causes a loss of 26 billion tons of topsoil per 

year globally, 2.6 times more than natural systems (AAAS, 2004). This loss is expected to be 

accelerated by climate change as soils warm and organic matter decomposes more rapidly, 

leading to lower aggregate stability (Kaiser, 2004).  

 As soon as the soil’s surface is ‘broken,’ it starts to change (Wei et al., 2014). In Ontario 

and elsewhere, soils are at risk from many threats such as 1) forest clearing for new crop 

production because of population increases, 2) farm practices that have degraded soils, and 3) 

altered soil systems and soil health due to extreme weather events (OMAFRA, 2017). New 

agricultural areas are associated with changes in overall water balance, organic matter, nutrient 
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inputs and outputs, and exposure of soils to water and wind erosion. Conventional cropping 

methods cause a breakdown in soil structure, leading to compaction, erosion, and higher soil 

salinity (Wei et al., 2014). In January 1988, during the National Workshop on Soil Quality, 

Canadian scientists established a measure to reduce and mitigate soil degradation and improve 

productivity (Acton & Gregorich, 1995). As a result, Agriculture and Agri-Food Canada 

established plans to monitor and improve farm practices and create programmes to enhance soil 

organic matter and reduce erosion in Manitoba, Saskatchewan, Alberta, and some parts of 

Northern Ontario (Agriculture and Agri-Food Canada, 2017).  

Soil quality and soil health are modern terms that are used interchangeably (Acton & 

Gregorich, 1995; Braimoh & Vlek, 2008; Moebius-Clune et al., 2017). Some scientists prefer the 

term ‘soil quality,’ whereas others prefer the term ‘soil health,’which considers soil ecological 

services (Janzen et al., 2021; Karlen et al., 2021, pp. 24–37; Lehmann et al., 2020). Like human 

health, soil health gives an overall picture of the status of the soil. If a soil becomes degraded, 

more energy, money, and chemicals are needed to produce food, and it may degrade further 

(Acton and Gregorich, 1995). Soil quality is “the capacity of a soil to function within ecosystem 

boundaries to sustain biological productivity, maintain environmental quality, and promote plant 

and animal health” (Doran & Parkin, 1994). On the other hand, Agriculture and Agri-food 

Canada define soil health as “its ability to support crop growth without becoming degraded or 

otherwise harming the environment” (Acton and Gregorich, 1995). According to the Soil Science 

Society of America committee, “soil health is the continued capacity of a soil to function under 

natural or a managed ecosystem to sustain plant, animals, and humans, maintaining or enhancing 

water and air quality” (Karlen et al., 1997). The concept of soil health is related to sustainability 

and management, which can sustain the life of living organisms (plants, animals, and humans), 
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and preserve the soil for future generations (USDA NRCS, 2018a). Good soil health is crucial 

for humanity’s survival; sustained, productive, and environmental quality depends on integrating 

physical, chemical, and biological soil processes that are components of soil health (Moebius-

Clune et al., 2017). In addition, the soil health concept is linked to feed and food quality and how 

it nurtures all organisms. 

 Understanding physical, chemical, and biological components of soil is essential to 

understanding soil processes (OMAFRA, 2016). Soil functions related to agriculture in terms of 

production and environmental quality include physical, chemical, and biological properties that 

promote plant growth, improve water storage, allow infiltration, sequester carbon, maintain 

nutrient cycles, detoxify dangerous chemicals, and control diseases, pests, and weeds to support 

the production of food, fibre, and fuel (Braimoh & Vlek, 2008; Moebius-Clune et al., 2017). 

Overall, soil health initiatives have evolved from the physical, biochemical assessment to 

molecular soil metrics (Bünemann et al., 2018). New advances in molecular techniques such as 

the quantitative PCR (qPCR) assays of functional and taxonomic communities allow a new 

understanding of soil functions. Functional classes include identification of taxonomic 

classification of bacteria, fungi, archaea, carbon cycling, nitrogen cycling, and phosphorous 

mineralization that comply with specific functions such as polyphenolic decomposition, 

breakdown of oligosaccharides, cellulose decomposition, nitrogen mineralization, nitrification, 

ammonification, and denitrification, as well as the C-P bond cleave, a co-factor in gluconic acid 

production and phosphoester and anhydride bond dephosphorylation (Nannipieri et al., 2014).    

Having healthy soil means having healthy biota with many soil organisms that sustain soil 

ecological functions. The critical component of soil health is a high range of microbial diversity 

that sustains soil ecological functions (Khatoon et al., 2020). 
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 According to the USDA NRCS (2018), soil has inherent and dynamic qualities. Inherent 

soil quality is related to the origin of the soil and its natural ability to function (e.g., clayey soils 

drain more slowly than sandy soils, while deep soils have more roots than shallow soils). These 

fundamental characteristics are almost permanent and can change only with geologic time, so 

they cannot be changed easily by human intervention (Dick, 2018). In comparison, dynamic soil 

quality defines how soil changes according to soil management practices and land use over a 

decadal time scales, and how these in turn affect soil organic carbon, water holding capacity, soil 

structure, and nutrient retention (Moebius-Clune et al., 2017). Soil health indicators related to 

soil functions can evaluate the status of soil health affected by management or climate change 

(Allen et al., 2011). A soil health assessment identifies the disturbances and stresses that soils 

experience and assesses soil resilience. A soil health assessment should identify not only the 

quality, but also influence the implementation of available management practices (Schjonning et 

al., 2004). Soil health metrics are selected by identifying constraints to proper soil functioning 

and defining management goals for agricultural production (USDA NRCS, 2018b).  

Soil evolution is a continual creation and destruction at all scales and may progress, stay 

the same, or retrogress, depending on the environmental circumstances. This dissertion uses a 

chronosequence approach, involving space-for-time substitutions to assess soil development 

considering time since conversion from forest to agriculture. A chronosequence is a set of sites 

formed from the same parental material or substrate that differ in the time since they were 

formed, and is a tool for knowing soil evolution where past events are registered in the soil 

profile, although not all the events are registered (Huggett, 1998). 

Chronosequence studies depend on the temporal scale of factors or process of interest, 

and the lifespan of dominant factors. It could be a change in soil development or pedogenesis 
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over decades to millions of years in many landscapes (Huggett, 1998), or it could be a change in 

microbial succession in soil over short periods from just a few days to weeks or years (Bardgett 

& Walker, 2004). Therefore, a soil chronosequence helps to test two pedogenic theories, 

evolutionary vs. formation. Evolutionary soil development theory considers the inconstancy of 

the environmental phenomena and the multidirectional change and multiple steady changes as 

part of the non-linear dynamics. Therefore, in the dynamic system, there are additions, losses, 

transfers, and transformation of materials into the system, examples being additions of soil 

organic material (SOM), losses of soluble salts and carbonates, transfers of humus and 

sesquioxides, and transformation of mineral from primary elements to secondary elements 

(Simonson, 1959). The nature and amount of SOM depend upon the additions, transformation, 

and transfers from the past until the present, which is governed by the climate, the nature of flora 

and fauna, and the length of time for soil weathering. Two properties are part of the non-linear 

dynamic soil system: 1) the stable-periodic behaviour and, 2) the chaotic behaviour and both 

depend upon internal conditions and external forces. In addition, both properties may display 

self-organizing characteristics involving changes from spatially uniform (undifferentiated) to a 

non-uniform (differentiated or segregated) state in response to non-linear dynamic instability.   

Soil formation theory posits that soil formation is progressive development under state 

factors until the soil reaches its equilibrium (mature soils) in a new environmental condition 

(Jenny, 1941). The soil formation theory porports that the nature and rate of the pedogenic 

process are the results of the interaction of five soil forming factors: parental material, climate, 

organisms, topography, and time. Most chronosequence studies refer to this theory. Equation 1 

shows the soil formation factors as a functional equation where soil is a function of the five soil 

forming factors:   
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Soil= f[parent material,climate,living organisms,topography,time]   [Eq 1] 

However, studies indicate that human activities have altered soil formation with positive and 

negative impacts on the soil (Bidwell & Hole, 1965; Paul, 2014). Therefore, the anthropogenic 

factor should be considered as the sixth element in soil formation theory. The anthropogenic or 

human soil formation factor has been considered since 1964 (Bidwell & Hole, 1965). The human 

factor has affected the natural process of biotic and abiotic elements in the soil by accelerating 

changes, and this factor can shape the physical and chemical properties of the soil environment 

just as much or even more than the other soil forming factors (Arnold et al., 1990; Dudal, 2005). 

A chronosequence is the most appropriate single, cycling, parrallel, initial convergence or 

continued convergence pathway, in which short interchages in permanent vegetation is analyzed, 

over 1 – 100 years, or in long term and retrospectrive searching for explanations for soil 

formation. In this regard, the fact that short-term changes in biological factors, and longer-term 

soil and vegetation development are linked and predictable, makes the chronosequence approach 

a reasonable tool to intrepret changes at different temporal scales (Walker et al., 2010). 

 This dissertation investigates soil health metrics of soil function through three interrelated 

research projects, all of which assess converted forest with forest references adjacent to farms in 

the Thunder Bay district of Northern Ontario. Chapter 2 determines the impact of land 

conversion from boreal forest to agriculture on soil health indicators. This study was published in 

the Canadian Journal of Soil Science (Benalcazar et al., 2022). This chapter uses the 

Comprehensive Assessment for soil health (CASH) framework to integrate indicators into a 

score to evaluate land conversion effects. In Chapter 3, predictive soil health indicators across a 

gradient from newly converted to long converted agricultural in boreal soils identifies the most 

influential soil health carbon indicators from the CASH overall score. In Chapter 4, the impact of 
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land conversion from boreal forest to agriculture using microbial community functional capacity 

(qPCR) and soil sequencing by operational taxonomic units. This study, which will be submitted 

for publication in the journal Agronomy for Sustainable Development, characterizes soil 

community diversity, abundance and functional genes by quantitative qPCR and soil sequencing. 

Each chapter is written as independent work with relevant background literature introducing 

prior methods and results, containing tables and figures to illustrate the works.   
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CHAPTER 2 THE IMPACT OF LAND CONVERSION FROM BOREAL FOREST TO 

AGRICULTURE ON SOIL HEALTH INDICATORS1  

 

2.1 ABSTRACT 

Climate change is creating opportunities for agricultural expansion northward into the 

boreal forest. Converting forested land to agricultural land generally results in significant losses 

of organic matter, which can impact soil health (SH). The objectives of this study were to assess 

the effects of land conversion on indicators of SH and to use the Comprehensive Assessment for 

Soil Health (CASH) framework to integrate measures of these indicators into a score to evaluate 

land conversion effects. Total carbon and nitrogen were also measured in this study. Soils (0-5 

cm and 5-15 cm) were collected from six dairy farms near Thunder Bay, ON, that included a 

mature forest, a field converted from forest to agriculture <10 years ago and a field converted 

from forest to agriculture >50 years ago. Land conversion resulted in significant declines in 

permanganate oxidizable carbon, wet aggregate stability, soil respiration, and concentrations of 

organic matter, ACE protein, total nitrogen and total carbon. Lower CASH scores in the soils 

converted to agriculture are interpreted to represent a decline in soil health but the scores, along 

with soil organic matter concentrations, remain high (CASH=80; OM=6%). There was no effect 

of time since conversion, suggesting that any degradation to soil health happens quickly and is 

closely tied to declines in soil organic matter.  

 

  

 

 

1 This chapter is a published paper in the Canadian Journal of Soil Science, 87(2), 403–415. 
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2.2 INTRODUCTION 

Changes in climate are creating opportunities for agricultural expansion northward into the 

boreal forest, which will require the conversion of scrub brush and forest to agricultural land 

(King et al., 2018; Unc et al., 2021; Bahadur et al., 2021). Land clearing removes the forest 

canopy, increasing soil temperatures and altering soil moisture, which favors the decomposition 

of soil organic matter (SOM) and the release of carbon and nutrients (Houghton, 1995; Wei et 

al., 2014). The significant losses of SOM documented after land conversion are often rapid 

because decomposition is occurring at a faster rate than organic matter is being returned to the 

soil and practices, such as tillage, destroy and disrupt the formation of aggregates. In Eastern 

Canada, land clearing to support agriculture has resulted in a 22 % decrease in soil carbon 

compared to uncleared adjacent areas (Angers et al., 1995) and in boreal regions, soil organic 

carbon stocks have decreased approximately 31 % where conversion has occurred (Wei et al., 

2014).  

In addition to being a storehouse of carbon and nutrients, SOM contributes to the 

maintenance of soil structure, water holding capacity, and a diverse microbial community (Wall 

et al., 2012; Cano et al., 2018). Significant losses of SOM are synonymous with soil degradation 

(e.g., Matson et al. 1999) and the deterioration of the soil’s ability to naturally support the needs 

of humans, plants and animals (e.g., Karlen et al. 1997). Soil health has been defined by many 

but is inherently a metaphor that cannot be fully measured directly (Janzen et al. 2021). 

However, soil health assessments are useful tools to examine how land management practices are 

impacting soil functions in time and space beyond the typical chemical properties used to 

describe soil fertility (Karlen et al., 1997).  
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Soil health assessments, such as the Comprehensive Assessment of Soil Health (CASH), 

integrate measurements of physical, chemical and biological properties of soils that are 

indicators of soil functions. CASH produces an overall score for a soil, along with scores for the 

individual indicators, that have been used to evaluate the effects of land management practices 

on soil functioning. Assessing soil health over time is viewed as being an indicator of sustainable 

management (Karlen et al., 1997) and the goal of the CASH score is to identify constraints to 

production at the site level to help increase land productivity while minimizing environmental 

impacts (Idowu et al., 2009). CASH was developed using soils and agroecosystems in the 

northeastern United States but has been used outside of the area, often with an assessment of the 

sensitivity of the measured indicators to the management practices of interest (e.g., Congreves et 

al., 2015).  

In this study, we evaluated the effect of land conversion on soil physical, chemical and 

biological indicators using the CASH framework in two agricultural areas near Thunder Bay, 

Ontario. Soils were collected from forests, recently converted fields (<10 y agriculture) and 

established agricultural fields (>50 y agriculture) in the Murillo and Slate River areas. We 

hypothesize that: 1. the forests will have the highest SH scores and that land clearing and 

conversion will result in a decline in SH scores and detrimental changes in soil health indicators, 

2. changes will be greatest in the >50 y agriculture sites, and 3. changes will be most pronounced   

near the soil surface.  
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2.3 MATERIALS AND METHODS 

2.3.1 Study area and soil sampling 

 Six farms in the Thunder Bay area (45° 31' N--48° 17' N, 89° 30' W--89° 22' W; Figure 

2.1) were sampled between July and August 2019 with 3 farms in the Murillo area and 3 farms in 

the Slate River area. Farmer participation was initiated through discussions at a rotational 

grazing workshop and extension work at the Lakehead University Agricultural Research Station. 

All farms are dairy operations and tile drained. Farmers use a combination of manure and 

mineral fertilizer at recommended rates to meet crop requirements and conservation tillage. The 

common N fertilizer included a blend of urea, ammonium sulphate, monoammonium phosphate, 

muriate of potash and zinc sulphate. The crop rotation for the region is alfalfa (Medicago sativa) 

, silage corn (Zea mays) , barley (Hordeum vulgare), or winter wheat (Triticum aestivum) Table 

(S5) . Each farm operation included a mature mixed-wood forest, fields that had been cultivated 

less than 10 years ago(<10 y agriculture), and fields that had been cultivated more than 50 years 

ago (>50 y agriculture).  

 The Murillo area is part of an end moraine, consisting of large deposits of till and 

boulders, with minor inclusions of water-laid alluvial  silt, sand, and gravel deposited by glacial 

streams. End moraine layers include unsorted and unstratified materials of varying sizes and can 

both underlie and overlie sequences of layered silt, sand, and gravel. Also, end moraine water 

tables are generally low and have variable permeability and internal drainage, plus low 

compressibility and high bearing strength (Mollard & Mollard, 1983). The Slate River area is 

part of a glaciolacustrine plain consisting of varved and massive, fine-grained material deposited 

in glacial lakes. Amounts of clay, silt, and sand vary depending on basin and depth. Usually, 
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Figure 2.1. Murillo and Slate River areas and sample design located in the Thunder Bay area in Northern Ontario-Canada (base map source Ontario Ministry of Natural Resources 
and Forestry).   
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glaciolacustrine deposits consist of clay and silt with high water retention capacity, low 

permeability, and poor internal drainage. The Slate River area soils generally have low bearing 

strength and moderate to high compressibility (Mollard & Mollard, 1983). 

Soils were collected using a soil split-core sampler (AMS Soil Samplers, Inc., American 

Falls, Idaho) at five locations in each cropped field and forest (at each corner and in the center). 

At each location, a total of three subsamples were collected to 15 cm in the mineral soil, divided 

by depth (0-5 and 5-15-cm) (Malone et al., 2009; Oertel et al., 2016) and composited. Forest 

soils samples were taken after removing the O horizon, which was largely plant litter. All 

samples were transported in a cooler to the laboratory at Lakehead University where they were 

air-dried and passed through an 8-mm and 2-mm sieve, as recommended by the CASH 

framework (Moebius-Clune et al., 2017). From each composite sample, a 1 L volume of soil was 

shipped to the Cornell Soil Health Laboratory in Ithaca, NY, and the USDA Forest Service 

Northern Research Station in Grand Rapids, MN, for analysis.  

2.3.2 Laboratory analyses 

2.3.2.1 Physical soil health indicators   

The physical soil indicators measured in this study were texture, wet aggregate stability 

(WAS), and surface and subsurface penetration resistance. Texture was assessed at Cornell using 

the Kettler method (Kettler et al., 2001) to determine particle size distribution by sieving and 

sedimentation. WAS was assessed at Cornell using a rainfall simulator to measure the soil 

aggregate's resistance to disaggregation with moisture and raindrop impact. A force of 0.5 J was 

applied for 5 min to soils in a sieve that contained a known weight of soil aggregates ranging in 

size from 0.25 to 2.00 mm. The Cornell rainfall simulator delivers 12.5 mm of water in 5 min 

(Moebius et al., 2007). Using the Sjoerd (2002) procedure, penetration resistance was measured 
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in the field over the 0-15 cm depth (surface) and 15-30 cm (subsurface) depth using a Dickey-

John penetrometer.  

2.3.2.2 Chemical soil health indicators    

The chemical soil properties measured in this study were pH, phosphorus (P), potassium 

(K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), total C and total N. All the 

measurements were completed at the USDA Forest Service Northern Research Station in Grand 

Rapids, MN. Soil pH was measured in a suspension of two parts water to one part soil 

determined by a Lignin pH robot (LIGNIN LLC) (Moebius-Clune et al., 2017). Phosphorus, K, 

Mg, Fe, Mn, and Zn were extracted using a modified Morgan's solution, an ammonium acetate 

plus acetic acid solution, buffered at pH 4.8. The extracted slurry was filtered through filter paper 

and analyzed with an inductively coupled plasma emission spectrometer (ICP Arcos, Spectro 

Analytical Instruments, Kleve, Germany; Moebius-Clune et al., 2017). Total N and total C were 

analyzed using 0.5 g of soil combusted in a LECO CHN 628 Series total elemental analyzer 

(LECO Corporation, St. Joseph, Michigan), using the CHN1 (stock) method, at a temperature of 

950°C in the furnace, and 850°C after burned. 

2.3.2.3 Biological soil health indicators  

The biological soil properties in this study included OM, ACE-Protein, soil respiration 

(Resp), and permanganate oxidizable C (POXC) and were measured at Cornell. OM was 

determined by using loss on ignition (Broadbent, 1965). Ten grams of soil were weighed and 

heated to 500°C in a furnace. The exposure to higher temperature removed the carbonaceous 

material while retaining mineral materials in the sample. The resulting difference loss is the OM. 

The Autoclave Citrate Extractable (ACE) Protein Index, adapted from Wright and Upadhyaya 

(1996), was equivalent to ACE-Protein in the OM (Moebius-Clune et al., 2017). Three grams of 
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soil were weighed and placed in a test tube with 24 mL of extractable sodium (0.02 M, pH 7), 

then stirred for 5 min at 180 rpm and placed in the autoclave at 121°C and 14.50 psi above 

atmospheric pressure for 30 min. Next, 2 mL of extract was clarified by centrifuging at 10,000 

rpm to remove soil particles. A small subsample of this clarified solution was used in a standard 

colorimetric protein quantification assay (Bicinchonic Acid Assay), and the results were 

compared to a serum albumin standard curve of soil protein, using a BioTek (Winooski, 

Vermont) spectrophotometric plate reader (Moebius-Clune et al., 2017).  

Soil respiration is a measure of microbial community activity and an indicator of diverse 

soil functions, such as nutrient transformation, mineralization and solubilization (Krishnan et al., 

2020). Microbial activity also contributes to stabilizing soil aggregates, facilitating soil aeration, 

infiltration and carbon sequestration (Moebius-Clune et al., 2017). The heterotrophic soil 

respiration method is adapted from Zibilske (1994) and indicates the microbial metabolic activity 

of the soil (Allen et al., 2011). The laboratory methodology quantifies the CO2 released from a 

re-wetted air-dried soil after four days. Twenty grams of air-dried soil were weighed in an 

aluminum boat with perforations, and the boat was placed over two small filter papers in a glass 

jar. A pipette trap filled with 9 mL of 0.5M KOH was placed into the jar to trap the CO2 during 

the four days of incubation. Using a pipette, distilled water (7.5 mL) was added to the jar to 

rewet the soil sample so that capillary action could raise water into the soil. The jars were then 

sealed for four days at room temperature of 23.5oC. The CO2 respiration measurements were 

determined by observing the electrical conductivity in the KOH trap with a WTW 

ProfiLineCond 3310 electrical conductivity meter. Greater CO2 indicates a more active 

microbial community in the soil (Moebius-Clune et al., 2017). Permanganate oxidizable C, here 

described as POXC, is a small part of the OM pool that is readily available as a food source for 



 

19 

soil microbes (Moebius-Clune et al., 2017); it is also known as the labile fraction of soil C (Weil 

et al., 2003). POXC is a function of the rate at which the soil reacts with dilute potassium 

permanganate (KMnO4; Weil et al., 2003). A hand-held colorimeter was used to determine the 

absorbance of the soil potassium permanganate solution at 550 nm. The colorimetry reading has 

an inverse linear relationship with POXC.  

2.3.2.4 Overall soil health score  

The measured biological, chemical and physical soil properties were integrated using the 

CASH framework to calculate a SH score for each category of conversion on each farm 

(Andrews et al., 2004). The SH score is calculated on a scale of 0-100 and scores are interpreted 

as very low (<40), low (40-55), medium (55-70), high (70-85), and very high (>85) (Moebius-

Clune et al., 2017). Soil health scores were calculated for both soil depths, acknowledging that 

the framework was designed to represent soil health in the top 0-15 cm of soil. 

2.3.3 Statistical analysis 

A Type III marginal linear mixed effects model was used to determine if the soil health 

indicators and scores were affected by land conversion, soil depth  and if there was an interaction 

effect. Fixed effects included time since conversion and soil depth. In the case of surface and 

subsurface resistance, the fixed effect was time since conversion. Time since conversion nested 

in farm was included a random effect for all indicators. Post-hoc examinations of significant 

conversion effects were conducted using orthogonal contrasts to determine if 1. the forest soils 

differed from the agricultural soils and 2. if there was an effect of time since conversion on the 

measured indicators and scores. Pearson correlations coefficients for the physical, biological, and 

chemical indicators were represented using the full dataset. All analyses were conducted using 

SPSS 25 (IBM Corp, 2019). Data are represented as means with standard errors. 
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2.4 RESULTS  

The concentration of Mg (589 ± 323 mg kg-1), and proportions of silt and clay in the 

soils did not differ significantly with time since conversion or soil depth (p>0.05; Table S1). The 

proportion of sand in the soil did not differ significantly with time since conversion (p<0.05; 

Table S1) but there was a significantly greater proportion of sand in the 5-15 cm depth interval 

(24%) compared to  0-5 cm (20%) (p<0.05; Table S1). Regardless of the subtle differences in 

sand content, soils in the area have a silt loam texture [sand (22% ± 21%); silt (53% ± 16%); clay 

(25% ± 11%)]. There was a significant land conversion by depth interaction effect for WAS, 

OM, ACE-Protein, Resp, TN and TC (p<0.05; Table S1). In the 5-15 cm depth, there was no 

effect of land conversion on any of these indicators (p>0.05; Table S2). In the 0-5 cm soils, land 

conversion had a significant effect on OM, ACE-Protein, Resp, TN and TC (p<0.05); the effect 

on WAS was only significant at p<0.10 (Table S2). The forest soils (0-5 cm) had significantly 

greater WAS (137%), OM (210%), ACE-Protein (192 %), Resp (159%), TN (190%), and TC 

(220%) than the agricultural soils and there was no difference in the time since conversion on 

these indicators (Figure 2.2-2.3).  

 Concentrations of POXC and P, and overall CASH scores were significantly affected by 

land conversion irrespective of depth (p<0.05; Table S1) and were consistently higher in the 

forest compared to the agricultural soils (Figure 2.4). Time since conversion had no effect on 

concentrations of P and POXC, or CASH scores. 
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Figure 2.2. Organic matter (A), wet aggregate stability (B), soil respiration (C), and ACE-Protein concentrations (D) in mineral 
soils (0-5 cm) collected at forest and <10 y and >50 y agricultural sites. Bars are means +/- standard error. Significant differences 
(p<0.05) are denoted by different letters.  

 

Figure 2.3. Total C (A) and total N (B) in mineral soils (0-5 cm) collected at forest sites and <10 y and >50 y agricultural sites. 
Bars are means +/- standard error. Significant differences (p<0.05) are denoted by different letters.  
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Figure 2.4. Concentrations of P (A), POXC (B) and CASH scores (C) in mineral soils (0-15 cm) collected at forest sites and <10 

y and >50 y agricultural sites. Bars are means +/- standard error. Significant differences (p<0.05) are denoted by different letters.  

 

 Pearson product-moment correlation coefficients were calculated for the indicators to 

create a correlation matrix (Table S4). Of the 171 pairs, only 54 were significantly correlated to 

each other (p<0.05) and strong correlations (r>0.50) were observed for only 28 pairs. The 

majority (24) of these pairs were observed between WAS, Mn, TN, TC, OM, ACE-Protein , 

Resp and POXC. 

2.5 DISCUSSION 

Land conversion resulted in a degradation of soil health, as indicated by the changes in 

the indicators and overall scores but the changes were largely in the surface (0-5 cm) and 

occurred within the first 10 years following conversion. Acton & Gregorich (1995) reported that 

between 15-30 % of soil C stocks are lost after the first 10 years following conversion from 

forest to agriculture in Canada, while Guo & Gifford (2002) indicated that conversion from 

native forest to cropland declined soil carbon stocks by 42%. Other data suggest that during the 

first 30 years after the conversion to agriculture, 30-35% of the total soil carbon stored is lost in 

the top 7 cm, and even after 30 years these soils continue to be sources of greenhouse gasses 

(Oertel et al., 2016). Organic matter declined from 144 mg g-1 in the forest to 69 mg g-1 in the 
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agricultural soils. Declines were also evident in the 5-15 cm depth interval (85 to 58 mg g-1), but 

the difference was not statistically significant.   

 The loss of OM is consistent with declines in aboveground and belowground vegetation 

inputs that accompany most conversions to agriculture (Moebius-Clune et al., 2011). In a forest,  

belowground dead roots are the primary sources of soil C (Guo, Wang, & Gifford, 2007), and 

rapid declines of OM are partly attributable to the loss of OM inputs and partly due to the 

increased rates of decomposition of existing OM. This is evident in the decline in light fraction 

SOM (Post & Kwon, 2000). Also, tillage breaks down soil macroaggregates exposing organo-

mineral surfaces and gives decomposers  access to intra-aggregate carbon that lead to high rates 

of decomposition when combined with increases in soil temperature with forest clearing 

(Pennock & Van Kessel, 1997). Despite these declines, SOM concentrations are higher than in 

southern Ontario, where SOM concentrations range from 16 to 43 mg g-1 in agricultural soils 

(Congreves et al., 2015).  

Organic matter influences many soil functions, including the number and species of 

microorganisms, nutrient cycling, soil structure, soil aggregation, water storage, and infiltration 

rates (Cano et al., 2018; King et al., 2020; Wall et al., 2012). In this study OM concentrations 

were highly correlated with WAS, Resp, and concentrations of total N, total C, ACE-Protein, and 

POXC, which is consistent with Graham et al., (2021) and Fine et al. (2017). Therefore, it is not 

surprising that all these indicators also declined significantly with land conversion. Wet 

aggregate stability is an indicator of the soil’s ability to resist erosion. Wet aggregate stability 

declined by 27% in the 0-5 cm depth interval with land conversion. Graham et al., (2021) 

reported declines in WAS of 7 and 19% in grasslands converted to row crops using no-till and 

conventional tillage systems, respectively. Tillage breaks up aggregates and exposes OM to 
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oxygen and microbial decomposition (Helfrich et al., 2006), and though there was no significant 

effect of long-term cultivation on WAS, it was lowest in the agricultural soils that were 

converted more than 50 years ago. Of note is that surface and subsurface hardness were not 

affected by land conversion, suggesting that the conservation tillage systems used in the area are 

not leading to significant soil compaction but that it may be affecting aggregate stability. Land 

conversion from forest to agriculture led to significant increases in soil P concentrations (~ 

59%). These increases are likely driven by organic and inorganic fertilizer inputs but may also 

reflect the release and retention of P from the rapid decomposition of OM. No other chemical 

indicators (i.e. pH, K, Fe, Mg, Mn, Zn) were significantly affected by land conversion.  

 Most of the significant effects of land conversion were detected in the biological soil 

health indicators. Soil proteins are the largest pool of organic N (Weintraub and Schimel, 2005) 

and the ACE-Protein measurement used in this study is an indicator of potentially available N 

(Hurisso et al., 2018). ACE-Protein declined by 48% in the near surface (0-5 cm) with land 

conversion, while total N declined by 38%. Similarly, POXC is used as an indicator of labile 

carbon availability and is viewed as being a highly sensitive indicator of management induced 

change. It only declined by 18% while total C declined by 46%. This result may suggest that 

losses of SOM may be more concentrated in the stable fraction of the SOM pool and that the 

microbial community may be mining SOM stores for N, which is typically limiting in the soil.  

Soil respiration (Resp) was also lower in the < 10 y agricultural soils than in the forest 

soils and was most strongly correlated with total N, consistent with the tight coupling between 

the N and C cycles. Other studies show that continued loss in OM leads to lower Resp over time 

(Moebius-Clune et al., 2016; Yiqi & Zhou, 2010) but this study indicated that Resp was 

comparable between the forest soils and sites that had been in agriculture more than 50 years 
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ago. Litter removal and cultivation usually decreased soil respiration and increased with input 

additions (Jonasson, Castro, & Michelsen, 2004), with the influences of an abiotic process such 

as temperature, precipitation, and evapotranspiration (Yiqi & Zhou, 2010, p. 105).  

2.5.1 CASH scores and the sensitivity of indicators 

CASH scores were significantly higher in the forest (86) than in the agricultural sites (79) 

but there was no significant effect of time since conversion suggesting that any deterioration to 

soil health happened quickly but then stabilized. In all cases these scores are very high to high. 

None of the chemical indicators showed significant changes with land conversion. CASH scores 

were developed for agricultural soils (Moebius-Clune et al., 2016); however, its application in 

non-agricultural soil also provides an overview of forest sustainability linked to soil health. The 

relevance of the soil indicators in undisturbed soil provides an indicator of soil ecosystem 

integrity and the ecological functions provided by those ecosystems (FAO, 2020). In addition, 

determining a benchmark for soil health by comparing forests  and agricultural fields can be used 

to support decision-making to improve soil health (Maharjan et al., 2020).  

2.6 CONCLUSIONS 

Increased knowledge of land-use change after the conversion from forest to agriculture 

on soil health indicators is important to understand how soil functions. Our study found that land 

conversion has detrimental effects on physical and biological indicators of soil health and CASH 

scores. Most of these differences were detected at the surface (0-5 cm). Land conversion 

generally resulted in declines in soil health indicators and an overall decline in CASH scores. 

There were no negative effects of land conversion on the suite of chemical indicators measured 

in this study, aside from P, but there were detrimental effects on soil physical and biological 

indicators that are closely tied to declines in SOM. Most of the differences were detected at the 
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surface (0-5 cm) but we acknowledge that this may not be the case for agricultural areas with 

conventional tillage systems.  
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CHAPTER 3  PREDICTIVE SOIL HEALTH INDICATORS ACROSS A GRADIENT 

FROM FORESTS AND NEWLY CONVERTED TO LONG-CONVERTED 

AGRICULTURAL BOREAL SOILS  

 

3.1 ABSTRACT 

Changing climate offers new opportunities to expand agriculture in northern latitudes and 

understanding the impacts of land conversion from forests to agriculture on soil health is critical 

for soil disturbance impacts. One method is to assess soil disturbance impacts using soil health 

indicators that relate to soil functions. Soil health indicators have been used extensively in 

predominately long-term agricultural settings but rarely following forest to agricultural 

conversion and are untested in northwestern Ontario boreal soils. One common soil health 

assessment method is the Comprehensive Assessment of Soil Health (CASH) framework. We 

found that many of the CASH indicators are highly correlated, so we optimized the number of 

indicators to a suite that reflect an efficient approach to assess boreal soil health. We evaluated 

16 soil health indicators, taking soil samples from two sites in the Thunder Bay region, at two 

depths (0-5 and 5-15 cm) and within four conversion categories, defined by time since 

agricultural conversion to dairy farm forage cropping (forest, <10 y agriculture, >10 to <50 y 

agriculture, and >50 y agriculture,). Indicators related to soil carbon were the most highly 

correlated. Biological soil health indicators (organic matter, soil respiration, soil protein and 

permanganate oxidizable C), physical indicators (wet aggregate stability and surface hardness) 

and one chemical indicator (Mg) were the most predictive indicators of overall soil health using 

the k-fold cross-validation analysis. The set of indicators defined by our study offers the most 

efficient suite for understanding boreal soil health impacts following short (<10 y agriculture)- 

and long-term (>50 y agriculture) conversion of forests to agriculture.   
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3.2 INTRODUCTION 

New opportunities to expand agriculture into northern latitudes has created a need to 

evaluate soil disturbance for short and long-term agricultural sustainability in the North. 

Changing climate has prompted policies that support land-use conversion to expand food 

production in Canada’s north, despite limited understanding of the impacts of land conversion on 

soil disturbance indicators (Altdorff et al., 2021). Although there is no universal indicator for 

evaluating soil functions, using a combination of metrics related to soil health is a common 

approach to assess soil disturbance (Doran & Parkin, 1994; Karlen et al., 2019; Lehmann et al., 

2020). An ongoing debate questions how we can most effectively evaluate soil health, given that 

indicators must be sufficiently sensitive to reflect management changes and history, yet not so 

sensitive (e.g., parent material, and precipitation regime), along with those of sampling logistics 

(Lazicki et al., 2021).  

Physical indicators (e.g., aggregate stability, water infiltration, and bulk density), 

chemical indicators (e.g., pH, and N, P, and K concentrations) and biological indicators (e.g., 

organic matter, active carbon, microbial biomass, and microbial activity) have been identified as 

reliable indicators of soil function (Allen, Singh, & Dalal, 2011; Andrews, Karlen, & 

Cambardella, 2004; Idowu et al., 2009; Wade et al., 2022). Other studies found that penetration 

resistance (physical indicator), soil respiration, ACE-Protein, and permanganate oxidizable C 

(biological indicators), and pH (chemical indicator) were the most responsive metrics of 

management and land-use changes (Doran & Parkin, 1994; Fine et al., 2017; Sadegh Askari & 

Holden, 2015).  

 There are soil health indicators that are more sensitive than others. For example,   short-

term evaluation from one season to another, could use soil respiration or POXC, while for 
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evaluation over 10-30 years, soil organic matter could be used. Having both evaluations is 

necessary to assess changes in soil functions related to land use conversion and changes in 

management practices (Andrews et al., 2004). Several soil health frameworks have been 

developed (Chu et al., 2019; Moebius-Clune et al., 2017; Nunes et al., 2021), and efforts are 

ongoing to standardize soil health assessment protocols for North America (Norris et al., 2020). 

Norris et al. (2020) developed a framework to identify widely applicable soil health indicators 

that are sensitive across management practices, soil inherent properties and their location. This 

framework has not yet been applied and does not account for recently converted boreal soils that 

provides unique characteristics to consider in evaluating soil health including climate, parent 

material, textural class, and management practices (Amsili et al., 2021; Congreves et al., 2015; 

Lehmann et al., 2020). Of significance to boreal soil health is that there is greater accumulation 

of organic matter compared to other soils due to low temperatures that reducing microbial 

decomposition (Gauthier et al., 2015; Group et al., 1998).  

To reduce redundancy and multicollinearity, minimum data sets (MDS) identify soil 

health indicators that are the most sensitive to change by identifying those indicators most 

influential on soil health scores (Yemefack et al., 2006). Several statistical models have been 

developed to obtain MDS using descriptive, univariate and multivariate analysis, factor analysis, 

regression analysis, and machine learning techniques (Askari & Holden, 2014; Chahal & Van 

Eerd, 2019b; DuPont et al., 2021; Kalcsits, & Kogan, 2021; Raiesi & Beheshti, 2014; Rekik et 

al., 2018; Yemefack et al., 2006; Wade et al., 2022).  

3.2.1 Previous research and hypotheses 

In a previous study using the Comprehensive Assessment of Soil Health (CASH) system, 

Benalcazar et al., (2022) reported that permanganate oxidizable C, wet aggregate stability, soil 
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respiration, organic matter, soil protein, total N and total C predicted soil health changes 

following conversion to agriculture in Thunder Bay- Ontario. Using the same study sites, our 

goal was to develop a MDS that are the best measures of the overall soil health scores across a 

forest to agricultural conversion gradient with time since conversion as a factor.  

Dairy crop systems dominate agriculture in the Thunder Bay region. Field that were 

converted from forest to agriculture more than fifty years ago had lower overall soil health scores 

than adjacent forests from 84.7/100 to 79.8/100 (Chapter 2). In fields <10 y since agricultural 

conversion, the overall soil health score was 76.7/100. In this paper, we will develop a MDS for 

across the conversion gradient including baseline forest conditions, on sites <10 y in agriculture, 

sites >10 to <50 y in agriculture, sites >50 y in agriculture, and among all agricultural sites 

combined. We hypothesize that carbon-related indicators will be the most influential on overall 

soil health scores due to SOM is a key indicator of soil health functions in boreal soils as well. 

To test this hypothesis, we applied the best subset regression model, using the overall soil health 

score to identify the variables most influenced by time since conversion to develop a MDS. We 

conducted a k-fold cross-validation analysis to identify the best suite of soil functional indicators 

across the gradient of time since conversion.  

3.3  MATERIALS AND METHODS 

3.3.1 Study area 

Northwestern Ontario is part of the Boreal Shield Ecozone with dominant soil orders that 

include podzols, brunisols, luvisols and organics (Schut et al., 2011). The climate is dry and 

warm in summer, cold and wet in winter, mostly covered by snow, and a short growing season 

with no snow cover from 6 to 8 months (Climate Atlas, 2019; Kishchuk et al., 2016). The 

Thunder Bay region has a mean annual temperature of 2.3 °C, annual precipitation of 726 mm, 
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and a frost-free season of 120.5 days (Climate Atlas, 2019). The altitude at Thunder Bay is about 

249 above msl and the region lies at around 48° 27' N latitude and 89° 27' W longitude. The 

region is part of a glaciolacustrine plain with fine-grained deposits laid down among ancient 

lakes.  

3.3.2 Soil sampling  

 All agricultural fields for this study have been under conventional dairy farm 

management, using tillage, synthetic fertilizer, fall and spring manure applications and rotations 

among alfalfa, forage corn, grain and forage barley and spring wheat (Benalcazar et al., 2022). 

We defined a total of 60 plots, with 16 samples from forest sites, 12 samples from <10 y 

agricultural sites, 16 samples from >50 y agricultural sites and 16 samples from sites >10 to <50 

y following forest to agriculture conversion (Figure 3.1). Soil samples were collected using a 

split-core sampler (AMS Soil sampler, Inc., American Falls, Idaho) at five locations in each 

agricultural field and forest area (at each corner and in the center). Three subsamples were 

collected down to 15 cm from the mineral soil at 0-5 and 5-15 cm depth and composited 

separately from each depth. In forest areas the forest floor O horizons were not sampled, so that 

upper soil layers across the conversion gradient were comparable. All soil samples were prepared 

at the Lakehead University soils laboratory by air drying and passing samples through 8-mm, 

then 2-mm sieves. Soil water content was standardized by oven-drying for 24 h at 105°C. 

Detailed protocols for the remaining procedures are available in Moebius-Clune et al. (2017).  

3.3.3 Measurement of soil health indicators  

Physical indicators included wet aggregate stability (WAS) and surface and subsurface 

hardness. Chemical indicators included pH and extractable P, K, Mg, Fe, Mn, and Zn. We also 

measured total C and total N. We used organic matter (OM), autoclaved-citrate extractable soil 
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protein (ACE-Protein), soil respiration (Resp) and active carbon (measured as permanganate 

oxidizable C or POXC) as biological indicators. We used the rain simulator to test wet aggregate 

stability, generating precipitation with a drop size of 0.6 mm in an adjustable Mariotte tube that 

controls the hydraulic pressure. A thin layer of soil previously screened at 0.25 mm was placed 

on a sieve of the same size. After the simulated rainfall event, the materials that fall through, 

versus the materials that remain on the sieve, are collected, dried and weighed, and the fraction 

of stable soil aggregate is calculated as the difference in weight between the stable aggregates 

that remain on the sieve (Moebius-Clune et al., 2017). Surface hardness (SurH) and subsurface 

hardness (SubH) were measured with a standard probe inserted into the soil from 0-15 cm and 

15-30 cm (Sjoerd W, 2002).   

Soil pH was measured at a ratio of 1:1 soil to water, and plant available soil macro- and 

micronutrients (P, K, Mg, Fe, Mn, and Zn) were measured using inductively coupled plasma 

optical emission spectrometry analysis (SPECTRO Analytical Instrument Inc.), after extraction 

with a modified Morgan solution (acetate plus acetic acid; pH 4.8). Organic matter was 

determined after oven drying at 105°C and weighing followed by ignition for 2 h in a muffle 

furnace at 500°C. The soil sample was then weighed again and the percentage of mass lost (i.e., 

loss on ignition) was calculated after weighing again (Moebius-Clune et al., 2017). Autoclave-

citrate extractable soil protein (ACE-Protein) was extracted from a 0.02-M subsample of sieved, 

air-dried soil with sodium citrate (pH 7), and the concentrated sample was run through a series of 

centrifuge and autoclave steps (Wright & Upadhyaya, 1996). The soil’s protein content was 

estimated using a bicinchoninic acid assay with a bovine serum albumin standard curve and a 

BioTek spectrophotometric plate reader. Soil respiration was measured in duplicate to improve 

the quantification of CO2 after a 4-day incubation using the methodology modified by Haney and 
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Haney (2010). Sieved soil was placed in glass vials with a KHO-based CO2 trap. After four days, 

the amount of CO2 was determined by measuring the solution’s electrical conductivity with an 

OrionTM DuraProbe and 4-Electrode Conductivity Cell. To account for headspace CO2 

corrections, glass vials with no soil as comparative blanks were also run. Active carbon (POXC) 

was estimated by measuring absorbance using a handheld spectrophotometer. A 2.5-g sieved 

subsample was mixed with 20 ml of 0.02M KMnO4 (pH 7.2) in duplicate. Total C and total N 

was estimated using the CASH framework. For that determination, 0.5 g of sieved soil were 

analyzed following complete combustion using a LECO CHN 628 analyzer and the CHN1 

method (LECO, 2020). The overall soil health score has an scale of 0-100 and score categories 

are defined as very high (>85), high (70-85), medium (55-70), low (40-55), and very low (<40).  

3.3.4 Statistical analysis 

The overall soil health score obtained using the CASH framework was used to apply a 

best subset regression (BSR). The BSR approach consists of testing all possible combinations of 

predictor variables and selecting the best model according to a criterion. In this case, our 

predictor variables were the 16 soil health indicators (inclusive of total C and N) and we selected 

the best model by the BSR exhaustive method, examining three subsets for each variable. We 

chose the optimal model using adjusted R2 (Miller, 2002) for the forest (A), <10 y agriculture 

(B), >10 y to <50 y agriculture (C), and >50 y agriculture (D) soil samples. In addition, all 
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Figure 3.1. Soil samples collection in Thunder Bay from Murillo and Slate River agricultural areas in Northern Ontario, Canada. Base map source Ontario Ministry of Natural 
Resources and Forestry).  
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agricultural areas were merged, creating an all agriculture (BCD) category, and finally a dataset 

merging all categories included forest (ABCD). We did not consider differences in depth 

intervals since we had identified no significant depth effect in a prior study using the same 

dataset (Benalcazar et al., 2022); therefore, the results were averaged over the levels of depths 

include in each category. 

 Our final step was to select a model based on the prediction errors computed on new test 

data using the k-fold cross-validation technique that splits out test data to evaluate a model 

(Gareth at al., 2013). These analyses were conducted using R software (R Core Team, 2020), 

specifically the “leap” package (Lumley, 2020). Best models of different sizes were selected by 

using the “nvmax” option, which defines the maximum number of predictors to incorporate in a 

model. For our initial analysis, “nvmax = 3” was the setting. This function will return models of 

up to the best three variables: the best 1-variable model, the best 2-variable model, and the best 

3-variable model. While this process offers simplicity for ease of interpretation, an optimal 

model with a more rigorous approach was also identified for confirmation. In this case, the k-

fold cross-validation technique (k =10) refers to the number of groups that a given sample is to 

be split into a new test data to evaluate model performance (Refaeilzadeh et al., 2009). The k-

fold cross-validation has a lower bias than other methods (Brownlee, 2018). The function “train” 

in the “caret” package in R software was used to identify the best optimal model (Kuhn, 2014). 

 

3.4 RESULTS 

In forest areas the CASH overall soil health score determined by Benalcazar et al. (2022) 

was 85.6/100 (Table 3.1). According to the BSR approach, the single variable that was most 

influential on the overall soil health score was total C (Table 3.2). Considering the best two-
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variable model, we found that respiration and subsurface hardness were the most predictive of 

overall health score. The best three-variable model was organic matter, Mg, and total C. In fields 

<10 y in agriculture, the overall soil health score was 76.9Table 3.1) with the BSR analysis 

identifying POXC as the best predictor of the overall soil health score. In the two-variable 

model, POXC and P were the best predictors, while ACE-Protein, K, and Mg were the best 

predictors in a three-variable model (Table 3.2). In fields >10 to <50 y since agricultural 

conversion, the overall CASH soil health score was 79.4 (Table 1). The best predictors were 

organic matter for a single-variable model, Zn and total N for a two-variable model, and wet 

aggregate stability, surface hardness and POXC for the three-variable BSR model (Table 3.2). In 

fields >50 y in agriculture the overall CASH soil health score was 79.4 (Table 1) and Mn was the 

best predictor of soil health score, while wet aggregate stability and surface hardness were in the 

best two-variable BSR model. In the three-variable model, the combination of respiration, wet 

aggregate stability and surface hardness was the most predictive (Table 3.2). 

 

Table 3.1 Overall soil health score for field samples by time since conversion (Benalcazar et al., 2022) including new scores for 
>10 y but <50 agriculture, combined scores for agriculture, and combined scores for all agriculture and forest.  

 

Forest = A, sites <10 y in agriculture = B, sites >10 to < 50 y 
agriculture = C, sites >50 y agriculture = D  

  

Time since conversion Overall soil health score 

A 85.6 

B 76.9 

C 79.4 

D 79.4 

BCD 79.3 

ABCD 80.6 
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Table 3.2 Best subset regression (BSR) model identified for forest, <10 y in agriculture, >10 to <50 y in agriculture, >50 y in 
agriculture, and all agriculture composite using the Comprehensive Assessment of Soil Health (CASH) framework as predictors 
of the overall health score. 

Time since 

conversion 
Vars 

R2 

adj 
WAS Sur_H Sub_H OM 

Ace-

Protein 
Resp POXC pH P K Mg Mn 

Zn Total 

C 

Total 

N 

Forest 

1 0.58                          *   

2 0.68     *     *                  

3 0.75       *             *    *   

< 10 y 

agriculture 

1 0.57             *                

2 0.75             *   *            

3 0.85         *         * *        

> 10 to< 50 

y agriculture 

1 0.61       *                      

2 0.77                       *   *  

3 0.87  * *        *                

> 50 y 

agriculture 

1 0.52                       *      

2 0.65 * *                          

3 0.74 * *       *                  

All 

agriculture  

1 0.46      *          

2 0.57  *    *          

3 0.61  *    *  *        

All dataset 

1 0.52      *          

2 0.66   *   *          

3 0.68   *   *  *        

± WAS, Wet aggregate stability; Sur_PR, Surface hardness; Sub_SPR, Subsurface hardness; OM, organic matter; Prot, ACE-

Protein; Resp, soil respiration; POXC, active carbon; Total C, total carbon; total nitrogen.  

 

With k-fold cross-validation, the optimal best model for the forest included organic 

matter and POXC; for <10 y in agriculture, the variables were ACE-Protein and Mg; for >10 to 

<50 y in agriculture, the best predictor was organic matter; and for >50 y in agriculture, surface 

hardness and wet aggregate stability were the best predictors. Finally, when all sites were 

combined, surface hardness and soil respiration were the best predictors of the overall soil health 
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score (Table 3.3, S6). To aseess how well our regresion models fits the dataset, we found that all 

agriculture dataset (BCD) had a mean square error (RMSE) of   4.5, while <10 y agriculture (B) 

had at RMSE of 498.0 (Table S7). 

 
Table 3.3 The most predictive indicators of soil health in boreal soils at the local level using k-fold cross-validation analysis.  

Soil 
indicators 

Soil function 
Categories  

References 

A B C D BDC ABCD 

OM 
Nutrient cycling/soil resistance/ soil 

resilience/water cycling/carbon 
sequestration/habitat provision * 

 

*     

(Allen et al., 2011; Lal, 2016, 2021; Lehmann et 
al., 2020) 

POXC 
crop production/water quality / climate 
control/human health/ habitat provision  

* 

 

     

(Allen et al., 2011; Brady & Weil, 2016; 
Lehmann et al., 2020; Reicosky, 2018, Lucas & 

Weil, 2021) 

ACE-Protein  crop production/ water quality/climate control   *      (Hurisso et al., 2018; Lehmann et al., 2020) 

Soil 
respiration 

crop production/ water quality/ climate 
control/human health       * * 

(Laganière, Paré, Bergeron, & Chen, 2012; 
Lehmann et al., 2020; Yiqi & Zhou, 2010) 

Aggregate 
stability 

crop production/water quality/climate control 
    *    

(Allen et al., 2011; Brady & Weil, 2016; 
Lehmann et al., 2020; Mikha & Wills, 2021) 

Hardness (0-
15 cm and 
15-30cm) 

crop production/water quality/habitat provision 

    * * * 

(A. S. Gregory et al., 2007; Lehmann et al., 
2020) 

Mg crop production/ water quality/human health 
  *         

(Jones Jr, 2012; Lehmann et al., 2020; Strawn, 
Bohn, & O’Connor, 2019) 

Forest = A, <10 y agriculture = B, >10 y to <50=C, >50 y agriculture =D 

 

3.5 DISCUSSION 

Soil disturbance associated with land conversion drives changes in biological, physical 

and chemical soil properties (Karlen et al., 2021). Of the 16 CASH soil health indicators 

analyzed, we found that seven indicators were the most predictive of overall soil health in the 

boreal soils of Thunder Bay- Ontario. Four biological indicators (organic matter, soil respiration, 

ACE-Protein, POXC), two physical indicators (wet aggregate stability and surface hardness) and 

one chemical indicator (Mg) were the best predictors of soil health, according to the k-fold cross-

validation optimal model. Models with a maximum of three variables with relatively high 

predictability are efficient in assessing soil health scores with minimum analyses. 
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After land conversion, soil organic matter belowground decreased from levels observed 

in intact forest soils. Tillage and conventional farm management practices accelerate soil organic 

matter decomposition (Guo & Gifford, 2002). In addition, environmental factors such as wind 

and runoff cause increasing soil erosion as vegetation cover decreases (Lal, 2009, 2016). Here 

and elsewhere, soil organic matter has been identified as a key indicator for evaluating soil health 

functions (Cantone & Schmidt, 2011; Lehmann et al., 2020). Several studies have shown a 

positive correlation between organic matter and other biological soil health indicators such as 

soil respiration, ACE-Protein and POXC (Amsili et al., 2021; Congreves et al., 2015; Nunes et 

al., 2021).  

Soil respiration, ACE-Protein, and POXC are usually used to detect seasonal changes 

(Nunes et al., 2018; van Es & Karlen, 2019), and they exhibit the same pattern as organic matter 

(Table 3.2). Soil respiration measures microbial metabolic activity, which releases labile carbon 

by mineralization (Zibilske, 1994). Soil respiration rates are generally a function of autotrophic 

and heterotrophic soil biota (Vargas et al., 2011), whose activity influences vital soil ecological 

functions. In concert with ongoing climate change, rates of soil organic matter turnover and 

mineralization are predicted to significantly increase in boreal soils. Therefore, determination of 

soil microbial community response to changes in temperature, moisture and aeration will become 

increasingly important for evaluating soil health (Hirsch et al., 2002; Laganière et al., 2012). In 

agricultural soils, soil respiration is an effective indicator because it increases when residues, 

amendments, reduced tillage, and increased crop diversity are implemented to agricultural fields 

(Amsili et al., 2021; NCRS, 2014). Also reduced disturbance like no-tillage and crop diversity 

increased soil respiration (Mitchell et al., 2017), stimulating microbial community activity 

(Moebius-Clune et al., 2017). 
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Active carbon (POXC), identified as a labile fraction of total organic carbon (Culman et 

al., 2012; NCRS, 2014a; Weil et al., 2003), is sensitive to management induced change in soil 

carbon by cultural practices such as tillage, crop rotation, cover crops, and is correlated with 

other indicators like wet aggregate stability, microbial biomass, and basal soil respiration (Lucas 

& Weil, 2021). Furthermore, POXC is an indicator of soil microbiology activity, itself related to 

a soil’s ability to decompose organic residues (Weil et al., 2003). Therefore, in boreal soils, 

active carbon could be an indicator used to predict changes to management practices where soil 

organic amendments might enhance soil functions (Weil et al., 2003). 

ACE-Protein contains much of the organically bound soil nitrogen. ACE-Protein 

becomes available in the soil solution as NH4
+ and NO3

- through mineralization leading to 

optimal moisture and temperature conditions for plant uptake (Gil-Sotres et al., 2005; Moebius-

Clune et al., 2017). ACE-Protein is related to several soil functions (Table 3.2), reflecting 

potential N supply for subsequent crop production, and it is negatively impacted by management 

practices like intensive tillage (Hurisso et al., 2018). In an agricultural context, the potential for 

organic matter mineralization can be evaluated with the C:N ratio that is adjusted with plant 

residues and manure application (Mullen, 2011). Wide C:N ratios can be indicative of greater 

rates of immobilization. When compared to other soils, boreal soils have wider C:N (Cleveland 

& Liptzin, 2007; Tipping, Somerville, & Luster, 2016). 

Wet soil aggregate stability has decreased since forest conversion to agriculture (Table 

3.2). Aggregate stability, the soil’s ability to resist dispersion and erosion, can be affected by 

tillage practices, exposing soil organic matter to oxidation and accelerated microbial 

decomposition (Helfrich et al., 2006). Tillage influences other hydrological functions that 

mediate soil water content, detention and transmission, soil organic matter and soil biota 



 

41 

(Reicosky, 2018). Evaluation of soil aggregate stability provides an indicator of C sequestration, 

revealing changes in the structure and composition of the microbial community, pore surface 

area, and soil development (Guo et al., 2020). In agricultural areas, increases in soil aggregation 

increase resilience to extreme weather conditions (Brady & Weil, 2016). They can be the best 

indicator of soil drainage and sufficient soil aeration (O’Neill et al., 2021). Surface and sub-

surface hardness are related to the degree of compaction and increases with heavy equipment 

operation. As a result of soil compaction, water and plant roots are restricted, impacting soil 

hydrological and ecological functions. Studies in the boreal region indicate that high surface 

hardness provides evidence of poor root system development and aeration, rendering crops more 

susceptible to disease. Soil infiltration, percolation and soil water content will change with 

increased precipitation rates and quantities associated with climate change in the boreal region 

(Climate Atlas, 2019). 

As an essential plant macronutrient, soil Mg can affect nutrient availability (Moebius-

Clune et al., 2017) and increased following conversion of forest to agriculture (Benalcazar et al., 

2022). Magnesium is positively correlated with total N, total C, respiration, and POXC in 

northwestern Ontario boreal soils (Benalcazar et al., 2022). Greater Mg can be explained by 

interactions between mineral soil ions and those of soil organic matter (Congreves et al., 2015), 

and may reflect soil pH changes after land conversion that enhance available Mg. Magnesium 

can be used in combination with other factors such as temperature, water availability and land 

use to determine carbon stock (Wiesmeier et al., 2019) which is likely to decrease following 

conversion of forests to agriculture. Across the gradient of age since land conversion and two 

scenarios, seven soil health indicators are found the most predictive of overall soil health scores 

on agricultural and forest areas in northwestern Ontario. Forest conversion to agriculture and 
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length of time in agriculture play an important role in overall soil health score. The important 

soil health variables in Thunder Bay- Ontario include organic matter, soil respiration, ACE-

Protein, active carbon, wet aggregate stability, surface hardness, and Mg, which together span 

the range of biological, physical, and chemical indicators. 

3.6 CONCLUSIONS 

Soil disturbance is an inevitable consequence of agricultural conversion from forests. 

After more than 50 years in boreal dairy farm systems, a region dominated by short growing 

seasons and long winters, the indicators most predictive of overall soil health score in 

northwestern Ontario are related to soil carbon. Our results have implications for agriculture 

beyond this region, suggesting a list of indicators that account for long- and short-term soil 

sustainability, including tracking the implications of climate change on soil health. This new set 

of variables is an example of a minimum dataset of soil health that could efficiently be used to 

monitor soil health with relatively high predictability. 
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CHAPTER 4 THE IMPACT OF LAND CONVERSION FROM BOREAL FOREST TO 

AGRICULTURE BY  ASSESSED MICROBIAL COMMUNITY FUNCTIONAL 

CAPACITY BY qPCR AND SOIL SEQUENCING BY OTU 2  

 

4.1 ABSTRACT 

Healthy soils result from a healthy ecosystem where microorganisms play an essential 

role. Climate trends suggest that new agricultural opportunities continuously arise in boreal soils, 

posing an urgent need to understand the impacts of land conversion to agriculture. The 

characterization of soil community diversity, abundance and functional genes by quantitative 

qPCR and soil sequencing offer metrics for assessing soil functional changes after land 

conversion. In this study, we sampled soil in a four-time series (forest, <10 y, >10 and <50 y, and 

>50 y in agriculture) and at two depths (0-5 and 5-15 cm). We assessed microbial community 

functional capacity by qPCR of key genes associated with C, N cycling and P mineralization and 

communities for archaeal, bacterial and fungal microorganisms. In addition, soil sequencing by 

the operational Taxonomic Unit (OTU), bacterial and fungal taxonomic abundance. We observed 

impacts on soil microbial abundance and composition. Microbial biomass decreased after land 

conversion affecting archaeal and fungal community abundance. In addition, land conversion 

altered the microbial functions related to carbon, nitrogen, and phosphorus cycling in ng-1 DNA 

soil. In soil sequencing by OTU, bacterial and fungal taxonomic abundance and composition 

changed, and bacterial communities showed greater abundance after land conversion. The five 

most abundant bacterial 16S phyla were Acidobacteria, Proteobacteria, Actinobacteria, 

Planctomycetes, and Gemmatimonadetes. In general, our results reveal some of the impacts of 

land conversion on soil health in the Boreal region and add insight into a potential future with 

more sustainable practices in agriculture. 

  

 

 

2 This chapter will be submitted to the journal Agronomy for Sustainable Development. 
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4.2 INTRODUCTION  

Climate change is driving shifts in temperature and precipitation patterns that have 

accelerated land-use shifts and promoted new agricultural areas. As a result, boreal areas have 

become the new agriculture frontier (Altdorff et al., 2021). Healthy soils are influenced by 

interactions between physical, chemical, and biological soil attributes, management practices, 

climate, and other interactions that define soil functions (Lehmann et al., 2020; Zwetsloot et al., 

2021). Soil functions include those related to carbon transformation, habitat provision, carbon 

sequestration, and biological population regulation (Kibblewhite et al., 2007). When land 

conversion changes natural vegetation cover to a cropping system, soil compaction, soil erosion, 

and salinization typically increase, whereas soil biomass, soil biotic abundance and diversity, and 

soil organic carbon decrease (Reicosky, 2018).  

Changes in one soil function will inevitably modify other soil functions (Kibblewhite et 

al., 2007). For example, carbon transformation, regulated by primary agents (fungi and bacteria), 

is affected when the decomposition rate of organic matter changes. In addition, the diversity and 

composition of one soil community type may shift to another depending on the imposed 

agricultural management practices (Bevivino et al., 2014); these changes may be beneficial or 

detrimental depending on the imposed management practices (Merloti et al., 2019; Peltoniemi et 

al., 2021). Practices such as tillage can alter organic matter decomposition rates and subsequent 

nutrient release to different microbial populations, as well as modify microbial habitats and 

disrupt their functions (Kibblewhite et al., 2007).  

Land conversion from native systems to agriculture is known to affect soil microbiology 

and their functions (Fierer et al., 2021) Forest conversion for agricultural purposes will impact 

microbial communities (including archaea, bacteria, and fungi). Fully predicting the impacts of 
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land conversion on soil health requires understanding how soil microbial communities respond. 

For example, soil microbial communities related to N-cycle functions were altered after land 

conversion in one study based in Brazil, with  denitrification and nitrification functional potential 

increasing in agricultural fields (Merloti et al., 2019). A global meta-analysis found that land 

conversion decreased the relative abundance of Acidobacteria, and Actinobacteria, but overall 

impacts on Proteobacteria and Bactereoidetes varied according to land-use change (Zhou et al., 

2018). In addition, forest degradation decreased overall bacterial and fungal abundance, with 

total microbial carbon and nitrogen decreasing up to 56.7% and 54.5% (respectively) from forest 

to cropland. Another study comparing land-use changes in grassland, arable and permanent bare 

fallow found that Verrucomicrobia were more abundant in grassland, while Gemmatimonadetes 

and Nitrospirae were more abundant in bare fallow and arable soil (Hirsch et al., 2017). Shifts in 

microbial community structure alter soil function;  different communities have a dominant 

impact on soil functions associated with soil carbon-decomposition (Acidobacteria, 

Proteobacteria, Actinobacteria , Gemmatimonadetes, Bacteroides) (Merloti et al., 2019; 

Pankhurst & Doube, 1997; Reicosky, 2018) and nitrogen cycling (Proteobacteria, 

Actinobacteria, Firmicutes and Nitrospira active involved in the nitrogen fixation, while 

Alphaproteobacteria is part of the denitrification process) (Merloti et al., 2019; Pankhurst & 

Doube, 1997; Reicosky, 2018). 

Several microbial-based soil health indicators can be used to characterize soil community 

composition and functions. Along with other indicators, these soil assessments measure overall 

biomass, the presence or absence of specific microorganisms, organic matter decomposition, and 

other aspects of carbon, nitrogen, and phosphorus cycling (Pankhurst & Doube, 1997). Pankhurst 

& Doube (1997) and Fierer et al. (2021) described a complete list of the common microbial soil 
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health indicators. Molecular analyses of microbial communities and functions, using sequencing 

and quantitative PCR (qPCR) approach, are considered emerging soil health metrics (Norris et 

al., 2020). Amplicon sequencing targeting ribosomal or internal transcribed spacer regions (16S 

rDNA and ITS, respectively) provides information on the relative abundance of different 

bacterial, archaeal, fungal or protist taxa and is used to understand how microbial community 

composition and diversity change. Quantitative PCR of the same gene regions can estimate the 

overall abundance of these different taxa. Similarly, shotgun metagenomic approaches and qPCR 

can provide information on the relative abundance of functional genes of interest, such as those 

involved in C and N cycling (Fierer et al., 2021). 

Climate change has rendered northern regions a new area for food production; however, a 

broad and comprehensive scientific understanding of land conversion to agriculture on soil 

functions and microbial communities is currently incomplete and poorly understood (Li et al., 

2019). Information on microbial diversity, structure and abundances of soil archaeal, bacterial 

and fungal communities in boreal soils is required. In this study, we investigated the microbiome 

in soils, comparing baseline mature forest conditions with those of fields converted from forest 

to agriculture <10 years ago, fields converted >10 years ago but <50 years ago, and fields 

converted from forest to agriculture >50 years ago. We used qPCR to assess changes in 

microbial nutrient cycling functions and amplicon sequencing to examine microbial community 

composition. We aimed to detect post-land conversion changes in various microbial community 

descriptors; i) functional potential, ii) diversity, and iii) community composition according to 

time since conversion. We hypothesized that (a) after land conversion functions associated with 

C cycling would decrease while those associated with N cycling would increase, (b) as the age of 

the agricultural fields increased the overall abundance of fungi would decrease while that of 
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bacteria would increase, and (c) overall diversity would increase with increased land-use 

diversity.  

4.3 MATERIALS AND METHODS 

4.3.1 Study sites and soil sampling 

Sixty soil samples were collected from dairy farms in the Thunder Bay, Ontario region 

were sampled from July through August 2019 (45° 31' to 48° 17' N, 89° 30' to 89° 22' W) within 

the Murillo and Slate River area. Murillo and Slate River are formed from water-laid alluvial silt, 

sand, and gravel deposits that vary depending on the basin and depth (Mollard & Mollard, 1983). 

Thunder is part of the ecoregion 3W (Lake Nipigon), located on the Precambrian Shield with 

substantial basalt and volcanic rock formations with low to moderate buffering capacity (Wester, 

Henson, Crins, Uhlig, & Gray, 2018). Soils include high water retention capacity, low 

permeability and poor drainage (Mollard & Mollard, 1983). Each farm operation in the sample 

included a mature mixed-wood forest, fields that have been cultivated for less than ten years 

(<10 y in agriculture), fields between >10 and <50 y in agriculture, and fields that have been 

cultivated for more than 50 years (>50 y agriculture). Cleared sites have been under conventional 

management systems with tillage, synthetic fertilizers, spring and fall manure applications, and 

crop rotations of alfalfa, barley, corn, canola, and spring and winter wheat (Chapter 2, 

Benalcazar et al., 2022).   

Our sampling strategy included soil depths of 0-5 cm and 5-15 cm in two areas (Murillo 

and Slate River). We collected soil samples using a soil split-core sampler (AMS Soil Sampler, 

Inc., American Fall, Idaho) at each cropped field and adjacent forests considering time since 

conversion to agriculture (soil samples were collected at each corner in the center). The O 

horizon, largely plant litter, was removed in forest areas. At each location, we collected a total of 
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three sub-samples: sampling three times in the mineral soil, divided by depth (0-5 and 5-15 cm) 

and composited. We kept the soil samples cool (4 °C) while transporting them to the laboratory, 

then we sieved each sample first through 8 mm and then through 4 mm sieves to homogenize. 

We froze the soil samples at -40°C and analyzed composite soil samples of equal depth from 

each site at the Agriculture and Agri-Food Canada (AAFC), Harrow Research Center, Microbial 

Ecology Laboratory, in Harrow, Ontario.  

4.3.2 Microbial community and functions via qPCR  

 DNA was extracted in duplicate (2 x 0.25 g) from soil samples using Qiagen DNeasy 

PowerSoil kits (Qiagen Inc., Canada), except for an added 10-min incubation at 65°C before 

bead-beating. DNA quality was visualized on a 1.4% agarose gel; quantity and quality were 

further evaluated using spectrophotometry (NanoDrop One, ThermoScientific). Once extraction 

reproducibility was confirmed, replicate extractions for each soil sample were pooled, and DNA 

was re-quantified using fluorometric approaches (Quant-iT™ dsDNA BR kits; Life 

Technologies), normalized to an initial working concentration of 10 ng µL-1. For qPCR analyses, 

DNA was further diluted to a working concentration of 3.0 ng µL-1 and then re-quantified using a 

high-sensitivity fluorometric assay (Quant-iT™ dsDNA HS kits; Life Technologies, USA).   

 We assessed microbial community functional capacity by qPCR of key genes associated 

with C cycling, N cycling, and P mineralization (Table 4.1; Table S10). In addition, we estimated 

the relative abundance of bacteria, archaea, and fungi using 16S rRNA and 18S gene regions. We 

performed assays in triplicate using the Bio-Rad CFX384 Touch Real-Time PCR Detection 

System (Bio-Rad, USA) in 5 µl reaction volumes containing 3.0 ng DNA (functional genes) or 

0.3 ng DNA (taxonomic genes), and 0.12 µg of UltraPure™ BSA (Life Technologies, USA), 

with primer concentrations and commercial master mixes and primer concentration as listed in 
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Table 4.1. Gene abundance was calculated with respect to a plasmid-based standard curve with a 

concentration range from 2 to 2 × 107 gene copies μl–1 DNA. Reaction efficiency ranged from 85 

to 100%. Plasmids were generated by amplifying soil DNA in 50 µL PCR reactions using the 

appropriate primers (Table 4.1) and GoTaq master mix (Promega, USA), subcloning the cleaned 

(QIAquick PCR Purification Kit, Qiagen Inc., USA) PCR products into competent TOP10F’ One 

Shot E. coli (Invitrogen, USA), and extracting plasmids from positive clones (QIAprep Spin 

Miniprep Kit, Qiagen Inc., USA). Plasmids were sequenced (AAC, University of Guelph) and 

analyzed by blastn to confirm plasmid insert identity. 

4.3.3 Sequencing microbial community 

 The amplicon sequencing strategy we used follows the approach developed under the 

Government of Canada’s Genomics Research and Development Initiative (GRDI), EcoBiomics 

Project (Edge et al., 2020). Briefly, the primers for bacteria and archaea target the V4-V5 

hypervariable region of the 16S rDNA gene 515FY/926R (Parada et al., 2016; Thompson et al., 

2017). The primers for fungi target the ITS2 (ITS9F/ITS4R) region (Ihrmark al., 2012; White et 

al., 1990). A 10 ng µL-1 aliquot of each composited DNA sample was shipped on ice to Genome 

Quebec for library preparation and paired-end sequencing (2 x 250 bp) on an Illumina 

NovaSeq6000 platform. Bioinformatic analysis was performed on the General Purpose Science 

Cluster in Dorval, Quebec (Edge et al., 2020), using a custom workflow as outlined in Pérez‐

Guzmán et al. (2021). 

4.3.4 Statistical analysis  

4.3.4.1 Microbial community and functions via qPCR  

To evaluate the differences between land conversion, we conducted Shapiro-Wilk and 

Levene tests to check for data distribution and homoscedasticity. qPCR data were analyzed on a 
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copy number ng-1 DNA basis, placed in Supplementary materials (Tables S11-S20). As fixed 

factors, we used time since conversion (A= forest, B = cleared <10 y in agriculture, C = >10 and 

<50 y in agriculture and D = >50 y in agriculture); and two depth intervals (0-5 cm, and 5-15 

cm). Since depth was a significant factor for qPCR data, we further applied one-way ANOVA 

followed by the Tukey post hoc test (p < 0.05). We applied the Kruskal-Wallis test for non-

normal Gaussian distribution data, followed by the Wilcoxon test using the p-value adjustment 

Bonferroni method. The package used was “pgirmess” (Giraudoux, 2021) in R software (R Core 

Team, 2020).   

4.3.4.2 Sequencing microbial community  

Bacterial 16S rDNA and fungal ITS datasets were summarized at the class level. We used 

the non-parametric multidimensional scaling (NMDS) method for the complete dataset using 

time since conversion and depth intervals. We used the Wisconsin double standardization to 

generate the distance matrix reflecting the distance between each site’s pairs. Then we used the 

Bray-Curtis dissimilarity index to quantify the composition dissimilarity between time since 

conversion of the bacterial 16S rDNA and fungi ITS. We determined dissimilarities for factor 

variables using the Adonis function in the Vegan package, R software. Additionally, we 

performed univariate community analysis using the Shannon diversity and Simpson Index for 

fungal and bacterial diversity, using ANOVA, or Kruskal-Wallis test, followed by post hoc test 

using Tukey HSD or pairwise Wilcoxon test using the p-value adjustment Bonferroni method. 

Finally, we conducted a one-way ANOVA for normal data or a Kruskal-Wallis test for non-

parametric tests, followed by a post hoc test. 
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4.4 RESULTS 

4.4.1 The overall change in archaeal, bacterial, fungal, and functional microbial biomass 

and abundance since conversion 

Microbial biomass decreased after land conversion from forest 5.35E+05 to agriculture 

3.08E+05 ng DNA/g dry soil. Microbial abundance varied by time since conversion and by soil 

depth intervals. The relative abundance of archaeal 16S (p < 0.05), and fungal 18S (p <0.001) 

copies were influenced by time since conversion to agriculture along with soil depths, but 

Bacteria 16S did not show significant difference.  Summary tables are provided for the ANOVA 

analysis of the functional genes targeted by qPCR, shown as copy numbers per ng-1 DNA 

(Error! Reference source not found., 4.2) and for detailed statistical results (S11, S12). (phoD 

and phoC) decreased at 0-5 cm depth interval (Table 4.1) after land conversion but did not 

change at 5-15cm depth (Table 4.2). 

Table 4.1 ANOVA analysis for fungal 18S archaeal 16S copies per ng-1 DNA soil, and functional genes targeted by qPCR on 
copy number per ng-1 DNA at 0-5 cm depth intervals, in time since conversion. Means values are presented, and significant 
differences (p <0.05) are denoted by lowercase letters.  

Copies ng-1 DNA soil p values  

Time since conversion (Categories) Average (+) 

forest < 10 y agriculture >10 to <50 y agriculture >50 y agriculture   increase/decrease 

Archael 16S  < 0.001 3.83E+03 b 6.62E+03 ab 8.49E+03 ab 1.12E+04 a 64% 

Bacteria 16S 0.21 1.90E+06 a 2.14E+06 a 2.19E+06 a 2.04E+06 a 2% 

Fungal 18S < 0.001 1.95E+04 b 3.60E+04 ab 3.51E+04 ab 4.07E+04 a 36% 

Carbon cycling    

Laccase (multicopper oxidase-LMCO) 0.48 1.98E+04 a 2.04E+04 a 2.27E+04 a 2.24E+04 a 4% 

Bglu (β-glucosidase ) 0.02 1.83E+03 a 2.26E+03 ab 2.42E+03 ab 2.67E+03 a 15% 

Cbhl (cellobiohydrolase) < 0.001 1.48E+01 b 2.60E+01 a 1.94E+01 ab 2.19E+01 a 16% 

Carbon +  Nitrogen cycling   

gh11 (glycoside hydrolase) < 0.001 4.52E+01 b 9.71E+01 a 9.04E+01 a 9.03E+01 a 33% 

APR (alkaline metallopeptidase) 0.18 7.10E+03 a 6.11E+03 a 6.38E+03 a 5.88E+03 a -6% 

Nitrogen cycling   

A-amoA- (ammonium monooxygenase) < 0.001 2.49E+02 c 3.44E+02 bc 1.04E+03 a 7.60E+02 ab 68% 

B-amoA- (ammonium monooxygenase) < 0.001 5.15E+01 b 6.29E+02 a 7.78E+02 a 8.43E+02 a 512% 

nxrA (nitrite oxidoreductase) < 0.001 9.09E+00 b 1.83E+02 a 8.28E+01 a 1.08E+02 a 363% 

narG (membrane bound nitrate reductase) 0.84 3.46E+05 a 3.23E+05 a 3.30E+05 a 3.32E+05 a -1% 
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nrfA (dissimilatory nitrite reductase) 0.05 8.15E+03 a 5.06E+03 a 7.78E+03 a 7.86E+03 a -1% 

nirK (copper-containing nitrite reductase) 0.63 3.79E+04 a 3.46E+04 a 3.87E+04 a 3.87E+04 a -1% 

aNirK (nitrite reductase) 0.12 5.46E+01 a 3.90E+01 a 4.29E+01 a 5.27E+01 a -1% 

NosZ (nitrous oxide reductase) 0.27 5.70E+03 a 5.18E+03 a 6.16E+03 a 6.39E+03 a 4% 

Phosphorus mineralization   

phoC (acid phosphatase) < 0.001 7.09E+03 a 5.01E+03 b 4.53E+03 b 4.82E+03 b -11% 

phoD (alkaline phosphatase) < 0.001 2.29E+05 a 1.75E+05 b 1.93E+05 ab 1.76E+05 b -8% 

Phnx (Phosphono-acetaldehyde hydrolase) 0.34 1.44E+03 a 1.44E+03 a 1.53E+03 a 1.69E+03 a 6% 

pqqC (pyrroloquinoline quinone) 0.36 1.14E+04 a 1.22E+04 a 1.06E+04 a 1.05E+04 a -3% 

(+) average increased/decreased by time since conversion to agriculture (Categories)  

 

Table 4.2 ANOVA analysis for fungal 18S archaeal 16S copies per ng-1 DNA soil, and functional genes targeted by qPCR on 

copy number per ng-1 DNA soil at 5-15 cm depth interval, in time since conversion. Means values are presented, and significant 
differences (p <0.05) are denoted by lowercase letters.  

Copies ng-1 DNA soil p values  

Time since conversion (Categories) Average(+) 

Forest <10 y agriculture >10 to <50 y agriculture >50 y agriculture increased/decreased 

 Archael 16S  0.01 4.03E+03 b 6.28E+03 ab 6.77E+03 ab 7.81E+03 a 31% 

Bacteria 16S 0.19 1.95E+06 a 2.27E+06 a 2.09E+06 a 2.01E+06 a 1% 

 Fungal 18S  < 0.001 1.30E+04 b 3.17E+04 a 2.10E+04 ab 2.48E+04 a 30% 

                      

Carbon cycling                      

Laccase (multicopper oxidase-LMCO) 0.46 2.40E+04 a 2.24E+04 a 2.53E+04 a 2.04E+04 a -5% 

Bglu (β-glucosidase ) 0.3 2.87E+03 a 2.22E+03 a 2.81E+03 a 3.53E+03 a 8% 

Cbhl (cellobiohydrolase) 0.05 1.18E+01 a 2.74E+01 a 1.44E+01 a 1.43E+01 a 7% 

Carbon +  Nitrogen cycling   

gh11 (glycoside hydrolase) < 0.001 3.74E+01 b 8.20E+01 a 6.45E+01 a 6.31E+01 a 23% 

APR(alkaline metallopeptidase) 0.71 7.48E+03 a 6.61E+03 a 6.60E+03 a 6.82E+03 a -3% 

Nitrogen cycling                     

A-amoA- (ammonium monooxygenase) < 0.001 4.36E+02 c 4.66E+02 bc 1.18E+03 a 1.05E+03 ab 47% 

B-amoA-( ammonium monooxygenase) < 0.001 9.40E+01 b 3.22E+02 a 3.49E+02 a 4.54E+02 a 128% 

nxrA (nitrite oxidoreductase) < 0.001 1.03E+01 b 9.88E+01 a 4.92E+01 a 9.79E+01 a 285% 

narG(membrane bound nitrate reductase) 0.74 3.66E+05 a 3.38E+05 a 3.49E+05 a 3.56E+05 a -1% 

nrfA (dissimilatory nitrite reductase ) 0.29 7.93E+03 a 5.56E+03 a 6.87E+03 a 7.62E+03 a -1% 

nirK(copper-containing nitrite reductase) 0.97 3.90E+04 a 3.90E+04 a 4.03E+04 a 3.91E+04 a 0% 

aNirK (nitrite reductase) 0.18 4.77E+01 a 4.98E+01 a 8.21E+01 a 1.35E+02 a 61% 

NosZ (nitrous oxide reductase) 0.89 5.97E+03 a 5.76E+03 a 5.67E+03 a 6.14E+03 a 1% 

Phosphorus mineralization   

phoC (acid phosphatase) 0.11 6.85E+03 a 5.77E+03 a 5.40E+03 a 5.43E+03 a -7% 

phoD (alkaline phosphatase) 0.24 2.47E+05 a 1.95E+05 a 1.95E+05 a 2.07E+05 a -5% 

Phnx (Phosphono-acetaldehyde hydrolase) 0.38 1.48E+03 a 1.48E+03 a 1.18E+03 a 1.69E+03 a 5% 

pqqC (pyrroloquinoline quinone) 0.3 1.13E+04 a 1.17E+04 a 9.99E+03 a 1.09E+04 a -1% 



 

53 

 

4.4.2 Microbial richness and community composition 

A total of 22,734,81 16S rDNA paired-end amplicon sequences were generated from 60 

samples, with 23,995 operational taxonomic units (OTUs; 98% nucleotide identity) identified 

after quality filtering and clustering. A total of 17,238,05 ITS paired-end amplicon sequences 

were generated, with 16,082 OTU's (98% nucleotide identity) identified after quality filtering 

and clustering. Detailed information about the bacterial 16S and Fungal ITS OTU data can be 

found in Supplementary material Table S21. Unique microbial communities developed after land 

conversion. Bacterial diversity increased over time as the system shifted to one with more readily 

bioavailable C and N pools, but fungal diversity increased then decreased after land conversion. 

Bacterial 16S Shannon diversity, assessed by OTU read, significantly increased after land 

conversion (p <0.05) at both depth intervals (Figure 4.1; Tables S22, S23). Fungal ITS did not 

change after land conversion (Figure 4.1; Tables S24, S25). Moreover, bacterial 16S Simpson 

index significantly increased at 0-5 cm depth interval (p <0.001; Figure 4.1; Table S22). Fungal 

ITS did not show significant change (Table S24, S25).  

An NMDS approach with PERMANOVA posthoc was used to evaluate how overall 

microbial community composition shifted after forest conversion (Figure 4.2; Table S26, S27). 

For bacterial communities in the surface soils, forest systems and agricultural systems < 10 years 

and > 50 years since conversion showed significantly different clustering patterns (p < 0.02). In 

the sub-surface soils (5-15cm) different community clusters only occurred for the forest systems 

and the <10-year system (p <0.03). For fungal communities, significantly different clustering 

patterns were observed between the forest and >50 year since conversion soils (p < 0.001). 
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Figure 4.1 Shannon diversity in bacterial 16S at 0-5 cm depth interval (a), and 5-15 cm depth interval (b) and Fungal 

ITS at 0-5 cm depth interval (c), and 5-15 cm depth interval (d) in mineral soils collected in A = forest sites, B = 

sites < 10 y, C = >10 and <50 y, and D = > 50 y in agriculture. Bars are means +/- standards errors. Significant 

differences (p < 0.05) are denoted by lowercase letters.  

 

4.4.3 Bacterial taxonomic distribution for time since conversion. 

After land conversion, five bacterial phyla showed significant differences: Acidobacteria, 

Proteobacteria, Actinobacteria, Planctomycetes, and Gemmatimonadetes (data not shown). At 

the class level, at both depth intervals, soils were dominated by Acidimicrobiia, Actinobacteria, 

Gammaproteobacteria, Gemm.1, Gemmatimonadetes, MB.A2.108 and Planctomycetia (Tables 

4.3). The relative abundance of Gemm.1 and Gemmatimonadetes increased at both soil depth 

intervals. In contrast, the relative abundance of MB.A2.108 decreased at both soil depth intervals 

(Tables 4.3). 

(c) 
(d) 
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Figure 4.2 Non-metric multidimensional scaling (NMDS) analysis for bacterial 16S at 0-5 cm depth interval (a), 5-15 cm depth 
interval (b) and fungal ITS at 0-5 cm depth interval (c) and 5-15 cm depth interval (d) assessed by OTU reads by both depths. 
Time since conversion A= forest sites, and sites B = <10 y, C = >10 and <50 y, and D = >50 y in agriculture. Connected points to 
group centroid using ordispider produced by vegan package. 

Average increased and decreased relative abundances by time since conversion to 

agriculture are shown in Tables 4.3, with additional information in S28, S29. In general, bacterial 

communities in the surface soils experienced more significant phylogenetic shifts than those in 

the sub-surface.  

Table 4.3.4.2. ANOVA analysis for bacterial classes by time since conversion at 0-5 cm and 5-15 cm depth intervals. Means 
values are presented, and significant differences (p <0.05) are denoted by lowercase letters.  

Depth 0-5 cm interval  

p values 

Time since conversion (Categories) 
Average 

Bacterial Classes forest < 10 y agriculture >10<50 y agriculture >50 y agriculture 
increased/decreased 

Actinobacteria - Acidimicrobiia < 0.001 1.60E-02 a 1.17E-02 b 1.15E-02 b 1.04E-02 b -12% 

Acidobacteria - Acidobacteria.6 < 0.001 1.48E-01 a 8.67E-02 ab 1.14E-01 ab 1.24E-01 b -5% 

Acidobacteria - Acidobacteriia 0.04 6.57E-03 a 1.94E-02 b 1.03E-02 b 7.03E-03 b 2% 

Actinobacteria - Actinobacteria < 0.001 6.04E-02 b 9.44E-02 a 8.79E-02 a 9.21E-02 a 17% 

Proteobacteria - Alphaproteobacteria 0.01 1.41E-01 a 1.42E-01 ab 1.08E-01 b 1.07E-01 b -8% 

(a) (b) 

(c) (d) 
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Firmicutes - Clostridia 0.04 5.37E-03 b 1.25E-02 ab 1.05E-02 ab 1.44E-02 a 56% 

Proteobacteria - Deltaproteobacteria < 0.001 4.34E-02 a 2.88E-02 b 3.40E-02 b 3.34E-02 b -8% 

Chloroflexi - Ellin6529 0.04 1.79E-02 b 2.13E-02 ab 2.21E-02 ab 2.32E-02 a 10% 

Gemmatimonadetes - Gemm.1 < 0.001 4.04E-03 b 6.41E-03 ab 7.76E-03 ab 1.00E-02 a 49% 

Gemmatimonadetes - Gemmatimonadetes < 0.001 6.89E-03 b 2.17E-02 a 1.51E-02 ab 1.61E-02 a 45% 

Actinobacteria - MB.A2.108 < 0.001 1.36E-02 a 6.29E-03 b 7.31E-03 b 6.58E-03 b -17% 

Planctomycetes - Planctomycetia 0.02 3.37E-02 a 3.03E-02 ab 2.83E-02 ab 2.67E-02 b -7% 

Actinobacteria - Thermoleophilia 0.01 1.38E-01 a 1.30E-01 ab 1.27E-01 ab 9.95E-02 b -9% 

Depth 5-15 cm intervals 

Actinobacteria - Acidimicrobiia < 0.001 1.44E-02 a 1.16E-02 b 1.07E-02 b 1.11E-02 b -8% 

Actinobacteria - Actinobacteria 0.03 4.73E-02 b 6.91E-02 a 5.49E-02 ab 5.66E-02 ab 7% 

Proteobacteria - Gammaproteobacteria 0.03 4.27E-02 b 6.29E-02 ab 4.44E-02 ab 6.40E-02 a 17% 

Gemmatimonadetes - Gemm.1 0.01 8.99E-03 b 9.07E-03 b 1.14E-02 ab 1.71E-02 a 30% 

Gemmatimonadetes - Gemmatimonadetes < 0.001 8.91E-03 b 1.60E-02 ab 1.90E-02 ab 1.66E-02 ab 29% 

Actinobacteria - MB.A2.108 <0.001 2.05E-02 a 7.75E-03 b 1.19E-02 b 1.15E-02 b -15% 

Planctomycetes - Planctomycetia 0.03 2.62E-02 ab 3.17E-02 a 2.61E-02 ab 2.26E-02 b -5% 

(+) average increased/decreased by time since conversion to agriculture (Categories)  

 

 

Figure 4.3 Bacteria16S class relative abundance: Sequencing of samples obtained during summer 2019. Time since conversion 
categories from left to right are forest (1), <10 y in agriculture (2), >10 and <50 y agriculture (3), and > 50 y in agriculture (4) for 
both depth intervals together.  
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4.4.4 Fungal taxonomic distribution for time since conversion  

Land conversion to agriculture significantly affected fungal phyla Ascomycota and 

Basidiomycota (data not shown). At the class level, the soil was dominated by Agaricomycetes, 

Dothideomycetes, Eurotiomycetes, Leotiomycetes, and Sordariomycetes (Figure 4.4). At the class 

level, the relative abundance of Agaricomycetes decreased while Dothideomycetes and 

Sordariomycetes increased at both depth intervals (Tables 4.4; S30, S31) 

 

Figure 4.4 Fungal ITS class relative abundance: Sequencing of samples obtained during summer 2019. Time since conversion 
categories from left to right are forest (1), <10 y in agriculture (2), >10 and <50 y  agriculture (3), and > 50 y in agriculture (4) 

for both depth intervals together.  

  

Table 4.3. ANOVA analysis for fungal OTUs and time since conversion; depth intervals are 0-5 and 5-15 cm. Means values are 
presented, and significant differences (p <0.05) are denoted by lowercase letters.  

0-5 cm depth interval    Time since conversion (Categories) Average (+) 

Fungal classes p values 
 forest 

  
< 10 y agriculture 

  
>10<50 y agriculture 

  
>50 y agriculture 

  increased/decreased 

Basidiomycota - Agaricomycetes < 0.001 1.22E-01 a 2.24E-02 b 7.97E-03 b 2.77E-02 b -26% 

Ascomycota - Dothideomycetes 0.05 6.83E-02 b 1.66E-01 ab 2.52E-01 a 1.93E-01 ab 61% 

Ascomycota - Eurotiomycetes 0.01 1.89E-01 a 7.52E-02 ab 3.29E-02 b 3.14E-02 b -28% 

Ascomycota - Sordariomycetes < 0.001 1.54E-01 b 3.50E-01 ab 4.57E-01 a 4.94E-01 a 74% 

5-15 cm depth interval                      
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Basidiomycota - Agaricomycetes 0.04 1.09E-01 a 4.80E-02 ab 8.40E-02 ab 2.58E-02 b -25% 

Ascomycota - Dothideomycetes < 0.001 2.17E-02 b 1.20E-01 a 8.77E-02 ab 1.39E-01 a 180% 

Ascomycota - Leotiomycetes 0.03 4.40E-01 a 3.34E-01 ab 2.76E-01 ab 2.64E-01 b -13% 

Ascomycota - Sordariomycetes < 0.001 9.56E-02 b 3.46E-01 a 4.29E-01 a 4.55E-01 a 125% 

(+) average increased/decreased by time since conversion to agriculture (Categories)  

4.4.5 Relationship between soil organic matter, chemical soil properties and soil biology  

Land conversion to agriculture caused several changes in the macro and micro-nutrients 

associated with soil organic matter and chemistry properties (Table S32). Forests increased soil 

organic matter (SOM) levels, K, total C, total N, Mg, Fe, and Mn, all of which decreased on land 

conversion. In forest soil, SOM was 12 %, then decreased to 6% after <10 y agriculture (B), then 

between >10 <50 y agriculture, SOM was 5.11% followed by an increased of 7.5% after > 50 y 

agriculture. While pH was more acidic during the first decade after conversion to agriculture, Zn 

increased after conversion >50 y ago.  

We used Spearman’s rank correlation to assess the interactions between marker genes, 

soil organic matter, and chemical properties (Table 4.45). The overall functional potential of the 

soil communities to break down low molecular weight carbon compounds (B-glu) was 

negatively correlated with SOM and C+N pools, and positively correlated with pH. In contrast, 

the cellulolytic (cchl) potential decreased within increasing pH and both cellulolytic and 

hemicellulolytic potential increased with increased P and K availability. Functions associated 

with nitrification (amoA, nxrA) were negatively correlated with SOM and total C while those 

associated with N immobilization (nrfA) and P mineralization (phoC) were positively correlated 

with SOM and total C. Finally, fungal 18S and archaeal 16S showed the lowest correlation, with 

three and two correlations each for macronutrients. Additional interactions between the marker 

genes and micronutrients are described in the supplementary material (Table S33). 
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Table 4.4. Relationship between soil organic matter, chemical soil properties and functional genes targeted by qPCR using 
Spearman correlation analysis. Parenthesis show positive (+) or negative (-) correlations (p <0.05); n/f= no correlation found. 

Soil properties  
Taxonomy 

classification  Carbon cycling 
Carbon + 

nitrogen cycling Nitrogen cycling 

 Phosphorus 
mineralization, 

and  solubilization 

SOM Fungal 18S  (-)  Bglu (-) Gh11(-) 
B-amoA/ A-amoA/ nxrA (-);  nrfA 

(+) phoC (+)  

pH n/f Cbhl (-); Bglu (+) n/f A-amoA / nrfA (+)  pqqC (-) 

P 
Archael 16S / Fungal 

18S (+) Cbhl (+) gh11 (+) B-amoA / nxrA (+) n/f 

K  
Archael 16S / Fungal 

18S (+) Cbhl (+) gh11 (+) nc n/f 

Total C n/f Bglu (-) n/f 
B-amoA/ A-amoA/ nxrA (-); nrfA 

(+) phoC (+)  

Total N n/f Bglu (-) n/f B-amoA/ A-amoA/ nxrA (-) phoC (+)  

 

The same Spearman’s correlation approach was applied to assess the relationship 

between the relative abundance of different microbial phyla and classes and soil properties.  

Two Acidobacteria classes (Acidimicrobiia, Acidobacteria.6), one Actinobacteria class 

(MB.A2.108) and Planctomycetia were positively correlated with SOM, with most also 

positively correlated with Total C and N (Table 4.6). A separate Acidobacteria class, 

Acidobacteriia, and the Gemmatimonadetes class Gemm.1 were negatively correlated with the 

same parameters. Multiple classes, including Nitrospira, were negatively associated with total C, 

N, P, and K (Table S34). 

Table 4.5. Relationship between soil physical, chemical and biological soil properties and bacterial class OTU's using Spearman 
correlation analysis. Parenthesis show positive (+) or negative (-) correlations at (p <0.05) . n/f= no correlation found. 

Soil properties  Bacterial class OTUs 

SOM 
Acidimicrobiia/ Acidobacteria.6/ MB.A2.108/ Planctomycetia (+); 
Acidobacteriia/ Ellin6529/ Gemm.1 (-) 

pH 
Chloracidobacteria / Acidobacteria.6/ Gemm.1/ MB.A2.108/ Nitrospira (+); 
Acidobacteriia/ Actinobacteria/ Alphaproteobacteria/ Planctomycetia (-) 

P 
Gammaproteobacteria/ Actinobacteria (+); 
Acidimicrobiia/ Deltaproteobacteria/ MB.A2.108/ Nitrospira (-) 

K  
Actinobacteria (+); 
Ellin6529/ Nitrospira (-) 

Total C 
Acidimicrobiia/ Acidobacteria.6/ Planctomycetia (+); 
Acidobacteriia/ Ellin6529/ Gemm.1/ Nitrospira (-) 

Total N 
Acidimicrobiia/ Planctomycetia (+); 
Acidobacteriia/ Ellin6529/ Gemm.1 / Nitrospira (-) 
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Spearman’s correlation showed a positive and negative association between Ascomycota 

and Basidiomycota at the phylum level (Table S35). Sordariomycetes were negatively associated 

with SOM and total N, but positively associated with P and K. In contrast, Agaricomycetes were 

positively associated with SOM and Total C, but negatively associated with P (Table 4.7). We 

found significant correlations with soil organic matter and micronutrients. Complete chemical 

properties are described in supplementary material (Table S35). 

Table 4.6. Relationship between soil organic matter, chemical soil properties and fungal class OTUs using Spearman correlation. 
Parenthesis show positive (+) or negative (-) correlations (p <0.05). n/f = no correlation found. 

Soil properties  Fungal class OTU’s 

SOM 
Agaricomycetes(+); 
Sordariomycetes (-) 

pH n/f 

P 
Dothideomycetes/ Sordariomycetes (+); 
Leotiomycetes, Agaricomycetes (-)  

K  
Sordariomycetes (+); 
Leotiomycetes (-) 

Total C Agaricomycetes (+) 

Total N Sordariomycetes(-) 

 

4.5 DISCUSSION 

 Land conversion to agriculture has well-recognized impacts on soil microbial abundance 

and composition (Bevivino et al., 2014; Hirsch et al., 2017). Most agricultural practices, 

including soil tillage, organic matter addition, crop rotation, cropping systems, and irrigation 

influence the soil microbial community’s, abundance, composition, and activity (Kong et al., 

2010).  

4.5.1 Overall change in archaeal, bacteria and fungal abundances and functional microbial 

community associated with C cycling genes 

In this study, microbial biomass decreased after land conversion, affecting archaeal, and 

fungal communities, and the relative functional potential shifted in different ways. Agricultural 
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soils in the Thunder Bay area had an increased relative abundance of total archaea and fungi 

compared to forested systems, as estimated by qPCR of taxonomic marker genes (Table 4.1). 

Conversion to agriculture did not alter overall bacterial abundance. Increased amounts of more 

bioavailable carbon in the form of crop residues (roots and shoots) resulted in a net increase in 

overall fungal abundance, with a shift towards communities capable of decomposing those less 

recalcitrant carbon compounds (e.g., B-glu, chbL, and gh11 gene abundance increased). This 

shift in functional communities was confirmed with sequencing data, which showed a clear 

increase in the abundance of Sordariomycetes in agricultural compared to forested systems 

(Table 4.4). Fungal communities were associated with the decomposition of recalcitrant carbon 

compounds by saprotrophic fungi suggesting that dead forest roots became the primary sources 

of carbon (Guo & Gifford, 2002). Other studies have also observed an increase in archaeal 16S 

gene abundance after land conversion (Lu et al., 2012; Schloter, 2011). Archaea are 

microorganisms capable of surviving extreme or drought conditions, and their abundance is 

increased after ammonium nitrate fertilizer, mostly due to increase in archaeal ammonia 

oxidizers (A-amoA) present in acidic soils (Hirsch et al., 2017). However, another study showed 

that archaea are more dominant in low-N soils, an essential driver of nitrification under nitrogen-

poor conditions in grassland soils (Sterngren et al., 2015).  

Land conversion had differing effects on the capacity of the soil communities to cycle 

different carbon compounds. The relative abundance of genes associated with complex organic 

matter decomposition (laccase: multicopper oxidase-LMCO) did not show significant changes 

since land conversion. The relative abundance of genes associated with the decomposition of 

lower molecular weight carbon compounds however, increased as background levels of SOM 

decreased and nutrient pools such as P and K increased. These functional shifts stabilized within 



 

62 

10 years of conversion. Although we did not directly measure how the composition of carbon 

compounds changed with age of land conversion, compounds like cellulose, hemicellulose and 

sugars are common in agricultural fields (Cherubini & Ulgiati, 2010; Ginni et al., 2021) in which 

these compounds are decompose by saprophytic Basidiomycota and Ascomycota organisms 

(Barbi et al., 2014). There is potential for these carbon cycling genes to serve as soil health 

indicators as β-glucosidase gene abundance and enzyme activity, which is an emerging 

biological indicator, have been shown to be positively related (Pérez‐Guzmán et al., 2021).  

4.5.2 Functional microbial community associated with N and P cycling genes 

The relative abundance of genes associated with nitrification (amoA and nxrA) generally 

increased following land conversion (Table 4.1and 4.2). However, those associated with 

denitrification were not impacted. Agricultural production systems typically add N inputs 

because N is limiting and adding N can promote N utilizing organisms. Indeed, A-amoA has 

shown a positive response to N application in acid soils (Gubry-Rangin et al., 2015), and soil 

management practices such as tillage, liming, and organic matter amendments promote the 

abundance of B-amoA and A-amoB (Banning et al., 2015). Furthermore, tillage and N fertilizer 

resulted in the increased of nxrA gene abundance (Attard et al., 2010; Hatfield & Sauer, 2020; 

Liang et al., 2021). Also, nitrifier abundance is associated positively with soils amended/applied 

with cattle manure (Tatti et al., 2014), a common practice among dairy farmers in the study area 

(Benalcazar et al., 2022). The relative abundance of genes associated with phosphorus 

mineralization (phoC and phoD: acid and alkaline phosphatase) decreased followed conversion 

(Tables 4.1 and 4.2). Acid phosphatase and alkaline phosphatase, which are responsible for 

recycling organic phosphorus in soil, decreased due to increased mineral P inputs after land 

conversion (Lang et al., 2021; Ragot et al., 2015). These functions are potential soil health 
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indicators due to their involvement in the P cycling, although more studies are required (Pérez‐

Guzmán et al., 2021).  

4.5.3 Bacteria and fungal microbial community richness and composition  

In Thunder Bay agricultural areas, after land conversion, bacterial diversity increased, while 

fungal diversity did not experience significant change (Figure 4.1). Soil that receives N flows 

either by synthetic or organic N inputs increased bacterial and fungal diversity (de Graaff et al., 

2019; Chen et al., 2020). Different rates of nitrogen application affected bacteria diversity in 

Acidobacteria, Gammaproteobacteria (O’Brien et al., 2016). In addition, organic inputs provide 

more microbial diversity than inorganic input, and changes in microbial diversity depends on 

tillage, crop rotation, reduce tillage, and pesticide application (de Graaff et al., 2019). 

Differences in abundances by depth depend on soil mechanical disturbance, specifically tillage, 

increases bacterial diversity, but reduces fungal diversity (Tardy et al., 2015), that is due to the 

intra- and inter-soil aggregate pore network (O’Brien et al., 2016) .   

4.5.1 Bacteria and fungal abundance by sequencing  

Overall, bacterial and fungal abundance evaluated by sequencing changed after land conversion 

(Table 4.3). The main shifts in bacterial were seen in the phyla Firmicutes, Gemmatimodetes, 

Actinobacteria, Proteobacteria, and Chloroflexi. The relative abundance of the Firmicutes class 

Clostridia; Gemmatimodetes classes Gemm.1, Gemmatimonadetes; Proteobacteria class 

Gammaproteobacteria and Actinobacteria class. Actinobacteria significantly increased at both 

soil depths, but Actinobacteria classes MBA2.108,  Acidimicrobiia significantly decreased at 

both soil depths. The main shifts in fungi were seen in the phyla Ascomycota and Basidiomycota. 

The relative abundance of the Ascomycota classes Dothideomycetes and Sordariomycetes 

significantly increased at both soil depths, but Eurotiomycetes and Leotiomycetes decreased in 
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the surface and subsurface, respectively. The Basidiomycota classes Agaricomycetes, which 

includes many ectomycorrhizal fungi, significantly decreased as the system shifted from mixed 

forest dominant to crop dominant.  

 Previous studies have shown that Acidobacteria, Actinobacteria, Proteobacteria, 

Ascomycota and Basidiomycota are the most predominant phyla in boreal soils (Clemmensen et 

al., 2013; Lladó et al., 2017). The addition of wood ash and liming in farm fields reduces the 

abundance of Acidobacteria, Actinobacteria and Proteobacteria (Reid & Watmough, 2014). 

Acidobacteria and Proteobacteria soil functions are associated with soil C and N cycling 

(Merloti et al., 2019). Other soil functions include litter decomposition, N fixation, and 

symbiosis. Acidobacteria and Proteobacteria have an active role in litter decomposition in 

coniferous and deciduous forests (Lladó et al., 2017; López-Mondéjar et al., 2016). 

Proteobacteria is responsible for organic carbon cycling, especially in nutrient-poor 

environments (Csotonyi et al., 2010). Alphaproteobacteria and Deltaproteobacteria are 

responsible for breaking down and recycling organic compounds (Coates & Wyman, 2017), and 

N fixation in undisturbed natural environments where they live in symbioses or as free-living 

taxa (van Insberghe et al., 2015). Other studies found that orders of Alphaproteobacteria are 

responsible for denitrification (Coates & Wyman, 2017).  

Among the most important fungal phyla found in the forest soils were Ascomycota (Sterkenburg 

et al., 2015), which are responsible for organic matter decomposition (Zhang et al., 2017) and 

can tolerate synthetic fertilizer, tilling or both (Peltoniemi et al., 2021). However, the 

Basidiomycota-Agaricomycete, and also many ectomycorrhizal classes decreased due to limited 

lignocellulose sources, a significant component of organic C in wood debris (Tardy et al., 2015).  
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Finally, after land conversion to agriculture, it takes time for a new stable stage in both 

microbial community structure and functional potential. For example, shifts in functional 

potential occurred up to 10 and 50 years post-agricultural conversion, depending on the function. 

Variability however, generally decreased after that first decade. Land conversion to agriculture 

affects soils at various spatial and temporal scales by changing or altering the community 

composition (Paine et al., 1998). Farm management practices modify the quantity and quality of 

microbial nutrients supplied over time. Tillage practices modify the habitat and soil structure 

every season, and crop rotation with soil amendments alters microbial diversity for months to 

weeks. As a result, soil communities change continuously following a soil disturbance until an 

alternative stable state is achieved (Shade et al., 2012). 

4.6 CONCLUSIONS 

In this study, we found that forest conversion to agriculture affected microbial 

community abundance, diversity and composition in boreal soils. Contrary to our hypothesis, we 

observed that fungal and archaeal community abundance increased with forest to agricultural 

conversion. Forest conversion to agriculture resulted in microbial indicators of changes to soil 

organic carbon, nitrogen and phosphorus mineralization (as functional genes showed in C, N and 

P cycling). The relative abundance of genes associated with lower molecular weights C 

compound increased, but genes associated with complex organic matter decomposition did not 

show significant changes, while genes associated with nitrification increased followed land 

conversion, but those genes associated with denitrification were not impacted. However, relative 

abundance of genes associated with phosphorus declined followed conversion due to their 

increased mineral P input required for crop production. In addition, genes associated with 

denitrification were not impacted. The composition of fungal and bacterial communities changed 
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after forest conversion, wherein more dominant species for both bacteria (Acidobacteria, 

Proteobacteria, Actinobacteria, Planctomycetes, and Gemmatimonadetes) and fungi 

(Ascomycota and Basidiomycota) were present. These findings have important implications for 

understanding C, N, and P cycling that may increase or decrease due management practices. In 

addition, operational taxonomic showed that soil functions have been altered providing more 

emphasis in certain soil functions associated with C and N mineralization for the Thunder Bay 

agricultural diary farm system.  

  



 

67 

CHAPTER 5  CONCLUSIONS 

Soil health assessment and evaluation is an integrative approach in which physical, 

chemical, biological indicators have been recognized to monitor soil functions. The study 

presented here provides insights into the impacts of land conversion from boreal forest to 

agriculture using a standardized soil health framework known as the Comprehensive Assessment 

of Soil Health (CASH), along with quantitative polymerase chain reaction (qPCR) and gene 

sequencing to detect bacterial and fungal communities present in forests and agricultural fields 

under a range of time since conversion. The inference space is the Thunder Bay agricultural 

areas, predominantly dairy farms that grow forage crops. The CASH framework provides 

insights into how land conversion caused soil degradation in agricultural fields most quickly 

during the first ten years. Continued soil amendment (primarily the application of manure) 

contributes to the recovery of soil organic carbon as soils stabilize after 50 years in agriculture. 

Soil health metrics that best-described changes following the conversion of boreal forests to 

agriculture were physical and biological indicators. Land conversion was followed by declines in 

wet aggregate stability, soil respiration, permanganate oxidizable carbon, and concentrations of 

organic matter. 

Indicators associated with soil functions related to nutrient cycling, carbon sequestration, 

habitat provision, water quality, climate control and crop production were the best predictors of 

changes to soil health in conversion from forest to farm. Soil functions under unpredictive 

extreme weather events require close soil health monitoring in the short and long term. Soil 

monitoring requires predicting how the current changing climate will influence crop production 

so that farmers can adjust their sustainable practices for food production. A new agroecosystem 

that replaces forests enhances carbon and nitrogen mineralization and decomposition of organic 
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matter. After just ten years of land conversion, changes occurred to microorganism abundance 

and diversity, while composition stabilized.  

With our changing climate, northern agriculture will continue to expand to address food 

production demands in Canada and worldwide. Consequently, this study is important in showing 

the implication of land conversion and how physical, chemical, biological changes after forest 

conversion to agriculture in Thunder Bay Ontario. A comprehensive and holistic soil health 

assessment and evaluation show how soil functions are affected under dairy farm management 

practices and the necessity of maintaining environmentally friendly practices adapted for 

Thunder Bay and northern agriculture. Continued research and future studies in northern Ontario 

require the establishment of soil plots for monitoring soil health. In addition, complete soil 

sampling for the area is necessary to have a broad overview of soil health conditions for the 

region so that future research could reference a complete dataset for soil modelling, taking into 

account northern climate, soil health conditions, farm practices, and future climate scenarios. 

Finally, since northern agricultural areas will continue to expand, best management practices for 

northern regions are necessary, and the promotion and adoption of sustainable soil practices for 

farmers in the region.  
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APPENDIX A. Statistical analysis, Chapter 2 

Table S1. The F-statistics and probability levels from the marginal means mixed linear model to compare the effects of time of land conversion and soil depth on soil health 
attributes and CASH scores.  

  Surface Hardness Subsurface Hardness                                 

Effect 
Num 

df 
Denom 

df F  Sig. 
Num 

df 
Denom 

df F Sig.                                 

Time 2 15 2.43 0.122 2 15 1.903 0.183                                 

                                                   

  Wet Aggregate Stability Organic Matter ACE Protein Respiration Total N Total C 

 
Effect 

Num 
df 

Denom 
df F Sig. 

Num 
df 

Denom 
df F Sig. 

Num 
df 

Denom 
df F Sig. 

Num 
df 

Denom 
df F Sig. 

Num 
df 

Denom 
df F Sig. 

Num 
df 

Denom 
df F Sig. 

Time 2 14 1.035 0.381 2 14 4.711 0.027 2 14 5.448 0.018 2 14 6.367 0.011 2 14 4.017 0.042 2 14 5.260 0.020 

Depth 1 16 15.873 0.001 1 16 45.025 0.000 1 16 32.622 0.000 1 16 36.700 0.000 1 16 98.135 0.000 1 16 112.132 0.000 

Time*Depth 2 16 6.934 0.007 2 16 16.536 0.000 2 16 4.731 0.024 2 16 4.330 0.031 2 16 22.367 0.000 2 16 29.216 0.000 

                                                   

  POXC CASH Score P                         

Effect 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig.                         

Time 2 14 4.437 0.032 2 14 3.475 0.060 2 14 3.749 0.049                         

Depth 1 16 19.146 0.000 1 16 16.733 0.001 1 17 20.496 0.000                         

Time*Depth 2 16 0.534 0.596 2 16 1.433 0.268 2 17 0.321 0.730                         

  
 
                                                

  pH Fe Mn Zn K Sand 

Effect 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 

Time 2 14 3.001 0.083 2 14 1.487 0.260 2 14 0.399 0.678 2 14 0.509 0.612 2 14 0.289 0.753 2 14 0.635 0.544 

Depth 1 16 9.436 0.007 1 16 5.133 0.038 1 16 34.093 0.000 1 16 14.110 0.002 1 16 27.702 0.000 1 16 16.432 0.001 

Time*Depth 2 16 0.230 0.797 2 16 2.566 0.108 2 16 2.581 0.107 2 16 0.833 0.453 2 16 0.001 0.999 2 16 2.233 0.139 

                                                  

                                                  

  Mg Silt Clay                         
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Effect 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig. 
Num 

df 
Denom 

df F Sig.                         

Time 2 14 2.235 0.144 2 14 0.470 0.634 2 14 0.342 0.716                         

Depth 1 16 2.766 0.116 1 16 4.099 0.060 1 16 0.024 0.880                         

Time*Depth 2 16 2.327 0.130 2 16 1.099 0.357 2 16 0.107 0.899                         

 

Table S2. The F-statistics and probability levels from the marginal means mixed linear model to compare the effect of time of conversion on soil health indicators and scores in the 
0-5 and 5-15 cm depth intervals. 

 0-5 cm 5-15 cm 

Attribute Num df Denom df F  Sig Num df Denom df F  Sig 

Wet Aggregate Stability 2 14 2.640 0.107 2 14 0.209 0.814 

Organic Matter 2 14 9.066 0.003 2 14 1.547 0.247 

ACE Protein 2 14 9.647 0.002 2 14 1.905 0.186 

Respiration  2 14 8.180 0.004 2 14 2.184 0.149 

TN 2 14 7.660 0.006 2 14 1.150 0.345 

TC 2 14 8.791 0.003 2 14 1.914 0.184 
 

Table S3. The F-statistics and probability levels from a one-way ANOVA model to compare the effect of soil depth on soil health indicators in the time since conversion 
categories.  

 < 10 y agriculture > 50 y agriculture Forest 

Attribute F Sig. F Sig. F Sig. 

Wet Aggregate Stability 0.058 0.814 0.046 0.835 4.337 0.064 

Organic Matter 1.764 0.214 0.070 0.797 8.204 0.017 

ACE Protein 3.918 0.076 0.863 0.375 6.269 0.031 

Respiration  1.045 0.331 4.256 0.066 16.048 0.002 

TN 2.100 0.178 0.959 0.351 12.085 0.006 

TC 2.231 0.166 0.713 0.418 9.682 0.011 
Table S4.Pearson correlation coefficients for CASH indicators. NS is not statistically significant at alpha=0.05. Correlations are significant at the 0.01 level unless indicated 
otherwise.  
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PR15, Penetration Resistance 0-15 cm; PR45, Penetration Resistance 15-45 cm; WAS, Wet Aggregate Stability; TN, Total Nitrogen; TC, Total Carbon; OM, 

Organic Matter; ACE-Protein, Soil Protein; Resp, Soil Respiration; POXC, Active Carbon. 

Sand Silt Clay PR15 PR45 WAS pH P K Mg Fe Mn Zn TN TC OM

ACE 

Protein Resp POXC

Sand 1.000

Silt -0.875 1.000

Clay -0.689 ns ns

PR15 ns ns ns 1.000

PR45 ns ns ns 0.906* 1.000

WAS 0.464 -0.444 ns ns ns 1.000

pH ns ns ns ns ns ns 1.000

P ns ns ns ns ns ns ns 1.000

K -0.373* ns 0.371* ns ns ns ns 0.687 1.000

Mg -0.559 ns 0.801 ns -0.371* ns 0.395* ns ns 1.000

Fe ns ns ns ns -0.337* ns -0.353* -.0367* ns ns 1.000

Mn ns ns ns ns ns 0.478 ns ns ns ns ns 1.000

Zn ns ns ns ns ns 0.332* ns 0.633** 0.593 ns ns ns

TN ns ns ns ns ns 0.684 ns ns ns 0.331* ns 0.641 0.341* 1.000

TC ns ns ns ns ns 0.676 ns ns ns 0.365* ns 0.643 ns 0.982 1.000

OM ns ns ns ns ns 0.697 ns ns ns 0.458 ns 0.578 ns 0.937 0.955 1.000

ACE Protein ns ns ns ns ns 0.682 ns ns ns ns ns 0.743 ns 0.879 0.903 0.862 1.000

Resp ns ns ns ns ns 0.544 ns ns 0.439 0.420* ns 0.422* 0.465 0.840 0.807 0.773 0.751 1.000

POXC ns ns ns ns ns 0.430 ns ns ns 0.408* ns 0.534 ns 0.795 0.793 0.787 0.797 0.820 1.000

* Correlation is significant at the 0.05 level (2-tailed).
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Table S5. Farm management history for 2019 soil sample collections, according to CASH sampling assessment 

Farm 
field 

Depth Time Area 
Crop information 

2016/2017/2018 2019 

1 5 B Murrillo alfalfa/barley/corn wheat 

2 15 B Murrillo alfalfa/barley/corn wheat 

3 5 C Murrillo alfalfa/wheat/corn corn 

4 15 C Murrillo alfalfa/wheat/corn corn 

5 5 A Murrillo forest  forest 

6 15 A Murrillo forest  forest 

7 5 A Murrillo forest  forest 

8 15 A Murrillo forest  forest 

9 5 B Murrillo alfalfa/alfalfa/corn corn 

10 15 B Murrillo alfalfa/alfalfa/corn corn 

11 5 C Murrillo wheat//barley/corn barley 

12 15 C Murrillo wheat//barley/corn barley 

13 5 A Murrillo forest  forest 

14 15 A Murrillo forest  forest 

15 5 B Murrillo alfalfa/wheat/corn corn 

16 15 B Murrillo alfalfa/wheat/corn corn 

17 5 C Murrillo wheat/alfalfa/alfalfa alfalfa 

18 15 C Murrillo wheat/alfalfa/alfalfa alfalfa 

19 5 A Slate River forest  forest 

20 15 A Slate River forest  forest 

21 5 B Slate River wheat/corn/alfalfa alfalfa 

22 15 B Slate River wheat/corn/alfalfa alfalfa 

23 5 C Slate River wheat/alfalfa/alfalfa alfalfa 

24 15 C Slate River wheat/alfalfa/alfalfa alfalfa 

25 5 A Slate River forest  forest 

26 15 A Slate River forest  forest 

27 5 C Slate River alfalfa/alfalfa/corn barley 

28 15 C Slate River alfalfa/alfalfa/corn barley 

29 5 C Slate River alfalfa/wheat/corn corn 

30 15 C Slate River alfalfa/wheat/corn corn 

31 5 A Slate River forest  forest 

32 15 A Slate River forest  forest 

33 5 B Slate River wheat/corn/alfalfa alfalfa 

34 15 B Slate River wheat/corn/alfalfa alfalfa 

35 5 B Slate River alfalfa/alfalfa/corn corn 

36 15 B Slate River alfalfa/alfalfa/corn corn 
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APPENDIX B. Statistical analysis, Chapter 3 

Table S6.  Influential biological soil health indicators by time since conversion  

Indicator OM (%) 
Soil respiration  

Soil protein (mg g-1) POXC (mg g-1) 
(mg CO2g-1 4 days-1) 

Time since 
conversion 

A B C D A B C D A B C D A B C D 

Mean 11.99 5.65 5.11 7.5 1.33 0.83 0.91 0.91 25.4 13.34 9.9 16.47 1343.33 905.89 911.85 1142.66 

Std. Deviation 6.03 2.11 1.87 4.31 0.43 0.3 0.44 0.35 9.58 3.92 2.93 8.02 752.27 238.35 115.26 478.26 

Forest = A, <10 y agriculture = B, >50 y agriculture =C, >10 y <50 y agriculture =D, all agriculture=BCD.  

Table S7. Influential physical indicators by time since conversion  

Indicator Wet aggregate stability (%) Surface hardness (Kpa) 

Time since conversion A B C D A B C D 

Mean 64.59 50.11 42.44 46.5 177.78 225 214.29 231.25 

Std. Deviation 12.91 10.12 12.04 20.7 25.57 58.39 60.22 57.37 
Forest = A, <10 y agriculture = B, >50 y agriculture =C, >10 y <50 y agriculture =D, all agriculture=BCD.  

Table S8. Influential chemical indicators by time since conversion  

Indicator Mg (ppm) 

Time since conversion A B C D 

Mean 797.17 448.17 666.23 480.89 

Std. Deviation 418.31 284.35 212.31 218.06 

Forest = A, <10 y agriculture = B, >50 y agriculture =C, >10 y <50 y agriculture =D, all agriculture=BCD.  

Table S9. K-fold cross-validation model for time since conversion in the overall soil health score. 

Indicator Categories   

Time since conversion A B C D BCD All dataset 

RMSE 47.9 498.0 43.5 34.9 4.5 6.1 

MAE 42.9 495.7 42.6 31.5 3.9 4.6 
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APPENDIX C. Statistical analysis, Chapter 4 

Table S10. qPCR assays: target organisms, amplification conditions and primer sources, and standard calibration identity 

Functiona 
Target gene/qPCR assay 
name 

Taxonomic Range Primers Cycling conditionsb Reference 

Taxonomic 
classification_Bacteria 

Bacterial 16S General Bacteria 16S_341F/534R 
35 cycles of 95 °C/5 s, 
60 °C/20 s 

(Watanabe, 
Kodama, & 
Harayama, 2001) 

Taxonomic classification_Fungi Fungal 18S General Fungi Fungal18S-FR1F/FF390-R  
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Vainio & Hantula, 
2000) 

Taxonomic 
classification_Archaea 

Archaeal 16S General Archaea ARC344F_16S/Arch806R_16S 
35 cycles of 95 °C/5 s, 
60 °C/20 s 

(Raskin, Stromley, 
Rittmann, & Stahl, 
1994); (Takahashi, 
Tomita, Nishioka, 
Hisada, & Nishijima, 
2014) 

Carbon cycling (Polyphenolic C 
breakdown) 

Laccase (multicopper 
oxidase -LMCO) 

Bacteria and Fungi Cu1A-F/Cu2-R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Kellner, Luis, & 
Buscot, 2007) 

Carbon cycling (Breakdown of 
oligosaccharides) 

Bglu (β-glucosidase) 
Bacteria; wide taxonomic 
range 

Bact-bglu2F/bglu4R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Cañizares, Benitez, 
& Ogunseitan, 
2011) 

Carbon cycling (Cellulose 
decomposition) 

cbhI (cellobiohydrolase) 
Fungi: Basidiomycota, 
Ascomycota 

fungi-cbhI-F/R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Edwards, 
Upchurch, & Zak, 
2008) 

C+N cycling (Hemicelluloase 
decomposition) 

GH11 (glycoside 
hydrolase) 

Fungi: Basidiomycota, 
Ascomycota 

fungGH11-F/R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Barbi et al., 2014) 

C+N cycling (Nitrogen 
mineralization) 

apr (alkaline 
metallopeptidase) 

Primarily bacterial; 
dominance of 
Proteobacteria (i.e. 
Pseudomonas) 

Apr-F/R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Bach, Hartmann, 
Schloter, & Munch, 
2001) 

Nitrogen cycling (Nitrification ( 
NH4+ to  NO2-) 

B-amoA: ammonium 
monooxygenase 

Proteobacteria (BetaProteo 
eg 
Nitrosomonas/Nitrosospira) 

B-amoA-1F/R 
35 cycles of 95 °C/5 s, 
60 °C/20 s 

(Rotthauwe, Witzel, 
& Liesack, 1997) 
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Nitrogen cycling (Nitrification ( 
NH4+ to  NO2-) 

A-amoA: ammonium 
monooxygenase 

Archaea Gen-AOA-F/R 
35 cycles of 95 °C/5 s, 
60 °C/20 s 

(Meinhardt et al., 
2015) 

Nitrogen cycling (Nitrification: 
nitrite to nitrate) 

nxrA (nitrite 
oxidoreductase) 

Bacteria: Nitrobacter norA-1F/1R 
45 cycles of 95 °C/5 s, 
60 °C/30 s 

(Poly, Wertz, 
Brothier, & 
Degrange, 2008) 

Nitrogen cycling 
(Ammonification/Denitrification) 

narG: membrane bound 
nitrate reductase 

Bacteria: Proteobacteria narG-F/R 
35 cycles of 95 °C/5 s, 
60 °C/30 s 

(Gregory, Karakas-
Sen, Richardson, & 
Spiro, 2000) 

Nitrogen cycling (Dissimilatory 
nitrate reduction (nitrite to NH4) 

nrfA (dissimilatory 
nitrite reductase) 

Bacteria; wide taxonomic 
range 

nrfA-F2aw/7R1 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Welsh, Chee-
Sanford, Connor, 
Löffler, & Sanford, 
2014) 

Nitrogen cycling (denitrification 
(nitrite  to NO) 

nirk: copper-containing 
nitrite reductase 

Bacteria nirK-583-F/909-R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Liu et al., 2003) 

Nitrogen cycling (denitrification 
(nitrite  to NO) 

A-nirk: nitrite reductase Archaea anirKa_58F/578R 
45 cycles of 95 °C/5 s, 
60 °C/30 s 

(Lund, Smith, & 
Francis, 2012) 

Nitrogen cycling (denitrification 
(N2O to N2) 

nosZ: nitrous oxide 
reductase 

Bacteria: Clade I nosZ2-F/R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Henry, Bru, Stres, 
Hallet, & Philippot, 
2006) 

Phosphorous mineralization 
(Phosphoester and anhydride 
bond dephosphorylation) 

phoD (alkaline 
phosphatase) 

Bacteria; wide taxonomic 
range 

phoD-733F/R10831R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Ragot, Kertesz, & 
Bünemann, 2015) 

Phosphorous mineralization phoC (acid phosphatase) 
Bacteria; wide taxonomic 
range 

phoC-A-F1/R1 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Fraser, Lynch, 
Gaiero, Khosla, & 
Dunfield, 2017) 

Phosphorous mineralization 
(Phosphoester and anhydride 
bond dephosphorylation) 

phnX (Phosphono-
acetaldehyde hydrolase) 

Bacteria; Primarily 
Proteobacteria Firmicutes 

phnX-FW/RW 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Bergkemper et al., 
2016) 
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Phosphorous solubilization (C-P 
bond cleavage) 

pqqC (pyrroloquinoline 
quinone) 

Bacteria; Primarily 
Proteobacteria (Alpha-, 
Beta-, Gamma), 
Verrucomicrobia, 
Actinobacteria 

 pqqC-R/R 
40 cycles of 95 °C/5 s, 
60 °C/30 s 

(Zheng et al., 2017) 

All assays started with an initial denaturation step of 95 °C for 3 min and finished with a melt curve from 65 °C to 95 °C; c Excluding un-cultured references, 

Equimolar plasmid pools were used in assays where more than one organism is listed  

Sso: Sso Advanced™ Universal SYBR® Green Supermix (Bio-Rad, USA); Sensifast: SensiFAST™ Real-Time master mix (Bioline, UK); Itaq: Itaq Universal SYBR® 

Green Supermix (Bio-Rad, USA); all assays are run to extinction  
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Table S11. F statistics and probability levels from the two ways ANOVA table to compare the effects of time since conversion 
and soil depth for Archael16S, Bacteria16S, and Fungal 18S copies g-1 soil qPCR microbial communities at 0-5 cm depth 
interval   

ANOVA Log Archaeal copies ng -1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  1.01  3  0.34  6.83  1.52e-3  

Residuals  1.28  26  0.05       

Note.  Type III Sum of Squares 
 

Post Hoc  Archaeal ng -1 DNA soil  comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.20  0.12  -1.68  0.36  

   C  -0.33  0.11  -2.91  0.03 * 

   D  -0.47  0.11  -4.37  < .001 *** 

B  C  -0.13  0.12  -1.05  0.72  

   D  -0.28  0.12  -2.30  0.13  

C  D  -0.15  0.11  -1.27  0.59  

 * p < .05, ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Bacterial 16S copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  4.05e+11  3  1.35e+11  1.61  0.21  

Residuals  2.17e+12  26  8.36e+10       

Note.  Type III Sum of Squares 
 

Post Hoc Fungal 18S copies ng-1 DNA soil  comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -16510.98  4526.69  -3.65  6.01e-3 ** 

   C  -15661.87  4328.35  -3.62  6.46e-3 ** 

   D  -21267.69  4173.41  -5.10  < .001 *** 

B  C  849.11  4778.37  0.18  1.00  

   D  -4756.71  4638.48  -1.03  0.74  

C  D  -5605.82  4445.13  -1.26  0.59  

 * p < .05, ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

 

 

Table S12. F statistics and probability levels from the two ways ANOVA table to compare the effects of time since conversion 
and soil depth for Archael16S, Bacteria16S, and Fungal 18S copies ng-1 DNA soil qPCR microbial communities at 5--15 cm 
depth interval. 
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ANOVA - Log Archaeal ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  0.41  3  0.14  4.45  0.01  

Residuals  0.80  26  0.03       

Note.  Type III Sum of Squares 

 

Post Hoc Archaeal ng-1DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.18  0.09  -1.92  0.24  

   C  -0.23  0.09  -2.55  0.08  

   D  -0.30  0.09  -3.48  9.02e-3 ** 

B  C  -0.05  0.10  -0.49  0.96  

   D  -0.12  0.09  -1.26  0.60  

C  D  -0.07  0.09  -0.79  0.86  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 
ANOVA - Bacterial 16S copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  3.94e+11  3  1.31e+11  1.69  0.19  

Residuals  2.03e+12  26  7.80e+10       

Note.  Type III Sum of Squares 

 

ANOVA - Fungal 18S copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  1.37e+9  3  4.57e+8  8.33  < .001  

Residuals  1.43e+9  26  5.49e+7       

Note.  Type III Sum of Squares 

 

Post Hoc Fungal 18S copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -18763.19  3904.74  -4.81  < .001 *** 

   C  -8012.25  3733.64  -2.15  0.17  

   D  -11856.58  3599.99  -3.29  0.01 * 

B  C  10750.94  4121.83  2.61  0.07  

   D  6906.61  4001.16  1.73  0.33  

C  D  -3844.33  3834.37  -1.00  0.75  

 * p < .05, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

Table S13. Carbon cycling functional qPCR assays target organisms at 0-5 cm depth interval 
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ANOVA - Laccase copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  5.01e+7  3  1.67e+7  0.84  0.48  

Residuals  5.16e+8  26  1.99e+7       

 

Note.  Type III Sum of Squares 

 
ANOVA - Bglu copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  3.15e+6  3  1.05e+6  3.85  0.02  

Residuals  7.10e+6  26  273001.97       

 

Note.  Type III Sum of Squares 

 

Post Hoc Bglu copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -423.67  275.38  -1.54  0.43  

   C  -589.83  263.31  -2.24  0.14  

   D  -835.95  253.89  -3.29  0.01 * 

B  C  -166.16  290.69  -0.57  0.94  

   D  -412.28  282.18  -1.46  0.47  

C  D  -246.11  270.42  -0.91  0.80  
 
 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Log Cbhl ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  0.21  3  0.07  5.42  4.97e-3  

Residuals  0.34  26  0.01       

 

Note.  Type III Sum of Squares  
Post Hoc Cbhl ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.23  0.06  -3.79  4.18e-3 ** 

   C  -0.11  0.06  -2.00  0.22  

   D  -0.16  0.06  -2.88  0.04 * 

B  C  0.11  0.06  1.79  0.30  

   D  0.07  0.06  1.11  0.68  
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Table S14. Carbon cycling functional qPCR assays target organisms at 5-15 cm depth interval 

ANOVA - Laccase copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  1.01e+8  3  3.36e+7  0.89  0.46  

Residuals  9.77e+8  26  3.76e+7       

 

Note.  Type III Sum of Squares 

 

ANOVA - Bglu copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  5.97e+6  3  1.99e+6  1.30  0.30  

Residuals  3.99e+7  26  1.54e+6       

 

Note.  Type III Sum of Squares 

 

Kruskal-Wallis Test copies Cbhl ng-1 DNA soil  

Factor Statistic df p 

Categories  7.68  3  0.05  
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Table S15. Carbon + Nitrogen cycling functional qPCR assays target organisms at 0-5 cm depth interval 

ANOVA - APR copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  7.14e+6  3  2.38e+6  1.78  0.18  

Residuals  3.47e+7  26  1.33e+6       

Note.  Type III Sum of Squares 

 

ANOVA - Log gh11 ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  0.59  3   0.20  16.29  < .001  

Residuals  0.31  26  0.01       

Note.  Type III Sum of Squares 

 

Post Hoc gh11 ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.33  0.06  -5.69  < .001 *** 

   C  -0.30  0.06  -5.34  < .001 *** 

   D  -0.29  0.05  -5.50  < .001 *** 

B  C  0.03  0.06  0.55  0.95  

   D  0.04  0.06  0.60  0.93  

C  D  1.82e-3  0.06  0.03  1.00  

 *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

 



 

82 

 

Table S16. Carbon + Nitrogen cycling functional qPCR assays target organisms at 5-15 cm depth interval 

ANOVA - APR copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  4.23e+6  3  1.41e+6  0.46  0.71  

Residuals  8.00e+7  26  3.08e+6       

 

Note.  Type III Sum of Squares 

 

ANOVA - Log gh11copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  0.43  3  0.14  9.34  < .001  

Residuals  0.40  26  0.02       

 

Note.  Type III Sum of Squares 

 

Post Hoc gh11copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.31  0.07  -4.77  < .001 *** 

   C  -0.23  0.06  -3.77  4.48e-3 ** 

   D  -0.22  0.06  -3.67  5.65e-3 ** 

B  C  0.08  0.07  1.11  0.69  

   D  0.09  0.07  1.35  0.54  

C  D  0.01  0.06  0.22  1.00  

 

 * p < .05, ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 
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Table S17. Nitrogen cycling functional qPCR assays target organisms at 0-5 cm depth interval 

ANOVA - A-amoA-copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  3.06e+6  3  1.02e+6  7.06  1.26e-3  

Residuals  3.76e+6  26  144505.23       

Note.  Type III Sum of Squares 

 

Post Hoc A-amoA-copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -95.27  200.35  -0.48  0.96  

   C  -791.77  191.57  -4.13  1.77e-3 ** 

   D  -511.11  184.71  -2.77  0.05 * 

B  C  -696.50  211.49  -3.29  0.01 * 

   D  -415.83  205.30  -2.03  0.20  

C  D  280.67  196.74  1.43  0.49  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Log B-amoA copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  7.81  3  2.60  23.84  < .001  

Residuals  2.84  26  0.11       

Note.  Type III Sum of Squares 

 

Post Hoc B-amoA copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -1.12  0.17  -6.46  < .001 *** 

   C  -1.08  0.17  -6.52  < .001 *** 

   D  -1.13  0.16  -7.02  < .001 *** 

B  C  0.04  0.18  0.22  1.00  

   D  -2.68e-3  0.18  -0.02  1.00  

C  D  -0.04  0.17  -0.25  0.99  

 *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

 

Kruskal-Wallis Test nxrA copies ng-1 DNA soil 

Factor Statistic df p 

Categories  20.19  3  < .001  

Added categories diferentiation  
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Post Hoc nxrA copies ng-1 DNA soil comparisons - Categories  

Categories  pbonferroni 

A B 0.02** 
 C 0.004*** 
 D 0.004*** 

B C 0.4 
 D 0.48 

C D 1 

  

 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA - narG copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  2.21e+9  3  7.38e+8  0.28  0.84  

Residuals  6.85e+10  26  2.64e+9       

Note.  Type III Sum of Squares 

 

ANOVA - nrfA copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  4.06e+7  3  1.35e+7  2.91  0.05  

Residuals  1.21e+8  26  4.65e+6       

Note.  Type III Sum of Squares 

 

ANOVA - nirK copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  1.20e+8  3  3.99e+7  0.59  0.63  

Residuals  1.76e+9  26  6.79e+7       

Note.  Type III Sum of Squares 

 

ANOVA - aNirK copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  1244.52  3  414.84  2.12  0.12  

Residuals  5081.50  26  195.44       

Note.  Type III Sum of Squares 
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ANOVA - NosZ copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  5.86e+6  3  1.95e+6  1.40  0.27  

Residuals  3.64e+7  26  1.40e+6       

Note.  Type III Sum of Squares 
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Table S18.Nitrogen cycling functional qPCR assays target organisms at 5-15 cm depth interval 

ANOVA - A-amoA-copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  3.36e+6  3  1.12e+6  6.83  1.52e-3  

Residuals  4.27e+6  26  164111.95       

 

Note.  Type III Sum of Squares 

 

Post Hoc - A-amoA-copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -29.57  213.51  -0.14  1.00  

   C  -746.62  204.15  -3.66  5.87e-3 ** 

   D  -610.86  196.85  -3.10  0.02 * 

B  C  -717.05  225.38  -3.18  0.02 * 

   D  -581.30  218.78  -2.66  0.06  

C  D  135.76  209.66  0.65  0.92  

 

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Log B-amoA ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  3.42  3  1.14  11.36  < .001  

Residuals  2.61  26  0.10       

 

Note.  Type III Sum of Squares 

 

Post Hoc B-amoA ng-1 DNA soil Comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.70  0.17  -4.19  1.52e-3 ** 

   C  -0.72  0.16  -4.49  < .001 *** 

   D  -0.78  0.15  -5.04  < .001 *** 

B  C  -0.02  0.18  -0.10  1.00  

   D  -0.08  0.17  -0.44  0.97  

C  D  -0.06  0.16  -0.36  0.98  

 

 ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 
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ANOVA - Log nxrA copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  8.43  3  2.81  14.51  < .001  

Residuals  5.03  26  0.19       

Note.  Type III Sum of Squares 

 

Post Hoc nxrA copies ng-1 DNA soil comparisons - Categories  

  Mean Difference SE t ptukey  

A  B  -1.23  0.23  -5.28  < .001 *** 

   C  -0.95  0.22  -4.27  
1.25e-

3 
** 

   D  -1.22  0.21  -5.72  < .001 *** 

B  C  0.28  0.24  1.14  0.67  

   D  1.95e-3  0.24  8.20e-3  1.00  

C  D  -0.28  0.23  -1.22  0.62  

 

 ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 
ANOVA - narG copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  3.02e+9  3  1.01e+9  0.41  0.74  

Residuals  6.33e+10  26  2.43e+9       

Note.  Type III Sum of Squares 

 
ANOVA – nrfA copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  2.29e+7  3  7.64e+6  1.33  0.29  

Residuals  1.50e+8  26  5.76e+6       

Note.  Type III Sum of Squares 

 
ANOVA - nirK copies ng-1 DNA soil  

Cases 
Sum of 
Squares 

df Mean Square F p 

Categories  8.41e+6  3  2.80e+6  0.08  0.97  

Residuals  8.68e+8  26  3.34e+7       

Note.  Type III Sum of Squares 

 
Kruskal-Wallis Test aNirK copies ng-1 DNA 

Factor Statistic df p 

Categories  4.88  3  0.18  

ANOVA - NosZ copies ng-1 DNA  

Cases 
Sum of 
Squares 

df Mean Square F p 

Categories  958310.00  3  319436.67  0.21  0.89  

Residuals  3.99e+7  26  1.53e+6       

 

Note.  Type III Sum of Squares 



 

88 

 

Table S19. Phosphorus mineralization functional qPCR assays target organisms at 0-5 cm depth interval 

ANOVA - Log phoC copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  0.20  3  0.07  10.78  < .001  

Residuals  0.16  26  6.03e-3       

Note.  Type III Sum of Squares 

 

Post Hoc phoC copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  0.16  0.04  3.83  3.79e-3 ** 

   C  0.20  0.04  5.02  < .001 *** 

   D  0.17  0.04  4.38  < .001 *** 

B  C  0.04  0.04  0.91  0.80  

   D  8.57e-3  0.04  0.20  1.00  

C  D  -0.03  0.04  -0.77  0.87  

 ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - phoD copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  1.61e+10  3  5.36e+9  5.28  5.61e-3  

Residuals  2.64e+10  26  1.02e+9       

Note.  Type III Sum of Squares 

 

Post Hoc  phoD copies ng-1 DNA soil comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  54359.88  16794.64  3.24  0.02 * 

   C  36175.63  16058.75  2.25  0.14  

   D  53867.27  15483.90  3.48  9.10e-3 ** 

B  C  -18184.25  17728.38  -1.03  0.74  

   D  -492.60  17209.39  -0.03  1.00  

C  D  17691.65  16492.01  1.07  0.71  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - pqqC copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  1.25e+7  3  4.16e+6  1.12  0.36  

Residuals  9.67e+7  26  3.72e+6       

 

Note.  Type III Sum of Squares 
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ANOVA - phnX copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  315921.20  3  105307.07  1.17  0.34  

Residuals  2.35e+6  26  90230.11       

 

Note.  Type III Sum of Squares 
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Table S20. Phosphorus mineralization functional qPCR assays target organisms at 5-15 cm depth interval 

ANOVA - Log phoC copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  0.05  3  0.02  2.21  0.11  

Residuals  0.21  26  7.99e-3       

Note.  Type III Sum of Squares 

 

ANOVA - phoD copies ng-1 DNA soil  

Cases Sum of Squares df Mean Square F p 

Categories  1.49e+10  3  4.97e+9  1.48  0.24  

Residuals  8.74e+10  26  3.36e+9       

Note.  Type III Sum of Squares 

 

ANOVA - pqqC copies ng-1 DNA soil 

Cases Sum of Squares df Mean Square F p 

Categories  1.13e+7  3  3.78e+6  1.29  0.30  

Residuals  7.64e+7  26  2.94e+6       

Note.  Type III Sum of Squares 

 

Kruskal-Wallis Test Phnx copies ng-1 DNA soil  

Factor Statistic df p 

Categories  3.07  3  0.38  
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Table S21. Sequence processing summary for all dataset collected in boreal soils  

Bacterial 16S - Dataset 

Sample Number  60 

Read 1 23,676,44 

Read 2 23,676,44 

Primer removal/merging 22,734,81 

Filtering (maxee=1) 17,210,30 

Trimming (crop=375) 17,210,30 

Total Sequence Loss (before clustering)  6,466,14 

Cumulative % Sequence Loss (before clustering)  27.31% 

Remaining Sequences (after clustering)  12,843,76 

Cumulative % Sequence Loss (after clustering)  45.75% 

OTU Count (non-rarefied) | 98%  32,01 

Min 19,788.00 

Max 257,026.00 

Median 189,397.50 

Mean 183,482.33 

 

Fungal ITS - Dataset 

Sample Number  60 

Read 1 17,760,54 

Read 2 17,760,54 

Primer removal/merging 17,238,05 

Filtering (maxee=1) 15,382,39 

Trimming (crop=420) 15,382,39 

Total Sequence Loss (before clustering)  2,378,15 

Cumulative % Sequence Loss (before clustering)  13.39% 

Remaining Sequences (after clustering)  14,478,95 

Cumulative % Sequence Loss (after clustering)  18.48% 

OTU Count (non-rarefied) | 98% 16,48 

 Min 119,028.00 

 Max 305,405.00 

 Median 201,367.00 

 Mean 206,842.16 
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Table S22. Bacteria 16S Shannon diversity and Simpson index assessed by OTU reads at 0-5 cm depth interval  

ANOVA – Bacterial 16s Shannon diversity  

Cases Sum of Squares df Mean Square F p 

Categories  0.93  3  0.31  3.16  0.04  

Residuals  2.54  26  0.10       

 

Note.  Type III Sum of Squares 

 

Post Hoc Bacterial 16s comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.24  0.16  -1.48  0.46  

   C  -0.20  0.16  -1.24  0.61  

   D  -0.47  0.15  -3.06  0.02 * 

B  C  0.05  0.17  0.28  0.99  

   D  -0.22  0.17  -1.31  0.56  

C  D  -0.27  0.16  -1.67  0.36  

 

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test Bacterial 16s Simpson index  

Factor Statistic df p 

Categories  13.74  3  3.28e-3  

 

Post Hoc Bacterial 16s Simpson index 

Categories  pbonferroni 

A B 1 
 C 0.25 
 D 0.002** 

B C 0.83 
 D 0.05 

C D 1 

  

 * p < .05, ** p < .01, ***p<0.005 
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Table S23. Bacteria 16S Shannon diversity and Simpson index assessed by OTU reads at 5-15 cm depth interval  

ANOVA – Bacterial 16s Shannon Diversity  

Cases Sum of Squares df Mean Square F p 

Categories  1.09  3  0.36  4.86  8.16e-3  

Residuals  1.94  26  0.07       

 

Note.  Type III Sum of Squares 

 

Post Hoc Bacterial 16s comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.40  0.14  -2.80  0.04 * 

   C  -0.25  0.14  -1.84  0.28  

   D  -0.47  0.13  -3.55  7.68e-3 ** 

B  C  0.15  0.15  0.99  0.76  

   D  -0.07  0.15  -0.46  0.97  

C  D  -0.22  0.14  -1.54  0.43  
 

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Log Bacterial 16s Simpson index  

Cases Sum of Squares df Mean Square F p 

Categories  9.21e-7  3  3.07e-7  2.50  0.08  

Residuals  3.19e-6  26  1.23e-7       

Note.  Type III Sum of Squares 
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Table S24.  Fungal ITS Shannon diversity and Simpson index assessed by OTU reads at 0-5 cm depth interval   

ANOVA - Fungal ITS Shannon diversity  

Cases Sum of Squares df Mean Square F p 

Categories  1.43  3  0.48  0.88  0.46  

Residuals  14.05  26  0.54       

Note.  Type III Sum of Squares 

 

ANOVA – Fungal ITS Simpson index  

Cases Sum of Squares df Mean Square F p 

Categories  4.50e-3  3  1.50e-3  0.48  0.70  

Residuals  0.08  26  3.14e-3       

Note.  Type III Sum of Squares 
 

Table S 25. Fungal ITS Shannon diversity and Simpson index assessed by OTU reads at 5-15 cm depth interval 

 

ANOVA - Fungal ITS Shannon diversity 

Cases Sum of Squares df Mean Square F p 

Categories  4.38  3  1.46  2.58  0.07  

Residuals  14.69  26  0.57       

Note.  Type III Sum of Squares 

 

ANOVA - Fungal ITS Simpson index 

Cases Sum of Squares df Mean Square F p 

Categories  0.01  3  3.81e-3  1.30  0.30  

Residuals  0.08  26  2.94e-3       

Note.  Type III Sum of Squares 
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Table S26. Similarities by time since conversion and depths in bacterial 16S and fungal ITS assessed by OTU using envfit 
function in the vegan package at 0-5 cm and 5-15 cm depth intervals  

Ordination in Bacterial 16S by time since conversion at 0-5 cm depth 
interval   

Vectors NMDS1 NMDS2 r2 Pr(>r)  

A  0.76  0.62  0.71  0.001 ***   

B  -0.98  0.22  0.26  0.02 *   

C  -0.84  -0.55  0.04  0.53    

D  -0.12  -0.99  0.28  0.009 **   

‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations:999 
 
Ordination in Bacterial 16S by time since conversion at 5 -15 cm depth 
interval   

Vectors NMDS1 NMDS2 r2 Pr(>r)  

A  0.96  -0.27  0.25  0.03 ***   

B  -0.99  0.16  0.27  0.01 *   

C  -0.28  -0.96  0.03  0.69    

D  0.05  -0.99  0.04  0.52    

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations:999 
 

Ordination in Fungal ITS by time since conversion at 0-5 cm depth interval  

Vectors NMDS1 NMDS2 r Pr(>r)  

A  0.94  0.33  0.68  0.001 ***   

B  -0.23  -0.97  0.04  0.60    

C  -0.93  0.36  0.10  0.24    

D  -0.93  0.37  0.27  0.02 *   

 

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations:999 
 

Ordination in Fungal ITS by time since conversion at 5-15 cm depth interval   

Vectors NMDS1 NMDS2 r Pr(>r)  

A  -0.95  0.30  0.66  0.001 ***   

B  0.13  0.99  0.03  0.66    

C  0.80  
-
0.60 

 0.10  0.21    

D  0.88  
-
0.47 

 0.31  0.008 *   

 

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations:999 
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Table S 27. Pairwise Adonis multilevel comparison by time since conversion and depth in bacterial 16S and fungal ITS assessed 
by OTU using adonis differences are considered significant if p < 0.05. 

Bacterial 16S OTU for categories at 0-5 cm depth interval 

Source Df  R2  Pr(>r)  

Categories  3  0.25    0.001***    

Residual  26  0.75        

 

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations = 999 

 
Post hoc Bacteria 16S OTU comparisons by time since conversion at 0-5 cm depth interval 

Pairs  F.model   R2 p.adjusted  

A  B 0.22  0.14  0.14 
  C 0.16  0.19  0.012 . 
   D 0.18 

 0.20  0.006* 

B  C 0.09   0.15   0.11 

  D 1.93  0.14   0.14 

C  D 0.93  0.06  1.0 

 

Bacterial 16S OTU for categories at 5-15 cm depth interval 

Source Df  R2  Pr(>r)  

Categories  3  0.18    0.004***    

Residual  26  0.82        

 

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations = 999 

 
Post hoc Bacteria 16S OTU comparisons by time since conversion at 5-15 cm depth interval 

Pairs  F.model   R2 p.adjusted  

A  B 2.46  0.16  0.08 
  C 2.04  0.13  0.11 
   D 1.94 

 0.11  0.19 

B  C 1.76   0.14   0.33 

  D 1.82  0.13   0.32 

C  D 0.94  0.07  1.0 
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Fungal ITS for categories at 0-5 cm depth interval 

Source Df  R2  Pr(>r)  

Categories  3  0.21    0.001***    

Residual  26  0.79        

 

Number of permutations = 999 

 
Post hoc Fungal ITS comparisons by time since conversion 0-5 cm depth interval  

Pairs  F.model   R2 p.adjusted  

A  B 2.54  
0.16 

 0.01 . 
  C 2.85  0.17  0.006* 
   D 4.34 

 0.22  0.006* 

B  C 1.41   0.14   0.83 

  D 1.27  0.10   1.0 

C  D 0.76  0.06  1.0 

 

Fungal ITS for categories at 5-15 cm depth interval 

Source Df  R2  Pr(>r)  

Categories  3  0.25    0.001***    

Residual  26  0.75        

 

Significant codes: ‘***’ 0.001, ‘**’0.01, ‘*’ 0.05 

Number of permutations = 999 

 
Post hoc Fungal ITS comparisons by time since conversion 5-15 cm depth interval  

Pairs  F.model   R2 p.adjusted  

A  B 2.58  0.17  0.02 . 
  C 4.25  0.23  0.01 . 
   D 5.20  0.26  0.006* 

B  C 1.84  0.14  0.14 

  D 1.80  0.13  0.19 

C  D 0.85  0.06  1.0 
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Table S 28. ANOVA analysis Bacterial OTU communities at 0-5 cm depth interval 

ANOVA – Acidobacteria-Chloracidobacteria.  

Cases Sum of Squares df Mean Square F p 

Categories  1.92e-4  3  6.39e-5  2.53  0.08  

Residuals  6.58e-4  26  2.53e-5       

Note.  Type III Sum of Squares 

 

ANOVA - p__Actinobacteria.c__Acidimicrobiia  

Cases Sum of Squares df Mean Square F p 

Categories  1.57e-4  3  5.24e-5  12.30  < .001  

Residuals  1.11e-4  26  4.26e-6       

Note.  Type III Sum of Squares 

 

Post Hoc Acidimicrobiia comparisons- Categories  
  Mean Difference SE t ptukey  

A  B  4.32e-3  1.09e-3  3.97  2.68e-3 ** 

   C  4.52e-3  1.04e-3  4.34  1.04e-3 ** 

   D  5.62e-3  1.00e-3  5.60  < .001 *** 

B  C  1.95e-4  1.15e-3  0.17  1.00  

   D  1.30e-3  1.12e-3  1.17  0.65  

C  D  1.11e-3  1.07e-3  1.03  0.73  

 ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Acidobacteria - Acidobacteria.6  

Cases Sum of Squares df Mean Square F p 

Categories  0.01  3  4.64e-3  5.94  3.16e-3  

Residuals  0.02  26  7.81e-4       

Note.  Type III Sum of Squares 

 

Post Hoc Acidobacteria.6 comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  0.06  0.01  4.15  1.68e-3 ** 

   C  0.03  0.01  2.38  0.11  

   D  0.02  0.01  1.78  0.30  

B  C  -0.03  0.02  -1.77  0.31  

   D  -0.04  0.02  -2.45  0.09  

C  D  -9.37e-3  0.01  -0.65  0.92  

 ** p < .01 

Note.  P-value adjusted for comparing a family of 4 
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ANOVA - Acidobacteria - Acidobacteriia  

Cases Sum of Squares df Mean Square F p 

Categories  7.05e-4  3  2.35e-4  3.30  0.04  

Residuals  1.85e-3  26  7.11e-5       

Note.  Type III Sum of Squares 

 

Post Hoc  Acidobacteriia comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  -0.01  4.44e-3  -2.88  0.04 * 

   C  -3.78e-3  4.25e-3  -0.89  0.81  

   D  -4.61e-4  4.10e-3  -0.11  1.00  

B  C  9.03e-3  4.69e-3  1.92  0.24  

   D  0.01  4.55e-3  2.71  0.05  

C  D  3.32e-3  4.36e-3  0.76  0.87  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Actinobacteria - Actinobacteria 

Cases Sum of Squares df Mean Square F p 

Categories  6.17e-3  3  2.06e-3  7.15  1.17e-3  

Residuals  7.48e-3  26  2.88e-4       

Note.  Type III Sum of Squares 

 

Post Hoc Actinobacteria comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.03  8.94e-3  -3.80  4.12e-3 ** 

   C  -0.03  8.55e-3  -3.21  0.02 * 

   D  -0.03  8.24e-3  -3.85  3.65e-3 ** 

B  C  6.49e-3  9.44e-3  0.69  0.90  

   D  2.25e-3  9.16e-3  0.25  0.99  

C  D  -4.24e-3  8.78e-3  -0.48  0.96  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test Alpha-proteobacteria  

Factor Statistic df p 

Categories  10.70  3  0.01  

 

Post Hoc Alpha-proteobacteria -Categories  
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Categories  pbonferroni 

A B 1.00 
 C 0.85 
 D 0.36 

B C 0.007*** 
 D 0.016** 

C D 1.00 

  

 * p < .05, ** p < .01, ***p<0.005 

 

Kruskal-Wallis Test Firmicutes - Bacilli  

Factor Statistic df p 

Categories  4.04  3  0.26  

 

 

ANOVA - Proteobacteria - Betaproteobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  8.08e-4  3  2.69e-4  0.40  0.76  

Residuals  0.02  26  6.81e-4       

Note.  Type III Sum of Squares 

 

Kruskal-Wallis Test  Firmicutes - Clostridia 

Factor Statistic df p 

Categories  8.54  3  0.04  

 

 

Post Hoc  Clostridia -Categories  

 Categories  pbonferroni 

A B 1.00 
 C 0.85 
 D 0.36 

B C 0.007* 
 D 0.02* 

C D 1.00 
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 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA – Proteobacteria - Deltaproteobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  8.88e-4  3  2.96e-4  6.61  1.82e-3  

Residuals  1.17e-3  26  4.48e-5       

Note.  Type III Sum of Squares 

 

Post Hoc Deltaproteobacteria Comparisons –Categories  
  Mean Difference SE t ptukey  

A  B  0.01  3.53e-3  4.16  1.66e-3 ** 

   C  9.40e-3  3.37e-3  2.79  0.05 * 

   D  0.01  3.25e-3  3.09  0.02 * 

B  C  -5.27e-3  3.72e-3  -1.41  0.50  

   D  -4.62e-3  3.62e-3  -1.28  0.58  

C  D  6.47e-4  3.46e-3  0.19  1.00  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Chloroflexi - Ellin6529  

Cases Sum of Squares df Mean Square F p 

Categories  1.34e-4  3  4.45e-5  3.28  0.04  

Residuals  3.53e-4  26  1.36e-5       

Note.  Type III Sum of Squares 

 

Post Hoc Ellin6529 comparisons by categories  
  Mean Difference SE t ptukey  

A  B  -3.43e-3  1.94e-3  -1.77  0.31  

   C  -4.17e-3  1.86e-3  -2.25  0.14  

   D  -5.29e-3  1.79e-3  -2.96  0.03 * 

B  C  -7.36e-4  2.05e-3  -0.36  0.98  

   D  -1.86e-3  1.99e-3  -0.93  0.79  

C  D  -1.12e-3  1.91e-3  -0.59  0.93  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Proteobacteria - Gammaproteobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  2.07e-3  3  6.90e-4  2.36  0.09  

Residuals  7.61e-3  26  2.93e-4       

Note.  Type III Sum of Squares 
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ANOVA – Gemmatimonadetes - Gemm.1  

Cases Sum of Squares df Mean Square F p 

Categories  1.59e-4  3  5.29e-5  5.29  5.56e-3  

Residuals  2.60e-4  26  1.00e-5       

Note.  Type III Sum of Squares 

 

Post Hoc  Gemm.1- comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  -2.37e-3  1.67e-3  -1.42  0.50  

   C  -3.72e-3  1.59e-3  -2.34  0.12  

   D  -6.00e-3  1.54e-3  -3.90  3.19e-3 ** 

B  C  -1.35e-3  1.76e-3  -0.77  0.87  

   D  -3.62e-3  1.71e-3  -2.12  0.17  

C  D  -2.27e-3  1.64e-3  -1.39  0.52  

 ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA -Gemmatimonadetes - Gemmatimonadetes  

Cases Sum of Squares df Mean Square F p 

Categories  8.53e-4  3  2.84e-4  6.26  2.42e-3  

Residuals  1.18e-3  26  4.54e-5       

Note.  Type III Sum of Squares 

 

Post Hoc Gemmatimonadetes comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -0.01  3.55e-3  -4.17  1.62e-3 ** 

   C  -8.24e-3  3.40e-3  -2.43  0.10  

   D  -9.21e-3  3.27e-3  -2.81  0.04 * 

B  C  6.56e-3  3.75e-3  1.75  0.32  

   D  5.59e-3  3.64e-3  1.54  0.43  

C  D  -9.68e-4  3.49e-3  -0.28  0.99  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA - Actinobacteria - MB.A2.108  

Cases Sum of Squares df Mean Square F p 

Categories  3.02e-4  3  1.01e-4  5.97  3.08e-3  

Residuals  4.38e-4  26  1.68e-5       

Note.  Type III Sum of Squares 
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Post Hoc MB.A2.108 comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  7.33e-3  2.16e-3  3.39  0.01 * 

   C  6.30e-3  2.07e-3  3.05  0.03 * 

   D  7.04e-3  1.99e-3  3.53  7.98e-3 ** 

B  C  -1.02e-3  2.28e-3  -0.45  0.97  

   D  -2.82e-4  2.22e-3  -0.13  1.00  

C  D  7.39e-4  2.12e-3  0.35  0.99  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Nitrospirae -Nitrospira  

Cases Sum of Squares df Mean Square F p 

Categories  1.15e-4  3  3.82e-5  0.92  0.44  

Residuals  1.07e-3  26  4.13e-5       

Note.  Type III Sum of Squares 

 

 

ANOVA – Planctomycetes -Planctomycetia  

Cases Sum of Squares df Mean Square F p 

Categories  2.31e-4  3  7.69e-5  3.79  0.02  

Residuals  5.27e-4  26  2.03e-5       

Note.  Type III Sum of Squares 

 

Post Hoc Planctomycetia Comparisons by categories  
  Mean Difference SE t ptukey  

A  B  3.34e-3  2.37e-3  1.41  0.51  

   C  5.38e-3  2.27e-3  2.37  0.11  

   D  7.00e-3  2.19e-3  3.20  0.02 * 

B  C  2.04e-3  2.51e-3  0.81  0.85  

   D  3.66e-3  2.43e-3  1.50  0.45  

C  D  1.62e-3  2.33e-3  0.70  0.90  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Actinobacteria - Thermoleophilia  

Cases Sum of Squares df Mean Square F p 

Categories  6.85e-3  3  2.28e-3  4.49  0.01  

Residuals  0.01  26  5.08e-4       

Note.  Type III Sum of Squares 
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Post Hoc Thermoleophilia Comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  7.62e-3  0.01  0.64  0.92  

   C  0.01  0.01  0.99  0.76  

   D  0.04  0.01  3.51  8.38e-3 ** 

B  C  3.64e-3  0.01  0.29  0.99  

   D  0.03  0.01  2.53  0.08  

C  D  0.03  0.01  2.33  0.12  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 
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Table S29. ANOVA analysis Bacterial OTU communities at 5-15 cm depth interval 

 
ANOVA Acidobacteria - Chloracidobacteria.  

Cases Sum of Squares df Mean Square F p 

Categories  3.53e-4  3  1.18e-4  2.49  0.08  

Residuals  1.23e-3  26  4.74e-5       

Note.  Type III Sum of Squares 

 

ANOVA  Actinobacteria - Acidimicrobiia  

Cases Sum of Squares df Mean Square F p 

Categories  7.06e-5  3  2.35e-5  6.34  2.26e-3  

Residuals  9.65e-5  26  3.71e-6       

Note.  Type III Sum of Squares 

 

Post Hoc Acidimicrobiia comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  2.82e-3  1.02e-3  2.78  0.05 * 

   C  3.66e-3  9.71e-4  3.77  4.43e-3 ** 

   D  3.33e-3  9.36e-4  3.55  7.59e-3 ** 

B  C  8.37e-4  1.07e-3  0.78  0.86  

   D  5.03e-4  1.04e-3  0.48  0.96  

C  D  -3.34e-4  9.97e-4  -0.34  0.99  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA -Acidobacteria - Acidobacteria.6  

Cases Sum of Squares df Mean Square F p 

Categories  4.55e-3  3  1.52e-3  1.83  0.17  

Residuals  0.02  26  8.29e-4       

Note.  Type III Sum of Squares 

 

ANOVA – Acidobacteria - Acidobacteriia  

Cases Sum of Squares df Mean Square F p 

Categories  6.30e-4  3  2.10e-4  1.38  0.27  

Residuals  3.97e-3  26  1.53e-4       

Note.  Type III Sum of Squares 

 

ANOVA -Actinobacteria - Actinobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  1.72e-3  3  5.73e-4  3.51  0.03  

Residuals  4.25e-3  26  1.64e-4       
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ANOVA -Actinobacteria - Actinobacteria  

Cases Sum of Squares df Mean Square F p 

Note.  Type III Sum of Squares 

 
Post Hoc Actinobacteria comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  -0.02  6.74e-3  -3.23  0.02 * 

   C  -7.59e-3  6.44e-3  -1.18  0.65  

   D  -9.34e-3  6.21e-3  -1.50  0.45  

B  C  0.01  7.12e-3  1.99  0.22  

   D  0.01  6.91e-3  1.80  0.30  

C  D  -1.75e-3  6.62e-3  -0.26  0.99  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test Proteobacteria - Alphaproteobacteria  

Factor Statistic df p 

Categories  7.35  3  0.06  

 

ANOVA -Firmicutes - Bacilli  

Cases Sum of Squares df Mean Square F p 

Categories  1.48e-3  3  4.92e-4  0.65  0.59  

Residuals  0.02  26  7.61e-4       

Note.  Type III Sum of Squares 

 

ANOVA -Proteobacteria - Betaproteobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  2.52e-3  3  8.41e-4  0.85  0.48  

Residuals  0.03  26  9.91e-4       

Note.  Type III Sum of Squares 

 

ANOVA – Firmicutes- Clostridia  

Cases Sum of Squares df Mean Square F p 

Categories  5.02e-5  3  1.67e-5  0.68  0.57  

Residuals  6.41e-4  26  2.47e-5       

Note.  Type III Sum of Squares 

 
Kruskal-Wallis Test Proteobacteria - Deltaproteobacteria  

Factor Statistic df p 

Categories  4.44  3  0.22  
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Kruskal-Wallis Test  Chloroflexi - Ellin6529 

Factor Statistic df p 

Categories  4.68  3  0.20  

 

ANOVA -Proteobacteria - Gammaproteobacteria  

Cases Sum of Squares df Mean Square F p 

Categories  3.02e-3  3  1.01e-3  3.56  0.03  

Residuals  7.36e-3  26  2.83e-4       

Note.  Type III Sum of Squares 

 

Post Hoc Gammaproteobacteria comparisons- Categories  
  Mean Difference SE t ptukey  

A  B  -0.02  8.87e-3  -2.28  0.13  

   C  -1.78e-3  8.48e-3  -0.21  1.00  

   D  -0.02  8.17e-3  -2.61  0.07  

B  C  0.02  9.36e-3  1.97  0.23  

   D  -1.12e-3  9.09e-3  -0.12  1.00  

C  D  -0.02  8.71e-3  -2.24  0.14  

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA -Gemmatimonadetes - Gemm.1  

Cases Sum of Squares df Mean Square F p 

Categories  3.39e-4  3  1.13e-4  4.41  0.01  

Residuals  6.66e-4  26  2.56e-5       

Note.  Type III Sum of Squares 

 

Post Hoc Gemm.1 comparisons - Categories  
  Mean Difference SE t ptukey  

A  B  -8.02e-5  2.67e-3  -0.03  1.00  

   C  -2.42e-3  2.55e-3  -0.95  0.78  

   D  -8.08e-3  2.46e-3  -3.29  0.01 * 

B  C  -2.34e-3  2.82e-3  -0.83  0.84  

   D  -8.00e-3  2.73e-3  -2.93  0.03 * 

C  D  -5.66e-3  2.62e-3  -2.16  0.16  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test Gemmatimonadetes - Gemmatimonadetes 

Factor Statistic df p 

Categories  13.77  3  3.23e-3  
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Post hoc test Gemmatimonadetes – Categories  

Categories  pbonferroni 

A B 0.22 
 C 1 
 D 0.07* 

B C 0.83 
 D 1 

C D 0.17 

  

 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA -Actinobacteria - MB.A2.108  

Cases Sum of Squares df Mean Square F p 

Categories  6.94e-4  3  2.31e-4  7.76  < .001  

Residuals  7.75e-4  26  2.98e-5       

Note.  Type III Sum of Squares 

 

Post Hoc MB.A2.108 Comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  0.01  2.88e-3  4.45  < .001 *** 

   C  8.61e-3  2.75e-3  3.13  0.02 * 

   D  9.04e-3  2.65e-3  3.41  0.01 * 

B  C  -4.18e-3  3.04e-3  -1.38  0.52  

   D  -3.75e-3  2.95e-3  -1.27  0.59  

C  D  4.32e-4  2.83e-3  0.15  1.00  

 * p < .05, ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Nitrospirae - Nitrospira  

Cases Sum of Squares df Mean Square F p 

Categories  4.17e-4  3  1.39e-4  1.01  0.40  

Residuals  3.56e-3  26  1.37e-4       

Note.  Type III Sum of Squares 

 

ANOVA – Planctomycetes - Planctomycetia  

Cases Sum of Squares df Mean Square F p 

Categories  2.80e-4  3  9.35e-5  3.59  0.03  

Residuals  6.77e-4  26  2.60e-5       

Note.  Type III Sum of Squares 
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Post Hoc  Planctomycetia comparisons- Categories  
  Mean Difference SE t ptukey  

A  B  -5.50e-3  2.69e-3  -2.05  0.20  

   C  4.83e-5  2.57e-3  0.02  1.00  

   D  3.52e-3  2.48e-3  1.42  0.50  

B  C  5.55e-3  2.84e-3  1.96  0.23  

   D  9.03e-3  2.75e-3  3.28  0.01 * 

C  D  3.48e-3  2.64e-3  1.32  0.56  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Actinobacteria - Thermoleophilia  

Cases Sum of Squares df Mean Square F p 

Categories  9.77e-3  3  3.26e-3  2.86  0.06  

Residuals  0.03  26  1.14e-3       

Note.  Type III Sum of Squares 
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Table S30. ANOVA analysis of Fungal ITS OTU communities at 0-5 cm depth interval 

ANOVA – Basidiomycota - Agaricomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  0.07  3  0.02  5.29  5.55e-3  

Residuals  0.11  26  4.25e-3       

Note.  Type III Sum of Squares 

 

Post Hoc Agaricomycetes comparisons-Categories  
  Mean Difference SE t ptukey  

A  B  0.10  0.03  2.90  0.04 * 

   C  0.11  0.03  3.47  9.35e-3 ** 

   D  0.09  0.03  2.98  0.03 * 

B  C  0.01  0.04  0.40  0.98  

   D  -5.26e-3  0.04  -0.15  1.00  

C  D  -0.02  0.03  -0.58  0.94  

 * p < .05, ** p < .01 

Note.  P-value adjusted for comparing a family of 4 

 

ANOVA – Ascomycota - Dothideomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  0.14  3  0.05  2.94  0.05  

Residuals  0.42  26  0.02       

Note.  Type III Sum of Squares 

 

Post Hoc Dothideomycetes comparisons- Categories  
  Mean Difference SE t ptukey  

A  B  -0.10  0.07  -1.45  0.48  

   C  -0.18  0.06  -2.86  0.04 * 

   D  -0.12  0.06  -2.01  0.21  

B  C  -0.09  0.07  -1.21  0.62  

   D  -0.03  0.07  -0.40  0.98  

C  D  0.06  0.07  0.89  0.81  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

 

 

Kruskal-Wallis Test Ascomycota -Eurotiomycetes 

Factor Statistic df p 

Categories  10.82  3  0.01  
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Post Hoc Test Eurotiomycetes – Categories 

Categories  pbonferroni 

A B 1.00 
 C 0.19 
 D 0.28 

B C 0.13 
 D 0.03* 

C D 1.00 

  

 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA – Ascomycota - Leotiomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  0.05  3  0.02  1.06  0.38  

Residuals  0.41  26  0.02       

Note.  Type III Sum of Squares 

 

Kruskal-Wallis Test  Ascomycota – Sordariomycetes 

Factor Statistic df p 

Categories  13.59  3  3.53e-3  

 

Post hoc Sordiomycetes comparisons by categories  

Categories  pbonferroni 

A B 0.046 
 C 0.047 
 D 0.006 

B C 1.00 
 D 1.00* 

C D 1.00 

  

 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA – Basidiomycota - Tremellomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  7.07e-3  3  2.36e-3  2.09  0.13  

Residuals  0.03  26  1.13e-3       



 

112 

 

ANOVA – Basidiomycota - Tremellomycetes  

Cases Sum of Squares df Mean Square F p 

Note.  Type III Sum of Squares 
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Table S 31. ANOVA analysis of Fungal ITS OTU communities at 5-15 cm depth interval 

Kruskal-Wallis Test Basidiomycota - Agaricomycetes 

Factor Statistic df p 

Categories  8.37  3  0.04  

 

Post hoc Agaricomycetes comparisons by categories  

Categories  pbonferroni 

A B 1.0 
 C 0.68 
 D 0.02* 

B C 1.0 
 D 0.85 

C D 1.00 

  

 * p < .05, ** p < .01, ***p<0.005 

 

ANOVA – Ascomycota - Dothideomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  0.07  3  0.02  9.15  < .001  

Residuals  0.06  26  2.44e-3       

Note.  Type III Sum of Squares 

 

Post Hoc Comparisons - Dothideomycetes Categories  
  Mean Difference SE t ptukey  

A  B  -0.10  0.03  -3.79  4.22e-3 ** 

   C  -0.07  0.02  -2.65  0.06  

   D  -0.12  0.02  -4.90  < .001 *** 

B  C  0.03  0.03  1.19  0.64  

   D  -0.02  0.03  -0.71  0.89  

C  D  -0.05  0.03  -2.02  0.21  

 ** p < .01, *** p < .001 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test  Ascomycota - Eurotiomycetes 

Factor Statistic df p 

Categories  4.23  3  0.24  
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ANOVA – Ascomycota Leotiomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  0.16  3  0.05  3.33  0.03  

Residuals  0.43  26  0.02       

Note.  Type III Sum of Squares 

 

Post Hoc Leotiomycetes comparisons- Categories  
  Mean Difference SE t ptukey  

A  B  0.11  0.07  1.57  0.41  

   C  0.16  0.06  2.55  0.08  

   D  0.18  0.06  2.83  0.04 * 

B  C  0.06  0.07  0.82  0.85  

   D  0.07  0.07  1.01  0.75  

C  D  0.01  0.07  0.17  1.00  

 * p < .05 

Note.  P-value adjusted for comparing a family of 4 

 

Kruskal-Wallis Test Ascomycota - Sordariomycetes 

Factor Statistic df p 

Categories  18.00  3  < .001  

 

Post hoc Sordiomycetes comparisons by categories  

Categories  pbonferroni 

A B 0.05 
 C 0.004 
 D <0.001 

B C 1.0 
 D 1.0 

C D 1.0 

  

 * p < .05, ** p < .01, ***p<0.005 

 

 

ANOVA – Basidiomycota - Tremellomycetes  

Cases Sum of Squares df Mean Square F p 

Categories  3.07e-3  3  1.02e-3  1.26  0.31  

Residuals  0.02  26  8.10e-4       

Note.  Type III Sum of Squares 
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Table S 32. Physical, chemical and biological soil properties since time since conversion by categories  A = forest, B =  < 10 y 
agriculture, C= >10<50 y agriculture,D=  >50 y agriculture. Mean values and (standard deviation) 

Physical and chemical 
soil properties  

Categories   

A B C D Average 

Clay (%) 29.16 (12.55) 22.22 (11.43) 32.19 (9.78) 24.09 (8.11) -6% 

SOM (%) 11.72 (6.04) 5.65 (2.11) 5.11 (1.87) 7.5 (4.31) -12% 

pH  6.15 (0.38) 5.81 (0.48) 6.19 (0.33) 6.24 (0.31) 0% 

P (ppm) 4.21 (2.24) 6.05 (4.38) 8.08 (6.08) 10.39 (10.64) 49% 

K(ppm) 154.3 (82.85) 135.96 (59.73) 174.87 (128.78) 190.21 (94.31) 8% 

TotalC (%) 7.57 (3.78) 3.56 (1.27) 3.21 (0.94) 4.94 (3.11) -12% 

Total N (%) 0.51 (0.23) 0.27 (0.11) 0.28 (0.11) 0.38 (0.2) -8% 

Mg(ppm) 797.17 (418.31) 448.17 (284.35) 666.24 (212.31) 480.89 (218.06) -13% 

Fe(ppm) 19.95 (14.91) 17.58 (5.4) 16.16 (17.67) 10.95 (4.21) -15% 

Mn(ppm) 12.38 (6.04) 10.4 (3.56) 7.51 (6.1) 9.22 (5.66) -9% 

Zn(ppm) 1.38 (1.18) 1.57 (1.11) 1.06 (0.62) 2.09 (1.53) 17% 
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Table S 33. Relationship between soil organic matter, chemical soil properties and functional genes targeted by qPCR using 
Spearman correlation analysis. Correlations (p <0.05) at both depth intervals.   

Soil properties  qPCR ( copies ng-1 DNA) Spearman's rho p 

SOM Fungal 18S  -0.26 0.04 * 

SOM Bglu  -0.29 0.02 * 

SOM gh11  -0.35 5.90E-03 ** 

SOM B-amoA- -0.45 < .001 *** 

SOM A-amoA- -0.31 0.02 * 

SOM nxrA  -0.46 < .001 *** 

SOM nrfA  0.29 0.02 * 

SOM phoC  0.35 5.58E-03 ** 

          

pH CBH  -0.28 0.03 * 

pH Bglu  0.56 < .001 *** 

pH A-amoA- 0.37 3.52E-03 ** 

pH nrfA  0.57 < .001 *** 

pH NosZ  0.3 0.02 * 

pH pqqC  -0.27 0.04 * 

          

P Archael 16S  0.47 < .001 *** 

P Fungal 18S  0.65 < .001 *** 

P CBH  0.51 < .001 *** 

P gh11  0.56 < .001 *** 

P B-amoA- 0.5 < .001 *** 

P nxrA  0.42 < .001 *** 

P NosZ  0.31 0.02 * 

          

K Archael 16S  0.28 0.03 * 

K Fungal 18S  0.4 1.34E-03 ** 

K CBH  0.27 0.04 * 

K gh11  0.27 0.03 * 

K NosZ  0.32 0.01 * 

          

Total C Bglu  -0.32 0.01 * 

Total C gh11  -0.28 0.03 * 

Total C B-amoA- -0.4 1.45E-03 ** 

Total C A-amoA- -0.38 2.71E-03 ** 

Total C nxrA  -0.42 < .001 *** 

Total C nrfA  0.31 0.02 * 

Total C phoC  0.37 3.26E-03 ** 
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Total N Bglu  -0.35 5.89E-03 ** 

Total N B-amoA- -0.34 8.35E-03 ** 

Total N A-amoA- -0.35 6.76E-03 ** 

Total N nxrA  -0.34 8.15E-03 ** 

Total N phoC  0.26 0.04 * 

          

Mg Laccase  0.3 0.02 * 

Mg nxrA  -0.35 5.94E-03 ** 

Mg nrfA  0.49 < .001 *** 

Mg NosZ  0.3 0.02 * 

Mg phoD  0.36 4.44E-03 ** 

          

Fe Archael 16S  -0.38 2.48E-03 ** 

Fe Bglu  -0.44 < .001 *** 

Fe B-amoA- -0.3 0.02 * 

Fe A-amoA- -0.4 1.52E-03 ** 

Fe nrfA  -0.6 < .001 *** 

Fe NosZ  -0.39 2.46E-03 ** 

          

Mn Bglu  -0.5 < .001 *** 

Mn A-amoA- -0.61 < .001 *** 

          

Zn Bacterial 16S  -0.1 0.44   

Zn Archael 16S  0.26 0.04 * 

Zn Fungal 18S  0.27 0.04 * 

     

* p < .05, ** p < .01, *** p < .001 
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Table S 34. Relationship between soil organic matter, chemical soil properties and bacterial class OTU's using Spearman 
correlation analysis. Significant different p < 0.05 values are shown for each bacterial class at both depth intervals 

Physical, biological and 
chemical metrics  

Phyla – class bacterial 16s OTU  
Spearman's 

rho 
p 

SOM Actinobacteria-Acidimicrobiia 0.58 < .001 *** 

SOM Acidobacteria-Acidobacteria.6 0.32 0.01 * 

SOM Actinobacteria-MB.A2.108 0.26 0.05 * 

SOM Planctomycetes-Planctomycetia 0.28 0.03 * 

SOM Acidobacteria-Acidobacteriia -0.4 < .001 ** 

SOM Chloroflexi-Ellin6529 -0.3 0.02 * 

SOM Gemmatimonadetes-Gemm.1 -0.4 < .001 ** 

         

pH Acidobacteria-.Chloracidobacteria. 0.4 < .001 ** 

pH Acidobacteria-Acidobacteria.6 0.57 < .001 *** 

pH Gemmatimonadetes-Gemm.1 0.45 < .001 *** 

pH Actinobacteria-MB.A2.108 0.37 < .001 ** 

pH Acidobacteria-Acidobacteriia -0.5 < .001 *** 

pH Actinobacteria-Actinobacteria -0.3 0.05 * 

pH Proteobacteria-Alphaproteobacteria -0.7 < .001 *** 

pH Planctomycetes-Planctomycetia -0.6 < .001 *** 

         

P 
Proteobacteria-

Gammaproteobacteria 
0.31 0.02 * 

P Actinobacteria-Actinobacteria 0.64 < .001 *** 

P Actinobacteria-Acidimicrobiia -0.3 0.01 * 

P Proteobacteria-Deltaproteobacteria -0.4 < .001 ** 

P Actinobacteria-MB.A2.108 -0.4 < .001 ** 

         

K Actinobacteria-Actinobacteria 0.49 < .001 *** 

K Chloroflexi-Ellin6529 -0.4 < .001 ** 

         

Total C Actinobacteria-Acidimicrobiia 0.59 < .001 *** 

Total C Acidobacteria-Acidobacteria.6 0.3 0.02 * 

Total C Planctomycetes-Planctomycetia 0.3 0.02 * 

Total C Acidobacteria-Acidobacteriia -0.4 < .001 ** 

Total C Chloroflexi-Ellin6529 -0.3 0.03 * 

Total C Gemmatimonadetes-Gemm.1 -0.4 < .001 *** 

         

Total N Actinobacteria-Acidimicrobiia 0.53 < .001 *** 

Total N Planctomycetes-Planctomycetia 0.28 0.03 * 

Total N Acidobacteria-Acidobacteriia -0.3 0.01 * 

Total N Chloroflexi-Ellin6529 -0.3 0.04 * 

Total N Gemmatimonadetes-Gemm.1 -0.4 < .001 *** 
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Mg Acidobacteria-Acidobacteria.6 0.38 < .001 ** 

Mg Acidobacteria-Acidobacteriia -0.3 0.02 * 

Mg Chloroflexi-Ellin6529 -0.3 0.01 * 

Mg 
Proteobacteria-

Gammaproteobacteria 
-0.5 < .001 *** 

Mg Actinobacteria-MB.A2.108 0.46 < .001 *** 

         

Fe Acidobacteria-.Chloracidobacteria. -0.3 0.02 * 

Fe Acidobacteria-Acidobacteria.6 -0.6 < .001 *** 

Fe Acidobacteria-Acidobacteriia 0.58 < .001 *** 

Fe Proteobacteria-Alphaproteobacteria 0.59 < .001 *** 

Fe Nitrospirae-Nitrospira -0.3 0.02 * 

Fe Planctomycetes-Planctomycetia 0.34 < .001 ** 

         

Mn Acidobacteria-.Chloracidobacteria. -0.5 < .001 *** 

Mn Actinobacteria-Acidimicrobiia 0.31 0.01 * 

Mn Acidobacteria-Acidobacteria.6 -0.2 0.15   

Mn Proteobacteria-Alphaproteobacteria 0.36 < .001 ** 

Mn Chloroflexi-Ellin6529 -0.3 0.05 * 

Mn Gemmatimonadetes-Gemm.1 -0.5 < .001 *** 

Mn Nitrospirae-Nitrospira -0.4 < .001 *** 

Mn Planctomycetes-Planctomycetia 0.4 < .001 ** 

         

Zn Actinobacteria-Actinobacteria 0.3 0.02 * 

Zn Proteobacteria-Alphaproteobacteria 0.27 0.04 * 

Zn Nitrospirae-Nitrospira -0.4 < .001 ** 

Zn Planctomycetes-Planctomycetia 0.31 0.02 * 

Zn Chloroflexi-Thermomicrobia 0.33 0.01 * 
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Table S35. Relationship between soil organic matter, chemical soil properties and fungal class OTU's using Spearman correlation 
analysis. Significant different p < 0.05 values are shown for each fungal class at both depth intervals.  

Biological and 

chemical metrics  
Phyla – class fungal OTU  

Spearman's 

rho 
p 

SOM Basidiomycota-Agaricomycetes 0.32 0.01 * 

SOM Ascomycota-Sordariomycetes -0.3 0.02 * 

          

P Ascomycota-Dothideomycetes 0.33 0.01 * 

P Ascomycota-Sordariomycetes 0.49 < .001 *** 

P Ascomycota-Leotiomycetes -0.5 < .001 *** 

P Basidiomycota-Agaricomycetes -0.4 
3.92E-

03 
** 

          

K Ascomycota-Sordariomycetes 0.31 0.02 * 

K Ascomycota-Leotiomycetes -0.4 
3.68E-

03 
** 

          

Total C Basidiomycota-Agaricomycetes 0.31 0.02 * 

          

Total N Ascomycota-Sordariomycetes -0.3 0.04 * 

          

Fe Basidiomycota-Agaricomycetes 0.26 0.04 * 

Fe Ascomycota-Leotiomycetes 0.36 
4.93E-

03 
** 

Fe Ascomycota-Sordariomycetes -0.3 
9.39E-

03 
** 

          

Mn Basidiomycota-Agaricomycetes 0.34 
8.18E-

03 
** 

Mn Ascomycota-Sordariomycetes -0.4 
4.16E-

03 
** 

    

* p < .05, ** p < .01, *** p < .001 
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